
OPTIMIZED MULTIPROCESSOR
COMMUNICATION AND SYNCHRONIZATION
USING A PROGRAMMABLE PROTOCOL ENGINE

John Heinlein

Technical Report No.: CSL-TR-98-759

March 1998

This dissertation was supported by an Air Force Laboratory Graduate Fellowship
(administered by the Air Force Office of Scientific Research), by an Intel Foundation
Fellowship, and by the Defense Advanced Research Projects Agency, which funded the
FLASH project under DARPA Contract DABT63-94-C-0054.

Optimized Multiprocessor
Communication and Synchronization

Using a Programmable Protocol Engine

John Heinlein

CSL-TR-98-759

March 1998

COMPUTER SYSTEMS LABORATORY
Departments of Electrical Engineering and Computer Science

Gates Computer Science Building, #408
Stanford University

Stanford, CA 94305-9040
pubs@shasta.stanford.edu

Abstract

In recent years, multiprocessor designs have converged towards a unified hardware architecture
despite supporting different communication abstractions. The implementation of these communi-
cation abstractions and the associated protocols in hardware is complex, inflexible, and error prone.
For these reasons, some recent designs have employed a programmable controller to manage system
communication. One particular focus of these designs is implementing cache coherence protocols
in software. This dissertation argues that a programmable communication controller that provides
cache coherence can also effectively support block transfer and synchronization protocols. This
research is part of theFLASH project, a major focus of which is exploring the integration of multiple
communication protocols in a single multiprocessor architecture.

In our analysis, we examine the needs of protocols other than cache coherence to identify the
requirements they share. The interface between the processor and controller is one critical issue in
these protocols, so we propose techniques to export such protocols reliably, at low overhead, and
without system calls. Unlike most prior studies, our approach supports a modern operating system
with features like multiprogramming, protection, and virtual memory.

Our study focuses in detail on two classes of communication that are important for large scale
multiprocessors: block transfer and synchronization using locks and barriers. In particular, we
attempt to improve the performance of these classes of communication as compared to implemen-
tations using only software on top of shared memory. For each protocol we identify the critical
metrics of performance, explore the limitations of existing techniques, then present our implemen-
tation, which is tailored to leverage the programmable communication controller. We evaluate each
protocol in isolation, in the context of microbenchmarks, and within a variety of applications.

We find that embedding advanced communication and synchronization features in a program-
mable controller has a number of advantages. For example, the block transfer protocol improves
transfer performance in some cases, enables the processor to perform other work in parallel, and

i

reduces processor cache pollution caused by the transfer. The synchronization protocols reduce
overhead and eliminate bottlenecks associated with synchronization primitives implemented using
software on top of shared memory. Simulations of scientific applications running onFLASH show
that, in many cases, synchronization support improves performance and increases the range of ma-
chine sizes over which the applications scale. Our study shows that embedded programmability is a
convenient approach for supporting block transfer and synchronization, and that theFLASH system
design effectively supports this approach.

Keywords & Phrases: multiprocessors,FLASH, cache-coherent shared memory, message
passing, synchronization

ii

Copyright c
 1998

by

John Heinlein

All Rights Reserved

Acknowledgements

I have had the privilege to carry out my graduate studies among some of the most talented re-

searchers in the computer architecture field. I especially thank my advisor, Anoop Gupta, whose

guidance has helped me grow as both a researcher and a person. His advice and feedback on this

dissertation itself has significantly improved its quality. I am also grateful to John Hennessy, my

secondary advisor. Despite the pressures of being computer science department chair and then en-

gineering dean, John was always available to give me his invaluable guidance and support. I thank

Bruce Wooley for chairing my orals committee and serving on my reading committee, which were

very generous given his equally taxing responsibilities as acting electrical engineering department

chair.

Besides those faculty on my reading committee, I would like to acknowledge the contributions

of two others as well. First, Mark Horowitz, who served as the day-to-day leader of theFLASH

project. Mark’s seemingly limitless knowledge and experience, as well as his skill at managing the

project made a difficult task achievable and fun. I also benefitted greatly from the advice, friendship,

and collaboration of Mendel Rosenblum, who brought a valued alternative perspective to the project.

I feel particularly lucky to have received the guidance ofDASH veteran Kourosh Gharachorloo,

who worked closely with me at Stanford throughout the work on block transfer and later during my

internship at Digital Equipment Corporation’s Western Research Laboratory (WRL). His attention

to detail has enriched my graduate training. His insight is reflected in particular in the techniques

presented in Chapter 4.

I was also fortunate enough to have a wonderful group of fellow researchers with whom I was

able to work. First and foremost, theFLASH team was responsible for developing the novel ar-

chitecture studied in this research: Joel Baxter, Jules Bergmann, Mark Heinrich, Hema Kapadia,

Jeffrey Kuskin, David Ofelt, David Nakahira, and Richard Simoni. I also acknowledge two other

colleagues, Steven Woo and Chris Holt, who graciously helped me unravel the SPLASH applica-

tions I studied. I am also grateful for having been able to work closely with a “second family”

v

as well, Mendel Rosenblum’s Hive and SimOS groups: Robert Bosch, Edouard Bugnion, John

Chapin, Scott Devine, Kinshuk Govil, Steve Herrod, Beth Seamans, Dan Teodosiu, Ben Verghese,

Ben Werther, and Emmett Witchel. John Chapin collaborated on the operating system and inter-

face issues for the protocols we study. Robert Bosch contributed to the performance evaluation of

memory copy.

Of all these, I would like to specially acknowledge my two sets of officemates: from the CSL

Trailer, David Ofelt and Jeffrey Kuskin; and from Gates 354, Robert Bosch and Steve Herrod. I

learned a great deal from them especially, and I sincerely valued their friendship and support over

these many years. Special thanks also go to Joel Baxter and Mark Heinrich whose endless simulator

work and unfailing assistance were invaluable in supporting this research.

I thank Charlie Orgish and Thoi Nguyen for helping me sleep at night knowing my data was

safe, but even more importantly for being wonderful friends. Throughout my studies and my work

as CSL student bureaucrat, I benefited from the care and help of a number of administrators: Lori

Balough, Darlene Hadding, Margaret Rowland, Naomi Schulman, Eileen Schwappach, Terry West,

and many others. From out of the blue I was blessed with the advice and kindness of Nick McKeown

and Murray Warren, who helped me along my journey in many ways.

I gratefully acknowledge support for my graduate studies from an Air Force Laboratory Grad-

uate Fellowship (administered by the Air Force Office of Scientific Research), from an Intel Foun-

dation Fellowship, and from the Defense Advanced Research Projects Agency, which funded the

FLASH project under DARPA Contract DABT63-94-C-0054. The completion of my dissertation

took place at Transmeta Corporation. I cannot adequately express my gratitude for the support and

understanding I received from my supervisors Craig Anderson and Jack Guskin, especially as the

process dragged on beyond all expectation.

I thank Michelle Stohlmeyer for her loving and patient support during the often difficult process

of finishing my dissertation. Her empathy (not to mention her excellent care packages) kept me

going in the final stages.

Finally, I am deeply grateful for the unfailing love and support of my parents, John and Janet,

and my brother Jason. The nurturing environment they provided is undoubtedly responsible for my

accomplishments in life, and my love for them cannot be overstated.

vi

To my parents John and Janet

who gave me every opportunity in the world.

vii

viii

Contents

Abstract i

Acknowledgements v

1 Introduction 1

1.1 Using a Programmable Protocol Engine . 2

1.1.1 Why Embed Programmability? .. 2

1.1.2 TheFLASH Approach . 3

1.2 Dissertation Focus . 4

1.2.1 Processor/Controller Interface Issues . 4

1.2.2 Requirements of Alternate Protocols . 4

1.2.3 Detailed Protocol Studies . 4

1.3 Contributions 5

1.4 Organization . 6

2 The FLASH Multiprocessor 9

2.1 Background and Motivation. 9

2.1.1 TheDASH Multiprocessor 11

2.1.2 TheFLASH Approach . 12

2.2 FLASH Overview . 12

2.2.1 FLASH System Architecture . 13

2.2.2 Communication Protocol Terminology and Semantics 14

2.2.3 Cache Coherence . 15

2.3 MAGIC (Memory and General Interconnect Controller) 17

2.3.1 MAGIC Microarchitecture Overview . 17

2.3.2 The Protocol Processor . 19

ix

2.3.3 The Processor Interface . 20

2.3.4 Data Buffers and Memory Access. 22

2.3.5 The Software Queue and Idle Handler . 24

2.3.6 Deadlock . 26

2.4 FLASH Software Environment . 27

2.4.1 Protocol Compilation and Scheduling . 27

2.4.2 FLASH System Simulation . 28

2.5 Summary . 29

3 Uses of Flexibility Beyond Cache Coherence 31

3.1 Block Transfer (Message Passing) inFLASH . 32

3.1.1 Message Passing Overview . 33

3.1.2 Message Passing Models . 34

3.1.3 Providing Block Transfer . 35

3.1.4 Integrated Shared Memory and Message Passing 36

3.2 Synchronization Primitives . 37

3.2.1 Locks . 38

3.2.2 Barriers . .. 39

3.3 Summary . 39

4 Alternate Protocol Fundamentals 41

4.1 Processor/MAGIC Communication . 42

4.1.1 The Protocol Processor Call (PPC) . 43

4.1.2 The Protocol Processor Register (PPR) 47

4.1.3 The Operating System Procedure Call (OSPC) 48

4.2 Virtual Memory . 50

4.2.1 Providing Authentic Translations from User Level 51

4.2.2 Guaranteeing Translations Remain Valid 55

4.2.3 Comparing the Virtual Memory Techniques. 59

4.3 Protection . 60

4.4 Coherence of Alternate Protocols (PP Ownership) 61

4.4.1 MAGIC IO Subsystem . 62

4.4.2 PP Ownership . 63

4.5 Summary . 65

5 FLASH Memory Copy 67

5.1 FLASH Memory Copy Application Programming Interface 67

5.1.1 Sources of Complexity . 68

x

5.2 Locally Coherent Transfer Model . 70

5.2.1 Transfer Overview . 70

5.2.2 Base Implementation . 73

5.2.3 Optimized Implementation . 79

5.2.4 Unaligned Transfers . 83

5.3 Fully Coherent Transfer Model . 85

5.3.1 Cache Coherence for Block Transfer Data 85

5.3.2 Support for Remote Homes . .. 88

5.3.3 Implementation Issues . 89

5.4 Low-level Performance Analysis . 90

5.4.1 Simulation Environment . 90

5.4.2 Transfer Overhead . 91

5.4.3 Transfer Bottlenecks. 93

5.5 Benchmarks and Performance Comparison . 95

5.5.1 Microbenchmark Analysis . 96

5.5.2 Message Passing Interface (MPI) . 98

5.5.3 GNU tar Application . 99

5.6 Related Work . 100

5.6.1 Discussion . 103

5.7 Summary . 104

6 FLASH Synchronization Primitives 107

6.1 FLASH Locks . 108

6.1.1 Metrics for Evaluating Lock Performance. 109

6.1.2 Conventional Lock Implementations . 111

6.1.3 FLASH Lock Application Programming Interface 115

6.1.4 FLASH Lock Implementation . 116

6.1.5 Protocol Discussion . 123

6.1.6 Multiprogramming/Multithreading Issues. 125

6.1.7 Protocol Handlers . 128

6.1.8 Lock Performance in Isolation . 130

6.1.9 Related Work . 137

6.2 FLASH Barriers . 143

6.2.1 Metrics for Evaluating Barrier Performance. 143

6.2.2 Conventional Barrier Implementations 146

6.2.3 FLASH Barrier Application Programming Interface 150

6.2.4 FLASH Barrier Implementation .. 151

xi

6.2.5 Protocol Handlers . 155

6.2.6 Barrier Performance in Isolation. 155

6.2.7 Related Work . 161

6.3 Lock and Barrier Performance Impact in Applications. 163

6.3.1 Application Descriptions and Characteristics 164

6.3.2 Water . 166

6.3.3 Barnes . 175

6.3.4 Ocean 180

6.4 Discussion . 191

6.5 Summary . 193

7 Extensions and Future Directions 195

7.1 Active Messages . 195

7.1.1 Processor-Implemented Active Messages 196

7.1.2 MAGIC-Implemented Active Messages 197

7.2 Other Protocols . 199

7.2.1 Fetch-and-Op . 199

7.2.2 Global Reduction Operations . 200

7.2.3 Fault Containment, Reliability, and Recovery. 201

7.2.4 Performance Monitoring . 201

7.3 Summary . 202

8 Conclusions 205

8.1 Interface Between Processor and Controller . 205

8.2 Memory Copy . 206

8.3 Synchronization . 207

8.4 Flexible Controller Design Observations . 209

A MAGIC Implementation Details 211

A.1 PP Instruction Set . 211

A.2 Processor Interface . 211

A.2.1 PI Reply Register . 211

A.2.2 Supported PI Operations. 213

B Synchronization Primitive Implementations 215

B.1 Locks . 215

B.2 Barriers . 217

Bibliography 221

xii

List of Tables

5.1 Breakdown of fbcopy overhead components. 92

5.2 Transfer latency to send 4 KB using bcopy, prefetched bcopy, and fbcopy. 96

5.3 Simulation results for GNU tar using different memory copy implementations. . . . 100

6.1 Summary of theFLASH lock protocol handlers. 129

6.2 Acquire latency for an available lock. 131

6.3 Two results from the contended locking microbenchmark. 133

6.4 Summary of theFLASH barrier protocol handlers.. 156

6.5 Barrier fall-through latency (tft) for late arrival. 157

6.6 Barrier fall-through latency (tft) for simultaneous arrival. 157

6.7 Barrier release latency (trel). 159

6.8 Master-Slave Barrier microbenchmark results. 161

6.9 Application problem size and synchronization usage overview. 165

6.10 Water lock results summary. 169

6.11 Barnes lock results summary. 177

6.12 Ocean barrier results summary.. 183

8.1 Protocol code size summary. 208

A.1 Summary of theMAGIC Protocol Processor instruction set. 212

A.2 Explanation of Processor Interface interventions (partial list).. 213

xiii

xiv

List of Figures

2.1 Symmetric multiprocessor architecture.. 10

2.2 Scalable multiprocessor architecture. . .. 11

2.3 FLASH Node Architecture. 13

2.4 MAGIC Microarchitecture. 13

2.5 Conceptual illustration of a cache coherence directory. 16

2.6 Changing data alignment via double-buffer loads.. 24

4.1 FLASH Address format. 45

4.2 Example of double mapping illustrating the use of alternate physical address spaces. 52

4.3 Example translation invalidation data structure. 58

4.4 The PP ownership table. 63

4.5 PP Ownership building on top of the I/O support in the protocol.. 64

5.1 Sources of complexity in memory copy. 69

5.2 Schematic transfer timeline. 71

5.3 Pseudo code for the base implementation of the locally coherent transfer handler. . 75

5.4 Coherence handling in the locally coherent transfer model. 76

5.5 Page boundary crossings. . .. 79

5.6 Potential benefit from chunking.. 80

5.7 Pseudo code for the optimized implementation of the locally coherent transfer handler 81

5.8 Transfer handler performance for different chunking and caching parameters. . . . 82

5.9 Total transfer handler duration for different chunking and caching parameters. . . . 83

5.10 Support for arbitrary block transfer alignment. 84

5.11 Unaligned transfer performance as a function of chunk size and caching state. . . . 85

5.12 Example coherence scenario. 86

5.13 Source side coherence alternatives. 87

xv

5.14 Destination side coherence. 88

5.15 Complete fbcopy protocol including remote home support. 89

5.16 Time line of a two-node block transfer. .. 93

5.17 Time line of a block transfer with the source buffer dirty on a remote node.. 94

5.18 Comparison of forwarding (Fwd) vs. pipelined collect-and-send (PC&S). 95

5.19 Bottlenecks in fbcopy from the network and protocol processing.. 95

5.20 MPI transfer performance for a range of message sizes and transfer techniques. . . 99

6.1 Non-contended and contended lock acquisition metrics. 111

6.2 Invalidation of lock waiters when the holder upgrades to release the lock.. 113

6.3 Former sharers acknowledge the invalidation. 113

6.4 A rush of requesters follows an unlock. 113

6.5 MCS Lock queueing approach. 114

6.6 Extraneous caching in MCS lock queues.. 115

6.7 Lock protocol internal state format. 118

6.8 Legend of symbols in lock protocol diagrams. 120

6.9 Request for local lock state fromMAGIC. 121

6.10 Token request for lock currently at another node, no queue pending (Unlocked). . . 121

6.11 Token request for a lock currently at another node, no queue pending (Locked). . . 121

6.12 Request for a lock with a queue of waiters pending. 121

6.13 Unlock operation in cache when no queue is pending.. 122

6.14 Unlock operation with one or more requesters pending. 122

6.15 The centralized queue locking approach forFLASH locks. 124

6.16 Timeout bit vector structure and lock correspondence.. 126

6.17 Pseudo code for theFLASH lock timeout mechanism. 127

6.18 Results from the high contention benchmark under simulation.. 134

6.19 Results from the high contention benchmark on the Silicon Graphics Origin 2000. . 135

6.20 Performance of the stochastic contended lock microbenchmark under simulation. . 137

6.21 Pseudo code for a lock implemented with theQOLB primitive. 140

6.22 Barrier nomenclature illustration, showing fall-through latency and release latency. 145

6.23 Schematic illustration of barrier primitive types: conventional and master-slave. . . 147

6.24 Example binary tournament barrier tree for an 8-processor application. 148

6.25 Example 3-ary barrier join tree for an 8-processor application.. 149

6.26 Example binary (2-ary) barrier release tree for an 8-processor application.. 149

6.27 Barrier protocol internal state format. .. 152

6.28 Water computation time using different lock techniques. 167

6.29 Water, 16 processors, 512 molecules, LL/SC lock latency histograms. 170

xvi

6.30 Water, 32 processors, 512 molecules, LL/SC lock latency histograms. 170

6.31 Water, 16 processors, 512 molecules, MCS lock latency histograms. 170

6.32 Water, 32 processors, 512 molecules, MCS lock latency histograms. 170

6.33 Water, 16 processors, 512 molecules,FLASH lock latency histograms. 170

6.34 Water, 32 processors, 512 molecules,FLASH lock latency histograms. 170

6.35 Water, 64 processors, 512 molecules, LL/SC lock latency histograms. 171

6.36 Water, 128 processors, 512 molecules, LL/SC lock latency histograms. 171

6.37 Water, 64 processors, 512 molecules, MCS lock latency histograms. 171

6.38 Water, 128 processors, 512 molecules, MCS lock latency histograms. 171

6.39 Water, 64 processors, 512 molecules,FLASH lock latency histograms. 171

6.40 Water, 128 processors, 512 molecules,FLASH lock latency histograms. 171

6.41 Water, 32 processors, 1024 molecules, LL/SC lock latency histograms. 172

6.42 Water, 64 processors, 1024 molecules, LL/SC lock latency histograms. 172

6.43 Water, 32 processors, 1024 molecules, MCS lock latency histograms. 172

6.44 Water, 64 processors, 1024 molecules, MCS lock latency histograms. 172

6.45 Water, 32 processors, 1024 molecules,FLASH lock latency histograms. 172

6.46 Water, 64 processors, 1024 molecules,FLASH lock latency histograms. 172

6.47 Water, 128 processors, 1024 molecules, LL/SC lock latency histograms.. 173

6.48 Water, 128 processors, 1024 molecules, MCS lock latency histograms. 173

6.49 Water, 128 processors, 1024 molecules,FLASH lock latency histograms. 173

6.50 Barnes computation time using different lock techniques. 176

6.51 Barnes, 16 processors, 8k bodies, LL/SC lock latency histograms. 178

6.52 Barnes, 32 processors, 8k bodies, LL/SC lock latency histograms. 178

6.53 Barnes, 16 processors, 8k bodies, MCS lock latency histograms.. 178

6.54 Barnes, 32 processors, 8k bodies, MCS lock latency histograms.. 178

6.55 Barnes, 16 processors, 8k bodies,FLASH lock latency histograms. 178

6.56 Barnes, 32 processors, 8k bodies,FLASH lock latency histograms. 178

6.57 Barnes, 64 processors, 8k bodies, LL/SC lock latency histograms. 179

6.58 Barnes, 128 processors, 8k bodies, LL/SC lock latency histograms. 179

6.59 Barnes, 64 processors, 8k bodies, MCS lock latency histograms.. 179

6.60 Barnes, 128 processors, 8k bodies, MCS lock latency histograms. 179

6.61 Barnes, 64 processors, 8k bodies,FLASH lock latency histograms. 179

6.62 Barnes, 128 processors, 8k bodies,FLASH lock latency histograms. 179

6.63 Ocean computation time using different barrier techniques. 182

6.64 Ocean, 16 processors, 258x258, Tournament barrier metric and arrival histograms. . 184

6.65 Ocean, 16 processors, 258x258, MCS barrier metric and arrival histograms. 184

6.66 Ocean, 16 processors, 258x258,FLASH barrier metric and arrival histograms. . . . 184

xvii

6.67 Ocean, 32 processors, 258x258, Tournament barrier metric and arrival histograms. . 185

6.68 Ocean, 32 processors, 258x258, MCS barrier metric and arrival histograms. 185

6.69 Ocean, 32 processors, 258x258,FLASH barrier metric and arrival histograms. . . . 185

6.70 Ocean, 64 processors, 258x258, Tournament barrier metric and arrival histograms. . 186

6.71 Ocean, 64 processors, 258x258, MCS barrier metric and arrival histograms. 186

6.72 Ocean, 64 processors, 258x258,FLASH barrier metric and arrival histograms. . . . 186

6.73 Ocean, 32 processors, 514x514, Tournament barrier metric and arrival histograms. . 187

6.74 Ocean, 32 processors, 514x514, MCS barrier metric and arrival histograms. 187

6.75 Ocean, 32 processors, 514x514,FLASH barrier metric and arrival histograms. . . . 187

6.76 Ocean, 64 processors, 514x514, Tournament barrier metric and arrival histograms. . 188

6.77 Ocean, 64 processors, 514x514, MCS barrier metric and arrival histograms. 188

6.78 Ocean, 64 processors, 514x514,FLASH barrier metric and arrival histograms. . . . 188

7.1 The NYU Ultracomputer’s Combining network. 200

B.1 Pseudo code for a load-linked/store-conditional-based lock implementation. 216

B.2 Pseudo code for the Mellor-Crummey Scott lock 216

B.3 Pseudo code for the LL/SC-based barrier implementation. 217

B.4 Pseudo code for the tournament tree barrier implementation.. 218

B.5 Pseudo code for the Mellor-Crummey Scott barrier. 219

B.6 Pseudo code for the Basic Master-Slave barrier implementation. 220

xviii

Chapter 1

Introduction

A critical problem in multiprocessors is managing communication between the processors in the

system. Individual processor performance is important, but it alone is not sufficient to achieve

scalable system performance. To address the communication problem, multiprocessor systems re-

search has explored a broad range of design styles and, in turn, communication abstractions pre-

sented to the application. Among these models are shared memory, message passing, dataflow,

systolic arrays, SIMD, and many others, each of which has advantages for certain classes of pro-

grams [Fly66, Vee86, AAG+87, AS88, Bla90, Int91, Len92, HT93].

Over time, two models have emerged as the predominant ones supported by multiprocessor

systems: cache-coherent shared memory and message passing. Shared memory provides the pro-

grammer with a simple memory abstraction similar to a uniprocessor that is particularly well suited

for programs that exhibit dynamic communication behavior or fine grain sharing. Certain other

types of communication such as the transfer of coarse grain data can sometimes be achieved more

efficiently through message passing, though it significantly increases the data management burden

on the application programmer.

The complementary nature of the shared memory and message passing communication styles,

in conjunction with the convergence of underlying hardware mechanisms used to implement each

model has led to a surge of interest in hybrid architectures that support both styles efficiently. Fur-

thermore, the complexity of implementing the protocols in hardware has motivated the development

of hybrid hardware/software solutions to manage communication [ACD+91, Cra93, ACD+95].

As one recent approach, several systems have been designed using a programmable controller to

manage system communication [ACD+91, ACD+95, KOH+94]. One particular focus of these sys-

tems is implementing cache coherence protocols in software. This study argues that a programmable

1

communication controller that provides cache coherence can also effectively support block transfer

and synchronization protocols. Our focus is on one such system in particular, theFLASH Multipro-

cessor, which includes a programmable protocol engine to serve as the memory system and network

interface controller.FLASH (FLexible Architecture forSHared memory), was designed by a team

of researchers at Stanford University between 1992–1997. This dissertation complements previ-

ous studies ofFLASH, which focus on its architecture and its use with a range of cache coherence

protocols [KOH+94, HKO+94, MOH96, Kus97, Hei].

Since the introduction ofFLASH, other commercial and research systems have been proposed

that incorporate some of the same design characteristics, including the use of a flexible protocol

engine. Among these systems are Typhoon [RLW94, RPW96] and the Sequent NUMA-Q [LC96].

As in FLASH, the published research for these systems has also focused primarily on shared memory,

though many of the issues we address also apply to those systems. Thus, our study of “alternate”

protocols may be applicable in a wider context than just theFLASH project.

1.1 Using a Programmable Protocol Engine

Traditionally, within the core of a multiprocessor system is a hardware unit designed to implement

the communication model provided by the machine. For example, in the case of cache-coherent

shared memory, the communication controller transparently manipulates data to support the illusion

of shared memory. For message passing, it accepts explicit requests for data transfer and moves data

asynchronously.

Instead of the traditional hardware-only approach, the system we study uses a communication

controller containing a programmable engine at its core. As we describe below, this approach

provides a number of benefits over the traditional design. We briefly explore the characteristics of

these systems in general, then introduce the particular design of theFLASH system.

1.1.1 Why Embed Programmability?

Embedding programmability to replace a pure hardware solution is not a new idea. The use of

microcode to manage the internal control signals of a processor was proposed in 1949 [HP90].

The approach we study, however, uses embedded programmability in a new context: within the

communication controller in a multiprocessor system. Flexibility in this context seems a natural

extension of computer system design trends occurring in recent years. Several examples of these

trends are as follows:

The Alewife system designed at MIT allows software control over communication protocols by

supporting fast processor interrupts. Alewife’s approach thussharesa single processor to perform

both computation and protocol processing tasks [ACD+91, ACD+95].

2 Chapter 1 Introduction

Multiprocessor bus controllers continue to grow in complexity and functionality, especially

those for high-end servers. Current designs include support for features such as high performance

I/O management, RAS (Reliability, Availability, and Serviceability), and seamless multiprocessing

expandability. These features have reached a level of complexity where an implementation based

partially or entirely on software may soon be a reasonable design trade-off.

The StanfordDASH and the Sun S3.mp systems both integrate a controller with some degree of

programmability within their coherence protocol units.DASH uses a hybrid approach in which most

functions are provided in hardware but key protocol decisions are stored in a table. This allows only

limited customizations, such as enabling some protocol errors to be fixed [Len92]. S3.mp provides

a slightly more powerful model closer to a traditional microcode approach [NAB+95].

Flexibility embedded in the system enables a broad range of advantages over a purely hardware

approach. First and foremost it allows one architecture to support a range of different communica-

tion models. Hardware approaches could support multiple models, but they must be selected and

fixed in advance. On the other hand, a system with embedded programmability allows the commu-

nication protocols to be changed even after the system has been designed and built.

Late customization is valuable for a variety of reasons, among them:(i) to fix bugs in the proto-

col, (ii) to enable low-level performance optimizations, and(iii) to allow communication extensions

for particular applications or even entirely new protocols. In addition, protocol development in soft-

ware is convenient since one can use traditional software development and debugging techniques.

The challenge in a system with embedded flexibility is achieving high performance, since an imple-

mentation incorporating software may be less efficient than one based purely on hardware.

1.1.2 TheFLASH Approach

FLASH was designed from the beginning to balance the goal of integrating flexibility with the desire

for high performance. It is based on a programmable communication controller,MAGIC (Memory

And General Interconnect Controller), placed centrally in the node and given high-performance ac-

cess to memory, network, I/O, and the main processor. One of the key innovations inMAGIC is

its support for the parallel handling of control processing and data movement. Its centerpiece is

a programmable Protocol Processor that performs the control processing in software. Alongside

the Protocol Processor,MAGIC contains optimized hardware units to swiftly move data between its

communication interfaces. This hybrid design is enables protocols with a wide range of character-

istics to achieve high performance.

Section 1.1 Using a Programmable Protocol Engine 3

1.2 Dissertation Focus

The focus of this dissertation is to study the advantages and design issues of using a programmable

controller to support protocols other than cache coherence. We argue that through careful design

of the controller and protocols the same hardware designed for cache coherence can support other

classes of communication as well. We support our thesis by analyzing alternate protocols from

several different fronts, which we introduce below:

1.2.1 Processor/Controller Interface Issues

While the introduction of a programmable controller opens up a range of possibilities of communi-

cation functionality and performance, it also brings with it many new problems. For communication

support in the memory system to be useful, the processor must be able to access it at low overhead.

To accomplish this goal, we describe techniques that export these protocols at user level, i.e., with-

out system calls. Avoiding system call overhead increases the range of protocols that show benefits

from implementation on the communication controller.

However, unlike past studies that have considered systems running in single-user mode or in a

restricted system environment, our goal is to provide support for a modern operating system. To

bridge this gap, our research proposes techniques to support operating system features like multi-

programming, protection, and virtual memory.

1.2.2 Requirements of Alternate Protocols

One goal of embedding programmability in the communication controller is to support a range of

protocols effectively. Nonetheless, the design of these systems tends to focus more strongly on the

requirements of one protocol in particular, in this case cache coherence. One focus of this study is

to understand in a similar way the controller features which are particularly valuable for alternate

protocols.

This analysis studies theFLASH system and its node controller,MAGIC, focusing on the features

that are particularly important for alternate protocols. We analyze a range of specific alternate

protocols that one might support with a programmable controller, identifying their requirements and

their amenability to implementation onFLASH. In cases where theFLASH system design limits the

full generality of these protocols we discuss the tradeoffs associated with extending the controller

and propose alternatives that can address the limitations without controller extensions.

1.2.3 Detailed Protocol Studies

Finally, our study focuses in detail on two particular classes of communication which are important

for large scale multiprocessors. We find that each of these classes encounters disadvantages when

4 Chapter 1 Introduction

implemented on top of shared memory, in part because their communication does not exactly match

that provided by the cache coherence protocol.

First we present the mechanisms used to support efficient block transfer inFLASH. The pro-

tocol we implement and study providesmemory copyfunctionality, which can be used to support

message passing as well as accelerate block transfer communication in shared memory programs.

Our protocol delegates the data transfer functionality toMAGIC which implements it with protocol

software. In addition to describing the transfer implementation itself, we also explain how the pro-

tocol integrates block transfer with cache coherence, which is critical to enable its use within shared

memory applications.

In our experiments we compare the performance of theFLASH memory copy primitive with

processor-based implementations, including those using prefetching. Our results suggest that im-

plementing block transfer support inMAGIC improves transfer performance in many cases, enables

the processor to perform other work in parallel, and reduces processor cache pollution caused by

the transfer.

We also study the design of two synchronization primitives,locksandbarriers. These primitives

are typically implemented on top of shared memory and as a result often perform poorly due to

artifactual communication associated with cache coherence. Our design targets these artifacts; by

eliminating them we improve synchronization performance and characteristics.

Synchronization protocols highlight the benefits of the careful implementation of embedded

programmability inMAGIC. These protocols are very lightweight, with very different character-

istics than the block transfer protocol. Nonetheless, the flexibility ofFLASH enables high perfor-

mance for these protocols as well. Our results show that synchronization support from the pro-

grammable controller improves performance of some applications from the SPLASH-2 benchmark

suite [WOT+95], especially at larger machine sizes.

1.3 Contributions

The primary contributions of this dissertation are the following:

� We propose mechanisms to allow the processor and controller to cooperate effectively. One

important facet of this cooperation is permitting the processor to request communication fea-

tures at low overhead. Unlike most prior studies, our techniques provide this capability while

maintaining the integrity of processor operating system features such as protection, virtual

memory, and multiprogramming.

� We examine the implementation details of the communication controller that impact the per-

formance or functionality of other protocols differently than they impact cache coherence. To

Section 1.3 Contributions 5

this end, we consider a range of communication protocols to determine the requirements they

share, and discuss the impact on those protocols of controller design features or restrictions.

� We study the design trade-offs for a customFLASH memory copy protocol, and present an

implementation that leverages the support provided by the programmable communication

controller. A major focus of this design is on efficiently integrating the protocol with cache

coherence to enable the primitive to be used in a wide range of situations. This goal raises

major challenges, especially in achieving the integration while maintaining high performance.

� We present custom lock and barrier synchronization primitives forFLASH. These primitives

are targeted to improve the performance of synchronization as compared to shared memory

implementations by eliminating artifactual communication caused by cache coherence. We

examine several conventional approaches to identify their benefits and limitations. Then we

describe the implementation of the custom protocols in detail, identifying how the primitive

improves performance by matching the inherent communication the operation requires.

1.4 Organization

This dissertation is organized as follows:

Chapter 2 begins by describing the motivation for incorporating a programmable communi-

cation controller inside a multiprocessor. Then it describes the solution we consider, theFLASH

Multiprocessor, focusing closely on the characteristics that are relevant to the alternate protocols we

study.

Chapter 3 describes the design space and motivation for alternate uses of the flexible communi-

cation controller beyond cache coherence. This chapter focuses on the protocols that we implement

and study in detail in later chapters: block transfer/message passing, and lock and barrier synchro-

nization.

In Chapter 4 we explore issues arising from the division of functionality between the main

processor and communication controller. In particular we present techniques that enable efficient

communication between the processor andMAGIC without system calls. We also describe a range of

approaches to permitMAGIC to interact with processor features such as multiprogramming, virtual

memory, and protection.

Then we present the two protocol classes in detail. Chapter 5 presents theFLASH memory copy

protocol, which can be used to provide message passing functionality as well as accelerate block

transfer within shared memory applications. Chapter 6 presentsFLASH lock and barrier synchro-

nization protocols, designed to improve synchronization performance and characteristics beyond

what can be achieved through traditional primitives based on shared memory. In each case, we first

describe the design and goals of the protocol in detail, then present its implementation. Finally,

6 Chapter 1 Introduction

we evaluate each protocol in isolation, in the context of microbenchmarks, and within a variety of

applications.

Chapter 7 describes other protocols that are amenable to using a programmable controller such

asMAGIC. We describe issues associated with “active messages”, which pose some unique imple-

mentation challenges, as well as other protocols that may be promising future research directions.

Finally, Chapter 8 summarizes the conclusions of the dissertation.

Section 1.4 Organization 7

8 Chapter 1 Introduction

Chapter 2

The FLASH Multiprocessor

This chapter describes the StanfordFLASH Multiprocessor, a high-performance, scalable parallel

computer. This dissertation uses theFLASH system as a context for the study of communication

and synchronization protocols. We begin by briefly describing the background behind theFLASH

system to motivate its fairly unique design. Next theFLASH architecture is described, with emphasis

on the features and characteristics of particular interest for supporting advanced communication and

synchronization primitives. A very complete presentation of theFLASH architecture and prototype

appears in [Kus97].

2.1 Background and Motivation

In designing a multiprocessor, we are presented with a wide design spectrum from which to choose.

We focus on two key issues: the ability of the system to scale and the different choices of commu-

nication model to present to the user. We also present the design point offered byFLASH’s direct

predecessor, theDASH system, before finally describing theFLASH system itself.

In small scale multiprocessors, the processors typically share a single bus. This style, called

a bus-based or “symmetric” multiprocessor (SMP) is illustrated in Figure 2.1. SMPs can be fairly

simple to design, and for small machine sizes are very effective. However, the single bus funda-

mentally limits their scalability. Beyond a certain size the load offered by additional processors

overwhelms the bus and effective request latency increases. The exact size when this occurs de-

pends on the performance of the processors and bus, though usually it less than 16–32 processors.

Systems of this design are sometimes known as Uniform Memory Access (UMA) systems since all

memory accesses take (essentially) the same latency to be satisfied.

9

CPU

Cache

CPU

Cache

Memory

CPU

Cache

Figure 2.1: Symmetric multiprocessor architecture.

Recently, the trend in the design of multiprocessors is towards scalable architectures. To achieve

scalability, SMPs have gradually been replaced by systems with several important modifications.

First, the system is split into groups of resources, callednodes. Each node contains a small number

of processors, typically between 1–4. Instead of the single memory system in an SMP, memory is

distributed around the system, with each node containing a portion of the overall machine memory.

Distributing the memory increases aggregate bandwidth and allows the system memory to scale

without requiring expensive memory architectures such as those used in many supercomputers.

Second, the single bus is replaced by a more scalable interconnect between the nodes, one that

can offer more bandwidth as the system scales. With the scalable interconnect, a communication

controller is introduced to manage the network. Figure 2.2 illustrates this architecture.

These scalable systems provide applications with one of the two predominant communication

paradigms:shared memoryor message passing. In a shared memory system, the communication

controller “hides” the distribution of the machine’s physical memory by transparently communi-

cating with the correct node (and thus memory module) for processor requests to remote memory.

Shared memory provided on a distributed memory system is often called Distributed Shared Mem-

ory (DSM), or Non-Uniform Memory Access (NUMA). The latter name arises because, unlike

SMPs, the time to access memory depends on the location of the memory being accessed.

In some shared memory systems nodes are also permitted to hold data from remote memory

locations in their cache. This can improve performance by eliminating repeated expensive misses

for remote data. Caching remote memory introduces the problem, however, that modifications made

to shared memory may not be globally visible. If this occurs, nodes around the system may see

different values for the same memory location. This problem, known ascache coherence, requires

that either the processor or the system hardware take special steps to assure that when a line is

modified the currently cached copies are eliminated. Systems providing cache coherence support

are often called Cache Coherent Non-Uniform Memory Access (CC-NUMA) machines.

The second communication paradigm found in scalable systems ismessage passing. In a mes-

sage passing system, the distribution of the memory is made visible to the user; only local memory

can directly be accessed by the processor using load and store instructions. Communication between

10 Chapter 2 TheFLASH Multiprocessor

CPU

Cache

Comm.
Control

CPU

Cache

MemoryComm.
ControlMemory

Scalable Interconnect

Figure 2.2: Scalable multiprocessor architecture.

nodes is accomplished through explicitmessages. Message passing offers the system or application

the ability to customize the communication granularity and timing; the drawback is that it increases

the burden on the application to manage the communication. In Section 3.1 we compare these two

models in further detail.

From a system design perspective, what is interesting about these two paradigms is that despite

the vast differences in the interfaces they export to the user, they both utilize an architecture similar

to the one in Figure 2.2. The main difference is in the design and operation of the communication

controller, which usually supports one model or the other. At the beginning of theFLASH project,

systems being designed elsewhere highlighted the differences between these two design styles and

provided mechanisms for one or the other, instead of focusing on the extensive commonality be-

tween them [DCF+89, Int91, Thi91, Bec92, Cra93]. One of the main goals of theFLASH project

is to consider the design of scalable multiprocessors, in particular the communication controller

and the protocols they use, to see if both of these models (and potentially others) can be efficiently

supported by asinglesystem.

2.1.1 TheDASH Multiprocessor

To explore briefly how we might design theFLASH system, we first consider the architecture of its

predecessor. In 1989, researchers at Stanford University began the design of theDASH multipro-

cessor (Directory Architecture forSHared memory) [LLG+90, LLG+92, Len92]. DASH aimed to

demonstrate a real implementation of a scalable hardware-supported cache-coherent shared memory

system.

DASH is built by interconnecting small-scale bus-based commercial multiprocessors; it is com-

prised of SGI 4D/240 systems, which contain 4 processors each. To these systems, called acluster,

theDASH designers add two boards to support cache coherent distributed shared memory [Len92].

DASH uses a directory-based approach to cache coherence, which was described as early as 1978 by

Censier and Fautrier [CF78]. In that approach, each node maintains a table called adirectory that

Section 2.1 Background and Motivation 11

tracks where lines are cached in the machine. InDASH, the directory is a dedicated memory array

(implemented in SRAM), which stores the list of sharers in a bit vector.

DASH shows the benefits of hardware cache coherence, and that its complexities are manage-

able. The specific implementation ofDASH has two main limitations, however. First, the system is

only designed to scale to 64 nodes. In particular, the bit vector directory format used inDASH is

inappropriate for larger size machines. Second, this protocol is implemented through on-board ta-

bles indicating the actions the hardware should take based on network and processor events. These

tables are designed to encapsulate the hardware actions needed by theDASH protocol, but provide

only limited flexibility if protocol modification should be desired for research purposes or needed

to fix unexpected bugs.1 The ability to modify the protocol after the fact is a serious concern given

the difficulty in adequately simulating and verifying large parallel machines.

2.1.2 TheFLASH Approach

Given this background as context, theFLASH project focuses on two main goals. The first is to study

the design of scalable multiprocessor systems, with emphasis on the communication controller, to

see if a single system can effectively support both cache-coherent shared memory and message

passing. The second is to implement cache coherence protocols in a more flexible way, so the

protocol may later be corrected, optimized, or replaced altogether.

FLASH addresses these goals by replacing the hard-coded table-based coherence protocol of

systems likeDASH with an embedded processor capable of handling processor and network events

in software. Along with this processor,FLASH provides specialized hardware to improve proto-

col processing throughput. This style of design allows the coherence protocol to be modified and

extended as needed. In addition, it permits the implementation of so-calledalternateprotocols

such as message passing, scalable synchronization, fault tolerance and recovery, and performance

monitoring.

2.2 FLASH Overview

The FLASH Multiprocessor is a high performance parallel computer system being designed and

implemented by a team of researchers at Stanford University [KOH+94, Kus97].FLASH (FLexible

Architecture forSHared memory) consists of a scalable array of processing nodes connected by a

low-latency, high-bandwidth communication network. Each node in the multiprocessor contains all

the major components of a modern high-performance scientific workstation, with the addition of a

custom, programmable node controller to provide communication and other functions. TheFLASH

architecture is illustrated in Figure 2.3.
1ThoughDASH does not directly provide the ability to support models other than shared memory, it does provide some

optimizations in the protocol for data movement and locks.

12 Chapter 2 TheFLASH Multiprocessor

P
C

MAGIC

M N
Cache

Network
RouterMemory

P
C

MAGIC

M N

P
C

MAGIC

M N

P
C

MAGIC

M N

MAGIC
Node

Controller

R10000 Processor

Figure 2.3: FLASH Node Architecture.

NIPIIO

Data
Buffers

Software
Queue

Memory
Protocol Processor

Inbox

Outbox

data header
Message Split

Message Join

Network

NIPI

Proc.IO

IO

Figure 2.4: MAGIC Microarchitecture.

2.2.1 FLASH System Architecture

EachFLASH node contains a single processor, the MIPS R10000.2 The R10000 is a dynamically

scheduled superscalar processor that provides aggressive performance for both integer and floating

point code, achieving a SPECint95 of 8.85 and SPECfp95 of 13.8 (17.5 predicted) [MIP96]. This

enables theFLASH system to efficiently run not only scientific applications, which generally have

heavy floating point demands, but integer-based applications as well. The R10K provides on-chip

instruction and data caches, each 32 KB, as well as a variable-sized, processor-managed secondary

cache. In the initialFLASH prototype, the secondary cache of the R10K is 1 MB.

The FLASH node also contains a large amount of DRAM, similar to workstations. InFLASH,

this memory is part of the machine-wide distributed main memory as described earlier. Logically,

the memory on a node is one piece of a contiguous physical address space beginning with address

zero on node zero and ending with the physical memory on the highest numbered node. TheFLASH

system reserves a small portion of the memory on each node for protocol code and storage.FLASH

uses this protocol storage in part to implement a directory for maintaining cache coherence, similar

to DASH. By using main memory instead of a specialized memory, protocol storage can grow or

shrink as needed to support arbitrary communication and synchronization protocols.

2The use of a uniprocessor node inFLASH is not a fundamental restriction, but was a design decision partly driven
by implementation practicality concerns. TheFLASH architecture can support a multiprocessor node with only localized
modifications.

Section 2.2 FLASH Overview 13

In conventional workstations, dedicated hardware chipsets are typically used to control memory,

I/O devices, and other board-level resources. The key innovation in theFLASH system is the use of

a custom node controller, namedMAGIC (MemoryAnd GeneralInterconnectController). MAGIC

comprises a programmable processor optimized for executing protocol operations and dedicated

data paths which provide low latency communication between the main processor, memory, and the

communication ports of the node. Figure 2.4 shows the microarchitecture ofMAGIC.

Besides the interface to the processor,MAGIC provides two IO interfaces on aFLASH node.

For high-bandwidth, low-latency communication between nodes in the system,FLASH uses the SGI

CrayLink network technology (formerly nicknamed “Spider”) [Gal96]. CrayLink is configured as

a “fat hierarchical hypercube topology” with data transfer bandwidth of 800 MB/s per endpoint.

Figure 2.4 provides a logical view of the queues inMAGIC that are used to buffer incoming and

outgoing protocol messages. We exploit the virtual lane capability of the network, which provides

four incoming and outgoing network queues. This simplifies the solution for deadlock in most

protocols since separate queues can be used for request and reply messages [LLG+90].

The second network is a PCI interface for use in comparably low-bandwidth I/O devices such

as disk, console, graphics, Ethernet, etc. Section 2.3 describes the architecture ofMAGIC in more

detail, to provide background for the detailed protocol descriptions and tradeoffs described later in

this thesis.

2.2.2 Communication Protocol Terminology and Semantics

In this dissertation, we refer to aprotocol to mean a specification describing the interaction among

nodes in theFLASH system to accomplish a particular communication task. For example, a cache

coherence protocol describes interactions between nodes aimed at providing a consistent view of

memory despite caching on remote nodes. Specifically, the protocol encompasses the behavior

which the participants provide in response to messages, as well as the kinds of messages they can

send. In practice, protocols can be implemented in a variety of ways: using hardware, software, or

a combination of both.

In the FLASH system, protocols are tightly integrated into the node through the hardware and

software communication features provided by theMAGIC chip. Internally,MAGIC expresses the

requests from its different interfaces in a common format, calledmessages. A message is the small-

est unit of communication onFLASH, consisting of two parts: Theheaderportion describes the

contents of the message, its sender, receiver, data length, and other attributes useful toMAGIC. The

dataportion contains the message payload, which inFLASH is either empty (no payload), one dou-

bleword (eight bytes), or one cache line (128 bytes). Note that these messages are not the same

as application-level messages exchanged in a message passing communication model on the main

processor. Rather, the messages described here are short communications used internally by the

14 Chapter 2 TheFLASH Multiprocessor

FLASH system to implement more complicated communication operations requested by the main

processor.3

Similar to the Active Message model [vECGS92],MAGIC invokes a short segment of code called

a handler to process each message it receives. Unlike the original description of active messages

which sends the actual program counter in the header of the request [vECGS92],FLASH provides an

encodedmessage typeinstead. This message type is used along with two other attributes of the mes-

sage (whether it comes from the processor or network, and whether the address is local or remote)

to select a group of four possibly matching handlers from a dispatch table. These candidate han-

dlers are then considered more closely using a number of additional attributes: a protection check

(whether the sender is within the same fault containment boundary as the receiver), the availability

of data buffers, additional parts of the address, and several others. By providing handler dispatch

functions in hardware, a number of different attributes can be tested in parallel rather than using

software-based dispatch, which would be significantly slower.

In the FLASH system, the implementation of a protocol consists of three parts. First, a set

of unique message types is selected, representing the kinds of requests a node can make. When

multiple kinds of communication coexist on the machine (a major focus of later chapters), each

takes a subset of the message type name space for its use. Second, a collection of software handlers

is created to satisfy these different requests. Finally, the dispatch table is created that describes the

correspondence between the handlers and the situations in which they should be invoked (which

includes the message type and the other factors described above).

Protocol handlers may need to carry out a wide range of actions to satisfy the request depend-

ing on the particular services needed. Handlers may send messages to other nodes, read and write

protocol state affected by the request, perform memory operations, make requests of the local pro-

cessor, or carry out other tasks internal toMAGIC. In many cases, the original request generates

a response to the sender, eventually causing a handler to execute on the protocol processor of the

sender’sMAGIC chip. In Section 2.3.6, we consider some restrictions that must be placed upon the

handlers in theFLASH system to avoid deadlock.

2.2.3 Cache Coherence

In this section, we describe the cache coherence protocol inFLASH. This forms the basis on top

of which the cache-coherent block transfer and other protocols are built in the remainder of this

dissertation. The coherence protocol consists of two main parts. First we consider the format of

the directory which is used to track outstanding copies of lines in the system. Then we consider the

algorithm through which the system maintains coherence, based on the information in the directory.

3Later, in discussing message passing protocols inFLASH we generally refer to these application-level messages as
block transfer, so the distinction should be unambiguous.

Section 2.2 FLASH Overview 15

Memory

Directory

CPU CPU

Cache Cache

Comm.
Control

Comm.
Control

Memory

Directory

− −Line N

10
Sharers

− −−−2
−7 1 6 3 4 −Line 2

Line 1

...
1 − − − − − −Line N

Sharers

− −Line 2
Line 1

− − −9 7

4 6 5...− −
6 1 3 2 8 7 −

Figure 2.5: Conceptual illustration of a cache coherence directory.

Directory Format

The FLASH system is fundamentally designed to allow many different protocols and directory for-

mats to be used. Figure 2.5 illustrates a generic directory structure, showing how each node main-

tains directory state for its share of the machine’s memory. As part of the project, other researchers

have developed several completely different cache coherence protocols forFLASH to study the trade-

offs in detail. For this dissertation, we have chosen to use one of the more scalable of these directory

formats,dynamic pointer allocation, designed to support machines up to several hundreds or even

thousands of nodes. TheFLASH implementation of this protocol is the work of Mark Heinrich.

Dynamic pointer allocation was originally developed as part of theDASH project by Richard

Simoni as a way to surpass the limited scalability of bit-vector based approaches [Sim92]. This ap-

proach takes advantage of the sharing characteristics of typical applications: most memory lines

are only shared by one or two nodes at any time, while relatively few lines are shared more

widely [WG89]. Unlike bit-vector or limited-pointer based formats [ASHH88], which allow for

a conservative amount of caching ofeachmemory line, dynamic pointer allocation uses a minimal

per-line directory entry. Then it adds a pool of pointers4 shared between all the lines and allocated

on demand (i.e., dynamically), for use in handling lines with more widespread sharing.

TheFLASH implementation of dynamic pointer allocation maintains a directory entry per mem-

ory line capable of tracking the line being cached by the local processor and one remote processor.

It also maintains an array of bits used to track the state of the line (e.g., whether it is modified,

whether it is busy with coherence actions, etc.). Finally, it also holds a total sharer count and the

beginning of a linked list of pointer entries, which are allocated as needed from the large shared

pool.

4In this context, apointer refers to an indication of a single remote sharer of a line.

16 Chapter 2 TheFLASH Multiprocessor

Coherence Algorithm

The FLASH coherence protocol is a (MESI) exclusive ownership-based protocol. Lines which are

read-only may be widely shared in the system, but before a line may be modified, all outstanding

copies are eliminated so only a single writable copy exists. When ownership of a line is requested,

FLASH eliminates outstanding copies by sendinginvalidationsto remote caches currently holding

the data, instructing the cache to discard the line. To improve performance, relaxed consistency

models such as release consistency [Gha95] allow optimizations such as permitting writes to occur

in parallel with sending the invalidations;FLASH can support many of these optimizations. As

alluded to in Section 2.3.3, restrictions imposed by the processor prevent us from using an update-

based approach in which modifications to the line are sent to current holders to keep their copy

current.

One of the difficulties that arises in a cache coherence protocol is managing the asynchrony that

occurs from many processors simultaneously sending requests. If multiple references occur to the

same line, they may conflict. To make this problem more manageable, the protocol marks a line as

pendingin the directory when coherence actions are in progress (such as sending invalidations to a

list of sharers in preparation for providing exclusive access). Requests for lines which are marked

as busy are refused with a negative acknowledgement (NAK) and are forced to retry.

2.3 MAGIC (Memory and General Interconnect Controller)

This section describes the microarchitecture ofMAGIC in more detail, to provide a basis for the de-

scription of the protocols in later chapters. We focus on the portions which most directly impact the

protocols we implement and study; this is not intended to be a complete description ofMAGIC. More

details can be found in the publications onFLASH [KOH+94, HKO+94, HGDG94, Kus97, Hei].

First we provide an overview of theMAGIC microarchitecture and illustrate the way control and

data are handled differently. Next we focus on the custom protocol processor (PP) insideMAGIC,

with emphasis on its specialized support for communication protocols. We describe the processor

interface (PI) in some detail, since it impacts the kinds of operations our protocols can use to request

data from and supply data to the processor. Finally, we explain the data buffer (DB) logic which is

used to stage data as it passes throughMAGIC, highlighting certain special features provided by the

DB for efficient protocol data movement.

2.3.1 MAGIC Microarchitecture Overview

A major goal in designingMAGIC was to optimize both the protocol processing of incoming mes-

sages and the transfer of data between its interfaces. For example,MAGIC may need to decide the

correct actions to maintain coherence when a request arrives, and may need to move a cache line

Section 2.3 MAGIC (Memory and General Interconnect Controller) 17

of data as part of the request. To accomplish this goal,MAGIC splits an incoming message into

its control and data components, as illustrated in Figure 2.4. Data processing is provided by dedi-

cated data paths that transfer data between interfaces in a pipelined fashion. Control processing is

accomplished in parallel by the programmable protocol processor. The protocol processor controls

macro-operations on the data paths using specialized instructions. These operations can cause, for

example, an entire cache line of data to be manipulated. For example, an entire line of memory

may be loaded or stored into a buffer. In this way, the protocol processor is always in charge of data

movement, but is freed from the burden of handling the individual data words. The parallel handling

of data and control plays an important role in achieving efficient protocol processing inFLASH. We

begin by discussing the control portions ofMAGIC; later we describe the data logic and how the two

interact.

Keeping memory request latency low and providing high throughput are essential requirements

to achieving high system performance. In theFLASH design, protocol processing efficiency is

therefore critical since all requests to memory and the network are serviced byMAGIC. The mi-

croarchitecture ofMAGIC is designed for pipelined protocol processing at several levels to improve

throughput. At the highest level,MAGIC provides a “macro-pipeline” that allows multiple messages

to be in various phases of processing simultaneously. Figure 2.4 provides an overview of the three

stages in the macro-pipeline. Some of these phases also include optimizations to allow the overall

latency request to be reduced as well.

The first stage, theInbox, designed by Mark Heinrich, prepares an incoming protocol message

for processing by the PP. The Inbox selects requests from the three hardware interfaces (the main

processor, network, and PCI IO bus), and two other sources (described below), the software queue,

and the idle handler. The Inbox carries out the dispatch function described in Section 2.2.2, selecting

the handler to be executed by the PP. In some cases it also initiates a speculative memory operation

on behalf of the incoming message, for example reading the data from memory for a cache miss.

By starting the memory fetch during the Inbox phase, before the handler is even able to execute,

the overall latency to satisfy a request can be reduced. In addition, it removes the need to explicitly

perform a memory request in the handler code, reducing total handleroccupancy(the length of time

the PP is busy to satisfy the request) [HHS+95].

For reads, the memory operation is speculative since it was started without first consulting the

directory state. In the case of a cache miss, for example, the most current copy of the data may cur-

rently be in another node’s cache. In that case, the memory read was useless. In the case of writes,

since our cache coherence protocol is ownership-based, a speculative write may always proceed

without checking the directory state because only the current owner should issue a writeback. In

Section 5.2.2 we describe how these “blind” writes slightly complicate the implementation of high

performance coherent block transfer.

18 Chapter 2 TheFLASH Multiprocessor

The Inbox also considers resource limitations in the system, such as full outgoing network

FIFOs, and only selects requests from queues for which it knowsMAGIC can provide certain mini-

mum service guarantees. In Section 2.3.6, we describe how this feature is used to avoid deadlock in

FLASH.

The second stage of the macro-pipeline is the Protocol Processor (PP) itself. The PP carries

out the appropriate protocol actions, and often sends other requests to either the processor or the

network. We discuss the protocol processor in more detail below. In the case of a cache miss, the

protocol processor checks the directory state to locate the current data, and eventually sends the

requested data to the processor.

TheOutboxforms the third and simplest stage of the macro-pipeline by assuming control of any

messages sent by the PP handler. The recipient unit of these messages cooperates with the Outbox

and Data Buffer units to include the appropriate payload data associated with the message (if any).

2.3.2 The Protocol Processor

The Protocol Processor (PP) is a statically-scheduled dual-issue pipelined RISC processor. The

PP was designed by Jules Bergmann. Its handler code and protocol state (such as directory state

for cache coherence) is stored in a portion of main memory. To improve performance, the PP has

its own instruction and data caches to make accesses to its memory more efficient.5 In the initial

implementation, the PP I-cache is 16 KB on chip; the PP D-cache is 1 MB off-chip. Both caches

are direct-mapped with 128 byte lines.

The core instruction set of the PP is similar to that of the MIPS R3000 processor, extended

to 64 bits. To improve performance, the PP provides several special instructions that enhance the

performance of common protocol operations. For example, many protocols pack bits together to

reduce the size of their state, so the PP provides operations to manipulate and query bits efficiently.

Also, since the PP frequently interacts with the other units inMAGIC, a number of special instruc-

tions were added to access these units quickly. PP also supports a fast context switch capability that

permits it to load the state for a new handler and begin executing it in only two cycles (pipelined).

Appendix A illustrates the PP instruction set in more detail, including these extensions.

Though we added special features to optimize protocol processing, we also strived to keep the

PP’s design complexity to a reasonable level. To this end, the PP excludes many of the features

found in general purpose RISC microprocessors that are less useful in our embedded environment.

For example, there is no support for floating point operations or interrupts. Instead, the PP executes

handlers to completion with no preemption. Furthermore, the PP provides no hardware support for

5Even thoughMAGIC can access all of the local main memory through its cache interface, data movement between
external units is typically supported using the separate dedicated data paths inMAGIC. Thus, theMAGIC caches do
not normally need to be kept coherent with the processor caches. The PP includes special instructions to provide this
coherence if a specialized protocol should require it.

Section 2.3 MAGIC (Memory and General Interconnect Controller) 19

address translation (i.e., hardware TLB). Though address translation in hardware can be useful for

protocols such as message passing, such support is not required by cache coherence protocols and

could significantly complicate the PP implementation. Section 4.2 discusses this tradeoff and pro-

poses efficient techniques that achieve similar functionality in software. Since the PP lacks sufficient

protection mechanisms to support generic user-level code, we typically require protocol handlers

that execute on the PP to betrusted. We consider ways to avoid this limitation in Section 7.1.2.

2.3.3 The Processor Interface

The Processor Interface (PI) is responsible for providing a high performance interface to the pro-

cessor bus, while encapsulating it in theMAGIC message abstraction. When the processor makes

a request on the bus, the PI queues a message for the Inbox containing the type of request and

any associated data. Since the R10000 processor can support up to four outstanding requests per

processor, the PI is also responsible for tracking these requests so that subsequent replies may be

associated with the correct request. The PI was designed by David Ofelt.

The PI performs several critical functions that are invaluable for the protocols onMAGIC. When

the PI receives a message fromMAGIC for the processor, it must match the reply to its table of

outstanding requests before passing it on to the processor. Part of this check determines whether

any other coherence actions occurred for the line (such as an invalidation) while the request was

outstanding. If a conflict between these actions arises, the PI uses a conversion table to determine

what updated action to take. For example, in some cases an invalidation can arrive before a message

providing the processor with its requested data. If this occurs, when the reply arrives it is passed on

to the processor as a negative acknowledgement (causing the processor to retry). If the message is

merely a reply to the processor request, the PI forms a bus command, launches the reply onto the

bus, and then goes on to its next task.

