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Abstract

In recent years, multiprocessor designs have converged towards a unified hardware architecture
despite supporting different communication abstractions. The implementation of these communi-
cation abstractions and the associated protocols in hardware is complex, inflexible, and error prone.
For these reasons, some recent designs have employed a programmable controller to manage system
communication. One particular focus of these designs is implementing cache coherence protocols
in software. This dissertation argues that a programmable communication controller that provides
cache coherence can also effectively support block transfer and synchronization protocols. This
research is part of th_ASH project, a major focus of which is exploring the integration of multiple
communication protocols in a single multiprocessor architecture.

In our analysis, we examine the needs of protocols other than cache coherence to identify the
requirements they share. The interface between the processor and controller is one critical issue in
these protocols, so we propose techniques to export such protocols reliably, at low overhead, and
without system calls. Unlike most prior studies, our approach supports a modern operating system
with features like multiprogramming, protection, and virtual memory.

Our study focuses in detail on two classes of communication that are important for large scale
multiprocessors: block transfer and synchronization using locks and barriers. In particular, we
attempt to improve the performance of these classes of communication as compared to implemen-
tations using only software on top of shared memory. For each protocol we identify the critical
metrics of performance, explore the limitations of existing techniques, then present our implemen-
tation, which is tailored to leverage the programmable communication controller. We evaluate each
protocol in isolation, in the context of microbenchmarks, and within a variety of applications.

We find that embedding advanced communication and synchronization features in a program-
mable controller has a number of advantages. For example, the block transfer protocol improves
transfer performance in some cases, enables the processor to perform other work in parallel, and



reduces processor cache pollution caused by the transfer. The synchronization protocols reduce
overhead and eliminate bottlenecks associated with synchronization primitives implemented using
software on top of shared memory. Simulations of scientific applications runnifgAsH show

that, in many cases, synchronization support improves performance and increases the range of ma-
chine sizes over which the applications scale. Our study shows that embedded programmability is a
convenient approach for supporting block transfer and synchronization, and tiran#he system

design effectively supports this approach.
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Chapter 1

Introduction

A critical problem in multiprocessors is managing communication between the processors in the
system. Individual processor performance is important, but it alone is not sufficient to achieve
scalable system performance. To address the communication problem, multiprocessor systems re-
search has explored a broad range of design styles and, in turn, communication abstractions pre-
sented to the application. Among these models are shared memory, message passing, dataflow,
systolic arrays, SIMD, and many others, each of which has advantages for certain classes of pro-
grams [Fly66, Vee86, AAG87, AS88, Bla90, Int91, Len92, HT93].

Over time, two models have emerged as the predominant ones supported by multiprocessor
systems: cache-coherent shared memory and message passing. Shared memory provides the pro-
grammer with a simple memory abstraction similar to a uniprocessor that is particularly well suited
for programs that exhibit dynamic communication behavior or fine grain sharing. Certain other
types of communication such as the transfer of coarse grain data can sometimes be achieved more
efficiently through message passing, though it significantly increases the data management burden
on the application programmer.

The complementary nature of the shared memory and message passing communication styles,
in conjunction with the convergence of underlying hardware mechanisms used to implement each
model has led to a surge of interest in hybrid architectures that support both styles efficiently. Fur-
thermore, the complexity of implementing the protocols in hardware has motivated the development
of hybrid hardware/software solutions to manage communication [A€ID Cra93, ACD 95].

As one recent approach, several systems have been designed using a programmable controller to
manage system communication [ACB1, ACD"95, KOH"94]. One particular focus of these sys-
tems is implementing cache coherence protocols in software. This study argues that a programmable



communication controller that provides cache coherence can also effectively support block transfer
and synchronization protocols. Our focus is on one such system in particulat,ate Multipro-

cessor, which includes a programmable protocol engine to serve as the memory system and network
interface controller.FLASH (FLexible Architecture forSHared memory), was designed by a team

of researchers at Stanford University between 1992-1997. This dissertation complements previ-
ous studies ofLASH, which focus on its architecture and its use with a range of cache coherence
protocols [KOH"94, HKO™94, MOH96, Kus97, Heil.

Since the introduction ofLASH, other commercial and research systems have been proposed
that incorporate some of the same design characteristics, including the use of a flexible protocol
engine. Among these systems are Typhoon [RLW94, RPW96] and the Sequent NUMA-Q [LC96].
As in FLASH, the published research for these systems has also focused primarily on shared memory,
though many of the issues we address also apply to those systems. Thus, our study of “alternate”
protocols may be applicable in a wider context than justtiresH project.

1.1 Using a Programmable Protocol Engine

Traditionally, within the core of a multiprocessor system is a hardware unit designed to implement
the communication model provided by the machine. For example, in the case of cache-coherent
shared memory, the communication controller transparently manipulates data to support the illusion
of shared memory. For message passing, it accepts explicit requests for data transfer and moves data
asynchronously.

Instead of the traditional hardware-only approach, the system we study uses a communication
controller containing a programmable engine at its core. As we describe below, this approach
provides a number of benefits over the traditional design. We briefly explore the characteristics of
these systems in general, then introduce the particular design efAlsel system.

1.1.1 Why Embed Programmability?

Embedding programmability to replace a pure hardware solution is not a new idea. The use of
microcode to manage the internal control signals of a processor was proposed in 1949 [HP90].
The approach we study, however, uses embedded programmability in a new context: within the
communication controller in a multiprocessor system. Flexibility in this context seems a natural
extension of computer system design trends occurring in recent years. Several examples of these
trends are as follows:

The Alewife system designed at MIT allows software control over communication protocols by
supporting fast processor interrupts. Alewife’'s approach #asesa single processor to perform
both computation and protocol processing tasks [A@D, ACD" 95].
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Multiprocessor bus controllers continue to grow in complexity and functionality, especially
those for high-end servers. Current designs include support for features such as high performance
I/0 management, RAS (Reliability, Availability, and Serviceability), and seamless multiprocessing
expandability. These features have reached a level of complexity where an implementation based
partially or entirely on software may soon be a reasonable design trade-off.

The StanfordbAsH and the Sun S3.mp systems both integrate a controller with some degree of
programmability within their coherence protocol unitg\sH uses a hybrid approach in which most
functions are provided in hardware but key protocol decisions are stored in a table. This allows only
limited customizations, such as enabling some protocol errors to be fixed [Len92]. S3.mp provides
a slightly more powerful model closer to a traditional microcode approach [N&R

Flexibility embedded in the system enables a broad range of advantages over a purely hardware
approach. First and foremost it allows one architecture to support a range of different communica-
tion models. Hardware approaches could support multiple models, but they must be selected and
fixed in advance. On the other hand, a system with embedded programmability allows the commu-
nication protocols to be changed even after the system has been designed and built.

Late customization is valuable for a variety of reasons, among tfigma: fix bugs in the proto-
col, (i) to enable low-level performance optimizations, &iig to allow communication extensions
for particular applications or even entirely new protocols. In addition, protocol development in soft-
ware is convenient since one can use traditional software development and debugging techniques.
The challenge in a system with embedded flexibility is achieving high performance, since an imple-
mentation incorporating software may be less efficient than one based purely on hardware.

1.1.2 TheFLASH Approach

FLASH was designed from the beginning to balance the goal of integrating flexibility with the desire
for high performance. It is based on a programmable communication contradlerc (Memory

And General Interconnect Controller), placed centrally in the node and given high-performance ac-
cess to memory, network, /O, and the main processor. One of the key innovatienssio is

its support for the parallel handling of control processing and data movement. Its centerpiece is
a programmable Protocol Processor that performs the control processing in software. Alongside
the Protocol ProcessavAGIC contains optimized hardware units to swiftly move data between its
communication interfaces. This hybrid design is enables protocols with a wide range of character-
istics to achieve high performance.
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1.2 Dissertation Focus

The focus of this dissertation is to study the advantages and design issues of using a programmable
controller to support protocols other than cache coherence. We argue that through careful design
of the controller and protocols the same hardware designed for cache coherence can support other
classes of communication as well. We support our thesis by analyzing alternate protocols from
several different fronts, which we introduce below:

1.2.1 Processor/Controller Interface Issues

While the introduction of a programmable controller opens up a range of possibilities of communi-
cation functionality and performance, it also brings with it many new problems. For communication
support in the memory system to be useful, the processor must be able to access it at low overhead.
To accomplish this goal, we describe technigues that export these protocols at user level, i.e., with-
out system calls. Avoiding system call overhead increases the range of protocols that show benefits
from implementation on the communication controller.

However, unlike past studies that have considered systems running in single-user mode or in a
restricted system environment, our goal is to provide support for a modern operating system. To
bridge this gap, our research proposes techniques to support operating system features like multi-
programming, protection, and virtual memory.

1.2.2 Requirements of Alternate Protocols

One goal of embedding programmability in the communication controller is to support a range of
protocols effectively. Nonetheless, the design of these systems tends to focus more strongly on the
requirements of one protocol in particular, in this case cache coherence. One focus of this study is
to understand in a similar way the controller features which are particularly valuable for alternate
protocols.

This analysis studies ttre ASH system and its node controllerAGic, focusing on the features
that are particularly important for alternate protocols. We analyze a range of specific alternate
protocols that one might support with a programmable controller, identifying their requirements and
their amenability to implementation aiASH. In cases where theLASH system design limits the
full generality of these protocols we discuss the tradeoffs associated with extending the controller
and propose alternatives that can address the limitations without controller extensions.

1.2.3 Detailed Protocol Studies

Finally, our study focuses in detail on two particular classes of communication which are important
for large scale multiprocessors. We find that each of these classes encounters disadvantages when
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implemented on top of shared memory, in part because their communication does not exactly match
that provided by the cache coherence protocol.

First we present the mechanisms used to support efficient block transfensm. The pro-
tocol we implement and study providesemory copyunctionality, which can be used to support
message passing as well as accelerate block transfer communication in shared memory programs.
Our protocol delegates the data transfer functionalityAeiC which implements it with protocol
software. In addition to describing the transfer implementation itself, we also explain how the pro-
tocol integrates block transfer with cache coherence, which is critical to enable its use within shared
memory applications.

In our experiments we compare the performance ofAilresH memory copy primitive with
processor-based implementations, including those using prefetching. Our results suggest that im-
plementing block transfer support imGIC improves transfer performance in many cases, enables
the processor to perform other work in parallel, and reduces processor cache pollution caused by
the transfer.

We also study the design of two synchronization primitivesiksandbarriers. These primitives
are typically implemented on top of shared memory and as a result often perform poorly due to
artifactual communication associated with cache coherence. Our design targets these artifacts; by
eliminating them we improve synchronization performance and characteristics.

Synchronization protocols highlight the benefits of the careful implementation of embedded
programmability inMAGIC. These protocols are very lightweight, with very different character-
istics than the block transfer protocol. Nonetheless, the flexibilityLaisH enables high perfor-
mance for these protocols as well. Our results show that synchronization support from the pro-
grammable controller improves performance of some applications from the SPLASH-2 benchmark
suite [WOT"95], especially at larger machine sizes.

1.3 Contributions
The primary contributions of this dissertation are the following:

e We propose mechanisms to allow the processor and controller to cooperate effectively. One
important facet of this cooperation is permitting the processor to request communication fea-
tures at low overhead. Unlike most prior studies, our techniques provide this capability while
maintaining the integrity of processor operating system features such as protection, virtual
memory, and multiprogramming.

e We examine the implementation details of the communication controller that impact the per-
formance or functionality of other protocols differently than they impact cache coherence. To
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this end, we consider a range of communication protocols to determine the requirements they
share, and discuss the impact on those protocols of controller design features or restrictions.

e We study the design trade-offs for a custeoasH memory copy protocol, and present an
implementation that leverages the support provided by the programmable communication
controller. A major focus of this design is on efficiently integrating the protocol with cache
coherence to enable the primitive to be used in a wide range of situations. This goal raises
major challenges, especially in achieving the integration while maintaining high performance.

e We present custom lock and barrier synchronization primitivesifasH. These primitives
are targeted to improve the performance of synchronization as compared to shared memory
implementations by eliminating artifactual communication caused by cache coherence. We
examine several conventional approaches to identify their benefits and limitations. Then we
describe the implementation of the custom protocols in detail, identifying how the primitive
improves performance by matching the inherent communication the operation requires.

1.4 Organization

This dissertation is organized as follows:

Chapter 2 begins by describing the motivation for incorporating a programmable communi-
cation controller inside a multiprocessor. Then it describes the solution we considetAibie
Multiprocessor, focusing closely on the characteristics that are relevant to the alternate protocols we
study.