The PI must also handle messages that are requests to the processor to access the second-level

cache, calledinterventions. These requests are made by the PP to maintain coherence in the proces-

sor cache, extract data requested by another node, etc. Unlike the processor, which can have four

outstanding requests, the PI only allows the protocol processor to have two outstanding interventions

at any one time.6

The reply from a processor intervention comes in two portions. First the processor provides

the result code called thestate reply, which the PI exports in the PI Reply Register. The PI Reply

Register is explained in more detail in Appendix A. Some time later, the processor provides thedata

reply (when appropriate) such as the line requested out of the cache. The data is streamed directly

6This restriction only applies to requests which require a status reply from the PI. We explain this issue in more detail
in Appendix A.

20 Chapter 2 TheFLASH Multiprocessor

into a data buffer, marking it full when finished. Since the state response arrives first, the PP can

continue work while the PI fills the data buffer.

Processor and Cache Restrictions

The R10000 processor and its caches have several characteristics which impact key design decisions

in the protocols we implement and study:

Speculation. Since the processor implements aggressive speculation support to improve memory

system behavior, it may bring lines into its cache that are never actually used. As a result,

references which emerge from the processor are not necessarily accessed by the control flow

of the program (or modified, in the case of exclusive requests). In contrast, since uncached

reads and writes may cause irreversible results outside the processor (such as I/O), they are

never issued speculatively. This characteristic forces us to use uncached operations instead of

cacheable ones in some circumstances where we must be certain that an address is actually

accessed by the program’s control flow.

Flushing lines. In some situations, the processor may wish to flush lines from its cache. To support

this, the R10K provides acache instruction. Unfortunately, this instruction is only acces-

sible from privileged operation modes, thus it is impossible for code running at user level to

reliably flush lines from the cache. As we describe later, this restriction forces us to utilize

uncached operations to guarantee external visibility of certain operations issued within the

processor.7

Pushing data into the cache.It is not possible to reply to the processor with data it has not re-

quested. This prevents us from to implementing an update-based coherence protocol on

FLASH, as well as a variety of other protocol optimizations that try to “push” data into the

cache in anticipation of its use.

Accessing exclusively-held data.There is also no way to request exclusively-held data from the

processor’s cache and also leave the cache line in the exclusive state. In other words, “peek-

ing” at a line of data held exclusively causes the processor to yield its ownership of the cache

line. A subsequent write access by that processor requires anupgradeto an exclusive copy. In

the message passing protocols we implement, for example, this restriction implies that copy-

ing data from the processor cache to another node necessarily perturbs at least the ownership

state of the source node’s cache.
7The only alternative would be to provide sufficient mappings that the application could force conflict replacements

in its cache, but we felt this alternative was undesirable.

Section 2.3 MAGIC (Memory and General Interconnect Controller) 21

2.3.4 Data Buffers and Memory Access

MAGIC contains 16data buffers, which are cache-line sized (128 byte) hardware buffers used to

stage data throughMAGIC in a pipelined fashion. These allowMAGIC to overlap the control pro-

cessing and the data transfer associated with servicing a message. Whenever data is transferred into

MAGIC from its interfaces, it goes directly into a data buffer without passing through the protocol

processor. In most protocols, in fact, the data never passes through the protocol processor, but is

transferred directly to the destination interface as directed by the PP. The data buffer allocator and

status units were designed by Jeffrey Kuskin. The data buffer memory array was designed by Ron

Ho and Evelina Yeung.

Buffer Allocation and Status Bits

Data buffers are assigned to a request, orallocated, by MAGIC when a new request is introduced into

any of the interfaces: network, processor, or IO. The PP may also explicitly request that a buffer be

allocated for its use if needed. Data buffers contain valid bits per-doubleword, which are similar in

many respects to the full-empty bits found in architectures such as the Tera [ACC+90], and others.

These bits are cleared when a data buffer is allocated to a new request. As the buffer is filled with

data, the valid bits are set when each doubleword arrives. If the buffer is consumed by another unit

before it is completely filled, the valid bits cause the consumer to stall if it reaches a position in the

buffer where the data is not ready. Using this approach, data can be aggressively pipelined from

interface to interface with low latency.

The data buffers also have an associated state bit known as thefull bit. Thefull bit can be used

to override the individual per-doubleword valid bits and indicate that the buffer is full. The full bit is

useful, for example, in situations where the PP composes the data in the buffer in software. Instead

of setting sixteen individual per-word valid bits, the single full-bit can announce the buffer is ready

for transmission.

Data buffers are referenced withinMAGIC using their four-bit buffer number. In particular, the

data buffer number is one of the fields in theMAGIC message header. When a request is allocated

a data buffer, the message header that is formed includes the buffer’s number. If the PP sends this

header to another unit, the receiving unit consults the header to determine which buffer contains the

associated data. In this way, the PP can easily tell the recipient of a message where to find its data

without needing to handle the individual data words.

22 Chapter 2 TheFLASH Multiprocessor

Buffer Usage

MAGIC provides the PP with several ways of manipulating data buffers. These include features to

manipulate entire buffers as well as those to manipulate individual doublewords. The most com-

mon feature is thesend instruction, which sends with its message the data buffer indicated in the

message header, as described above.

One important usage of data buffers is efficient transfers to and from memory. As we described,

the Inbox may issue a speculative memory read or write on behalf of an arriving request. This oper-

ation loads to or stores from the data buffer associated with that request. The PP can also explicitly

load or store a buffer using its speciallblock andsblock instructions . These operations can

manipulate either the entire data buffer (128 bytes), or a single doubleword (8 bytes). Memory

bandwidth is more effectively utilized by full buffer writes, but doubleword writes are useful for

certain complicated reference patterns such as strided accesses for which a full buffer read would

be primarily wasted.

In cache coherence protocols, cache lines are always moved as units. Thus, a data buffer fill from

memory contains an aligned block of 128 bytes of data (i.e. data beginning at an address where the

low seven bits of the address are zero).8 Given this characteristic, restricting data buffer fills to

aligned blocks in memory is reasonable for cache coherence protocols. However, this simplification

is not appropriate for some message passing protocols where a message might be stored at a different

cache-line offset than the one at which it originated. To address this limitation,MAGIC provides an

additional buffer fill mode, calleddouble bufferloads. These loads allow the PP to quickly fill

cache-lineunaligneddata into its data buffers starting at any doubleword (64-bit) boundary. If this

block of data is later stored, the effect is to shift the datawithin the lineto a different offset than

the one it originally had in memory. Because the architecture ofFLASH supports communication

protocols so well, this is theonly hardware feature we added to explicitly support message passing.

The memory controller and hardware support for double buffer operations was designed by David

Nakahira.

Figure 2.6 shows how double buffer operations can be used to efficiently change memory align-

ment. Memory loads using the double buffer feature specify two data buffers (here we denote them

A and B) and a starting doubleword offset. Buffer A is filled with an aligned block of data, but

instead of filling from the first word in the data buffer, it begins at the provided offset. When the

fill reaches the end of the buffer A, the remaining data of the line “wraps” and starts filling into the

beginning of buffer B. By performing a second double buffer load of the next memory line, this time

using the buffer B as the first buffer, the remainder of buffer B is filled in a similar manner. The

8The R10000 processor expects replies to cache misses to be in a special kind of critical-word-first ordering called
subblockordering. As a result, often the address transferred in the header does not actually end in seven zeroes, and the
data in the data buffer is specially ordered to allows rapid restart from the miss. Though subblock ordering changes the
order that the words appear in the data buffer, the words are still from the same aligned line in memory.

Section 2.3 MAGIC (Memory and General Interconnect Controller) 23

1. Block of memory not aligned
to cache−line boundaries

2. First double buffer load fills
portion from first memory line

Memory:
XXXX0000111122223333

4444XXXXXXXXXXXXXXXX

3. Second double buffer load fills

of the memory line
rest of buffer, discarding the rest

Data buffers:
XXXX(unmodified)

0000111122223333 4444

A
B

Data buffers:
XXXX(unmodified)

0000111122223333
A
B (unmod)

Figure 2.6: Changing data alignment via double-buffer loads.

result is that buffer B is filled with data with a different cache line alignment than in memory. As an

optimization, the double buffer mode can be selected but two identical buffer numbers provided. In

that case, when the fill wraps, the remaining data words are simply discarded.

2.3.5 The Software Queue and Idle Handler

Besides the hardware interfaces from which requests can arrive for service,MAGIC provides two

additional sources of requests called thesoftware queueand theidle handler. The software queue

is used byMAGIC to schedule handler invocation for itself at a later time. The idle handler is used

to execute a handler periodically to perform a variety of maintenance tasks.

The Software Queue

For tasks that need to be invoked other than by the arrival of a message at a hardware interface,

MAGIC provides the software queue. Its hardware support consists of a one-deep queue containing

space for a message header, address, and handler PC. Since the queue is only one-deep, these are

commonly referred to as thesoftware queue registers. Unlike the hardware queues, which are

associated with a particular external interface, the software queue registers are loaded explicitly

by PP handlers. The element of the queue present in the software queue registers represents the

request at the head of the queue; the remaining elements of the queue are stored in memory as

described below. These registers are loaded with the headers of the message (as would be available

if the message had come from any of the hardware interfaces) as well as a handler PC to execute to

process the request. Once the registers are loaded, the Inbox can select and dispatch the software

queue just as any other queue, except that the Inbox invokes the supplied handler PC instead of

using the normal dispatch mechanism. To maintain the integrity of the software queue, any handler

which executes from that queue is required to reload these registers with the next request before it

completes.

The queue itself is maintained in software as a FIFO doubly circularly linked list in protocol pro-

cessor memory and can consist of requests from different protocols since by convention all protocols

use a common software queue header format. A set of short subroutines have been implemented that

allow the user to add (SWQSchedule) and remove (SWQUnschedule) requests from the queue.

24 Chapter 2 TheFLASH Multiprocessor

Once it has been on the software queue, a handler may also indicate that it is finished executing

but would like to run again when its next turn comes around. A third routine (SWQReschedule)

provides this behavior by yielding the PP in a controlled manner (reloading the software queue reg-

isters as required) but otherwise remaining on the queue. We differentiate these routines because

the Reschedule routine is higher performance (since it does not need to manipulate the linked lists),

so we use it whenever possible.

For intuition about the computation model the software queue provides, consider the parallel be-

tween the handlers on the software queue and the tasks of a very lightweight thread-based scheduler.

In this metaphor,SWQSchedule parallels thread creation;SWQUnschedule , thread completion;

andSWQReschedule , a thread yielding the processor to the next thread, but otherwise remaining

active to run later.

Handlers executed from the software queue are different in two ways from handlers from the

other sources. First, since the outgoing network queue needs of the next handler on the software

queue are unknown, the Inbox conservatively schedules the software queue only when space is

available onboth the request and reply queues. Second, a data buffer is not allocated for handlers

executed from the software queue. Instead, these handlers must explicitly allocate buffers with a

request to the data buffer allocator. This decision was motivated by the observation that data buffer

needs of software queue handlers cannot be predicted. Rather than assume a buffer is needed, when

often they are not (consider the software queue handler that sends invalidations to a widely shared

line), FLASH instead leaves the allocation to software. An artifact of this decision is that software

queue handlers are not necessarily guaranteed to make forward progress. Our experience suggests

that this does not lead to starvation or other performance problems in practice, but it remains an

issue worthy of study with the actual hardware.

The Idle Handler

The idle handler is a single program counter value that is selected periodically by the Inbox.9 Its

purpose is to allowMAGIC to carry out a variety of maintenance functions from time to time, without

using the software queue (which executes much more frequently). Among the tasks for which it

might be used are the following: check for timeout of outstanding cache misses, updateMAGIC

performance statistics, verify system connectivity through “I’m alive” messages to neighbors, etc.

In Section 6.1.6 we describe an additional use of the idle handler for assisting in timeout processing

for theFLASH lock protocol.

9The term “idle” is actually a misnomer, sinceMAGIC executes this handler periodically whether it is idle or not. In
fact, once its time arrives, it is the highest priority to be scheduled by the Inbox. Nonetheless, the functions it provides
are typically associated with an idle handler in an operating system, thus the name has stuck.

Section 2.3 MAGIC (Memory and General Interconnect Controller) 25

2.3.6 Deadlock

Deadlock is a serious concern in design theFLASH system, as in any distributed system. In par-

ticular, the necessary conditions to generate deadlock are readily present in theFLASH network.

To prevent this from ever occurring, the hardware and software inFLASH form a partnership, each

component having its own responsibilities for deadlock avoidance.

The critical requirement inFLASH to avoid deadlock is thatMAGIC must never send a message

when outgoing queue space is not available, and cannot spin-wait for that queue space to appear.

The reason for this is straightforward: ifMAGIC did issue such a send, the PP would stall until queue

space was available. However, the network could be full because another node is waiting to send to

this node. Unfortunately, since the PP is non-preemptable, if it stalled in such a scenario it would

stall forever, preventing the very condition by which the network could clear.

Avoiding this situation is accomplished in this way:

� The virtual lanes of the network are utilized as a Request and Reply network, similar to

DASH [LLG+90, Len92]. Messages sent on the reply lane are required to besinkable—the

protocol must have a way to accept the message without generating further traffic. Messages

sent on the request lane are always permitted to send at least two reply messages. As a

result, if the request cannot be satisfied, it can always send a singleNAK to the requester.

Since replies can always be satisfied and requests can always be turned into replies, network

blockages can always be resolved.

� The Inbox establishes queue space guarantees for each of the incoming lanes of the network,

and only schedules a handler from that lane when its queue space guarantees can be met. For

example, the request lane must always be free to generate a reply, so requests can only be

scheduled when the reply queue has outgoing space free. To be conservative, since the nature

of the request is not known, the software queue can only be scheduled whenboth lanes have

outgoing space.

� Handlers are required to obey the message sending restrictions of the queue on which they

arrived. If handlers desire to send messages beyond their guaranteed privileges, they must

first explicitly check the outgoing queue space (done with als instruction, see Figure A.1).

If the queue space is present, the handler may send as many messages as the queue can hold.10

If not, it must satisfy its request somehow and yield the PP without sending any messages.

10Since the macro-pipeline ofFLASH processes several messages simultaneously, the Inbox may already have selected
the next handler (and assured it the appropriate queue space). As a result, the currently executing handler can never
completelyexhaust the outgoing queues, but must always leave enough space foronehandler which may be ready to
execute next.

26 Chapter 2 TheFLASH Multiprocessor

2.4 FLASH Software Environment

The design and implementation of protocols forFLASH entails a vast array of software support

tools and simulators. These tools aid in the creation of protocols as well as the assessment of their

performance during the design phase ofFLASH. This section provides an overview of these tools

to provide a stronger background for the environment in which these protocols were generated and

evaluated.

2.4.1 Protocol Compilation and Scheduling

To make the design, implementation, and debugging of these complicated protocols more tractable,

we chose to express the handler code in a high level language instead of assembly language. While

this helps the protocol designer, it also requires that a range of tools be provided to help translate

the high level language, in our case C, to machine code for the protocol processor.

Compilation

Rather than start from scratch, theFLASH team elected to re-target gcc, the GNU C compiler [Sta93]

to generate PP assembly code. This was a good compiler base from which to start for two key rea-

sons. First, since the PP was loosely based on the MIPS R3000 ISA, and since gcc was already

ported to that ISA, a reasonably close starting point was immediately available. Second, since gcc

is implemented using a flexible optimizer and code generator language designed for porting, the

internals of the compiler were readily exposed. TheFLASH port of gcc for the protocol processor,

PPgcc, provides complete code generation features for protocol development, as well as a variety

of peephole and code optimization features. These optimizations enable C-level constructs such as

bitfields of structs and other efficient data structures common to protocols to be readily translated

into the special bit manipulation support provided by the PP. In many cases, PPgcc-generated as-

sembly code is efficient enough for the final machine. In other cases, it serves as a reliable staring

ground from which hand optimizations can be applied. Gcc was ported to the protocol processor by

Joel Baxter and Supratik Chakraborty.

Scheduling

In addition to generating the assembly language instructions themselves,FLASH adds another ele-

ment to the code-development process since the PP is a statically-scheduled dual-issue processor.

Unlike dynamically-scheduled processors such as the R10000, the PP requires the handler code to

strictly match its asymmetrical issue restrictions, or else the instructions are decoded as illegal. Su-

perscalar execution in the PP affords us increased instruction bandwidth per clock, which we find

Section 2.4 FLASH Software Environment 27

critical to achieve efficient protocol processing in software. The drawback to this feature is the need

to convert the compiler-generated scalar-issue code to efficiently utilize the dual-issue capability.

Since PP instructions can be generated automatically from C-level protocol code, we chose to

explore automated support for scheduling as well. We began with the Twine scheduler, written

by Michael Smith as part of the Torch project at Stanford [Smi92]. This system was built using

a former generation of the Stanford University Intermediate Format (SUIF) to internally store its

code, relocation entries, and other information later needed to produce a valid object file [HAA+96].

Twine was a perfect match forFLASH because the design of the PP was initially generated from a

simplified version of Torch. Torch, like the PP, provides statically scheduled dual-issue, as well

as support for instruction speculation. Though the speculation support was mostly removed from

the PP, it still manifests itself in the PP’s ability to provide simplified squashing branches. Twine,

like PPgcc, is an effective staring point for our code. It optimizes most code well, though certain

canonical sequences are poorly optimized warranting small hand optimizations.

2.4.2 FLASH System Simulation

We exclusively used simulation of aFLASH system during the development of the protocols in this

thesis. TheFLASH system was under design throughout this research, so the machine prototype was

not available to test protocols. Simulation is a powerful technique to design protocols because it

provides detailed visibility into the simulated machine.

We use the FlashLite system simulator, written by Mark Heinrich as part of theFLASH project.

FlashLite modelsMAGIC and its network at the behavioral level, which provides nearly exact per-

formance modeling, but not to the point of being cycle-by-cycle accurate. This allows us to use

FlashLite to indicateFLASH performance, while avoiding the jump in complexity and maintenance

to keep the simulator exactly in sync with the hardware design. The protocol processor (which is of

particular interest in this study of protocol code) is simulated using a functional instruction emulator

called PPsim. PPsim allows us to simulate the actual handler code and have the side-effects in PP

instructions cause simulatedMAGIC actions to occur in the FlashLite simulator.

FlashLite works in tandem with a CPU simulator which provides references from the proces-

sors in the simulated machine. Initially, FlashLite used the TangoLite reference generator, written

in conjunction with theDASH project [GH93, Gol93]. Later, FlashLite was converted to work in

conjunction with the SimOS simulation system, also developed at Stanford by a large team of re-

searchers [RHWG95, Her98].

The SimOS framework provides the ability to boot and run a real operating system kernel under

simulation, and to run multiprogramming workloads on top of the simulated kernel. The result is

the ability to accurately characterize the performance of workloads that include operating system ef-

fects. SimOS models the simulated processors using two different CPU models: An R3000/R4000

28 Chapter 2 TheFLASH Multiprocessor

CPU emulator called Mipsy and a high performance dynamic binary translation system called Em-

bra [WR96]. In addition, we are able to use the Mipsy simulator outside of the rest of the SimOS

environment to simulate applications while excluding OS effects, for the purpose of debugging,

development, validation, and controlled performance evaluation. This combination of simulation

tools has proven to be a powerful mechanism for simulating workloads onFLASH.

2.5 Summary

The FLASH project is focused on two main goals. First, studying the design of scalable multipro-

cessor systems to support the integration of cache-coherent shared memory and message passing.

Second, to implement protocols in software to allow them to be easily corrected, optimized, or re-

placed altogether. InFLASH, hard-coded or table-based coherence protocols of systems likeDASH

are replaced by theMAGIC node controller.MAGIC contains an embedded protocol processor for

control processing and dedicated data processing logic.

The FLASH system consists of an array of processing nodes, each containing a MIPS R10000

processor, aMAGIC chip, a portion of the machine’s distributed memory, a PCI IO interface, and

a port into the CrayLink Interconnect.MAGIC serves as the controller for communication within

and between nodes, exchanging protocol information with otherMAGIC chips using short messages.

The instruction set of the Protocol Processor is based on the MIPS R3000 processor, then extended

to improve performance of common protocol operations.

We studyFLASH under simulation, using a detailed software model of its components. Protocol

code forMAGIC is written in C and then compiled and optimized using a custom tool chain.

Section 2.5 Summary 29

30 Chapter 2 TheFLASH Multiprocessor

Chapter 3

Uses of Flexibility Beyond Cache

Coherence

The centerpiece of theFLASH design is a node controller with embedded flexibility. One of the

initial motivations for this design decision, as described in Section 2.1, is to enable cache coher-

ence protocols to be implemented by software protocol handlers rather than hardware tables or

finite state machines. The hardware units inFLASH operate under the control of these software

handlers to assist in the data processing and protocol processing throughput inMAGIC. Experi-

ence gained from the design ofFLASH and similar machines suggests that the implementation of

cache coherence through flexible software handlers is a powerful and convenient way to design such

protocols [KOH+94, HKO+94, RLW94, ACD+95, KCD+97].

However, the motivation for flexibility is not limited to the implementation of cache coherence

protocols. Another goal of theFLASH project is to provide a single system that is able to efficiently

support a range of communication protocolsbeyondcache coherence. This goal arises from the

observation that multiprocessors of several different design styles have been converging to the point

where they have practically the same hardware at their core. By designing a system with a small

degree of additional flexibility, the result is a powerful machine that can support a range of models.

Thesealternateprotocols beyond cache coherence are the focus of this dissertation.

Since its conception theFLASH project has been interested in providing message passing sup-

port in addition to cache coherence. Historically, most large-scale parallel applications were im-

plemented in the message passing style in the interests of scalability and performance. In recent

years shared memory systems and applications have begun to provide a viable alternative; still, an

ideological dichotomy remains in the high performance computing community between supporters

31

of shared memory and message passing. In the past, systems were designed to support either mes-

sage passing or shared memory, but not both; one key goal inFLASH is to demonstrate that a single

system with a flexible engine can effectively support both message passing and shared memory with

high performance.

Besides message passing, other protocols can also be built to exploit the flexibility inFLASH.

One example is synchronization primitives such as locks and barriers. By providing support in

MAGIC for these primitives, there is the potential to improve application performance by reducing

the latency of these synchronization operations as compared to pure shared memory implementa-

tions.

This chapter provides an overview of the alternate protocols we study in the context ofFLASH.

We briefly explore the design space of these protocols, identifying the portion of the space on which

we focus. In addition, we consider at a high level the individual software requirements of these

protocols, determining the requirements they share. In the next chapter, we describe the imple-

mentation features common to multiple protocols (such as protection, interaction with the main

processor, etc.), which serve as core mechanisms on which the alternate protocols are built. In sub-

sequent chapters, we individually describe the implementation and performance of these alternate

protocols. Chapter 7 considers other protocols thatFLASH can support, but which are not studied in

detail in this dissertation.

3.1 Block Transfer (Message Passing) inFLASH

In many early multiprocessors, message passing was the communication protocol provided to the

user. In these systems, the memory on different nodes is completely separate, ordistributed, and

thus cannot be cached on remote nodes. Instead, for communication between nodes, applications

send and receive data explicitly viamessages.

The explicit nature of the communication in message passing systems affords certain advantages

to the application. By crafting the communication manually, the programmer can closely manage

and tune the movement of data around the system. A related benefit of explicit programmer control

is that typically communication volume is reduced, since a message can be formed that contains

only thenecessarydata.

Though it offers some advantages, explicit communication has its drawbacks as well. Program-

mer management of data transfer in message passing applications is not a simple task. At all times

the application must keep track of the current copy of the data values and must establish a plan

for transferring that data between nodes. In large applications, achieving this data manipulation

correctly and efficiently can be very challenging. In addition, in applications where the data is

largely shared, message passing programs may be forced to keep a copy of the shared data set in

each node’s memory, since caching of remote data is prohibited. In a shared memory system, the

32 Chapter 3 Uses of Flexibility Beyond Cache Coherence

data would reside in one memory and be replicated in thecachesof other nodes. These sources of

complexity have traditionally made parallel programming in the message passing model much more

cumbersome than in the in shared memory model.

Cache coherent shared memory addresses many of the concerns of the message passing model,

but also sacrifices some of its advantages.1 For example, shared memory eliminates the need to

replicate the data set of the program since any node can access shared data. Furthermore, due to

the cache coherence support the programmer never needs to explicitly manage the most up-to-date

copy to achieve correctness.

On the other hand, shared memory hides interprocessor communication behind the load/store

abstraction of normal programs, and usually communicates at a fixed cache-line granularity. This

may ultimately reduce communication efficiency since the system, not the programmer, chooses

which data to communicate. It also introduces the problem offalse-sharing, artifactual commu-

nication that occurs because most protocols permit only one simultaneous writer per cache line.

For example, consider the case when different nodes manipulate words on the same cache line.

Even though these nodes may not read each other’s results elsewhere on the line (and therefore no

communication is inherently needed), cache coherence causes the entire line to move around the

system.

3.1.1 Message Passing Overview

In a message passing machine, since messages are the only communication primitive, they are used

for a range of functions. Messages may be used for synchronization and coordination (typically

transporting a small amount of data) or for the transfer of large data regions, which have significantly

larger payloads. In practice, messages may be used for a combination of these purposes since the

delivery of a message usually implies some degree of synchronization.

In this section, we focus on the design space for message passing protocols that provide high

performance block transfer. Our discussion considers the applicability of these protocols forFLASH,

and identifies the common mechanisms which they share. Our goal is to demonstrate that block

transfer message passing can be efficiently supported onFLASH.

Besides block transfer, small messages calledactive messageshave been proposed as a general-

ized form of message passing that invokes computation at the receiver [DFK+92, vECGS92]. Uses

for active messages range in complexity from performing simple computation at destination nodes

to more complex computation approaching the functionality of remote procedure calls. We consider

support for active messages in Section 7.1.

1For brevity we refer to these simply as “shared memory” systems, but in all cases we are considering systems that
have hardware cache coherence support.

Section 3.1 Block Transfer (Message Passing) inFLASH 33

3.1.2 Message Passing Models

Message passing abstractions exported to applications vary across a wide spectrum of functionality

and semantics. Some protocols provide only basic data transfer capabilities and few other features.

At the other extreme are more complex protocols, such as Intel NX [Pie88] and MPI [DOSW96,

GLS]. These more advanced models provide such features as sophisticated buffer management,

wildcards for receiving messages flexibly, and complicated multi-way communication primitives.

We begin by describing this space to illustrate the kinds of protocolsFLASH should be capable of

supporting.

To better understand this spectrum of protocols, we consider two data points at the extremes,

one model based onconnectionsand the other based onsends and receives. The interesting conclu-

sion to draw from these models is that despite the different communication features they export to

applications, the requirements of their implementations are similar.

Simple Connection-Based Models

In a connection-basedmodel, pairs of processes are associated, often statically, byconnections

(or channels). In this type of model, only the two “endpoint” processes can communicate using

that connection. This restriction leads the application to open explicit channels between any pairs

of processes desiring to communicate. In practice, if there are sufficient channels, they might be

established early and remain open throughout the application. If there are relatively few, they might

need to be time-multiplexed, i.e., assigned and reassigned as needed to allow different process pairs

to use the limited resource. As the number of processes increases, the need for connections, which

grows asO(n2), may become prohibitive.

A connection-based model has the advantage of simplicity for the system. Each endpoint can

send data only to its communication partner, and this data is received at the other end in the order

it was sent. Unfortunately, this simplicity makes a connection-based model challenging to utilize

effectively in an application. For example, to receive messages out-of-order, multiple channels

would need to be established between communicating peers (note that this also exacerbates the

potential to exhaust the number of available connections).

Connection-based models enable the system to aggressively transfer the data to the receiver.

This is made possible because connections and their associated buffers are established in advance,

so each side usually knows if buffer space is available for it at its partner. If circular buffers are

used, for example, all that is required is that the other end periodically indicate how much of the

sent messages have been consumed.

34 Chapter 3 Uses of Flexibility Beyond Cache Coherence

Send/Receive Models

A more common communication model is based onsends and receives: NX, MPI, and many other

protocols fit into this category [Pie88, GBD+94, DOSW96]. In this model, no static connections

are established between communicating peers but instead each individual message send indicates its

destination through some naming scheme. Likewise, a receive may specify a particular sender from

which a message should be sought. The send/receive model is much more flexible since it allows

any one of the application’s processes to send to any other without advance set-up. It also has the

advantage that processes can usually receive messages in a different order than they were sent.

On the other hand, this increased power also increases the complexity and overhead of the un-

derlying implementation. The lack of connections may require more work on each individual mes-

sage for authentication, buffering, or wildcard matching to determine its destination. In particular,

allowing a process to receive its messages out of order significantly complicates the buffering im-

plementation as compared to an in-order implementation. In some situations, if buffering has been

preallocated, messages may be transmitted immediately (just as in the connection-oriented model).

If preallocated buffers are exhausted, however, the sender must first negotiate with the receiver to

avoid sending a message which cannot be accepted.

Common Requirements

Our goal inFLASH is not to provide aparticular message passing model but rather to enable arange

of protocols to operate efficiently. Fortunately, despite the differences between these protocols, we

see that they have similar requirements. First, each requires a means to exchange control information

with other nodes to arrange the buffering and transfer of large messages. Shared memory provides

a convenient way to coordinate this communication between processors.

Second, for performance each requires a means to exchange data at high bandwidth. Once

buffering has been arranged for messages, performing the actual transfer as quickly as possible

is crucial to keep end-to-end message latency low. To move the application data, we turn to an

accelerated block transfer protocol.

3.1.3 Providing Block Transfer

The most important decision to make at the outset is: where should we divide the functionality

betweenMAGIC and the main processor? One approach would be to utilize the support of the

MAGIC chip as much as possible. In other words, we could implement a specific message passing

protocol inFLASH, one in which many of the higher-level functions of the protocol are provided by

MAGIC.

Section 3.1 Block Transfer (Message Passing) inFLASH 35

However, when we increase the protocol functionality integrated intoMAGIC, we encounter

several major disadvantages. The first arises from the currentMAGIC implementation. WhileMAGIC

is capable of high performance protocol processing, its caches and dispatch table implementation

limit the protocol code size which can achieve peak performance. In the current system with 16 KB

MAGIC instruction caches, reducing overall protocol code size is critical to avoid instruction cache

misses. In addition, thoughMAGIC provides the ability to dynamically change between protocols

using the Inbox Jump Table, it is difficult for two large protocols to share that finite table efficiently.

If the Jump Table size is exceeded, software is used to dispatch handlers that do not fit, increasing

dispatch time significantly. The actual cost of dispatch depends on the position of the handler in the

table; we have measured costs of 50 cycles, but they can be much higher.

The second disadvantage of increasing the functionality inMAGIC is that its protocols are harder

to verify and harder to change than those implemented on the processor. In particular, verification

is more difficult because errors in the protocol code are less visible and likely to be more harmful to

the system than those in application-level libraries, since the former directly manipulates physical

memory.

Finally, since all requests on the node require service fromMAGIC, it is important to provide

fair access to the protocol processor. As we increase the demands on protocol processing, system

performance may degrade as the latency for servicing other processor requests increases [HHS+95].

3.1.4 Integrated Shared Memory and Message Passing

Our goal inFLASH is to provide an integrated protocol which exports both shared memory and

message passing features to applications. To achieve good performance and avoid the disadvantages

described above, we provide a protocol which strives for high performance data movement but limits

excess functionality. The interface we export to the application reflects the low level functionality

we implement inMAGIC: acceleratedmemory copy. This protocol accepts a source and destination

buffer address and performs the copy inMAGIC. We provide our support in that form for several

different reasons:

First, shared memory allows more flexibility in how to perform inter-node data transfer. In a

distributed memory machine thereceiverof a message must decide where to store the message in its

memory. While this may reduce the advance negotiation required between nodes, it would require

MAGIC to implement a specific message passing policy. Instead, because of our shared memory

environment, we are able to name the remote memory destination at thesender. The message

passing library at the sender selects the destination buffer and indicates it to the sending node’s

MAGIC chip. With the decision of where to place the message having been made at a higher level,

the receivingMAGIC chip can concern itself with high performance memory transfer and not with

selecting an address for the data when it arrives.

36 Chapter 3 Uses of Flexibility Beyond Cache Coherence

Second, by providing an integrated solution, shared memory applications can utilize the same

accelerated communication features, just as they would use other latency-hiding and bandwidth

improvement techniques such as prefetching [MG91, Mow94] or DMA. This is possible not only

because shared memory and message passing are allowed to interact, but more generally because

the block transfer capability is not tied to a message passing protocol. In addition, the memory

copy interface we choose is natural for both environments. Shared memory can use it directly, just

as it would a normalbcopy call. Message passing libraries use memory copy to move the actual

message data after selecting the buffer addresses.

Finally, by exporting the block transfer features directly to the main processor, we allow each

library to utilize the low-level features as efficiently as their abstraction permits. For example, a

simple connection-based model designed for use in a simple producer-consumer application could

be implemented directly on the memory copy interface. In contrast, the additional support provided

by an MPI library might achieve somewhat lower performance—but without affecting applications

using lighter models. If instead we had chosen one particular model to implement inMAGIC, other

models with different requirements would be forced to build on top of it even if their abstractions

were poorly matched.

3.2 Synchronization Primitives

Parallel applications implemented in the shared memory style are often required to synchronize

between different processes to ensure correct execution. Synchronization operations can be used in

a variety of ways, for example:

� Provide mutual exclusion to data structures.

� Distribute work between processes.

� Ensure that processes proceed through application phases at the same time.

Providing good synchronization performance is critical for achieving scalability in parallel sys-

tems. Inefficient synchronization increases the cost of parallelism, since processors waste time

synchronizing when they could instead be doing useful work. More generally, if synchronization is

expensive or inefficient, applications are forced to cooperate at larger granularity to amortize syn-

chronization overhead. If synchronization cost can be reduced, it enables applications to seek out

finer granularity parallelism that may ultimately increase performance.

In FLASH, we can leverage the flexibility ofMAGIC to accelerate synchronization primitives

through specialized protocol support. This section describes a variety of synchronization primitives

and their application uses and requirements. In Chapter 6, we describe the implementation of these

synchronization primitives onFLASH.

Section 3.2 Synchronization Primitives 37

3.2.1 Locks

One of the most common synchronization primitives, from which most others can be generated,

is the lock. At any one time a lock can be held by only one processor, and so it can be used in

circumstances where mutual exclusion is required. Shared memory locks perform very well in

some circumstances. In particular, when access to a lock is not contended, shared memory can

achieve low latency since lock requests succeed immediately and do not need to retry. Since shared

memory locks are comprised of normal memory locations, a lock is cached when acquired. As a

result, if contention is low and the lock is requested again soon, the lock might be found in the cache

and acquired at very low latency.

When these scenarios are not met, however, the performance of shared memory locks degrades.

For example, as contention increases, the need for exclusive ownership to modify the lock may

cause requests to be negatively acknowledged, or lines to ping around the system. In degenerate

cases, a processor that is granted ownership of the lock may have the lock snatched away before the

lock can be acquired—this scenario can lead to livelock if steps are not taken to guarantee forward

progress.

Furthermore, since ownership of a line is acquired based on which requester reaches the home

node first, there is no guarantee of any fairness or ordering of lock acquisitions. In particular, when

a lock is held the other requesters all acquire shared copies and spin while the lock is unavailable.

When the lock holder releases the lock, the home invalidates all the sharers—causing them to re-

fetch the line in an effort to acquire the lock. This results in a rush of requests for the line in quick

succession, even though only one of the waiters ultimately succeeds in acquiring ownership (and

the lock).

Our approach to providing locks inFLASH addresses the weaknesses of locks implemented on

normal shared memory. Since shared memory locks perform well in low contention cases, additional

protocol support would be of no benefit in that regime. Instead, we focus on accelerating high

contention locks through a variety of techniques. First, we address the fairness issue caused by the

rush of requests that follows an unlock of a contended lock. Instead of using pure shared memory,

requests for these locks are queued so when a lock is released only the head of the queue is notified.

A similar approach was provided by theDASH system to optimize lock variables [Len92], and in

software by Mellor-Crummey and Scott [MCS91a, MCS91b]. Second, we optimize the transfer

of a lock between holders, avoiding the extra traffic and latency introduced by the shared memory

model. Third, we try also to provide the advantages of shared memory, including efficient repeated

acquisition of a cached lock.

38 Chapter 3 Uses of Flexibility Beyond Cache Coherence

3.2.2 Barriers

Another important synchronization primitive for parallel applications is thebarrier. Barriers force

a rendezvous of all processors, i.e., when a processor reaches the barrier it must wait until all others

arrive as well, and only then can all proceed. Barriers are typically used in phase-based applications,

so that each processor completes its work in the current phase before any can enter the next one.

This prevents subsequent phases from mistakenly reading incomplete results from other processors

if they are still working on previous phases [WOT+95].

Barriers are normally implemented in the parallel macro package or communication library

of a parallel computer. Their implementation often consists of a single data structure that stores

the count of processors that are currently waiting. In that implementation, each processor in the

application needs to update the shared data structure, resulting inO(n) best-case performance for

the barrier. Just as in locks, contention for the barrier data structure can decrease performance

significantly. Such contention may be high if processors arrive at the barrier near each other, which

is increasingly likely as machines scale.

A more efficient barrier implementation would utilize the parallelism in the machine to its ad-

vantage, using a tree-based structure instead [MCS91a, MCS91b]. This improves the barrier’s best-

case complexity toO(log n). A tree barrier can be implemented in the application library just as a

normal barrier, or can be supported using a custom protocol.

Barriers may further benefit from support inMAGIC since each level in the barrier tree can be

traversed with lower latency. First,MAGIC is closer to the network than the processor, so commu-

nication with remote nodes occurs as quickly asFLASH can support. Second, shared memory must

go through the coherence protocol to communicate with remote nodes. An application-based tree

barrier would acquire ownership of the next tree node and perform its modifications in its cache; the

next barrier stage would then just acquire it back.MAGIC can avoid this unnecessary communica-

tion and advance to the next stage of the barrier directly, using specialized techniques we describe

later.

3.3 Summary

This chapter provided an overview of the alternate protocols we study in this dissertation. Con-

sidering the protocols first at a high level allows us to identify the key requirements they share.

The next chapter builds on this overview to support these shared needs; later chapters consider the

implementation of the individual protocols in more detail.

The first major protocol we study is message passing. Providing a message passing model has

both advantages and disadvantages to the programmer and the system. We described a range of

Section 3.3 Summary 39

message passing support before selecting a fundamental memory copy primitive forFLASH from

which more complicated protocols can be constructed.

We also described synchronization primitives: locks and barriers. Providing efficient synchro-

nization is critical to performance in parallel systems. Our goal will be to improve synchronization

performance over conventional shared memory techniques using the support provided by theFLASH

system.

40 Chapter 3 Uses of Flexibility Beyond Cache Coherence

Chapter 4

Alternate Protocol Fundamentals

In the previous chapter, we identified communication and synchronization functionality that may

benefit from implementation inMAGIC. Even though these various protocols perform very different

functions, they share several fundamental characteristics. Before examining the implementation of

these particular alternate protocols in detail, this chapter describes the fundamentalmechanismsthey

share [HGG94, HGDG94]. By “mechanisms” we refer to both actual protocolcodeand algorithmic

techniquesto accomplish certain critical actions within alternate protocols.

One widely required mechanism is the ability to initiate alternate protocol operations onMAGIC

under control of the main processor. This requires an efficient and powerful interface between the

processor andMAGIC. In many respects the processor considersMAGIC to be a memory-mapped

device, i.e., it can issue commands through accesses to special memory locations. However, in

the interest of performance and protection, our implementation extends this interface in several

ways. We describe a family of processor/MAGIC communication techniques that are used by our

protocols. These techniques enable communication in either direction and with varying degrees

of functionality and performance. We then extend this basic interface to show how it can be used

in the context of virtual memory. Since our environment contains a full-fledged operating system,

correctly handling virtual memory and assuring memory protection is of critical importance to allow

widespread use of our protocols.

Once these operations have been initiated,MAGIC’s tasks are centered around manipulating

user data. This would be straightforward in a distributed memory system where data can only re-

side in local memory or the local processor’s cache. In our shared memory environment, however,

coherence is much more difficult and often entails communication with remote nodes. In general,

41

providing coherence for our alternate protocols requires a subset of the functionality in the cache co-

herence protocol. In some cases, custom coherence support is integrated into the alternate protocol;

we describe an example of such support in Chapter 5. In this chapter we describe instead a shared

technique for coherently modifying user data that leverages a corner case of the cache coherence

protocol. This technique, calledPP ownership, reduces protocol code replication as compared to

custom coherence support, in exchange for reduced performance.

Section 4.1 describes the processor/MAGIC interface for basic command sequences, then Sec-

tion 4.2 extends the interface to operate in a virtual memory environment. Section 4.3 provides

a brief overview of protection features inMAGIC, though many protection features are protocol-

specific and are addressed later. Finally, Section 4.4 explains the PP ownership technique for coher-

ently modifying data in the PP.

4.1 Processor/MAGIC Communication

The ability to leverageMAGIC to provide computational functionality outside the compute pro-

cessor is a powerful feature of theFLASH system. To utilize this capability, we must provide a

processor interface toMAGIC for initiating protocol operations in an efficient, atomic, and pro-

tected manner. Similarly, some protocols running inMAGIC require service from the processor,

so a related interface is needed to cleanly request the processor’s attention. In this section we ad-

dress the interface between the processor andMAGIC which provides these features. Since the

requirements of each alternate protocol are somewhat different, we describe several techniques that

offer varying tradeoffs of functionality and performance. Though the details of the techniques we

propose are specific toFLASH, many of the concepts apply to other systems with similar character-

istics [RLW94, BLA+94, MKAK94, NAB+95, LC96].

As described in Section 2.3.3,MAGIC’s processor interface provides a highly optimized abstrac-

tion of processor bus operations. Our interface builds on top of the existing PI features to provide

the additional functionality needed to initiate alternate protocols. At a high level, we find the goals

for initiating alternate protocols are similar to those needed to invoke an RPC [SPG91].

� The ability to name an operation forMAGIC to execute.

� The ability to provide multiple arguments to the operation (including both data values and

memory addresses).

� Guaranteed atomicity (and an assurance that an operation is executed “at most once”) despite

preemptive multiprogramming on the processor.

� A means to receive one or more result values from the operation which was invoked.

42 Chapter 4 Alternate Protocol Fundamentals

In other systems, powerful features such as those available inMAGIC are typically exported

through a system call interface, and are thus protected by the operating system. Unfortunately,

the high overhead of system calls leads us to strive for an interface provided directly at user level.

The challenge is to achieve such an interface without subverting the protection features normally

provided by a system call. These protection features come in several different forms:

� The OS prevents applications from using resources to which it does not have access (e.g.,

applications cannot access certain devices unless they have special privileges). In our case,

this protection corresponds to our restricting alternate protocols to applications authorized to

use them.

� The OS uses virtual memory to protect and share the physical memory of the machine. As

a result, communication from user-level applications necessarily describes memory in virtual

addresses. Special steps must be taken to convert these to the physical addresses used by

MAGIC.

� System call arguments are checked to be sure that the services are only used in approved ways.

Examples of this include reading beyond the end of files, trying to open invalid devices, and

trying to use system calls reserved for privileged users. The same kinds of argument checking

must be done for protocol actions initiated onMAGIC.

The following sections describe how alternate protocols are initiated onMAGIC in a way that

satisfies all these requirements. We call this interface Protocol Processor Calls (PPCs), and Protocol

Processor Registers (PPRs), since they are intended to be somewhat analogous to the RPC func-

tionality common to many systems. Section 4.1.1 describes how command sequences are used to

initiate PPCs from the processor. Section 4.1.2 describes a simplified version of a PPC, the PPR,

that is designed for higher performance but more limited functionality. For communication from

MAGIC to the processor, we provide a mechanism called an OSPC, explained in Section 4.1.3.

4.1.1 The Protocol Processor Call (PPC)

To allow the processor to initiate alternate protocols onMAGIC, we provide an interface known

as a Protocol Processor Call (PPC). A PPC consists of a series of commands with a controlled

format, through which the processor can specify the operation it wantsMAGIC to perform. The PPC

interface is deliberately designed to be fairly similar to the RPC style of communication common in

many operating systems and distributed systems. The analogy is straightforward: PPCs are a request

for service fromMAGIC, just as most RPCs are a request for service from another system, node, or

kernel. PPCs, like RPCs, may run quickly and reply inline, or they may take longer and return a

result asynchronously. This section describes the bare essentials of the PPC interface, illustrating

Section 4.1 Processor/MAGIC Communication 43

how it can be used to initiate simple alternate protocols. Subsequent sections extend the basic PPC

definition given here by explaining how they interact with virtual memory, and multiprogramming.

Memory-Mapped Commands

PPCs are issued by the processor through a memory-mapped interface toMAGIC. To implement

this interface, we leverage the flexibility ofMAGIC to interpret processor bus requests any way it

chooses. We “overload” uncached writes by the processor to specify toMAGIC either a command

or argument. Similarly, we use processor uncached reads to request a data word fromMAGIC (a

result or return value). Uncached mappings also prevent processor speculative references from

confusing the sequence or introducing unintended references into it. This problem arises because

the R10000 processor aggressively generates speculative references in an attempt to hide memory

latency. Fortunately, the R10000 cannot speculatively issue uncached references since they may be

permanent (e.g., if the address corresponds to an IO device).

To enable this interface, but also allow normal uncached operations by the processor, we must

distinguish PPC commands from normal accesses in some way. In other words, whenMAGIC detects

a distinguished PPC reference, it must know to interpret it specially and not to merely carry out the

memory operation it seems to indicate.

The FLASH system provides two features we can use to distinguish address ranges as special.

These two features are each useful in different situations; later we describe protocols illustrating

their respective uses. Both features are accessed through the memory management unit support

already provided by the processor. The key benefit of leveraging the memory management unit

is that the operating system can expose the memory mapped interface directly to user programs

without compromising protection or requiring system calls on each use. TheDASH system used

similar methods of distinguishing memory references for its alternative memory operations [Len92].

The first feature for distinguishing PPC references is provided by the R10000 processor, which

allows severaluncached attributeor “flavor” bits to be associated with uncached mappings in the

TLB. These bits are exported as part of the bus command when an uncached operation using that

TLB entry is generated, and are among the fields used by the Inbox in dispatching the appropriate

handler for a request. Thus, the Inbox can use the flavor bits to select a special handler, in this case

one which interprets the access as a memory mapped command toMAGIC.

The second feature is built intoMAGIC, which artificially divides the physical address space

into four distinct regions, calledaddress spacesor simplyspaces. The address format is illustrated

in Figure 4.1. Accesses to different spaces do not specify different memory locations, but instead

specify four different names for thesamememory location. Space bits, like flavor bits, are used by

44 Chapter 4 Alternate Protocol Fundamentals

Node Number

8 bits / 256 Nodes

10 bits / 1024 Nodes

12 bits / 4096 Nodes

1 bit

2 bits

3 bits

Zero Bits

Node Offset

Remaining Bits

40 Bits Total

Addr Space

Figure 4.1: FLASH Address format.FLASH allows variable sized node number and address space
fields. The remaining bits are assigned to form the offset into the local node’s memory, though this
memory need not be fully populated with DRAM.

the Inbox as one of the criteria for selecting a handler, and thus allow us to distinguish references

similarly.1

PPC Initiation and Atomicity

A PPC consists of a series of uncached references that, using one of the techniques described above,

emerge from the processor with distinguishing characteristics. This sequence normally consists of

a series of writes specifying command and arguments, followed by a read that requests a success or

failure indication. As each command reference is emitted from the processor, the PP handler logs

the address and data value of the reference into protocol memory. At the end of the sequence, the

terminating command cuesMAGIC to interpret the commands and arguments it has received.

As we described, the PPC specifies its command using a memory mapped interface. In that

interface, theaddressreferenced indicates the command the processor wishes to invoke; thedata

valueswritten to those addresses are the arguments the processor provides. The command addresses

are arranged so that each different PPC request type is allocated a different cache line in the memory

mapped command region. Doubleword offsets within that line are considered sequence numbers for

the arguments pertaining to that command. Thus, PPCs are issued as a series of writes to sequential

offsets (with exceptions to this rule in some cases, as described later), which allowsMAGIC to verify

that the commands are in sequence.

The last memory mapped operation in a command sequence is usually an uncached read. This

read performs two functions: it notifiesMAGIC that the command sequence is complete and should

be committed, and it requests a response to indicate if the PPC has been accepted.2 A negative

1Unlike flavor bits, which can only be used for uncached accesses, space bits can also be used for cacheable accesses.
Though the cacheable aspect of address spaces is not useful for implementing PPCs, it allows us to select a different
coherence algorithm depending on the space that is referenced. In Sections 6.1 and 6.2 we describe how custom coherence
algorithms can be used to specially optimize the communication between the processor andMAGIC for PP-supported
synchronization protocols.

2This does not imply the completion of the requested operation. Completion is usually in other means: coherent
memory locations or subsequent PPCs or PPRs.

Section 4.1 Processor/MAGIC Communication 45

acknowledgement indicates thatMAGIC has rejected the sequence (either due to temporary resource

limitations or errors in the commands). Command sequences that fail may be retried by the proces-

sor if desired.

Unfortunately, sequence checking alone is not enough to guarantee that the commands arrive

correctly atMAGIC. For any PPCs initiated at user level, the sequence of commands may be in-

terrupted at any time by a context switch, interrupt, or exception. Though unlikely, it is possible

that two different processes could be in the middle of initiating the same PPC. If this happened, one

process might issue a command that gets mistakenly interpreted as part of the other process’s PPC.

We can solve this problem and make the PPC initiation mechanism robust by flushing any incom-

plete command sequences when context switches occur on the main processor. To accomplish this,

we reserve a PPR (described below) for the kernel to notifyMAGIC when context switches occur.3

Later, when the process resumes, the PPC fails since its references are of sequence; it can then be

retried.

Compared to the solution used in CM-5 [Thi92] and Alewife [KA93], our approach does not

require saving and restoring of the commands across interrupts. In addition, the programmability

of MAGIC allows us to customize the command sequence protocol for various uses as opposed

to providing a single hardwired protocol [ALK+91, LLG+90]. While the above approach cannot

absolutely guarantee the forward progress of a PPC that is repeatedly interrupted, it is unlikely to

be interrupted indefinitely. If in practice frequent interrupts turn out to impede forward progress,

we can instead use a solution that maintains separate command queues per process insideMAGIC.

While this would increase the overhead of the context switch handler, it would prevent PPCs from

failing due to sequence interruptions, since the sequence could be resumed where it left off.

PPC Replies to the Processor

Recall that following the sequence of commands forming the PPC, an uncached read is issued to

complete the sequence. Depending on the service invoked by the PPC, the reply to the uncached

read can be used in several different ways. We briefly consider the characteristics of these different

approaches:

Two-Phase Initiation The two-phase initiation style described above is the most common. In that

style, the result code from the PPC refers only to the acceptance of the command sequence

itself; the operation onMAGIC completes asynchronously. If desired, the processor can later

query the result of the operation using one of several techniques. First, the PP can coherently

update a location (or locations) in user memory which the processor can read. The processor

3Since context switch notifications are relatively infrequent and the handler it invokes is very short, the overhead
introduced is small. In the case of clock interrupts and other more temporary interruptions to user processing, the kernel
only needs to notifyMAGIC before itself invoking PPC services, or before other user processes can run.

46 Chapter 4 Alternate Protocol Fundamentals

could also issue a subsequent PPC or PPR, the entire purpose of which is to poll for the

completion of the asynchronous operation. In most cases, coherent memory updates are the

most efficient technique.

Immediate ResponseIn some cases,MAGIC can carry out the action requested by the PPC imme-

diately. For those operations, the return value can be more significant and actually indicate

that the requested operation is complete. Since the processor is stalled during this operation

waiting on the result of its uncached read, this style of reply should only be used for oper-

ations which complete in a fairly short time. InitializingMAGIC state records or consulting

performance monitoring statistics are examples of PPCs which can provide an immediate

response.

4.1.2 The Protocol Processor Register (PPR)

The PPC mechanism is most appropriate for invoking complexMAGIC services. Typically these

services accept multiple arguments and then return a status reply since initiation may fail due to

resource limitations. However, there are many requests that canalwaysbe accepted byMAGIC

when they arrive and can be guaranteed to always complete. These characteristics permit initiation

to be simpler and faster and not require a status reply. For these types of requests, we designed an

optimized PPC, known as a PPR orProtocol Processor Register. This interface is named because

PPRs logically act as a register inMAGIC that can only be read or written, even though in reality

they execute a handler, just as a PPC.

PPRs are accessed through a command space uncached read or write. These individual accesses

are the same as those for PPCs, but to a different portion of the command region. However, unlike

a PPC which consists of a sequence of commands, a PPR is accessed with only a single read or

write. This simplified interface has two attractive characteristics (for the cases when it can be used):

(i) since it consists of only a single command, it is automatically atomic;(ii) a PPR write allows the

processor to proceed immediately without waiting forMAGIC.

PPRs may be used in two main ways. The simpler version is the more common: the PPR is im-

plemented inMAGIC by just reading or writing a memory location corresponding to the PPR. In this

configuration, the PPRs backing memory is usually accessed through theMAGIC data cache instead

of the normal processor memory mechanism (In other words, the PPR value is part of the protocol

data itself). This allows the protocol executing onMAGIC to read the value of any PPR registers

without checking for coherence with memory. In fact, this is one of the most useful applications of

PPRs, to configure machine parameters used by theMAGIC protocol. Some interesting examples of

this include: reading performance monitoring registers, queryingMAGIC’s position in the network,

manipulating the interrupt masking capability of the processor interface.

Section 4.1 Processor/MAGIC Communication 47

PPRs may also execute a handler, similar to a PPC, which performs some processing for the

request. Essentially, PPR writes are single argument PPCs returning no value; PPR reads are PPCs

taking no arguments and returning a single value. For example, when the processor context switches,

a PPR is sufficient to notifyMAGIC of the new context.MAGIC not only notes the change, but also

takes steps such as flushing partially formed PPCs. An example of a read PPR is one that examines

the hardware units inMAGIC and returns a bit vector to the processor representing which of the units

have experienced errors.

4.1.3 The Operating System Procedure Call (OSPC)

Just as the PPC mechanism is used by the processor to request services of the PP, we also provide a

second mechanism, called an OSPC orOperating System Procedure Call, used by the PP to request

services of the operating system. OSPCs have a number of important applications in theFLASH

system. As we describe in 7.1.1, OSPCs are used to support processor-implemented active messages

by efficiently interrupting the processor to execute the requested handler. They are also used within

the operating system for interprocessor communication between the kernels of two different nodes.

The Hive operating system relies on the OSPC mechanism as part of the fast messaging support

it uses to maintain reliability [CRD+95]. Finally, the PP itself can use OSPCs to request attention

from the operating system. For example, in Section 4.2 we describe how the PP occasionally needs

to request virtual to physical translations from the processor. The OSPC was initially developed

jointly with John Chapin, one of the members of the Hive team.

Base OSPC implementation

An OSPC is a request to the processor consisting of a request type and a number of arguments. In

the basic implementation of OSPCs, each request is one cache line long: one doubleword for the

type and up to fifteen arguments. Since multiple OSPCs may be outstanding at one time, we store

the pending requests in a circular queue inMAGIC protocol memory. We currently implement two

separate queues to provide two priority levels. When a request for an OSPC arrives (or is generated

internally by the PP), first the OSPC request is formed and stored in PP memory. Then a processor

interrupt is asserted to indicate an OSPC is waiting.

When the processor services the interrupt, it must read the request at the head of the queue to

determine what action to take. Ideally, for efficiency we also allow the processor to cache the OSPC

request it reads. However, since we implement the OSPC queue inMAGIC protocol memory, normal

cacheable reads are unable to access this memory. This is by design, since it eliminates the need

to maintain coherence with the processor cache when composing the OSPC request. Instead, the

processor maps a page incacheable noncoherentmode, and reads a reserved address from that page.

48 Chapter 4 Alternate Protocol Fundamentals

MAGIC intercepts the reserved address for accesses of that mode and supplies the OSPC request at

the head of the queue by filling the data buffer from its protocol memory.

The processor can then service the request as needed, referring to the data arguments efficiently

in its cache. In the midst of processing the request, cache conflicts may cause the OSPC request to

be replaced from the cache prematurely. If the processor reads the request address again,MAGIC

provides the same request to satisfy the miss. Eventually, when processing of the request is com-

plete, the processor advances the queue. It does this by sending an acknowledgement toMAGIC (a

PPR), and invalidating the request line from its cache. From the acknowledgement,MAGIC knows

it is safe to advance the queue, and de-asserts interrupts if the queue is empty.

There are two alternatives for how to check to see if additional OSPCs are waiting. The kernel

could read the reserved address again and process additional requests it receives until it finally

receives a reply indicating “no OSPC waiting”. It could instead pause slightly (to allowMAGIC

time to modify the interrupt mask), and return from the interrupt. If other OSPCs follow, it would

take the interrupt again and process it as before.4 The former approach is more efficient if multiple

OSPCs tend to come at once since it avoids unneeded interrupts; the latter is more efficient if OSPCs

tend to arrive individually, since extra processor/MAGIC round-trips can be averted.

OSPC Optimizations

The basic implementation of OSPCs described above has a number of minor performance problems.

Below we describe these problems and explain optimizations that can be applied to improve OSPC

handling performance and reduce overheads. These optimizations are particularly important in the

context of latency-critical uses of OSPCs, such as interprocess kernel communication.

Reducing OSPC request size.Most requests do not need the full cache-line of arguments de-

scribed in the base implementation. Unneeded words consume time to fill from memory

and travel on the bus. For OSPC requests with only one or two arguments, it is more efficient

to reserve a special kind of OSPC which the processor accesses with uncached reads. Since

uncached reads are reliable, it also eliminates the need to acknowledge OSPCs explicitly—the

ACK is implicit when the last word is read. TheMAGIC implementation is sufficiently opti-

mized for moving cache lines that this approach can only show gains over the base approach

for OSPCs of 1–2 words.

Avoiding unneeded trips to memory. In the base implementation, OSPC requests were always

written to and supplied from memory. We can instead choose to store the OSPC request for

the head of the queue in aMAGIC data buffer. We do this by leaving the data buffer allocated

4It may also take an unneeded interrupt ifMAGIC has not had the opportunity to de-assert the interrupt. This does not
represent a correctness problem, it merely causes wasted processing.

Section 4.1 Processor/MAGIC Communication 49

after the initial request handler finishes. This allows the read miss handler to supply the

OSPC requestimmediately. This optimization must be applied carefully since it restricts the

availability of data buffers, but since only the head OSPC request is stored in this way, it poses

no risk in most situations. Even though we hold the request in a buffer until the processor

asks for it, we also write it to the circular queue in memory so that we can provide the request

again if it is prematurely replaced from the processor cache.

Reducing acknowledgement overhead.When multiple OSPCs arrive in succession, the processor

sends an acknowledgement toMAGIC when it finishes with the head request, so the circular

queue can be advanced. It follows with a read miss to the reserved location to access the sub-

sequent request. It is not fundamental that these two handlers are separate. Instead, we could

use a “double buffering” approach in which twodifferent reserved addresses are provided.

When a processor changes from one address to the other, it is implicitly acknowledging the

first request and at the same time asking for the following one. By putting both functions in a

single handler, the total overhead can be reduced.

4.2 Virtual Memory

Software services provided onMAGIC are usually oriented around manipulating memory in a spe-

cial way on behalf of the processor. Memory access byMAGIC occurs exclusively at the physical

address level, sinceMAGIC is effectively the memory controller for the physical memory devices.

In contrast, user-level processes can only specify virtual addresses. This introduces the need to

perform virtual to physical translation as some part of the PPC mechanism. Of course, since the

kernel assigns virtual to physical mappings, a system call is sufficient to authentically translate ad-

dresses from the user for use inMAGIC protocols. Unfortunately, system calls are expensive, so

the challenge is to achieve this same functionality without system calls, through purely user-level

accesses.

In this section, we describe our approach to allowing the user to communicateauthentictrans-

lations toMAGIC at user level, within the confines of the PPC mechanism. There are two problems

to be solved to ensure thatMAGIC uses authentic physical addresses:

How can authentic physical addresses be generated from user level?Our goal is to allow the

user to provide not only simple integer arguments as part of a PPC, but also addresses (i.e.,

pointers to data to be acted upon). We describe two approaches for providing authentic phys-

ical addresses toMAGIC, one based on translations using the processor’s MMU, the other

using the PP to translate addresses in software.

50 Chapter 4 Alternate Protocol Fundamentals

How can we guarantee that these translations remain valid whileMAGIC is using them?

We show three different techniques that may be used to ensure the validity of these addresses

while in use byMAGIC. Our underlying assumption is that changes in virtual to physical

translation mappings of pages involved in the transfer are relatively infrequent (since they

are currently being used, they are less likely than other pages to be victimized). Therefore,

our general philosophy is to provide the necessary mechanisms to handle translation changes

without slowing down the case where translations do not change. We allude to similar tech-

niques which would be preferred if translation changes were more frequent.

4.2.1 Providing Authentic Translations from User Level

As discussed in Section 2.3.2, one of the simplifications in the design of the protocol processor (PP)

as compared to a general microprocessor is the removal of the TLB. We made this simplification

because(i) cache-coherent memory operations do not require address translation since the processor

already presentsMAGIC with physical addresses;(ii) handling TLB and page faults on the PP would

add significant complexity; and(iii) a small hardware TLB may not be an effective structure for

caching translations, especially since PP reference patterns are different from that of code executed

on the compute processor.

Instead, we support the required address translation for protocol operations using other tech-

niques. We present two techniques that accomplish this task. The first uses a special mapping of

memory exported to the user, through which addresses may be referenced as part of a command

sequence. The second passes virtual addresses down as part of the PPC, then uses a software TLB

to generate an authentic translation.

Providing Translations Through a Shadow Mapping

The first technique is based on the observation that user processes arealreadycontinually providing

authentic addresses to the system via the memory management unit in the processor. Since all this

hardware and software support is already present in the system, it begs the question: Why not simply

leverage that support to allow the user to generateaddressesfor command sequences as well? For

example, a naive approach might be for the user to merely reference the appropriate address in the

middle of the command sequence. This would result in the desired translation on the bus (assuming

the line is not cached).

Processor translationis sufficient to be used as part of a command sequence, but it must be

utilized in a more sophisticated way than the example above. The first problem is that the line may

indeed be cached, and then the reference would not emerge on the bus. In fact, since this address is

the subject of a PPC, it is quite likely to have been recently referenced and thus cached. To ensure

visibility of processor references of this type, we are forced to provide a separate uncached mapping

Section 4.2 Virtual Memory 51

Virtual Addresses Physical Addresses

Shadow
Region

Region
Normal

Physical Memory

Interpreted as
command

Interpreted as
normal memory operation

0x10002000

0x10001380
0x10001000

0x00002000

0x00001380
0x00001000

Translation
Boundary

Address Space Bits
Address

0x3038000

0x3038010

0x30380
0x30000

0x31000

Figure 4.2: Example of double mapping illustrating the use of alternate physical address spaces.

of the page, as before. The second issue is that, similar to PPC references, we must distinguish these

references soMAGIC can interpret them specially.

We provide the user with an uncached mapping to ensure visibility, and use the techniques

described in 4.1.1 to distinguish its references. We call this ashadow mapping, since we provide

the user with two mappings for every memory page, as illustrated in Figure 4.2. The OS provides a

shadow mapping by exporting a shadow region which has a translation only differing in its address

space (or flavor). References to the normal region are interpreted as ordinary memory operations

while references to the shadow region are interpreted as part of the PPC, providingMAGIC with

authentic physical addresses. Recall that in a PPC command reference, the processor writes an

argument value to a fixed command location. In contrast, to provide an address as part of a PPC, the

addresswhich is referenced indicates a pointer that is part of the PPC. Note that a single user-level

reference to the shadow region providesMAGIC with an authentic translation usable for a whole

physical page.

In the discussion of PPCs, we described how sequence number checking required us to restrict

PPC command space references to consecutive addresses. This allowed us to detect when refer-

ences arrive out of order or when a sequence is interrupted. Though address references using the

shadow mapping violate this restriction, the same sequence number guarantees can still be assured

by extending the rules to accommodate address references:

� PPCs are required to begin with a normal PPC command. This allows us to detect the case

where a sequence is interrupted and after the interrupt an address reference arrives first. Since

sequences beginning with an address are illegal, the reference can be discarded and the se-

quence noted to be invalid.

52 Chapter 4 Alternate Protocol Fundamentals

� PPCs are required to maintain the sequence of the command references it does use. This

allows us to check the sequence when it is not interrupted. It also allows us to use conventional

techniques for checking the command references. Address references are ignored for the

purpose of sequence number checking.

� PPCs are discarded on context switches, as before.

The drawback to shadow mappings is that they require duplicate entries in the page table and

TLB: one for the normal mapping, one for the shadow mapping. Lenoski [Len92] points out that

shadow mappings might not need page table duplication if the TLB miss handler is modified to

anticipate misses for both the normal and shadow versions of the address. The downside to that

approach is it prohibits finer-grain protection of the mappings, and it requires modifications to the

TLB miss handler, which might impact normal-mode performance.

Providing Translations Through a MAGIC Software TLB

There is a second option available for providing authentic translations: performing the transla-

tion in MAGIC. Providing translations onMAGIC via a software TLB has several advantages. The

TLB allows us to specify protocol operations without the need to communicate authentic physical

addresses toMAGIC during the protocol command sequence. For example, a message send that

transfers multiple pages of data can be specified as a single virtual address and length pair instead

of multiple physical page addresses. The ability to translate addresses efficiently also allows us

to sendMAGIC-level messages across the system using virtual addresses, which is useful in some

protocols.

In this section we describe two techniques for translating addresses onMAGIC, focusing on the

implementation we find the most attractive, a software TLB. This alternative has different charac-

teristics than using shadow mappings, some of which address the limitations of that technique. At

the end of this section we compare the advantages and disadvantages of the different techniques for

providing translations.

In the shadow mapping approach, addresses were referenced by the processor during a PPC,

emerging on the bus as physical addresses. Instead, the processor could merely pass thevirtual

address down as one of the arguments to the PPC. Since PPC arguments are data values, they

emerge from the processor directly, without being translated or authenticated in any way. Recall

that MAGIC does not provide support for hardware address translation, as a simplification of the

design. Instead,MAGIC must translate these addresses in software.

We could implement the software translations in two distinct ways. The simplest alternative is

to read the page tables directly. This approach is initially attractive because it allows access to map-

pings for the complete address space, without the size limitations imposed by a TLB-like approach.

Section 4.2 Virtual Memory 53

However, an implementation which reads the tables directly encounters two serious drawbacks. The

first is that synchronization between the kernel andMAGIC would be required for access to the ta-

bles. Though it is possible to achieve this synchronization, the code is quite complicated, and it

introduces OS code intoMAGIC, which we have strived to avoid.5 Since virtual memory code is

deeply rooted in the kernel, implementing correct synchronization and avoiding deadlock is a diffi-

cult undertaking. The second issue is that the PP’s access to operating system data structures would

require care to assure theMAGIC data cache and the processor cache are consistent. Our other pro-

tocols have been designed intentionally to preventMAGIC from caching application data, so this

would represent a significant additional source of errors.

The alternative to reading the page tables is implementing a cache of translations inMAGIC

we call asoftwareTLB. A software TLB mimics the same functionality provided by a hardware

structure. Because this TLB is kept consistent with the page tables, it would seem to introduce the

same issues as reading the page tables. In fact, the problem is greatly simplified. First, the TLB

only contains a small number of entries relative to the page table, so only those entries need to be

consistent. More importantly, since it is a copy of the entries, no synchronization is required to

access the TLB itself.

Careful design can achieve good performance using this approach: mappings are stored in a

concise hash table structure that makes translation efficient and permits full associativity (though

the TLB is searched serially, unlike a hardware approach). To gauge the software overhead, we

hand coded and scheduled a basic but fully functional software TLB using both virtual address and

process/address space matching for hit detection, as well as a write protect bit. Our implementation

incurs 8MAGIC cycles constant overhead plus 7 cycles for each entry searched. This provides

excellent performance if hashing is effective: a hit on the initial probe is thus only 15 cycles (150 ns),

while a scan of 16 entries would take 120 cycles (1.2�s).

Of course, when a handler consults the TLB it may find a translation is not present. When a

TLB miss occurs, the PP requests the translation from the processor with an OSPC. This OSPC can

be optimized specially to make it efficient, but since it interrupts the processor the cost is still large.

After the interrupt, the software overhead on the main processor depends on the kernel in use and

on the status of the page itself; the common case is likely to be at least several microseconds. After

performing the translation, the processor installs the mapping in the software TLB using a PPC.

Since software TLB misses are expensive, the straightforward demand-driven approach to filling

the TLB may be impractical. Instead we are motivated to avoid these misses altogether bypre-

loading the TLB (i.e., loading translations before they are needed).

5Though some dependencies on the operating system are inevitable, the vast majority of the code that implements
system “policies” executes on the main processor only. The OS-level interactions withMAGIC are restricted in nature,
and in most cases are required to know very little about the OS implementation and policy details.

54 Chapter 4 Alternate Protocol Fundamentals

Pre-loading the Software TLB

One approach is to have the kernel notifyMAGIC when it creates new page mappings, under the as-

sumption that these mappings may be used soon. This is unlikely to be effective, however, since the

locality between mapping creations and the use of these addresses is probably too low, especially

given a relatively smallMAGIC TLB. A more effective technique is tomirror the processor TLB in

MAGIC, so that any addresses currently usable by the processor would also hit in the software TLB.

This would require extending the processor TLB miss handlers to notifyMAGIC of the translation

it installs. While this is very easy to implement, and likely to be effective in largely eliminating

MAGIC software TLB misses, this technique would increase the cost of TLB misses on the proces-

sor. Unfortunately, since TLB miss handling costs can amount to a significant overhead in many

workloads, increasing this overhead is likely to decrease overall performance.

We could also pre-load the TLB through explicit hints from the application. In advance of using

a translation, the application could announce its intention to useMAGIC services and the translation

can be installed inMAGIC’s TLB. Paradoxically, since authentication is required, this must be done

in a protected fashion using one of the reliable techniques (reiterated below).

1. A “null” PPC could be issued in advance, that merely touches the addresses in question. If

the addresses are found to miss in the software TLB,MAGIC requests translations through an

OSPC.

2. A system call could also be used, asking the kernel to issue a kernel-level PPC to provide an

authentic mapping.

3. The shadow mapping technique could even be used to provide an authentic translation from

user level.

It may seem strange to suggest using these techniques in conjunction with a software TLB, since one

of the benefits of the TLB is toavoid these techniques! The motivation arises from the possibility

of reusingtranslations in the software TLB, and the observation that TLB misses inMAGIC must

interrupt the processor, which is much more expensive than installing the mapping in advance.

Naturally, the effectiveness of reusing translations depends on the reference stream of the program,

as well as the impact of effects such as multiprogramming on the contents of the software TLB.

Fortunately, the software TLB may be larger than a hardware TLB structure, increasing the chances

of reuse.

4.2.2 Guaranteeing Translations Remain Valid

OnceMAGIC receives authentic translations through one of the techniques described above, the re-

maining problem is to guarantee the validity of an address throughout its use by a protocol operation.

Section 4.2 Virtual Memory 55

The simplest solution is to lock the appropriate virtual pages to prevent the operating system from

changing the mapping. Many systems have used page locking to protect translations, such as the

Intel Paragon and Cray T3D [Int91, Cra93]. In some environments, locking pages may be a sensible

way to protect translations. InFLASH, given our goal of providing a flexible, widely usable system,

page locking is undesirable. There are two styles of page locking, each with its own disadvantages:

First, pages may be locked in memory for the duration of the program. This solution defeats

the flexibility of demand paging, reducing the ability to share the machine. Alternatively, the pages

may be locked for the duration of a protocol operation. This is common in systems where address

changes are disallowed for the duration of DMA access. This latter approach is also undesirable

because it requires system calls every time a user program invokes a protocol operation. This

overhead can cause the primitive to be prohibitively expensive, such as the DMA hardware in the

Cray T3D which required a system call. The follow-on T3E eliminated DMA support altogether,

partly due to this high overhead [Sco96].

We propose three alternatives to page locking for maintaining the validity of physical addresses

in use byMAGIC. The first two techniques assume thatMAGIC receives authentic physical addresses

as part of the user-level command sequence that describes a protocol operation. The third technique

removes this requirement by supporting a software TLB that allowsMAGIC to perform translations

itself.

All of these techniques rely upon the operating system’s mechanism for keeping TLBs consis-

tent, commonly known as TLB shootdown. Black et al. [BRG+89] describe this methodology to

prevent TLBs from accessing translations rendered obsolete by page mapping changes. In TLB

shootdown, a processor desiring to make mapping changes to pages visible to other processors must

first guarantee that obsolete copies of the mapping have been eliminated. Eliminating TLB entries

usually requires an interrupt to the involved processors since, unlike cache coherency, hardware

features for maintaining TLB consistency are usually not provided at the pins of the processor. The

initiator cannot make the mapping change until it knows that all the processors have removed the

old mapping.

When the processor receives a request to invalidate a TLB entry as part of a shootdown, one of

the things it must do is wait for all pending memory operations to complete. By doing so, it protects

these operations (which traverse the system with physical addresses) from any effect of the mapping

change. The techniques we describe here extend TLB shootdown to also contactMAGIC to notify it

of the change. The three approaches we describe below use that notification in different ways.

The Hold-Off Technique

Thehold-off techniqueextends TLB shootdown by treating alternate protocol operations as one of

the operations that must complete before the shootdown can be acknowledged. In essence, this

56 Chapter 4 Alternate Protocol Fundamentals

treats the operation as a memory reference. Preventing translation changes from occurring through

hold-off can potentially lead to deadlock for certain types of operations. For this reason, the hold-

off technique is only applicable to operations that are guaranteed to completeon their ownwithout

requiring any interaction with the main processors, which may require paging.

Even though the hold-off technique does not apply to all types of protocol operations, it is an

extremely simple and efficient mechanism for protecting translations in many protocols. Example

operations that can safely use hold-off include remote Fetch-and-Op or simple memory copy. How-

ever, operations such as a traditional synchronous message send can not use the hold-off technique

since they require interactions with other processes before completion.

Hold-off is implemented using a software counter maintained byMAGIC that represents the

number of outstanding protocol operations currently desiring to protect their translations. A protocol

operation enables hold-off by incrementing the count, then later when the operation completes it

releases its use of hold-off by decrementing it. To cooperate with hold-off, the operating system is

required to notifyMAGIC and to wait for a response before proceeding with a translation change. If

the hold-off count is zero,MAGIC responds immediately. However, if the count is non-zero,MAGIC

delays the response to the processor until the count reaches zero.

Once the processor tries to change a translation and is forced to wait because hold-off is active,

we prevent the initiation of further operations that require hold-off (Operations in the middle of their

command sequence protocol are conservatively forced to retry when they attempt to commit). Since

the processor is prevented from initiating new protocol operations after a translation change arrives,

the counter is guaranteed to return to zero as long as the previous operations eventually complete.

The Invalidation Technique

Unlike hold-off, which temporarily prevents translation changes from taking place, theinvalida-

tion techniquemerely uses the shootdown to notifyMAGIC of the translation change. In response,

MAGIC invalidatesphysical addresses rendered obsolete by the change. When the physical address

is next used byMAGIC, the software handler detects the invalid address and requests a mapping for

the page from the main processor. Below, we briefly describe the required support for this technique.

To support the invalidation technique,MAGIC must be provided with thevirtual addressas

well as the physical address. If the software TLB technique is used, the virtual address is readily

available. If a shadow mapping is used, we can utilize the otherwise unused data value passed to

MAGIC on a shadow mapping write. Specifically, the processor writes the virtual address as the

data value for the address reference. Ifa is a pointer to the memory in question, andSHADOW(a)

represents a pointer to the shadow mapping for a, the application would make its shadow mapping

reference as*(SHADOW(a)) = a . Though the data written is not authentic, incorrect virtual

Section 4.2 Virtual Memory 57

H
as

h
on

 P
hy

si
ca

l A
dd

re
ss

...
...

V

V

V

V

V

PA 1 1VA

PA VA2 2

PA 3 VA 3

PA VA4 4

PA 5 VA 5

1 4Hash(PA)) = Hash(PA

2) = Hash(PAHash(PA)5
Hash Table

Invalidation Technique

Protocol State Record

Protocol State Record

Protocol State Record

Figure 4.3: Example translation invalidation data structure.

addresses can at worst corrupt memory belonging to the requesting process and do not compromise

protection for other processes.6

MAGIC keeps track of the physical addresses currently in use, so that it can quickly respond to

shootdown requests. Physical addresses provided toMAGIC are stored in the protocol’s state record

and also linked into a hash table of in-use physical pages, as shown in Figure 4.3. Using this data

structure, the PP can efficiently invalidate uses of a physical translation on a translation change

notification from the local compute processor. The PP writes a zero into each instance of the now-

obsolete physical address, since zero can be detected by subsequent handlers with a single branch.

An entry in the hash table is removed when the corresponding operation completes (we use doubly

linked lists so this can be done efficiently).

By convention, handlers for operations that use the invalidation technique check the validity

of a physical address in each handler that uses the address. If an invalid physical page address

is detected,MAGIC generates an OSPC, just as in the software TLB. This interrupts the processor

and communicates the corresponding virtual page address and the process id.MAGIC resumes

the operation once the processor responds with the new translation, running other handlers in the

interim.

The invalidation technique is quite efficient in the common case, i.e., when translations do not

change. Overhead is incurred at the end of initiation when the provided page addresses are added

to the appropriate linked lists. Similar overhead occurs to remove the addresses from the list when

the operation completes. The hand coded PP instruction sequence to add a translation to a list only

takes 8–9 cycles to execute, assuming an elementary XOR hash function. The time required to

check the address on each use is minimal, adding only a single branch instruction to the handler.

A potentially larger component is checking for and invalidating obsolete physical addresses when

6If the virtual address is incorrect, then one of two things occurs: Either the subsequent retranslation request fails
because the application does not have the necessary rights to access the region of memory, or a new translation is returned
even though it does not match the same location that was originally specified. Neither case compromises the protection
of otherprocesses’ memory.

58 Chapter 4 Alternate Protocol Fundamentals

translations change. The exact latency of this operation depends on the effectiveness of the hash

table and length of the lists, which is related to the number of operations outstanding.

One of the limitations of the invalidation technique is that it can not protect remote physical

addresses. For example, consider a memory copy operation from a local to a remote buffer that is

implemented by sending destination physical addresses along with the data. Since the invalidation

technique allows translation changes to occur immediately, destination physical addresses that are in

transit could become stale. Note that this example would work correctly with the hold-off technique

since translation changes are delayed until the memory copy operation completes.

Software TLB

If we use a software TLB, it is essential that it be kept coherent with the processor page tables,

otherwise the translations it provides may be incorrect. Fortunately, the software TLB is able to

utilize the shootdown notification from the processor directly, removing the now-obsolete mapping

from its TLB if it is present. This assures the mappings in the software TLB are correct; to protect

translations already in use byMAGIC, handlers must check the TLB on each use of an address, to

be sure the translation is still valid.

We can reduce this latter source of overhead by using a software TLB in conjunction with the

invalidation technique. By using the invalidation technique normally, the PP is able to keep track

of outstanding physical addresses, and can invalidate them if the translation changes. This avoids

the need to retranslate in the software TLB on each handler, but instead the simpler test against

zero is sufficient. Alternatively, a variant of the invalidation technique can be used. Instead of

keeping track of where each use of a physical address is stored, protocols can keep a pointer to the

TLB entry where the translation was found and quickly check that the address is still present. This

variant reduces the cost of maintaining data structures for the invalidation technique and changing

translations, while increasing the cost to verify an address is valid on each use.

4.2.3 Comparing the Virtual Memory Techniques

In this section, we have described a family of techniques for both providing translations authenti-

cally and then protecting them while in use. We briefly review these techniques to illustrate some

of the trade offs between them.

Forproviding translations, the shadow mapping technique is advantageous for its low overhead

and efficient utilization of existing processor translation capability. We use the shadow mapping

technique for providing translations in the memory copy protocol described in Chapter 5. However,

this technique does have several disadvantages. The most obvious is that it requires extra address

mappings to be exported to the application. These may consume additional TLB entries on the

main processor that may increase the number of TLB misses, reducing performance. A software

Section 4.2 Virtual Memory 59

TLB addresses avoids this problem because now only one processor TLB entry is needed—the one

that maps the desired PPC area. Instead, virtual addresses are passed toMAGIC and translated there.

The drawback to the software TLB approach is that its performance is closely tied to translation

caching effectiveness. Furthermore, misses in theMAGIC software TLB are very expensive, since

they require processor interrupts, so pre-loading the TLB somehow may be required to achieve good

performance from this technique

For protectingtranslations, we described three techniques that trade off efficiency for function-

ality. While hold-off is by far the most efficient technique, deadlock can arise if hold-off is used in

some scenarios, so it must be avoided for those protocols. On the other hand, certain circumstances

require the use of hold-off to protect physical addresses in flight in the machine. The memory copy

protocol we describe in Chapter 5 must use hold-off for that reason. The invalidation and software

TLB techniques are somewhat more general and can avoid the deadlock cases of hold-off, but each

entails higher overheads. Fortunately, the flexibility ofMAGIC allows us to use the most appropriate

technique for each type of protocol operation, in addition to experimenting with some of the hybrid

approaches we described to improve performance.

In a recent paper, Schoinas and Hill study the issues for address translation in network inter-

faces using a range of approaches [SH98], many similar to the those presented here. Their paper

refers only to our software TLB technique but fails to refer to our other techniques for providing

and protecting translations [HGDG94, HBG+97]. They present simulation results comparing their

approaches, ultimately concluding that software-based techniques similar to ours are usually suffi-

cient, though the ability to perform translations (i.e. read page tables) in the NI is ideal if tractable.

4.3 Protection

The techniques described above allow a user process to specify protocol operations that are executed

by MAGIC on the process’ behalf. Our goal inFLASH is to provide protection for the services

provided byMAGIC, just as we would for any other system services provided to the user. We

consider briefly the kinds of protection that are needed, while noting that many of the protection

features are protocol-specific and are described in later chapters.

The most critical feature is assuring memory protection inMAGIC operations—the same level

of protection the MMU would provide if the processor carried out the operations itself. To a large

extent this is achieved as part of the translation process described in Section 4.2. The shadow map-

ping approach leverages the processor MMU directly, so protection is assured. Assuring protection

for translations generated by a software TLB is slightly more complicated. We must take care to

inform MAGIC of the process (i.e., protection domain) which invokes aMAGIC operation so that

software TLB misses can be satisfied in the address space of that process. As mentioned earlier,

60 Chapter 4 Alternate Protocol Fundamentals

the operating system notifiesMAGIC about the PID of the locally running process at context switch

points, so this information is readily available.

Other protection features are provided to address the low level semantics of the operations we

provide. For example, range checks must be made on arguments provided toMAGIC to prevent

applications from accessing state which is invalid or belongs to other applications. When interac-

tion with other processes is required (e.g., the interrupts which can be caused by the delivery of

active messages), the protocol should assure that a process only sends to receivers interested in

communicating with it.

In the subsequent sections, we consider the details of protection relevant to the particular proto-

cols we implement. In certain cases, such as providing memory copy-based block transfer, memory

protection is sufficient. In others, additional protection features are needed.

4.4 Coherence of Alternate Protocols (PP Ownership)

The purpose of most of the alternate protocols we describe is to manipulate system memory in some

useful way. MAGIC is particularly appropriate for many data manipulation tasks since it has an

efficient memory access path based on its central location in the node. However, accessing memory

is not sufficient,MAGIC may need to get the current data from a processor cache. Similarly, if it

modifies memory, it must also keep processor caches coherent if its alternate protocols are to be

widely usable.

Clearly, FLASH provides the ability to keep caches coherent through the flexibility ofMAGIC.

The challenge we face is to integrate coherent memory manipulation with our alternate protocols

while achieving good performance and correct behavior. Unfortunately, the full cache coherence

protocol is complicated and very large.

Furthermore, integrating cache coherence with alternate protocols is not as straightforward as it

might seem. Intuitively, one might imagine that many cache coherence handlers could be leveraged

for alternate protocols directly. In nearly every case, these handlers takealmostthe needed action,

but notexactlythe right one. We could make the handlers more general by installing checks to allow

them to perform one kind of coherence operation or another. Though this fosters direct code sharing,

it slows the handlers down in every case, including the case where cache coherence is used by itself.

We did not consider slowing down the common case for cache coherence to be an acceptable option.

Instead, we address two alternatives for maintaining coherence for alternate protocols,custom

coherence supportandPP ownership. The choice between these options depends on the amount

of data processing which an alternate protocol provides. We explore protocols in later chapters that

use each of these techniques.

Custom coherence support is, as the name implies, a specialized implementation of coherence

handlers for a particular alternate protocol. In a custom implementation, a set of handlers is required

Section 4.4 Coherence of Alternate Protocols (PP Ownership) 61

that contains all the functionality needed to extract data from processor caches, update and maintain

the directory structure, and maintain coherence as needed (such as by sending invalidations, etc.).

The nature of a custom protocol like this is that it is used for a particular alternate protocol only.

In Section 5 we describe in detail the custom coherence protocol we implement to provide memory

copy inFLASH.

In this section, we consider the other alternative, which we callPP ownership. In many pro-

tocols, the requirements for coherently manipulating user data may be very mild. In the case of

Fetch-And-Op, for example, a single data word is manipulated, but it must be done coherently.

These situations do not warrant the complexity and code overhead of a custom coherence protocol.

Our approach in these cases is to leverage theexistingcache coherence protocol to allow the PP,

like any other processor, to participate in the coherence protocol and take ownership of a line to

modify it coherently. Thus the advantage of PP ownership is that it can be used from any protocol

without duplicating the coherence support. The cost of this reduced code size is that PP ownership

is somewhat less efficient, so it is only useful in protocols with mild requirements, as described

above.

To allow the PP to take ownership of lines, we leverage extensions that the cache coherence

protocol provides for the PCI IO subsystem. We briefly describe this support, then explain how it

can be modified to allow the PP to take ownership of lines.

4.4.1 MAGIC IO Subsystem

As described in Section 2,MAGIC contains a PCI IO interface, which is one of the three hardware

interfaces that can make requests ofMAGIC. Unlike the processor, which maintains and controls

a large cache, the PCI IO bus has much milder requirements. To provide coherent IO operations,

MAGIC allows the IO system to take ownership of asingle lineat a time. Since the bus has no cache

in which to store the line, it is instead held in a data buffer which is “loaned” to the IO interface

while in use. This allows the IO system to modify pieces of the line coherently — necessary since

PCI only manipulates 32 bits of data at a time.

Since IO can take ownership of lines, the cache coherence protocol is required to provide several

functions which go beyond the basic coherence protocol:

Request a line for the IO systemUnlike normal coherence requests for data, which originate in a

processor, this special request indicates that the data should be sent to the IO system on the

requesting node.FLASH requires the data to be explicitly sent to the IO unit, so this message

type is required to distinguish processor and IO requests.

62 Chapter 4 Alternate Protocol Fundamentals

SWQ Address Handler (Data)

01 0 0 Active Entry Bitvector

0x1022ffff MCFlagUp

don’t care

don’t care

don’t care

Figure 4.4: Example PP ownership table, which stores the currently outstanding requests.

Request a line currently held in the IO systemSince the IO system may be the current owner of

a line, the coherence protocol must track the line’s presence in the IO system and may need

to request it back to satisfy a processor request

4.4.2 PP Ownership

PP ownership leverages the protocol extensions for IO to allow the PP to act as if it were part of

the IO system. Building upon these protocol features—which are already present—allows alternate

protocols running on the PP to manipulate data coherently with only minor modifications to a few

cases in the coherence protocol.

First we establish a data structure that holds outstanding PP ownership requests, illustrated in

Figure 4.4. When the PP wants to request ownership it selects an available entry and fills in the

memory address and the address of a handler to execute when ownership is acquired. The request

may also store optional data arguments to be passed to the handler when executed. We implement

several support routines which read this data structure and send the request. The advantage of a

central implementation of these routines is that all alternate protocols can share PP ownership’s

code directly and avoid any code duplication. For reliability, the PP ownership table contains a

software queue record to allow the handlers to retry requests if needed.

The support routines send a request to the home of the memory line, just as the IO system would.

Eventually the line arrives at the node, flagged to be delivered to the IO subsystem. Normally the

cache coherence protocol would blindly send this to the IO unit; we modify the reply handler to

first check the table of PP ownership requests. If it finds a match, it invokes the registered handler

instead, thus providing the PP with ownership and the most current copy of the data in a data buffer.

Once the PP is finished with the line, it calls a different routine to cleanly write this data back to the

home, just as it would from a processor or IO system writeback.

Section 4.4 Coherence of Alternate Protocols (PP Ownership) 63

Local Home Remote Home

IOPutX

IOGetX

D

H

IOPutX

Ack

IOGetX

IOGetXR H

D

(Dirty Remote) (Dirty Remote)

Figure 4.5: Example cases of PP Ownership building on top of the I/O support in the protocol. Solid
black dots indicate the only places where the protocol can tell the request is actually PP ownership
and not IO. Special actions are only required in those situations.

Figure 4.5 illustrates how this works, both for local and remote addresses (in the remote home

case, the node labeled “R” is the requester). This figure shows the case where the desired line is

dirty in a remote cache. The solid black dots indicate the only locations where special handling is

required to support PP ownership. By isolating the fact that the request is actually PP ownership,

the other handlers in the protocol can be used without modification.

Though we have modified the cache coherence protocol slightly to provide PP ownership, the

performance impact of the change should be negligible in the vast majority of cases. First, only the

IO extensions to the protocol are modified. Handlers for normal processor cache coherence are not

affected. In the IO handlers when PP ownership is not active, checking the table is very efficient

and the request can quickly be sent on to the IO unit. When PP ownership is in use, actual IO

operations incur mild overhead to check the table and therefore take longer. Fortunately, since the

IO system is generally used by low-performance devices such as disk and Ethernet, the performance

of these devices is unlikely to be affected by a delay of even hundreds ofMAGIC cycles (i.e., 1–2

microseconds).

The drawback to PP ownership, as we have alluded, is its overhead. This arises from the need to

guarantee acquisition of ownership despite temporary problems and corner cases that may arise. To

provide this assurance, we use the software queue and the other tables, all of which take time to set

up. Fortunately, in some cases, such as when the requested line is local and the directory indicates

the data is readily available, we can bypass some of these checks. In this “fast path” scenario, the

overhead of acquiring local PP ownership is 68MAGIC cycles (0.68�s) and releasing it is 48 cycles

(0.48�s). If the fast path does not apply and the fully robust version is required (e.g., for remote

memory lines) the overheads increase to 169 cycles (1.69�s) on the requesting node to acquire and

40 cycles (0.40�s) to release.7

7In the case of remote lines, the numbers listed are theoverheadsintroduced by PP ownership. Not included is the
time at the home to request the line, that varies depending on its caching state as usual.

64 Chapter 4 Alternate Protocol Fundamentals

PP Ownership Summary

PP ownership provides a mechanism for the occasional coherent access of data by the PP. Its goal

is to leverage existing handlers to the fullest extent possible, and to allow this support to be shared

by any alternate protocol. Despite its benefits, PP ownership is not well-suited for accessing large

amounts of data. In the next chapter, we describe how a custom coherence protocol can provide

significantly higher performance for a data-intensive memory copy protocol. In that protocol, even

though we provide custom coherence support, we still use PP ownership in a few situations, to

reduce the size of the protocol in corner cases where performance is less critical.

4.5 Summary

This chapter described a number of software mechanisms that are useful for the alternate protocols

we study. We consider these mechanisms separately since they are features that the various protocols

we study have in common.

Several of the mechanisms address the interaction between the processor andMAGIC. We de-

scribed several techniques by which the processor can make requests ofMAGIC, for example to

initiate alternate protocol operations. Similarly, we showed howMAGIC can in turn make requests

of the processor, e.g., to request a page be mapped. We also described extensions to this interface to

support virtual memory with protection, allowing it to be used in the context of a modern operating

system.

We also introduced the difficulty in achieving cache coherence for alternate protocols within

MAGIC. Custom coherence protocols are used in some cases for peak performance. In this chapter

we described a technique called PP ownership that is more appropriate for protocols needing only

occasional coherent updates.

Section 4.5 Summary 65

66 Chapter 4 Alternate Protocol Fundamentals

Chapter 5

FLASH Memory Copy

In this chapter we consider in detail the design, implementation, and performance of theFLASH

memory copy protocol introduced in Section 3.1.4. The goal of this protocol is to provide high per-

formance data movement supported byMAGIC and exported directly to the user through a memory

copy interface. Furthermore, our ultimate aim is to fully integrate this protocol with cache-coherent

shared memory. This allows shared memory programs to use the protocol transparently to acceler-

ate block data transfer, in addition to more traditional uses for implementing message passing. By

leveraging the processor/MAGIC communication features described in Section 4.1, we export this

facility to the user without system calls but while maintaining protection and the ability to interact

with virtual memory.

We begin in Section 5.1 by describing the application programming interface to this memory

copy facility. Section 5.2 details how a restricted version of this interface with only limited coher-

ence support can be implemented using the embedded programmability ofFLASH. In Section 5.3

we discuss the challenges and benefits of providing a fully general implementation of that interface,

then describe extensions to the basic implementation it requires. We study the performance of the

protocol in detail in Sections 5.4–5.5, characterizing its behavior using a variety of benchmarks and

applications. We conclude in Section 5.6 by discussing related work in this area.

5.1 FLASH Memory Copy Application Programming Interface

A fast block transfer primitive is important for both applications that exhibit large data movement

and the operating system itself. In addition, it can serve as a building block for message pass-

ing protocols such as the Message Passing Interface (MPI) standard. In fact, in response to our

67

previously published work and to that of others, recently at least one new lightweight messaging

protocol has to emerged which effectively utilizes the kind of high performance communication we

advocate [BSSD96].

Unlike traditional message passing machines in which message passing is the only communi-

cation model,FLASH also provides cache-coherent shared memory functionality to the user. By

integrating the block transfer protocol with cache-coherent shared memory, we enable applications

to seamlessly utilize block transfer in shared memory programs as well. Frank and Vernon advo-

cate a similar approach with slightly richer semantics that integrates the ability to perform explicit

transfers as an optimization within a shared memory environment [FV93].

Our application programming interface for block data transfer is an version of the well-known

C-library bcopy call:

void fbcopy (char* src, char* dest, int len, uint64* flag);

Fbcopy copies the memory specified by thesrc parameter (called thesource buffer) to the address

specified by thedest parameter (called thedestination buffer). len specifies the number of bytes

to copy. We extend the normal bcopy interface slightly by providing an additional parameter that

points to a user-visible completionflag incremented byMAGIC when the transfer has finished.

Since fbcopy proceeds asynchronously to the application, the flag allows the main processor to

perform other calculations in parallel, if desired, then later test the flag for completion.

Given our goal of providing a single facility to be useful in a wide range of situations, we

export block transfer to the user in this straightforward way rather than constrain the user to a

more rigid interface. This allows programs to build higher level abstractions on top of this facility

very easily, rather than conform to a very specific model which may have undesired characteristics.

This issue is analogous to the debate between CISC (Complex Instruction Set Computer) and RISC

(Reduced Instruction Set Computer) architectures. Some CISC architectures provided instructions

that improved performance but were difficult for the compiler to identify or so specific they were not

widely applicable. Our choice of a simple primitive takes a distinctly RISC-like position, providing

instead a fundamental operation which can be used to build up more complicated semantics.

5.1.1 Sources of Complexity

Though the programming interface for the block transfer primitive is straightforward, an efficient

implementation of this interface onMAGIC is nontrivial. WhileFLASH does provide the features we

need to implement block transfer, in practice we find that only through careful design of the data

transfer handlers can we achieve the levels of performance we desire.

Moreover, two issues arising from the integration of block transfer with shared memory serve

to increase the difficulty of this implementation. Figure 5.1 illustrates these sources of complexity.

68 Chapter 5 FLASH Memory Copy

Cache

Mem

CacheCache

Mem

Cache

Mem

Initiator
Source buffer

Mem

Destination buffer

R10000 R10000 R10000 R10000

Figure 5.1: Sources of complexity in memory copy. Buffers may be cached in any node on the
system, and physical pages of the block may be allocated out of remote memory.

First, the cache-coherent shared memory support provided byFLASH allows the source and destina-

tion buffers to be cached in any node of the system. For the source buffer this means that the current

value of the data might be in another node’s cache; when the transfer is carried out the protocol must

retrieve the data from that node. Similarly, nodes caching the destination buffer must be notified

when the block transfer modifies the buffer so they can invalidate their old copies.

The second issue is a related one at the page level. The source and the destination buffers may

span multiple virtual memory pages, resulting in non-contiguous physical pages. Furthermore, the

physical pages may be scattered across different nodes of the machine for many reasons: process

and page migration for load balancing, sharing of data among cooperating processes running on

different nodes, and operating systems which can allocate pages on remote nodes [CHRG95]. As

a result, it is quite possible for the node requesting the transfer, called theinitiator, to be distinct

from the home nodes of the source buffer pages. The added complexity for handling this case arises

because coherent operations on a line must consult its directory state (located at its home node). We

refer to this issue asremote home support.

Coherence Models

The first source of complexity described above—the choice of the coherence model for message

data—is a key issue in implementing data transfer on cache-coherent shared memory systems. Be-

low we discuss the various options and their corresponding tradeoffs. Kubiatowicz et al. present a

similar categorization in the context of message passing in Alewife [KA93].

The simplest option is to provideno coherencefor block transfer data. This corresponds to

reading the data directly from the source buffer and storing the data directly into the destination

memory without taking any coherence actions. This option is not acceptable in practice since it

precludes caching of either of these buffers. The second option, calledlocal coherence, provides

coherence if the message data is uncached or cached only at the home node. This closely matches

the functionality provided by most message passing architectures where each processor can only

Section 5.1 FLASH Memory Copy Application Programming Interface 69

cache the data that resides in its local memory. The third and most general option is to providefull

integration with coherence(often referred to asglobal coherence) which imposes no restrictions on

the caching of data. The additional functionality provided by fully integrating with coherence is

essential to make block transfer widely usable (e.g., memory copy used to achieve page migration

in a cache-coherent system). In cases when the lines are clean in local memory or are cached only

locally, full integration with coherence does essentially the same work as local coherence. Extra

coherence transactions are required only when message lines are cached remotely or have remote

homes.

We begin below by showing the implementation details for a simplified version of memory

copy that supports only local coherence. By using a slightly simplified model, we can focus on the

details of how transfers are fundamentally accomplished. In Section 5.3, we explain how this base

implementation can be extended to achieve full integration with coherence.

5.2 Locally Coherent Transfer Model

In this section, we describe a version of block transfer that provides only local coherence support.

This model is very similar to that provided in message passing machines where data cannot be

cached remotely and only local memory can be referenced by the processor. This restricted model

is used to show how we accomplish transfers inFLASH. The specific restrictions it entails are:

� The source buffer is only allowed to be cached by the source node, and the destination buffer

is only allowed to be cached at the destination node.

� The transfer can only be initiated by the processor on the home node of the source buffer.

5.2.1 Transfer Overview

The application initiates a block transfer by invoking the fbcopy library call (defined in Section 5.1),

which describes the transfer toMAGIC using the memory mapped interface described in Section 4.1.

An fbcopy call transferring one page requires four uncached writes toMAGIC. These writes contain

the length of the transfer and the physical addresses of the source buffer, destination buffer, and com-

pletion flag. Longer transfers may require more writes for the additional pages involved.1 MAGIC

maintains a pool of state records used to store the description of the transfer during initiation. The

same record is used to maintain the intermediate state that encapsulates the current status during the

transfer. Physical addresses stored withinMAGIC memory copy state records are protected during

the transfer by the hold-off technique described in Section 4.2.2.
1When using the double mapping technique described in Section 4.2.1, each page must be referenced as part of the

initiation, since they may not be physically contiguous. If translations are provided by a Software TLB, on the other hand,
the processor can specify a virtual address and a length, potentially reducing the number of commands in the initiation
sequence.

70 Chapter 5 FLASH Memory Copy

Line 1

Initiation

Library Call

Setup

Processor:

Notify

Update Flag

Line n

Processor continues

Source MAGIC:

Destination MAGIC:

Figure 5.2: Schematic transfer timeline, illustrating the processor and the source and destination
MAGIC chips. Medium gray bars are for transfer initiation and flag update, light gray bars are for
transfer setup and completion detection, and black bars are for the transfer and receive handlers.

Once a transfer is accepted byMAGIC, thetransfer handlerat the sending node sends the data

as a series of cache lines. For each line, the transfer handler (running on the protocol processor)

reads the appropriate data from memory into a data buffer inMAGIC, adds header information to

form a FLASH message, and sends it to the destination node. We label the line at the source node

with its destination address so that it can be written to memory quickly. When it arrives at the

destination, it runs a handler to process the message, called thereceive handler. In this case, the

receive handler stores the accompanying data into the destination memory as part of the transfer.

The overall transfer process is illustrated in Figure 5.2.

We use the software queue to carry out the block transfer through multiple invocations of the

transfer handler at the sending node. Each time the message transfer handler is invoked, it sends

one or more lines of the message data, updates the transfer state, and reschedules itself using the

software queue. Note that even though each line of data is sent separately, the handler has the option

of sending multiple lines during each invocation. This technique, referred to aschunking, has the

potential to improve performance by amortizing the overhead of starting the transfer handler and

saving and restoring the transfer state. We evaluate the effect of this optimization in Section 5.2.3.

Transferring data as a series of cache line sized messages instead of a single large message has

several advantages:

Deadlock avoidance.FLASH is able to avoid deadlock using a combination of software conven-

tions and Inbox hardware assistance. As described in Section 2.3.6, to avoid deadlockMAGIC

must stop sending further messages and yield the PP if outgoing queues fill. If block transfers

traveled as one large message, theFLASH conventions would be insufficient to avoid deadlock

and would have to be completely redesigned. Deadlock is a sufficiently critical and difficult

issue that leveraging the existing deadlock techniques is invaluable.

Section 5.2 Locally Coherent Transfer Model 71

Coherence of transfer data.The coherence protocol inFLASH maintains directory information at

cache line granularity. As we describe in Section 5.3, the complexity of maintaining coher-

ence of message data is reduced, and thus performance can be increased, when the transfer

size matches the coherence granularity.

Network and fairness advantages.The memory system andMAGIC are designed and optimized

for transferring cache lines and therefore cache line packets are handled efficiently. In ad-

dition, allowing the service of cache-coherent operations to be finely interleaved with large

transfers is beneficial for achieving efficient overlap of computation and communication. The

network may also perform better if large messages are broken into pieces instead of traveling

as a single huge chunk.

Of course, the disadvantage of sending lines individually is that each one incurs two sources of

overhead: network headers and protocol processing. First, the message headers each line carries in

the network decrease the useful bandwidth. If we sent a larger block, headers would account for

less of the bandwidth used. Second, when the lines arrives at the destination, each runs a handler

to process its contents, as opposed to a handler processing a larger block. Fortunately, the impact

of these overheads is mitigated somewhat inFLASH due to the large cache line size (128 bytes).

FLASH message headers add 16 bytes of overhead (11%); the handler overhead is studied later in

this chapter.

At any one time, the transfer concerns itself only with the data on the current source page. That

is, the source address never crosses a page boundary during an invocation of the transfer handler.

Instead, we wait for the data on the page to be received at the destination and acknowledged before

we advance the transfer to consider the next page. Breaking up multi-page transfers into single-

page ones reduces the complexity and overhead of transfer bookkeeping and state maintenance.

In Sections 5.2.2 and 5.3.2 we describe some of the sources of complexity that make this a good

engineering tradeoff. While breaking up multi-page transfers reduces complexity, it still allows a

substantial number of lines to be in flight (32 lines/4 KB page). Allowing many lines to be outstand-

ing is important for hiding message latency, especially when maintaining coherence [WGH+97].

Detecting Completion

An important problem to solve in the block transfer protocol is determining when all the data has

been committed to the destination memory. Only at that point can the destination buffer be made

available to its consumer; similarly only then are modifications to the source buffer guaranteed not

to affect the transfer. This problem is made even more difficult because we transfer data as a series

of cache lines instead of a single large block. For example, some lines of the transfer may fail or be

refused due to races or resource limitations. This requires the destination node to maintain a count

72 Chapter 5 FLASH Memory Copy

of remaining message data so that an acknowledgment can be sent to the source when the final line

arrives.

To facilitate this, the source node announces a transfer to the destination node before it begins.

This message is often referred to as anenvelope, since it contains the “wrapping” information re-

garding the transfer. The envelope contains two pieces of information: the source’s message ID,

which uniquely identifies the transfer at the source node, and the message length. When the desti-

nation receives the envelope, it allocates a corresponding receive record for the transfer.2 Since we

count lines, in addition to its destination address each line must indicate which transfer it belongs

to. One approach uses the source message ID to indicate the transfer to which it belongs. This ID is

used to search a hash table to find the corresponding receive record. The remaining message count

in that record is decremented, and if zero then the transfer is complete. The destination notifies the

source with a transfer acknowledgment, labeled with the source message ID.

Though initial versions of the protocol followed the hash table approach, we quickly realized

that the hash table lookup was a significant source of overhead. A superior approach is to reply to

the envelope with an acknowledgment that provides thedestination’smessage ID, which uniquely

identifies thereceive recordthat was allocated. The source can then label each line with the desti-

nation message ID, which indicates the receive record number directly.

When the transfer is complete and the source receives an acknowledgement from the desti-

nation, it updates the application’s completion flag using the PP ownership technique described

in Section 4.4. Figure 5.2 illustrates when the flag update occurs. We employ PP ownership to

avoid implementing custom coherence support merely for the flag update. The coherence support

in fbcopy in Sections 5.2.2 and 5.2.2 is designed for the handling of bulk data and is not suited for

use in updating the completion flag.

5.2.2 Base Implementation

The performance-critical core of the protocol is the matching pair of handlers which send and re-

ceive the data lines of the message. We refer to these as thetransfer handlerand thereceive handler.

We begin by examining these handlers to illustrate the tasks they must perform to realize a block

transfer onFLASH. In Section 5.2.3, we show how this base implementation can be improved sig-

nificantly using a number of software optimizations. The ability to tune the protocol and perform

extensive software optimizations to improve performance is one of the key advantages of theFLASH

architecture.
2The envelope is merely refused if a receive record is not available, which provides flow control by limiting the

number of simultaneous transfers destined for any one node. If we only relied on source-side flow control, nothing would
prevent the destination from receiving many transfers simultaneously and becoming a hot spot.

Section 5.2 Locally Coherent Transfer Model 73

Transfer Handler

The transfer handler is responsible for sending the actual data lines of the block. This entails several

key functions:

� Locating the most up-to-date copy of the data. (This is important in the fully coherent model

we discuss later.)

� Re-mapping the source address to its corresponding destination address. Unlike normal cache

coherence operations in which a line never changes address as it moves around the system, in

a memory copy the source data must be stored at thedestination address. This re-mapping

is straightforward in simple cases, but page crossings in the middle of the message and lines

requiring retry complicate this task.

� Maintaining the state of the transfer as it proceeds.

� Logging lines which experience problems during the send, or which the destination node is

unable to handle when they arrive. These lines must be retried so the transfer can complete.

Figure 5.3 presents the pseudo code for the base implementation of the transfer handler provid-

ing local coherence. We briefly discuss the details of this handler to highlight some important issues

and illustrate the concepts clearly before delving into optimized versions in later sections.

The transfer handler is scheduled onto the software queue since it needs to execute repeatedly.

As part of its scheduling task, the Inbox periodically selects the handler at the head of the software

queue instead of one of the hardware queues. When the handler starts up, it ascertains the current

position within the transfer by reading the memory copy state record. It immediately consults the

directory state for that address, and determines the appropriate action to take.

Recall that in the local coherence model we only allow lines to be cached in the local node (if

at all). We distinguish between the data being in the memory or the cache becauseFLASH requires

the protocol to explicitly request a dirty line from the local processor. This is in contrast to snoopy

bus-based designs where the same request checks both the memory and the processors’ caches.

Figure 5.4 shows the pseudo code for this implementation. We describe the various coherence cases

below:

The line is busy (pending).The coherence protocol may mark a line as busy if coherence opera-

tions on the line are in progress. This prevents conflicting operations on a line from occurring

simultaneously. In this implementation, if we find the line is busy we yield and try again later.

The line is clean in memory. In this case the data is read from memory, the message headers are

prepared, and the message injected into the network. Note that sinceMAGIC is only reading

the memory, outstanding shared copies require no special handling.

74 Chapter 5 FLASH Memory Copy

void MemCpyFullAlignedTransfer()
{

Allocate data buffer;
if (no buffers available) {

Reschedule;
}

Read transfer state and address pointers;
Read directory state for source line;
if (Line busy) {

Reschedule;
}

if (Line Dirty) {
Form request for cache intervention;
Request line from cache;
Wait for cache controller reply;
if (Request Failed) {

Reschedule;
}
Write line to memory;
Update directory;
Form header for destination;
Send message;

} else { // Clean
Read line from memory;
Form header for destination;
Send message;

}

Update remaining count;
if (Transfer done) {

if (Lines experienced problems) {
Switch to cleanup mode;
Reschedule;

} else {
Unschedule;

}
} else {

Reschedule;
}

Update source and destination pointers;
Check for destination page crossing;

}

Figure 5.3: Pseudo code for the base implementation of the locally coherent transfer handler.

The line is dirty in the processor cache.In this case we are required to explicitly fetch the line

from the processor’s cache. We request a shared copy of the line, allowing the processor to

keep a shared copy for itself, rather than eliminate it altogether.3 We must examine the result

of the request for a very important reason: the processor may be writing the line back when

the request is made. Since theFLASH processor interface does not consult the queue from

the processor to satisfyMAGIC’s request, the request may fail to find the line in the cache

(indicating the writeback race). If this occurs, we are forced to yield the PP to allow the

3As discussed in Section 2.3.3, the R10000 does not provide a way to access the dirty line but still leave it in the dirty
state, thus our request for the data steals exclusive ownership of the line at the very least.

Section 5.2 Locally Coherent Transfer Model 75

CPU

Cache

Comm.
ControlMemory

CPU

Cache

Comm.
ControlMemory

Scalable Interconnect

CPU

Cache

Comm.
ControlMemory

Read

Get

Write

Inval

Figure 5.4: Coherence handling in the locally coherent transfer model. At the source, the line must
be explicitly requested from the cache if needed. At the destination, outstanding copies must be
eliminated

writeback to occur—no other action can allowMAGIC to access the most current copy of the

data.

If the access indicates the dirty copy was found, the PP can proceed, preparing the message

for the network. The data follows from the processor several cycles later; the data buffer logic

correctly synchronizes the merging of the data with the message. The PP first writes the data

to memory, then updates the directory state to indicate the line is clean in memory (with the

local processor as a sharer).

After handling the coherence actions, if needed, the PP forms the destination headers, labels

the line with its destination address, and issues it into the network. The remaining work in the

handler updates the state of the transfer in preparation for the next line, tracking the amount of data

remaining. If the transfer is complete, a check is made to see if any lines need to be retried (the retry

mechanism is described below), and if so a cleanup handler is selected to run next. If no lines need

to be retried, the handler removes itself from the software queue. In the normal case, the transfer

merely reschedules to send subsequent lines.

Finally, the source and destination pointers are updated. Our transfer implementation requests

acknowledgments from the destination node for each page, thus a source page crossing never occurs

in this handler. Source page crossings are handled instead by support routines that run when the

acknowledgment arrives from the destination. Since the destination address is unrelated to the

source address, however, the destination address may cross the page boundary at a different point,

so we must check explicitly for that condition. If the destination address crosses the page boundary,

we look up the subsequent page address (supplied during initiation) since it need not be physically

contiguous with the previous page.

76 Chapter 5 FLASH Memory Copy

Receive Handler

When a line arrives at its destination, our goal is to store it to memory and update the count of

remaining messages as quickly as possible. Since this is an ownership-based protocol, it is normally

forbidden for a processor to write a line unless it has acquired exclusive access. Fortunately, in most

cases we can atomically (that is, within the same handler) reclaim ownership of the line, write the

data to memory, and update the directory state to indicate the memory copy is current. We explain

below how some cases prevent this operation from succeeding when the message arrives.

We previously described how we pass the destination’s message ID as part of each data message.

This allows the destination to find the transfer state quickly. In parallel, we also look up the directory

state for the destination line. Just as in the transfer handler, we may find the line in several different

states. Unlike the source side, since the destination node iswriting the memory, outstanding shared

copies must also be eliminated to maintain coherence. The coherence cases at the destination are

handled like this:

The line is busy (pending).Since the directory is busy, the arriving line can not be accepted. We

are forced to send a negative acknowledgment to the home.

The line is clean in memory. We write the data and leave the directory state unchanged.

The line is cached locally.We write the data, send an invalidation to the local processor, and reset

the directory state.

The line is dirty in the processor cache.Normally, a cache-coherent machine only allows the ex-

clusive owner of a line to modify it. Since our protocol writes the contents of the entire

destination buffer line at its home, we can modify the protocol to improve performance by

writing the linewithoutacquiring ownership in advance. We then send a special flavor of in-

validation we call adirty invalidation to the remote node, telling its cache to discard its dirty

copy of the line without writing it back.

Unfortunately, just as in the transfer handler, the processor might be in the midst of writing

the line back and so our cache intervention may fail. If this occurs because our invalidation

failed, it squashes the block transfer data that has been written to memory. To detect this race,

the invalidation message checks the response from the cache. If the line is being written back,

a negative acknowledgment message is sent back to the destination node, triggering a retry of

the line from the source.

If the coherence processing for the line was successful, we update the count of lines remaining

in this transfer. If we find that the transfer has finished, we acknowledge the source, indicating

that the portion of the transfer announced by the envelope is safely committed to the destination

memory.

Section 5.2 Locally Coherent Transfer Model 77

Retrying Failed Lines

During the transfer, the transfer and receive handlers may encounter lines which experience prob-

lems in their delivery. For example, we described how the receive handler is forced to send a

negative acknowledgment to the home in some cases. In Section 5.3 we show that full integration

with coherence adds still more cases where lines may fail at the source, destination, or elsewhere in

the system because some participant is temporarily unable to cooperate.

To address the range of failure cases, we maintain state in the transfer record to indicate if lines

experienced problems in delivery. This is implemented as a bit vector in which one bit represents

the state of each line. When a line receives a negative acknowledgment from the destination node,

we calculate its offset within the transfer page and set the corresponding bit. For page sizes up to

8 KB and 128 byte cache lines, the 64 bit PP allows us to pack this vector into a single doubleword

(larger page sizes would dictate a more complicated implementation).

As shown in Figure 5.3, once the transfer completes its first attempt at sending the current

page, it consults the bit vector to see if any lines have received a NAK. If so, it enterscleanup

mode. The cleanup handler locates set bits in the retry word (indicating failed lines) and regenerates

those requests. When it resends a line, it clears the related bit in the retry word so that subsequent

executions retry other failed lines. Retry messages are identical to the original request, and are

handled exactly the same way; they themselves may fail for similar reasons.

Improving Retry Performance

Generating a retry of failed line is very similar to the initial attempt at the line. However, since

random lines of the page may have failed, the performance of the handler in sending these lines is

lower than the initially sequential transfer. In part, this performance penalty comes from the need

to perform two address mapping functions as part of retry. The first mapping function concerns the

handling of negative acknowledgments. When negative acknowledgments arrive at the source, they

carry with them the destination address they were given. This address must bereverse mappedto

generate the source address to which it corresponds. Second, when the retry is later being generated,

we need to regenerate the destination address orforward mapthe source address to its corresponding

destination address.

The main difference between the initial transfer and retries is that we do not have a current

pointer into the destination buffer from which to address the retry message. Instead, we must ex-

plicitly calculate the destination address based on the offset into the send message. Complicating

this calculation is the possibility of page crossings in the destination buffer. Figure 5.5 illustrates

this complication, showing the source and destination buffers of the transfer (shaded), and the page

boundaries (heavy lines) for each buffer. Since the buffer addresses are user-supplied, there is noth-

ing to prevent them from having different page offsets, as shown. In general, they are not physically

78 Chapter 5 FLASH Memory Copy

Source Dest

Figure 5.5: Page boundary crossings. Crossings may occur at different locations in the source and
destination buffers. Page boundaries (heavy lines) are shifted to indicate the offset at which they
occur in the transfer.

contiguous, so the physical address changes at page boundaries. Dashed lines show how mid-way

through a source page a destination buffer page crossing requires the transfer handler to change to a

new destination page.

To reduce the cost of handling destination page crossings, we pre-compute several useful con-

stants in the initialization of the transfer. These constants, which digest the addresses of the source

and destination pages and the page crossing locations, allow us to perform these re-mapping func-

tions more quickly.

5.2.3 Optimized Implementation

The base transfer implementation described provides the core block transfer functionality we desire,

but does not achieve the efficiency the underlying hardware provides. There are several software

techniques we can apply to this basic implementation to significantly improve its performance. The

first of these techniques targets the long latency to access lines in the processor cache. The second

technique amortizes the cost of the transfer over several lines, reducing the effective overhead.

Hiding Cache Access Latency

One drawback to the base implementation is the cost of handling lines that are dirty in the local

cache. Note that in the pseudo code shown in Figure 5.3, the request to the processor cache is im-

mediately followed by spinning on the cache reply. The processor’s delay in providing this response

is at least 15MAGIC cycles. During this delay, the base implementation does no useful work.

The first optimization seeks to hide some of the latency of performing these cache accesses by

doing other processing before spinning for the result. We can update the directory, advance the

transfer state, and prepare the headers of the message, all under the assumption that the cache later

responds to indicate success. This work isspeculative, however, because in the unlikely event of

Section 5.2 Locally Coherent Transfer Model 79

T
im

e

Chunked implementationConventional implementation

Figure 5.6: Potential benefit from chunking. The benefit derives in part from sharing start-up over-
heads between several lines. Light shaded blocks represent handler start-up overhead, dark shaded
blocks represent time taken processing actual transfer lines, arrows indicate messages leaving the
node for the destination.

a simultaneous writeback (described earlier), the cache access fails. In that case, the handler must

“roll back” its state modifications to undo the work done under this incorrect assumption.

Amortizing Transfer Overhead

Earlier we mentioned a technique calledchunkingwhich allows the transfer handler to send mul-

tiple lines in a single invocation. Chunking allows us to amortize the software overheads incurred

each time the handler starts up. This optimization is not applicable to the destination side because

there the transfer is still observed as a series of individual lines. Figure 5.6 illustrates how amorti-

zation may improve performance. Even though the overhead of the chunked implementation may

be higher, as shown, sharing the overhead is ultimately beneficial.

To implement chunking, we use software pipelining to send multiple lines within a loop. Pseudo

code for the chunked handler appears in Figure 5.7. Software pipelining provides several important

benefits in this handler. First, we build on the cache access optimization described above: chunking

allows the PP to perform speculative processing on the current line as well as the initial processing

for thenextline while waiting for the cache response. An additional benefit is that some key transfer

state can be kept in registers throughout the multiple lines. We set the maximum number of lines to

send in one burst, called thechunk size, though the handler may need to send fewer lines if outgoing

network queues fill.