Chapter 3 describes the design space and motivation for alternate uses of the flexible communi-
cation controller beyond cache coherence. This chapter focuses on the protocols that we implement
and study in detail in later chapters: block transfer/message passing, and lock and barrier synchro-
nization.

In Chapter 4 we explore issues arising from the division of functionality between the main
processor and communication controller. In particular we present techniques that enable efficient
communication between the processor &g iC without system calls. We also describe a range of
approaches to permMAGIC to interact with processor features such as multiprogramming, virtual
memory, and protection.

Then we present the two protocol classes in detail. Chapter 5 presertsathie memory copy
protocol, which can be used to provide message passing functionality as well as accelerate block
transfer within shared memory applications. Chapter 6 preseaisH lock and barrier synchro-
nization protocols, designed to improve synchronization performance and characteristics beyond
what can be achieved through traditional primitives based on shared memory. In each case, we first
describe the design and goals of the protocol in detail, then present its implementation. Finally,
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we evaluate each protocol in isolation, in the context of microbenchmarks, and within a variety of
applications.

Chapter 7 describes other protocols that are amenable to using a programmable controller such
asMAGIC. We describe issues associated with “active messages”, which pose some unique imple-
mentation challenges, as well as other protocols that may be promising future research directions.

Finally, Chapter 8 summarizes the conclusions of the dissertation.
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Chapter 2

The FLASH Multiprocessor

This chapter describes the StanfendasH Multiprocessor, a high-performance, scalable parallel
computer. This dissertation uses thensH system as a context for the study of communication

and synchronization protocols. We begin by briefly describing the background behirdatbie

system to motivate its fairly unique design. Next tn@ sH architecture is described, with emphasis

on the features and characteristics of particular interest for supporting advanced communication and
synchronization primitives. A very complete presentation ofrfitvesH architecture and prototype
appears in [Kus97].

2.1 Background and Motivation

In designing a multiprocessor, we are presented with a wide design spectrum from which to choose.
We focus on two key issues: the ability of the system to scale and the different choices of commu-
nication model to present to the user. We also present the design point offered dry's direct
predecessor, theasH system, before finally describing tireAsH system itself.

In small scale multiprocessors, the processors typically share a single bus. This style, called
a bus-based or “symmetric” multiprocessor (SMP) is illustrated in Figure 2.1. SMPs can be fairly
simple to design, and for small machine sizes are very effective. However, the single bus funda-
mentally limits their scalability. Beyond a certain size the load offered by additional processors
overwhelms the bus and effective request latency increases. The exact size when this occurs de-
pends on the performance of the processors and bus, though usually it less than 16—32 processors.
Systems of this design are sometimes known as Uniform Memory Access (UMA) systems since all
memory accesses take (essentially) the same latency to be satisfied.
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Figure 2.1: Symmetric multiprocessor architecture.

Recently, the trend in the design of multiprocessors is towards scalable architectures. To achieve
scalability, SMPs have gradually been replaced by systems with several important modifications.
First, the system is split into groups of resources, cailedes Each node contains a small number
of processors, typically between 1-4. Instead of the single memory system in an SMP, memory is
distributed around the system, with each node containing a portion of the overall machine memory.
Distributing the memory increases aggregate bandwidth and allows the system memory to scale
without requiring expensive memory architectures such as those used in many supercomputers.
Second, the single bus is replaced by a more scalable interconnect between the nodes, one that
can offer more bandwidth as the system scales. With the scalable interconnect, a communication
controller is introduced to manage the network. Figure 2.2 illustrates this architecture.

These scalable systems provide applications with one of the two predominant communication
paradigms:shared memorpr message passingn a shared memory system, the communication
controller “hides” the distribution of the machine’s physical memory by transparently communi-
cating with the correct node (and thus memory module) for processor requests to remote memory.
Shared memory provided on a distributed memory system is often called Distributed Shared Mem-
ory (DSM), or Non-Uniform Memory Access (NUMA). The latter name arises because, unlike
SMPs, the time to access memory depends on the location of the memory being accessed.

In some shared memory systems nodes are also permitted to hold data from remote memory
locations in their cache. This can improve performance by eliminating repeated expensive misses
for remote data. Caching remote memory introduces the problem, however, that modifications made
to shared memory may not be globally visible. If this occurs, nodes around the system may see
different values for the same memory location. This problem, knowaaelse coherengeequires
that either the processor or the system hardware take special steps to assure that when a line is
modified the currently cached copies are eliminated. Systems providing cache coherence support
are often called Cache Coherent Non-Uniform Memory Access (CC-NUMA) machines.

The second communication paradigm found in scalable systemessage passingn a mes-
sage passing system, the distribution of the memory is made visible to the user; only local memory
can directly be accessed by the processor using load and store instructions. Communication between
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Figure 2.2 Scalable multiprocessor architecture.

nodes is accomplished through explitiessagesMessage passing offers the system or application

the ability to customize the communication granularity and timing; the drawback is that it increases
the burden on the application to manage the communication. In Section 3.1 we compare these two
models in further detalil.

From a system design perspective, what is interesting about these two paradigms is that despite
the vast differences in the interfaces they export to the user, they both utilize an architecture similar
to the one in Figure 2.2. The main difference is in the design and operation of the communication
controller, which usually supports one model or the other. At the beginning ¢fLtkeH project,
systems being designed elsewhere highlighted the differences between these two design styles and
provided mechanisms for one or the other, instead of focusing on the extensive commonality be-
tween them [DCF89, Int91, Thi91, Bec92, Cra93]. One of the main goals ofrivesH project
is to consider the design of scalable multiprocessors, in particular the communication controller
and the protocols they use, to see if both of these models (and potentially others) can be efficiently
supported by ainglesystem.

2.1.1 ThebDASH Multiprocessor

To explore briefly how we might design tifeAsH system, we first consider the architecture of its
predecessor. In 1989, researchers at Stanford University began the desigmagtheultipro-
cessor Directory Architecture forSHared memory) [LLG 90, LLG™92, Len92]. DASH aimed to
demonstrate a real implementation of a scalable hardware-supported cache-coherent shared memory
system.

DASH is built by interconnecting small-scale bus-based commercial multiprocessors; it is com-
prised of SGI 4D/240 systems, which contain 4 processors each. To these systems,dafitzt a
the DASH designers add two boards to support cache coherent distributed shared memory [Len92].
DASH uses a directory-based approach to cache coherence, which was described as early as 1978 by
Censier and Fautrier [CF78]. In that approach, each node maintains a table odilectary that
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tracks where lines are cached in the machinepAsH, the directory is a dedicated memory array
(implemented in SRAM), which stores the list of sharers in a bit vector.

DASH shows the benefits of hardware cache coherence, and that its complexities are manage-
able. The specific implementation bASH has two main limitations, however. First, the system is
only designed to scale to 64 nodes. In particular, the bit vector directory format usedinis
inappropriate for larger size machines. Second, this protocol is implemented through on-board ta-
bles indicating the actions the hardware should take based on network and processor events. These
tables are designed to encapsulate the hardware actions neededbgthprotocol, but provide
only limited flexibility if protocol modification should be desired for research purposes or needed
to fix unexpected bugsThe ability to modify the protocol after the fact is a serious concern given
the difficulty in adequately simulating and verifying large parallel machines.

2.1.2 TheFLASH Approach

Given this background as context, theasH project focuses on two main goals. The firstis to study

the design of scalable multiprocessor systems, with emphasis on the communication controller, to
see if a single system can effectively support both cache-coherent shared memory and message
passing. The second is to implement cache coherence protocols in a more flexible way, so the
protocol may later be corrected, optimized, or replaced altogether.

FLASH addresses these goals by replacing the hard-coded table-based coherence protocol of
systems likebAsH with an embedded processor capable of handling processor and network events
in software Along with this processolFLASH provides specialized hardware to improve proto-
col processing throughput. This style of design allows the coherence protocol to be modified and
extended as needed. In addition, it permits the implementation of so-cterdate protocols
such as message passing, scalable synchronization, fault tolerance and recovery, and performance
monitoring.

2.2 FLASH Overview

The FLASH Multiprocessor is a high performance parallel computer system being designed and
implemented by a team of researchers at Stanford University [K&HKus97].FLASH (FLexible
Architecture forSHared memory) consists of a scalable array of processing nodes connected by a
low-latency, high-bandwidth communication network. Each node in the multiprocessor contains all
the major components of a modern high-performance scientific workstation, with the addition of a
custom, programmable node controller to provide communication and other functionsL A%te
architecture is illustrated in Figure 2.3.

ThoughpasH does not directly provide the ability to support models other than shared memory, it does provide some
optimizations in the protocol for data movement and locks.
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2.2.1 FLASH System Architecture

EachFLASH node contains a single processor, the MIPS R1600Be R10000 is a dynamically
scheduled superscalar processor that provides aggressive performance for both integer and floating
point code, achieving a SPECIint95 of 8.85 and SPECfp95 of 13.8 (17.5 predicted) [MIP96]. This
enables the&LASH system to efficiently run not only scientific applications, which generally have
heavy floating point demands, but integer-based applications as well. The R10K provides on-chip
instruction and data caches, each 32 KB, as well as a variable-sized, processor-managed secondary
cache. In the initiaFLASH prototype, the secondary cache of the R10K is 1 MB.

The FLASH node also contains a large amount of DRAM, similar to workstationssLNEH,
this memory is part of the machine-wide distributed main memory as described earlier. Logically,
the memory on a node is one piece of a contiguous physical address space beginning with address
zero on node zero and ending with the physical memory on the highest numbered nodeadine
system reserves a small portion of the memory on each node for protocol code and stosage.
uses this protocol storage in part to implement a directory for maintaining cache coherence, similar
to DASH. By using main memory instead of a specialized memory, protocol storage can grow or
shrink as needed to support arbitrary communication and synchronization protocols.

2The use of a uniprocessor nodeRDASH is not a fundamental restriction, but was a design decision partly driven
by implementation practicality concerns. TheasH architecture can support a multiprocessor node with only localized
modifications.
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In conventional workstations, dedicated hardware chipsets are typically used to control memory,
I/O devices, and other board-level resources. The key innovation FLit&H system is the use of
a custom node controller, namethGic (Memory And Generall nterconnecController). MAGIC
comprises a programmable processor optimized for executing protocol operations and dedicated
data paths which provide low latency communication between the main processor, memory, and the
communication ports of the node. Figure 2.4 shows the microarchitectweact.

Besides the interface to the processencic provides two 1O interfaces on RLASH node.
For high-bandwidth, low-latency communication between nodes in the systersk uses the SGI
CrayLink network technology (formerly nicknamed “Spider”) [Gal96]. CrayLink is configured as
a “fat hierarchical hypercube topology” with data transfer bandwidth of 800 MB/s per endpoint.
Figure 2.4 provides a logical view of the queuesvnGIc that are used to buffer incoming and
outgoing protocol messages. We exploit the virtual lane capability of the network, which provides
four incoming and outgoing network queues. This simplifies the solution for deadlock in most
protocols since separate queues can be used for request and reply message®JLLG

The second network is a PCI interface for use in comparably low-bandwidth I/O devices such
as disk, console, graphics, Ethernet, etc. Section 2.3 describes the architectiw® ©fin more
detail, to provide background for the detailed protocol descriptions and tradeoffs described later in
this thesis.

2.2.2 Communication Protocol Terminology and Semantics

In this dissertation, we refer to@otocolto mean a specification describing the interaction among
nodes in therLASH system to accomplish a particular communication task. For example, a cache
coherence protocol describes interactions between nodes aimed at providing a consistent view of
memory despite caching on remote nodes. Specifically, the protocol encompasses the behavior
which the participants provide in response to messages, as well as the kinds of messages they can
send. In practice, protocols can be implemented in a variety of ways: using hardware, software, or
a combination of both.

In the FLASH system, protocols are tightly integrated into the node through the hardware and
software communication features provided by thecic chip. Internally, MAGIC expresses the
requests from its different interfaces in a common format, cafledsagesA message is the small-
est unit of communication oALASH, consisting of two parts: Thheaderportion describes the
contents of the message, its sender, receiver, data length, and other attributes wsetutctoThe
dataportion contains the message payload, whichURsSH is either empty (no payload), one dou-
bleword (eight bytes), or one cache line (128 bytes). Note that these messages are not the same
as application-level messages exchanged in a message passing communication model on the main
processor. Rather, the messages described here are short communications used internally by the
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FLASH system to implement more complicated communication operations requested by the main
processor.

Similar to the Active Message model [VECGS92hGIc invokes a short segment of code called
a handlerto process each message it receives. Unlike the original description of active messages
which sends the actual program counter in the header of the request [VEC&382],provides an
encodednessage typ@stead. This message type is used along with two other attributes of the mes-
sage (whether it comes from the processor or network, and whether the address is local or remote)
to select a group of four possibly matching handlers from a dispatch table. These candidate han-
dlers are then considered more closely using a number of additional attributes: a protection check
(whether the sender is within the same fault containment boundary as the receiver), the availability
of data buffers, additional parts of the address, and several others. By providing handler dispatch
functions in hardware, a number of different attributes can be tested in parallel rather than using
software-based dispatch, which would be significantly slower.

In the FLASH system, the implementation of a protocol consists of three parts. First, a set
of uniqgue message types is selected, representing the kinds of requests a node can make. When
multiple kinds of communication coexist on the machine (a major focus of later chapters), each
takes a subset of the message type name space for its use. Second, a collection of software handlers
is created to satisfy these different requests. Finally, the dispatch table is created that describes the
correspondence between the handlers and the situations in which they should be invoked (which
includes the message type and the other factors described above).

Protocol handlers may need to carry out a wide range of actions to satisfy the request depend-
ing on the particular services needed. Handlers may send messages to other nodes, read and write
protocol state affected by the request, perform memory operations, make requests of the local pro-
cessor, or carry out other tasks internalMaGic. In many cases, the original request generates
a response to the sender, eventually causing a handler to execute on the protocol processor of the
sender'smAGiIC chip. In Section 2.3.6, we consider some restrictions that must be placed upon the
handlers in theLASH system to avoid deadlock.

2.2.3 Cache Coherence

In this section, we describe the cache coherence protoaalAsH. This forms the basis on top

of which the cache-coherent block transfer and other protocols are built in the remainder of this
dissertation. The coherence protocol consists of two main parts. First we consider the format of
the directory which is used to track outstanding copies of lines in the system. Then we consider the
algorithm through which the system maintains coherence, based on the information in the directory.

3Later, in discussing message passing protocol ksH we generally refer to these application-level messages as
block transfey so the distinction should be unambiguous.

Section 2.2 FLASH Overview 15



CPU CPU

Memory Comm. Memory Comm.
- Control o o o - Control
Directory Directory
Sharers I Sharers
Line 1 [o]2[1[-[--]-] Line 1 [6]1]3[2[8]7[~]
Line 2 [7[1]6]3[4[-]-] Line 2 [4]6]5]-[-[-]-]
LineN [1]-|-|-|-[-|- LineN [9]7]|-|-|-[-|-

Figure 2.5 Conceptual illustration of a cache coherence directory.

Directory Format

The FLASH system is fundamentally designed to allow many different protocols and directory for-
mats to be used. Figure 2.5 illustrates a generic directory structure, showing how each node main-
tains directory state for its share of the machine’s memory. As part of the project, other researchers
have developed several completely different cache coherence protocala forto study the trade-

offs in detail. For this dissertation, we have chosen to use one of the more scalable of these directory
formats,dynamic pointer allocationdesigned to support machines up to several hundreds or even
thousands of nodes. TireAsH implementation of this protocol is the work of Mark Heinrich.

Dynamic pointer allocation was originally developed as part oftiheH project by Richard
Simoni as a way to surpass the limited scalability of bit-vector based approaches [Sim92]. This ap-
proach takes advantage of the sharing characteristics of typical applications: most memory lines
are only shared by one or two nodes at any time, while relatively few lines are shared more
widely [WG89]. Unlike bit-vector or limited-pointer based formats [ASHH88], which allow for
a conservative amount of cachingedchmemory line, dynamic pointer allocation uses a minimal
per-line directory entry. Then it adds a pool of poinfeshared between all the lines and allocated
on demand (i.e., dynamically), for use in handling lines with more widespread sharing.

TheFLASH implementation of dynamic pointer allocation maintains a directory entry per mem-
ory line capable of tracking the line being cached by the local processor and one remote processor.
It also maintains an array of bits used to track the state of the line (e.g., whether it is modified,
whether it is busy with coherence actions, etc.). Finally, it also holds a total sharer count and the
beginning of a linked list of pointer entries, which are allocated as needed from the large shared
pool.

“In this context, gointerrefers to an indication of a single remote sharer of a line.

16 Chapter 2 TheLAsH Multiprocessor



Coherence Algorithm

The FLASH coherence protocol is a (MESI) exclusive ownership-based protocol. Lines which are
read-only may be widely shared in the system, but before a line may be modified, all outstanding
copies are eliminated so only a single writable copy exists. When ownership of a line is requested,
FLASH eliminates outstanding copies by sendingalidationsto remote caches currently holding

the data, instructing the cache to discard the line. To improve performance, relaxed consistency
models such as release consistency [Gha95] allow optimizations such as permitting writes to occur
in parallel with sending the invalidationgLASH can support many of these optimizations. As
alluded to in Section 2.3.3, restrictions imposed by the processor prevent us from using an update-
based approach in which modifications to the line are sent to current holders to keep their copy
current.

One of the difficulties that arises in a cache coherence protocol is managing the asynchrony that
occurs from many processors simultaneously sending requests. If multiple references occur to the
same line, they may conflict. To make this problem more manageable, the protocol marks a line as
pendingin the directory when coherence actions are in progress (such as sending invalidations to a
list of sharers in preparation for providing exclusive access). Requests for lines which are marked
as busy are refused with a negative acknowledgement (NAK) and are forced to retry.

2.3 MAGIC (Memory and General Interconnect Controller)

This section describes the microarchitecturematsic in more detail, to provide a basis for the de-
scription of the protocols in later chapters. We focus on the portions which most directly impact the
protocols we implement and study; this is not intended to be a complete descriptio af. More

details can be found in the publications prasH [KOH 194, HKO"94, HGDG94, Kus97, Heil.

First we provide an overview of theAaGIC microarchitecture and illustrate the way control and
data are handled differently. Next we focus on the custom protocol processor (PP)Mpside,

with emphasis on its specialized support for communication protocols. We describe the processor
interface (PI) in some detail, since it impacts the kinds of operations our protocols can use to request
data from and supply data to the processor. Finally, we explain the data buffer (DB) logic which is
used to stage data as it passes thraughic, highlighting certain special features provided by the

DB for efficient protocol data movement.

2.3.1 MAGIC Microarchitecture Overview

A major goal in designingnAGIC was to optimize both the protocol processing of incoming mes-
sages and the transfer of data between its interfaces. For examyade; may need to decide the
correct actions to maintain coherence when a request arrives, and may need to move a cache line

Section 2.3 MAGIC (Memory and General Interconnect Controller) 17



of data as part of the request. To accomplish this gaalzic splits an incoming message into

its control and data components, as illustrated in Figure 2.4. Data processing is provided by dedi-
cated data paths that transfer data between interfaces in a pipelined fashion. Control processing is
accomplished in parallel by the programmable protocol processor. The protocol processor controls
macro-operations on the data paths using specialized instructions. These operations can cause, for
example, an entire cache line of data to be manipulated. For example, an entire line of memory
may be loaded or stored into a buffer. In this way, the protocol processor is always in charge of data
movement, but is freed from the burden of handling the individual data words. The parallel handling
of data and control plays an important role in achieving efficient protocol processing m. We

begin by discussing the control portionsnAGiC; later we describe the data logic and how the two
interact.

Keeping memory request latency low and providing high throughput are essential requirements
to achieving high system performance. In thensH design, protocol processing efficiency is
therefore critical since all requests to memory and the network are serviceddye. The mi-
croarchitecture ofMAGIC is designed for pipelined protocol processing at several levels to improve
throughput. At the highest levellaGic provides a “macro-pipeline” that allows multiple messages
to be in various phases of processing simultaneously. Figure 2.4 provides an overview of the three
stages in the macro-pipeline. Some of these phases also include optimizations to allow the overall
latency request to be reduced as well.

The first stage, thtnbox designed by Mark Heinrich, prepares an incoming protocol message
for processing by the PP. The Inbox selects requests from the three hardware interfaces (the main
processor, network, and PCI 1O bus), and two other sources (described below), the software queue,
and the idle handler. The Inbox carries out the dispatch function described in Section 2.2.2, selecting
the handler to be executed by the PP. In some cases it also initiates a speculative memory operation
on behalf of the incoming message, for example reading the data from memory for a cache miss.
By starting the memory fetch during the Inbox phase, before the handler is even able to execute,
the overall latency to satisfy a request can be reduced. In addition, it removes the need to explicitly
perform a memory request in the handler code, reducing total hasatiapancy(the length of time
the PP is busy to satisfy the request) [HFES].

For reads, the memory operation is speculative since it was started without first consulting the
directory state. In the case of a cache miss, for example, the most current copy of the data may cur-
rently be in another node’s cache. In that case, the memory read was useless. In the case of writes,
since our cache coherence protocol is ownership-based, a speculative write may always proceed
without checking the directory state because only the current owner should issue a writeback. In
Section 5.2.2 we describe how these “blind” writes slightly complicate the implementation of high
performance coherent block transfer.
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The Inbox also considers resource limitations in the system, such as full outgoing network
FIFOs, and only selects requests from queues for which it kmowsc can provide certain mini-
mum service guarantees. In Section 2.3.6, we describe how this feature is used to avoid deadlock in
FLASH.

The second stage of the macro-pipeline is the Protocol Processor (PP) itself. The PP carries
out the appropriate protocol actions, and often sends other requests to either the processor or the
network. We discuss the protocol processor in more detail below. In the case of a cache miss, the
protocol processor checks the directory state to locate the current data, and eventually sends the
requested data to the processor.

TheOutboxforms the third and simplest stage of the macro-pipeline by assuming control of any
messages sent by the PP handler. The recipient unit of these messages cooperates with the Outbox
and Data Buffer units to include the appropriate payload data associated with the message (if any).

2.3.2 The Protocol Processor

The Protocol Processor (PP) is a statically-scheduled dual-issue pipelined RISC processor. The
PP was designed by Jules Bergmann. Its handler code and protocol state (such as directory state
for cache coherence) is stored in a portion of main memory. To improve performance, the PP has
its own instruction and data caches to make accesses to its memory more éffigiethe initial
implementation, the PP I-cache is 16 KB on chip; the PP D-cache is 1 MB off-chip. Both caches
are direct-mapped with 128 byte lines.

The core instruction set of the PP is similar to that of the MIPS R3000 processor, extended
to 64 bits. To improve performance, the PP provides several special instructions that enhance the
performance of common protocol operations. For example, many protocols pack bits together to
reduce the size of their state, so the PP provides operations to manipulate and query bits efficiently.
Also, since the PP frequently interacts with the other unitgaAeic, a number of special instruc-
tions were added to access these units quickly. PP also supports a fast context switch capability that
permits it to load the state for a new handler and begin executing it in only two cycles (pipelined).
Appendix A illustrates the PP instruction set in more detail, including these extensions.

Though we added special features to optimize protocol processing, we also strived to keep the
PP’s design complexity to a reasonable level. To this end, the PP excludes many of the features
found in general purpose RISC microprocessors that are less useful in our embedded environment.
For example, there is no support for floating point operations or interrupts. Instead, the PP executes
handlers to completion with no preemption. Furthermore, the PP provides no hardware support for

SEven thoughvaGic can access all of the local main memory through its cache interface, data movement between
external units is typically supported using the separate dedicated data pathsia. Thus, themAGIC caches do
not normally need to be kept coherent with the processor caches. The PP includes special instructions to provide this
coherence if a specialized protocol should require it.
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address translation (i.e., hardware TLB). Though address translation in hardware can be useful for
protocols such as message passing, such support is not required by cache coherence protocols and
could significantly complicate the PP implementation. Section 4.2 discusses this tradeoff and pro-
poses efficient techniques that achieve similar functionality in software. Since the PP lacks sufficient
protection mechanisms to support generic user-level code, we typically require protocol handlers
that execute on the PP to beisted We consider ways to avoid this limitation in Section 7.1.2.

2.3.3 The Processor Interface

The Processor Interface (Pl) is responsible for providing a high performance interface to the pro-
cessor bus, while encapsulating it in theGciC message abstraction. When the processor makes

a request on the bus, the Pl queues a message for the Inbox containing the type of request and
any associated data. Since the R10000 processor can support up to four outstanding requests per
processor, the Pl is also responsible for tracking these requests so that subsequent replies may be
associated with the correct request. The Pl was designed by David Ofelt.