Our implementation of the chunked transfer handler uses a carefully designed variable called the

chunking word. This word contains a packed bit field array that holds key information for each of

the lines in the chunk: itsMAGIC buffer number and an indication of whether the line was requested

from the cache. This allows us to advance the state for the software pipeline merely by shifting

the chunking word. Note that the bottom of the main loop checks the result for a cache access in

the previous iteration; this check can be done merely by consulting different bit field offsets in the

80 Chapter 5 FLASH Memory Copy

void MemCpyChunkedFullAlignedTransfer()
{

Calculate maximum allowed chunk size;
Preallocate buffers up to chunk size;
Determine actual chunk size based on buffer availability;
Read transfer state and address pointers;

Initialize chunking word;

while (Lines remain in chunk) {
if (Line busy) {

Set retry bit;
} else if (Line Dirty) {

Form request for cache intervention;
Request line from cache;
Mark line in chunking word as requested;
Speculatively update directory;

} else { /* Clean */
Read line from memory;
Form header for destination;
Send message;

}

if (Previous iteration marked requested in chunking word) {
Wait for cache controller reply;
if (Request Succeeded) {

Write line to memory;
Send line to destination;

} else {
Roll back directory state;
Mark retry bit;

}
}

Shift chunking word;
Advance transfer state;
Check for destination page crossing;
Decrement chunk lines remaining;

}

Handle final dirty check (identical to above)
Write back transfer state

Update remaining count;
if (Transfer done) {

if (Lines experienced problems) {
Switch to cleanup mode;
Reschedule;

} else {
Unschedule;

}
} else {

Reschedule;
}

}

Figure 5.7: Pseudo code for the optimized implementation of the locally coherent transfer handler

Section 5.2 Locally Coherent Transfer Model 81

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

B
an

d
w

id
th

 (
M

B
/s

)

125|

150|

175|

200|

250|

300|

400|

500|

1000|

 T
im

e
p

er
 L

in
e

(c
yc

le
s) Transfer Time

 65

 83

 56

 46
 41 39 37

 99
106

 74

 64
 60 57 55

Norm C1 C2 C3 C4 C5 C6

Uncached/Clean
Norm C1 C2 C3 C4 C5 C6

Dirty

Figure 5.8: Transfer handler performance for different chunking and caching parameters. The
x-axis labels indicate the maximum chunk size in cache lines and source buffer caching state (Un-
cached/Clean or Dirty). The y-axis and bar labels show the duration inMAGIC cycles. “Norm”
shows the performance of a non-chunked version.

chunking word. By preallocating the data buffers for the handler, the software pipeline never runs

out of buffers mid-handler, but instead knowsa priori how many buffers are available and can plan

the pipelining accordingly.

Unlike the handler which sends only one line, the chunked handler doesnotabort its work when

it encounters a busy line or a failed cache access. Since the other lines are independent they may still

succeed, so the handler instead forges onward to process the other lines, marking the failed lines for

retry by the cleanup handler. An advantage of this approach is that it allows more time before the

line is retried, which gives the transient case more time to resolve itself. If we retried right away, the

line might fail again for the same reason. The downside to this greedy approach is that processing

skipped lines later is slightly slower and cannot benefit from chunking. For example, using chunking

(at a chunk size of 4 lines), it takes 43 cycles for each uncached line and 62 cycles for each line that

is dirty in the processor cache. The retry handler, which processes lines individually takes 64 and

96 cycles to handle these same cases.

Figure 5.8 shows the performance of the transfer handler as a function of the chunk size. We

show two different source buffer caching states: uncached or dirty local. This plot also shows the

performance of the unchunked handler (“Norm”). As we might expect, chunking adds overhead

to the handler, so the unchunked version is faster than the 1-line chunked version. As the chunk

size increases, however, we see clear benefits from amortizing the overhead. These benefits show

diminishing returns around 4–5 lines. Amortizing overhead does have its cost: cache misses during

the transfer experience longer latency because the chunked transfer handler runs longer without

interruption than does the unchunked version. Figure 5.9 shows the total duration of the handler,

82 Chapter 5 FLASH Memory Copy

|0

|25

|50

|75

|100

|125

|150

|175

|200

|225

|250

|275

|300

|325

 H
an

d
le

r
d

u
ra

ti
o

n
 (

cy
cl

es
)

Transfer Handler

 65
 83

112

140

167

194

223

 99 106

147

192

239

284

331

Norm C1 C2 C3 C4 C5 C6

Uncached/Clean
Norm C1 C2 C3 C4 C5 C6

Dirty

Figure 5.9: Total transfer handler duration for different chunking and caching parameters. The bars
are labeled as in Figure 5.8.

which quantifies the potential for increase in cache miss latency. In practice, the best approach is to

balance these two effects. We use a chunk size of four in our experiments since this provides gains

from amortization while maintaining some degree of fair access to the PP.

5.2.4 Unaligned Transfers

In the simplest case, the data involved in a memory copy has the same offset within cache lines at

its source and destination. Such a transfer can be carried out by moving entire aligned cache lines

of data.4 However, if the destination address has a different cache line offset than the source, each

data word must change its positionwithin the cache line(by a distance related to the difference in

the offsets). One solution is to perform this function in PP software by loading a cache line then

realigning its data words individually. In the PP, this realignment is prohibitively expensive, adding

a minimum of 3 cycles per doubleword (48 cycles/line) to the transfer time.

To improve performance in this case, we introduced a hardware mechanism inFLASH (described

in Section 2.3.4) that allows us to adjust alignment more efficiently. Figure 5.10 shows an example

block transfer illustrating how the mechanism we provide can adjust the alignment of words within

a line. In the example, the transfer begins and ends in the middle of cache line boundaries (panels

1 and 2). The same figure shows (panels 3 and 4) how the alignment would be changed during the

transfer for a cache line aligned destination buffer.

One of the insights we provide by this research is showing that block transfer support can be

efficient in FLASH using line-at-a-time transfers, and that we can effectively leverage the existing

4The only exceptions are the beginning and end of the block, which may be partial lines. We handle these boundary
conditions in the fbcopy library in the processor, since they are not performance-critical.

Section 5.2 Locally Coherent Transfer Model 83

Unused

A2
B1 B2
C1 C2
D1
E1

D2

2. Divided into cache/
memory lines change alignment

3. Double buffer loads

A2
B2
C2
D2

B1
C1
D1
E1

4. Resulting block of data with
modified alignment

 Line

A
dd

re
ss

es
1. Block of memory not aligned

to cache−line boundaries

Figure 5.10: Support for arbitrary block transfer alignment.

support for data movement. The ability to change alignment of data, which extends high perfor-

mance to nearly all cases, is the only hardware feature we added toMAGIC for memory copy.

For full generality, each interface would have to support double buffer operations to the data

buffers, and would allow any alignment down to byte granularity. In practice, we expect the vast

majority of block transfers to require realignment only down to the 32-bit word size, since this

corresponds to the smallest integer data type used in most applications and the smallest floating

point data type available on the R10000. To reduce the hardware impact inMAGIC of providing this

feature, we provide double buffer support only from the memory interface.

Given this latter restriction supporting coherence for unaligned transfers requires that we first

collect any lines of the transfer data which are dirty and write them back to memory. We perform

this collect phase using a bit mask nearly identical in function to the one used for retry. In fact, we

use the same bit mask, but interpret it in a slightly different way. We initially markall the lines of

the message as needing collection, then we iterate once over the body to gather lines which are dirty

in the cache, clearing the bit for each line that succeeds.

Once the entire block is valid in memory, we switch to a special version of the transfer handler

designed especially for unaligned transfers. Since we have already collected the lines, this handler

is guaranteed that the copy in memory is up-to-date and canignore the directory state altogether,

focusing instead on moving data efficiently. As a result, the transfer phase is actually faster than

in the normal case. As described in Section 2.3.4, the alignment hardware requires two memory

loads to fill a data buffer. If we generate only one realigned line, part of each load is wasted (i.e.,

2 memory loads are needed). However, if we generate multiple unaligned lines back to back, the

overflow from the second load forms the initial load for the third (and so on). Thus we only incur

one wasted load for the block (i.e.,n+ 1 memory loads are needed forn generated lines). For this

reason, unaligned loads can show even more gains from the chunking optimization described earlier.

Figure 5.11 shows the performance of unaligned transfers as a function of chunk size. Note that the

performance of the transfer phase is independent of caching state because the lines are always read

from memory, while the collect phase increases in cost when lines are dirty. To keep code size down

the collect phase does not take advantage of the ability to software pipeline—its overhead could be

reduced somewhat by expanding the code.

84 Chapter 5 FLASH Memory Copy

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

|130

|140

100|

125|

150|

175|

200|

250|

300|

400|

500|

1000|

 T
im

e
p

er
 L

in
e

(c
yc

le
s)

 B
an

d
w

id
th

 (
M

B
/s

)

Transfer Time

 94

 64
 55

 51 49 47

138

108
 99

 95 93 91

C1 C2 C3 C4 C5 C6

Uncached/Clean
C1 C2 C3 C4 C5 C6

Dirty

Collect Time

Figure 5.11: Unaligned transfer performance as a function of chunk size and caching state.

5.3 Fully Coherent Transfer Model

While a number of previous systems have provided support for block transfer protocols [KA93,

BLA+94, RLW94, ACD+95, FAB+96], none addressed full integration with cache coherence.

These systems advocate the local coherence model described in the previous section which con-

strains the caching of source and destination buffers to their respective local nodes. However, this

model breaks down in a shared memory system running a modern operating system such as IRIX

in which processes may migrate to improve load balancing. In such an environment, assumptions

about the local coherence and local allocation of pages no longer hold; only a block transfer proto-

col without such restrictions is widely usable. More recently, several systems have begun to provide

coherent block transfer, especially for use by the operating system [NAB+95, LL97, WGH+97].

In this section, we describe the extensions to the protocol to provide full integration with cache

coherence. This entails both of the issues described in Section 5.1.1: supporting coherence of

message data despite remote caching, and supporting pages with remote homes.

5.3.1 Cache Coherence for Block Transfer Data

Providing efficient and transparent cache coherence is a key aspect of making primitives such as

block transfer easy to use in a shared memory environment. Since the source and destination data

may be cached anywhere in the system, the block transfer protocol must incorporate a subset of the

cache coherence protocol to efficiently obtain the latest data and maintain coherence of the source

and destination buffers. Figure 5.12 illustrates the caching scenarios we might encounter, using a

representation originally used by Lenoski [Len92]. We focus on portions of this figure to illustrate

the coherence solution. The description assumes that the data transfer occurs directly from the

Section 5.3 Fully Coherent Transfer Model 85

Dest

D
DD D S

Src

S

Figure 5.12: Example coherence scenario. This scenario illustrates the remote cases a fully inte-
grated protocol must support. The two large circles represent the source and destination nodes of
the transfer. Other circles represent lines of the transfer cached remotely, either in shared state (S),
or dirty (D).

home node of the source buffer to the home node of the destination buffer; Section 5.3.2 describes

the general case.

Coherence for Source Buffer Data

There are three cases to consider for coherence of the source buffer: the data is clean, the data is

dirty in the local processor’s cache, or the data is dirty at a remote node. If the source node has

a valid copy of the data, it can be retrieved from the cache or memory as described previously.

However, when the data is dirty at a remote node, the task of retrieving the valid data requires

remote communication. The simplest solution is to pause the transfer, retrieve the line from the

remote node, send it to the destination, and then proceed with the transfer. Though straightforward,

this approach fails to exploit any parallelism in retrieving the data for multiple lines.

A more efficient solution is to accomplish the transfer in two distinct phases, one that collects

the dirty data of the source buffer from remote nodes and one that sends the data to the destina-

tion [KA93]. This technique, calledcollect and send, allows the collect phase to retrieve multiple

lines simultaneously (similar to the way we implemented unaligned transfers in the previous sec-

tion). For a machine such asFLASH that performs transfers a cache line at a time, it is also possible

to pipeline the collect and send phases instead of keeping the phases distinct. In this approach, when

the handler detects that a line is dirty on a remote node it requests the line and proceeds with the

transfer. The response eventually arrives back at the source node and triggers a handler that sends

the line to the destination and writes the data back to memory. We refer to this aspipelined collect

and send.

Still another alternative is to send the data directly from the dirty remote node to the des-

tination node (similar in philosophy to the optimization inDASH for the three-hop dirty remote

86 Chapter 5 FLASH Memory Copy

Pipelined Collect and Send

D D

Src

To
Dest

Forwarding

D D

Src

1
2

1

4a

4b3b

3a

2

To
Dest

3

4

5

6

Figure 5.13: Source side coherence alternatives. In both cases the source node sends fbcopy mes-
sages to fetch dirty cache lines from the remote holders

case [LLG+90]). We refer to this as theforwardingapproach. The request from the source node to

the dirty remote node carries a single word of data that specifies the destination address. The dirty

node forwards the data to the destination node and sends a writeback to the source node. Figure 5.13

illustrates these two alternatives.

Compared to pipelined collect and send, forwarding reduces protocol overhead since the source

node can perform an ordinary writeback without remapping the message for sending to the destina-

tion node. On the other hand, there may be higher occupancy at the network interface of the dirty

node since forwarding leads to two outgoing messages (the writeback to the source node plus the

forwarded message to the destination node), compared to just one message for the collect and send

case. The total traffic is the same, but since forwarding sends both messages from the same network

port the messages are serialized. Thus the choice between the two approaches depends on the rela-

tive speeds of the network and the protocol processor. As we show in Section 5.4.3, the forwarding

approach is superior for network bandwidths of 400 MB/s per link or greater, assuming a 100 MHz

PP.

Coherence for Destination Buffer Data

The destination node must in turn coherently modify the data in the destination buffer, which re-

quires invalidating all stale copies of the data. The handler that receives the line writes it into the

destination buffer in memory and then eliminates any copies in processor caches. Figure 5.14 shows

the actions of the protocol. If there are any clean copies of the line, the handler sends an invalidation

request to each copy.

Like the locally coherent model, we accept lines which arrive at the destination even if they are

cached dirty. In the fully coherent model, this support is extended to handle lines cachedremotely

Section 5.3 Fully Coherent Transfer Model 87

S
MCInval

Dest

MCDInval

MCInvalAck

D
S

MCDInvalAck

Figure 5.14: Destination side coherence. The destination sends invalidations to nodes that have a
destination line cached dirty (D) or shared (S).

as well. In this case we send the dirty invalidation to the remote node, telling its cache to discard

its dirty copy of the line without writing it back. Similar to the locally coherent model, there is a

possible race between the arrival of the invalidation message and a writeback of the line from the

remote cache. If a writeback occurs before the invalidation arrives, the writeback overwrites the

block transfer data that has been written to memory. To detect this race, the invalidation message

checks the response from the remote cache. If the line has already been written back, a negative

acknowledgment message is sent back to the destination node, triggering a retry of the line from the

source.

5.3.2 Support for Remote Homes

So far we have assumed that the transfer is carried out by the initiator node. However, as described

in Section 5.1.1, the initiator node may be distinct from the home nodes of the source buffer pages.

Since the cache coherence protocol must consult the directory state to determine the appropriate

coherence action, the initiator must communicate with the home for each line of the transfer. The

naı̈ve approach of requesting each line individually leads to increased traffic in the network and

prevents the home node from leveraging the chunking optimization to increase performance. In

addition, this implementation is substantially more complicated, since it introduces many more

special cases and race conditions.

A better approach is to delegate the transfer to the home node and have it carry out the transfer

on the initiator’s behalf. After delegating the transfer to the home node, the protocol behaves exactly

as if the block transfer were initiated there. The only difference is that a completion signal is sent

from the home node back to the initiator node when the transfer is complete. Despite an overhead

of approximately 2.5�s to delegate the transfer, this approach leads to better overall performance

88 Chapter 5 FLASH Memory Copy

Init Dest

D
DD D S

Src

S

Figure 5.15: Complete fbcopy protocol including remote home support. Transfers initiated at a
node other than the home of the source buffer are delegated to that node, as shown. The actions
inside the dashed box are present even when remote initiation is not required.

for transfers longer than a few lines. Figure 5.15 illustrates a remote home scenario, showing how

it can build on the existing implementation.

5.3.3 Implementation Issues

During the implementation of the protocol, we made some design decisions and observations that

are important to mention. We briefly describe these issues below:

Copies within a node. Our goal in providing block transfer is to accelerate copies between two

nodes, so we do not provide support for copies in which both buffers reside on the same node.

Since local memory access is highly optimized, our experience suggests that the processor is

more appropriate for theseintranodecopies. During transfer initiation, the protocol processor

checks the pages involved in the transfer to see if they are located on the same node. If so,

initiation returns a result code indicating that the processor should perform the copy; the

library then calls the normal bcopy routine. By encapsulating this functionality in the fbcopy

library call, the user can simply invoke fbcopy without regard for page placement.

Remote home parallelism.Though relatively unlikely, it is possible that the source pages of a

transfer are not only remote, but scattered among several nodes. Given the nature of remote

home transfers, there is nothing to prevent us from initiating multiple remote home transfers

simultaneously, to increase the overall parallelism of the transfer. We have chosen not to

implement this feature for two reasons. First, this would significantly increase the complexity

of managing remote home transfers. Temporary resource shortages can cause any of the

remote home initiations to fail; by having only one remote initiation at a time, we reduce the

number of failure scenarios. Second, since it is fairly likely that the destination pages are

Section 5.3 Fully Coherent Transfer Model 89

collocated, having multiple simultaneous remote home transfers may cause an undesirable

hot spot at the destination.

Protocol code size.The total amount of handler code added for the fbcopy protocol is about 19 KB.

In contrast, the base cache coherence protocol inFLASH is about 44 KB. Although the block

transfer protocol code is only about 40% of the cache coherence protocol in size, it is much

larger than we had initially expected. As described in Section 4.4, cache coherence and block

transfer have similar, but slightly different needs. We could have added special cases in the

coherence protocol to promote code sharing, but since this would slow down cache coherence

it was deemed unacceptable.

5.4 Low-level Performance Analysis

In this section we consider the performance of the fbcopy protocol at a low level. We begin by

describing the simulation environment used in our experiments. We then provide a detailed analysis

of the block transfer protocol to illustrate the various factors that determine the overall performance

of this protocol onFLASH.

5.4.1 Simulation Environment

The simulation environment used in this study provides a complete model of theFLASH system, al-

lowing us to accurately study its performance running a variety of workloads. We use the FlashLite

memory system simulator, described in Section 2.4.2, which models the performance ofMAGIC

in detail. Simulation of the main processors and I/O system is provided by the SimOS environ-

ment [RHWG95].

The actual R10000 processor runs at 200 MHz, issuing up to four instructions per cycle. Un-

fortunately, we do not have a simulation model of the R10000 processor. Instead, we estimate its

performance by using a single-cycle processor model running at 400 MHz. Assuming the R10000 is

able to sustain only a fraction of its peak issue rate, this should at least approximate its performance.

We assume a two-level processor cache hierarchy. The first level consists of split 32 KB instruction

and data caches, both 2-way set associative with 64 byte lines. The second level is a unified 1 MB

cache, 2-way set associative with 128 byte lines. The time to satisfy a first level cache miss (second

level cache hit) is 50 processor cycles.

We simulate theMAGIC chip running at its target frequency of 100 MHz (for consistency in our

discussion, “cycles”alwaysrefers to 10 nsMAGIC cycles). The memory system providesMAGIC

with the first 64-bit word of a cache line in 14 cycles, followed by an additional word on each

successive cycle (i.e., total of 15 extra cycles). Memory can be accessed with a new address during

the transfer stage. Accessing data in the processor’s cache fromMAGIC takes longer than accessing

90 Chapter 5 FLASH Memory Copy

main memory because of the required processor intervention. In this case, the cache responds with

the state of the line after 15 cycles and with the first data word 5 cycles later, followed by 15 cycles

of transfer time for the remaining data words. Unlike memory, accessing the next line of data from

the processor cache is delayed until the previous transfer phase completes. As a comparison point

versus cache coherence, the latency for cache-coherent reads inFLASH is approximately 27 cycles

for local misses and 111–191 cycles for remote misses (larger latency corresponds to the data being

dirty at a third node).

For this chapter, we model a network with a bandwidth of 400 MB/s, of which 320 MB/s

is usable (the rest is consumed by header overhead).5 Here we also assume an average network

latency of 22 cycles, which is appropriate for a smallFLASH system requiring an average of three

hops.

In the actualFLASH system, the PP instruction cache is only 16 KB. As noted in Section 5.3.3,

the complete block transfer protocol is approximately 19 KB, and cache coherence adds another

44 KB. If we simulated with the actual instruction cache size, the results would be dominated by

cache effects. Instead, we perform this and our other studies with a very large instruction cache to

allow us to isolate the fundamental issues in the protocol, and not hide them behind an implementa-

tion constraint of the initialFLASH system.

The fbcopy protocol and the base cache coherence protocol are specified in C and compiled to

PP instructions as described in Section 2.4. The results presented in this dissertation are based on

a cycle-accurate emulation of the actual protocol code. Even though the automatically generated

code is fairly efficient, higher performance can be achieved by hand tuning the compiled code—we

address this issue in Section 5.5.1.

5.4.2 Transfer Overhead

We divide the time to perform a data transfer into two parts:(i) a fixed overhead portion, and

(ii) a variable transfer time proportional to the size of the message. In this section we focus on

the overhead portion; the performance of the transfer portion is considered in detail in the next

section. Recall that Figure 5.2 provides a high-level illustration of the transfer. Figures 5.16 and 5.17

(explained in the next section) illustrate the transfer overhead more concretely including the data

presented below.

The total protocol overhead in fbcopy is about 677MAGIC cycles or 6.8�s. This represents

all the fixed costs occurring during the transfer that cannot be attributed the transfer part itself.

Table 5.1 explains the breakdown of this overhead by task. Note that the main processor is not

required to wait during the entire verification and startup phases listed in Table 5.1. After the PPC

5The final version of theFLASH system has switched to use the CrayLink interconnect, so the actual network band-
width in FLASH will be higher.

Section 5.4 Low-level Performance Analysis 91

Table 5.1: Breakdown of fbcopy overhead components, expressed
as 10 nsMAGIC cycles.

Phase Overhead component Cycles

Initiation/ Initiation command processing 131
Verification Transfer set-up and command verification 233
Startup Envelope exchange with destination 102

Initial network latency 18
Completion Receiver cleanup at completion 16

Final network latency 18
Cleanup and completion flag update 159

Total overhead 677

has been verified, (approximately the first three microseconds), the processor can begin working in

parallel.

The high overhead in this protocol arises for several reasons. First, the fbcopy protocol accepts

several parameters from the application andMAGIC must first verify them to protect the system.

Second, the set-up phase both initializes the transfer state and performs some calculations once

so that later the transfer handler can execute more quickly. Finally, updating the completion flag

coherently with PP ownership accounts for approximately 1�s of the final handler, as described in

Section 4.4.

This amount of protocol overhead is not fundamental toMAGIC itself, but rather it depends

primarily on the protocol characteristics. This implementation especially targets large message

sizes, for smaller messages a more lightweight approach would be used. We show in Chapter 6

that MAGIC is able to support synchronization protocols at very low overhead through both careful

design and by providing a more lightweight interface than is possible in memory copy.

Furthermore, the complete overheads in traditional message passing machines may be higher

due to the cost of initiating a message reliably and with protection. One lightweight protocol imple-

mented on top of the Intel Paragon incurs over 18�s latency for a short message when all necessary

protection checks are used [BSSD96]. The Cray T3D requires approximately 6�s of processor in-

volvement merely to set up a transfer, despite having a dedicated block transfer engine. Our protocol

mitigates some of these set-up costs through the processor-MAGIC interface techniques described in

Chapter 4.

92 Chapter 5 FLASH Memory Copy

Init/Retry/Flag Transfer Nak Coherence

Src

Dest

233 183 184 184 184 184 184 185 196 159

0 5 10 15 20 25

Figure 5.16: Time line of a two-node block transfer. Source and destination buffers are uncached.
The axis shows time in microseconds. Each block is a single handler running onMAGIC (long-
running handlers also show their execution time in 10 nsMAGIC cycles.)

5.4.3 Transfer Bottlenecks

The performance of the block transfer protocol is determined by one of three possible bottlenecks:

source side processing, destination side processing, or network bandwidth. To illustrate these fac-

tors, Figures 5.16 and 5.17 show timelines of the handler occupancies for block transfers in two

different caching scenarios. The results are from the simulation of a 4 KB transfer initiated at the

source node, using the forwarding protocol and a maximum chunk size of 4 lines. We have divided

the handlers into four categories:(i) those that handle initiation, retry, and completion flag update

(labeled Init/Retry/Flag);(ii) those that send and receive the data messages (Transfer);(iii) those

that handle coherence for remotely cached copies (Coherence); and(iv) those that process corner

case negative acknowledgments (Nak). We use thin vertical lines to indicate the end of each handler

and show the duration in cycles for handlers that last for more than 100 cycles.

Figure 5.16 shows a transfer in which both source and destination buffers are uncached. The

initiation phase consists of four uncached writes followed by an uncached read. The time line

shows the initiation phase on the source node followed by the communication of the “envelope” to

the destination, lasting about 3.5�s. Once the destination node replies, the source node repeatedly

invokes the chunked transfer handler, each time sending 4 lines (thus 8 invocations are needed to

send the entire 4 KB). The destination receives each line individually, acknowledging the source

when the transfer is complete. The total time for the transaction is about 22.5�s, with the actual

transfer occupying about 16�s. This corresponds to peak transfer bandwidth of about 276 MB/s

and an average bandwidth (including initiation and completion overheads) of 182 MB/s. Note the

gaps between invocations of the destination handler due to the faster processing of lines at the

destination.

The time line in Figure 5.17 shows a transfer using the forwarding protocol described in Sec-

tion 5.3.1 in which the source buffer is cached dirty at a remote node and the destination buffer is

uncached. For each line, the transfer handler sends a request to the dirty node to forward the line

directly to the destination. The dirty node also sends a writeback to the source node (visible as the

Section 5.4 Low-level Performance Analysis 93

Src

Dirty

Dest

Init/Retry/Flag Transfer Nak Coherence

233 223 224 224 224 224 225 225 236 159

0 5 10 15 20 25 30 35

Figure 5.17: Time line of a block transfer with the source buffer dirty on a remote node. In this
case, queue limitations cause negative acknowledgements, forcing three lines to be retried.

short handlers on the source). The network is the bottleneck in this case: the dirty node’s protocol

processor sends messages faster (two messages every 62 cycles) than the network can absorb them

(one message every 40 cycles). This causes the outgoing network queue to fill three times during

the transfer. Each time, the handler detects the full outgoing queue and sends a NAK to the source

(visible on the dirty node in Figure 5.17 as the three short handlers between 23–25�s). MAGIC

retries these requests successfully (between 26–30�s on the dirty node). The increased coherence

handling in this transfer reduces the peak transfer bandwidth to 146 MB/s (or 118 MB/s including

the overhead). We previously described our approach to provide flow control for the receiver. This

example indicates that future research may wish to consider some degree of sender flow control as

well.

As discussed in Section 5.3.1, the decision to use forwarding instead of pipelined collect-and-

send (PC&S) depends on the relative cost of protocol processing and network bandwidth. Fig-

ure 5.18 shows the simulation results for these two alternatives inFLASH, varying only the network

bandwidth and source caching state. For a slow network, the network overhead of the extra messages

in the forwarding approach is greater than the protocol processing overhead incurred by PC&S. At

higher bandwidth, these extra messages become less expensive and forwarding becomes more ef-

ficient. In this simulation, the crossover point is between 200 and 400 MB/s. Since we model a

400 MB/s network, we use the forwarding approach. Of course, in cases where severe contention

decreases effective network bandwidth, the PC&S approach may be more appropriate.

So far we have discussed two specific caching scenarios for source and destination side buffers.

Figure 5.19 shows the performance for other possible situations. This figure indicates whether the

performance limit in each case is network throughput, source side handlers, or destination side han-

dlers. As an example, 46 cycles for the uncached/clean case on the source side corresponds to one

fourth of the chunked handler occupancy of 184 cycles (shown in Figure 5.16). For a given caching

state, the peak transfer rate is limited by the slowest of these three components. For the destination

94 Chapter 5 FLASH Memory Copy

� PC&S/Dirty Remote
� PC&S/Dirty Local
� PC&S/Uncached
� Fwd/Dirty Remote
� Fwd/Dirty Local
� Fwd/Uncached

0 100 200 300 400 500 600 700 800

|25

|30

|35

|40

|45

|50

|55

|60

|65

|70

|75

|80

|85

|90

|95

|100

|105

 Network Bandwidth

 T
o

ta
l T

ra
n

sf
er

 T
im

e
(m

ic
ro

se
co

n
d

s)

�

�

�
�

�

�

� �

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

Figure 5.18: Comparison of forward-
ing (Fwd) vs. pipelined collect-and-
send (PC&S) for different source buffer
caching states.

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

|130

|140

|150

|160

|170

|180
75|

100|

125|

150|

175|

200|

250|

300|

400|

500|

 T
im

e
p

er
 li

n
e

(c
yc

le
s)

 B
an

d
w

id
th

 (
M

B
/s

)

Coherence

 40
 46

 61

 80

 30
 43

 64
 72 73

139

176

 46 51

 95

110

Network
U/C D DR

Source
U C D DR S1 S2 S3

Destination

Transfer

Figure 5.19: Bottlenecks in fbcopy from the network,
source protocol processing, and destination protocol
processing. The bottleneck incurred is given by the
slowest of the three components, as appropriate for the
caching state of the buffer: uncached (U), cached (C),
dirty (D), dirty remote (DR), clean with 1–3 sharers
(S1–S3).

side, the coherence portion of the bar shows the time to handle invalidation acknowledgments from

remote copies. One interesting effect is the sudden jump in destination node transfer handler cost

for two or more remote sharers (between the S1 and S2 bars in Figure 5.19). This is an artifact

of our cache coherence directory format, which stores the first sharer in the main entry but places

subsequent sharers on a linked list. The remote sharer cases are also impacted by the increasing

coherence overhead of 22 cycles per invalidation acknowledgment.

5.5 Benchmarks and Performance Comparison

In this section we extend the results in the previous section by studying the fbcopy protocol in the

context of microbenchmarks and applications. In these simulations we compare fbcopy with proces-

sor copy—we consider both regular bcopy and bcopy augmented with prefetch instructions [MG91].

Prefetched bcopy can be very effective inFLASH due to its low latency network and highly op-

timized memory system, including a processor with an aggressive prefetching implementation.

FLASH also contains long (128 byte) cache lines, which can achieve many of the benefits of block

transfer [WSH94].

In the first section, we study the block transfer implementations without operating system ef-

fects. In subsequent sections we show experiments using the IRIX Version 5.3 operating system

from Silicon Graphics, Inc., which we modified to use fbcopy.

Section 5.5 Benchmarks and Performance Comparison 95

Table 5.2: Transfer latencies to send 4 KB using bcopy, prefetched bcopy, and fbcopy, expressed
in microseconds. The network traffic for the different cases is also listed. Buffer caching states are:
uncached (U), shared local/remote (L/R), dirty local/remote (DL/DR).

Source Destination Caching State
Caching Normal PP Faster PP Network

State U/L R U/L R Traffic
U 65.8 67.6 62.2 62.5 8 KB

Bcopy DL 47.7 52.0 45.0 45.4 8 KB
DR 105.0 106.8 98.1 98.3 12 KB
U 28.8 30.0 26.5 27.3 8 KB

Pref Bcopy DL 20.5 24.0 19.5 21.0 8 KB
DR 37.3 38.6 35.2 36.1 12 KB
U 23.3 33.4 19.0 21.1 4 KB

Fbcopy DL 28.7 33.7 19.2 21.3 4 KB
DR 36.7 37.7 33.7 34.6 8 KB

5.5.1 Microbenchmark Analysis

We first compare the performance of fbcopy against the other transfer primitives by simulating the

transfer of a 4 KB page between two nodes. As described in the previous section (and as shown

in Figure 5.19) the performance of coherent block transfer depends on the caching state of the

involved lines; we focus on several cases which tend to be more common in applications using

block transfer. For simplicity, we assume all the lines of a particular buffer are in the same caching

state. The transfer is executed at the home of the source buffer.

There is an additional caching effect which impacts processor copy since it must bring the

buffers into the cache. If this causes spills—which is likely—writebacks or replacement hints are

generated, which may increase the latency of the block transfer operation. To model this effect, we

first warm the caches with an equal mix of clean and dirty lines then cache the transfer buffers as

appropriate for the experiment. Since fbcopy does not bring the buffers into the processor cache, it

is immune to this effect.

Normal Protocol Processing

Table 5.2 shows the time required by the source node to perform the transfer in the scenarios de-

scribed above. Fbcopy significantly outperforms standard bcopy, executing the transfers more than

twice as fast in most cases. Bcopy incurs expensive cache misses to copy the data, which poorly uti-

lize the processor during the transfer. Prefetched bcopy largely avoids the miss penalties of bcopy by

acquiring the lines in advance of their use and by fetching multiple lines in parallel. This technique

is quite effective in improving transfer performance, so much so that in half the cases prefetched

96 Chapter 5 FLASH Memory Copy

bcopy finishes the transfer faster than fbcopy. Notably, prefetched bcopy is faster when the source

buffer is dirty in the cache, since fbcopy incurs higher overhead to request the data from the cache.

However, processor copy techniques (including prefetched bcopy) tie up the processor for the

entire duration of the transfer, rendering it unable to perform other work. By delegating the block

transfer toMAGIC, fbcopy frees the processor to continue working while the transfer proceeds. The

effectiveness of the processor working in parallel will vary based on its use of already-cached data.

Miss-limited applications may or may not show gains as a result of increased miss latencies due to

the PP being occupied by the transfer.

Fbcopy also uses the network more efficiently. Processor copy fetches the entire destination

buffer even though it is immediately overwritten. In contrast, since fbcopy does not acquire owner-

ship of the destination buffer at the source, these lines never cross the network. Instead, fbcopy only

incurs network traffic for the data actually being transferred. The rightmost column of Table 5.2

shows the total traffic caused by the different implementations for a 4 KB transfer.

Consumption of Transfer Data

Though transfer time is important, the performance of block transfer is not based solely on that

factor. It may also include the time needed to “consume” the transfer data at the destination node.

To quantify this effect, we simulated reading the values in the buffer at the destination node after

the transfer.

Since the source node performs the transfer, in processor copy the destination buffer ends up

in the source node’s cache. When the buffer is consumed, the destination node experiences dirty

remote cache misses. Reading the buffer in this case takes 70�s. Because fbcopy deposits the data

in the memory of the destination node, only local misses are taken. As a result, the consumption

phase after fbcopy lasts only 20�s. Furthermore, in processor copy the data involved in the transfer

may replace unrelated lines still in use by the source node processor. This effect is particularly

significant in the primary cache, which can be completely filled by a mild-sized block transfer. The

impact of this cache pollution is application dependent, based on the amount of subsequent reuse of

the replaced lines. As an indication of the potential cost, it takes approximately 32�s to refill the

8 KB of data displaced during a 4 KB processor copy (longer if the memory is remote).

Faster Protocol Processing

We also considered the effect of faster protocol processing to determine if the performance of fbcopy

is fundamental to the architecture. We altered our simulator to execute protocol code twice as fast,

allowing us to quantify the potential for increased performance due to protocol code optimizations

or a more aggressive protocol processor implementation.

Section 5.5 Benchmarks and Performance Comparison 97

The results are shown in Table 5.2. They show mild gains in most cases for processor copy,

but more significant gains for fbcopy. This can be explained by looking at the performance limits

imposed by the different resources in the system. With faster protocol processing, cache misses are

serviced more rapidly, which improves the performance of processor copy. However, in the base

coherence protocol inFLASH, the PP is only a few cycles slower than the memory system in the

common miss handlers so these gains are small [HGDG94, KOH+94]. Fbcopy, in contrast, gener-

ally performs more protocol processing per line. As a result, there is more potential for gains from

faster processing. While processor copy sees only 6–13% benefit from faster protocol processing,

fbcopy gains between 8–36% in these benchmarks.

5.5.2 Message Passing Interface (MPI)

To study the performance of block transfer operations in a more realistic context, we examine mes-

sage passing primitives from the Message Passing Interface (MPI) standard [Mes93]. We use ver-

sion 1.0.11 of MPICH from Argonne National Laboratory [GLS]. MPICH supports several different

underlying physical transport mechanisms, including one designed for shared memory multiproces-

sors such as the SGI Challenge. This code runs without modifications in the SimOS simulation

environment.

In the shared memory implementation of MPICH, bcopy is used to perform the data transfer

of large messages (2 KB or greater). MPICH uses IRIX’s support for allocating a shared memory

region between processes, while the rest of the application address spaces are private, consistent

with the distributed memory model of MPI. To send a message, the sender first copies the message

data from its private memory into the shared buffer. The receiver then copies the data from the buffer

into its private memory. We augmented the base MPI implementation to perform this operation with

fbcopy or prefetched bcopy instead of standard bcopy.

We implemented a basic two-node application using standard MPI send and receive primitives

in which data is communicated in a producer-consumer relationship. Figure 5.20 shows that for both

normal and faster protocol processing, fbcopy outperforms both normal and prefetched processor

copy over a range of message sizes. The gains from fbcopy increase with message size, due largely

to the amortization of fbcopy start-up overhead.

The flexibility of the protocol processor inMAGIC enables an additional option not possible in

processor copy. Since the MPI send and receive routines execute at user level, maintaining private

address spaces requires two copies using the shared buffer as described above. We could avoid this

limitation by implementing buffer management functionality inMAGIC, allowing the receiver to

“post” its buffer to the sender in a protected fashion. With the aid of this support, the sender could

use fbcopy to transfer its message directly from the sender’s memory to the receiver’s memory,

98 Chapter 5 FLASH Memory Copy

|0

|100

|200

|300

|400

|500

 E
n

d
-t

o
-E

n
d

 T
im

e
(m

ic
ro

se
co

n
d

s)

Faster Protocol Processing

127
 92 86

211

143
122

375

242

198

735

659

436

341

B P F
4 KB

B P F
8 KB

B P F
16 KB

B P F
32 KB

Normal Protocol Processing

Figure 5.20: MPI transfer performance for a range of message sizes for the transfer techniques we
study: Bcopy (B), Prefetched Bcopy (P), and Fbcopy (F).

avoiding the temporary buffer entirely. This technique has the potential to perform better than all

two-copy implementations.

5.5.3 GNU tar Application

Since our protocol is fully integrated with cache coherence we can use it to accelerate block transfer

in shared memory applications as well. In fact, one of the biggest users of block transfer may be

the operating system itself. There are several kernel tasks that are primarily concerned with the

movement of block data, such as uiomove which is used to move I/O data between user and kernel

space. In this section, we focus on accelerating uiomove through the use of fbcopy or prefetched

bcopy. Modifying the IRIX kernel was straightforward since fbcopy and prefetched bcopy are

essentially drop-in replacements for bcopy. We study the impact of this acceleration on the GNU

tar application performing a conventional directory copy:

cd $OLD; tar cBf - . | (cd $NEW; tar xBf -)

We simulate three nodes, two executing the tar commands and the third modeling the buffer

cache in memory (we assume the buffer cache contains the files involved in the transfer). The first

tar process reads data from the buffer cache through a read system call, which uses uiomove to copy

the buffer cache data into the tar process’s user address space. The tar process sends the data into the

pipe buffer (in 10 KB chunks) using a write system call. The kernel again uses uiomove, this time

to bring the data from user space into kernel space. Similar actions occur on behalf of the second

tar process.

Section 5.5 Benchmarks and Performance Comparison 99

Table 5.3: Simulation results for GNU tar using different memory copy implementations.

Normal PP Faster PP
B P F B P F

Overall benchmark:
Execution Time 215 ms 180 ms 188 ms 202 ms 167 ms 160 ms
Speedup (vs. bcopy) 1.00 1.19 1.14 1.00 1.21 1.26

Block Transfer in use:
% of execution time 30% 22% 27% 29% 20% 21%
CPU Occupancy for BT 65 ms 39 ms 13 ms 59 ms 34 ms 12 ms

We show the results from the tar application in Table 5.3. Both prefetched bcopy and fbcopy

show speedups over the standard bcopy implementation. Though fbcopy is slightly slower than

prefetching with normal protocol processing, with faster protocol processing it gains over prefetch-

ing. Furthermore, fbcopy has some advantages over processor copy in overall system resource uti-

lization. As shown in the table, the processor copy versions require more than three times as much

CPU occupancy to perform the same amount of block transfer. In the fbcopy version, this time

could be utilized for parallel computation, further increasing the performance of fbcopy relative to

processor copy techniques.

5.6 Related Work

As described in this chapter and Chapter 4, the goal of our message passing implementation in

FLASH is to provide high performance block transfer at user level. In addition, sinceFLASH uses

a modern operating system, we require the protocol to provide protection and coexist with virtual

memory and multiprogramming. Though numerous systems have been proposed for supporting

message passing protocols efficiently, most of them do not address the issue of integrating message

passing with shared memory and cache coherence. Still others do not provide block transfer at user

level, or fail to fully support the features needed to make them usable in the context of a modern

operating system. Below we provide a comparison of our design with some of these systems.

Many systems and research proposals advocate provisions for direct user-level access to mes-

sage protocols. The messaging interface is typically eithermemory mappedor register based.

The Connection Machine CM-5 provides access to the network through a memory mapped inter-

face [Thi91]. Register based approaches provide tighter coupling by moving the network interface

into the processor and providing direct access to the interface through special registers [DFK+92,

HJ92, NWD93]. One of the problems with the above systems is that they are typically optimized

for short messages, thus limiting the achievable bandwidth for large transfers. Another drawback

100 Chapter 5 FLASH Memory Copy

is that the compute processor handles the complete transfer, thus taking cycles away from the main

computation.

Several systems, such as the Intel Paragon [Int91] and *T [Bec92, NPA92], have proposed

delegating message protocol handling to a second processor on the node to alleviate overheads and

allow for overlap of computation and communication. Paragon uses a conventional processor that is

not well integrated with the network. *T provides tighter network integration, but requires the use

of custom processors as compute engines. Neither design has the ability to support cache-coherent

shared memory.

The approach in the Meiko CS-2 [HM93b] is more similar toFLASH since protocol processing is

delegated to a programmable network controller. However, they are not capable of supporting cache

coherence protocols and they provide aseparateDMA unit. In FLASH, the controller is optimized

for efficient protocol handling and provides support for data movement such as block copy. In

addition, the cost and complexity of the controller is amortized by handling both cache coherence

and block transfer in a single flexible unit.

The SHRIMP system [BLA+94, BDFL96, FAB+96] from Princeton advocates the use of sim-

ple network controllers for supporting message passing style communication.SHRIMP does not

provide hardware support for maintaining cache coherence. TheSHRIMP philosophy is to separate

protection and buffer management issues from the data transfer functionality and to only support

the latter in hardware.SHRIMP provides two modes of data transfer: an explicit DMA transfer, and

an implicit transfer mode that gathers uncached processor writes and sends them to other nodes at

a word or block granularity. The implicit mode inherently involves substantial processor and bus

bandwidth overhead, but can be provided directly at user level once mappings have been established.

The DMA mode is more efficient, but may require system calls to assure protection.

The Cray T3D [Cra93] supports message passing within a single address space, but without

cache coherence. The T3D supports two modes of transfer: small messages (32 bytes) that interrupt

the destination processor, and large block transfer through a DMA engine. Both mechanisms incur

high overhead: small messages incur an interrupt cost on every message, and large transfers must

be initiated by an operating system call. In fact, the DMA facility on the T3D was found to be so

expensive (1000 processor cycles to start a transfer) that it was eliminated in the T3E [Sco96].

Alewife [ACD+91, KJA+93, KA93, ACD+95] integrates message passing and cache-coherent

shared memory within a single system. Each Alewife node has a hardware controller to handle

the common cases of cache coherence, and a DMA unit (in the controller) to facilitate message

passing. In addition, the main processor has an efficient memory-mapped interface to the controller

that is used for controlling message sends. Though most coherence transactions are handled by the

hardware controller, all user messages interrupt the processor for service. Thus, Alewife relies on

hardware support for fast processor interrupts. The drawback to this approach is that interrupting the

Section 5.6 Related Work 101

processor can take time away from other computation. In addition, Alewife does not provide support

for virtual memory, and provides protection only between the kernel and user processes, leaving

user processes unprotected from one another. An extended version of Alewife called FUGU has

been proposed to address some of these limitations [MKAK94, MKF+96]. Also, while the Alewife

research has addressed the issue of coherence of message data, only local coherence is supported in

hardware.

Typhoon [RLW94], a machine architecture proposed by the University of Wisconsin, shares

many of the same philosophies asFLASH. The design uses a SPARC processor within the network

controller to allow execution of software handlers. Therefore, many of the mechanisms we have

discussed for efficiently supporting message protocols are directly applicable to Typhoon, though

they have not been studied for that system.

More recently, commercial systems have finally begun to emerge that provide integration of

cache coherence and block transfer. Each of these systems has attacked the problem from a different

perspective.

Like FLASH, the NUMA-Q system [LC96] from Sequent Computer Systems (previously known

as STiNG), also embeds a programmable communication controller within the memory system. In

that system, block transfer is not easily supported for a range of reasons, including a more rigid

association of (their equivalent of) data buffers and handlers.

The Mercury Interconnect Architecture [WGH+97] was designed by HAL Computer Systems

as part of the HAL S1 system. The S1 uses the Mercury Interconnect to join together 4-processor

Pentium Pro SMP systems and provide both cache-coherent shared memory and message passing.

HAL uses a multilayer approach similar to a traditional network stack to ease the design and verifi-

cation of the Mercury Interconnect. At the lowest level, the Fast Frame Mover (FFM) provides the

analogue to the physical, data link and networking layers of the OSI reference model, concerning

itself with the high performance movement of packets. The next level, the Reliable Packet Mover

(RPM) provides a reliable transport layer, hiding packet errors occurring in the FFM layer. Fi-

nally, the Interconnect Services Manager (ISM) provides high level protocol services such as cache

coherence or message passing.

Like FLASH, the S1 system provides a memory copy facility supported by the communication

controller. Their conclusions are similar to ours, that the memory copy engine has several advan-

tages:(i) it can have more lines outstanding than the processor and(ii) transferring directly from

source to destination requires only one bus transit per line instead of two [WGH+97]. In their sys-

tem, the memory copy engine provides significant performance benefits over processor-based copy.

In FLASH the benefits from memory copy are more modest, in part because the R10000 processor

provides aggressive support for prefetching that allows it to hide memory latency more effectively

than the Pentium Pro.

102 Chapter 5 FLASH Memory Copy

The Silicon Graphics Origin architecture [LL97] and in particular the flagship Origin 2000

system is very similar toFLASH in many respects. It also consists of R10000 processors connected

by the CrayLink interconnect. The key difference is that the Origin node controller, called the Hub

chip, is hardware-based and not programmable. As a result, Origin is able to achieve slightly lower

latencies thanFLASH for remote operations. The drawback to a hardware-based approach is that the

coherence protocol is fixed and cannot be changed to improve performance, fix problems, or add

features.

Origin provides a block transfer engine which provides full integration with cache coherence.

The engine is restricted to cache line aligned transfers, making it usable for page copying, but less

usable for more general block transfer needs. The block transfer engine is used by the operating

system primarily to accelerate page movement and is not exported to the user. Interestingly, Origin

overloads directory state bits associated with IO to implement the coherence operations for block

transfer. This is similar to our approach in PP ownership, and probably was chosen to reduce the

additional protocol support needed to provide this feature.

The S3.mp system at Sun Microsystems is a research project that designed a scalable CC-

NUMA machine based on a microcoded controller. Their system provides a number of advanced

features that allow the system to be composed of an array of workstations, similar in some respects to

DistributedFLASH [KOH+94]. The block transfer facility in S3.mp maintains full coherence at both

source and destination. It can send at most 4 KB at a time, with no support for unaligned transfers.

Unlike FLASH, which can support many simultaneous transfers, S3.mp provides only one transfer

at a time in their microcode. Initiation is somewhat expensive, requiring nearly 10 stores to special

I/O registers, and restrictive since it requires physical addresses be provided. The processor detects

the completion of transfers through polling, though interrupt support was also planned [Now97].

5.6.1 Discussion

Woo et al. [WSH94, Woo96] studied the benefits of block transfer in scientific and engineering

applications, including the impact of prefetching as an alternative to block transfer. Many of their

conclusions were similar to ours. They showed that prefetching can achieve similar gains to block

transfer in some applications while others performed better using block transfer. They also found

that applications are able to effectively utilize the spatial locality afforded by longer cache lines.

However, while their study found limited use of block transfer in those applications, the workloads

we consider expose some additional opportunities for block transfer, such as in the operating system.

Compared with the aggressive network inFLASH, other systems typically have a larger dispar-

ity between local and remote access times. For example, if the network latency increased by a

factor of four in the tar workload with faster protocol processing, fbcopy would show a speedup

of 1.42 over bcopy, versus 1.22 speedup for prefetched bcopy. In addition, as researchers consider

Section 5.6 Related Work 103

systems in which remote access latencies are even longer, such as the proposed DistributedFLASH

machine [KOH+94], coherent block transfer is also attractive for migration and replication of pages

to improve memory locality [VDGR96]. The ability of prefetching to hide the long latency of an

inter-node block transfer depends on the number of outstanding accesses the processor supports.

In our simulations we permit four outstanding prefetches, as in the R10000; more prefetch buffers

would decrease the advantages of fbcopy.

Though not provided by the R10000, some modern architectures such as PowerPC and the Sun

UltraSPARC include support for block loads and stores. For example, UltraSPARC can load or

store blocks of floating point registers directly from or to memory without affecting some levels of

the cache hierarchy [Sun95]. This support affords a unique opportunity to avoid cache pollution

from processor block copy. However, implementation concerns such as restrictions on the number

of simultaneous block operations may limit the applicability of these operations for achieving inter-

node transfers.

5.7 Summary

The design of the fbcopy protocol has shown that block transfer can be fully integrated with cache

coherence with manageable complexity. Though the performance of a transfer decreases when co-

herence actions must be taken, fbcopy achieves near-peak network bandwidth when transfer buffers

are uncached or cached only locally. Since our fully integrated solution does not degrade perfor-

mance in locally coherent scenarios, there is little motivation to restrict the implementation to local

coherence.

From a performance perspective, though it is not appropriate for all situations, fbcopy offers

some advantages over processor copy techniques. Our study of MPI primitives demonstrated that

fbcopy enables significant performance gains over implementations of the MPI communication li-

brary using processor copy. While the microbenchmark results showed that prefetched bcopy out-

performs fbcopy in some cases, through optimizations modeled by faster protocol processing we

demonstrated that fbcopy can match or exceed the performance of prefetched bcopy. Fbcopy also

results in lower network traffic since it transfers only the data inherently being communicated and

avoids polluting the processor’s cache with the data moved by the transfer. The results from the tar

application also showed that fbcopy achieves competitive performance with a fraction of the CPU

occupancy of processor copy techniques. This parallelism can be utilized at the application level

to reduce the effective cost of block transfer communication. Finally, while gains from fbcopy in

FLASH are modest due to its relatively low remote memory latency, the potential benefits are much

greater in systems with longer remote latencies.

Our study of block transfer also illustrates a number of more general conclusions about alternate

protocols inFLASH. Particularly significant is the observation thatMAGIC can efficiently provide

104 Chapter 5 FLASH Memory Copy

fbcopy using the same hardware support as cache coherence. One of the particular reasons this

hardware can support block transfer so effectively is that it uses a generalized data buffer interface.

The protocol processor can efficiently allocate and deallocate buffers, and can load and store them

with dedicated instructions (lblock andsblock). This interface is sufficiently flexible that the

only change needed for fbcopy is a minor extension to change data alignment. Contrast this ap-

proach with other systems that include a programmable controller, such as STiNG [LC96] which

associates a single data buffer with a handler. This precludes techniques like chunking that we use

to achieve high performance. Overall, this result argues for providing flexible data movement hard-

ware accessed by efficient interfaces, rather than rigid data movement approaches designed for any

one protocol.

Section 5.7 Summary 105

106 Chapter 5 FLASH Memory Copy

Chapter 6

FLASH Synchronization Primitives

The second class of communication we study in the context of a programmable communication

controller is synchronization. Our study focuses on the two common synchronization primitives

described in Section 3.2: locks and barriers. We study conventional implementations of these prim-

itives and attack their shortcomings using support from the embedded flexibility of theFLASH sys-

tem.

Efficient synchronization primitives are extremely important to support scalable multiproces-

sors. In his bookHigh Performance Computer Architecture, Stone [Sto90] argues that multipro-

cessor performance is not bounded by aggregate processing power (MIPS or MFLOPS), but that as

system size scales, the fundamental concurrency is limited by the frequency with which the system

can synchronize. To make the point concrete, he coins the term MSYPS (Million SYnchronizations

Per Second) as one possible metric of synchronization throughput. Conventional approaches to

synchronization often limit scalability by degrading in performance as systems grow. Our focus in

this chapter is to improve synchronization performance (latency and throughput) and maintain these

advantages as the machine size grows, in an attempt to increase the scalability theFLASH system

can achieve.

Achieving high performance synchronization is a challenge due to its specific requirements.

One of the most important features of synchronization primitives is achieving low overhead. Since

synchronization primitives are targeted for use within conventional applications using shared mem-

ory, the primitives must be integrated with the cache coherence protocol. Our goal of achieving low

overhead prompts a different approach to this integration than was used in memory copy. Synchro-

nization also entails the interaction of many different processors, unlike memory copy which (in

107

the common case) involved two processors in tight communication. This characteristic requires our

protocols to take special steps to avoid contention by distributing work around the system.

This chapter is organized as follows: In Sections 6.1 and 6.2, we present the lock and barrier

protocols in detail by describing:

� the unique performance metrics for the synchronization primitive.

� the benefits and shortcomings of existing techniques and the opportunities to improve upon

them using custom protocol support.

� the design and implementation of a customFLASH version of that primitive that achieves

these goals.

In each section, we consider the performance of the primitive in isolation, similar to the analysis

of FLASH memory copy in Section 5.4. By studying each primitive in a controlled environment and

in the context of microbenchmarks, we can more clearly identify its performance characteristics

and its potential to improve real application performance. In Section 6.3 we consider the perfor-

mance impact of these primitives in the context of scientific applications taken from the SPLASH

benchmark suite.

6.1 FLASH Locks

The first synchronization primitive we consider as a candidate for customFLASH protocol support

is locks. A lock providesmutual exclusion, i.e., only a single processor can hold a lock at any

one time. Locks are typically used to assure exclusive access to critical resources, code, or data

structures. A processor requests the lock through alock operation, and releases it with anunlock;

the time during which the lock is held is known as acritical section.

Our motivation for considering locks for custom protocol support stems from some fundamental

observations about the performance of locks implemented on top of shared memory. On the one

hand, as we discussed in Section 3.2.1, shared memory locks tend to perform fairly well in situations

where contention is low. There has been considerable focus on improving shared memory locking

performance: the cache coherence protocol is well-tuned for simple line exchanges, and the caching

of locks enables rapid re-acquisition by the previous holder. However, shared memory locks degrade

significantly in performance and characteristics as contention increases.

We begin in Section 6.1.1 by describing the desirable characteristics of locks overall. Then, to

motivate the need for protocol support, we focus in Section 6.1.2 on the drawbacks of a few rep-

resentative conventional implementations of locks and examine in detail the source of performance

degradation under contention. In Section 6.1.3 we describe the application interface toFLASH locks.

108 Chapter 6 FLASH Synchronization Primitives

Sections 6.1.4–6.1.7 describe the detailed implementation of the lock protocol, highlighting how it

attacks some of the shortcomings of conventional locks through specialized protocol support. In

Section 6.1.8 we study the performance ofFLASH locks in isolation. We present application results

using these locks later in the chapter (Section 6.3) after presenting the protocol forFLASH barriers.

Finally, Section 6.1.9 considers the broader related work on locking synchronization primitives.

6.1.1 Metrics for Evaluating Lock Performance

We begin by our discussion of locks by describing the desirable characteristics of a lock primitive.

We explore both qualitative features that are desirable as well as quantitative performance metrics

used to compare lock implementations cleanly. We refer back to these metrics later to evaluate the

success of our lock implementation.

Fairness

One important characteristic of locks is providingfairnessfor all lock accesses. In other words,

given simultaneous requests for a lock each processor should be equally likely to succeed in acquir-

ing it. Furthermore, if a processor does not succeed, it should effectively have higher priority in

successive attempts (providing a round-robin behavior). Among other drawbacks, a lack of fairness

can decrease performance by introducing a load imbalance in the system. This can arise in several

different ways. For example, if a lock were used to dynamically distribute work to processors, a

lack of fairness would cause some processors to wait longer to allocate work and thus waste oth-

erwise useful time. Alternatively, if work is distributed statically, a lack of fairness in access to

shared resources can cause some processors’ work to take longer than others, also causing a load

imbalance.

A severe breakdown in fairness may result in a condition calledstarvationin which a processor

never succeeds in acquiring the lock and thus cannot make forward progress. Research in theFLASH

project found that when nodes are connected by a low-dimensional network, processors which are

far from a memory location can easily be starved due to network effects in combination with the

cache coherence protocol [Hei97]. Consider the example of many processors attempting to gain

ownership of a lock line. Under network congestion that causes negative acknowledgements, nearby

nodes can retry very quickly while a far away node takes longer and may never win the race to the

home. The nature of this problem is such that it may not be possible to assure fairness through

processor software techniques alone.

Section 6.1 FLASH Locks 109

Low Overhead / High Throughput

In general, the goal of parallel applications is to scale in performance as the machine size grows.

Of course, one aspect of scalability comes from the application, which must be structured to re-

move real serialization bottlenecks. But a second critical aspect is to provide high synchronization

throughput, which in this case corresponds to locks being acquired and released atlow overhead.

Overhead in locks corresponds to time spent during the acquisition of an available lock or the tran-

sition of the lock from one holder to the next. In each case, the dead time due to synchronization

overhead renders the lock-protected resource unavailable to the application even though it is actually

unused.

The most difficult challenge in achieving low overhead in locks is assuring that the overhead

remains low as the machine scales and contention increases. Unfortunately, synchronization primi-

tives constructed on top of cache-coherent shared memory often do not match the inherent commu-

nication needed to synchronize, but instead incur communication which is an artifact of the coher-

ence protocol. Such artifactual communication can worsen as more processors attempt to acquire

the lock, causing performance to degrade. We study this problem in detail in the next section.

For the purposes of measuring locking overhead, we consider two different classes of accesses to

locks: contended and non-contended. We separate these classes since they isolate different features

of the lock implementations we study. In each case, we isolate a performance metric which reflects

the latency which is the locking bottleneck.

Non-contended Acquire Latency

We begin with non-contended locks, ones which are found to be free when requested. In this case,

the latency to acquire the lock is set by the duration of the lock primitive itself, which we refer

to asacquire latency. Figure 6.1 illustrates this latency in several situations, showing in particular

that acquire latency is not necessarily constant. In the first acquisition by node B, the lock was

previously held on node A and so the lock must be fetched remotely. In the second acquisition,

node B re-acquires the same lock again, which may be faster in primitives that support caching of

locks.

Furthermore, locking performance may also vary based onwhichnodes acquire the lock, since

requests for memory are typically sent to the memory’s home. Therefore, lock requests by the

home node or requests for locks whose previous holder was the home have higher performance than

exchanges between remote nodes in some lock implementations.

110 Chapter 6 FLASH Synchronization Primitives

Lock

Lock

Node A:

Unlock

Unlock UnlockLock

Acquire Latency Acquire Latency

Node B:

Non−Contended
Acquisition

Lock

Lock

Node A:

Unlock

Unlock

Node B:

Lock Unavailable
Latency

Acquisition
Contended

Time

Hand−off

Figure 6.1: Non-contended and contended lock acquisition latencies. Non-contended acquisition
acquire latencyis measured from the time the lock primitive begins until it completes with the lock
(top). Contended acquisitionhand-off latencyis measured from when node A releases the lock until
the lock operation on node B completes, since the duration the lock is held by node A is function of
the application not the lock primitive (bottom).

Contended Hand-Off Latency

We separately consider the performance of contended locks, ones which are found to be held by

another processor when requested. In this case, we cannot use the acquire latency metric to evaluate

the lock, since the lock is unavailable when requested and the waiting duration is dependent on the

application and not the locking primitive. Instead, the critical metric for contended locks is the time

taken to hand-off the lockonce it is released. This metric, calledhand-off latency, ignores the time

spent waiting for a busy lock and focuses on the remaining overhead during exchanges. Figure 6.1

also illustrates hand-off latency. As illustrated, we measure hand-off latency as the duration from

when the unlock primitive completes (indicating that the lock was released) until the new holder’s

lock primitive completes (indicating that it has successfully acquired the lock).