The PI performs several critical functions that are invaluable for the protocoig\anc. When
the PI receives a message framaGic for the processor, it must match the reply to its table of
outstanding requests before passing it on to the processor. Part of this check determines whether
any other coherence actions occurred for the line (such as an invalidation) while the request was
outstanding. If a conflict between these actions arises, the Pl uses a conversion table to determine
what updated action to take. For example, in some cases an invalidation can arrive before a message
providing the processor with its requested data. If this occurs, when the reply arrives it is passed on
to the processor as a negative acknowledgement (causing the processor to retry). If the message is
merely a reply to the processor request, the Pl forms a bus command, launches the reply onto the
bus, and then goes on to its next task.

The Pl must also handle messages that are requests to the processor to access the second-level
cache, calledhterventions These requests are made by the PP to maintain coherence in the proces-
sor cache, extract data requested by another node, etc. Unlike the processor, which can have four
outstanding requests, the PI only allows the protocol processor to have two outstanding interventions
at any one timé.

The reply from a processor intervention comes in two portions. First the processor provides
the result code called treate reply which the PI exports in the Pl Reply Register. The Pl Reply
Register is explained in more detail in Appendix A. Some time later, the processor providiesehe
reply (when appropriate) such as the line requested out of the cache. The data is streamed directly

®This restriction only applies to requests which require a status reply from the PI. We explain this issue in more detail
in Appendix A.
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into a data buffer, marking it full when finished. Since the state response arrives first, the PP can
continue work while the Pl fills the data buffer.

Processor and Cache Restrictions

The R10000 processor and its caches have several characteristics which impact key design decisions
in the protocols we implement and study:

Speculation. Since the processor implements aggressive speculation support to improve memory
system behavior, it may bring lines into its cache that are never actually used. As a result,
references which emerge from the processor are not necessarily accessed by the control flow
of the program (or modified, in the case of exclusive requests). In contrast, since uncached
reads and writes may cause irreversible results outside the processor (such as I/O), they are
never issued speculatively. This characteristic forces us to use uncached operations instead of
cacheable ones in some circumstances where we must be certain that an address is actually
accessed by the program’s control flow.

Flushing lines. In some situations, the processor may wish to flush lines from its cache. To support
this, the R10K provides aache instruction. Unfortunately, this instruction is only acces-
sible from privileged operation modes, thus it is impossible for code running at user level to
reliably flush lines from the cache. As we describe later, this restriction forces us to utilize
uncached operations to guarantee external visibility of certain operations issued within the
processof.

Pushing data into the cache.lt is not possible to reply to the processor with data it has not re-
quested. This prevents us from to implementing an update-based coherence protocol on
FLASH, as well as a variety of other protocol optimizations that try to “push” data into the
cache in anticipation of its use.

Accessing exclusively-held dataThere is also no way to request exclusively-held data from the
processor’s cache and also leave the cache line in the exclusive state. In other words, “peek-
ing” at a line of data held exclusively causes the processor to yield its ownership of the cache
line. A subsequent write access by that processor requireggradeto an exclusive copy. In
the message passing protocols we implement, for example, this restriction implies that copy-
ing data from the processor cache to another node necessarily perturbs at least the ownership
state of the source node’s cache.

"The only alternative would be to provide sufficient mappings that the application could force conflict replacements
in its cache, but we felt this alternative was undesirable.
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2.3.4 Data Buffers and Memory Access

MAGIC contains 16data buffers which are cache-line sized (128 byte) hardware buffers used to
stage data throughiaGIC in a pipelined fashion. These allowaGic to overlap the control pro-

cessing and the data transfer associated with servicing a message. Whenever data is transferred into
MAGIC from its interfaces, it goes directly into a data buffer without passing through the protocol
processor. In most protocols, in fact, the data never passes through the protocol processor, but is
transferred directly to the destination interface as directed by the PP. The data buffer allocator and
status units were designed by Jeffrey Kuskin. The data buffer memory array was designed by Ron
Ho and Evelina Yeung.

Buffer Allocation and Status Bits

Data buffers are assigned to a requeséliocated by MAGIC when a new request is introduced into
any of the interfaces: network, processor, or 10. The PP may also explicitly request that a buffer be
allocated for its use if needed. Data buffers contain valid bits per-doubleword, which are similar in
many respects to the full-empty bits found in architectures such as the Tera BJ,Gind others.
These bits are cleared when a data buffer is allocated to a new request. As the buffer is filled with
data, the valid bits are set when each doubleword arrives. If the buffer is consumed by another unit
before it is completely filled, the valid bits cause the consumer to stall if it reaches a position in the
buffer where the data is not ready. Using this approach, data can be aggressively pipelined from
interface to interface with low latency.

The data buffers also have an associated state bit known &dltb#. Thefull bit can be used
to override the individual per-doubleword valid bits and indicate that the buffer is full. The full bit is
useful, for example, in situations where the PP composes the data in the buffer in software. Instead
of setting sixteen individual per-word valid bits, the single full-bit can announce the buffer is ready
for transmission.

Data buffers are referenced withimGic using their four-bit buffer number. In particular, the
data buffer number is one of the fields in tieGiC message header. When a request is allocated
a data buffer, the message header that is formed includes the buffer's number. If the PP sends this
header to another unit, the receiving unit consults the header to determine which buffer contains the
associated data. In this way, the PP can easily tell the recipient of a message where to find its data
without needing to handle the individual data words.
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Buffer Usage

MAGIC provides the PP with several ways of manipulating data buffers. These include features to
manipulate entire buffers as well as those to manipulate individual doublewords. The most com-
mon feature is theend instruction, which sends with its message the data buffer indicated in the
message header, as described above.

One important usage of data buffers is efficient transfers to and from memory. As we described,
the Inbox may issue a speculative memory read or write on behalf of an arriving request. This oper-
ation loads to or stores from the data buffer associated with that request. The PP can also explicitly
load or store a buffer using its speclblock andsblock instructions . These operations can
manipulate either the entire data buffer (128 bytes), or a single doubleword (8 bytes). Memory
bandwidth is more effectively utilized by full buffer writes, but doubleword writes are useful for
certain complicated reference patterns such as strided accesses for which a full buffer read would
be primarily wasted.

In cache coherence protocols, cache lines are always moved as units. Thus, a data buffer fill from
memory contains an aligned block of 128 bytes of data (i.e. data beginning at an address where the
low seven bits of the address are zétolsiven this characteristic, restricting data buffer fills to
aligned blocks in memory is reasonable for cache coherence protocols. However, this simplification
is not appropriate for some message passing protocols where a message might be stored at a different
cache-line offset than the one at which it originated. To address this limitatieai,C provides an
additional buffer fill mode, calledlouble bufferloads. These loads allow the PP to quickly fill
cache-lineunaligneddata into its data buffers starting at any doubleword (64-bit) boundary. If this
block of data is later stored, the effect is to shift the daithin the lineto a different offset than
the one it originally had in memory. Because the architectureLafH supports communication
protocols so well, this is thenly hardware feature we added to explicitly support message passing.
The memory controller and hardware support for double buffer operations was designed by David
Nakahira.

Figure 2.6 shows how double buffer operations can be used to efficiently change memory align-
ment. Memory loads using the double buffer feature specify two data buffers (here we denote them
A and B) and a starting doubleword offset. Buffer A is filled with an aligned block of data, but
instead of filling from the first word in the data buffer, it begins at the provided offset. When the
fill reaches the end of the buffer A, the remaining data of the line “wraps” and starts filling into the
beginning of buffer B. By performing a second double buffer load of the next memory line, this time
using the buffer B as the first buffer, the remainder of buffer B is filled in a similar manner. The

8The R10000 processor expects replies to cache misses to be in a special kind of critical-word-first ordering called
subblockordering. As a result, often the address transferred in the header does not actually end in seven zeroes, and the
data in the data buffer is specially ordered to allows rapid restart from the miss. Though subblock ordering changes the
order that the words appear in the data buffer, the words are still from the same aligned line in memory.
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1. Block of memory not aligned 2. First double buffer load fills 3. Second double buffer load fills

to cache-line boundaries portion from first memory line rest of buffer, discarding the rest
of the memory line
Memory: Data buffers: | Data buffers:
XXXX0000111122223333 Al (unmodified) XXXX D AL (unmodified) [ XXXX_}
AA48XXXXXXXHXXXXXKXKX B: 0000111122223333 [(unmod) B} 0000111122223333 4444

Figure 2.6. Changing data alignment via double-buffer loads.

result is that buffer B is filled with data with a different cache line alignment than in memory. As an
optimization, the double buffer mode can be selected but two identical buffer numbers provided. In
that case, when the fill wraps, the remaining data words are simply discarded.

2.3.5 The Software Queue and Idle Handler

Besides the hardware interfaces from which requests can arrive for sewice¢ provides two
additional sources of requests called sioftware queuand theidle handler The software queue

is used bymAGic to schedule handler invocation for itself at a later time. The idle handler is used
to execute a handler periodically to perform a variety of maintenance tasks.

The Software Queue

For tasks that need to be invoked other than by the arrival of a message at a hardware interface,
MAGIC provides the software queue. Its hardware support consists of a one-deep queue containing
space for a message header, address, and handler PC. Since the queue is only one-deep, these are
commonly referred to as theoftware queue registersUnlike the hardware queues, which are
associated with a particular external interface, the software queue registers are loaded explicitly
by PP handlers. The element of the queue present in the software queue registers represents the
request at the head of the queue; the remaining elements of the queue are stored in memory as
described below. These registers are loaded with the headers of the message (as would be available
if the message had come from any of the hardware interfaces) as well as a handler PC to execute to
process the request. Once the registers are loaded, the Inbox can select and dispatch the software
queue just as any other queue, except that the Inbox invokes the supplied handler PC instead of
using the normal dispatch mechanism. To maintain the integrity of the software queue, any handler
which executes from that queue is required to reload these registers with the next request before it
completes.

The queue itself is maintained in software as a FIFO doubly circularly linked list in protocol pro-
cessor memory and can consist of requests from different protocols since by convention all protocols
use a common software queue header format. A set of short subroutines have been implemented that
allow the user to addSWQSchedule) and remove $WQUnschedule) requests from the queue.
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Once it has been on the software queue, a handler may also indicate that it is finished executing
but would like to run again when its next turn comes around. A third rouBW@Reschedule)

provides this behavior by yielding the PP in a controlled manner (reloading the software queue reg-
isters as required) but otherwise remaining on the queue. We differentiate these routines because
the Reschedule routine is higher performance (since it does not need to manipulate the linked lists),
SO we use it whenever possible.

For intuition about the computation model the software queue provides, consider the parallel be-
tween the handlers on the software queue and the tasks of a very lightweight thread-based scheduler.
In this metaphorSWQSchedule parallels thread creatioS§WQUnschedule, thread completion;
andSWQReschedule, a thread yielding the processor to the next thread, but otherwise remaining
active to run later.

Handlers executed from the software queue are different in two ways from handlers from the
other sources. First, since the outgoing network queue needs of the next handler on the software
gueue are unknown, the Inbox conservatively schedules the software queue only when space is
available orboththe request and reply queues. Second, a data buffer is not allocated for handlers
executed from the software queue. Instead, these handlers must explicitly allocate buffers with a
request to the data buffer allocator. This decision was motivated by the observation that data buffer
needs of software queue handlers cannot be predicted. Rather than assume a buffer is needed, when
often they are not (consider the software queue handler that sends invalidations to a widely shared
line), FLASH instead leaves the allocation to software. An artifact of this decision is that software
gueue handlers are not necessarily guaranteed to make forward progress. Our experience suggests
that this does not lead to starvation or other performance problems in practice, but it remains an
issue worthy of study with the actual hardware.

The Idle Handler

The idle handler is a single program counter value that is selected periodically by the?Intsox.
purpose is to allowAGIC to carry out a variety of maintenance functions from time to time, without
using the software queue (which executes much more frequently). Among the tasks for which it
might be used are the following: check for timeout of outstanding cache misses, wpaite
performance statistics, verify system connectivity through “I'm alive” messages to neighbors, etc.
In Section 6.1.6 we describe an additional use of the idle handler for assisting in timeout processing
for the FLASH lock protocol.

®The term “idle” is actually a misnomer, sinaGeGIC executes this handler periodically whether it is idle or not. In
fact, once its time arrives, it is the highest priority to be scheduled by the Inbox. Nonetheless, the functions it provides
are typically associated with an idle handler in an operating system, thus the name has stuck.
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2.3.6 Deadlock

Deadlock is a serious concern in design HiasH system, as in any distributed system. In par-
ticular, the necessary conditions to generate deadlock are readily presentrim#ie network.

To prevent this from ever occurring, the hardware and softwareAsH form a partnership, each
component having its own responsibilities for deadlock avoidance.

The critical requirement iFLASH to avoid deadlock is thaiAGIC must never send a message
when outgoing queue space is not available, and cannot spin-wait for that queue space to appear.
The reason for this is straightforward:MGIC did issue such a send, the PP would stall until queue
space was available. However, the network could be full because another node is waiting to send to
this node. Unfortunately, since the PP is non-preemptable, if it stalled in such a scenario it would
stall forever, preventing the very condition by which the network could clear.

Avoiding this situation is accomplished in this way:

e The virtual lanes of the network are utilized as a Request and Reply network, similar to
DASH [LLG 190, Len92]. Messages sent on the reply lane are required $tinkable—the
protocol must have a way to accept the message without generating further traffic. Messages
sent on the request lane are always permitted to send at least two reply messages. As a
result, if the request cannot be satisfied, it can always send a $iideto the requester.
Since replies can always be satisfied and requests can always be turned into replies, network
blockages can always be resolved.

e The Inbox establishes queue space guarantees for each of the incoming lanes of the network,
and only schedules a handler from that lane when its queue space guarantees can be met. For
example, the request lane must always be free to generate a reply, so requests can only be
scheduled when the reply queue has outgoing space free. To be conservative, since the nature
of the request is not known, the software queue can only be scheduledbatidanes have
outgoing space.

e Handlers are required to obey the message sending restrictions of the queue on which they
arrived. If handlers desire to send messages beyond their guaranteed privileges, they must
first explicitly check the outgoing queue space (done wikh anstruction, see Figure A.1).

If the queue space is present, the handler may send as many messages as the queu¥can hold.
If not, it must satisfy its request somehow and yield the PP without sending any messages.

1%Since the macro-pipeline GLASH processes several messages simultaneously, the Inbox may already have selected
the next handler (and assured it the appropriate queue space). As a result, the currently executing handler can never
completelyexhaust the outgoing queues, but must always leave enough spameefoaindler which may be ready to
execute next.
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2.4 FLASH Software Environment

The design and implementation of protocols faasH entails a vast array of software support
tools and simulators. These tools aid in the creation of protocols as well as the assessment of their
performance during the design phaserpisH. This section provides an overview of these tools

to provide a stronger background for the environment in which these protocols were generated and
evaluated.

2.4.1 Protocol Compilation and Scheduling

To make the design, implementation, and debugging of these complicated protocols more tractable,

we chose to express the handler code in a high level language instead of assembly language. While
this helps the protocol designer, it also requires that a range of tools be provided to help translate

the high level language, in our case C, to machine code for the protocol processor.

Compilation

Rather than start from scratch, theasH team elected to re-target gcc, the GNU C compiler [Sta93]

to generate PP assembly code. This was a good compiler base from which to start for two key rea-
sons. First, since the PP was loosely based on the MIPS R3000 ISA, and since gcc was already
ported to that ISA, a reasonably close starting point was immediately available. Second, since gcc
is implemented using a flexible optimizer and code generator language designed for porting, the
internals of the compiler were readily exposed. FheasH port of gcc for the protocol processor,
PPgcc, provides complete code generation features for protocol development, as well as a variety
of peephole and code optimization features. These optimizations enable C-level constructs such as
bitfields of structs and other efficient data structures common to protocols to be readily translated
into the special bit manipulation support provided by the PP. In many cases, PPgcc-generated as-
sembly code is efficient enough for the final machine. In other cases, it serves as a reliable staring
ground from which hand optimizations can be applied. Gcc was ported to the protocol processor by
Joel Baxter and Supratik Chakraborty.

Scheduling

In addition to generating the assembly language instructions themselyesy adds another ele-

ment to the code-development process since the PP is a statically-scheduled dual-issue processor.
Unlike dynamically-scheduled processors such as the R10000, the PP requires the handler code to
strictly match its asymmetrical issue restrictions, or else the instructions are decoded as illegal. Su-
perscalar execution in the PP affords us increased instruction bandwidth per clock, which we find
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critical to achieve efficient protocol processing in software. The drawback to this feature is the need
to convert the compiler-generated scalar-issue code to efficiently utilize the dual-issue capability.

Since PP instructions can be generated automatically from C-level protocol code, we chose to
explore automated support for scheduling as well. We began with the Twine scheduler, written
by Michael Smith as part of the Torch project at Stanford [Smi92]. This system was built using
a former generation of the Stanford University Intermediate Format (SUIF) to internally store its
code, relocation entries, and other information later needed to produce a valid object file B6RA
Twine was a perfect match feiLASH because the design of the PP was initially generated from a
simplified version of Torch. Torch, like the PP, provides statically scheduled dual-issue, as well
as support for instruction speculation. Though the speculation support was mostly removed from
the PP, it still manifests itself in the PP’s ability to provide simplified squashing branches. Twine,
like PPgcc, is an effective staring point for our code. It optimizes most code well, though certain
canonical sequences are poorly optimized warranting small hand optimizations.

2.4.2 FLASH System Simulation

We exclusively used simulation ofrRASH system during the development of the protocols in this
thesis. TherLASH system was under design throughout this research, so the machine prototype was
not available to test protocols. Simulation is a powerful technique to design protocols because it
provides detailed visibility into the simulated machine.

We use the FlashLite system simulator, written by Mark Heinrich as part ofiLtheH project.
FlashLite models1AGIC and its network at the behavioral level, which provides nearly exact per-
formance modeling, but not to the point of being cycle-by-cycle accurate. This allows us to use
FlashLite to indicateLASH performance, while avoiding the jump in complexity and maintenance
to keep the simulator exactly in sync with the hardware design. The protocol processor (which is of
particular interest in this study of protocol code) is simulated using a functional instruction emulator
called PPsim. PPsim allows us to simulate the actual handler code and have the side-effects in PP
instructions cause simulataAGIC actions to occur in the FlashLite simulator.

FlashLite works in tandem with a CPU simulator which provides references from the proces-
sors in the simulated machine. Initially, FlashLite used the TangoLite reference generator, written
in conjunction with thedbAsH project [GH93, Gol93]. Later, FlashLite was converted to work in
conjunction with the SImOS simulation system, also developed at Stanford by a large team of re-
searchers [RHWG95, Her98].

The SimOS framework provides the ability to boot and run a real operating system kernel under
simulation, and to run multiprogramming workloads on top of the simulated kernel. The result is
the ability to accurately characterize the performance of workloads that include operating system ef-
fects. SImOS models the simulated processors using two different CPU models: An R3000/R4000
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CPU emulator called Mipsy and a high performance dynamic binary translation system called Em-
bra [WR96]. In addition, we are able to use the Mipsy simulator outside of the rest of the SImOS
environment to simulate applications while excluding OS effects, for the purpose of debugging,
development, validation, and controlled performance evaluation. This combination of simulation
tools has proven to be a powerful mechanism for simulating workloads asH.

2.5 Summary

The FLASH project is focused on two main goals. First, studying the design of scalable multipro-
cessor systems to support the integration of cache-coherent shared memory and message passing.
Second, to implement protocols in software to allow them to be easily corrected, optimized, or re-
placed altogether. IALASH, hard-coded or table-based coherence protocols of systemsaAde
are replaced by th®AGIC node controller.MAGIC contains an embedded protocol processor for
control processing and dedicated data processing logic.

The FLASH system consists of an array of processing nodes, each containing a MIPS R10000
processor, aMMAGIC chip, a portion of the machine’s distributed memory, a PCI IO interface, and
a port into the CrayLink InterconnecimAGIC serves as the controller for communication within
and between nodes, exchanging protocol information with otiaenc chips using short messages.
The instruction set of the Protocol Processor is based on the MIPS R3000 processor, then extended
to improve performance of common protocol operations.

We studyFLASH under simulation, using a detailed software model of its components. Protocol
code formAGIC is written in C and then compiled and optimized using a custom tool chain.
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Chapter 3

Uses of Flexibility Beyond Cache
Coherence

The centerpiece of theLASH design is a node controller with embedded flexibility. One of the
initial motivations for this design decision, as described in Section 2.1, is to enable cache coher-
ence protocols to be implemented by software protocol handlers rather than hardware tables or
finite state machines. The hardware unitsFimsH operate under the control of these software
handlers to assist in the data processing and protocol processing throughpasiio. Experi-

ence gained from the design BfEASH and similar machines suggests that the implementation of
cache coherence through flexible software handlers is a powerful and convenient way to design such
protocols [KOH"94, HKO™94, RLW94, ACD"95, KCD"97].

However, the motivation for flexibility is not limited to the implementation of cache coherence
protocols. Another goal of theLASH project is to provide a single system that is able to efficiently
support a range of communication protocblsyondcache coherence. This goal arises from the
observation that multiprocessors of several different design styles have been converging to the point
where they have practically the same hardware at their core. By designing a system with a small
degree of additional flexibility, the result is a powerful machine that can support a range of models.
Thesealternateprotocols beyond cache coherence are the focus of this dissertation.

Since its conception theLASH project has been interested in providing message passing sup-
port in addition to cache coherence. Historically, most large-scale parallel applications were im-
plemented in the message passing style in the interests of scalability and performance. In recent
years shared memory systems and applications have begun to provide a viable alternative; still, an
ideological dichotomy remains in the high performance computing community between supporters
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of shared memory and message passing. In the past, systems were designed to support either mes-
sage passing or shared memory, but not both; one key geahigH is to demonstrate that a single
system with a flexible engine can effectively support both message passing and shared memory with
high performance.

Besides message passing, other protocols can also be built to exploit the flexibHitysA.
One example is synchronization primitives such as locks and barriers. By providing support in
MAGIC for these primitives, there is the potential to improve application performance by reducing
the latency of these synchronization operations as compared to pure shared memory implementa-
tions.

This chapter provides an overview of the alternate protocols we study in the contextsod.
We briefly explore the design space of these protocols, identifying the portion of the space on which
we focus. In addition, we consider at a high level the individual software requirements of these
protocols, determining the requirements they share. In the next chapter, we describe the imple-
mentation features common to multiple protocols (such as protection, interaction with the main
processor, etc.), which serve as core mechanisms on which the alternate protocols are built. In sub-
sequent chapters, we individually describe the implementation and performance of these alternate
protocols. Chapter 7 considers other protocols #hatsH can support, but which are not studied in
detail in this dissertation.

3.1 Block Transfer (Message Passing) iRLASH

In many early multiprocessors, message passing was the communication protocol provided to the
user. In these systems, the memory on different nodes is completely sepadittrilouted and

thus cannot be cached on remote nodes. Instead, for communication between nodes, applications
send and receive data explicitly viaessages

The explicit nature of the communication in message passing systems affords certain advantages
to the application. By crafting the communication manually, the programmer can closely manage
and tune the movement of data around the system. A related benefit of explicit programmer control
is that typically communication volume is reduced, since a message can be formed that contains
only thenecessarylata.

Though it offers some advantages, explicit communication has its drawbacks as well. Program-
mer management of data transfer in message passing applications is not a simple task. At all times
the application must keep track of the current copy of the data values and must establish a plan
for transferring that data between nodes. In large applications, achieving this data manipulation
correctly and efficiently can be very challenging. In addition, in applications where the data is
largely shared, message passing programs may be forced to keep a copy of the shared data set in
each node’s memory, since caching of remote data is prohibited. In a shared memory system, the
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data would reside in one memory and be replicated ircuhesof other nodes. These sources of
complexity have traditionally made parallel programming in the message passing model much more
cumbersome than in the in shared memory model.

Cache coherent shared memory addresses many of the concerns of the message passing model,
but also sacrifices some of its advantaeBor example, shared memory eliminates the need to
replicate the data set of the program since any node can access shared data. Furthermore, due to
the cache coherence support the programmer never needs to explicitty manage the most up-to-date
copy to achieve correctness.

On the other hand, shared memory hides interprocessor communication behind the load/store
abstraction of normal programs, and usually communicates at a fixed cache-line granularity. This
may ultimately reduce communication efficiency since the system, not the programmer, chooses
which data to communicate. It also introduces the problerfalske-sharing artifactual commu-
nication that occurs because most protocols permit only one simultaneous writer per cache line.
For example, consider the case when different nodes manipulate words on the same cache line.
Even though these nodes may not read each other’s results elsewhere on the line (and therefore no
communication is inherently needed), cache coherence causes the entire line to move around the
system.