6.1.2 Conventional Lock Implementations

We begin by studying conventional lock implementations to understand their advantages and short-

comings. One drawback we study in particular is performance degradation under contention. Our

Section 6.1 FLASH Locks 111

simulation results from controlled stand-alone tests in the absence of contention show that a ba-

sic shared memory lock can be acquired from a remote node in about 1�s. When contention is

introduced—128 processors concurrently accessing the same lock—acquiring the lock takes 57�s

on average. In our application results, which include contention from normal shared memory ac-

cesses as well, shared memory lock acquisition latency can exceedseveral hundredmicroseconds.

We analyze two implementations below to understand the source of this slowdown.

LL/SC-Based Lock

Conventional lock implementations utilize the atomic memory update primitives provided by the

processor to modify a shared memory location. In the R10000 (and other processors such as the

DEC Alpha), atomic memory updates are provided by a pair of special memory operations called

load linkedandstore conditional(commonly referred to asLL /SC) [MIP96, SW95]. Load linked

operates as a normal load, except it causes the processor to watch for other transactions on the

address which was read. The processor can then update the data in its cache as desired. Later,

the store conditional to that address only succeeds if no conflicting operations occurred for that

line since the LL, and the line is still intact in the cache. If a conflict does arise, such as another

store occurred since the LL executed, the SC does not modify the memory, but instead returns a

failure result code in a register. This failure can be detected and the entire LL/SC sequence can then

be retried until the sequence completes atomically [Gha95, MIP96]. We use exponential back-off

between failed lock attempts to reduce subsequent contention.

A basic lock implementation, which we refer to as LL/SC locks, uses the atomicity provided by

LL/SC atomically updated a shared flag. We present its implementation in Appendix B, Figure B.1.

The direct usage of these primitives is very fast in the absence of contention, and allows locks to

be cached and thus reacquired rapidly. However, as contention increases, the performance of the

LL/SC lock rapidly degrades.

The inefficiency of LL/SC locks due to contention arises from the characteristics of the cache

coherence protocol. A lock represents a unique entity that only one processor can hold at a time.

Cache coherence, on the other hand, is fundamentally designed to permit the seamlessreplication

of data. Consider the situation illustrated in Figure 6.2, in which one processor (node 0) is holding

the lock and several others (nodes 1–4) are waiting for it to be released. Node 0 finishes its use of

the lock and wants to release it. Since nodes 1–4 are spinning on the lock address, node 0 no longer

has exclusive ownership and must request an upgrade, which invalidate the sharers. In Figure 6.3,

the lock holder is granted ownership and can release the lock, as the former sharers acknowledge the

invalidations. Following the invalidation, the requesters all miss in their cache in quick succession,

and request the lock. This causes a rush of requests to the home node, illustrated in Figure 6.4. The

first request to arrive is sent to Node 0 to fetch the modified copy from the cache, while the other

112 Chapter 6 FLASH Synchronization Primitives

Cache

Node 0

Lock Home

Directory

Cache

4Cache

3Cache

2Cache

Node 1

Inval

Exclusive

Inval

Inval

Inval

Figure 6.2: Invalidation of lock waiters when the holder upgrades to release the lock.

Cache

Node 0

Lock Home

Directory

Cache

4Cache

3Cache

2Cache

Node 1

Exclusive

Reply

Inval InvalAck

Figure 6.3: Former sharers acknowledge the invalidation. The lock holder gets exclusive access
and can release the lock.

Cache

4
Cache

3Cache

2Cache

Node 1

Lock Home

Directory

Cache

Node 0

Request

Wb

Reply

Get
NAK

NAK

NAK

Figure 6.4: A rush of requesters follows an unlock. One requester gets the lock line first while
others are negatively acknowledged. Note the accumulated traffic from this exchange is significant,
though little communication inherently occurs.

Section 6.1 FLASH Locks 113

Node 1 Memory Node 2 MemoryNode 0 Memory

Node 0 MCS Lock Record

locked next

Currently holding the lock

0
locked next

Node 1 MCS Lock Record

Waiting on the lock

1
locked next

Node 2 MCS Lock Record

Waiting on the lock (tail)

1

Arbitrary

 Lock L

Points to tail

Figure 6.5: MCS Lock queueing approach. MCS Locks consist of an array of lock structures,
connected in a linked list fashion to form a queue. Each node spins on the lock bit in its record,
allowing waiters to be released individually. The lock pointer L indicates the tail of the list, where
new waiters are added.

nodes receive negative acknowledgements because the line is marked pending. The rush of requests

swamps the protocol processor, preventing the lock writeback from occurring and delaying other

requests for that node.

Furthermore, since the decision of who holds the lock next is purely based on a race to the

home, this implementation also fails to provide fairness for the ordering of lock acquisitions. In

fact, starvation or livelock may result if certain processors tend to consistently lose the race for the

lock, for example because of network topology, or if where ownership is granted and then stolen

away before the lock can be acquired [KCA92].

To address both the problem of fairness and the rush of requesters, ideally the lock would be

provided to the next holder more directly. In fact, some coherence protocols have proposed exten-

sions to the base protocol to improve transactions such as lock hand-off [CBZ91, BZS93, KCDZ94,

KBG97]. The other lock primitives we study provide this feature through queueing of requesters.

MCS Lock

As the previous section shows, LL/SC suffers from serious problems due to contention. One way to

address the contention problems of LL/SC locks is to implement aqueueof lock waiters insoftware.

One such implementation is called MCS Locks, proposed by Mellor-Crummey and Scott [MCS91a].

For systems without hardware support for locking, MCS locks are one of the most efficient prim-

itives [MLH94, KBG97]. Many other implementations of software queued locks have also been

proposed, each with slightly different characteristics; we consider those other implementations in

Section 6.1.9.

The pseudo code for the MCS lock implementation used in our study is shown in Appendix B,

Figure B.2. An MCS lock is implemented as a linked list of lock structures, illustrated in Figure 6.5.

Each structure corresponds to a waiter for the lock; the head of the list is the current holder. By

114 Chapter 6 FLASH Synchronization Primitives

Node 1 Memory Node 2 MemoryNode 0 Memory

Node 0 MCS Lock Record Node 1 MCS Lock Record Node 2 MCS Lock Record

locked next

0
locked next

1
locked next

1

Cached at Node 1 Cached at Node 2

Figure 6.6: Extraneous caching in MCS lock queues. The process of enqueueing a record through
shared memory operations caches the previous node’s record as well. The extra shared copy must
be invalidated when the lock is granted to that node. For example, Node 1’s MCS lock record is
cached by node 2. When node 0 clears node 1’s lock flag allowing it to continue, an invalidation is
generated to node 2 as well.

making each waiter spin in its own (locally allocated) structure, MCS locks prevent any one node

from becoming a hot spot.

Since MCS is a queued lock, it is able to provide fairness and significantly reduce the contention-

based performance degradation which occurs in LL/SC-based locks. MCS locks incur no rush of

requesters at an unlock. Instead, the next waiter is individually released from spinning to acquire

the lock. However, since MCS locks are built on top of shared memory, they still encounter two

sources of artifactual communication.

First, the MCS queue tail is updated internally with LL/SC to assure atomicity. As a result,

contention can arise from simultaneous requests for the lock. Fortunately, unlike LL/SC locks,

contention of this nature only arises on theinitial request for an MCS lock. Once a requester is

queued for the lock it spins locally in its cache until its turn arrives, avoiding further contention.

The second source of artifacts arises when a lock waiter is released. As explained above, only the

next waiter is released on an unlock. However, the construction of the queue in software causes extra

caching of MCS lock records, as illustrated in Figure 6.6. The source of this caching is as follows:

when a node adds itself to the queue through shared memory accesses, it caches the previous node’s

record to update itsnext pointer. The previous node is still spinning on thelocked bit, so it re-

requests the line, leaving a shared copy at both nodes. As a result, releasing the next waiter requires

an invalidation be sent toits successor node as well, which is purely artifactual.

6.1.3 FLASH Lock Application Programming Interface

The goal of our lock implementation is to use the support provided by the programmable commu-

nication controller to further improve locking performance. Of course, our approach is merely one

possible implementation of locking using the flexibility inFLASH. Just as inFLASH memory copy,

we export lock functionality to the application through a library call. This allows us to hide the

Section 6.1 FLASH Locks 115

details of the locking implementation and export a simple array of numbered locks to the system.

We provide two basic locking calls:

void FLASHLock (int lockNumber);

void FLASHUnlock (int lockNumber);

FLASHLock requests that the numbered lock be acquired for the process. This call spins internally

until the lock is held. FLASHUnlock releases a lock held by the application, passing it on if

another process is waiting.

A third call, the implementation of which we leave to the operating system designers, is respon-

sible for allocating a physical range of locks to an application that requests it. The allocation of

locks is analogous to physical memory management. Internally,FLASH “physical” lock numbers

are unique across the entire machine. By mapping each application to use different physical locks,

the operating system can virtualize this resource like physical memory and allow each application’s

“virtual” lock range to begin at zero.

Goals ofFLASH Locks

The primary goal ofFLASH locks is to address the limitations associated with conventional shared

memory locking implementations. In particular, as we showed earlier, shared memory locks may

incur significant artifactual communication under contention. Our lock primitive specifically targets

these high contention situations, and strives to eliminate artifactual communicationcompletely. We

pay particular attention to optimizing the lock hand-off following an unlock. A second goal is to

assure fairness across lock requesters and eliminate the rush of requesters following an unlock. Our

protocol uses queueing to help achieve both of these goals.

We also attempt to match the advantages of shared memory locks in non-contended situations,

such as low latency to acquire a free lock. In addition, we aim to support caching of locks to

permit efficient repeated acquires by the same processor, another worthwhile characteristic of shared

memory locks.

6.1.4 FLASH Lock Implementation

This section describes the implementation of theFLASH lock protocol in detail, focusing on its dif-

ferences from the conventional cache coherence protocol and the approach used inFLASH memory

copy. We begin by presenting the protocol operation itself, describe its protocol state layout, and

explain the unique way we support cached lock state. In Section 6.1.5 we discuss several key design

choices and the alternatives approaches we did not choose. Section 6.1.6 explores two subtle issues

that arise from multiprogramming and from processors failing to acquire a lock in a timely fashion.

That section describes techniques to assure the protocol is robust in the face of these situations.

116 Chapter 6 FLASH Synchronization Primitives

Protocol Overview

At a high level, the operation of lock protocol is somewhat similar to shared memory locks based on

exclusive ownership of cache lines. As in shared memory, locks are represented in the cache and are

acquired using atomic memory update primitives. Also like shared memory locks, a cached lock can

be acquired and released repeatedly without external communication (assuming another processor

has not requested it). The major differences are in the underlying protocol implementation and

the exact interface to request and release locks. These differences allow the protocol to match the

inherent communication needed for locking and avoid the drawbacks of shared memory locks.

The most significant change as compared to the cache coherence protocol is that the lock pro-

tocol stores lock state inMAGIC at each node. This enables the protocol to construct a distributed

queue of waiters that can pass the lock directly to the next holder in asingle message. As in cache

coherence, each lock is assigned a home node, but in this protocol the home’s only responsibility is

tracking the tail of the queue of waiters.

Internally, the protocol uses a concept called atoken, which is analogous to ownership of a

cache line, but has different properties that are more compatible with locking. In short, tokens

represent permission to acquire a lock, similar to the way a token-ring networking protocol allows

only one sender at a time. Unlike ownership, however, which may be stolen away while a lock is

held (Figure 6.2), tokens must remain at the node while the lock is held. We explain below how

tokens are manipulated and identify the advantages of this approach.

Lock State

First we describe the lock protocol state, to illustrate how the protocol stores locks internally. Fig-

ure 6.7 illustrates the state, which consists of 64 bits per lock stored at each node. The fields are

used as follows:

Token (T) Indicates whether the token is present. The processor spins on this bit when it waits for

the token to arrive, and clears it when it yields the token.

Locked (L) Indicates whether the lock is currently locked. If the processor finds the token present,

it acquires the lock by setting this bit. Just as in any read-modify-write operation, there is a

race in which the processor sees the token present, but then loses the token before the Locked

bit is set, so LL/SC is used to assure atomicity when setting this bit. This does not suffer the

same problems as LL/SC locks because this state is local to the node.

Seen (S) Indicates if the processor has acquired the lock at least once after being granted the token.

Our protocol guarantees the lock can be acquired once, to assure fairness and eliminate the

“window of vulnerability” problem in conventional locks [KCA92]. To provide this, the Seen

Section 6.1 FLASH Locks 117

T L S E C H R I Q
1 1 1 1 1 1 1 1 1 12 12 8

Next Holder Home/Queue Tail unusedQueue Index
23

Figure 6.7: Lock protocol internal state format.

bit is cleared when the token is granted and an arriving token request is queued if it finds Seen

is still clear (even if the lock is unlocked). In the same atomic sequence that sets the Locked

bit, the processor sets the Seen bit as well. Though it is critical to fairness, the Seen bit has

some subtle correctness implications. In particular, the lockmustbe acquired after the token

arrives at the node or Seen prevents it from being claimed by another node. We expand on

this issue later and describe extensions to the protocol to ensure correctness in all cases.

Externally Requested (E) Indicates whether other processors have requested the token. The node

retains the token at an unlock if this bit is cleared, otherwise it asksMAGIC to send the token

to the next processor in line.

Cached (C) Indicates if the processor is currently caching the lock state. This tells the protocol if

the processor cache must be consulted to read the current Locked bit value.

Home (H) Indicates if this node is the home for this lock. Unlike shared memory locks such as

those inDASH, since each node stores lock state any one can be used as the home for the

lock. The application designates a home node for each lock when it is initialized, allowing

the locks to be spread across the machine easily.

Requested (R) Indicates whether the processor has requested the token for itself. It is cleared when

the token is granted. We describe in Section 6.1.6 how this bit is needed to solve a locking

problem that arises in multithreaded environments.

Initialized (I) Indicates the lock has been configured and is ready for use. Access to an uninitialized

lock should deliver an exception to the application via the operating system.

Queue (Q) Indicates that the NAK avoidance queue is currently in use. The lock protocol is able

to avoid negative acknowledgments in almost every case because processor requests guar-

antee outgoing queue space. The one exception is when the Home node forwards a token

request to the queue tail (described below) in which case, just as in cache coherence, the

incoming request is not guaranteed outgoing request space. If the outgoing queue is full,

we could NAK the original request, however this significantly complicates the protocol and

reintroduces many of the problems of conventional locks. Instead, we maintain a simple cir-

cular queue at the lock home (not shown) to defer requestersin order, thus eliminating NAKs

completely. Deferred requests are completed using the software queue when queue space be-

comes available. This approach brings the protocol into full compliance withFLASH deadlock

118 Chapter 6 FLASH Synchronization Primitives

avoidance conventions and assures fairness in every situation without impacting common case

performance.

Next Holder Used to store the successor node, the one which will be granted the token when this

node unlocks.

Home/Queue Tail For a node which is not the home, this field indicates which node has been

designated the home for this lock. The home uses this field instead to indicate the current

queue tail of the lock.

Queue Index Since lock homes are assigned dynamically, the lock allocates a NAK avoidance

queue from a preallocated pool when it is designated the home and stores the queue index

number in this field.

Though it incurs higher state overhead than cache coherence, maintaining protocol state at each

node has several particular advantages. First, it enables the protocol to construct a distributed queue

that enables very efficient hand-off. It also enablesMAGIC to store the token reliably when it arrives

and save it locally if replaced from the processor cache (instead of sending it to the home). The

former use is critical to allow the protocol topusha token to a node (similar in many respect to an

update-based coherence protocol), a feature otherwise impossible inFLASH because the processor

does not support update operations into the processor cache itself.

A similar technique was used inDASH for its cache coherence implementation, using a board-

level cache called aRemote Access Cache(RAC). Two of the major reasons to use a RAC were to

hold (i) lines supplied from a remote node before a local processor cache completes its read request

(an artifact of theDASH implementation, which required the read to retry after the line arrived at the

node), and(ii) remote lines replaced by the local processor cache [Len92].

Lock Protocol Operations

Building on the protocol state explanation, this section describes the operation of the lock protocol

by illustrating how the protocol handles the different locking situations that can arise. Unlike the

cache coherence protocol which is extremely complicated, the diagrams illustrated here show essen-

tially the entire protocol. This concise design is one of the benefits of our implementation, allowing

it to shareMAGIC caches with the cache coherence protocol more effectively than a heavier protocol

like memory copy. Figure 6.8 describes the symbols used in the diagrams.

To acquire a lock, the processor begins by reading the lock address in its cache to see if it holds

the token. The result is not cache-coherent memory, but a copy of the lock state from the local

MAGIC chip, as illustrated in Figure 6.9. If the token is present, a conventional LL/SC sequence is

used to atomically set the Locked bit, just as in shared memory locks.

Section 6.1 FLASH Locks 119

T Token Holder The node holding the lock token.

R Requester A node requesting the token.

Q Queued Requester A prior requester, queued for the token

H Home The lock’s designated home node.

FLASH Message A message between twoMAGIC chips
(or betweenMAGIC and the processor cache).

Node Pointer Internal protocol state that points to another node
(no communication is implied).

Figure 6.8: Legend of symbols in lock protocol diagrams.

Unlike shared memory locks which acquire ownership automatically upon a write, if the token

is not present the node must request it explicitly using an uncached command toMAGIC. Here a

single write (a PPR) is sufficient to express the token request. In Section 6.1.5 we explain how an

explicit request is needed due to the combination of processor speculation and the fairness guarantee

we provide. The PPR causesMAGIC to request the token from the lock’s home node, as illustrated

in Figure 6.10.

The home’s only responsibility in the lock protocol is to track the last node which requested

the lock, thequeue tail. When it receives a token request, it forwards it to the queue tail and then

updates the tail to reflect the new requester. At this point, three cases may occur:

No queue exists, the lock is unlocked.Since no queue exists, the forwarded token request reaches

the token holder, illustrated in Figure 6.10. There,MAGIC extracts the cached lock state from

the processor to see if the Locked bit is set. In this case it finds it unlocked, so it forwards

the token to the original requester. Unlike cache coherence, no acknowledgment is sent to

the home. When the token reaches the requesting node,MAGIC invalidates the cached state

on which the processor is spinning. The processor re-reads the state and, seeing the token,

acquires the lock by setting the Locked bit as before.

No queue exists, the lock is locked.In this case, illustrated in Figure 6.11, the token holderMAGIC

finds instead that the processor has currently asserted the lock. It is thus unable to yield the

token, and instead stores the requester’s node number as its successor. By indicating that

the lock has been requested, the processor will yield the token when it unlocks, as described

below.

120 Chapter 6 FLASH Synchronization Primitives

� Read of lock state misses in processor cache (1).
� MAGIC generates cached representation from internal

lock protocol state, noting it is cached by the proces-
sor.

� Reply to processor with lock state (2),
� If token is present, processor atomically sets the

Locked bit in its cache, asserting the lock.

12R
Processor

MAGIC

Figure 6.9: Request for local lock state fromMAGIC.

� Processor reads lock state (Figure 6.9) and finds token
absent.

� Processor issues token request PPR toMAGIC, caus-
ing request to lock home (1), then spins on the lock
state waiting for the token.

� Home forwards request to queue tail (2), internally
points to node R as new queue tail (a).

� Token holderMAGIC extracts lock state from proces-
sor if cached. Finding it unlocked, it forwards the
token to node R (3).

� At node R,MAGIC invalidates cached lock state, caus-
ing spinning processor to re-request it.

� With the token now present, Node R sets Locked bit
in its cache, asserting the lock.

1
a

2

3

T R

H

Figure 6.10: Token request for lock currently at another node, no queue pending (Unlocked).

� Node R requests token from home as before.
� Home forwards request queue tail (2), internally

points to node R as new queue tail (a).
� Token holderMAGIC extracts lock state from proces-

sor if cached. Finding it locked, it internally points to
node R to receive the token next (b), forming a queue.

� It also marks lock as requested to indicate the proces-
sor should yield the token on an unlock (Figure 6.14).

1
a

2

T R

H

b

Figure 6.11: Token request for a lock currently at another node, no queue pending (Locked).

� Node R requests token from home as before.
� Home forwards request to queue tail (2), points to

node R as new queue tail (a).
� Queued node internally points to node R as its suc-

cessor (b). 1

2

a

b

R
Q Q

H

T

Figure 6.12: Request for a lock with a queue of waiters pending.

Section 6.1 FLASH Locks 121

� Unlock operation clears Locked bit, requesting lock
state fromMAGIC if not cached.

� Since state indicates no external requesters, the token
is kept, the lock state remains cached, and no external
communication is required.

T

Figure 6.13: Unlock operation in cache when no queue is pending.

� Unlock operation clears Locked bit, requesting lock
state fromMAGIC if not cached.

� Since state indicates a queue is present, processor is-
sues unlock PPR toMAGIC and clears token bit.

� MAGIC sends token to successor node (1).
� SuccessorMAGIC supplies token to processor as in

Figure 6.10.
� Note that lock Home is not involved in lock hand-off.

Q Q
1

H

T Q

Figure 6.14: Unlock operation with one or more requesters pending.

A queue exists for the lock. In this case, the home node’s queue tail points not to the token holder,

but to the last node in the queue of waiters. When it receives the forwarded token request,

the current queue tail stores the requester’s node number as its successor, illustrated in Fig-

ure 6.12.

Now we turn to the unlock operation, which is extremely efficient in this protocol. To unlock,

the processor first clears the Locked bit in the cached lock state, fetching it fromMAGIC if it is not

cached.1 Then it consults the state to see if another node has requested the lock. In the first case, no

request has been posted, so it retains the token and the lock state remains in its cache (Figure 6.13).

Subsequent lock operations (Figure 6.9) can succeed in the cache without interaction withMAGIC

if no other intervening request occurs.

On the other hand, the unlock may see that another node has requested the lock, illustrated in

Figure 6.14. To assure fairness, our protocol requires the token be yielded; the processor yields the

token using a second kind of PPR to reliably indicate toMAGIC it has unlocked.MAGIC clears the

token indication and sends it to the successor node it stored previously. When the token reaches the

new holder, it is provided to the processor as usual, by invalidating the cached lock state. Note that

this hand-off consists of a single message and does not involve the home.

Efficient Lock Caching

As we described, our protocol differs from cache coherence in that cached lock state is not global

memory, but is a representation of the localMAGIC’s lock protocol state.MAGIC constructs the

1A request may have extracted the line to consult the Locked bit, or the state may be replaced from the cache due to a
conflict, just as any other line.

122 Chapter 6 FLASH Synchronization Primitives

processor’s representation by reading the lock protocol state from the PP cache and storing it in

a data buffer explicitly. Rather than add special cases to the coherence protocol’s miss handlers

to provide this feature, we useFLASH’s address space capability (explained in Section 4.1.1) to

indicate locks addresses are different than conventional memory. We program the Jump Table to

select a miniature coherence protocol (part of the lock protocol) to service cache misses in this

“lock space”. We use a similar technique in our implementation ofFLASH barriers in Section 6.2.

It may seem surprising to use a separate coherence protocol just for lock requests, but in contrast

with the sizeable cache coherence and memory copy protocols, the entire lock protocol (including

the coherence handling) consists of onlyseven handlers, occupying less than 3 KB. This concise

design is possible because the lock coherence protocol is not required to handle the huge number

of cases that arise in a normal cache coherence protocol from the interaction of local and remote

caching. Instead, by separating requests for the current lock state (intra-node communication) from

requests for token movement (inter-node communication), the number of cases can be dramatically

reduced. In Section 6.1.7 we explore the specific components of the protocol to provide an overview

of how it is structured.

6.1.5 Protocol Discussion

The lock implementation we describe is only one possible implementation we might use. In this

section we briefly discuss two design issues for the protocol to illustrate why several features were

made. First we consider a different queueing approach and illustrate its drawbacks. Then we discuss

the impact of processor speculation on the protocol design.

Centralized Queued Locking

Our initial implementation used a centralized queue of waiters, stored at the lock home. In that

approach, requests for the lock token are sent to the home followed by a later reply from home

with the token. Unfortunately, the home is a serious bottleneck since it is involved twice for each

contended lock acquisition:(i) when the request arrives for the token, causing the requester to be

queued, and(ii) when the token is released by the previous holder in the queue. Furthermore, the

token hand-off is slower since it must traverse through the home to determine which node should

receive it next.

We also considered a modified version that targets this inefficiency by telling the current holder

in advance who the following holder will be. This implementation, illustrated in Figure 6.15, allows

the holder to forward the token, then notify the home node outside the critical path. In response, the

home issues a new forwarding request to the new holder. Though this optimization improves the

lock hand-off latency significantly, the home is still consulted twice, so for short critical sections

Section 6.1 FLASH Locks 123

Node 0 Node 1

MAGIC MAGIC

Node 2

NextToken NextToken
No No

MAGIC
NextToken

Yes 1 ? ?

MAGIC

1 20
Lock Queue

Token
Fwd

Node 3 (Home)

3

3

1

2

Forward Request
(Forward to node 2
when finished)

Forward Ack

Figure 6.15: The centralized queue locking approach forFLASH locks. The queue is stored com-
pletely at the home; only the current token holder knows which node follows it in the queue. The
arrows illustrate the token exchange process, which both passes the token to the next holder and sets
up the next round of forwarding.

it limits performance. The distributed queue approach we use provides the same direct forward-

ing benefits of this centralized queue, but further improves performance by completely eliminating

interaction of the home after the initial request.

Avoiding Problems from Processor Speculation

Recall that token requests are explicit in the protocol and not associated with a lock state request. It

may seem like a natural optimization to request the token whenever the processor fetches the lock

state to launch the request as early as possible. Unfortunately, the aggressive speculation performed

by the R10000 combined with the fairness guarantee of our protocol makes this approach unusable.

If the protocol were to request the token because of a speculative request and then the processor

never actually acquired the lock, the cleared Seen bit would prevent the token from leaving the

node and deadlock would occur.2 As a result, token movement must only occur coincident with a

definite intention to acquire the lock, so we use uncached operations which are never speculated.

As we show in the microbenchmark analysis, the inability to launch the token request immediately

increasesFLASH lock non-contended acquire time as compared to shared memory approaches.

Similarly, the protocol carefully defines the semantics of cached lock state such that the presence

(or absence) of the lock state in the processor’s cache does not by itself indicate whether the lock is

held. Lock state in the cache merely indicates that the processor may beinterestedin the lock. This

2In fact, the timeout implementation described in Section 6.1.6 eventually reclaims the lock to avoid deadlock, but the
situation should be avoided where possible.

124 Chapter 6 FLASH Synchronization Primitives

is essential because the processor may speculatively request the lock state, and conversely because

cache conflicts may cause the lock state to be replaced while it is still in use. Instead, thevalueof

the Locked bit (which is never speculatively modified) is used to indicate its status, similar to shared

memory locks.

6.1.6 Multiprogramming/Multithreading Issues

Despite the careful effort to prevent token requests from ever occurring speculatively, there are still

some situations in which a token that arrives at a node is not subsequently acquired. One such

situation occurs in multiprogrammed or multithreaded environments where a processor requests a

token and then is somehow preempted before it arrives. The process may also migrate to another

processor before it resumes. A related problem occurs when two threads (or processes) executing on

the same node try to access the same lock. This section describes solutions to these problems. For

the remainder of this section, we use “multiprogramming” and “process” terminology for brevity,

but identical issues arise from multithreading and our solutions apply there as well.

Reclaiming Unused Lock Tokens with Timeouts

Previously, we assumed that a token could only be requested by an application which was actu-

ally intended to acquire it. Unfortunately, multiprogramming may preempt such a process before

the requested token arrives. Depending on the situation, the process might be descheduled for a

significant length of time during which the cleared Seen bit prevents other nodes from taking the

token.

If the preemption is long enough, it may be in the best interests of overall performance to reclaim

the token to allow other nodes to use the lock in the interim. Similarly, if the process is stopped (or

worse, killed), then correctness requires that the token be reclaimed to allow other processors to use

it. Note that in both cases we are referring to a lock which was not actually acquired; if the node

acquired the lock then it must be retained to assure correctness of the critical section. If a process

dies or is suspended while holding a lock, operating system intervention is required to restore the

system to a consistent state.

We handle both of these cases through a software-managed timeout mechanism. The effect of

this mechanism is to change the Seen bit guarantee (described previously): the processor is still

assured the ability to acquire the lock at least once,but only within a certain timeout region.

The difficulty in providing this mechanism is implementing it efficiently. Different applications

could be using many locks simultaneously on the same processor, each of which requires its own

timeout. There are many approaches that might be used to address this problem. A na¨ıve approach

might store a “token grant time” in each lock record and then periodically walk the entire array

of locks, checking to see if any locks have exceeded the allowed timeout. The performance of

Section 6.1 FLASH Locks 125

0 1 0 0 0 1 1

 covers 64 lock lines / 1K locks
1 64−bit dword

1 bit vector line / 1K bits cover 1K lock lines / 16K locks

128B line / 16 locks

1024 lock lines / 16K locks

Figure 6.16: Timeout bit vector structure and lock correspondence.

this approach is incredibly poor since not only must it examine each lock record, but it also incurs

PP data cache misses for the locks which were not actually used. This cache traffic makes this

approach prohibitively expensive and seriously disrupts the cache working state. On the other end

of the spectrum, we might maintain a linked list of locks that were recently granted tokens and their

arrival times, and periodically walk the list. For very light lock usage, this approach may be ideal,

but with even mild usage the timeout data structure can grow to a significant size and experience

similar cache drawbacks.

Instead, the approach we choose attempts to balance these two extremes and eliminate extrane-

ous cache traffic associated with timeout checking. It is based on a bit vector indicating which locks

have received token grants recently. Locks indicated by the bit vector are scanned periodically to

verify they have not timed out since the token grant. The key innovation in this approach is that it

marks recent token grants at a carefully selected coarse granularity: a single bit in the vector repre-

sents the number of locks that can be stored in a single protocol processor cache line. This allows

the timeout bit vector storage to be very compact, and yet the timeout checking for the group of

locks is efficient since they are resident in the cache at the same time.

In the currentFLASH lock implementation, a 128 B protocol processor data cache line can hold

sixteen locks, thus a single bit in the vector indicates that one or more of the sixteen locks on that

line received a token grant recently. By extrapolation, a bit vector consisting of only a single PP

cache line (128 B = 1024 bits) can represent 16 KFLASH locks. Figure 6.16 illustrates this bit

vector approach. For the rest of this section, we describe an implementation for 16K locks; larger

implementations can be generated simply by scaling the bit vector.

The timeout mechanism is invoked periodically by the Idle Handler inMAGIC, described in

Section 2.3.5. We anticipate providing generous timeouts, on the order of the process time slice of

several milliseconds, which keeps timeout checking overhead very low. Once invoked, the timeout

126 Chapter 6 FLASH Synchronization Primitives

InitTimeoutIteration()
{

if (!timeoutCheckDone) { /* Verify prior round finished */
return; /* Start new check next time */

}
copy AgingTimeouts to CheckingTimeouts;
copy InstallTimeouts to AgingTimeouts;
clear InstallTimeouts;

Initialize timeout checking;
timeoutCheckDone = 0;
SWQSchedule(TimeoutChecker);

}

TimeoutChecker()
{

scan CheckingTimeouts for nonzero bits by doublewords;
if (entire mask is zero) {

timeoutCheckDone = 1;
SWQUnschedule();
return;

}

check = first nonzero doubleword in CheckingTimeouts;
pos = FindFirstSetBit(check);

/* Check one line of locks at most, to share PP */
foreach lock on line given by (check,pos)

if (lock.Token && !lock.Seen) {
/* Found one. Clean up as appropriate: */
if (lock.Requested) {

Verify network queue space;
lock.Token = 0; /* Steal lock away */
Send lock to external requester;

} else {
lock.Seen = 1; /* Allow external requests */

}
}

}
ClearBit(check,pos);
SWQReschedule();

}

Figure 6.17: Pseudo code for theFLASH lock timeout mechanism.

mechanism schedules itself to execute from the software queue repeatedly until its processing com-

pletes (the duration varies based on the intensity and locality of lock activity). The pseudo code for

the timeout mechanism appears in Figure 6.17. It refers to three bit masks of the nature described

above:

InstallTimeouts This vector is where new token grants are recorded. The grant handler is

responsible for setting the bit corresponding to the lock being granted.

AgingTimeouts when a new timeout round begins,InstallTimeouts is copied here. This

assures that a lock has at least one full timeout period after its grant.

CheckingTimeouts This vector is used to perform the actual timeout checking.

Section 6.1 FLASH Locks 127

The space overhead of the mechanism is constant and extremely low: only three cache lines to

store the three bit vectors. The advantage of the vector approach is the varying granularity at which

locks can be scanned. The first scanning occurs on doublewords, each of which represents a full

1 K locks (64 bits*16 locks/bit). This allows inactive lock ranges to be eliminated very quickly.

Once an active doubleword is found, the Find First Set Bit (FFSB) instruction can be used to scan

for activity in hardware at a 16-lock granularity. Set bits cause examination of a group of 16 locks

individually. Locks found to have received a token grant without a subsequent request lose their

Seen-bit protection or are sent to the next requester, if present.

Retrying Token Requests

Multiprogramming has still another unfortunate effect on locking. Requests for a lock token are

tracked based on thenodeon which they originated. Just as in shared memory locks, there is nothing

to prevent one process from requesting the lock, and then before the token arrives multiprogramming

causes another process to execute. If the second process desires the same lock, it may consume the

token that arrives for the other process’s request. In fact, if the lock is requested elsewhere, the

token may also be lost before the first process ever has a chance to acquire the lock.

The risk is that the first process will not realize its token was consumed by another process and

will blithely spin waiting for it. We solve this problem by clearing the Requested bit when the token

is lost. As part of its spin loop, theFLASHLock routine must check the Requested bit to see if its

request is still active. If it sees it clear, it re-requests the token. This mechanism is also important

to support the timeout mechanism: If a process is preempted just after its lock request and its token

arrives then times out, this technique assures it issues a new token request if needed when it later

resumes execution.

This issue elucidates the exact granularity of the fairness guaranteeFLASH locks provide: the

processoris granted the lock in a fair manner.FLASH locks, like shared memory locks, have no

way of controlling which process on that processor actually acquires the lock after the token arrives

at a processor. Moreover, any solution attempted at a low level runs the risk of causing higher-

level problems such as priority inversion, so this issue is better solved, if needed, by a higher-level

mechanism [SRL90].

6.1.7 Protocol Handlers

One of the clear successes in the lock protocol is its very compact protocol code. This allows the

lock protocol to share the PP instruction cache with cache coherence much more effectively than

the FLASH memory copy protocol, for example. Table 6.1 enumerates the handler components of

theFLASH lock protocol, which all told amount to less than 3 KB. This compact design was enabled

by two key design decisions.

128 Chapter 6 FLASH Synchronization Primitives

Table 6.1: Summary of theFLASH lock protocol handlers.

Handler Name/ Description
Handler Size (bytes)

LockStatusRead
104 B

The “cache miss” handler for lock protocol state requests from
the processor. It doesnot cause any token movement. This han-
dler provides exclusive ownership even if a read-only copy is re-
quested, eliminating the need for upgrades and replacement hints
in the protocol.

LockWriteback
208 B

The handler for lock protocol state writebacks from the processor.
Should a lock line be replaced from the cache, it collects the cur-
rent values of the locked and seen bits and updates theMAGIC lock
state.

PIGetLockToken
200 B

Requests a token needed by the processor but found to be absent.
This is invoked explicitly by a processor PPR.

PIUnlock
152 B

Invoked explicitly by a processor PPR, this handler accepts a token
from the processor following an unlock that noticed an external
request was pending. This handler sends the token to the next
processor in line.

NIRequestLockToken
1272 B

This handler serves two roles: it accepts new requests for the lock
token (if invoked at the lock home), and requests to steal a lock
token away (if invoked elsewhere). These two functions form the
majority of the lock protocol’s token movement functionality, thus
this handler is the largest.

NIGrantLockToken
128 B

Accepts an incoming token from the network, invalidating the re-
lated lock state, if cached, to cue the processor.

SWRequestLockToken
528 B

Executing from the software queue, this regenerates a queued lock
request which could not be handled due to outgoing network queue
limitations.

Total size: 2880 B (includes a support subroutine not listed)

First, by referring to locks in an alternate address space, a custom coherence protocol could be

used that was able to avoid the complexities of integrating with the full-fledged coherence protocol.

As Table 6.1 shows, just two handlers (LockStatusRead and LockWriteback) are needed to provide

the majority of coherence functions.

Second, token movement was largely separated from coherence functions, which reduced the

total number of cases to be handled. Instead, five handlers have the primary responsibility of moving

tokens (there is a minor interaction with coherence since they are required to notify the cache upon

token arrival).

Section 6.1 FLASH Locks 129

6.1.8 Lock Performance in Isolation

In this section we evaluate the performance of the lock protocol using a range of metrics. We

begin as we did in Chapter 5 by considering the performance at a very low level, examining the

characteristics ofFLASH locks and other alternative locking primitives. We perform this study

of locks in the context of microbenchmarks that compare this range of primitives in a controlled

manner. This allows us to isolate the performance differences between the primitives in various

operating situations. Later, in Section 6.3, we consider the performance impact of the locks in the

context of applications.

We do not attempt to compare against each of the wide range of alternatives for implementing

locks in software. Rather, we focus our comparison ofFLASH locks against several key choices to

allow us to isolate and explain the major effects. Other researchers have considered the breadth of

software alternatives in detail in previous publications [MCS91a, MLH94, KBG97]. Specifically,

in our analysis of locking performance we consider the two different lock primitives we described

earlier in this chapter: LL/SC-based locks and MCS locks. We include the LL/SC lock in this

study despite it being a fairly simplistic lock implementation because it is nonetheless widely used

in applications, and because load linked and store conditional operations are commonly provided

by many processor manufacturers. We study MCS locks since they provide essentially the highest

performance available from processor software techniques alone.

The simulation environment used in this chapter is the same one described in Sections 2.4.2

and 5.4.1. The only difference is that this study was performed after the switch to the CrayLink

network [Gal96], so we model it in our simulations.

Non-Contended Lock Acquisition

We first study non-contended locks, ones which are available when requested, using the acquire

latency metric introduced in Section 6.1.1. We measure non-contended acquire latency using a

hand-crafted microbenchmark that isolates the test to eliminate other activity in the system. The

results are shown in Table 6.2. As we described, the acquire latency varies based on whether the

nodes involved are the home node where the lock is allocated, so we explore the permutations of

whether the previous holder and new requester are the home node of the lock. The remote to remote

case considers the transfer between two different nodes, neither of which is the lock home. Finally,

since these locking primitives permit caching, we consider the acquire latency when the same node

re-acquires a cached lock it previously held. Cached re-acquire times are independent of where the

lock is allocated.

As expected, the results show that shared memory techniques allow low acquire latency for locks

which are available. In fact, the performance of LL/SC locks and MCS locks is nearly identical in

130 Chapter 6 FLASH Synchronization Primitives

Table 6.2: Acquire latency for an available lock (microseconds). The results are shown for the
three different locking primitives and with different combinations of lock requesters. TheFLASH

Aggressive variant is explained in the text.

Previous Lock Locking Primitive
Holder Requester LL/SC MCS FLASH FLASH

Normal Aggressive
Lock Home Remote 1.13 1.17 2.64 2.25

Remote Lock Home 1.06 1.11 2.43 2.06
Remote Other Remote 1.45 1.50 3.01 2.64

Same node re-acquire 0.03 0.07 0.12 0.50

these cases. For available locks, MCS locks perform little additional work as compared to LL/SC

locks, which is one of the benefits of the MCS technique.

Unfortunately,FLASH locks (Normal) are much slower than shared memory locks in the acquire

time metric for two specific reasons. First, the initial request for aFLASH lock takes longer than that

for shared memory locks. To acquire aFLASH lock, the processor first requests the lock status and

if it finds the token missing, only then does it request it via a PPR. This introduces an extra round

trip as compared to shared memory locks which immediately requests the lock from the initial miss.

As we explained earlier, the presence of speculation prevents us from launching the token re-

quest from the lock status read handler. Were the token request able to be launched there it would

decreaseFLASH lock acquire latency by about 0.45�s. One alternative exists in software that works

correctly despite processor speculation: within the lock library call we could issue the token request

blindly beforereading the lock status, essentially prefetching the token. The performance of this

approach is listed underFLASH “Aggressive” in Table 6.2. When the token is not present, this suc-

ceeds in reducing the acquire latency by approximately 0.4�s. In the case of lock re-acquisition,

the token request handler correctly ignores the request if the token is already present, however it still

ties up the protocol processor. This delays the subsequent lock status read if the lock is not cached,

increasing re-acquire time by about the same 0.4�s, or delays other reads such as accesses within

the critical section. The choice between these two flavors depends on the expectation of whether the

lock may be reacquired; these results suggest extending theFLASH lock API to provide this version

for cases where re-acquisition is unlikely.

Another approach to handling speculative requests from the processor is merely to ignore the

problem and request the token when the processor issues the lock state read. The timeout mechanism

in the protocol ensures correctness should speculation occur, though the latency could be as high as

several milliseconds. If speculative requests are sufficiently infrequent, this approach might increase

overall performance.

Section 6.1 FLASH Locks 131

The second reasonFLASH locks are slower is caused by the token movement protocol’s handling

of lock state cached by the processor. When a node’s request for the token reaches the current token

holder, several things must happen. First, the token holder must examine theMAGIC state to verify

that it has the token and expects to able to supply it. There are a number of cases in the protocol,

largely due to queueing, so this state check is nontrivial. Then, if it finds the lock state is cached by

the processor (typically the case) it must extract the state from the cache to see if the lock is currently

asserted. This request must wait for the processor cache’s reply and then examine the result, unlike

the cache coherence protocol’s forwarding which can launch the message early and allowMAGIC to

stream the data out the network as it arrives from the processor. These effects combine to make the

token request handler (NIRequestLockToken) inefficient for available locks, about 1.0�s overall.

Optimizations to this handler may improve the performance of the state check phase slightly, but

the processor cache request is fundamental and accounts for a significant fraction of the handler.

Contended Lock Acquisition

Despite the slow performance for uncontended locks,FLASH locks perform extremely well under

contention, i.e. when locks are found to be held by another processor when requested. The two

effects in particular which affect acquire latency do not impact contended lock hand-off latency.

First, the extra latency of token requests is hidden because the lock is held and cannot be supplied

immediately. Second, the token request is enqueued at the current holder, thus the cache access

is not in the critical path. Instead, when the lock is later released it is handed off directly to the

requester at very low latency.

To evaluate contended lock performance, we use a microbenchmark that reflects a number of

processors making one update each to a lock-protected data structure. This benchmark, like the pre-

vious one, carefully eliminates other activity in the system to isolate synchronization performance.

In fact, to reduce even the interference from accesses in the critical section, and to intensify the

contention to the theoretical worst case, we eliminate the data structure modification itself. Instead,

each processor merely acquires the lock and releases it immediately. Later in this section we con-

sider a different microbenchmark that simulates a lock being repeatedly acquired and released, to

study the performance of contended accesses arriving in a stochastic fashion.

In this benchmark, one processor (the lock home) acquires and holds the lock for a long time

while all the other processors request the lock and find it busy. Then the home finally releases the

lock and the benchmark begins, continuing until all processors are able to acquire and release the

lock a single time. In each of the lock primitives, steady state is reached during the initial wait phase

for the lock, which has two different forms: In the case of LL/SC locks, each node caches the lock

value indicating it is already held. When the lock is later released, these nodes all rush to the home.

132 Chapter 6 FLASH Synchronization Primitives

Table 6.3: Two results from the contended locking microbenchmark: hand-off latency and all-
acquire latency (microseconds).

Total Hand-Off Latency All-Acquire Latency
Processors (single lock) (NumProcs� 1 locks)

LL/SC MCS FLASH LL/SC MCS FLASH

2 1.7/1.1 0.8 1.0 2.8 1.5 1.4
4 3.3 1.5 1.0 10.5 9.4 4.5
8 6.3 1.6 1.0 28.5 19.4 9.5
16 10.1 1.6 1.0 77.4 40.8 18.5
32 17.0 1.6 1.0 189.8 85.9 39.3
64 30.4 1.6 1.0 449.2 174.9 75.7
128 57.4 1.6 1.0 1214.4 398.6 159.4

The queued lock primitives, on the other hand, construct a queue of waiters during this time when

the lock is unavailable, and then smoothly transition the lock down the list.

From this benchmark we can measure two useful quantities. The first ishand-off latency, in-

troduced earlier, which measures the time from the initial release until the first waiter succeeds in

acquiring the lock. This metric is useful to isolate the overhead from contended hand-off with no

other interference. The second metric is the total duration of the benchmark which we refer to as

all-acquire latency. Note that for a given number of processors,n, all-acquire latency measures

n � 1 total lock acquisitions and releases, since the home node holds the lock to allow the initial

condition to stabilize. While hand-off latency is a useful metric for isolating one effect, all-acquire

latency also includes other costs such as unlock overhead, and thus reflects the realistic performance

of a series of acquisitions in a row.

Table 6.3 shows the results of the benchmark for the primitives we study, over a range of ma-

chine sizes. We see that both MCS andFLASH achieve essentially constant hand-off latency, since

there is no contention within the release process as a result of the pre-constructed queue. LL/SC on

the other hand degrades in performance as more nodes rush for the lock when it is released. LL/SC

locks, unlike the other techniques, perform better when next lock holder is the home. The 1.1�s

hand-off latency corresponds to this case.

All-acquire latency results are also presented in Table 6.3; in addition, Figure 6.18 plots all-

acquire latency divided by the number of lock acquisitions (n� 1) the benchmark executes. In the

figure, a flat horizontal curve corresponds to ideal scalability—a lock with performance independent

of machine size. We see that both MCS andFLASH locks essentially achieve this ideal. The y-value

of the curve shows absolute per-lock time, which forFLASH (about 1.3�s) is lower than that of

MCS (2.8�s), as expected from the hand-off latency results. Note that the difference between the

two is larger than difference in the hand-off latency results since the all-acquire time includes unlock

Section 6.1 FLASH Locks 133

� LL/SC locks
� MCS locks

 FLASH locks

|

2
|

4
|

8
|

16
|

32
|

64
|

128

|0.0

|1.0

|2.0

|3.0

|4.0

|5.0

|6.0

|7.0

|8.0

|9.0

|10.0

 Number of Processors

 T
im

e
P

er
 L

o
ck

 (
m

ic
ro

se
co

n
d

s)

�

�

�

�

�

�

�

�

�

� � � �

�

Figure 6.18: Results from the high contention benchmark under simulation. The plot illustrates
average time in microseconds per lock, as a function of machine size (all-acquire latencydivided
by NumProcs� 1).

operations, which are also slower for MCS. LL/SC locks are inferior in every respect: the absolute

overhead is higher, and the curve’s positive slope reflects increasing overhead as the machine scales.

One other effect the hand-off latency and the figure both show is a jump in latency for MCS

locks from 2 to 4 processors and then essentially constant performance from then on. This arises

from the MCS unlock operation which is able to do less work when it reaches the end of the queue.

For two processors, the queue is only one-long, so this effect is visible there.

Contended Lock Acquisition (Real Machine)

Since the results for contended lock acquisition were generated from simulation, it is interesting to

verify our scalability conclusions using a real system where possible. Though a realFLASH system

is not yet available, we are able to evaluate the scalability of the LL/SC and MCS lock primitives

using a 16-processor Silicon Graphics O2000. The O2000 provides a reasonable comparison point

since it shares withFLASH the same processor and network. The major difference is that the O2000

uses a proprietary hardware node controller in place of theMAGIC chip, and our system only has

16 processors. Unlike simulation which allowed us full visibility into the processor, measuring

individual lock times accurately is not possible on the real system. However, we are able to measure

134 Chapter 6 FLASH Synchronization Primitives

� LL/SC
� MCS

|

4
|

8
|

16

|0.0

|1.0

|2.0

|3.0

|4.0

|5.0

|6.0

|7.0

|8.0

|9.0

|10.0

 Number of Processors

 T
im

e
P

er
 L

o
ck

 (
m

ic
ro

se
co

n
d

s)

� �

� �

�

�

�

�

�

�

�

�

�

� �

� �
�

�
� �

� � �

�
�

Figure 6.19: Results from the high contention benchmark running on the Silicon Graphics
Origin 2000 multiprocessor. The plot illustrates average time per lock acquisition (all-acquire la-
tencydivided by NumProcs� 1)

the all-acquire latency with reasonable precision using the 800 ns granularity hardware counter in

the O2000.

The O2000 results from the same contended lock benchmark are shown in Figure 6.19. We

see that the times per lock are uniformly slower than those from simulation (by a factor between

approximately 1.5–2). The absolute overheads for these primitives is a function of many different

effects, including the detailed processor and cache controller timing and so it is not surprising that

our simulator does not exactly match.

As for scalability, we see similar trends to those encountered in simulation. MCS time is nearly

constant, but does have a clear increase as more processors are involved. Despite our careful at-

tempts to isolate this benchmark while executing on a real system, an unknown effect or source

of interference is clearly at work here, unlike simulation where we are able to achieve complete

isolation and perfect visibility. LL/SC lock time increases as before, though in this case we see

significant performance degradation even at 16 processors, amplifying all the more the need for

queued locking even for small machines.

Section 6.1 FLASH Locks 135

Stochastic Contended Lock Acquisition

By design, the contention microbenchmark described in the previous section is very controlled,

to carefully isolate the performance of lock hand-off under contention. It is somewhat artificial,

however, since it allows the entire queue of waiters to be constructed in advance.

In this section we study a less contrived high-contention microbenchmark that interleaves lock

requests throughout its execution, similar to the one used in [KBG97] and [LA94]. This benchmark

is less convenient for isolating the exact performance costs because of the random nature of the

events it contains, but is somewhat more representative of the real performance an application might

encounter.

[The] microbenchmark: : : accesses a critical section in a loop repeatedly (the bench-

mark accesses the critical section a total of 3,200 times; these accesses are distributed

evenly among the processors). Once in the critical section, a processor waits 800 cycles

before releasing the lock (this stall simulates access to, and computation of, protected

data). After release, the releasing processor waits for a random time selected from a

uniform distribution. The mean of the distribution is five times the critical section delay

(4,000 cycles) [KBG97].

We attempt to tune the benchmark to match the delays used by these prior researchers, though

our different time and processor modeling is likely to cause the absolute magnitude of the results to

differ. In particular, we retain the factor of five difference between critical section length and mean

acquisition interval, in an attempt to provide the same degree of contention as previous studies.

Figure 6.20 illustrates the results for this benchmark, expressed as its total execution time. As

before, LL/SC scales poorly, causing lock throughput to degrade quickly. For MCS andFLASH

locks the execution time is essentially constant over a wide range of machine sizes (8–128 proces-

sors), which corresponds to desirable lock throughput independent of machine size. As the machine

scales, execution time does increase slightly as a result of requests to rejoin the lock queue. Overall,

the performance of MCS andFLASH do not significantly differ. Since a large fraction of the bench-

mark execution time is spent idling inside the simulated critical section, only a small fraction of the

time is actually spent in transitioning locks, and thus speedup is limited by Amdahl’s law.

These microbenchmarks foreshadow the results from application simulations we present in Sec-

tion 6.3. In some cases we find that extremely high contention for locks limits performance, and

in those situationsFLASH locks show gains from improving communication. In cases where the

contention is less severe, or represents only a small fraction of the application, we find that im-

provements fromFLASH locks are milder and tend to be similar to MCS, which also achieves the

bulk of the gains as compared to LL/SC.

136 Chapter 6 FLASH Synchronization Primitives

� LL/SC
� MCS

 FLASH

~

|

2
|

4
|

8
|

16
|

32
|

64
|

128

|0

|5

|10

|15

|20

|25

|30

|35

|40

|45

|50

 Number of Processors

 E
xe

cu
ti

o
n

 T
im

e
(m

ill
is

ec
o

n
d

s)

�

�

�

�

�

�

�

�
�

�

�

�

Figure 6.20: Performance of the stochastic contended lock microbenchmark under simulation. The
plot illustrates overall execution time of the benchmark, in milliseconds.

6.1.9 Related Work

Locking synchronization has been studied in many different contexts and by different approaches.

We present the related work most relevant toFLASH locks, and to the large scale parallel process-

ing environment we study. We focus in particular on one primitive,QOLB, as it is shares many

common characteristics with theFLASH lock. We also consider approaches to attack the artifactual

communication problem by avoiding locking altogether.

Graunke and Thakkar [GT90] present a performance comparison of synchronization primitives

for a bus-based multiprocessor. Their analysis advocates the use of back-off for locks experiencing

mild contention, or queue locks when the contention is significant. In their experiments using a

simple benchmark, queue locks were superior in most metrics past 5–10 processors on a Sequent

Symmetry.

In two related papers, Anderson [And89, And90] studies the performance of spin lock primi-

tives. These studies focus primarily on different kinds of delays between lock retries, designed to

reducing contention heuristically. The papers find that the exponential back-off technique, in which

a processor’s maximum wait time increases exponentially as contention repeats, is a practical ap-

proach for its simplicity and performance. Anderson also presents a queue lock primitive, but it is

inferior to the MCS lock in many respects.

Section 6.1 FLASH Locks 137

Earlier in this chapter we described in detail the MCS lock primitive introduced by Mellor-

Crummey and Scott [MCS91a, MCS91b]. Since their original papers, a number of researchers

have studied their primitive and described modifications to improve its performance in specific

situations. Herlihy et al. [HLS95] present a range of techniques for software counting including a

custom version of MCS locks for that purpose.

Magnusson et al. study the MCS lock primitive closely using analytical techniques and propose

two new lock primitives, the LH lock and the M lock [MLH94]. Their analysis demonstrates that

under contention the MCS lock release requires an additional memory read as compared to LH,

but that LH requires additional acquire traffic when locks are not reacquired by the same processor

successively.

The M lock uses an ingenious approach to optimize performance still further: packed with the

word storing the lock’s status it indicates the last writer of the lock. This allows the M lock release

routine to avoid a global write if a lock queue did not form when the lock was held, while still

allowing the lock to be released in a single operation if one did. The M lock thus improves global

traffic in some regimes as compared to MCS, which is especially valuable as systems scale, at a

cost of increased lock primitive code length, which may detract from its advantages in cases where

critical sections are small or contention is low. K¨agi et al. [KBG97] suggest that the extra cache

miss can be eliminated from the MCS lock by collocating the lock indication with the next pointer.

We use their approach in our implementation of MCS locks.

An approach calledreactive synchronizationis proposed by Lim and Agarwal [LA94] to address

the tradeoff between lock regimes. Instead of relying on a single lock variant for all situations, they

describe how the lock primitive can detect contention (from failed acquire attempts) and change to

a more resilient protocol. This allows the latency advantages of light protocols in low-contention

cases with the throughput benefits of protocols like MCS as contention increases. Though we do not

study this approach inFLASH, the ability to select different protocol characteristics withinMAGIC

makes this approach well-suited to our environment. In particular, this technique may be useful to

address the performance limitations of non-contendedFLASH locks, selecting a different primitive

in that regime instead. We reflect on the use of reactive synchronization-like techniques inFLASH

in Section 6.4.

The DASH system [Len92] provided an special facility in the protocol to implement a kind of

queued lock by extending the coherence protocol. Lock and unlock operations inDASH are accessed

through uncacheable alternate memory spaces but lock values otherwise appear as normal memory

locations, both similar to our approach.DASH provides an operation called agranting unlockwhich

invalidates only asinglerandom waiter for the lock instead of invalidating all processors as usual.3

This avoids a rush of requesters following an unlock.DASH also provides an operation to force a

3A random waiter is released because the bit vector coherence directory structure ofDASH does not maintain a notion
of ordering that could be used to provide FIFO access to the lock.

138 Chapter 6 FLASH Synchronization Primitives

line to its home, which is used at a lock release so the next holder’s request may be satisfied at home.

This combination of support helps to reduce lock contention, though it lacks the ability to transfer

locks directly from holder to holder provided byFLASH locks andQOLB.

Falsafi et al. [FLR+94] advocate the use of application-specific communication protocols to

increase performance using knowledge of an application’s characteristics. They describe a range

of custom protocol modifications including changes to the coherence model and granularity and

optimized synchronization. They refer to a message-based lock protocol built on top of the Tem-

pest interface that optimizes lock hand-off as compared to MCS locks. LikeFLASH locks, their

performance gains come from matching synchronization traffic to the underlying primitive rather

than layering on top of shared memory. Their paper does not describe the protocol itself, but their

results agree with our findings that custom synchronization support in this environment can show

significant gains.

One important observation is that their paper describes a fairly broad range of custom protocol

optimizations, among them coherence protocols that include update functionality. Several of these

optimizations are not possible in the currentFLASH prototype due to its processor interface and

system design choices we described previously. For example, update operations are not permitted

by the R10000 bus interface, andMAGIC does not implement a remote access cache to hold updates

in the memory system (though a RAC could be implemented in software).

Their study focuses on the Tempest interface running on the Blizzard-E system (described in

[SFL+94]), which allows them a wider range of operations but at far lower performance than a ded-

icated hardware implementation. A hardware Tempest implementation, such as Typhoon [RLW94]

would likely entail implementation-specific restrictions similar toFLASH.

Distributed Queueing: SCIand QOLB

Previous research work has proposed the use of distributed queueing for both cache coherence pro-

tocols as well as locking. One use of distributed queueing is to store the sharers of a cache line in

the Scalable Coherent Interface (SCI) coherence protocol [Mic93]. This approach differs from the

centralized sharer list approach ofFLASH, Alewife, and many others. Despite our positive results

using distributed queueing for locks, Heinrich found that an implementation of the SCIcoherence

protocol forFLASH was very complex [Hei97]. In particular this complexity arises because SCI-

maintains distributeddoubly-linkedlists, and must be able to remove sharers from anywhere in the

list to handle cache line replacements.

The QOLB synchronization primitive (Queue On Lock Bit, originally calledQOSB) was intro-

duced by the Wisconsin Multicube project, and then subsequently used to support locking in the

SCIprotocol [GVW89, KBG97, Goo97]. The most detailed explanation ofQOLB, including details

Section 6.1 FLASH Locks 139

acquire(line)
{

do {
while (QOLB(line))

; /* Spin */
} while (Test&Set(line.lock));

}

release(line)
{

Unset(line.lock);
UnQOLB(line);

}

Figure 6.21: Pseudo code for a lock implemented with theQOLB primitive, taken from [AGGW92].

of one proposed implementation within SCI, is provided by Aboulenein et al. [AGGW92]. Concep-

tually, theQOLB approach is very similar toFLASH locks. In fact, the basicQOLB interface can be

implemented directly on the existingFLASH lock primitive; we describe the features ofQOLB below

to explain the correspondence.

Figure 6.21 shows how locks are implemented using theQOLB primitive. In short,QOLB per-

forms three functions:(i) It indicates the processor’s intent to acquire the lock, and requests the lock

be fetched to the node. The parallels the token request PPR issued within theFLASH lock library.

(ii) It returns a result immediately to indicate if the line is currently present on the node. The value

it returns corresponds to the bit in theFLASH lock status line that indicates token presence. The

while loop in Figure 6.21 corresponds to a loop insideFLASHLock that spins waiting for the token

to arrive.(iii) It enqueues the requester on an SCIwaiter queue (using a specialQOLB mode) to pro-

vide FIFO access to the line and permit direct holder-to-holder hand-off.FLASH locks provide both

these characteristics by default for locks, since locks use a dedicated protocol instead of building on

conventional shared memory.

SinceQOLB is non-blocking, it can be used to prefetch the lock before it is actually needed,

an optimization studied in detail by Woest and Goodman [WG91]. TheFLASH lock API does not

currently provide this mode, but it could be supported merely by separating out the token request

from polling or spinning for lock arrival. The downside to prefetching in bothQOLB and FLASH

locks is that once the lock (or in our case, lock token) is granted to a node, other nodes are prevented

from acquiring the lock (during a timeout window) even if it has not actually been asserted. This

suggests that lock prefetching must be used carefully to avoid lengthening the effective critical

section duration.