3.1.1 Message Passing Overview

In a message passing machine, since messages are the only communication primitive, they are used
for a range of functions. Messages may be used for synchronization and coordination (typically
transporting a small amount of data) or for the transfer of large data regions, which have significantly
larger payloads. In practice, messages may be used for a combination of these purposes since the
delivery of a message usually implies some degree of synchronization.

In this section, we focus on the design space for message passing protocols that provide high
performance block transfer. Our discussion considers the applicability of these protocalssar
and identifies the common mechanisms which they share. Our goal is to demonstrate that block
transfer message passing can be efficiently supported AosH.

Besides block transfer, small messages callgtve messagdsave been proposed as a general-
ized form of message passing that invokes computation at the receiverf@;FKECGS92]. Uses
for active messages range in complexity from performing simple computation at destination nodes
to more complex computation approaching the functionality of remote procedure calls. We consider
support for active messages in Section 7.1.

!For brevity we refer to these simply as “shared memory” systems, but in all cases we are considering systems that
have hardware cache coherence support.
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3.1.2 Message Passing Models

Message passing abstractions exported to applications vary across a wide spectrum of functionality
and semantics. Some protocols provide only basic data transfer capabilities and few other features.
At the other extreme are more complex protocols, such as Intel NX [Pie88] and MPI [DOSW96,
GLS]. These more advanced models provide such features as sophisticated buffer management,
wildcards for receiving messages flexibly, and complicated multi-way communication primitives.
We begin by describing this space to illustrate the kinds of protaaolsH should be capable of
supporting.

To better understand this spectrum of protocols, we consider two data points at the extremes,
one model based aonnectionsand the other based @ends and receive$ he interesting conclu-
sion to draw from these models is that despite the different communication features they export to
applications, the requirements of their implementations are similar.

Simple Connection-Based Models

In a connection-basednodel, pairs of processes are associated, often staticallgpiwyections

(or channel}. In this type of model, only the two “endpoint” processes can communicate using
that connection. This restriction leads the application to open explicit channels between any pairs
of processes desiring to communicate. In practice, if there are sufficient channels, they might be
established early and remain open throughout the application. If there are relatively few, they might
need to be time-multiplexed, i.e., assigned and reassigned as needed to allow different process pairs
to use the limited resource. As the number of processes increases, the need for connections, which
grows as0)(n?), may become prohibitive.

A connection-based model has the advantage of simplicity for the system. Each endpoint can
send data only to its communication partner, and this data is received at the other end in the order
it was sent. Unfortunately, this simplicity makes a connection-based model challenging to utilize
effectively in an application. For example, to receive messages out-of-order, multiple channels
would need to be established between communicating peers (note that this also exacerbates the
potential to exhaust the number of available connections).

Connection-based models enable the system to aggressively transfer the data to the receiver.
This is made possible because connections and their associated buffers are established in advance,
so each side usually knows if buffer space is available for it at its partner. If circular buffers are
used, for example, all that is required is that the other end periodically indicate how much of the
sent messages have been consumed.
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Send/Receive Models

A more common communication model is basedsends and receive®l X, MPI, and many other
protocols fit into this category [Pie88, GBD®4, DOSW96]. In this model, no static connections
are established between communicating peers but instead each individual message send indicates its
destination through some naming scheme. Likewise, a receive may specify a particular sender from
which a message should be sought. The send/receive model is much more flexible since it allows
any one of the application’s processes to send to any other without advance set-up. It also has the
advantage that processes can usually receive messages in a different order than they were sent.
On the other hand, this increased power also increases the complexity and overhead of the un-
derlying implementation. The lack of connections may require more work on each individual mes-
sage for authentication, buffering, or wildcard matching to determine its destination. In particular,
allowing a process to receive its messages out of order significantly complicates the buffering im-
plementation as compared to an in-order implementation. In some situations, if buffering has been
preallocated, messages may be transmitted immediately (just as in the connection-oriented model).
If preallocated buffers are exhausted, however, the sender must first negotiate with the receiver to
avoid sending a message which cannot be accepted.

Common Requirements

Our goal inFLASH is not to provide garticular message passing model but rather to enabdemge

of protocols to operate efficiently. Fortunately, despite the differences between these protocols, we
see that they have similar requirements. First, each requires a means to exchange control information
with other nodes to arrange the buffering and transfer of large messages. Shared memory provides
a convenient way to coordinate this communication between processors.

Second, for performance each requires a means to exchange data at high bandwidth. Once
buffering has been arranged for messages, performing the actual transfer as quickly as possible
is crucial to keep end-to-end message latency low. To move the application data, we turn to an
accelerated block transfer protocol.

3.1.3 Providing Block Transfer

The most important decision to make at the outset is: where should we divide the functionality
betweenmAGIC and the main processor? One approach would be to utilize the support of the
MAGIC chip as much as possible. In other words, we could implement a specific message passing
protocol inFLASH, one in which many of the higher-level functions of the protocol are provided by
MAGIC.

Section 3.1 Block Transfer (Message PassingLinsH 35



However, when we increase the protocol functionality integrated M®aic, we encounter
several major disadvantages. The first arises from the cussitc implementation. While1AGIC
is capable of high performance protocol processing, its caches and dispatch table implementation
limit the protocol code size which can achieve peak performance. In the current system with 16 KB
MAGIC instruction caches, reducing overall protocol code size is critical to avoid instruction cache
misses. In addition, thoughAGIC provides the ability to dynamically change between protocols
using the Inbox Jump Table, it is difficult for two large protocols to share that finite table efficiently.
If the Jump Table size is exceeded, software is used to dispatch handlers that do not fit, increasing
dispatch time significantly. The actual cost of dispatch depends on the position of the handler in the
table; we have measured costs of 50 cycles, but they can be much higher.

The second disadvantage of increasing the functionalityA@aic is that its protocols are harder
to verify and harder to change than those implemented on the processor. In particular, verification
is more difficult because errors in the protocol code are less visible and likely to be more harmful to
the system than those in application-level libraries, since the former directly manipulates physical
memory.

Finally, since all requests on the node require service fkxsIC, it is important to provide
fair access to the protocol processor. As we increase the demands on protocol processing, system
performance may degrade as the latency for servicing other processor requests increas@s[HHS

3.1.4 Integrated Shared Memory and Message Passing

Our goal inFLASH is to provide an integrated protocol which exports both shared memory and
message passing features to applications. To achieve good performance and avoid the disadvantages
described above, we provide a protocol which strives for high performance data movement but limits
excess functionality. The interface we export to the application reflects the low level functionality
we implement irMAGIC: acceleratednemory copyThis protocol accepts a source and destination
buffer address and performs the copyvnaGic. We provide our support in that form for several
different reasons:

First, shared memory allows more flexibility in how to perform inter-node data transfer. In a
distributed memory machine theceiverof a message must decide where to store the message in its
memory. While this may reduce the advance negotiation required between nodes, it would require
MAGIC to implement a specific message passing policy. Instead, because of our shared memory
environment, we are able to name the remote memory destination aetiier The message
passing library at the sender selects the destination buffer and indicates it to the sending node’s
MAGIC chip. With the decision of where to place the message having been made at a higher level,
the receivingvAGIC chip can concern itself with high performance memory transfer and not with
selecting an address for the data when it arrives.
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Second, by providing an integrated solution, shared memory applications can utilize the same
accelerated communication features, just as they would use other latency-hiding and bandwidth
improvement techniques such as prefetching [MG91, Mow94] or DMA. This is possible not only
because shared memory and message passing are allowed to interact, but more generally because
the block transfer capability is not tied to a message passing protocol. In addition, the memory
copy interface we choose is natural for both environments. Shared memory can use it directly, just
as it would a normabcopy call. Message passing libraries use memory copy to move the actual
message data after selecting the buffer addresses.

Finally, by exporting the block transfer features directly to the main processor, we allow each
library to utilize the low-level features as efficiently as their abstraction permits. For example, a
simple connection-based model designed for use in a simple producer-consumer application could
be implemented directly on the memory copy interface. In contrast, the additional support provided
by an MPI library might achieve somewhat lower performance—but without affecting applications
using lighter models. If instead we had chosen one particular model to implemengtiic, other
models with different requirements would be forced to build on top of it even if their abstractions
were poorly matched.

3.2 Synchronization Primitives

Parallel applications implemented in the shared memory style are often required to synchronize
between different processes to ensure correct execution. Synchronization operations can be used in
a variety of ways, for example:

e Provide mutual exclusion to data structures.
e Distribute work between processes.
e Ensure that processes proceed through application phases at the same time.

Providing good synchronization performance is critical for achieving scalability in parallel sys-
tems. Inefficient synchronization increases the cost of parallelism, since processors waste time
synchronizing when they could instead be doing useful work. More generally, if synchronization is
expensive or inefficient, applications are forced to cooperate at larger granularity to amortize syn-
chronization overhead. If synchronization cost can be reduced, it enables applications to seek out
finer granularity parallelism that may ultimately increase performance.

In FLASH, we can leverage the flexibility afAGIC to accelerate synchronization primitives
through specialized protocol support. This section describes a variety of synchronization primitives
and their application uses and requirements. In Chapter 6, we describe the implementation of these
synchronization primitivesS ORLASH.
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3.2.1 Locks

One of the most common synchronization primitives, from which most others can be generated,
is thelock At any one time a lock can be held by only one processor, and so it can be used in
circumstances where mutual exclusion is required. Shared memory locks perform very well in
some circumstances. In particular, when access to a lock is not contended, shared memory can
achieve low latency since lock requests succeed immediately and do not need to retry. Since shared
memory locks are comprised of normal memory locations, a lock is cached when acquired. As a
result, if contention is low and the lock is requested again soon, the lock might be found in the cache
and acquired at very low latency.

When these scenarios are not met, however, the performance of shared memory locks degrades.
For example, as contention increases, the need for exclusive ownership to modify the lock may
cause requests to be negatively acknowledged, or lines to ping around the system. In degenerate
cases, a processor that is granted ownership of the lock may have the lock snatched away before the
lock can be acquired—this scenario can lead to livelock if steps are not taken to guarantee forward
progress.

Furthermore, since ownership of a line is acquired based on which requester reaches the home
node first, there is no guarantee of any fairness or ordering of lock acquisitions. In particular, when
a lock is held the other requesters all acquire shared copies and spin while the lock is unavailable.
When the lock holder releases the lock, the home invalidates all the sharers—causing them to re-
fetch the line in an effort to acquire the lock. This results in a rush of requests for the line in quick
succession, even though only one of the waiters ultimately succeeds in acquiring ownership (and
the lock).

Our approach to providing locks iLASH addresses the weaknesses of locks implemented on
normal shared memory. Since shared memory locks perform well in low contention cases, additional
protocol support would be of no benefit in that regime. Instead, we focus on accelerating high
contention locks through a variety of techniques. First, we address the fairness issue caused by the
rush of requests that follows an unlock of a contended lock. Instead of using pure shared memory,
requests for these locks are queued so when a lock is released only the head of the queue is notified.
A similar approach was provided by timasH system to optimize lock variables [Len92], and in
software by Mellor-Crummey and Scott [MCS91a, MCS91b]. Second, we optimize the transfer
of a lock between holders, avoiding the extra traffic and latency introduced by the shared memory
model. Third, we try also to provide the advantages of shared memory, including efficient repeated
acquisition of a cached lock.
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3.2.2 Barriers

Another important synchronization primitive for parallel applications isktier. Barriers force

a rendezvous of all processors, i.e., when a processor reaches the barrier it must wait until all others
arrive as well, and only then can all proceed. Barriers are typically used in phase-based applications,
so that each processor completes its work in the current phase before any can enter the next one.
This prevents subsequent phases from mistakenly reading incomplete results from other processors
if they are still working on previous phases [WOA5].

Barriers are normally implemented in the parallel macro package or communication library
of a parallel computer. Their implementation often consists of a single data structure that stores
the count of processors that are currently waiting. In that implementation, each processor in the
application needs to update the shared data structure, resultid(ninbest-case performance for
the barrier. Just as in locks, contention for the barrier data structure can decrease performance
significantly. Such contention may be high if processors arrive at the barrier near each other, which
is increasingly likely as machines scale.

A more efficient barrier implementation would utilize the parallelism in the machine to its ad-
vantage, using a tree-based structure instead [MCS91a, MCS91b]. This improves the barrier's best-
case complexity t@)(logn). A tree barrier can be implemented in the application library just as a
normal barrier, or can be supported using a custom protocol.