The QOLB primitive doesnot acquire the lock itself, like the token request inFLASH. Both

protocols acquire the lock once the token is present (orQOLB returns success) using an atomic

memory update primitive such as Test-And-Set or LL/SC. SinceQOLB locks operate on normal

memory locations, use of theQOLB primitive itself is optional, since the atomic operation still

140 Chapter 6 FLASH Synchronization Primitives

operates correctly (though at lower performance) using normal shared memory mechanisms if the

line was not previously fetched. InFLASH locks, on the other hand, the token fetch isrequiredsince

they do not fall back to the normal cache coherence protocol likeQOLB.

This design difference leads to two other differences between the primitives. First, when a lock

is fetched inQOLB, it carries with it a line of data, which appears in the cache with the lock. This

prefetching-likecollocation effect can be very beneficial, particularly if the lock protects a small

data structure.FLASH locks cannot easily provide this feature because locks are treated separately

from cache coherence. Though this is a minor drawback to our approach, keeping the lock protocol

separate from the coherence protocol is one of the reasons that it is so compact, and thus performs

so well.

On the other hand this difference causesQOLB to suffer from an unfortunate flaw that occurs

if a lock line is replaced or if a processor tries to acquire a lock not already present in its cache.4

In those cases SCItakes over and performs anormal exclusive read, which destroys the queue of

waiters that accumulated. This does not violate mutual exclusion, but it does violate the FIFO

ordering guarantee and requires the queue be reconstructed (very likely in a different order).FLASH

locks prevent this failure mode since atomic operations only act on the local copy of the lock line,

with the queue being maintained reliably by the lock protocol onMAGIC. The timeout solution in

FLASH locks is also superior to that ofQOLB because their solution steals the lock in a manner that

often results in this queue breakdown situation. If aFLASH token holder takes too long and the

token is stolen, only that node is forced to request the token again.

QOLB has been evaluated using an analytical approach both for the basic primitive [AGGW92]

and focusing on the prefetching effect [WG91]. More recently,QOLB has been studied under sim-

ulation to compare it against other locking alternatives [KBG97]. At the level of detail of these

studies,QOLB andFLASH locks perform similarly, except that we do not explore lock prefetching

and can not readily support the ability to collocate data with locks given our current state implemen-

tation. The results of these studies show similar trends to ours, though the simulated microbench-

mark results predict larger gains fromQOLB over MCS than we experienced withFLASH locks.

This difference may arise from remote memory costs being higher under SCI(reducing the apparent

performance of MCS locks) or from differences in our microbenchmark timing.

In a recent technical report, K¨agi describes a purely software implementation ofQOLB called

SOFTQOLB[KG98]. This implementation uses the Blizzard run-time system [SFL+94] to provide

the Tempest interface on top of a cluster of commodity workstations. Since this environment differs

considerably from the one we study, the results of that paper are not readily comparable to ours.

4This can occur due to migration, multiprogramming, and from a race condition betweenQOLBreturning success and
the atomic update primitive.

Section 6.1 FLASH Locks 141

Avoiding Mutual Exclusion

One alternative to improving locking performance is to avoid the requirement for mutual exclusion

altogether. Researchers have explored several different approaches to this problem; in general they

require specialized hardware support or application software modifications. We discuss the first of

these primitives, Fetch-and-Op, in more detail in Chapter 7; a more detailed study of them is beyond

the scope of this dissertation.

The NYU Ultracomputer and the IBM RP3 (Research Parallel Processor Prototype) projects

introduce a synchronization operation called Fetch-And-Op [GLR83, GGK+83, PBG+85, FG91].

Fetch-and-Op performs atomic updates at the memory location itself using specialized hardware,

thus avoiding the pinging of contended lines between different processor caches. These projects also

explored a specialized interconnect called acombining network. The combining network switch,

described in Section 7.2.1, improves performance further in high contention scenarios by merging

different processors’ requests as they traverse the network, reducing multiple memory updates to

a single one. Fetch-and-Op is ideally suited to a class of simple critical sections such as dynamic

work distribution, it can also be used in concert with some of the techniques described below to

support more complex updates. The Cray T3D implemented a single Fetch-and-Increment register

per node to support work distribution; the T3E extended this support to operate on memory and

added Fetch-and-Add functionality as well [Cra93, Sco96].

Wait-free(also calledLock-free) synchronization techniques allow cooperating processes to as-

sure consistent data structure updates without using a lock-protected critical section. This can be

achieved by a number of software or hardware techniques. Herlihy [Her90] describes software

techniques that can be used to avoid mutual exclusion, including one technique in which processes

“help” each other so that updates by one processor do not cause another processor’s pending opera-

tion to become inconsistent.

More recently, Herlihy et al. [HM93a] describe hardware support to enable lock-free character-

istics at much lower overhead. This support, calledtransactional memory, provides the ability to

atomically update several memory locations at once and to detect other updates that render previous

accesses inconsistent, similar in concept to the semantics provided by transactions in a modern rela-

tional database. This approach is particularly appropriate for snoopy bus-based machines or cache-

coherent machines with sequentially consistent memory. In an environment likeFLASH containing

distributed memory and weak memory consistency, transactional memory requires additional mem-

ory fence operations to provide the appearance of sequential consistency.

As an alternative to using hardware support, Shavit et al. [ST95] present STM, a software-based

implementation of transactional memory using LL/SC. Their implementation constructs a table de-

scribing pending memory modifications, somewhat similar to the information stored in hardware

in the original paper. Their experiments using STM on the MIT Alewife machine show that it

142 Chapter 6 FLASH Synchronization Primitives

outperforms other non-blocking software synchronization approaches, but that STM and other non-

blocking techniques are inferior to queue locking methods such as MCS Locks.

6.2 FLASH Barriers

The second synchronization primitive we study is barriers. The semantics of a barrier is that a

processor which arrives at a barrier may not proceed past it until all other processors reach the

barrier as well. This functionality is often nicknamed arendezvous(meeting), since it forces the

execution of processors to meet before proceeding further.

Barriers are typically placed in applications with phase-based characteristics. There the barrier

is used to assure that no processor proceeds to a subsequent phase until all have finished the current

one. This is particularly important if values computed by processors in phasei will be read by other

processors in phasei + 1. Without the barrier, processors might read partially completed results

from phasei if, for example, a load imbalance has made the phase durations on each processor

differ.

High performance barriers are important in some classes of applications that synchronize fre-

quently. Scott [Sco96] describes a proprietary meteorological application in production use on the

Cray T3E in which a 128 processor system requires a barrier every 200�s. The T3E can achieve a

barrier in 15�s in software using special message passing features, or in approximately 2�s using

special barrier hardware support. We show later that even a highly optimized barrier implemen-

tation on top of cache-coherent shared memory can take 30�s for 128 processors. This section

presents a barrier protocol forFLASH that can achieve the same synchronization in 4.7�s, requiring

no additional hardware beyond the facilities already present inFLASH for cache coherence.

The outline of this section is similar to the section on locks. We begin in Section 6.2.1 by

describing a methodology for analyzing barrier performance. Then, in Section 6.2.2 we present

several conventional barrier implementations, to illustrate the strengths and weaknesses of these

approaches. We present the application programming interface of the newFLASH barrier in Sec-

tion 6.2.3, and then describe its design and implementation in Section 6.2.4. We show the code

organization and size in Section 6.2.5. We study the performance ofFLASH barriers in isolation in

Section 6.2.6 (application results for locks and barriers are presented later in Section 6.3). Finally,

Section 6.2.7 summarizes some additional related work in this area.

6.2.1 Metrics for Evaluating Barrier Performance

We begin our analysis as we did for locks by describing the desirable characteristics for barriers.

Then, since barriers are a more complicated synchronization primitive than locks we establish a

framework that can be used to compare different barrier implementations consistently.

Section 6.2 FLASH Barriers 143

The critical performance characteristic of barriers is achieving low overhead and high through-

put (i.e., barriers per second). Barrier overhead appears as the dead time during which some or

all the processors are forced to wait at the barrier even though all have arrived and satisfied the

required rendezvous. Conventional barrier implementations fail to achieve low overhead for many

of the same reasons as locks, in particular artifactual communication within the barrier primitive.

Moreover, since barriers necessarily involve all the processors, contention based performance degra-

dation can readily occur.

Low barrier overhead has scalability benefits for parallel applications. Since synchronization

represents time not spent doing useful work, applications are typically crafted to increase grain

size and decrease synchronization frequency. Reducing barrier overhead may enable finer grain

synchronization that eases application design, enables scalability in new application classes, or

increases the machine size to which existing applications can productively scale.

Besides hand-written applications, finer granularity synchronization can also benefit automat-

ically parallelized applications. The SUIF compiler [HAA+96] parallelizes applications by iden-

tifying independent threads (e.g., DOALL loops in FORTRAN), executing them in parallel, and

then synchronizing the processors with a barrier. The parallelism detected by the compiler is often

very fine, and thus reducing synchronization overhead is important to increase the fraction of loops

which can be sped up by parallelization. Due in part to high synchronization costs, coarse loops

are currently the primary focus of these compilers [BAR96, BAM+96]. Section 6.2.4 describes

how FLASH can support a unique kind of barrier tailored specifically to the structure of compiler-

parallelized applications.

Barrier Nomenclature

Isolating the performance of a barrier is more difficult than in locks for two primary reasons:(i) bar-

riers fundamentally require the participation of multiple processors, and so there is more parallelism

involved in the operation, and(ii) there are some interactions between barriers and the application

that executes them. To isolate these effects, we define two metrics below that serve to analyze the

two main components of barrier performance while at the same time reducing the interference from

application behavior.

We begin by establishing some nomenclature for barrier operation; Figure 6.22 illustrates a

generic barrier instance. For this analysis, the actual processor numbers are not significant, we

focus instead on the relative indices with which processors join and leave the barrier.

On the left side of the figure are the arriving processors, named symbolically by the order in

which theyjoin the barrier:J1 : : : Jn. Our analysis considers a processor to have joined the barrier

when itbeginsexecution of the barrier primitive in the program. Furthermore, we say that arrivalJi

occurs at timetJi , thus the array of arrival times is denotedtJ1 : : : tJn .

144 Chapter 6 FLASH Synchronization Primitives

n−1J nJ Rn−1 RnJ1 J2 R1 R2

Release Latency

n−1Jt nJt Rn−1
t Rn

ttJ1
tJ2

tR2
tR1

Time

Barrier
condition
satisfied

Fall−through
Latency

Figure 6.22: Barrier nomenclature illustration, showing fall-through latency and release latency.

Similarly, the right side of the figure names the processors beingreleasedfrom the barrier:

R1 : : : Rn. Processors are released when theyfinish executing the barrier primitive and resume

application processing, designated in a similar way:tR1
: : : tRn . Note that the join and release

orders need not be correlated, i.e., the first joining processorJ1 need not be the one released first,

R1, etc.

Barrier Fall-through Latency

The first metric of barrier quality, as illustrated in Figure 6.22, is referred to asfall-through latency.

Fall-through latency indicates how long the barrier takes to process the final arrival andbegin re-

leasing processors (i.e., the latency from the last arrival at the barrierJn until the first processor is

releasedR1). We can therefore define fall-through latencytft as follows:

tft , tR1
� tJn

One goal of a barrier implementation is to minimize this fundamental latency since it reflects time

whenno useful work is being done by any processors. In an ideal barrier, once the final processorJn

arrives at the barrier (satisfying the barrier condition) the processors would immediately be released.

In practice, the fall-through latency is a non-zero interval during which the barrier communicates

the final arrival, realizes that the condition has been satisfied, and notifies the first processor.

We define fall-through latency to carefully exclude the interval[J1; Jn] since the arrival times

themselves arenota characteristic of the barrier, they are a characteristic of the application in which

the barrier executes. The nature of the arrival times does have an effect, however, since they may

change the contention within the barrier implementation. Fall-through latency is thus not a constant

for a particular barrier implementation, but varies. We study two cases for fall-through latency:

The best possible fall-through latency for the barrier primitive is achieved when all the proces-

sors but one have arrived at the barrier well in advance oftJn . In this case, the final arrival finds

the least contention within the barrier since every other processor is idling. We call this the “late

arrival” case.

On the other hand, the processors might arrive at the barrier at exactly the same time. This

case might occur in particular if the application phase is short and there is little opportunity for

Section 6.2 FLASH Barriers 145

load imbalance across the processors. In that situation, called the “simultaneous arrival” case, the

processors experience contention within the barrier andtft increases. Each implementation varies

in the severity of the performance degradation caused by simultaneous arrivals.

An important goal of any barrier implementation is to avoid performance degradation associated

with coincident arrivals. The motivation for this is clear: simultaneous arrivals at the barrier are the

bestachievable load balance in the system! If the barrier operates more slowly in that situation, it

detracts from system performance in this otherwise desirable case.

Barrier Release Latency

The second metric of barrier quality, as illustrated in Figure 6.22 is referred to asrelease latency.

Release latency corresponds to the latency from when the first processor is released from the barrier

R1 until the last processor is releasedRn. Thus, we can define release latencytrel as follows:

trel , tRn � tR1

Unlike fall-through latency, which varies based on the stochastic nature of the arrivals, release

latency is to first order a pure characteristic of the barrier itself. In an ideal barrier, release latency

is zero, corresponding to all processors being released simultaneously. In practice, the barrier takes

a finite time to communicate to the other processors that the barrier has been achieved and release

them. In fact, this release phase is subject to contention if implemented inefficiently, which may

explode as the number of processors increases.

The second goal of a barrier implementation is to reduce release latency. This is desirable for

several reasons. First, releasing processors at different times may introduce a load imbalance in the

system at the start of the subsequent phase. A more simultaneous barrier release thus provides better

characteristics to the programmer. It may also allow communication in the subsequent phase to be

more carefully crafted or provide timing measurements a consistent starting point.

More concretely, release latency reflects the amount of timewastedin the barrier primitive’s

release phase, and thus release latency should be minimized. For example, if we assume that proces-

sors are released uniformly over the interval[tR0
; tRN], then the average time wasted per processor

in the barrier istft + (tRN � tR0
)=2 = tft + trel=2. In general, once the barrier is satisfied, it takes

betweentft andtft + trel for a processor to emerge.

6.2.2 Conventional Barrier Implementations

In this section, we study several indicative barrier implementations on top of shared memory to

identify their characteristics and limitations. As in locks, this dissertation does not attempt to ex-

haustively cover the extremely broad range of software barrier implementations that have been pro-

posed in the literature. Other researchers have studied these alternatives in the context of a variety

146 Chapter 6 FLASH Synchronization Primitives

Join Release Join ReleaseSerial

Figure 6.23: Schematic illustration of barrier primitive types: conventional and master-slave. The
conventional barrier (left) joins all processors and then releases them all simultaneously. The
master-slave barrier (right) joins all processors then releases a single one for a serial/coordination
phase. The master then releases the slaves with an explicit command.

of systems [MCS91a, FG91, MCS91b]. Our analysis instead selects a range of primitives that are

very common, or illustrate key concepts that are useful in guiding our design. We focus on the MCS

Barrier [MCS91a, MCS91b] in particular as a comparison point againstFLASH barriers, since it has

the highest performance of the conventional algorithms in most cases.

The primary focus of this analysis is on implementations that provide the basic barrier function-

ality in which all processors rendezvous and then are released simultaneously. A slightly modified

barrier primitive is appropriate in some applications such as auto-parallelizing compilers. In the

modified barrier, which we refer to as amaster-slavebarrier, the processors rendezvous as usual,

except that only a single processor (the “master”) is initially released. This allows the master to per-

form some coordination work in isolation such as setting up parallel computation for the “slaves”.

Then using an second release routine the master explicitly releases the slaves to complete the barrier.

Figure 6.23 illustrates the difference between conventional and master-slave barriers. We present a

barrier specially designed for master-slave functionality and also show how other barrier implemen-

tations can be converted to a master-slave style.

LL/SC-Based Barrier

We begin as in locks with a simple barrier implementation, which is based on an atomically-updated

count of waiters. The pseudo code for this implementation appears in Appendix B, Figure B.3.

When each processor arrives at the barrier, it increments the count using LL/SC to guarantee atom-

icity. Associated with the barrier is also ageneration numberwhich indicates which barrier in-

stantiation is currently underway. To implement the release portion, a processor reads the current

generation number and then spins waiting for it to change. The last processor to arrive resets the

count and increments the generation number.

Though it does not contain an explicit lock, this barrier suffers from essentially the same con-

tention problem occurring in LL/SC locks described in Section 6.1.2. Access to the barrier count

not only swamps the home node with requests, but also experiences repeated failed SC attempts

Section 6.2 FLASH Barriers 147

4 5 6 71 2 30

0 2 4 6

0 4

0

Figure 6.24: Example binary tournament barrier tree for an 8-processor application. In this ex-
ample, pairs of nodes at each power of two modulus meet in successive rounds, requiring several
meetings by some nodes.

if multiple processors attempt the update in close proximity. As a result, the effective traffic to

achieve this barrier may grow exponentially in high contention cases (since each additional proces-

sor may cause each other processor to fail). In practice, as our microbenchmark results show, this

barrier’s performance under contention is so poor that it is practically unusable for system sizes of

32 processors or beyond.

Tournament Tree Barrier

As the machine scales, contention for the centralized data structure in the LL/SC barrier implemen-

tation skyrockets. A technique proposed by may researchers to address this problem is to implement

instead a barrier tree data structure. Hengsen et al. [HFM88] proposed a special tree barrier imple-

mentation called a Tournament barrier which uses repeated pairwise synchronization. After every

synchronization, one of the two processors proceeds to the next level to synchronize with another

processor. This approach, illustrated in Figure 6.24, forms a type of tree in which any meeting

experiences contention from only two processors. It can also be generalized to form a tree of any

dimensionality orradix (i.e., a binary or “2-ary” tree has radix 2). The algorithm we study uses two

such trees, one for joining the barrier (shown in Figure 6.24) and another where processors spin to

be released (not shown).

Since LL/SC barriers scale so poorly, we use a basic tournament tree barrier implementation as

the baseline for our application measurements later in this chapter. The implementation we use was

written by Chris Holt as part of theFLASH project. Pseudo code for this implementation appears

in Appendix B, Figure B.4. In this implementation, each tree node rendezvous is performed by

updating a lock-protected count. By distributing the work across the machine, the contention for

any lock is low, but a small degree of artifactual communication from the embedded lock is possible.

148 Chapter 6 FLASH Synchronization Primitives

4 5 6 7

1 2 3

0

Figure 6.25: Example 3-ary barrier join tree
for an 8-processor application.

4 5 6

7

1 2

3

0

Figure 6.26: Example binary (2-ary) barrier
release tree for an 8-processor application.

MCS Tree Barrier

Mellor-Crummey and Scott [MCS91a] present an optimized barrier structure that improves perfor-

mance still further through a combination of techniques. The pseudo code for the MCS barrier

implementation appears in Appendix B, Figure B.5. Unlike most previous barrier approaches, MCS

barriers use no locking within their implementation. Instead, each processor is reserved a dedicated

flag location to write in its parent’s node in the tree. Since there are never multiple writers, locking

is not required beyond the atomicity of a single write, which is guaranteed by the processor.

These flags are also intentionally packed together in the parent’s structure, which causes false

sharing. Our simulations show a counterintuitive benefit from this approach as compared to one

where each flag is on its own cache line, even in the simultaneous arrival case. Despite the false

sharing it causes during the writes, packing the flags reduces the total number of misses the parent

must take to read its children’s arrivals. In addition, the cache coherence protocol uses forwarding

to transfer lines between false sharing processors, which is fairly efficient.

The MCS barrier uses a different tree structure than the tournament barrier; hypothetical join

and release trees of this type are illustrated in Figures 6.25 and 6.26. The benefit of this type of

tree is that each node is only required to update a single flag when it arrives, unlike the loop that

may walk several tree levels in the tournament-style barrier. Likewise, they also enable significantly

simpler release logic, which reduces release latency considerably as compared to the tournament

barrier. Note that there is no reason the join and release trees must have the same topology; in this

case we show a release tree using a different radix than the join tree.

MCS barriers can also be adapted to provide master-slave functionality merely by returning

from the barrier at the root before releasing the children. A second primitive (not shown) can be

used to release the children as usual once the master finishes executing the serial computations.

Section 6.2 FLASH Barriers 149

Basic Master-Slave barrier

The third primitive we consider was used in a study of the SUIF auto-parallelizing compiler, and

designed specifically to provide master-slave functionality [BAR96]. This primitive is not a tree

barrier, but instead is a very simple approach to achieve efficient barriers at small machine sizes. Its

pseudo code appears in Appendix B, Figure B.6.

Like MCS barriers, this implementation contains an array of integer flags that are updated in-

dependently, avoiding the need for atomic update techniques. It also packs its flag array within the

same cache line, causing false sharing. This simple implementation performs very well up to about

8 processors, as do the low-radix tree node joins in MCS barriers. As the number of processors

grows, however, performance quickly degrades from the contention for the barrier array.

6.2.3 FLASH Barrier Application Programming Interface

As in locks, we present a library call interface to the barrier primitive, with barriers referenced by

a numbered array. Though in practice an application usually needs only one barrier, we support

an array in case, for example, several subsets of an application’s processors want to use barriers

independently.

void FLASHBarrier (int barrierNumber, int index);

FLASHBarrier indicates that the processor with indexindex has reached the given barrier. This

primitive returns once the other processors reach the barrier as well. Before this primitive can be

used, it must first be configured. As we describe in the next section, this configuration constructs

the barrier tree internally between the involvedMAGIC chips. We provide a routine that constructs

a variable-radix barrier tree:

void InitFLASHBarrier (int barrierNumber, int index,
int totalProcs, int joinRadix, int releaseRadix,
int masterSlave);

This routine constructs the portion of the join and release trees for processorindex (out of a total

of totalProcs).5 It communicates the tree information toMAGIC using a PPC that we describe

later in this section. It can generate join and release trees of the same or different radix as specified

by the parameters.

Just as in locks, the operating system is required to export an interface to provide the page

mappings for access toMAGIC. As before, a memory-based interface allows the barrier resource

to be numbered beginning at zero for each application, hiding the sharing of physical machine

resources from the user.
5Note that we do not specify the actual processor numbers in this interface. Instead we rely on the operating system

to provide information about the mapping between application processor indices and physical processor allocation.

150 Chapter 6 FLASH Synchronization Primitives

Master-SlaveFLASH Barrier

FLASH barriers can also provide master-slave barrier functionality. The additional parameter for

barrier initialization above,masterSlave can be used to select this barrier feature. In this mode,

only the root processor (index zero) is released when the barrier is satisfied. Once it has finished the

needed coordination processing, it releases the other processors using an additional call:

void FLASHReleaseBarrier (int barrierNumber);

Goals ofFLASH Barriers

Our barrier protocol is specifically geared to combat the problem of artifactual communication by

matching the underlying communication to the barrier operation. This allows the protocol to avoid

high contention for shared barrier state and eliminate negative acknowledgements altogether. Fur-

thermore, by eliminating communication artifacts the protocol reduces the impact of simultaneous

barrier arrivals, bringing the average performance closer to the “late arrival” best case.

The second goal is to reduce the barrier overhead as reflected in the fall through and release

latencies described earlier. Ideally, by reducing overhead we may be able to provide a primitive that

performs efficiently over a wide range of machine sizes.

6.2.4 FLASH Barrier Implementation

TheFLASH barrier implementation uses some of the same concepts as theFLASH lock primitive in-

troduced earlier in this chapter. Even though barriers seem like a more complicated operation than

locks given that all processors are involved, it turns out that the barrier protocol is fairly straightfor-

ward.

This occurs for several reasons. First, barrier trees are set up statically, unlike the queues in

FLASH locks which are constructed dynamically. Thus, eachMAGIC knows in advance its “place”

in the barrier. Furthermore, unlike locks, where a centralized resource (the token) is ultimately the

focus, barriers lend themselves to parallelism through the tree structure. Thus, no centralized home

is needed to direct the operation as was the case with token requests. Finally, there are fewer race

conditions in barriers, since the state is very regular.

The resulting barrier protocol achieves excellent performance, contains absolutely no artifac-

tual communication or negative acknowledgements, and is very compact (as we describe in Sec-

tion 6.2.5).

Barrier Tree Construction and Terminology

Fundamental to the operation ofFLASH barriers are two distinct barrier trees.FLASH barriers use a

tree structure like that of MCS barriers but the tree structure is stored byMAGIC and is never directly

Section 6.2 FLASH Barriers 151

Parent
8

5 4 3 2 1

8 8 8 8 8

Join Tree

1 1 1

S
Join

Count
Join
Total Count

Rel.
Total

3 3 3 3

Rel.
T I

1

R
Release Tree Child Array

Figure 6.27: Barrier protocol internal state format.

visible to applications. As introduced earlier, Figure 6.25 shows a hypothetical barrier join tree. For

FLASH barriers, join tree vertices correspond toFLASH nodes while edges correspond to messages

carrying requests to join the barrier. Note in particular that interior vertices of the tree coincide

with FLASH nodes as do leaf vertices. Before a node can send a message to its parent in the tree, it

must have received join requests from all its children as well as the local processor. Leaf vertices

each only receive a single join request, from the local processor. Similarly, Figure 6.26 illustrates

a release tree for the same nodes. Here the edges correspond to release messages indicating the

barrier has been satisfied.

To represent these trees internally, each node inMAGIC maintains an 8-byte record for each

barrier. Figure 6.27 shows the internalMAGIC barrier protocol state format used to store this infor-

mation. The barrier configuration in this state is stored statically and is provided to the localMAGIC

by a PPC performed within the barrier initialization call. The version we show uses 8-bit pointers

and can thus support systems up to 256 processors. Larger systems can be supported by reducing

the number of children permitted and increasing the pointer size. The fields are used as follows:

Root (R) Set if this node is the root of the barrier tree.

Sense(S) A toggling sense bit indicator used in reporting barrier completion to the processor. This

is used to avoid a race condition in processor-MAGIC communication and improve perfor-

mance.

Two Phase (T) Indicates whether the barrier is configured for two-phase operation, which causes

release behavior to differ at the tree root.

Initialized (I) Indicates the barrier has been configured and is ready for use. Access to an unini-

tialized barrier should deliver an exception to the application via the operating system.

Join Count This count tracks thecurrent number of processors which have arrived at the barrier.

This consists of messages from the network as well as join indications from the local proces-

sor.

Join Total This read-only field stores the total number of joins expected at this node; when that

many is received the vertex can notify its parent. The value in this field is larger than the

Release Total because it counts the local processor join as well.

152 Chapter 6 FLASH Synchronization Primitives

Release CountWhen a barrier release has only partially completed due to outgoing network queue

limitations, this field stores the number of children which have been notified. By separating

join and release, early-released processors can join again immediately without affecting the

release.

Release TotalThis read-only field stores the number of release tree children for this node, which

corresponds to the number of valid children in the release tree child array.

Join Tree Parent Indicates the barrier join tree parent node, unused for the root node (we detect

the root using the R bit for higher performance).

Release Tree ChildrenA packed bit vector of release tree children, the nodes which must receive

a release indication when the barrier is achieved.

Though our approach benefits all application sizes, it is especially suited for large-scale parallel

applications, since those are the ones which tend to use barriers the most, and tend to suffer the most

from the artifactual communication in software techniques. For performance, those applications

also typically run with processes attached to a particular processor, thus our choice of static barrier

trees is appropriate. However, due to the static tree the barrier must be reconfigured should the

process/processor mapping change due to machine scheduling or multiprogramming (this function

could be performed transparently to the application by the operating system communicating with

MAGIC).

A related effect arises from parallel applications running in degenerate modes such as with

multiple processes on single processor. This situation is supported by the protocol, but the tree

must be configured that way in advance by incrementing the Join Count field. Thus it merely

appears as if multiple barrier participants are joining on the local node. Here, as in the case above,

multiprogramming effects which cause the processor mapping to change require the barriers be

reconfigured.

Barrier Join

The join phase of the barrier begins when the first processor callsFLASHBarrier . The barrier join

is similar to the token request in locks, but with a small difference. In locks, the cache is checked

first to see if the token is present before it is requested. In barriers, no tokens are used—instead,

the processor immediately issues a PPR toMAGIC asking to join the barrier. This PPR is analogous

to the token request in locks: since it is uncached, the barrier join operation is reliable and atomic.

The join PPR is a read, and it returns the value of the barrier sense indicatorbeforethe barrier. The

sense indicator is a single bit that toggles when the barrier is achieved.

The library call then requests the cacheable barrier state, which is provided by the barrier proto-

col and not the cache coherence protocol (similar to the wayFLASH lock state requests are handled).

Section 6.2 FLASH Barriers 153

For barriers, this state contains merely a single valid word that is the current value of the barrier

sense indicator. The barrier spins on this value until it is the opposite of the starting sense returned

from the initial PPR. By returning the starting sense indicator value from the PPR we avoid a race

in which the barrier is satisfied after the PPR but before the barrier status is requested (this might

occur if the processor is the very last to arrive). By relying on the starting sense value from the PPR,

the processor immediately detects the barrier as satisfied when the cacheable state returns.

Within MAGIC, the join request cues the barrier tree to be consulted. If the join represents the

last join expected at this vertex of the join treeMAGIC sends a join message to its parent in the tree.

This carries on until ultimately the final join arrives at the root, cueing the root node to begin the

release phase, described below.

The protocol code for the join phase is very compact. The only exceptional case arises when a

join arrives in the network that cues a message to the next level of the tree. If network queue space

is not available for the outgoing join message the software queue is needed to issue the message

later. Fortunately, the software queue retry always succeeds since the SWQ is selected only when

queue space is available.

Barrier Release

When the final join reaches the root,MAGIC begins the release phase. Each release event causes

three actions to occur:

� It updates the barrier state to reflect the release. This includes toggling the sense indicator

both to indicate the barrier is satisfied and to prepare for the next barrier. It also initializes

the join counts so that the barrier operates correctly in case some processors join the barrier

again before all others have been released.

� It invalidates the local processor’s cached barrier state to indicate the sense has changed.

� It sends messages to its children in the release tree, indicating they should release in turn.

Meanwhile, the processor barrier routine is spinning on the sense bit in the barrier state. When

it receives the invalidation, it requests the state again, detects that the barrier sense bit has changed,

and exits the barrier routine allowing the application to resume.

Within MAGIC the release phase has similar network deadlock concerns as does the join, in fact

slightly more complex. When a release message arrives at a node, it often must sendmultiplerelease

messages out to the next level of the tree. The software queue is needed here as well and in fact

several retries may be needed depending on the release tree radix.

154 Chapter 6 FLASH Synchronization Primitives

Master-Slave Barrier Variant

Supporting the master-slave barrier variant [BAR96] requires only a small modification to the pro-

tocol. The root node normally detects the barrier is complete and then launches the release. For

barriers marked as master-slave, the satisfied barrier notifies only the root processor (by invalidat-

ing its cache) and then stops. By requiring the master processor to be the root of the barrier trees,

releasing the master alone is straightforward.

The master then detects in the standard way that the barrier has been satisfied and can perform

coordination processing. Once it finishes, its call toFLASHReleaseBarrier cues the protocol

to begin the release phase by notifying the children in the release tree.

6.2.5 Protocol Handlers

As in locks, the barrier protocol is very compact, allowing it to work in tandem with cache co-

herence without degrading performance significantly from cache effects. Table 6.4 enumerates the

handler components of the protocol, which is slightly larger than 2 KB in total. The compactness

in this protocol arises from many of the same characteristics as in the lock protocol, described in

Section 6.1, including the use of a special coherence protocol for barrier state accesses.

6.2.6 Barrier Performance in Isolation

In this section we evaluate the performance of theFLASH barrier protocol using the metrics intro-

duced in Section 6.2.1. We study barrier primitives in the context of microbenchmarks that iso-

late the two extremes of barrier performance: late arrival and simultaneous arrival. We also study

the range of barrier primitives introduced earlier, to compareFLASH barriers against existing tech-

niques. Finally, we briefly consider master-slave barrier primitives. In that case we consider the

basic master-slave barrier as well as a master-slave variant of the MCS barrier. We describe several

master-slave implementations usingFLASH barriers, highlighting the benefit that flexibility provides

for allowing protocol customization. Later, in Section 6.3, we consider the performance impact of

FLASH barriers in the context of SPLASH-2 applications. This section uses the same simulation

environment that was used for locks.

Fall-through Latency

We begin our analysis with barrier fall-through latency (tft) for the range of primitives we study.

Recall that fall-through latency corresponds to the latency from the last arrival at the barrier until

the first processor is released. This latency is not constant but instead varies based on the processor

arrival characteristics. The best performance occurs in the late arrival case in which all but one

processor is waiting at the barrier and the final processor arrives much later. Table 6.5 presents

Section 6.2 FLASH Barriers 155

Table 6.4: Summary of theFLASH barrier protocol handlers.

Handler Name/ Description
Handler Size (bytes)

BarrierStatusRead
112 B

The “cache miss” handler for the barrier coherence protocol.
This provides the processor with the current barrier sense indica-
tor value, that toggles when the barrier is achieved.

BarrierReplacementHint
16 B

This handles barrier state being replaced from the cache. Unlike
locks, the barrier protocol does not need to track the caching of
barrier state, so this handler is merely a nop.

PIBarrierJoin
568 B

Accepts a processor request to join the barrier. This is invoked
explicitly by the barrier join PPR.

PIBarrierRelease
232 B

For master-slave barriers,FLASHReleaseBarrier causes
this handler to release the other waiters once the master’s co-
ordination processing is complete.

NIBarrierJoin
552 B

Accepts a join request from the network. If all nodes have joined
it passes the join to the next level of the tree, or begins the release
phase (if the join has reached the root).

NIBarrierRelease
272 B

Accepts release requests and propagates it to the children in the
release tree.

ReleaseBarrier
176 B

A shared subroutine that sends release requests to the children in
the tree. Shared by NIBarrierRelease and SWBarrierRelease.

SWBarrierJoin (88 B)
SWBarrierRelease (224 B)

Software Queue handlers to resume a join or release suspended
by queue limitations.

Total size: 2240 B

the late arrival fall-through latency for the barrier primitives we study, using the root node as the

final processor to arrive. At the other extreme, simultaneous arrival, every processor arrives at the

barrier at exactly the same time. In this case, contention for barrier resources is at its greatest and

performance decreases as a result. Table 6.6 presents the fall-through latency for simultaneous

arrival.

In practice, the barrier performance falls somewhere between the two extremes of late and si-

multaneous arrivals. Moreover, these tests were carried out in carefully-crafted isolation to eliminate

other activity in the system. Within an application, the current activity in the system such as that

from the cache coherence protocol may affect the barrier performance in ways other than those

reflected in these tests.

For late arrival, LL/SC performs well up to 16 processors, but for larger sizes and for even

small systems under simultaneous arrival its fall-through latency explodes from contention for the

barrier data structure. This contention clearly motivates the need for tree barriers for even mild-sized

systems.

156 Chapter 6 FLASH Synchronization Primitives

Table 6.5: Barrier fall-through latency (tft) for late arrival, using a range of primitives and parame-
ters (microseconds). For consistency, the tree root processor is the last one to arrive at the barrier.

Total LL/SC Tourn Tourn MCS MCS MCS FLASH FLASH FLASH FLASH FLASH

Procs. 2-ary 4-ary 2-ary 4-2-ary 4-ary 1-ary 2-ary 3-ary 4-ary 5-ary
4 3.6 4.9 4.8 2.5 2.6 3.7 1.4 1.4 1.4 1.4 1.4
8 3.6 4.8 4.8 2.5 2.5 5.3 1.3 1.4 1.4 1.5 1.5
16 3.7 4.9 4.9 2.5 2.6 5.7 1.3 1.4 1.4 1.5 1.5
32 73.5 5.0 4.9 2.6 2.5 5.9 1.3 1.4 1.4 1.5 1.5
64 186.8 5.1 5.0 2.6 2.6 5.9 1.3 1.4 1.4 1.5 1.5
128 771.6 5.2 5.1 2.6 2.5 5.8 1.3 1.4 1.4 1.5 1.5

Table 6.6: Barrier fall-through latency (tft) for simultaneous arrival, using a range of primitives and
parameters (microseconds).

Total LL/SC Tourn Tourn MCS MCS MCS FLASH FLASH FLASH FLASH FLASH

Procs. 2-ary 4-ary 2-ary 4-2-ary 4-ary 1-ary 2-ary 3-ary 4-ary 5-ary
4 8.4 10.4 15.3 6.7 7.1 8.4 2.6 2.1 2.0 2.0 2.0
8 25.8 15.0 18.8 10.8 11.2 14.0 4.9 2.7 2.6 2.6 2.5
16 70.9 18.3 28.4 15.9 16.1 18.6 9.5 3.3 3.2 2.9 3.1
32 171.4 21.9 32.6 20.1 19.3 22.6 18.7 3.9 3.7 3.5 3.0
64 419.6 25.7 40.8 26.2 26.0 29.3 37.3 4.6 4.5 4.0 4.2
128 1000.2 31.6 45.7 32.9 30.3 34.6 74.4 5.5 4.6 4.7 4.4

The first tree technique, the tournament tree barrier (“Tourn”), scales much better though it is

essentially the slowest absolute performer of all the tree primitives. For late arrivals, the tournament

tree structure easily explains the result, since the last arrival must traverse the several rounds of

the tournament even if it is the root. For simultaneous arrivals, contention for the lock at each

round causes the performance degradation as compared to late arrival. Note especially that the

4-ary tree performs slightly better for late arrival since it reduces the depth of the tree, while the

2-ary is superior for simultaneous arrival since contention is higher when barrier rounds involve 4

processors.

The MCS barrier scales similarly to the tournament barrier, though its absolute performance is

slightly better. For MCS we show not only 2-ary and 4-ary join trees but also a hybrid barrier using

radix 4 for join and radix 2 for release, referred to as MCS 4-2-ary. This additional variant allows

us to isolate several interesting effects.

For late arrivals, the traditional tree structure used by MCS allows the tree root to join with

only a single round, unlike the tournament approach. This accounts for the difference between the

2-ary fall-through latency for MCS and Tourn. Aside from the number of rounds, by comparing

the 4-processor late arrival result for a 2-ary Tourn and 4-2-ary MCS (each of which has only one

Section 6.2 FLASH Barriers 157

round), we see that the pre-computed tree of MCS is also more efficient than the dynamic tree

calculations performed in the tournament barrier.

Finally we present theFLASH barrier, which for tree radix of 2 or more outperforms every other

technique at every machine size. We presentFLASH barriers with tree radix 1 (corresponding to a

line of processors, a degenerate tree) to illustrate that the communication within the primitive is very

efficient. Up to 32 processors, even this naive barrier configuration outperforms the MCS barrier.

It also shows the benefit provided by a tree for simultaneous arrivals. Though increasingFLASH

tree radix provides essentially monotonic improvement, the bulk of the gains is achieved merely by

radix 2.

In the simultaneous arrival case, the benefits ofFLASH barriers are particularly evident. Under

the contention simultaneous arrivals cause, every other technique incurs some form of artifactual

communication, the impact of which increases with machine size. By matching the inherent com-

munication needed by a barrier, theFLASH technique eliminates these artifacts and achieves nearly

an order of magnitude speedup at 128 processors as compared to the next best technique, the MCS

barrier.

The results also show an interesting result that is not immediately obvious: late arrivaltft for

FLASH barriersincreaseswith increasing radix. This effect can also be seen in the difference be-

tween late arrival fall-through latency in MCS 4-2-ary and MCS 4-ary. Even thoughtft measures

only the initial release from the barrier, this effect occurs from the increase inreleasetree radix. In

a tree barrier, the root is the first processor released, so the fall-through latency generally reflects

the time for the root to emerge. When the radix grows, however, the root must perform more work

(i.e., release more processors) before leaving the barrier primitive. In the case of MCS, this work

happens inline in the barrier software, and thus the increase in late-arrivaltft between MCS 4-2-ary

and MCS 4-ary is noticeable, 2.8�s at 128 processors. The same effect occurs inFLASH barriers but

in a different way. Unlike MCS, once the barrier is achievedMAGIC notifies the tree root processor

immediately. However, before that processor can leave the barrier, it must fetch the status word and

view the barrier sense change. That miss cannot be satisfied byMAGIC until the barrier protocol

handler finishes releasing the root’s children. Fortunately, inFLASH unlike MCS the difference is

very small, only 0.1�s at 128 processors.

Release Latency

The barrier release latency results are very straightforward to analyze, and are completely indepen-

dent of the nature of the barrier arrivals. We therefore present a single set of release latency results,

shown in Table 6.7, that applies to both late and simultaneous arrivals.

LL/SC barrier release is inefficient, as expected, due to the rush of requesters to read the barrier

generation number when updated by the home. Surprisingly, the release phase in tournament tree

158 Chapter 6 FLASH Synchronization Primitives

Table 6.7: Barrier release latency (trel) for a range of primitives and parameters (microseconds).

Total LL/SC Tourn Tourn MCS MCS MCS FLASH FLASH FLASH FLASH FLASH

Procs. 2-ary 4-ary 2-ary 4-2-ary 4-ary 1-ary 2-ary 3-ary 4-ary 5-ary
4 3.2 5.9 5.4 4.8 4.8 3.4 1.2 0.8 0.2 0.2 0.2
8 7.4 14.5 16.7 8.4 8.4 5.5 3.4 1.4 0.9 0.9 0.9
16 15.4 25.8 22.3 12.0 12.0 8.9 7.7 2.0 1.6 1.0 1.0
32 31.7 39.8 41.9 15.6 15.7 12.0 16.2 2.6 1.6 1.8 1.7
64 63.6 57.1 47.8 19.7 19.7 16.3 33.6 3.3 2.3 1.9 1.9
128 127.0 78.1 77.7 24.5 24.2 21.4 68.6 4.0 3.1 2.8 2.8

barriers is also fairly inefficient, despite its use of a release tree. This occurs for several reasons,

some of which are due to the implementation we were given and not fundamental to the tourna-

ment algorithm in general. First, during the release, it employs lock-protected flag update just as

in the join, even though each release tree flag has only one writer. This overly conservative ap-

proach causes extra references in the release critical path. Second, as in the fall-through case, the

tournament-style barrier means each processor loops and may need to release processors at several

levels in the tree. Furthermore, it orders the processor releases inefficiently, causing the release tree

propagation to be nonuniform and reducing the parallelism it might otherwise achieve.

MCS barriers perform much better, due in part to the very simple release structure that allows

much lower overhead than the tournament tree barrier. As for the choice of release tree radix,

the original description of MCS barriers [MCS91b] suggests that a release tree of radix 2 is best

based on a theoretical analysis. In contrast, our results show a MCS having consistent though mild

improvement from increasing release tree radix from 2 to 4. The difficulty of predicting real machine

behavior, especially due to contention, argues for a execution- or simulation-driven methodology to

select parameters rather than a purely theoretical one.

FLASH barriers once again outperform the other techniques by a wide margin. In the release

phase of aFLASH barrier, the release messages are delivered directly to the nodes in the tree. When

they arrive, the barrier protocol onMAGIC then propagates those release messages to other nodes in

the tree without any processor interaction. The result of this design is thatno remote cache misses

are taken by any processor to determine the barrier has been satisfied. Instead, each processor’s

local barrier status flag is invalidated at the same time the barrier’s state is modified inMAGIC to

indicate completion. All that is required is a local cache miss for the barrier state and the processor

is released.

Contrast this with even the most efficient software tree release technique. Using the processor,

even updating a simple flag involves acquiring ownership and invalidating the currently spinning

processor(s). Then in response the previously spinning node must miss remotely to fetch the updated

value. Only then can the waiter propagate the release to its children in the barrier tree in the same

Section 6.2 FLASH Barriers 159

manner. Avoiding these repeated processor cache misses in the critical path and encapsulating this

entire release tree process inMAGIC is one of the most clear-cut successes of theFLASH barrier

protocol.

Master-Slave Barrier Performance

We now turn to the master-slave barrier variant to consider the performance of various primitives in

that different mode. We study several classes of conventional primitives, beginning with the basic

master-slave primitive [BAR96], and a two-phase variant of the MCS barrier. We also study three

ways in which master-slave barriers can be implemented withFLASH barriers.

In the first of these implementations, we observe that conventionalFLASH barriers performed so

well in our previous tests that one viable approach may be to usetwoback-to-backFLASH barriers,

with the serial portion occurring in the middle. We refer to this as the “FLASH Naive” approach.

Our second implementation, referred to as “FLASH+Flag”, uses aFLASH barrier followed by a

spin loop on a shared memory flag. The flag is set by the master after it completes the serial

computations. Finally we consider the custom designed master-slave version ofFLASH barriers

described in Section 6.2.4 in which the master alone is released once the barrier is satisfied. After

its serial processing the master performs an additional PPR to cue the release. The advantage of this

approach is that it uses the optimized tree release mechanism. For comparison purposes and to help

ascertain the overhead of the extra processor-MAGIC communication, we also show the results of

the same benchmark for a conventionalFLASH barriernot providingmaster-slave functionality but

merely releasing all processors simultaneously.

For this evaluation we use a microbenchmark that simulates the operation that takes place within

an automatically parallelized application. In a loop iterating 32 times, we simulate the processors

joining at a master-slave barrier. The master processor is released first, and then immediately re-

leases the slaves. By eliminating the actual parallel and serial work in this benchmark it focuses

exclusively on synchronization performance and illustrates the overhead from barrier synchroniza-

tion in the limit as the computation becomes very fine. The latency we report for this benchmark is

the average length of one iteration of the loop, which corresponds essentially to the total overhead

incurred from the barrier primitive.

Table 6.8 shows the results over a range of machine sizes of interest for this style of primitive.

The basic master slave barrier performs very well for small machines, even surpassing MCS up to 8

processors. Beyond that, however, contention for the barrier renders it unusable. MCS barriers were

easily adapted to master-slave mode and show similar scaling to the conventional mode described

previously.

The FLASH barrier variants show several useful results. First and foremost, even the Naive

solution using two back to back barriers outperforms the conventional implementations. Note that

160 Chapter 6 FLASH Synchronization Primitives

Table 6.8: Master-Slave Barrier microbenchmark results, showing the average iteration latency of
back-to-back master-slave barriers with immediate release by the master. The latency for a con-
ventional 4-aryFLASH barrier not providing master-slave functionality is shown on the right for
comparison purposes.

Master-Slave Barrier Implementations
Total Basic MCS FLASH FLASH FLASH FLASH

Processors M-S M-S Naive + Flag Custom Conv.
2-ary 4-ary 4-ary 4-ary 4-ary

2 3.9 4.6 3.9 3.3 2.5 2.0
4 9.2 10.3 4.9 5.2 3.0 2.5
8 19.9 21.7 7.6 9.2 4.3 3.8
16 43.0 24.4 8.3 18.8 4.7 4.2
32 286.6 36.7 11.2 35.1 6.1 5.6

the Naive approach latency is (within error margins) exactly double that of the conventional (non-

master-slave)FLASH barrier. As might be expected, theFLASH+Flag approach does not improve

performance due to contention for the flag, illustrating importance of using a tree-based release

mechanism. The best performer overall is the custom designedFLASH master-slave variant. It scales

in essentially the same way as the conventionalFLASH primitive on the right, but slows uniformly

by 0.5�s from the latency to notify the processor and receive the PPR that releases the slaves.

6.2.7 Related Work

In Section 6.2.2 we presented several key barriers as background for our protocol design and imple-

mentation. Below we describe the broader background research on barrier synchronization.

A novel barrier implementation called the butterfly barrier is described by Brooks [BI86] in

which a series of pairwise synchronizations is carefully orchestrated between the processors. Once

thisO(log n) series completes, the processors are guaranteed to have arrived at the barrier. Though

each synchronization is based on locks, by distributing communication the butterfly reduces con-

tention for each lock to only two processors. Similar logarithmic performance is provided by tree-

based barriers, and many implementations includingFLASH barriers also reduce the total number of

communications in the critical path as compared to the butterfly.

Hengsen et al. [HFM88] make three modifications to the butterfly barrier that successively im-

prove it. First, they introduce a sense change to reduce the barrier code size slightly. Next they

reduce barrier traffic by a factor of two through adisseminationalgorithm, in which the symmetric

pairwise synchronizations are replaced by an asymmetric communication pattern that also satis-

fies the condition. Finally they present yet another modified communication pattern they call a

Section 6.2 FLASH Barriers 161

tournament, which we described in Section 6.2.2. In the original tournament barrier, all proces-

sors ultimately spin on a single flag, which is a source of contention in invalidation-based cache

coherence protocols.

In their journal paper on synchronization, Mellor-Crummey and Scott [MCS91a] present a sur-

vey of the major classes of barrier implementations. They first optimize the tournament barrier

of Hengsen et al. through the use of a release tree, thus eliminating the contention for a single

flag. They also introduce a new barrier primitive that improves performance still further through

careful data structure and code optimizations [MCS91b], which is the MCS barrier we describe in

Section 6.2.2.

Similar to Mellor-Crummey and Scott, Woest and Goodman [WG91] present a survey of barrier

techniques, but with an emphasis on their implementation using theQOLB primitive we describe in

Section 6.1.9. In that aspect they find theQOLB implementations to have no significant advantage

in particular because barriers do not utilize the collocation benefitQOLB provides.

Woest and Goodman also study the barrier release phase, including the use of a broadcast (up-

date) write primitive to quickly update all waiters. Interestingly, they find that even though the

broadcast write release is extremely efficient, the initial serialized read misses to fetch the noti-

fication address to each processor must be amortized over many barriers for the combination to

show gains. Only a combination of broadcast write and combining reads would make the approach

tractable; as a result, they conclude that tree wakeup may be a superior approach in general [WG91].

In a similar approach to that used by Anderson for locks [And89], Agarwal and Cherian [AC89]

study various software back-off strategies to reduce contention in barriers. One major focus of

their analysis was reducing the exploding network traffic arising from barriers under contention,

as well as decreasing overall waiting time. They present several back-off implementations and

parameters which achieve a balance between these two goals, though their focus is on non-tree

barriers. The barriers they study are not appropriate for large scale systems, however, and tree

barrier implementations eliminate much of the need for the back-off techniques they study.

The Cray T3D [Cra93] provides a dedicated physical barrier/eureka6 network that can synchro-

nize the entire machine in less than 2�s. The T3E [Sco96] virtualizes the barrier support to make

it easier to share by providing 32 different barrier/eureka units at each processor, while maintaining

approximately the same performance. T3E also enables “fuzzy” barriers in which the processor can

perform unrelated work while it waits at the barrier, then either poll or be interrupted to detect the

barrier is achieved.FLASH barriers can provide fuzzy semantics merely by extending the API with

a call that returns after issuing the join indication toMAGIC and one which polls the current barrier

status.
6A “eureka” is a non-blocking parallel-OR function, enabling a processor to quickly indicate completion to the others,

such as in a parallel search implementation. By comparison, a barrier is a blocking parallel AND.

162 Chapter 6 FLASH Synchronization Primitives

Scalable Counting Techniques

Many researchers study scalable counting techniques, one application of which is the implemen-

tation of barriers. In [HLS95], Herlihy et al. compare counting implementations using a range

of hardware and software support. They find that lock-based techniques degrade quickly as ma-

chine size increases and that only software combining trees or counting networks were truly scal-

able. They show software-only implementations of counting trees and counting networks using

both shared memory and message passing techniques. In their experiments on the MIT Alewife,

both primitives scaled well, though the message passing implementations achieved approximately

twice the throughput. TheFLASH barrier implementation uses messages betweenMAGIC chips in a

similar way to the primitives they describe.

Freudenthal [FG91] describes the hardware-supported scalable counting technique Fetch-And-

Add to provide barriers and other types of synchronization. We could mirror these techniques by

providing Fetch-and-Add using protocol support inMAGIC (as we describe in Section 7.2.1) and

then in turn building barriers on Fetch-and-Add. Still, theFLASH barrier protocol we describe

achieves much higher performance by instead tailoring the communication specifically for barriers.

6.3 Lock and Barrier Performance Impact in Applications

This section considers the performance benefits ofFLASH locks and barriers within the context of

real applications from the SPLASH-2 benchmark suite. We show three applications, to illustrate

a number of different ways that synchronization is used in practice, and to study whether or not

synchronization improvements translate to application gains.

Application analysis of synchronization is significantly more difficult than the microbenchmark

approach used earlier since many effects occur at once. We use the intuition and the baseline per-

formance metrics provided by the microbenchmarks as an overall guide to our analysis. However,

it is important to note that the performance metric results we measured using microbenchmarks are

usually not attainable in applications due to other interfering effects. Furthermore, the microbench-

marks cannot predict all the performance gains or losses we encounter, since synchronization inter-

acts with application communication, unlike the controlled environment of the microbenchmarks.

In particular, at large machine sizes we sometimes encounter gains larger than the microbenchmarks

predict. These arise because shared memory contention is reduced by the use of optimized synchro-

nization, and thus unrelated shared memory accesses improve as well. This effect is particularly

prevalent inFLASH, which relies on negative acknowledgements to avoid deadlocks when queues

fill. As a result,FLASH encounters “cliffs” where high contention causes traffic to increase further

as NAKs are generated.

Section 6.3 Lock and Barrier Performance Impact in Applications 163

For the purposes of this study, we broadly classify poor scalability into two major categories.

In some cases, fundamental contention for shared resources, load imbalance, or other effects limit

application parallel efficiency and prevent additional processors from reducing execution time. In

other cases, the application is designed suitably and is inherently capable of scaling well, but inef-

ficient synchronization limits the performance. We focus on this latter case, to determine whether

optimized synchronization can improve efficiency and scalability. Restructuring the application al-

gorithms to address the more fundamental scalability limits of the former case is beyond the scope

of this dissertation.

6.3.1 Application Descriptions and Characteristics

To study this problem, we have selected three scientific applications, all from the SPLASH-2 bench-

mark suite [WOT+95]. The applications we consider are Water, a water molecule simulation,

Barnes, an N-body simulation based on the Barnes-Hut method, and Ocean, a simulation of ocean

currents. These applications are fairly well suited for the synchronization primitives we study since

they use significant locks or barriers and scale well to reasonably large machines (32 processors

or larger) where our techniques become applicable. The other SPLASH-2 applications we do not

study may benefit from our primitives as well, though their use of synchronization tends to be more

mild. For our scalability measurement we considerconstant problem sizescaling—the problem size

is held fixed while the machine size is increased. As such, we focus on computation time as our pri-

mary metric, which highlights concretely the benefits from adding additional processors. We study

relatively small problems for these applications both for simulation tractability and to explore the

scalability constraints imposed by conventional synchronization techniques. It is important to real-

ize that real systems may not execute applications with this high degree of synchronization, but we

use them to stress the synchronization mechanisms intensely and push the limits of the primitives.

Our study focuses exclusively on the synchronization characteristics in these applications; other

researchers have studied their behavior more generally. Woo et al. [WOT+95, Woo96] present their

structure and design, and describe their working set and communication characteristics in detail.

Kuskin [Kus97] and Heinrich et al. [HKO+94] present simulation results for Barnes and Ocean

and describe their overall behavior onFLASH, focusing in particular on the effects of flexibility

on memory access times. Table 6.9 summarizes the synchronization within these applications; the

exact counts vary based on machine size. We begin by describing the applications and identifying

the nature of their synchronization usage.

Water

Water is a molecular dynamics application that evaluates the forces and potentials that occur over

time in a system of liquid water molecules. The algorithm computes the Newtonian equations for

164 Chapter 6 FLASH Synchronization Primitives

Table 6.9: Application problem size and synchronization usage overview. Synchronization usage
counts vary by problem size and/or processor count.

Application Problem Size Processors Locks Barriers

Water 512 molecules 16–128 procs 19,000–135,000 17
Water 1024 molecules 32–128 procs 70,000–273,000 17
Barnes 8192 bodies 16–128 procs 8,000–10,000 16
Ocean 256x256 ocean 16–64 procs 400–1,600 143
Ocean 514x514 ocean 32–64 procs 500–1,200 156

motion of water molecules within a box, iterating over a number of time steps in an attempt to reach

steady state [SWG92].

We consider the “N squared” version of Water presented in the SPLASH-2 suite, which uses

anO(n2) algorithm to compute the inter-molecule interactions. The extensive use of locking in

Water primarily arises in this phase. Each processor first computes in a private array the change in

inter-molecular forces arising from its molecules. Then it applies those changes to other processors’

molecules under lock protection per molecule (or group of molecules). Water uses several barriers

to divide phases, but as Table 6.9 illustrates, its synchronization is overwhelmingly dominated by

locks, so we focus on its locking characteristics.

Barnes

Barnes simulates the interaction of a set of bodies in three dimensions over a series of time steps.

It uses the Barnes-Hut hierarchical N-body method to compute the interaction forces between the

particles [HS95]. The SPLASH-2 implementation of Barnes includes a number of data structure

optimizations to improve performance [WOT+95]. The particles are stored in an octree structure,

which is traversed repeatedly (once per particle) to determine the force on each particle. In a separate

phase, the forces are then used to update each particle’s position, and the process iterates.

The complex structure of Barnes causes it to enlist a variety of synchronization primitives. Most

notably, Barnes uses significant locking, in particular an array of locks used in two different portions

of the algorithm. First, each group of bodies is protected by one of these locks as the program walks

the tree to update both forces on a body and their position. Locks are also used to coordinate during

a load balancing phase in which the assignment of bodies to processors is adjusted.

Barnes also uses a flag per tree element to determine when the tree walking has finished and

the processor can enter the barrier. These updates only have a single reader and writer, and thus

do not require mutual exclusion through locks. Like Water, Barnes also uses barriers, though the

phases in Barnes are very long and thus the barriers account for only a trivial portion of the runtime.

Therefore, we focus our analysis of Barnes on its locking characteristics.

Section 6.3 Lock and Barrier Performance Impact in Applications 165

Ocean

The Ocean application models large-scale ocean movements over time based on eddy and bound-

ary currents. We use a recent version of Ocean containing modifications to improve performance

on shared memory systems, part of the SPLASH-2 benchmark suite [WOT+95]. In particular,

the ocean model is partitioned using a 4-D grid, so that grid portions can be allocated on the

processor which manipulates them. This version also applies a red-black Gauss-Seidel multigrid

solver [Bra77] in place of the SOR solver used in prior versions. Finally, it includes extensive

prefetching instructions to improve the performance of shared memory accesses.

Ocean is based on an iterative algorithm, and each iteration is further broken up into ten phases.

As a result, Ocean makes extensive use of barriers to protect the consumption of data generated in

the previous phase by other processors, executing approximately 150 barriers overall. In fact, only a

very small amount of locking is done in Ocean, thus the potential for gains from optimized locking

is small. We focus our analysis of Ocean instead on its barrier synchronization.

6.3.2 Water

The baseline version of Water is based on LL/SC locks, just as in our microbenchmarks. We gen-

erate two other versions, one using MCS locks, the other using theFLASH locks presented in Sec-

tion 6.1.7 As before, LL/SC and MCS locks each use exponential back-off when contention is

detected in their atomic updates. In the environment we use, we are able to simulate systems up

to 128 processors before encountering limits in our simulators themselves and the simulation hosts.

This limitation is not fundamental toFLASH or the protocols we describe. In particular, we expect

the potential for gains fromFLASH locks only to increase at larger machine sizes.

We use an array of 512 locks at all problem sizes to protect the molecule data structures. We

configure all the implementations to match this limit so the results can be compared directly. For

512 molecules, this allows a single lock per molecule while at the 1024 molecule problem size, two

molecules share a lock. In practice, locks would not be shared in this manner due to the contention

it causes. We include these results merely to illustrate what might happen if much higher contention

is encountered in an application that poorly structures its synchronization.

Synchronization Usage

Water uses locks to protect updates to shared data structures in two different ways. First, it employs

individual locks to guard updates to several central summary variables. More importantly, it uses an

array of locks associated with a molecule (or a group of molecules) in the problem, which protect

7We study the use of the normalFLASH primitive, not the Aggressive variant described in Section 6.1.8.

166 Chapter 6 FLASH Synchronization Primitives

� � 512 mols - LL/SC Locks
� � 512 mols - MCS Locks

 512 mols - FLASH Locks

� � 1024 mols - LL/SC Locks
� � 1024 mols - MCS Locks

 1024 mols - FLASH Locks

|

16
|

32
|

64
|

128

|0

|100

|200

|300

|400

|500

 Number of Processors

 C
o

m
p

u
te

 T
im

e
(m

s)
�

�

�

�

�

�

�

�

�

� �

�

�

�

Figure 6.28: Water computation time using different lock techniques.

updates to the current force on each molecule. Our three application variants for Water convert both

uses of locks to use the primitive under study (LL/SC, MCS, orFLASH).

In the normal SPLASH-2 version, the array of locks is typically padded to avoid false sharing,

but is allocated from memory on a single node. Our initial simulations found that this centralized

allocation was a serious problem in the application since the node where the locks are allocated is

overwhelmed with requests and becomes a bottleneck. To eliminate this problem and allow LL/SC

and MCS locks to perform as well as possible, we modified the lock array to distribute the lock

allocation across the nodes of the machine and stripe the lock ordering to reduce contention as much

as possible. ForFLASH locks, which can use any node as the home, we matched this distribution

exactly to attempt to reproduce the same behavior. We do not present the results for the poorly

allocated application, but the gains from distribution were significant: LL/SC lock compute time for

512 molecules decreased by 32% at 64 processors, 67% at 128 processors. MCS locks saw similar

gains as well.

Simulation Results Format

We run Water at two problem sizes: 512 molecules and 1024 molecules, and over machine sizes

from 16–128 processors, excluding the smallest machine for the larger problem size. The computa-

tion time for Water (execution time excluding initialization) is presented in Figure 6.28.

Section 6.3 Lock and Barrier Performance Impact in Applications 167

To analyze the application behavior in more detail, we present a table of detailed statistics about

each simulation and a series of histograms that illustrate the lock metrics introduced earlier. We

begin by explaining the format of each, since the data for other applications is presented similarly,

then return to Water specifically and describe its table and histogram results.

Table 6.10 presents the resulting statistics for Water, with one row for each simulation. Each

group of three rows corresponds to a particular problem and machine size, explored using the three

different locking primitives we study. The second column presents the computation times illustrated

in Figure 6.28. The next two columns show the percentage of time the application spent in synchro-

nization, expressed as average and maximum times over the processors. This statistic is important,

but it is not always straightforward to use for this analysis since it does not differentiate funda-

mental wait time due to inherent mutual exclusion in the application from the performance of the

primitive itself. To complement the sync time and help separate these effects, the far right columns

show the lock metrics we introduced earlier, measured using our simulator’s ability to watch for

synchronization primitives without perturbing the application. Those columns present the acquire

latency and hand-off latency metrics as before, as well as a breakdown showing the fraction of locks

encountering the acquire case (available when requested) or hand-off case (held when requested).

In many cases we find that contention for the protocol processor itself can be significant in

determining the performance of the application. The middle columns attempt to characterize this

contention in two ways. First, we show the average read miss latency encountered by the appli-

cation. As an aggregate statistic, this must be used with caution, but it generally provides a good

overall indication of the effects of contention. Next to it we show protocol processor occupancy,

i.e., the fraction of time the protocol processor is busy. Like sync time we show average and max-

imum; maximum is useful to illustrate that worst case occupancy is sometime severe, which can

limit performance.

The lock metric averages presented in the table are useful, but they hide the fact that locking

behavior is not homogeneous. To illustrate more closely the locking effects that occur, we present

a histogram of these two metrics as well. The histograms, such as Figure 6.29 show acquire latency

(“Non-Contended”) and hand-off latency (“Contended”). The bar height shows thecountof lock

acquisitions with latency (in microseconds) less than or equal to that listed below the bar. Note

that both axes are logarithmic since the lock counts vary by such a wide margin, and because bars

far to the right (i.e., long latency events) may contribute significantly to the overall performance

even though they have much lower counts. Each column of plots represents a particular application,

problem size, and machine size. By stacking them vertically it allows a straightforward comparison

of the bins in the three related simulations.

168 Chapter 6 FLASH Synchronization Primitives

Table 6.10: Water lock results summary: Each group of rows reflects one problem and machine
size combination across the three different lock primitives. The remaining columns are as follows:
compute time of the application; the percentage of the application compute time spent in synchro-
nization (average and maximum across the processors); the average latency of a cache read miss; the
fraction of time the protocol processor is busy (average and maximum as before); average acquire
and hand-off latency as defined previously, with the fraction of locks encountering each case.

% of Time Avg PP Acquire Hand-Off
Lock Compute in Sync Read Occupancy Latency Latency

Primitive Time Avg Max Miss Avg Max (and fraction) (and fraction)

512 molecules, 16 processors, 19k lock acquisitions.
LL/SC 304 ms 8% 18% 1.3�s 2% 2% 1.2�s 99% 5.1�s 1%

MCS 304 ms 8% 17% 1.3�s 2% 2% 1.7�s 98% 1.5�s 2%
FLASH 307 ms 8% 18% 1.1�s 2% 2% 3.4�s 98% 1.4�s 2%

512 molecules, 32 processors, 35k lock acquisitions.
LL/SC 165 ms 12% 22% 1.8�s 4% 7% 1.8�s 98% 7.4�s 2%

MCS 163 ms 11% 21% 1.6�s 3% 5% 1.9�s 97% 1.7�s 3%
FLASH 165 ms 11% 21% 1.2�s 4% 5% 3.7�s 93% 1.7�s 7%

512 molecules, 64 processors, 69k lock acquisitions.
LL/SC 110 ms 29% 37% 2.7�s 6% 21% 2.9�s 94% 18.9�s 6%

MCS 100 ms 23% 32% 2.1�s 6% 13% 2.2�s 91% 2.0�s 9%
FLASH 97 ms 18% 28% 1.5�s 7% 13% 4.3�s 84% 2.0�s 16%

512 molecules, 128 processors, 135k lock acquisitions.
LL/SC 148 ms 74% 79% 5.9�s 5% 50% 8.3�s 89% 66.8�s 11%

MCS 78 ms 46% 54% 2.7�s 7% 27% 2.7�s 84% 2.2�s 16%
FLASH 68 ms 37% 46% 1.8�s 9% 18% 4.6�s 75% 2.3�s 25%

1024 molecules, 32 processors, 70k lock acquisitions.
LL/SC 442 ms 11% 15% 1.4�s 3% 6% 2.1�s 98% 13.8�s 2%

MCS 435 ms 10% 14% 1.4�s 3% 10% 2.0�s 97% 1.4�s 3%
FLASH 440 ms 11% 15% 1.2�s 2% 3% 3.8�s 95% 1.7�s 5%

1024 molecules, 64 processors, 136k lock acquisitions
LL/SC 254 ms 19% 25% 2.1�s 4% 10% 2.7�s 96% 21.4�s 4%

MCS 246 ms 15% 21% 2.0�s 5% 25% 2.3�s 93% 2.0�s 7%
FLASH 246 ms 14% 20% 1.6�s 6% 37% 4.4�s 84% 1.9�s 16%

1024 molecules, 128 processors, 273k lock acquisitions
LL/SC 251 ms 44% 55% 7.2�s 6% 45% 4.7�s 89% 42.2�s 11%

MCS 246 ms 40% 56% 8.0�s 6% 51% 4.4�s 79% 4.1�s 21%
FLASH 189 ms 26% 39% 5.2�s 7% 63% 4.9�s 74% 2.1�s 26%

Section 6.3 Lock and Barrier Performance Impact in Applications 169

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.29: Water, 16 processors, 512 mols.,
LL/SC lock latency histograms.

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.30: Water, 32 processors, 512 mols.,
LL/SC lock latency histograms.

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.31: Water, 16 processors, 512 mols.,
MCS lock latency histograms.

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.32: Water, 32 processors, 512 mols.,
MCS lock latency histograms.

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.33: Water, 16 processors, 512 mols.,
FLASH lock latency histograms.

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.34: Water, 32 processors, 512 mols.,
FLASH lock latency histograms.

170 Chapter 6 FLASH Synchronization Primitives

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.35: Water, 64 processors, 512 mols.,
LL/SC lock latency histograms.

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.36: Water, 128 procs., 512 mols.,
LL/SC lock latency histograms.

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.37: Water, 64 processors, 512 mols.,
MCS lock latency histograms.

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended
1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.38: Water, 128 procs., 512 mols.,
MCS lock latency histograms.

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.39: Water, 64 processors, 512 mols.,
FLASH lock latency histograms.

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.40: Water, 128 procs., 512 mols.,
FLASH lock latency histograms.

Section 6.3 Lock and Barrier Performance Impact in Applications 171

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.41: Water, 32 procs., 1024 mols.,
LL/SC lock latency histograms.

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.42: Water, 64 procs., 1024 mols.,
LL/SC lock latency histograms.

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.43: Water, 32 procs., 1024 mols.,
MCS lock latency histograms.

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.44: Water, 64 procs., 1024 mols.,
MCS lock latency histograms.

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.45: Water, 32 procs., 1024 mols.,
FLASH lock latency histograms.

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.46: Water, 64 procs., 1024 mols.,
FLASH lock latency histograms.

172 Chapter 6 FLASH Synchronization Primitives

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.47: Water, 128 procs., 1024 mols.,
LL/SC lock latency histograms.

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.48: Water, 128 procs., 1024 mols.,
MCS lock latency histograms.

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.49: Water, 128 procs., 1024 mols.,
FLASH lock latency histograms.

Section 6.3 Lock and Barrier Performance Impact in Applications 173

Performance Analysis

We discuss the major effects in Water using the statistics table and histograms introduced above,

beginning with small machine sizes and then incrementally considering the effects which arise as

the system scales. For 16 and 32 processor machines in either problem size, lock performance is not

a bottleneck for a number of reasons. The statistics table shows the total number of locks is fairly

small. Each processor executes an essentially fixed number of locks per molecule, so lock counts

grow with machine size. Processors also have ample work, so synchronization time is only about

15–20%, and PP occupancy is low. In these cases, the lock acquire latency metric tracks closely the

microbenchmark predictions. Hand-off latency performs better than the worst case we established

earlier, since every processor is not contending for the lock as in our microbenchmark. The lock

metric histograms (columns under Figures 6.29, 6.30, and 6.41) show that locking is well-behaved,

with events of any significant frequency taking less than 10�s.

At 64 processors in both problem sizes, the application continues to scale reasonably well,

though synchronization time begins to be more significant. This suggests that the application is be-

ginning to reach its scalability limits by exhausting the highly parallelizable work that was sufficient

for smaller machine sizes. PP occupancy has also increased to between 13–20%, though this still

provides reasonable response time and thus average read miss latency increases only mildly. Both

MCS andFLASH locks show mild latency gains over LL/SC at this size, as well as lower occupancy.

We see that contended lock acquisitions remain efficient through queueing at about 2�s, while

LL/SC has degraded to 19�s on average. The frequency of contended accesses for LL/SC locks is

still low at this problem size, so the impact of this degradation is low. The lock metric histograms

(columns under Figures 6.35, and 6.42) show the lock metrics more clearly. LL/SC encounters

some long latencies for non-contended locks, but mostly achieves low latency and a fair number of

cached re-acquisitions (the leftmost bar). MCS (Figure 6.37) improves the non-contended perfor-

mance by reducing overall contention that causes long acquire latency.FLASH locks (Figure 6.39),

also reduce very slow acquires, however, as our microbenchmarks indicated, the minimum acquire

latency is over 2�s (except for cached re-acquires).

Once the size reaches 128 processors, synchronization contention increases, causing perfor-

mance to degrade for LL/SC, which is less efficient in that regime. For 512 molecules, LL/SC

spends 74% of its time in synchronization, in part due to exponential back-off during contention.

The non-synchronization portion of compute time is also longer than the other primitives, with high

PP occupancy (50% worst case) from synchronization increasing average miss time considerably.

The hand-off latency average of 67�s is readily apparent from Figure 6.36, which indicates many

locks take in excess of 100�s to transition. Queued locking dramatically improves this situation: the

hand-off latency average is essentially unchanged from 64 processors, and PP occupancy remains

lower, improving average read miss latency. Figures 6.38 and 6.40 show that queued techniques

174 Chapter 6 FLASH Synchronization Primitives

encounter a sharp peak centered at 2�s and only relatively few locks experience long waits (due to

queueing for the PP). At this size,FLASH locks improve computation time by 12% over MCS, in

part because more locks take the contended case whereFLASH locks communicate more efficiently.

Part of the shift from non-contended to contended acquisitions is due to the fairness in queued

lock techniques reducing the cached re-acquires as compared to LL/SC. This effect is visible in all

the Water histograms in the leftmost non-contended histogram bar. The LL/SC lock implementation

lacks fairness, and so a node can release and re-acquire a lock quickly, even if other processors are

actively requesting it. Since the node acquired ownership to unlock, re-acquisition can succeed in

the cache until other sharers request the line again. MCS locks provide fairness, though delays from

contention to join the queue may allow some unfair re-acquisitions.

For 1024 molecules at 128 processors, the effects are similar to 512 molecules but are more

significant, leading to a 23% improvement in execution time withFLASH locks as compared to

MCS. Lock acquisition frequency is about the same as 512 molecules since the execution time

doubles and so does the lock count. However, PP occupancy is extremely high at this size, and

the average read miss time degrades considerably, especially for the conventional synchronization

techniques. Accounting for the occupancy increase is the higher contention for locks at this size

from two molecules sharing a lock. Despite the higher contention,FLASH acquire latency degrades

only slightly compared to smaller runs because the algorithm is more communication-efficient. In

contrast, Figure 6.48 shows that the high occupancy causes an increase in very slow MCS hand-offs,

resulting in an average hand-off latency of 4.1�s, the first significant degradation in MCS we see.

We reiterate that the gains shown here for the 1024 molecule problem size are larger than would

be encountered in practice since molecules share locks artificially. In fact, lock contention would

probablydecreasefor a given machine size in Water if problem size and total lock count scaled

together.

6.3.3 Barnes

Our study of Barnes is similar to that of Water, using the same application variants. Like Water,

Barnes uses an array of locks to protect the data structures that track the bodies it simulates. We

encountered similar contention problems due to central allocation of the lock array in Barnes, so we

distributed this array as before, matching the distributionFLASH locks provide. The array of locks

is limited to 512 locks as in Water.

Synchronization Usage

Barnes computes interaction forces in three dimensions between particles (or “bodies”), such as

planets in a galaxy. Unlike theO(n2) algorithm used in Water to compute intermolecular forces,

Barnes uses a hierarchical method which aggregates nearby groups of particles into their weighted

Section 6.3 Lock and Barrier Performance Impact in Applications 175

� � LL/SC Locks
� � MCS Locks

 FLASH Locks

|

16
|

32
|

64
|

128

|0

|100

|200

 Number of Processors

 C
o

m
p

u
te

 T
im

e
(m

s)

�

�

�

�

�

�

�

�

Figure 6.50: Barnes computation time using different lock techniques.

average. In this way, distant particles can reduce the computational complexity of calculating in-

teractions while bounding the error that is introduced by adapting the level where aggregation is

permitted. One symptom of the difference in this algorithm is that lock count in Barnes increases

only about 25% from 16–128 processors, unlike Water where the count scales exponentially.

As introduced earlier, Barnes uses its array of locks for two functions: to protect updates to a

group of particles and to protect a processor’s data structures during the load balance phase where

processor assignment is modified. Our simulations indicate that neither of these two phases is

uniquely prone to contention; each contains some locks which experience high contention, but it is

very non-uniform. This is probably due to the nature of the algorithm in which the communication

patterns vary somewhat based on the particular traits of the bodies being simulated. Overall, Barnes

lock acquires encounter contention somewhat more frequently than in Water, andFLASH locks

perform well over the entire range of processors as a result.

Performance Analysis

We simulate Barnes running the 8192-body problem on machines from 16–128 processors. Our

performance metric as before is computation time, but since initialization and cold-start time is

significant we report the execution time of one phase of the application after it has reached steady

state. The execution time is illustrated in Figure 6.50. Table 6.11 shows the statistics summary

176 Chapter 6 FLASH Synchronization Primitives

Table 6.11: Barnes lock results summary. The columns use the same format explained in Table 6.10.

% of Time Avg PP Acquire Hand-Off
Lock Compute in Sync Read Occupancy Latency Latency

Primitive Time Avg Max Miss Avg Max (and fraction) (and fraction)

8k bodies, 16 processors, 8.8k lock acquisitions.
LL/SC 241 ms 3% 5% 1.0�s 2% 4% 1.7�s 95% 6.2�s 5%

MCS 238 ms 2% 3% 0.9�s 2% 3% 0.3�s 93% 1.3�s 7%
FLASH 237 ms 2% 3% 0.9�s 2% 8% 0.5�s 90% 1.6�s 10%

8k bodies, 32 processors, 9.0k lock acquisitions.
LL/SC 130 ms 9% 11% 1.3�s 2% 7% 2.0�s 93% 14.2�s 7%

MCS 123 ms 5% 6% 1.1�s 2% 5% 0.3�s 89% 1.8�s 11%
FLASH 123 ms 4% 6% 1.1�s 3% 13% 0.6�s 84% 1.7�s 16%

8k bodies, 64 processors, 9.3k lock acquisitions
LL/SC 108 ms 34% 42% 5.8�s 4% 61% 2.1�s 93% 27.5�s 7%

MCS 71 ms 13% 16% 1.7�s 5% 33% 0.4�s 80% 2.5�s 20%
FLASH 68 ms 9% 12% 1.4�s 5% 28% 0.8�s 78% 1.6�s 22%

8k bodies, 128 processors, 10.0k lock acquisitions
LL/SC 185 ms 49% 79% 22.9�s 4% 63% 2.8�s 88% 42.3�s 12%

MCS 115 ms 39% 64% 14.7�s 5% 61% 0.8�s 53% 3.2�s 47%
FLASH 59 ms 27% 42% 6.6�s 6% 49% 1.8�s 46% 1.5�s 54%

in the same format as Water. In Barnes, theFLASH lock version of the application achieves the

best execution time at every problem size, though the gains only become significant beyond 64

processors.

We note first the conspicuous difference between Figures 6.53 and 6.55 for the 2�s non-

contended histogram bar. This effect, also present but less visible in the Water histograms, arises

because the minimumFLASH acquire latency for a lock not already present is more than 2�s, while

MCS acquire latency is sometimes below 2�s. The 1�s bar for both cases represent rapid cached

re-acquisition of a previously held lock, which occur very frequently in Barnes. Table 6.11 lists

the average of these two effects for acquire latency, which is why it appears to be less than the

microbenchmark predictions.

Beginning with the 16 processor simulation, Figure 6.51 shows that even at this small size,

LL/SC locks perform poorly and encounter a wide range of lock latencies. The queued lock prim-

itives achieve much more uniform behavior, and perform similarly. At this size the lock metrics

favor MCS slightly, though the average miss latency is slightly lower forFLASH (beyond the pre-

cision shown in the table), accounting for the marginally faster execution time. Similar effects are

Section 6.3 Lock and Barrier Performance Impact in Applications 177

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.51: Barnes, 16 procs., 8k bodies,
LL/SC lock latency histograms.

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.52: Barnes, 32 procs., 8k bodies,
LL/SC lock latency histograms.

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.53: Barnes, 16 procs., 8k bodies,
MCS lock latency histograms.

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.54: Barnes, 32 procs., 8k bodies,
MCS lock latency histograms.

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.55: Barnes, 16 procs., 8k bodies,
FLASH lock latency histograms.

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.56: Barnes, 32 procs., 8k bodies,
FLASH lock latency histograms.

178 Chapter 6 FLASH Synchronization Primitives

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.57: Barnes, 64 procs., 8k bodies,
LL/SC lock latency histograms.

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.58: Barnes, 128 procs., 8k bodies,
LL/SC lock latency histograms.

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.59: Barnes, 64 procs., 8k bodies,
MCS lock latency histograms.

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended
1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.60: Barnes, 128 procs., 8k bodies,
MCS lock latency histograms.

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.61: Barnes, 64 procs., 8k bodies,
FLASH lock latency histograms.

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Non-Contended

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Contended

100

101

102

103

104

105

Figure 6.62: Barnes, 128 procs., 8k bodies,
FLASH lock latency histograms.

Section 6.3 Lock and Barrier Performance Impact in Applications 179

visible at 32 processors; the higher PP occupancy forFLASH at that size may be due to less efficient

non-contended lock handling, though contended performance begins to surpass MCS locks.

At 64 processors,FLASH contended lock performance actually improves as compared to 32

processors, while MCS locks and LL/SC continue to degrade. PP occupancy for the shared mem-

ory lock approaches increases as well, particularly LL/SC, coupled with an increase in cache miss

latency. These effects combine to yield a 4% execution time advantage forFLASH locks. In all

primitives, non-contended performance degrades slightly, though cached re-acquisitions remain a

large component and thus the average latency remains low.

For the 128 processor system, the trend of these effects continues, causing the execution time

both shared memory lock primitives to slow as compared to 64 processors. In contrast, the version

usingFLASH locks continues to scale, achieving a 49% gain versus MCS locks at 128 processors

and a 16% gain versus the best case achieved by shared memory locks (MCS locks at 64 proces-

sors). A major reason for this result is the shift in lock acquisitions to the contended case, which

occurs for each scaling step but is particularly prevalent at 128 processors. At this size, LL/SC

contended performance is nearly a factor of 30 slower thanFLASH locks, and MCS is twice as slow,

so the increase in contended lock acquisitions enables appreciable gains fromFLASH. Contended

FLASH locks also eliminate artifactual communication that reduces protocol processor congestion

and improves average cache miss latency. The 128 processor simulations show significant queueing

effects in the outgoing network queues (not shown in the table) and an increase in negative acknowl-

edgements as a result. Reducing PP occupancy helps abate both effects and improves performance

noticeably.

Note that at this large machine size, the results from Barnes are somewhat unpredictable since

the system is spending a significant amount of time in synchronization. ThoughFLASH locks show

clear gains at this size, we observe that Barnes might employ different synchronization primitives

or restructure the algorithms somewhat if execution at this operating point were desired.

6.3.4 Ocean

For the Ocean application, we focus our study on barriers. The baseline version is based on the

tournament tree barrier we describe earlier, since the elementary LL/SC barrier performs so poorly

it is unusable. We generate two other versions, one using the MCS barrier, the other using theFLASH

barrier presented in Section 6.2.

For each barrier primitive we use the configuration that our microbenchmark results show per-

forms approximately the best, using as a metrictft + trel since that represents the worst case release

from the barrier. For Tournament barriers we use radix 2 trees, and for MCS barriers we use radix

4. TheFLASH barrier uses a 4-ary tree even though 5-ary is slightly faster in an attempt to distribute

180 Chapter 6 FLASH Synchronization Primitives

the tree more evenly over the processors and reduce the likelihood that the outgoing network queue

fills, requiring recovery using the software queue.

Synchronization Usage

Ocean is an iterative algorithm with ten separate phases per iteration. Barriers are used between

every phase to assure results are completed before they are read by other processors. They are also

used within the multigrid solver to separate its internal phases, in fact the solver’s barriers comprise

about 85% of the barriers in the application. Overall, the application uses about 150 barriers in the

region we study.

Ocean encounters a wide range of phase lengths, ranging from very short ones that update a

global sum to longer ones that do significant communication and computation. In the multigrid

solver phases, immediately after the barrier it copies either the red or black portion of the grid,

then executes the relaxation phase on the other. The subsequent phase then does the same on the

opposite portions of the grid. These grid copy phases utilize extensive prefetching that causes

intense communication immediately after the barrier. This characteristic has a significant impact on

the performance effects we see.

Its frequent barriers, combined with the presence of some very short phases offers the potential

for some performance improvement from optimizing barriers. Our results match this expectation in

some cases, especially larger machine sizes. However, the characteristics of the application’s algo-

rithms, especially the multigrid solver, makes Ocean very sensitive to communication performance

within its phases. Though improving barrier performance is one important aspect, optimized barri-

ers may also increase contention if different processors interact differently or operate more closely

in lock step as a result. Due to these balancing effects we find the execution time gains from barriers

vary by problem size, even though the barrier metrics themselves measured from the application run

show unequivocal gains fromFLASH barriers.

Simulation Results Format

We run Ocean at two problem sizes: 258x258 over 16–64 processors and 514x514 for 32–64 proces-

sors. As our primary metric for Ocean, we report execution time for five phases of the application,

excluding the first phase so that the application is executing in steady state. If the application were

executed for more time steps than simulation permits, this time should scale linearly. The execu-

tion time results are presented in Figure 6.63. Like the previous applications, we show a range of

statistics in Table 6.12 with the leftmost seven columns characterizing the execution time, synchro-

nization time, and occupancy characteristics as before. In this case the two rightmost columns show

averages of the barrier metrics introduced in Section 6.2.1.

Section 6.3 Lock and Barrier Performance Impact in Applications 181

� � 258x258 - Tourn.
� � 258x258 - MCS

 258x258 - FLASH

� � 514x514 - Tourn.
� � 514x514 - MCS

 514x514 - FLASH

|

16
|

32
|

64

|0

|50

|100

|150

|200

|250

|300

 Number of Processors

 C
o

m
p

u
te

 T
im

e
(m

s)

�

�

�

�

�
�

�

�

�

�

Figure 6.63: Ocean computation time using different barrier techniques.

Just as in locks, we find that the barrier performance varies somewhat during the run based on

the different places it is used, so we also present a histogram of fall-though and release latency. The

histograms use the same format as before, except that the y-axis is now linear due to the significantly

smaller number of barriers than locks.

Unlike the microbenchmark analysis in which arrivals at the barrier were carefully controlled,

in this case the arrival characteristics are determined largely by the application. We introduce two

additional metrics in our analysis to analyze the arrivals since, as we showed earlier, the arrival

characteristics can significantly affect barrier performance. The first islast arrival interval, which

measures the duration between the last and next-to-last arrival (in the nomenclature of Section 6.2.1,

this can be expressed astJn � tJn�1). This metric provides some indication of the severity of arrival

contention: when last arrival interval is large, the late arrival case approximately applies. However,

when it is small, this metric does not show how many other arrivals were nearby. The second metric,

calledall arrival interval, addresses this question somewhat by measuring the duration between the

first and last arrival (in the nomenclature of Section 6.2.1,tJn � tJ1). It provides an indication of

the arrival spread (to gauge the overall contention) and also shows the load imbalance between the

processors. Comparing synchronization time between runs of the same size is also useful to gauge

182 Chapter 6 FLASH Synchronization Primitives

Table 6.12: Ocean barrier lock results summary. The leftmost seven columns use the same format
explained in Table 6.10. The remaining columns show barrier-specific results (all in microseconds):
the average interval between the last and next-to-last barrier arrival; the average interval between
the first and last barrier arrival; the median and mean for each of the fall-through and release latency
metrics as defined earlier .

% of Time Avg. PP Last All Fall-Through Release
Barrier Compute in Sync Read Occupancy Arriv. Arriv. Latency Latency
Primit. Time Avg Max Miss Avg Max Interv. Interv. Med. Mean Med. Mean

(�s) (�s) (�s) (�s) (�s) (�s)

258x258 Ocean, 16 processors, 143 barriers.
Tourn 122 ms 14% 19% 1.0�s 14% 19% 17 165 11.2 10.7 19.4 21.3
MCS 121 ms 12% 16% 1.1�s 14% 20% 26 157 10.8 11.5 9.2 11.2

FLASH 123 ms 13% 18% 1.1�s 14% 19% 41 182 2.4 2.6 1.2 1.4

258x258 Ocean, 32 processors, 143 barriers.
Tourn 82 ms 27% 33% 4.2�s 12% 27% 28 211 12.3 11.9 31.1 41.4
MCS 74 ms 23% 33% 3.6�s 12% 24% 11 172 14.0 13.8 14.9 23.4

FLASH 77 ms 20% 31% 5.1�s 12% 25% 11 199 2.6 2.9 2.1 3.1

258x258 Ocean, 64 processors, 143 barriers.
Tourn 67 ms 44% 57% 5.1�s 14% 39% 19 263 15.6 15.4 40.0 50.7
MCS 78 ms 45% 58% 7.8�s 12% 32% 20 332 14.5 15.4 23.1 29.4

FLASH 57 ms 41% 50% 4.3�s 15% 33% 16 209 3.0 4.5 2.1 4.0

514x514 Ocean, 32 processors, 156 barriers.
Tourn 258 ms 14% 18% 0.7�s 15% 22% 30 326 13.9 13.8 28.8 36.3
MCS 256 ms 13% 16% 0.7�s 15% 23% 38 311 13.7 14.0 14.6 20.5

FLASH 255 ms 12% 16% 0.7�s 15% 23% 37 319 3.0 3.3 2.1 2.1

514x514 Ocean, 64 processors, 156 barriers.
Tourn 213 ms 31% 42% 5.1�s 12% 31% 56 640 16.0 15.9 41.7 59.0
MCS 199 ms 30% 39% 4.0�s 12% 32% 71 598 14.2 15.2 26.2 62.7

FLASH 222 ms 31% 46% 5.4�s 11% 40% 78 735 3.0 3.3 2.1 4.8

load imbalance, since it gives another indication of processors waiting at the barrier while others

are still working.

Our results show that these auxiliary metrics have heterogeneous characteristics (even more so

than fall-through and release latency), so we illustrate them with histograms as well. For the Ocean

results, therefore, a single page contains two columns of plots for a particular problem size, barrier

metrics on the left, and arrival characteristics on the right.

Section 6.3 Lock and Barrier Performance Impact in Applications 183

|0

|25

|50

|75

|100

|125

|150

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Fall-Through

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Release

|0

|25

|50

|75

|100

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Last Arrival

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

>1
40

All Arrival

Figure 6.64: Ocean, 16 procs., 258x258, Tourn. barrier metric(left) and arrival(right) histograms.

|0

|25

|50

|75

|100

|125

|150

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Fall-Through

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Release

|0

|25

|50

|75

|100

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Last Arrival

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

>1
40

All Arrival

Figure 6.65: Ocean, 16 procs., 258x258, MCS barrier metric(left) and arrival(right) histograms.

|0

|25

|50

|75

|100

|125

|150

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Fall-Through

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Release

|0

|25

|50

|75

|100

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Last Arrival

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

>1
40

All Arrival

Figure 6.66: Ocean, 16 procs., 258x258,FLASH barrier metric(left) and arrival(right) histograms.

184 Chapter 6 FLASH Synchronization Primitives

|0

|25

|50

|75

|100

|125

|150

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Fall-Through

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Release

|0

|25

|50

|75

|100

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Last Arrival

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

>1
40

All Arrival

Figure 6.67: Ocean, 32 procs., 258x258, Tourn. barrier metric(left) and arrival(right) histograms.

|0

|25

|50

|75

|100

|125

|150

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Fall-Through

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Release

|0

|25

|50

|75

|100

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Last Arrival

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

>1
40

All Arrival

Figure 6.68: Ocean, 32 procs., 258x258, MCS barrier metric(left) and arrival(right) histograms.
|0

|25

|50

|75

|100

|125

|150

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Fall-Through

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Release

|0

|25

|50

|75

|100

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Last Arrival

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

>1
40

All Arrival

Figure 6.69: Ocean, 32 procs., 258x258,FLASH barrier metric(left) and arrival(right) histograms.

Section 6.3 Lock and Barrier Performance Impact in Applications 185

|0

|25

|50

|75

|100

|125

|150

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Fall-Through

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Release

|0

|25

|50

|75

|100

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Last Arrival

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

>1
40

All Arrival

Figure 6.70: Ocean, 64 procs., 258x258, Tourn. barrier metric(left) and arrival(right) histograms.

|0

|25

|50

|75

|100

|125

|150

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Fall-Through

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Release

|0

|25

|50

|75

|100

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Last Arrival

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

>1
40

All Arrival

Figure 6.71: Ocean, 64 procs., 258x258, MCS barrier metric(left) and arrival(right) histograms.

|0

|25

|50

|75

|100

|125

|150

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Fall-Through

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Release

|0

|25

|50

|75

|100

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Last Arrival

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

>1
40

All Arrival

Figure 6.72: Ocean, 64 procs., 258x258,FLASH barrier metric(left) and arrival(right) histograms.

186 Chapter 6 FLASH Synchronization Primitives

|0

|25

|50

|75

|100

|125

|150

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Fall-Through

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Release

|0

|25

|50

|75

|100

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Last Arrival

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

>1
40

All Arrival

Figure 6.73: Ocean, 32 procs., 514x514, Tourn. barrier metric(left) and arrival(right) histograms.

|0

|25

|50

|75

|100

|125

|150

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Fall-Through

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Release

|0

|25

|50

|75

|100

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Last Arrival

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

>1
40

All Arrival

Figure 6.74: Ocean, 32 procs., 514x514, MCS barrier metric(left) and arrival(right) histograms.
|0

|25

|50

|75

|100

|125

|150

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Fall-Through

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Release

|0

|25

|50

|75

|100

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Last Arrival

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

>1
40

All Arrival

Figure 6.75: Ocean, 32 procs., 514x514,FLASH barrier metric(left) and arrival(right) histograms.

Section 6.3 Lock and Barrier Performance Impact in Applications 187

|0

|25

|50

|75

|100

|125

|150

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Fall-Through

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Release

|0

|25

|50

|75

|100

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Last Arrival

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

>1
40

All Arrival

Figure 6.76: Ocean, 64 procs., 514x514, Tourn. barrier metric(left) and arrival(right) histograms.

|0

|25

|50

|75

|100

|125

|150

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Fall-Through

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Release

|0

|25

|50

|75

|100

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Last Arrival

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

>1
40

All Arrival

Figure 6.77: Ocean, 64 procs., 514x514, MCS barrier metric(left) and arrival(right) histograms.

|0

|25

|50

|75

|100

|125

|150

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Fall-Through

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Release

|0

|25

|50

|75

|100

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

>1
00

Last Arrival

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

>1
40

All Arrival

Figure 6.78: Ocean, 64 procs., 514x514,FLASH barrier metric(left) and arrival(right) histograms.

188 Chapter 6 FLASH Synchronization Primitives

Barrier Performance Analysis

Unlike the previous applications we study, Ocean contains a sufficient number of barriers to allow

us to study their performance adequately in the context of real application behavior. We begin

by considering the performance of the barrier primitive itself, using the metricstft and trel and

comparing to the results of the microbenchmark analysis. Then we return to the larger issue of

analyzing the performance impact of barriers on the application overall.

Table 6.12 shows that based on the performance metrics,FLASH barriers are superior to the

other techniques in every case. As predicted, the gains are between a factor of 4 up to more than an

order of magnitude. Beginning with fall-through latency,tft , to compare with the microbenchmarks

we must first determine the nature of the barrier arrivals. For this we use the last arrival interval

histograms (such as the column of figures under Figure 6.64, right). These indicate that about half

the time the final barrier arrivals occur less than 3�s of each other, corresponding to the simultane-

ous arrival case. The other half encounter about 3�s or more between the final two arrivals, which

corresponds roughly to the late arrival case. The results in Table 6.12 show thattft matches this

analysis and is approximately the average of the late and simultaneous arrival predictions from the

microbenchmarks. The barrier metric histograms (such as the column of figures under Figure 6.64,

left) reflect this as well. Though the histogram granularity does not show this in detail, the pro-

nounced fall-through latency peak reflects a fairly smooth distribution between the two extremes of

late and simultaneous arrival when examined at higher resolution.

The release latency also corresponds fairly closely to the microbenchmark predictions. In most

cases the latency increases slightly, due to traffic introduced into the system by the earliest released

processors. The microbenchmarks isolated the barrier itself and thus did not encounter interfer-

ence of this kind. The release latency histograms show the performance of the three primitives in

more detail. The most notable effect is that the release performance of the software techniques is

less resilient to contention degrading significantly in some cases.FLASH barriers achieve release

performance close to the predictions, and encounter much less degradation from contention.

Returning to fall-through latency, we notice that a small fraction of theFLASH barriers have

longer latency than the microbenchmark predictions. Figure 6.72 (left) shows this effect clearly

in the 20�s histogram bar (i.e., fall-through latency between 10 –20�s). This arises from the

application and coherence protocol: in the relaxed consistency mode we use, invalidation acknowl-

edgements for exclusive ownership requests can be collected in the background after a write has

completed. Thus, the processor may complete its work and reach the barrier while invalidations

are still outstanding. Internally, theFLASH barrier executes an uncached read to communicate with

MAGIC. This read causes an implicit memory fence by the processor that forces all invalidations

to be counted before the read can issue. For consistency, and to account for all the overheads of

the different primitives we study, we count barrier fall-through latency from the start of the final

Section 6.3 Lock and Barrier Performance Impact in Applications 189

processor’s barrier routine, and thus the delay while the invalidation acknowledgements arrive is

counted towards the fall-through latency. This effect is unavoidable given the coherence protocol,

and reflects one part of the fundamental synchronization the barrier provides.

In Table 6.12 we show both mean and median barrier metrics to illustrate that the median case is

in line with the predictions, while the mean is perturbed slightly by instances of this effect. Though

the other barrier primitives are subject to this effect as well, we notice that in practice they do

not encounter as many slow events asFLASH barriers. While this effect is deeply dependent on

the ordering and timing of requests within the application, it is likely that the significantly more

uniform release characteristics ofFLASH barriers is responsible for arrivals at the subsequent barrier

with more acknowledgements outstanding.

Overall Performance Analysis

Now that we have analyzed the barrier performance specifically, we consider the application as a

whole to understand why its performance does not track the clear improvements fromFLASH barri-

ers. The most important observation is that even though the standard barrier primitives are far less

efficient thanFLASH barriers, they still account for only a fraction of the execution time. The impact

of the primitive itself forn barriers is bounded betweenn(tft) andn(tft +trel), since every processor

must waittft , but only the worst case processor waitstft + trel. If we consider the tournament barrier

as a reference point, across the range of simulations the lower bound is always less than 3%, and the

upper bound is less than 10% in nearly every case. Only for the 64 processor/258 problem size does

the maximum barrier contribution reach about 14%. Thus, the barrier primitive’s performance itself

is only responsible for some of the application-level performance differences in our results. We also

encounter differences in theapplication’sexecution resulting from the synchronization primitives.

Looking first at the 258x258 problem size in Table 6.12, we see that theFLASH barrier trans-

lates to improved application performance overall, especially as machine size grows. Notice that

all arrival interval, which provides an indication of load balance, deteriorates markedly with the

other barriers, while withFLASH barriers it stays fairly constant. At 64 processorsFLASH also re-

duces average read miss latency by reducing the communication artifacts due to barriers. These

effects combine to provide an overall execution time improvement at 64 processors of 14% versus

tournament barriers and 26% versus MCS.

For the 514x514 problem size, however, we see very different behavior. On the one hand,

barrier performance metrics indicateFLASH barriers clearly outperform the other primitives for

this problem size as well. Unfortunately, we also find increases in average read miss latency, PP

occupancy, and all arrival latency forFLASH barriers as compared to the tournament barrier and

MCS. Overall, theFLASH barrier execution time is 4% slower than the tournament barrier and 10%

slower than MCS. We describe two factors that are likely contributors to this slow-down, arising

190 Chapter 6 FLASH Synchronization Primitives

from both application andFLASH system characteristics, though other application interactions may

also be at work.

First, this version of Ocean uses aggressive prefetching, that accounts for between 50 –75% of

all the read misses. These prefetches are used especially in the multigrid solver’s red-black grid

copy phases, which occur right after a barrier. Prefetches immediately after the barrier may not only

impede the barrier itself, but also swamp the protocol processors and cause network queues to fill.

TheFLASH barrier’s more uniform release characteristics exacerbate this contention and may cause

performance to degrade as a result.

A second factor that may contribute to the performance differences is that the three barrier

primitives release processors in a different order. The trees themselves not only have different

structure, but even if they were the same, the releases would still differ greatly in their timing.

Differences in processor communication patterns or bottlenecks are likely to be stimulated by this

effect. Still, this effect does not seem to dominate, since the last arrival interval histograms indicate

the final arrivals tend to have approximately the same characteristics across the different primitives,

suggesting no single node dominates as the critical path.

Overall, we see that theFLASH barrier technique offers the ability to improve performance,

as shown particularly in the 258x258 problem size that spends significant time in barriers. Ocean’s

communication patterns and other effects dominate in the 514x514 problem, even though the barrier

metrics show the primitive’s performance itself remains robust even in those circumstances. These

indications reinforce our microbenchmark analysis thatFLASH barriers are a powerful technique

that offers the ability to synchronize at low cost, even at large machine sizes.

6.4 Discussion

This section reflects on the design of the synchronization primitives to identify their successes and

propose approaches to address their limitations. Overall, we find that these protocols forFLASH pro-

vide an interesting counterpoint to the memory copy protocol we studied in Chapter 5. To provide

coherent data movement at high performance, memory copy contained significant amount of pro-

tocol code and state. The synchronization primitives focus instead on achieving high performance

through specialization and by striving to keep the protocol code small and efficient.

Locks

The FLASH lock protocol we describe represents only one of the many approaches to improving

lock performance with specialized support. Our approach focuses closely on reducing artifactual

communication for contended lock accesses. This choice turns out to be very effective, showing

improvements for both Water and Barnes at large machine sizes. The performance improvements

Section 6.4 Discussion 191

come not only from reducing lock latency itself, but even more importantly from the reduction in

protocol processor occupancy artifactual communication causes.

On the other hand, consistent with the predictions and explanation of our microbenchmark anal-

ysis, we find thatFLASH locks do not perform as well for non-contended accesses. In fact, at small

application sizes where contention is low, we sometimes see a slight slowdown from the use of the

FLASH technique. In those cases,FLASH locks increase the lock latency and occupancy since our

handlers are longer and there is little or no artifactual communication to eliminate.

To address this limitation, future research in this area might consider a primitive that more ef-

fectively achieves the advantages of shared memory andFLASH locks. We suggest three approaches

to such a hybrid that are natural extensions of the technique we present:(i) A hybrid solution where

both shared memory andFLASH lock primitives are used, and are selected by the programmer using

knowledge of the application characteristics.(ii) A dynamic hybrid primitive implemented in the

lock library, such as reactive synchronization, where the lock shifts to aFLASH-based mode when

contention is detected [LA94]. The back-off interval in the existing LL/SC primitives would allow

this detection to be done at little or no impact when contention is not present.(iii) A dynamic hybrid

primitive implemented inMAGIC, a unique opportunity provided by the flexibility inFLASH. This

would operate similarly to the dynamic application-level primitive, falling back to shared memory

in low contention, but by encapsulating the protocol in the memory system it is completely trans-

parent to the processor. Assuming we adopt one of these solutions to address the low contention

limitations ofFLASH locks, the resulting primitive will have favorable characteristics over the broad

spectrum of locking regimes. This may makeFLASH locks a more resilient and stable protocol to

use in general, especially in cases where a lock’s contention behavior is not clearly understood, or

cannot easily be anticipated.

We also note that our implementation encounters a number of limitations from allowing locks

to be cached, such as those caused by speculation. Earlier we described the “Aggressive” lock vari-

ant, which attempts to mitigate somewhat the impact of speculation. More broadly, our application

results find that caching of locks is not always critically important: in Barnes we find cached re-

acquisitions are fairly common, and help bringFLASH lock non-contended performance closer to

that of the shared memory, while in Water its usage is less common. We might take advantage of

this observation and consider a lock variant whichdoes notsupport caching of locks. In such a

primitive, the processor would communicate with the protocol processor via PPRs foreverylock

and unlock. This implementation would reduce the penalty associated with non-contendedFLASH

locks by eliminating two cache accesses in the critical path (one to read the lock state at the re-

quester, and one to extract it from the current holder’s cache) and would reduce the lock protocol’s

192 Chapter 6 FLASH Synchronization Primitives

complexity and code size still further. Using a token-based approach, which we find provides sig-

nificant benefits, this implementation would even permit local re-acquisition, though not at cache

speeds.

Barriers

The barrier protocol builds upon conventional shared memory tree-barrier approaches by integrating

a custom version intoMAGIC. Our simulations across microbenchmarks and applications shows

that based on the barrier metrics, this approach outperforms the other alternative in every case.

Furthermore, even though application interference inevitably causes barrier performance to degrade

somewhat as compared to the isolated predictions, theFLASH barrier protocol degrades much less

than others.

On the other hand, our evaluation ofFLASH barriers within the Ocean application shows mixed

gains. In some cases,FLASH barriers do not improve overall execution time, probably due to other

contention effects exposed in the application. Eliminating synchronization bottlenecks may always

expose secondary bottlenecks of this sort. Other applications with less communication contention

may show clearer gains from the improvement of barrier performance itself.

The barrier approach we choose is based on a static assignment of processes to processors. The

internal MAGIC barrier tree requires reconfiguration if the mapping changes due to multiprogram-

ming. While this is a restriction, we feel it matches the usage patterns of scientific applications,

which use barriers the most frequently. Applications of that class generally attach to processors to

improve locality. They also perform extensive memory placement operations to indicate their mem-

ory locality patterns; optimizing the barrier tree for processor assignment is a related optimization.

In a commercial system environment in which attaching to processors is not permitted, the oper-

ating system would be employed to provideMAGIC with an updated processor assignment when

mappings change, so the barrier tree can be updated to match.

6.5 Summary

This chapter presents two custom synchronization protocols forFLASH, locks and barriers. In each

case, the design focuses on the low-level communication pattern the operation requires and identifies

how conventional software shared memory implementations deviate from those patterns due to the

cache coherence protocol.

The lock protocol targets in particular high contention situations where shared memory locks de-

grade significantly. Our protocol is based on a distributed queueing approach that permits locks to be

handed directly from one holder to the next. It also permits caching of locks to allow re-acquisition

without external communication. Our approach is similar in many respects to theQOLB primitive

Section 6.5 Summary 193

supported by SCI, but our primitive is more robust and is somewhat simpler. Our evaluation of

FLASH locks using microbenchmarks shows that contended performance improves significantly as

compared to non-queued locks, and gains about 40% over MCS locks, a software queued lock im-

plementation, though non-contended performance is inferior to both alternatives. We also study

applications taken from the SPLASH-2 benchmark suite, finding thatFLASH locks enable contin-

ued scaling to 128 processors where speedup often drops off after 64 using conventional locks.

These gains derive from superior locking as well as decreased controller occupancy arising from a

reduction in communication artifacts.

The barrier protocol follows conventional software tree-barrier approaches, while implementing

the operation entirely withinMAGIC. Just as in locks, this approach reduces communication artifacts

from contention to join the barrier, and improves performance by communicating directly between

nodes. Microbenchmark analysis demonstrates that the join phase of the barrier outperforms even

tree-based shared memory approaches by an order of magnitude under contention, and a factor of

two to four when a single processor arrives late. The release performance is also significantly faster

and thus more uniform, releasing 128 processors within 3�s. Besides the normal barrier, we also

demonstrate a variant which provides master-slave functionality, which is useful in some programs

such as those generated by an auto-parallelizing compiler. Simulations using the Ocean applica-

tion from the SPLASH-2 suite confirm the microbenchmark predictions of the barrier performance

metrics, and further show thatFLASH barriers maintain their performance under application inter-

ference better than conventional approaches. Execution time benefits are mixed:FLASH barriers

improve overall performance for some cases, while others encounter secondary bottlenecks in the

application.

The synchronization protocols benefit greatly from the flexibility ofMAGIC overall, though two

features are particularly useful. First, the presence of alternate address spaces allows the protocols

to respond to cache misses for lock or barrier state with different handlers than for normal misses.

This avoids the need to add special cases to the cache coherence protocol. Second, the flexibility

of the Jump Table allows these specialized coherence handlers to be dispatched directly rather than

through software, which would erode many of the latency gains the protocols achieve.

194 Chapter 6 FLASH Synchronization Primitives

Chapter 7

Extensions and Future Directions

The flexibility provided by the unique design ofMAGIC allows theFLASH system to support a wide

range of functionality not possible in conventional systems. In the previous chapters, we have stud-

ied in detail several protocols that use this flexibility to accelerate specific kinds of communication

operations. In this chapter, we describe a wide range of other protocols which may be promising

directions of future research.

7.1 Active Messages

Chapter 5 describes the “block transfer” uses of message passing, focusing on the benefits it can

provide for efficient communication. Some message passing programming models also provide the

ability to invoke computation on a remote node when the message arrives there, e.g.,hsend in

NX [Pie88]. Note the contrast between this kind of “imperative” communication model and shared

memory, which typically relies on the receiver explicitly polling to check if external communication

has arrived.1 Researchers have named this imperative style of communicationactive messages

because of the computation such messages invoke upon receipt [vECGS92].

In this section, we describe the design space for active messages onFLASH. There are two

issues which characterize our options for an active message implementation: The first is whether

the computation expressed in the message should be executed on the main processor or onMAGIC’s

Protocol Processor. The second issue is whether to allow the user to provide arbitrary code to

execute as an active message handler or only to allow system-level code.

1Some shared memory systems implementations, such asDASH [Len92], do provide a means to send inter-processor
interrupts. What we describe here is a somewhat more advanced technique for invoking computation remotely.

195

7.1.1 Processor-Implemented Active Messages

The obvious starting point for active messages is to carry out the computation on the main processor.

The main processor provides several advantages over the Protocol Processor. First, it is highly

optimized for general code, more so than the PP which is geared towards stylized handlers with

fairly mild computational requirements. Second, unlike the PP, the main processor provides floating

point support in hardware. Finally, it provides the ability to run user code directly using hardware

memory management features.

However, the strengths of the main processor are also to blame for its main weakness: invoking

computation there has a high start-up cost. Through the processor interface,MAGIC controls a

special bus that can interrupt the processor when needed. Unfortunately, deep pipelining, long-

latency floating point operations, large register files (which must be saved and restored), and OS

protection requirements all combine to make the interrupt latency very large in the R10000 (as in

most modern high performance processors running conventional operating systems). The R10000

vectors to an interrupt handler 12–20 cycles after the interrupt is asserted. The software start-up

cost may be as high as hundreds of cycles once the processor responds, depending on the operating

system and whether or not a fast interrupt vector is reserved for this use.

This drawback aside, invoking active messages on the processor is a powerful technique to

explore. One feature we will need to provide is a means of supplying the handler address to the

main processor when a message arrives. In some processors which deal with messaging more

directly, support for receiving a message and its handler PC is highly integrated with the proces-

sor [CSS+91, DFK+92, NPA92, ACD+95]. In our case, we are forced to rely on the R10000’s in-

terrupt handler requesting the message fromMAGIC when it is ready to service the active message.

For performance, this interface should allow the processor to read the active message efficiently

(i.e., cache it), but also unambiguously indicate that the message processing is complete (in case

another message is waiting). These issues render a high-performance main-processor interface to

active messages a challenging implementation. We describe our approach to requesting service on

the processor in Section 4.1.3.

Protection Levels

Protection remains an important issue for the implementation of active messages. Active messages

could execute either at user-level or kernel-level—each places protection burdens on the sending

and receiving processors andMAGIC chips.

User-level handlers are the most flexible and widely usable since applications can provide their

own code to run upon message arrival. Running handlers at user level is straightforward on the

processor since it already provides the protection features that are required. However, user-level

code must run in an address space appropriate for its application, which raises several issues:

196 Chapter 7 Extensions and Future Directions

� To provide this support, the processors andMAGIC need to communicate theauthenticated

identity of the sender so the appropriate address space can be selected. The operating system

andMAGIC cooperate soMAGIC can provide the identity of the sender at low latency.

� Once the appropriate address space is selected, the OS must generate a context in which

the handler can run. This may take a form similar to asignal handler (which uses the

application’s stack, thus suspending the application until the handler completes). If handlers

are to be more general and run concurrently with the destination process, additional threads

of activation must be ready in advance (or be prepared on the fly).

� The OS must verify the valid association of sender and receiver. This, combined with in-

stalling the correct address space further increases the handler-invocation latency above the

hardware’s lower bound.

We may also want to provide kernel-level active messages for inter-node kernel communication.

Kernel active messages share the requirements of user-level ones, especially the requirement for

authentication, to assure that only other kernels should be able to generate them.

7.1.2 MAGIC -Implemented Active Messages

Unlike previous systems that provided flexibility only in the compute processor, the Protocol Pro-

cessor inMAGIC enables us to execute active message handlers in the memory system as well. This

flexibility allows us to invoke handlers at significantly lower latency than on the main processor,

and to provide the handler with more direct access to the network. On the other hand, the design

of the PP places significant restrictions on the code that can be executed there (as described in

Section 2.3.2).

System-level

The protection limitations of the Protocol Processor only permit it to executetrustedcode, similar

to system-level code on the processor. In other words, handlers may be invoked only by privileged

users and must satisfy all the handler requirements ofMAGIC. One form these system-level handlers

may take is a set of available functions that are previously verified to be trusted. In a broader sense,

the alternate protocols described in this thesis are examples of the functions that can be provided. If

other handlers are desired, they must be verified in advance, since the PP provides little protection

against errant handlers.

Section 7.1 Active Messages 197

User-level

Despite the restrictions on handlers, there remain techniques which could be used to provide user-

level handlers on the Protocol Processor. These techniques serve to assure protection for the system

either statically, in advance, or at run-time. Though allowing user-level handlers to execute, the

need to conservatively assure protection for the system is likely to reduce the performance of user-

level handlers substantially. A more detailed evaluation of the performance and implementation of

user-level active messages inFLASH is beyond the scope of this dissertation.

Compile-Time Verification Instead of writing protocol handler instructions directly (or through

conventional compilation), they could be expressed in a specialized high-level language and

converted by a custom compiler to protocol code. At the same time, this compiler could

verify the code satisfies the requirements for correct handlers and only accesses valid data.

To assure this correctness, theMAGIC features which provide direct hardware access would be

expressed as calls in the high level language. In translating these calls, the compiler can insert

the necessary correctness checks to prevent them being used inappropriately. For example,

a send instruction would only be permitted if queue-space requirements were guaranteed

by appropriate static invariants or coupled with a run-time queue-space check inserted by the

compiler. Using a compiler to generate the protocol code has the advantage of utilizing the

PP directly, but assuring the handler correctness requirements in a compiler is likely to be

very difficult.

Run-Time Emulation and Sandboxing An alternative to specialized compilation is the reliance

on exclusively dynamic checks for correctness. As an extreme solution, arbitrary user code

could beemulatedon the Protocol Processor, with the emulator performing protection checks

where needed to ensure correctness. Emulation makes it is easier to guarantee valid han-

dler execution, but does so at a significant performance cost. Most emulation systems slow

down execution between a factor of 50 to several hundred as compared to native execu-

tion [DLHH94, RHWG95]. The slow down to emulate the PP is likely to be still worse

because it normally executes two instructions per cycle. Despite this performance degrada-

tion, for short handlers performing basic tasks emulation may be faster than interrupting the

compute processor.

The sandboxing technique proposed by Wahbe et al. [WLAG93] provides some of the fea-

tures we require for direct user-level handler execution. Sandboxing entails rewriting the ob-

ject code of an untrusted module so that loads and stores are very efficiently prevented from

modifying memory outside an allowed region. Although preventing inappropriate memory

accesses by user-level handlers is an important component of the protection we require, it

198 Chapter 7 Extensions and Future Directions

still does not assure that handlers terminate or useMAGIC-resources appropriately. The en-

vironment described in [WLAG93] relies on a preemptive operating system and traditional

operating system memory management features as a safety net in some cases. We would

need to add runtime checks around potentially hazardous instructions like sends and ls/ss

instructions, and also insert periodically executing code to allow the PP to regain control

if the handler exceeds reasonable run time limits. Given those additional requirements, a

sandboxing-like technique has the potential to greatly improve performance for user-level

handlers running on the PP as compared to emulation or naive per-instruction checks.

7.2 Other Protocols

The protocols described previously are only a subset of the many possible ones that could be im-

plemented onFLASH. In this section we briefly consider several of the other possible protocols to

provide a broader picture of the features thatMAGIC can support. Some of these protocols have

already been studied by other researchers in the context ofFLASH, while others are potential fu-

ture research directions. A more detailed analysis of these protocols is beyond the scope of this

dissertation.

7.2.1 Fetch-and-Op

As part of the NYU Ultracomputer and IBM Research Parallel Processor Prototype (RP3) projects,

researchers developed a scalable synchronization primitive known asFetch-and-Add, which serves

as an alternative to synchronization based on locks [GLR83, GGK+83, PBG+85, FG91]. Fetch-and-

Add provides a single atomic read-modify-write (an add) to a memory location. A generalization of

Fetch-and-Add isFetch-and-Op(also known asFetch-and-�), in which Op can be essentially any

math operation.

To explain the semantics of Fetch-and-Add, consider a memory location X with starting value

1000. Consider two processors executingFetchAndAdd(X,1) simultaneously. When the re-

quests arrive at memory, one of the updates occurs first, but each occurs atomically. As a result, one

of the processors updates location X to 1001 (receiving 1000 as its return value), the other updates

it to its final value of 1002 (and receive 1001 as its result). Regardless of the interleaving, Fetch-

and-Add assures that the final result is 1002 and that the two processors each receive unique return

values 1000 and 1001. Non-atomic updates could mistakenly leave location X with the value 1001

and return value 1000 to both processors.

The implementation of Fetch-and-Op is attractive for high-contention situations since the op-

eration is executed at thememory. If normal cacheable operations were used, the memory line

Section 7.2 Other Protocols 199

F&A(X, e)

F&A(X, f)

Y

Y+e

Y
F&A(X, e+f)Combining

Switch

Store e

0

1

0

1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

000
001

010
011

100
101

110
111

000
001

010
011

100
101

110
111

A
rray of processors

A
rray of m

em
ory units

Figure 7.1: The NYU Ultracomputer’s Combining network (taken from [GGK+83]). Left: The
dance-hall machine architecture with processors and memory elements separate and connected by
an indirect Omega network. Right: the extensions to the network switch to provide the combining
function.

would instead move around the system as the updates were performed, with each request experi-

encing long remote access penalties. In the Ultracomputer, in fact, the memory and a specially-

designed interconnect called acombining networkcooperate to accomplish this task still more effi-

ciently [GGK+83]. Figure 7.1 illustrates this network: the left panel shows a high-level view of the

Omega network used to connect processors and memory. This type of system is commonly referred

to as adance hallarchitecture, since the processors and memory are each grouped together. The

Ultracomputer extended the Omega network switch, shown at right, to provide the combining func-

tion. If the switch detects two Fetch-and-Add operations to the same location, it aggregates them

into a single operation representing a superposition of the two and passes the combined operation

onward. Later, when the result Y returns, the switch expands the operation to satisfy the two original

requests.

In FLASH, Fetch-And-Op on integers is relatively easy to implement in the Protocol Processor.

Since protocol handlers cannot be preempted, the PP handler merely needs to carry out a read-

modify-write cycle to assure atomicity. Unfortunately, floating point operations would need to be

emulated in PP software or executed directly on the compute processor (through interrupts). To

estimate the performance of an IEEE 754 compliant floating point add in the Protocol Processor we

studied the code generated by our compiler for agcc math library function implemented in C. The

latency of this operation varies widely between 20–100 cycles depending on the operands. Given

the high cost of processor interrupts, this approach may still be faster than using the main processor.

7.2.2 Global Reduction Operations

Some massively parallel systems provide a special flavor of parallel communication, calledglobal

reduction operations(or simplyglobal ops). These are similar to barriers since all processors ren-

dezvous during the operation, but unlike barriers, global ops also compute a parallel arithmetic

200 Chapter 7 Extensions and Future Directions

operation in the process. That is, each processor provides a numeric argument to the global op, and

at the completion of the operation, each processor receives the result some function applied to the

numbers provided by all the nodes. For example, in a globaladd, each processor provides a number

xi; 0 � i � n, wheren is the number of nodes participating. As the return value from the global

add, each processor is returned the sum of all the valuesf0:::n, wheref0:::n =
P

n

i=0
xi.

Global ops are provided by a variety of systems, e.g.: NX [Pie88] provides a range of global

op functions such asgdsum() , MPI [Mes93] provides theMPI_Reduce function. FLASH, too,

can provide global ops in the Protocol Processor, with the caveat that only integer operations can be

implemented directly. Floating point would need to be emulated, as described in the discussion of

Fetch-and-Op (Section 7.2.1).

7.2.3 Fault Containment, Reliability, and Recovery

In a collaborative effort between the system designers and the operating system group,FLASH re-

searchers have been designing support for reliability in the system. This design uses two major

cooperating thrusts: a scalable fault-containing operating system, and techniques for fault detec-

tion, containment, and recovery through support from customMAGIC protocol code.