Barriers may further benefit from supportMnGIC since each level in the barrier tree can be
traversed with lower latency. FirsyjAGIC is closer to the network than the processor, so commu-
nication with remote nodes occurs as quicklyrassH can support. Second, shared memory must
go through the coherence protocol to communicate with remote nodes. An application-based tree
barrier would acquire ownership of the next tree node and perform its modifications in its cache; the
next barrier stage would then just acquire it bamlaGiC can avoid this unnecessary communica-
tion and advance to the next stage of the barrier directly, using specialized techniques we describe
later.

3.3 Summary

This chapter provided an overview of the alternate protocols we study in this dissertation. Con-
sidering the protocols first at a high level allows us to identify the key requirements they share.
The next chapter builds on this overview to support these shared needs; later chapters consider the
implementation of the individual protocols in more detail.

The first major protocol we study is message passing. Providing a message passing model has
both advantages and disadvantages to the programmer and the system. We described a range of
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message passing support before selecting a fundamental memory copy primitive $er from
which more complicated protocols can be constructed.

We also described synchronization primitives: locks and barriers. Providing efficient synchro-
nization is critical to performance in parallel systems. Our goal will be to improve synchronization
performance over conventional shared memory techniques using the support provideduastine

system.
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Chapter 4

Alternate Protocol Fundamentals

In the previous chapter, we identified communication and synchronization functionality that may
benefit from implementation imAGIC. Even though these various protocols perform very different
functions, they share several fundamental characteristics. Before examining the implementation of
these particular alternate protocols in detail, this chapter describes the fundamegtiahismthey

share [HGG94, HGDG94]. By “mechanisms” we refer to both actual protwmdtand algorithmic
techniquego accomplish certain critical actions within alternate protocols.

One widely required mechanism is the ability to initiate alternate protocol operations®ic
under control of the main processor. This requires an efficient and powerful interface between the
processor antAGIC. In many respects the processor considessIC to be a memory-mapped
device, i.e., it can issue commands through accesses to special memory locations. However, in
the interest of performance and protection, our implementation extends this interface in several
ways. We describe a family of processostGIC communication techniques that are used by our
protocols. These techniques enable communication in either direction and with varying degrees
of functionality and performance. We then extend this basic interface to show how it can be used
in the context of virtual memory. Since our environment contains a full-fledged operating system,
correctly handling virtual memory and assuring memory protection is of critical importance to allow
widespread use of our protocols.

Once these operations have been initiatedGIC’s tasks are centered around manipulating
user data. This would be straightforward in a distributed memory system where data can only re-
side in local memory or the local processor’s cache. In our shared memory environment, however,
coherence is much more difficult and often entails communication with remote nodes. In general,
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providing coherence for our alternate protocols requires a subset of the functionality in the cache co-
herence protocol. In some cases, custom coherence support is integrated into the alternate protocol;
we describe an example of such support in Chapter 5. In this chapter we describe instead a shared
technique for coherently modifying user data that leverages a corner case of the cache coherence
protocol. This technique, callddP ownershipreduces protocol code replication as compared to
custom coherence support, in exchange for reduced performance.

Section 4.1 describes the procesgaiic interface for basic command sequences, then Sec-
tion 4.2 extends the interface to operate in a virtual memory environment. Section 4.3 provides
a brief overview of protection features maGic, though many protection features are protocol-
specific and are addressed later. Finally, Section 4.4 explains the PP ownership technique for coher-
ently modifying data in the PP.

4.1 ProcessomAGIC Communication

The ability to leveragevAGIC to provide computational functionality outside the compute pro-
cessor is a powerful feature of tlreASH system. To utilize this capability, we must provide a
processor interface tmAGIC for initiating protocol operations in an efficient, atomic, and pro-
tected manner. Similarly, some protocols runningvinGiC require service from the processor,
so a related interface is needed to cleanly request the processor’s attention. In this section we ad-
dress the interface between the processor andic which provides these features. Since the
requirements of each alternate protocol are somewhat different, we describe several techniques that
offer varying tradeoffs of functionality and performance. Though the details of the techniques we
propose are specific .ASH, many of the concepts apply to other systems with similar character-
istics [RLW94, BLAT94, MKAK94, NAB 95, LC96].

As described in Section 2.3.8AGIC’s processor interface provides a highly optimized abstrac-
tion of processor bus operations. Our interface builds on top of the existing Pl features to provide
the additional functionality needed to initiate alternate protocols. At a high level, we find the goals
for initiating alternate protocols are similar to those needed to invoke an RPC [SPG91].

The ability to name an operation ferAGIC to execute.

The ability to provide multiple arguments to the operation (including both data values and
memory addresses).

Guaranteed atomicity (and an assurance that an operation is executed “at most once”) despite
preemptive multiprogramming on the processor.

A means to receive one or more result values from the operation which was invoked.
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In other systems, powerful features such as those availablen@ic are typically exported
through a system call interface, and are thus protected by the operating system. Unfortunately,
the high overhead of system calls leads us to strive for an interface provided directly at user level.
The challenge is to achieve such an interface without subverting the protection features normally
provided by a system call. These protection features come in several different forms:

e The OS prevents applications from using resources to which it does not have access (e.g.,
applications cannot access certain devices unless they have special privileges). In our case,
this protection corresponds to our restricting alternate protocols to applications authorized to
use them.

e The OS uses virtual memory to protect and share the physical memory of the machine. As
a result, communication from user-level applications necessarily describes memory in virtual
addresses. Special steps must be taken to convert these to the physical addresses used by
MAGIC.

e System call arguments are checked to be sure that the services are only used in approved ways.
Examples of this include reading beyond the end of files, trying to open invalid devices, and
trying to use system calls reserved for privileged users. The same kinds of argument checking
must be done for protocol actions initiated maGIC.

The following sections describe how alternate protocols are initiated/@1C in a way that
satisfies all these requirements. We call this interface Protocol Processor Calls (PPCs), and Protocol
Processor Registers (PPRs), since they are intended to be somewhat analogous to the RPC func-
tionality common to many systems. Section 4.1.1 describes how command sequences are used to
initiate PPCs from the processor. Section 4.1.2 describes a simplified version of a PPC, the PPR,
that is designed for higher performance but more limited functionality. For communication from
MAGIC to the processor, we provide a mechanism called an OSPC, explained in Section 4.1.3.

4.1.1 The Protocol Processor Call (PPC)

To allow the processor to initiate alternate protocolsMxGic, we provide an interface known

as a Protocol Processor Call (PPC). A PPC consists of a series of commands with a controlled
format, through which the processor can specify the operation it waxgsc to perform. The PPC
interface is deliberately designed to be fairly similar to the RPC style of communication common in
many operating systems and distributed systems. The analogy is straightforward: PPCs are a request
for service fromMmAGIC, just as most RPCs are a request for service from another system, node, or
kernel. PPCs, like RPCs, may run quickly and reply inline, or they may take longer and return a
result asynchronously. This section describes the bare essentials of the PPC interface, illustrating
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how it can be used to initiate simple alternate protocols. Subsequent sections extend the basic PPC
definition given here by explaining how they interact with virtual memory, and multiprogramming.

Memory-Mapped Commands

PPCs are issued by the processor through a memory-mapped interfagseito. To implement

this interface, we leverage the flexibility efaGIC to interpret processor bus requests any way it
chooses. We “overload” uncached writes by the processor to speaifgdec either a command

or argument. Similarly, we use processor uncached reads to request a data wordafsom(a

result or return value). Uncached mappings also prevent processor speculative references from
confusing the sequence or introducing unintended references into it. This problem arises because
the R10000 processor aggressively generates speculative references in an attempt to hide memory
latency. Fortunately, the R10000 cannot speculatively issue uncached references since they may be
permanent (e.g., if the address corresponds to an 10 device).

To enable this interface, but also allow normal uncached operations by the processor, we must
distinguish PPC commands from normal accesses in some way. In other wordsjmhiendetects
a distinguished PPC reference, it must know to interpret it specially and not to merely carry out the
memory operation it seems to indicate.

The FLASH system provides two features we can use to distinguish address ranges as special.
These two features are each useful in different situations; later we describe protocols illustrating
their respective uses. Both features are accessed through the memory management unit support
already provided by the processor. The key benefit of leveraging the memory management unit
is that the operating system can expose the memory mapped interface directly to user programs
without compromising protection or requiring system calls on each use.pAfa system used
similar methods of distinguishing memory references for its alternative memory operations [Len92].

The first feature for distinguishing PPC references is provided by the R10000 processor, which
allows severalincached attributer “flavor” bits to be associated with uncached mappings in the
TLB. These bits are exported as part of the bus command when an uncached operation using that
TLB entry is generated, and are among the fields used by the Inbox in dispatching the appropriate
handler for a request. Thus, the Inbox can use the flavor bits to select a special handler, in this case
one which interprets the access as a memory mapped commadto.

The second feature is built int@AGic, which artificially divides the physical address space
into four distinct regions, calledddress spacesr simply spaces The address format is illustrated
in Figure 4.1. Accesses to different spaces do not specify different memory locations, but instead
specify four different names for teamememory location. Space bits, like flavor bits, are used by

44 Chapter 4 Alternate Protocol Fundamentals



Node Number Addr Space Node Offset

_]-]_

8 bits / 256 Node 1 bit J Remammg Bits
10 bits / 1024 Node 2 bits.
12 bits / 4096 Node: 3 bits.

Zero Bits

40 Bits Total |

Figure 4.1 FLASH Address format.FLASH allows variable sized node number and address space
fields. The remaining bits are assigned to form the offset into the local node’s memory, though this
memory need not be fully populated with DRAM.

the Inbox as one of the criteria for selecting a handler, and thus allow us to distinguish references
similarly.*

PPC Initiation and Atomicity

A PPC consists of a series of uncached references that, using one of the techniques described above,
emerge from the processor with distinguishing characteristics. This sequence normally consists of
a series of writes specifying command and arguments, followed by a read that requests a success or
failure indication. As each command reference is emitted from the processor, the PP handler logs
the address and data value of the reference into protocol memory. At the end of the sequence, the
terminating command cuasAGIC to interpret the commands and arguments it has received.

As we described, the PPC specifies its command using a memory mapped interface. In that
interface, theaddressreferenced indicates the command the processor wishes to invokdatdne
valueswritten to those addresses are the arguments the processor provides. The command addresses
are arranged so that each different PPC request type is allocated a different cache line in the memory
mapped command region. Doubleword offsets within that line are considered sequence numbers for
the arguments pertaining to that command. Thus, PPCs are issued as a series of writes to sequential
offsets (with exceptions to this rule in some cases, as described later), which ahoas to verify
that the commands are in sequence.

The last memory mapped operation in a command sequence is usually an uncached read. This
read performs two functions: it notifiesacic that the command sequence is complete and should
be committed, and it requests a response to indicate if the PPC has been atcAptegative

unlike flavor bits, which can only be used for uncached accesses, space bits can also be used for cacheable accesses.
Though the cacheable aspect of address spaces is not useful for implementing PPCs, it allows us to select a different
coherence algorithm depending on the space that is referenced. In Sections 6.1 and 6.2 we describe how custom coherence
algorithms can be used to specially optimize the communication between the processoxaodfor PP-supported
synchronization protocols.

2This does not imply the completion of the requested operation. Completion is usually in other means: coherent
memory locations or subsequent PPCs or PPRs.
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acknowledgement indicates thahGiC has rejected the sequence (either due to temporary resource
limitations or errors in the commands). Command sequences that fail may be retried by the proces-
sor if desired.

Unfortunately, sequence checking alone is not enough to guarantee that the commands arrive
correctly atMAGIc. For any PPCs initiated at user level, the sequence of commands may be in-
terrupted at any time by a context switch, interrupt, or exception. Though unlikely, it is possible
that two different processes could be in the middle of initiating the same PPC. If this happened, one
process might issue a command that gets mistakenly interpreted as part of the other process’s PPC.
We can solve this problem and make the PPC initiation mechanism robust by flushing any incom-
plete command sequences when context switches occur on the main processor. To accomplish this,
we reserve a PPR (described below) for the kernel to netifgic when context switches occtrr.

Later, when the process resumes, the PPC fails since its references are of sequence; it can then be
retried.

Compared to the solution used in CM-5 [Thi92] and Alewife [KA93], our approach does not
require saving and restoring of the commands across interrupts. In addition, the programmability
of MAGIC allows us to customize the command sequence protocol for various uses as opposed
to providing a single hardwired protocol [ALKO1, LLG"90]. While the above approach cannot
absolutely guarantee the forward progress of a PPC that is repeatedly interrupted, it is unlikely to
be interrupted indefinitely. If in practice frequent interrupts turn out to impede forward progress,
we can instead use a solution that maintains separate command queues per procegamside
While this would increase the overhead of the context switch handler, it would prevent PPCs from
failing due to sequence interruptions, since the sequence could be resumed where it left off.