Hive Operating System The operating system group of theFLASH project is designing a new

UNIX operating system calledHive [CRD+95]. Hive extends the commercial IRIX oper-

ating system from Silicon Graphics to improve scalability and reliability and to increase its

awareness of the machine’s NUMA characteristics. To improve reliability, with the aid of

the hardware support described below, Hive divides the system into fault containment bound-

aries called cells. Hive also leverages fast active message support for kernel communication

between cells, each of which runs their own copy of the kernel.

Fault Detection, Containment and RecoveryUnderlying the Hive system are advanced protocol

features that:detect faultsthat occur,prevent faultsfrom affecting other processors or cells,

andrecoverdata or nodes corrupted because of faults [TBG+97]. Collectively known as the

recovery protocol, these handlers ensure the system’s integrity by using the special handler

MAGIC executes periodically, called theidle handlerto check for problems. If error condi-

tions are detected, the handlers bring the system to a quiescent state and explore the system to

determine the extent of the fault’s effect. The protocol then restores to full operation the viable

portion of the system, and isolates and disables nodes that have experienced hard failures.

7.2.4 Performance Monitoring

One of the many beneficial uses of the flexibility inMAGIC is to export performance monitoring

features to the system. Performance monitoring can be used to study the system at several different

Section 7.2 Other Protocols 201

levels. To the designers ofFLASH, performance monitoring is useful to determine how efficiently

the MAGIC chip is functioning. This feedback can enable the designers to customize some pro-

grammable parameters in the chip to optimize its performance, to determine if software or hardware

errors are occurring, and to examine whether bottlenecks exist in the current design. Performance

monitoring of this sort is provided in two ways. Hardware counters embedded inMAGIC provide

a view of hardware events too small or too difficult to measure in PP software. Instrumented han-

dler code (selected using a special sampling feature of the Inbox Jump Table) is used to read these

counters at appropriate times and measure higher-level events like protocol caching effectiveness.

At another level, performance monitoring can be used by the application programmer to study

not the system, but rather the performance of the application running on it. In the past, tools such as

MemSpy [Mar93] have relied on program simulation or run-time statistical sampling to determine

program behavior. Some processors, such as the Intel Pentium also provide a counter-based facility

that can be used to provide simple performance statistics. Binary rewriting tools such as pixie for

MIPS systems and similar tools [SCH+91] instrument executables to provide exact profiling, though

they perturb application execution. InFLASH, performance monitoring can be provided much more

powerfully through support fromMAGIC, including the visibility of details not available through any

existing techniques. The FlashPoint protocol [MOH96] implements performance monitoring in this

style by extending the coherence protocol to maintain additional information about memory system

behavior. Verghese et al. [VDGR96] also useMAGIC to feed memory access statistics to the op-

erating system to guide page migration and replication decisions. Unlike FlashPoint which merely

provides the programmer with information useful for tuning the application by hand, in this case

performance monitoring may allow the kernel to dynamically improve application performance.

The ability to provide protocols such as FlashPoint, to dynamically influence page migration, and

to supply the programmer or operating system with real-time feedback is a powerful advantage of

FLASH.

7.3 Summary

This section described a range of other alternate protocols that may be interesting research direc-

tion for FLASH or similar machines. We described active messages, an alternative communication

style that shows promise for an efficient implementation with support fromMAGIC. Our discussion

focused on the range of design choices available in that protocol and to its users.

We identified two memory access primitives with unique characteristics targeted at supporting

different contended scenarios. Fetch-And-Op is designed for simple manipulations under high-

contention, while global ops are used to export all-to-all communication primitives using the facili-

ties of the machine as efficiently as possible. Both of these primitives are likely to perform well on

FLASH and may benefit from the implementation techniques used for synchronization primitives.

202 Chapter 7 Extensions and Future Directions

We also identified a few other interesting uses of the embedded flexibility ofMAGIC. Operating

systems can leverage this flexibility to increase performance, reliability, and scalability. System

designers and application programmers can use the increased visibility into the memory system to

better understand the performance tradeoffs in their designs.

Section 7.3 Summary 203

204 Chapter 7 Extensions and Future Directions

Chapter 8

Conclusions

A programmable protocol engine provides a novel and powerful model for supporting many classes

of communication within a multiprocessor. This research studies one such environment in particular,

theFLASH Multiprocessor, which was designed from the beginning with embedded flexibility in the

memory system. Complementing previous studies ofFLASH focusing on cache coherence, this

dissertation presents an analysis of issues for other protocolsFLASH can support.

Our study shows that the programmable protocol engine inFLASH is able to effectively sup-

port protocols such as block transfer and synchronization using the same hardware provided for

implementing cache coherence. This is due in large part to the flexible design of theMAGIC node

controller, which provides an optimized programmable protocol engine and generalized commu-

nication mechanisms that efficiently move data in parallel. It is also a result of the careful design

of the protocols themselves, which identify the critical limitations in conventional implementations

and leverage the node controller’s support to address them.

8.1 Interface Between Processor and Controller

One of the major issues in dividing communication functionality between the processor and con-

troller is effectively supporting their interaction. Interfaces with high overhead or functionality

restrictions can limit the ability of alternative protocols onMAGIC to improve performance or co-

operate with processor applications. Addressing the limitations of prior research, our approaches

enable processor-controller interaction at low overhead while also supporting modern operating

system requirements.

205

In the first part of this interface we describe techniques to provide efficient, reliable communi-

cation between the processor andMAGIC, such as the ability to invoke alternate protocol functions.

The main innovation of this approach is the ability to reliably communicate withMAGIC at user level

without system calls, while assuring protection and atomicity even in the presence of multiprogram-

ming. We find that our specially designed memory-mapped interface is a convenient and powerful

approach since it builds on the processor’s existing memory interface and requires only minor sup-

port from the operating system. We provide a related technique for communication fromMAGIC

to the processor using interrupts, allowing the processor to service critical requests generated by

protocol handlers.

Second, we present novel techniques to enableMAGIC to cooperate with the virtual memory

facility of the processor operating system. This requirement is unique to our study since the cache

coherence protocol operates entirely using physical addresses, while many classes of alternate pro-

tocols must support virtual addresses. Our techniques enable reliable virtual address communication

from the processor toMAGIC and also protect the integrity of those addresses while they are in use,

should paging cause the mappings to change. ThoughMAGIC lacks a hardware-based TLB due to

design complexity tradeoffs, we demonstrate how software approaches including a software TLB

can efficiently support similar functionality.

The combination of user-level access to the communication controller and support for protection

and virtual memory is unique feature of theFLASH architecture, enabled by the flexibility of the

node controller. By providing these features for efficient operating system coexistence, we find the

alternate protocols we study forMAGIC can be used effectively by conventional applications with

few or no restrictions.

8.2 Memory Copy

Our first detailed protocol study considers memory copy functionality, in which the processor del-

egates the transfer toMAGIC. The controller performs the transfer in the background, enabling

parallel computation and communication. Our study of memory copy identifies conclusions in two

areas in particular:

First, unlike systems which provide custom support for block transfer, our protocol shares the

same hardware as cache coherence and thusMAGIC transfers the data to the destination processor

a line at a time. On the one hand, we find that sending lines individually requires careful proto-

col design to achieve high performance. We show how techniques such as software pipelining and

software-controlled speculative execution are invaluable to optimize data transfer. We also observe

that transfers using this design must have a common cache-line alignment between source and desti-

nation buffers for peak performance. Changing data alignment is expensive in software, motivating

the addition of a simple hardware feature inFLASH to realign data as it is loaded into data buffers

206 Chapter 8 Conclusions

(the only additional feature provided for memory copy). Using this feature, unaligned transfers are

very efficient, though they are still 25–50% slower than aligned transfers due to additional protocol

processing needs.

On the other hand, sending lines individually and at the same granularity managed by the co-

herence protocol provides a number of useful benefits, especially given our approach of providing

complete integration with cache coherence. First, sending individual lines allows increased paral-

lelism that is valuable to hide remote communication latency such as that caused when data needed

by the transfer is found to be cached remotely. It also enables more aggressive protocol designs,

which we explore in detail, unlike prior approaches which rely on first flushing the involved data

from all the caches in the system.

Second, many prior systems have provided a transfer model with restricted coherence support

called local coherence, arguing that it reduces complexity, improves performance, and optimizes

the common case. Our observations suggest that remote caching is prevalent and that only a fully-

integrated protocol can be readily used within shared memory applications, including the operating

system, without restrictions. Our implementation supports the complete generality provided by a

cache-coherent shared memory system in which data may be cached remotely, and may be allocated

from remote memory. The results of our study also suggest that providing full coherence support

comes at a fairly low cost. Though the additional work required to handle arbitrary caching of

message data decreases transfer performance when used, the presence of this support does not no-

ticeably slow the local caching cases and thus there is little motivation to restrict the implementation

to just local coherence.

We evaluate the memory copy primitive using microbenchmarks that isolate its usage within

shared memory or message passing programs, and an application highlighting block transfer use by

the operating system. We find that block transfer inMAGIC provides some advantages including

improving overall performance in certain cases. In other cases processor copy with prefetching can

match the raw performance, but does so at a cost of occupying the processor and polluting its cache,

both of which theFLASH protocol avoids. While gains from the protocol are small to modest in

FLASH due to its relatively low remote memory latency, the potential benefits stand to be much

greater in systems with longer remote latencies, or where protocol processing throughput improves

from hardware or software optimizations.

8.3 Synchronization

We also study lock and barrier synchronization primitives using custom protocol support from

MAGIC. These protocols are motivated by the observation that synchronization primitives imple-

mented on top of shared memory incur significant wasted communication due to cache coherence,

especially under contention. By targeting this “artifactual” communication, our protocols improve

Section 8.3 Synchronization 207

Table 8.1: Protocol code size summary. The cache coherence protocol is included as a comparison
point.

Protocol Code Size

Memory Copy 19 KB
Locks 2.8 KB
Barriers 2.2 KB
Cache Coherence (dynamic pointers) 44 KB

contended synchronization performance and also decrease the impact of high contention cases on

the rest of the system.

Our lock protocol takes an aggressive approach utilizing distributed queueing, enabling a lock to

be transferred from one holder to the next using a singleFLASH message. Unlike previous protocols

that use distributed queueing for cache coherence, such as SCI which maintains distributed doubly-

linked lists, our approach is simple, efficient, and is specialized to perform a single function well.

Our protocol is also more resilient to exceptional conditions that arise and is more robust at assuring

fairness than some prior approaches such asQOLB, because we maintain state withinMAGIC and

not processor caches. One limitation to our approach is that it cannot easily support collocation of

locks and application data, a feature enabled by protocols such asQOLB that are more closely linked

with cache coherence. Collocation is most useful when locks protect small data structures that can

fit on the same cache line, thus its potential benefits are lower for the typically larger lock-protected

data structures in the applications we study. Our protocol is also less appropriate for low-contention

cases, since shared memory performs very well in that regime. We propose a range of future research

to address that limitation through protocol modifications or hybrid implementations.

The barrier protocol is similar to optimized shared memory approaches except that its tree com-

municates between theMAGIC chips on different nodes. Our results show unequivocal gains from

this implementation, demonstrating that the additional communication between the processor and

MAGIC in conventional barriers amounts to significant overhead. Though barriers are somewhat

less prevalent than locks in parallel applications, reducing their cost may encourage their more

widespread use. Furthermore, research in areas such as auto-parallelizing compilers suggests that

the ability to synchronize processors at extremely low overhead will become increasingly valuable;

theFLASH barrier variant customized for that class of applications shows similar improvements over

conventional techniques.

One secondary attribute of both synchronization protocol implementations is that they are in-

credibly compact, fostering improvedMAGIC instruction cache sharing with the major cache co-

herence protocol running on the machine. The cache coherence and memory copy protocols are

significantly larger—as much as an order of magnitude. Table 8.1 summarizes the code sizes of

208 Chapter 8 Conclusions

the protocols we study and the cache coherence protocol (for comparison). This compact synchro-

nization protocols are made possible by(i) specializing each protocol to provide only a specific

operation,(ii) providing a simple interface to communicate with the protocol, and(iii) carefully

designing the protocol to reduce the code explosion from local and remote interactions. While not

all protocols can utilize these optimizations, it demonstrates that useful protocols forMAGIC can be

very compact in some cases.

8.4 Flexible Controller Design Observations

Previous studies ofFLASH focus predominantly on the features and limitations which impact cache-

coherent shared memory protocols. One benefit of our study is that it considers theFLASH design,

and in particular the microarchitecture ofMAGIC, with an eye towards a very different class of

usage. This section reflects on several design issues for flexible controllers, integrating together the

observations from across the different parts of our study.

One area with significant impact on our protocols is the processor itself and the processor inter-

face. In general, our protocols benefit from flexible control over the manipulation of data, especially

the manipulation of processor caching. Paradoxically, our protocols’ needs for controlling the cache

are more advanced than those of the cache coherence protocol, largely because we perform more

complex operations such as block transfer. The R10000 and theMAGIC processor interface support

this effort by allowing two outstanding cache extraction interventions. Though the R10000 sup-

ports even more, we find two requests to be sufficient for performance and that the complexity of

managing more requests is prohibitive anyway.

On the downside, the R10000 interface has two particular limitations. First, it does not allow

updates to be “pushed” into the cache, even for data which it currently holds. This increases the

overhead and complexity of some cases, such as updating cached lock and barrier state, which

instead invalidate the cache and yield the PP to allow the spinning processor to miss. In block

transfer, it also reduces the protocol’s ability to supply data to the processor in anticipation of its

use, which is one reason prefetching can sometimes outperform our block transfer protocol. Second,

the R10000 prevents the user from flushing lines out of the cache, restricting this operation to

privileged levels only. This limitation, combined with the presence of processor speculation, forces

the processor/MAGIC communication techniques to use uncached accesses, which are less efficient.

The inability to flush lines also prevents the processor from writing back data in anticipation of

an upcoming block transfer, which would improve its performance. These two restrictions are not

surprising given the needs of most coherence protocols and microprocessor applications, but they

are unfortunate from the perspective of the protocols we study.

Another way in which our protocols taxMAGIC more than cache coherence is our heavy usage

of data buffers. For example, we find great benefits in our block transfer protocol from the ability to

Section 8.4 Flexible Controller Design Observations 209

software pipeline the main transfer handler. This amortizes transfer overhead across multiple lines

and hides processor cache access latency behind other processing.MAGIC’s general data buffer

mechanism and the protocol processor’s ability to control data movement manually are necessary to

enable these optimizations. Both of these features are in contrast with more restrictive data buffer

approaches used by recent commercial systems similar toFLASH.

One significant design tradeoff related to data buffers is the tracking of outstanding requests.

The Sequent NUMA-Q system stores a “handler continuation” for requests that are launched, which

resumes when the associated reply arrives.MAGIC uses a “fire-and-forget” approach where no state

is kept for lines once they are launched. Aside from the fault tolerance implications we do not

address, this has a clear performance tradeoff. The continuation-based approach reduces overall

latency by allowing the reply to be processed immediately at the point in the handler after the

initial send. In contrast,MAGIC is forced to dispatch a new handler for the reply message and

(typically) analyze state to determine how to process it. Despite this drawback, the continuation-

based approach necessarily imposes fundamental limits on the number of outstanding messages due

to practical hardware constraints. Processor prefetching has similar limitations. We find the ability

to have many block transfer lines in flight invaluable for hiding latency, an effect which was also

observed by other researchers, and will be amplified as effective network latencies grow.

Another important feature ofMAGIC for our protocols is the flexibility afforded by the pro-

grammable handler dispatch table, the “Jump Table”. The Jump Table allows handlers to be dis-

patched using a number of criteria, including address spaces and uncached read and write flavors.

Our protocols rely heavily on those distinguishing marks to cue special handling withinMAGIC.

For example, the ability to launch a separate coherence protocol using a different address space

was integral to the synchronization protocols we study. Though software dispatch could always be

used, its performance is significantly slower; the generality in the Jump Table combined with careful

message encoding enabled us to completely avoid software dispatch in all common case handlers.

Given our aggressive use of programmability and the wide range of characteristics in the proto-

cols we study, it is predictable that we should advocate generality within the mechanisms inMAGIC.

From a practical perspective, however, the needs for flexibility must be tempered with the require-

ments to achieve high performance for machine common cases like cache coherence. Our experi-

ence suggests thatMAGIC achieves a surprisingly effective balance between these two conflicting

goals, allowing a wide range of communication types to be supported in a single system.

210 Chapter 8 Conclusions

Appendix A

MAGIC Implementation Details

This appendix extends the basic description ofMAGIC in Chapter 2, providing some lower-level

detail about several parts of the design.

A.1 PP Instruction Set

As described in Section 2.3.2, the core instruction set of the PP is based loosely on that of the MIPS

R3000, with extensions to improve performance of common protocol operations. Table A.1 sum-

marizes the instruction set of the protocol processor. Most of the instructions are self-explanatory;

the data buffer operations (lblock, sblock) are described in more detail in the discussion of the data

buffers in Section 2.3.4.

A.2 Processor Interface

Section 2.3.3 describes the processor interface briefly. We expand on this initial description to

clarify the function of the PI Reply Register and explain the kinds of operations the PI can support.

A.2.1 PI Reply Register

Since the R10000 controls its own second-level cache, the PI handles interventions by issuing the

request on the bus and then waiting for a response. This response time from an intervention is vari-

able because the processor may be in the middle of a long-latency operation that needs to complete

before it can answer. In fact, the PP may or may not be interested in the response code provided

by the processor. This arises because some requests (such as invalidations), always succeed and

211

Table A.1: Summary of theMAGIC Protocol Processor instruction set.

Instructions Instruction Class Description

add, sub, and,
or, nor, xor

ALU Ops Standard ALU operations

sll, sllv, srl, srlv Shifts Shifts, including support for shifts of more than
32 bits

opi, opfi, opifi Bitfield operations Generate a mask of contiguous bits and combine
it with a register operand, (op can be add, and,
or, xor). e.g.:andfi $1, $2, 62, 63 — A
mask of two high bits is anded with $2 and stored
in $1.

insfi, insifi Bitfield insertion Insert data into a contiguous bitfield in a register
ffsb Bit vector Find first set bit
j, jr, jal Jumps Unconditional constant and register jumps; jump

and link
beq, bne Fast-compare branch Branch on equality/inequality of registers
blez, bgtz, bltz,
bgez

Zero-compare branch Branch on inequality comparisons against zero

bbs, bbc Bit testing branches Branch on bits set or clear
ld, sd Load/Store Load or store doublewords (only doublewords

supported)
ls, ss MAGIC state access Load or store internalMAGIC state variables
send Message Send Send a message to the processor, network, or IO
switch/ldctxt Context Switch Load the two portions of the next message into

registers, and jump to the next handler entry point
inv, copybk,
ltag, stag

MAGIC data cache
maintenance

Explicitly invalidate or copy back lines from the
MAGIC data cache, or manipulate tags directly.

lblock/sblock Data buffer memory
operations

Explicitly fill or spill a data buffer, either with a
single double word or a full cache line of data.

so the protocol handler need not consult the response. Other requests may fail (such as a request

for a particular address in the cache if the line is not found), and so the protocol must wait for the

response to see if the requested data can be delivered. The PP indicates its intention to the PI using

a flag in the message. If the PP indicates that it is waiting for the response, the PI writes a reserved

location called thePI Reply Registerwith the result code.

The PP can have only two outstanding requests for which it has requested a response. The

PI Reply Register acts as a special kind of response queue: once the response is read, it frees the

register to indicate the result of the next response. Thus, no special handling is required to read

thenextrequest’s status reply: each request’s result arrives the order they were issued. Instead, the

protocol must take care to read the PI Reply Register exactly once for each request.

212 Appendix A MAGIC Implementation Details

Table A.2: Explanation of Processor Interface interventions (partial list).

Op type Description

Get Request a copy of a line suspected to be in the cache. If the line is held in exclusive
mode, return a shared copy of the data, leaving the line in the cache in the shared
state. The state reply indicates the state (shared, exclusive, invalid/not-present) of the
line when the request arrived.

GetX Request a copy of a line suspected to be in the cache. Return the data and remove
the line from the cache entirely. The state reply indicates the state (shared, exclusive,
invalid/not-present) of the line when the request arrived.

Inval Invalidate a line in the cache (regardless of its caching state), and do not return the
data. The state reply indicates the state of the line when the request arrived. Note:
Under normal circumstances, this request should never be issued for a line which is
in the cache in the exclusive state, since that copy is the most up-to-date copy of the
line. However, we describe a scenario in our message passing protocol in Chapter 5
in which we can optimize our protocol by invalidating exclusive lines in particular
circumstances.

Put Reply to a processor request, installing the line in the shared state. A Put may only be
issued for a line previously requested by the processor. No state reply is provided.

PutX Reply to a processor request, installing the line in the exclusive state. A PutX may
only be issued for a line previously requested by the processor. No state reply is
provided. Note: if the processor requested the line in the shared state (i.e., with a
Get), it is legal to reply to the processor with a line in the exclusive state (i.e., with a
PutX). We leverage this feature to optimize the lock protocol in Chapter 6

NAK NegativelyAcKnowledge a processor request. This may cause the processor to reis-
sue the request, depending on whether the original request was speculative and later
determined to be unnecessary. The use of NAKs is critical for deadlock avoidance in
case node resources are temporarily insufficient [LLG+90, LLG+92, KOH+94]. No
state reply is provided.

A.2.2 Supported PI Operations

The PI provides a wide range of operations on data in the processor’s cache, all of which find utility

in the protocols we describe. Table A.2 briefly describes the semantics of these operations. In the

table, we describe the processor’s response to the request when sent byMAGIC to the PI. Similarly

named requestsfrom the processor are requests for the related coherence operation fromMAGIC.

Section A.2 Processor Interface 213

214 Appendix A MAGIC Implementation Details

Appendix B

Synchronization Primitive

Implementations

This appendix presents the pseudo code for the conventional lock and barrier primitives we compare

against, as a reference for understanding their implementation-specific effects we encounter in our

simulations.

B.1 Locks

We begin with the lock implementations we study in Section 6.1.2. Figure B.1 shows the LL/SC-

based lock. The lock is first read using an LL operation. This load may find the lock held elsewhere,

and if so it repeats the load (spinning in its cache) until the lock is again available. Then the

processor tries to assert the lock itself and update memory using an SC operation. Failed attempts

due to contention are addressed using exponential back-off in an attempt to decrease contention in

successive rounds.

Figure B.2 shows the MCS lock, which improves performance over LL/SC through queue-

ing [MCS91a]. We use the version of MCS locks based on the atomic store primitives Fetch-And-

Store and Compare-And-Swap, which we internally implement with LL/SC. Fetch-and-Store works

as follows: given an address and a value, it atomically reads the address, writes the supplied new

value, and returns the old value. Compare-and-Swap is a conditional atomic store: given an address,

an “old” value, and a “new” value, it atomically reads the address, compares the result to the “old”

value, and if they match, stores the “new” value in memory, otherwise leaves memory unchanged.

It returns a constant 1 or 0 to indicate whether the store occurred.

215

Lock()
{

TryLock:

lock = LoadLinked (lockAddr);

if (lock) /* Lock locked elsewhere */
goto TryLock;

lock = 1; /* Try to acquire lock */

result = StoreConditional (lockAddr, lock);

if (!result) { /* Contention for lock */
ExpBackOff(); /* Wait a random amount */
goto TryLock;

}
/* I now hold the lock */

}

Figure B.1: Pseudo code for a load-linked/store-conditional-based lock implementation.

typedef struct MCSnode
{

struct MCSnode *next;
volatile int locked;

} MCSnode;

typedef MCSnode *MCSlock;

/* L points to the shared lock */
/* I points to the requester’s local queue entry */
AcquireMCSlock(MCSlock L, MCSlock I)
{

I->next = NULL; /* Initially I has no successor */
pred = FetchAndStore(L, I); /* Make I new tail, return old */

if (pred) { /* Lock is not free */
I->locked = 1; /* Indicate lock is not free */
pred->next = I; /* Enqueue myself */
while (I->locked) /* Spin on lock */

continue;
}

}

ReleaseMCSlock(MCSlock L, MCSlock I)
{

if (I->next == NULL) { /* Currently no successor */
if (CompareAndSwap(L, I, NULL)) {

return; /* Still no successor, lock free */
}
while (I->next == NULL)

continue; /* Wait for successor to enqueue */
}
I->next->locked = NULL; /* Release successor */

}

Figure B.2: Pseudo code for the Mellor-Crummey Scott (MCS) lock implementation, adapted
from [MCS91a].

216 Appendix B Synchronization Primitive Implementations

typedef struct {
int count;
int padding[]; /* Pad to new cache line */
int generation;

} barrier_t;

Barrier(barrier_t *barrier, int num_procs)
{

int gen = barrier->generation;

loop:
count = LoadLinked(&barrier->count);
count++;
if (count == num_procs)

count = 0;

result = StoreConditional (&barrier->count, count);
if (!result)

goto loop;

if (count == 0) {
barrier->generation = gen+1;
return;

}
while (gen == barrier->generation)

continue;
}

Figure B.3: Pseudo code for the LL/SC-based barrier implementation.

B.2 Barriers

This section describes the barrier primitives we studied in Section 6.2.2. The basic LL/SC barrier

implementation is shown in Figure B.3. This barrier operates in a similar manner to the LL/SC lock

primitive in that it updates a shared variable under mutual exclusion.

Figure B.4 presents the tournament tree barrier we study, implemented by Chris Holt. It uses a

tree represented by an array of structures, in which a tree node’s parent and children are calculated

based on offsets into the array. The algorithm to manipulate an array-packed tree data structure

is well-known and is abstracted here for brevity. Each tree node rendezvous and release is per-

formed by manipulating a lock-protected count. Unlike the originally proposed tournament barrier,

processors statically know which will advance up the tree based on their processor number.

The MCS barrier implementation is shown in FigureB.5 [MCS91a]. At a low level, this prim-

itive differs from the tournament barrier in several ways besides those mentioned in Section 6.2.2.

First, unlike the tournament barrier approach described above, MCS uses a pointer-connected set of

tree nodes instead of a packed array structure. By pre-calculating the tree linkage when the barrier

is initialized, MCS barriers eliminate tree position calculations when the barrier executes. MCS

barriers also use a toggling barrier sense indicator so that each iteration of the barrier does not need

to reinitialize the release tree.

Section B.2 Barriers 217

struct {
lock_t lock; /* Assure atomic flag increment */
int flag;
int padding; /* Padding to reach page size */

} PaddedFlag;

PaddedFlag *joinTree;
PaddedFlag *releaseTree;

inline
waitAndClearFlag(PaddedFlags *tree, int offset, int count)
{

while (tree[offset]->flag < count)
; /* Wait for others’ signal */

clear tree[offset]->flag; /* Initialize for next barrier */
}

inline
incrFlag(PaddedFlags *tree, int offset)
{

LOCK(tree[offset]->lock);
tree[offset]->flag++;
UNLOCK(tree[offset]->lock);

}

/* Tree expressions used below
*
* my_parent: my parent’s offset in the tree
* my_children: my children’s rendezvous for this tree level
*/

TournamentTreeBarrier(int ProcId, int num_procs)
{

if (leafNode) {
incrFlag(joinTree, my_parent)
waitAndClearFlag(releaseTree, ProcId, 1);

/* Wait to be released */
}

while (I advance up the tree) {
waitAndClearFlag(joinTree, my_children, JOIN_RADIX);
Advance level and update position in tree;

if (I will not advance further) {
incrFlag(joinTree, my_parent);
waitAndClearFlag(releaseTree, ProcId, 1);

/* Wait to be released */
}

}

if (tree root) { /* Wait for final round */
waitAndClearFlag(joinTree, my_children, JOIN_RADIX);

}

while (I have children) {
incrFlag(releaseTree, my_children);

/* Release my children */
Advance level and update position in tree;

}
}

Figure B.4: Pseudo code for the tournament tree barrier implementation.

218 Appendix B Synchronization Primitive Implementations

typedef struct {
volatile int wsense;
int *parentPointer;
int *childPointers[MCS_LEAVE_RADIX];
int haveChild[MCS_JOIN_RADIX];
volatile int cnotReady[MCS_JOIN_RADIX];
int dummy;

} MCSTreeNode_t

/* Tree expressions used below
*
* child(i, radix, num_procs)
* Pointer to my i-th child in tree of specified radix with
* maximum node count num_procs, or zero if no such child.
*
* parent(radix, num_procs)
* Pointer to my parent in tree of specified radix with maximum
* node count num_procs or zero if the root.
*/

InitMCSBarrier(int procId, int num_procs)
{

MCSTreeNode_t *node = nodes[procId];
node->wsense = 0;

/* Construct join tree */
for (j=0...MCS_JOIN_RADIX) {

node->haveChild[j] = node->cnotReady[j] =
(child(j, MCS_JOIN_RADIX, num_procs) != 0);

}
node->parentPointer =

& parent(MCS_JOIN_RADIX, num_procs)->cnotReady;

/* Construct release tree */
for (j= 0 ...MCS_LEAVE_RADIX) {

node->childPointers[j] =
& child(j, MCS_LEAVE_RADIX, num_procs)->wsense;

}
}

MCSBarrier(int procId, int *sense)
{

MCSTreeNode_t *node = nodes[procId];

/* Wait for children to join */
repeat until node->cnotReady[0 ... MCS_JOIN_RADIX] all zero;

/* Initialize join tree for next time */
node->cnotReady[0 ... JOIN_RADIX] =

node->haveChild[0 ... JOIN_RADIX];

(node->parentPointer) = 0; / Join with my parent */
if (procId != 0) {

while (*sense != node->wsense)
continue; /* Spin locally on sense flag */

}
*(node->childPointers[0 ... MCS_LEAVE_RADIX]) = *sense;

/* Release my children */
*sense = ! *sense; /* Flip sense for next time */

}

Figure B.5: Pseudo code for the Mellor-Crummey Scott (MCS) barrier implementation, adapted
from [MCS91a].

Section B.2 Barriers 219

typedef struct MasterSlaveBarrier {
volatile int entered[MAXPROCS];
char _pad0[]; /* Pad to cache line */
volatile int genNumber;
char _pad1[]; /* Pad to cache line */
int copyGenNumber;
char _pad2[]; /* Pad to cache line */

} MasterSlaveBarrier;

/* Used by slaves joining the barrier */
MSBarrier_SlaveEnter(MasterSlaveBarrier *b, int myid)
{

int gen = b->genNumber;

b->entered[myid] = 1;
while (gen == b->genNumber)

continue;
}

/* Used by the master to join the barrier */
MSBarrier_MasterEnter(MasterSlaveBarrier *b, int numProcs)
{

int i;

for (i=1; i<numProcs; i++) {
while (!b->entered[i])

continue;
}
bzero(b->entered, numProcs * sizeof(int))
/* Master falls through while slaves continue waiting */

}

/* Used by the master to release the slave waiters once
the master’s coordination processing is finished */

MSBarrier_Release(MasterSlaveBarrier *b)
{

b->copyGenNumber++;
b->genNumber = b->copyGenNumber;

}

Figure B.6: Pseudo code for the Basic Master-Slave barrier implementation

Finally we show the basic master-slave barrier implementation in Figure B.6. This implemen-

tation is similar to the functionality of a single tree node in the MCS barrier, since it uses an array

of flags (calledentered) packed tightly together.

220 Appendix B Synchronization Primitive Implementations

Bibliography

[AAG+87] Marco Annaratone, Emmanuel Arnould, Thomas Gross, H. T. Kung, Monica Lam,

Onat Menzilcioglu, and Jon A. Webb. The Warp computer: architecture, implementa-

tion, and performance.IEEE Transactions on Computers, C-36(12):1523–1538, De-

cember 1987.

[AC89] Anant Agarwal and Mathews Cherian. Adaptive backoff synchronization techniques.

In Proceedings of the 16th Annual International Symposium on Computer Architecture,

pages 396–406, May 1989.

[ACC+90] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan

Porterfield, and Burton Smith. The Tera computer system. InProceedings of the

1990 International Conference on Supercomputing, pages 1–6, June 1990.

[ACD+91] Anant Agarwal, David Chaiken, Godfrey D’Souza, Kirk Johnson, David Kranz, John

Kubiatowicz, Kiyoshi Kurihara, Beng-Hong Lim, Gino Maa, Dan Nussbaum, Mike

Parkin, and Donald Yeung. The MIT Alewife machine: A large scale distributed-

memory multiprocessor. Technical Report MIT/LCS Memo TM-454, Massachusetts

Institute of Technology, 1991.

[ACD+95] Anant Agarwal, David Chaiken, Godfrey D’Souza, Kirk Johnson, David Kranz, John

Kubiatowicz, Kiyoshi Kurihara, Beng-Hong Lim, Gino Maa, Dan Nussbaum, Mike

Parkin, and Donald Yeung. The MIT Alewife machine: A large scale distributed-

memory multiprocessor. InProceedings of the 22nd International Symposium on Com-

puter Architecture, June 1995.

[AGGW92] Nagi M. Aboulenein, Stein Gjessing, James R. Goodman, and Philip J. Woest. Hard-

ware support for synchronization in the scalable coherent interface (SCI). Computer

221

Sciences Department Tech Report 1117, University of Wisconsin, Madison, November

1992.

[ALK +91] Anant Agarwal, Beng-Hong Lim, David Kranz, et al. LimitLESS directories: A scal-

able cache coherence scheme. InProceedings of the Fourth International Conference

on Architectural Support for Programming Languages and Operating Systems, pages

224–234, April 1991.

[And89] Thomas E. Anderson. The performance implications of spin-waiting alternatives for

shared-memory multiprocessors. InProceedings of the 1989 International Conference

on Parallel Processing, pages 170–174, Aug 1989. Volume 2.

[And90] Thomas E. Anderson. The performance of spin lock alternatives for shared-memory

multiprocessors.IEEE Transactions on Parallel and Distributed Systems, 1(1):6–16,

January 1990.

[AS88] William C. Athas and Charles L. Seitz. Multicomputers: Message-passing concurrent

computers.IEEE Computer, pages 9–24, August 1988.

[ASHH88] Anant Agarwal, Richard Simoni, John Hennessy, and Mark Horowitz. An evaluation

of directory schemes for cache coherence. InProceedings of the 15th Annual Interna-

tional Symposium on Computer Architecture, pages 280–289, 1988.

[BAM+96] Edouard Bugnion, Jennifer M. Anderson, Todd C. Mowry, Mendel Rosenblum, and

Monica S. Lam. Compiler-directed page coloring for multiprocessors. InProceedings

of the Seventh International Conference on Architectural Support for Programming

Languages and Operating Systems, October 1996.

[BAR96] Edouard Bugnion, Jennifer M. Anderson, and Mendel Rosenblum. Using SimOS

to characterize and optimize auto-parallelized SUIF applications. InProceed-

ings of the First SUIF Compiler Workshop, January 1996. Stanford University,

http://www-suif.stanford.edu/suifconf/suifconf1 .

[BDFL96] Matthias Blumrich, Cezary Dubnicki, Edward W. Felten, and Kai Li. Protected, user-

level DMA in the SHRIMP network interface. InProceedings of the Second Inter-

national Symposium on High-Performance Computer Architecture (HPCA-2), pages

154–165, February 1996.

[Bec92] Michael J. Beckerle. An overview of the START(*T) computer system. Motorola

Technical Report MCRC-TR-28, Motorola, Inc., One Kendall Square, Building 200,

Cambridge, MA 02139, Jul 1992.

222 BIBLIOGRAPHY

[BI86] Eugene D. Brooks III. The butterfly barrier.International Journal of Parallel Pro-

gramming, 15(4):295–307, August 1986.

[Bla90] Tom Blank. The MasPar MP-1 architecture. InProceedings of COMPCON Spring

’90: Thirty Fifth IEEE Computer Society International Conference, pages 20–24, Mar

1990.

[BLA+94] Matthias Blumrich, Kai Li, Richard Alpert, Cezary Dubnicki, Edward Felten, and

Jonathan Sandberg. Virtual memory mapped network interface for the SHRIMP mul-

ticomputer. InProceedings of the 21st International Symposium on Computer Archi-

tecture, pages 142–153, April 1994.

[Bra77] Achi Brant. Multi-level adaptive solutions to boundary-value problems.Mathematics

of Computation, 31(138):333–390, 1977.

[BRG+89] David L. Black, Richard F. Rashid, David B. Golub, Charles R. Hill, and Robert V.

Baron. Translation lookaside buffer consistency: A software approach. InProceed-

ings of the Third International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 113–122, April 1989.

[BSSD96] David L. Black, Randall D. Smith, Steven J. Sears, and Randall W. Dean. FLIPC: A

low latency messaging system for distributed real time environments. In1996 USENIX

Technical Conference, pages 229–238, January 1996.

[BZS93] Brian Bershad, Matthew Zekauskas, and Wayne Sawdon. The Midway distributed

shared memory system. InProceedings of COMPCON’93, pages 528–537, February

1993.

[CBZ91] John B. Carter, John K. Bennett, and Willy Zwaenepoel. Implementation and perfor-

mance of Munin. InThirteenth ACM Symposium on Operating Systems Principles,

pages 152–164, October 1991.

[CF78] L. M. Censier and P. Feautrier. A new solution to coherence problems in multicache

systems.IEEE Transactions on Computers, C-27(12):1112–1118, December 1978.

[CHRG95] John Chapin, Stephen A. Herrod, Mendel Rosenblum, and Anoop Gupta. Memory sys-

tem performance of unix on CC-NUMA multiprocessors. InProceedings of the 1995

Joint International Conference on Measurement and Modeling of Computer Systems

(SIGMETRICS ’95/PERFORMANCE ’95), 1995.

[Cra93] Cray Research, Inc.Cray T3D System Architecture, 1993.

BIBLIOGRAPHY 223

[CRD+95] John Chapin, Mendel Rosenblum, Scott Devine, Tirthankar Lahiri, Dan Teodosiu, and

Anoop Gupta. Hive: Fault containment for shared-memory multiprocessors. InPro-

ceedings of the Fifteenth ACM Symposium on Operating Systems Principles, pages

12–25, December 1995.

[CSS+91] David E. Culler, Anurag Sah, Klaus Erik Schauser, et al. Fine-grain parallelism with

minimal hardware support: A compiler-controlled threaded abstract machine. InPro-

ceedings of the Fourth International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, pages 164–175, April 1991.

[DCF+89] William J. Dally, Andrew Chien, Stuart Fiske, Waldemar Horwat, John Keen, Michael

Larivee, Rich Lethin, Peter Nuth, and Scott Wills. The J-Machine: A fine-grain con-

current computer. InIFIP Congress, August 1989.

[DFK+92] William Dally, J. Fiske, J. Keen, R. Lethin, M. Noakes, P. Nuth, R. Davison, and

G. Fyler. The message-driven processor: A multicomputer processing node with effi-

cient mechanisms.IEEE Micro, 12(2):23–39, 1992.

[DLHH94] Peter Davies, Phillipe Lacroute, John Heinlein, and Mark A. Horowitz. Mable: A

technique for efficient machine simulation. Technical Report CSL-TR-94-636, Stan-

ford University, Computer Systems Laboratory, Sep 1994.

[DOSW96] Jack J. Dongarra, Steve W. Otto, Marc Snir, and David Walker. A message passing

standard for mpp and workstations.Communications of the ACM, 36(9):84–90, July

1996.

[FAB+96] Edward W. Felten, Richard D. Alpert, Angelos Bilas, Matthias A. Blumrich,

Douglas W. Clark, Stefanos N. Damianakis, Cezary Dubnicki, Liviu Iftode, and Kai

Li. Early experience with message-passing on the shrimp multicomputer. InProceed-

ings of the 23rd Annual International Symposium on Computer Architecture, pages

296–307, May 1996.

[FG91] Eric Freudenthal and Allan Gottlieb. Process coordination with Fetch-and-Increment.

In Proceedings of the Fourth International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 260–268, 1991.

[FLR+94] Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt, Ionnas Shoinas, Mark D. Hill,

James R.Larus, Anne Rogers, and David A. Wood. Application-specific protocols for

user-level shared memory. InProceedings of Supercompting 94, Nov 1994.

[Fly66] Michael J. Flynn. Very high-speed computers.Proceedings of the IEEE, 54(12):1901–

1909, December 1966.

224 BIBLIOGRAPHY

[FV93] Matthew I. Frank and Mary K. Vernon. A hybrid shared memory/message passing

parallel machine. InProceedings of the 1993 International Conference on Parallel

Processing, pages I232–I326, 1993.

[Gal96] Mike Galles. The SGI SPIDER chip. Silicon Graphics Whitepaper, 1996.

[GBD+94] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and

Vaidy Sunderam.PVM: Parallel Virtual Machine: A Users’ Guide and Tutorial for

Networked Parallel Computing. MIT Press, 1994.

[GGK+83] Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P McAuliffe, Larry Rudolph,

and Marc Snir. The NYU Ultracomputer—designing an MIMD shared memory paral-

lel computer.IEEE Transactions on Computers, C-32(2):175–189, Feb 1983.

[GH93] Steven R. Goldschmidt and John L. Hennessy. The accuracy of trace-driven simula-

tions of multiprocessors. InProceedings of the 1993 ACM SIGMETRICS Conference

on Measurement and Modeling of Computer Systems, pages 146–157, May 1993.

[Gha95] Kourosh Gharachorloo.Memory Consistency Models for Shared-Memory Multipro-

cessors. PhD thesis, Stanford University, 1995.

[GLR83] Allan Gottlieb, B. D. Lubachevsky, and Larry Rudolph. Basic techniques for syn-

chronizing large numbers of cooperating sequential processes.ACM Transactions on

Programming Languages, 5(2):164–189, Apr 1983.

[GLS] William Gropp, Ewing Lusk, and Anthony Skjellum. A high-performance, portable

implementation of the MPI message passing interface standard. Argonne National

Labs Technical Report,http://www.mcs.anl.gov/mpi/mpicharticle/-

paper.html andmpi/mpicharticle.ps .

[Gol93] Stephen Goldschmidt.Simulation of Multiprocessors: Accuracy and Performance.

PhD thesis, Stanford University, June 1993.

[Goo97] James R. Goodman, June 1997. Personal communication.

[GT90] Gary Graunke and Shreekant Thakkar. Synchronization algorithms for shared-memory

multiprocessors.IEEE Computer, 23(6):60–70, Jun 1990.

[GVW89] James R. Goodman, Mary K. Vernon, and Philip J. Woest. Efficient synchronization

primitives for large-scale cache-coherent multiprocessors. InProceedings of the Third

International Conference on Architectural Support for Programming Languages and

Operating Systems, pages 64–75, 1989.

BIBLIOGRAPHY 225

[HAA+96] Mary M. Hall, Jennifer M. Anderson, Saman P. Amarasinghe, Brian R. Murphy, Shih-

Wei Liao, Edouard Bugnion, and Monica S. Lam. Maximizing multiprocessor perfor-

mance with the SUIF compiler.IEEE Computer, Dec 1996.

[HBG+97] John Heinlein, Robert P. Bosch, Jr., Kourosh Gharachorloo, Mendel Rosenblum, and

Anoop Gupta. Coherent block data transfer in the FLASH multiprocessor. InProceed-

ings of the Eleventh International Parallel Processing Symposium, pages 18–27, April

1997.

[Hei] Mark Heinrich.The Performance and Scalability of Distributed Shared Memory Cache

Coherence Protocols. PhD thesis, Stanford University.to appear.

[Hei97] Mark Heinrich, September 1997. Personal communication.

[Her90] Maurcice Herlihy. A methodology for implementing highly concurrent data structures.

In Proceedings of the Second ACM SIGPLAN Symposium on Principles of Distributed

Computing, pages 197–206, March 1990.

[Her98] Stephen Alan Herrod.Using Complete Machine Simulation to Understand Computer

System Behavior. PhD thesis, Stanford University, February 1998. Technical Report

STAN-CS-TR-98-1603.

[HFM88] Debra Hengsen, Raphael Finkle, and Udi Manber. Two algorithms for barrier syn-

chronization. International Journal of Parallel Programming, 17(1):1–17, February

1988.

[HGDG94] John Heinlein, Kourosh Gharachorloo, Scott Dresser, and Anoop Gupta. Integrat-

ing message passing and shared memory in the Stanford FLASH Multiprocessor. In

Proceedings of the Sixth International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, October 1994.

[HGG94] John Heinlein, Kourosh Gharachorloo, and Anoop Gupta. Integrating multiple com-

munication paradigms in high performance multiprocessors. Technical Report CSL-

TR-94-604, Stanford University, Computer Systems Laboratory, February 1994.

[HHS+95] Chris Holt, Mark Heinrich, Jaswinder Pal Singh, Edward Rothberg, and John

Hennessy. The effects of latency, occupancy, and bandwidth in distributed shared

memory multiprocessors. Technical Report CSL-TR-94-660, Stanford University,

Computer Systems Laboratory, 1995.

226 BIBLIOGRAPHY

[HJ92] Dana S. Henry and Christopher F. Joerg. A tightly coupled processor-network inter-

face. InProceedings of the Fifth International Conference on Architectural Support

for Programming Languages and Operating Systems, pages 111–122, Sep 1992.

[HKO+94] Mark Heinrich, Jeffrey Kuskin, David Ofelt, John Heinlein, Joel Baxter, Jaswinder Pal

Singh, Richard Simoni, Kourosh Gharachorloo, David Nakahira, Mark Horowitz,

Anoop Gupta, Mendel Rosenblum, and John Hennessy. The performance impact of

flexibility in the Stanford FLASH Multiprocessor. InProceedings of the Sixth Interna-

tional Conference on Architectural Support for Programming Languages and Operat-

ing Systems, October 1994.

[HLS95] Maurice Herlihy, Beng-Hong Lim, and Nir Shavit. Scalable concurrent counting.ACM

Transactions on Computer Systems, 13(4):343–364, November 1995. A preliminary

version appeared in the Proceedings of the Third Annual ACM Symposium on Parallel

Algorithms and Architectures, July 1992.

[HM93a] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support

for lock-free data structures. InProceedings of the 20th International Symposium on

Computer Architecture, pages 289–300, May 1993.

[HM93b] Mark Homewood and Moray McLaren. Meiko CS-2 interconnect Elan-Elite design.

In Proceedings of Hot Interconnects 93, August 1993.

[HP90] John L. Hennessy and David A. Patterson.Computer Architecture: A Quantitative

Approach. Morgan Kaufmann Publishers, Inc., 1990.

[HS95] Chris Holt and Jaswinder Pal Singh. Hierarchical n-body methods on shared address

space multiprocessors. InProceedings of the Seventh SIAM International Conference

on Parallel Processing for Scientific Computing, pages 313–318, February 1995.

[HT93] W. Daniel Hillis and Lewis W. Tucker. The CM-5 connection machine: A scalable

supercomputer.Communications of the ACM, 36(11):30–40, November 1993.

[Int91] Intel Corporation.Paragon XP/S Product Overview, 1991.

[KA93] John Kubiatowicz and Anant Agarwal. Anatomy of a message in the Alewife multipro-

cessor. InProceedings of the 7th ACM International Conference on Supercomputing,

pages 195–206, July 1993.

[KBG97] Alain Kägi, Doug Burger, and James R. Goodman. Efficient synchronization: Let

them eat QOLB. InProceedings of the 24th International Symposium on Computer

Architecture, June 1997.

BIBLIOGRAPHY 227

[KCA92] John Kubiatowicz, David Chaiken, and Anant Agarwal. Closing the window of vulner-

ability in multiphase memory transactions. InProceedings of the Fifth International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems, pages 274–284, Oct 1992.

[KCD+97] Ravindra Kuramkote, John Carter, Alan Davis, Chen-Chi Kuo, Leigh Stoller, and Mark

Swanson. Analysis of avalanche’s shared memory architecture. Technical Report

UUCS-97-008, University of Utah Computer Science Department, July 1997.

[KCDZ94] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, and Willy Zwaenepoel. TreadMarks:

Distributed shared memory on standard workstations and operating systems. InPro-

ceedings of the 1994 Winter Usenix Conference, pages 115–131, 1994.

[KG98] Alain Kägi and James R. Goodman. SOFTQOLB: An ultra-efficient synchronization

primitive for clusters of commodity workstations. Computer Sciences Department

Tech Report 1327, University of Wisconsin, Madison, January 1998.

[KJA+93] David Kranz, Kirk Johnson, Anant Agarwal, John Kubiatowicz, and Beng-Hong Lim.

Integrating message passing and shared-memory: Early experience. InProceedings of

the 4th ACM SIGPLAN Symposium on Principles and Practices of Parallel Program-

ming, pages 54–63, May 1993.

[KOH+94] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni, Kourosh

Gharachorloo, John Chapin, David Nakahira, Joel Baxter, Mark Horowitz, Anoop

Gupta, Mendel Rosenblum, and John Hennessy. The Stanford FLASH Multiprocessor.

In Proceedings of the 21st International Symposium on Computer Architecture, pages

302–313, April 1994.

[Kus97] Jeff Kuskin.The FLASH Multiprocessor: Designing a Flexible and Scalable System.

PhD thesis, Stanford University, November 1997. CSL-TR-97-744.

[LA94] Beng-Hong Lim and Anant Agarwal. Reactive synchronization algorithms for mul-

tiprocessors. InProceedings of the Sixth International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 25–35, October

1994.

[LC96] Tom Lovett and Russell Clapp. STiNG: A CC-NUMA computer system for the com-

mercial marketplace. InProceedings of the 23rd International Symposium on Com-

puter Architecture, pages 308–317, May 1996.

[Len92] Daniel E. Lenoski.The Design and Analysis of DASH: A Scalable Directory-Based

Multiprocessor. PhD thesis, Stanford University, February 1992.

228 BIBLIOGRAPHY

[LL97] James Laudon and Daniel Lenoski. The SGI origin: A ccNUMA highly scalable

server. InProceedings of the 24th International Symposium on Computer Architecture,

pages 241–251, Jun 1997.

[LLG+90] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and John

Hennessy. The directory-based cache coherence protocol for the DASH multipro-

cessor. InProceedings of the 17th Annual International Symposium on Computer

Architecture, pages 148–159, May 1990.

[LLG+92] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich Weber, Anoop

Gupta, John Hennessy, Mark Horowitz, and Monica S. Lam. The Stanford Dash mul-

tiprocessor.IEEE Computer, 25(3):63–79, March 1992.

[Mar93] Margaret Martonosi.Analyzing and Tuning Memory Performance in Sequential and

Parallel Programs. PhD thesis, Stanford University, Dec 1993.

[MCS91a] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchroniza-

tion on shared-memory multiprocessors.ACM Transactions on Computer Systems,

9(1):21–65, February 1991.

[MCS91b] John M. Mellor-Crummey and Michael L. Scott. Synchronization without contention.

In Proceedings of the Fourth International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 269–278, April 1991.

[Mes93] Message Passing Interface Forum. Document for a standard message-passing interface.

Technical Report No. CS-93-214, University of Tennessee, November 1993.

[MG91] Todd Mowry and Anoop Gupta. Tolerating latency through software-controlled

prefetching in shared-memory multiprocessors.Journal of Parallel and Distributed

Computing, 12(2):87–106, June 1991.

[Mic93] Microprocessor and Microcomputer Standards Subcommittee of the IEEE Computer

Society, USA. IEEE Standard for Scalable Coherent Interface (SCI), August 1993.

IEEE Std 1596-1992.

[MIP96] MIPS Computer Systems, Inc. MIPS R10000 microprocessor.http://www.-

mips.com/products/r10k , 1996.

[MKAK94] Kenneth Mackenzie, John Kubiatowicz, Anant Agarwal, and M. Frans Kaashoek.

FUGU: Implementing translation and protection in a multiuser, multimodel multipro-

cessor. Technical Report Technical Memo MIT/LCS/TM-503, MIT Laboratory for

Computer Science, October 1994.

BIBLIOGRAPHY 229

[MKF+96] Kenneth Mackenzie, John Kubiatowicz, Matthew Frank, Walter Lee, Anant Agarwal,

and M. Frans Kaashoek. UDM: User direct messaging for general-purpose multi-

processing. Technical report, MIT Laboratory for Computer Science, March 1996.

Technical Memo MIT/LCS/TM-556.

[MLH94] Peter Magnusson, Anders Landin, and Erik Hagersten. Efficient software synchroniza-

tion on large cache coherent multiprocessors. Technical Report SICS Research Report

T94:07, Swedish Institute of Computer Science, Box 1263 S-164 28 Kista, Sweden,

February 1994.

[MOH96] Margaret Martonosi, David Ofelt, and Mark Heinrich. Integrating performance mon-

itoring and communication in parallel computers. InProceedings of the 1996 ACM

SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pages

138–147, May 1996.

[Mow94] Todd Mowry.Tolerating Latency Through Software-Controlled Data Prefetching. PhD

thesis, Stanford University, March 1994.

[NAB+95] Andreas Nowatzyk, Gunes Aybay, Michael Browne, Edmund Kelly, Michael Parkin,

Bill Radke, and Sanjay Vishin. The S3.mp scalable shared memory multiprocessor.

In Proceedings of the 1995 International Conference on Parallel Processing, August

1995. vol 1 of 3.

[Now97] Andreas Nowatzyk, July 1997. Personal communication.

[NPA92] Rishiyur Nikhil, Gregory M. Papadopoulos, and Arvind. *T: A multithreaded mas-

sively parallel architecture. InProceedings of the 19th International Symposium on

Computer Architecture, pages 156–167, May 1992.

[NWD93] Michael D. Noakes, Deborah A. Wallach, and William J. Dally. The J-Machine multi-

computer: An architectural evaluation. InProceedings of the 20th International Sym-

posium on Computer Architecture, pages 224–235, May 1993.

[PBG+85] G. F Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder, K. P.

McAuliffe, E. A. Melton, V. A. Norton, and J. Weiss. The IBM Research Processor

Prototype (RP3): Introduction and architecture. InProceedings of the 1985 Interna-

tional Conference on Parallel Processing, pages 764–771, Aug 1985.

[Pie88] Paul Pierce. The NX/2 operating system. In G. Fox, editor,Proceedings of the Third

Conference on Hypercube Concurrent Computers and Applications, volume 1 of 2,

pages 384–390, 1988.

230 BIBLIOGRAPHY

[RHWG95] Mendel Rosenblum, Stephen A. Herrod, Emmett Witchel, and Anoop Gupta. Com-

plete computer simulation: The SimOS approach. InIEEE Parallel and Distributed

Technology, pages 34–43, 1995. Winter.

[RLW94] Steven K. Reinhardt, James R. Larus, and David A. Wood. Tempest and Typhoon:

User-level shared memory. InProceedings of the 21st International Symposium on

Computer Architecture, pages 325–336, April 1994.

[RPW96] Steven K. Reinhardt, Robert W. Pfile, and David A. Wood. Decoupled hardware sup-

port for distributed shared memory. InProceedings of the 23nd International Sympo-

sium on Computer Architecture, pages 34–43, May 1996.

[SCH+91] Chriss Stephens, Bryce Cogswell, John Heinlein, Greg Palmer, and John Shen.

Instruction-level profiling and evaluation of the IBM RS/6000. InProceedings of the

18th Annual International Symposium on Computer Architecture, pages 180–189, May

1991.

[Sco96] Steven L. Scott. Synchronization and communication in the T3E Multiprocessor. In

Proceedings of the Seventh International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, pages 26–36, Oct 1996.

[SFL+94] Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt, James R.

Larus, and David A. Wood. Fine-grain access control for distributed shared mem-

ory. InProceedings of the Sixth International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 297–306, October 1994.

[SH98] Ioannis Schoinas and Mark D. Hill. Fine-grain access control for distributed shared

memory. InProceedings of the Fourth International Symposium on High Performance

Computer Architecture, February 1998.

[Sim92] Richard Simoni. Cache Coherence Directories for Scalable Multiprocessors. PhD

thesis, Stanford University, October 1992.

[Smi92] Michael David Smith.Support for Speculative Execution in High-Performance Pro-

cessors. PhD thesis, Stanford University, November 1992.

[SPG91] Abraham Silberschatz, James L. Peterson, and Peter B. Galvin.Operating System

Principles. Addison-Wesley, third edition, 1991.

[SRL90] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority inheritance proto-

cols: An approach to real-time synchronization.IEEE Transactions on Computers,

39(9):1175–1185, September 1990.

BIBLIOGRAPHY 231

[ST95] Nir Shavit and Dan Toutitou. Software transactional memory. InProceedings of the

Fourteenth Annual ACM Symposium on Principles of Distributed Computing, pages

204–213, August 1995.

[Sta93] Richard Stallman.Using and Porting GNU CC. Free Software Foundation, Cam-

bridge, MA, June 1993.

[Sto90] Harold S. Stone.High-Performance Computer Architecture. Addison-Wesley, 1990.

[Sun95] Sun Microsystems, Inc. The UltraSPARC processor — technology white paper.

http://www.sun.com/sparc/whitepapers/UltraSPARCtechnology , 1995.

[SW95] Richard L. Sites and Richard T. Witek, editors.Alpha AXP Architecture Reference

Manual. Digital Press, 1995. Second Edition.

[SWG92] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford

parallel applications for shared-memory.Computer Architecture News, 20(1):5–44,

March 1992. Also available as Stanford University Computer Systems Laboratory

Tech Report CSL-TR-91-469.

[TBG+97] Dan Teodosiu, Joel Baxter, Kinshuk Govil, John Chapin, Mendel Rosenblum, and

Mark Horowitz. Hardware fault contaiment in scalable shared-memory multiproces-

sors. InProceedings of the 24th Annual International Symposium on Computer Archi-

tecture, June 1997. To appear.

[Thi91] Thinking Machines Corporation.The Connection Machine CM-5 Technical Summary,

1991.

[Thi92] Thinking Machines Corporation.Programming the NI, Mar 1992.

[VDGR96] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosenblum. Operating system

support for improving data locality on CC-NUMA compute servers. InProceedings

of the Seventh International Conference on Architectural Support for Programming

Languages and Operating Systems, Oct 1996.

[vECGS92] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik Schauser.

Active messages: A mechanism for integrated communication and computation. In

Proceedings of the 19th International Symposium on Computer Architecture, pages

256–266, May 1992.

[Vee86] Arthur H. Veen. Dataflow machine architecture.ACM Computing Surveys, 18(4):365–

396, December 1986.

232 BIBLIOGRAPHY

[WG89] Wolf-Dietrich Weber and Anoop Gupta. Analysis of cache invalidation patterns in

multiprocessors. InProceedings of the Third International Conference on Architec-

tural Support for Programming Languages and Operating Systems, pages 243–256,

April 1989.

[WG91] Philip J. Woest and James R. Goodman. An analysis of synchronization mechanisms in

shared-memory multiprocessors. Computer Sciences Department Tech Report 1005,

University of Wisconsin, Madison, Feb 1991. Also appeared inProceedings of the

1991 International Symposium on Shared Memory Multiprocessing.

[WGH+97] Wolf-Dietrich Weber, Stephen Gold, Pat Helland, Takeshi Shimizu, Thomas Wicki,

and Winfried Wilcke. The Mercury interconnect architecture: A cost-effective in-

frastructure for high-performance servers. InProceedings of the 24th International

Symposium on Computer Architecture, pages 98–107, Jun 1997.

[WLAG93] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient

software-based fault isolation. InProceedings of the 14th ACM Symposium on Oper-

ating System Principles, pages 203–216, Dec 1993.

[Woo96] Steven Cameron Woo.The Performance Advantages of Integrating Block Data Trans-

fer in Cache-Coherent Multiprocessors. PhD thesis, Stanford University, May 1996.

[WOT+95] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop

Gupta. The SPLASH-2 programs: Characterization and methodological considera-

tions. InProceedings of the 22nd International Symposium on Computer Architecture,

June 1995.

[WR96] Emmett Witchel and Mendel Rosenblum. Embra: Fast and flexible machine simula-

tion. InProceedings of the 1996 ACM SIGMETRICS Conference on Measurement and

Modeling of Computer Systems, pages 68–79, May 1996.

[WSH94] Steven Cameron Woo, Jaswinder Pal Singh, and John Hennessy. The performance ad-

vantages of integrating block transfer in cache coherent multiprocessors. InProceed-

ings of the Sixth International Conference on Architectural Support for Programming

Languages and Operating Systems, October 1994.

BIBLIOGRAPHY 233