PPC Replies to the Processor

Recall that following the sequence of commands forming the PPC, an uncached read is issued to
complete the sequence. Depending on the service invoked by the PPC, the reply to the uncached
read can be used in several different ways. We briefly consider the characteristics of these different
approaches:

Two-Phase Initiation The two-phase initiation style described above is the most common. In that
style, the result code from the PPC refers only to the acceptance of the command sequence
itself; the operation omMAGIC completes asynchronously. If desired, the processor can later
query the result of the operation using one of several techniques. First, the PP can coherently
update a location (or locations) in user memory which the processor can read. The processor

3Since context switch notifications are relatively infrequent and the handler it invokes is very short, the overhead
introduced is small. In the case of clock interrupts and other more temporary interruptions to user processing, the kernel
only needs to notifyjmAGIC before itself invoking PPC services, or before other user processes can run.
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could also issue a subsequent PPC or PPR, the entire purpose of which is to poll for the
completion of the asynchronous operation. In most cases, coherent memory updates are the
most efficient technique.

Immediate Responseln some casesAGIC can carry out the action requested by the PPC imme-
diately. For those operations, the return value can be more significant and actually indicate
that the requested operation is complete. Since the processor is stalled during this operation
waiting on the result of its uncached read, this style of reply should only be used for oper-
ations which complete in a fairly short time. InitializingaGIC state records or consulting
performance monitoring statistics are examples of PPCs which can provide an immediate
response.

4.1.2 The Protocol Processor Register (PPR)

The PPC mechanism is most appropriate for invoking complegiC services. Typically these
services accept multiple arguments and then return a status reply since initiation may fail due to
resource limitations. However, there are many requests thatleaysbe accepted bywAGIC

when they arrive and can be guaranteed to always complete. These characteristics permit initiation
to be simpler and faster and not require a status reply. For these types of requests, we designed an
optimized PPC, known as a PPRI®rotocol Processor RegisteiT his interface is named because
PPRs logically act as a register MaGIC that can only be read or written, even though in reality

they execute a handler, just as a PPC.

PPRs are accessed through a command space uncached read or write. These individual accesses
are the same as those for PPCs, but to a different portion of the command region. However, unlike
a PPC which consists of a sequence of commands, a PPR is accessed with only a single read or
write. This simplified interface has two attractive characteristics (for the cases when it can be used):
(i) since it consists of only a single command, it is automatically atofiiica PPR write allows the
processor to proceed immediately without waitingNmGIc.

PPRs may be used in two main ways. The simpler version is the more common: the PPR is im-
plemented iMAGIC by just reading or writing a memory location corresponding to the PPR. In this
configuration, the PPRs backing memory is usually accessed througiathe data cache instead
of the normal processor memory mechanism (In other words, the PPR value is part of the protocol
data itself). This allows the protocol executing maGIC to read the value of any PPR registers
without checking for coherence with memory. In fact, this is one of the most useful applications of
PPRs, to configure machine parameters used byittgaC protocol. Some interesting examples of
this include: reading performance monitoring registers, quemingic’s position in the network,
manipulating the interrupt masking capability of the processor interface.
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PPRs may also execute a handler, similar to a PPC, which performs some processing for the
request. Essentially, PPR writes are single argument PPCs returning no value; PPR reads are PPCs
taking no arguments and returning a single value. For example, when the processor context switches,
a PPR is sufficient to notifmAGIC of the new contextMAGIC not only notes the change, but also
takes steps such as flushing partially formed PPCs. An example of a read PPR is one that examines
the hardware units imAGIC and returns a bit vector to the processor representing which of the units
have experienced errors.

4.1.3 The Operating System Procedure Call (OSPC)

Just as the PPC mechanism is used by the processor to request services of the PP, we also provide a
second mechanism, called an OSP©gperating System Procedure Galked by the PP to request
services of the operating system. OSPCs have a number of important applications-ina ke

system. As we describe in 7.1.1, OSPCs are used to support processor-implemented active messages
by efficiently interrupting the processor to execute the requested handler. They are also used within
the operating system for interprocessor communication between the kernels of two different nodes.
The Hive operating system relies on the OSPC mechanism as part of the fast messaging support
it uses to maintain reliability [CRD95]. Finally, the PP itself can use OSPCs to request attention

from the operating system. For example, in Section 4.2 we describe how the PP occasionally needs
to request virtual to physical translations from the processor. The OSPC was initially developed
jointly with John Chapin, one of the members of the Hive team.

Base OSPC implementation

An OSPC is a request to the processor consisting of a request type and a number of arguments. In
the basic implementation of OSPCs, each request is one cache line long: one doubleword for the
type and up to fifteen arguments. Since multiple OSPCs may be outstanding at one time, we store
the pending requests in a circular queuaimcic protocol memory. We currently implement two
separate queues to provide two priority levels. When a request for an OSPC arrives (or is generated
internally by the PP), first the OSPC request is formed and stored in PP memory. Then a processor
interrupt is asserted to indicate an OSPC is waiting.

When the processor services the interrupt, it must read the request at the head of the queue to
determine what action to take. Ideally, for efficiency we also allow the processor to cache the OSPC
request it reads. However, since we implement the OSPC quewresrc protocol memory, normal
cacheable reads are unable to access this memory. This is by design, since it eliminates the need
to maintain coherence with the processor cache when composing the OSPC request. Instead, the
processor maps a pagedacheable noncoherentode, and reads a reserved address from that page.
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MAGIC intercepts the reserved address for accesses of that mode and supplies the OSPC request at
the head of the queue by filling the data buffer from its protocol memory.

The processor can then service the request as needed, referring to the data arguments efficiently
in its cache. In the midst of processing the request, cache conflicts may cause the OSPC request to
be replaced from the cache prematurely. If the processor reads the request addressaagain,
provides the same request to satisfy the miss. Eventually, when processing of the request is com-
plete, the processor advances the queue. It does this by sending an acknowledgement tta
PPR), and invalidating the request line from its cache. From the acknowledgement; knows
it is safe to advance the queue, and de-asserts interrupts if the queue is empty.

There are two alternatives for how to check to see if additional OSPCs are waiting. The kernel
could read the reserved address again and process additional requests it receives until it finally
receives a reply indicating “no OSPC waiting”. It could instead pause slightly (to allaac
time to modify the interrupt mask), and return from the interrupt. If other OSPCs follow, it would
take the interrupt again and process it as befofée former approach is more efficient if multiple
OSPCs tend to come at once since it avoids unneeded interrupts; the latter is more efficient if OSPCs
tend to arrive individually, since extra processoxGIC round-trips can be averted.

OSPC Optimizations

The basic implementation of OSPCs described above has a number of minor performance problems.
Below we describe these problems and explain optimizations that can be applied to improve OSPC
handling performance and reduce overheads. These optimizations are particularly important in the
context of latency-critical uses of OSPCs, such as interprocess kernel communication.

Reducing OSPC request sizeMost requests do not need the full cache-line of arguments de-
scribed in the base implementation. Unneeded words consume time to fill from memory
and travel on the bus. For OSPC requests with only one or two arguments, it is more efficient
to reserve a special kind of OSPC which the processor accesses with uncached reads. Since
uncached reads are reliable, it also eliminates the need to acknowledge OSPCs explicitly—the
ACK is implicit when the last word is read. TheaGIC implementation is sufficiently opti-
mized for moving cache lines that this approach can only show gains over the base approach
for OSPCs of 1-2 words.

Avoiding unneeded trips to memory. In the base implementation, OSPC requests were always
written to and supplied from memory. We can instead choose to store the OSPC request for
the head of the queue innaaGIC data buffer. We do this by leaving the data buffer allocated

“It may also take an unneeded interrupttiéGic has not had the opportunity to de-assert the interrupt. This does not
represent a correctness problem, it merely causes wasted processing.
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after the initial request handler finishes. This allows the read miss handler to supply the
OSPC requesmmediately This optimization must be applied carefully since it restricts the
availability of data buffers, but since only the head OSPC request is stored in this way, it poses
no risk in most situations. Even though we hold the request in a buffer until the processor
asks for it, we also write it to the circular queue in memory so that we can provide the request
again if it is prematurely replaced from the processor cache.

Reducing acknowledgement overheadWhen multiple OSPCs arrive in succession, the processor
sends an acknowledgementmaGic when it finishes with the head request, so the circular
gqueue can be advanced. It follows with a read miss to the reserved location to access the sub-
sequent request. It is not fundamental that these two handlers are separate. Instead, we could
use a “double buffering” approach in which tvdifferent reserved addresses are provided.
When a processor changes from one address to the other, it is implicitly acknowledging the
first request and at the same time asking for the following one. By putting both functions in a
single handler, the total overhead can be reduced.

4.2 Virtual Memory

Software services provided amaGIC are usually oriented around manipulating memory in a spe-
cial way on behalf of the processor. Memory accessibgIC occurs exclusively at the physical
address level, sinceAGIC is effectively the memory controller for the physical memory devices.
In contrast, user-level processes can only specify virtual addresses. This introduces the need to
perform virtual to physical translation as some part of the PPC mechanism. Of course, since the
kernel assigns virtual to physical mappings, a system call is sufficient to authentically translate ad-
dresses from the user for useNmGIC protocols. Unfortunately, system calls are expensive, so
the challenge is to achieve this same functionality without system calls, through purely user-level
accesses.

In this section, we describe our approach to allowing the user to commuanigttentictrans-
lations toMAGIC at user level, within the confines of the PPC mechanism. There are two problems
to be solved to ensure thairGIC uses authentic physical addresses:

How can authentic physical addresses be generated from user leveQur goal is to allow the
user to provide not only simple integer arguments as part of a PPC, but also addresses (i.e.,
pointers to data to be acted upon). We describe two approaches for providing authentic phys-
ical addresses t®AGIC, one based on translations using the processor's MMU, the other
using the PP to translate addresses in software.
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How can we guarantee that these translations remain valid whil&AGIC is using them?
We show three different techniques that may be used to ensure the validity of these addresses
while in use bymAGIc. Our underlying assumption is that changes in virtual to physical
translation mappings of pages involved in the transfer are relatively infrequent (since they
are currently being used, they are less likely than other pages to be victimized). Therefore,
our general philosophy is to provide the necessary mechanisms to handle translation changes
without slowing down the case where translations do not change. We allude to similar tech-
niques which would be preferred if translation changes were more frequent.

4.2.1 Providing Authentic Translations from User Level

As discussed in Section 2.3.2, one of the simplifications in the design of the protocol processor (PP)
as compared to a general microprocessor is the removal of the TLB. We made this simplification
becaus€i) cache-coherent memory operations do not require address translation since the processor
already presentgAGIC with physical addressej) handling TLB and page faults on the PP would

add significant complexity; angii) a small hardware TLB may not be an effective structure for
caching translations, especially since PP reference patterns are different from that of code executed
on the compute processor.

Instead, we support the required address translation for protocol operations using other tech-
niques. We present two techniques that accomplish this task. The first uses a special mapping of
memory exported to the user, through which addresses may be referenced as part of a command
sequence. The second passes virtual addresses down as part of the PPC, then uses a software TLB
to generate an authentic translation.

Providing Translations Through a Shadow Mapping

The first technique is based on the observation that user processdé®adycontinually providing
authentic addresses to the system via the memory management unit in the processor. Since all this
hardware and software support is already present in the system, it begs the question: Why not simply
leverage that support to allow the user to geneaatdressef$or command sequences as well? For
example, a naive approach might be for the user to merely reference the appropriate address in the
middle of the command sequence. This would result in the desired translation on the bus (assuming
the line is not cached).

Processor translatiois sufficient to be used as part of a command sequence, but it must be
utilized in a more sophisticated way than the example above. The first problem is that the line may
indeed be cached, and then the reference would not emerge on the bus. In fact, since this address is
the subject of a PPC, it is quite likely to have been recently referenced and thus cached. To ensure
visibility of processor references of this type, we are forced to provide a separate uncached mapping
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Figure 4.2 Example of double mapping illustrating the use of alternate physical address spaces.

of the page, as before. The second issue is that, similar to PPC references, we must distinguish these
references s®AGIC can interpret them specially.

We provide the user with an uncached mapping to ensure visibility, and use the techniques
described in 4.1.1 to distinguish its references. We call tliBaalow mappingsince we provide
the user with two mappings for every memory page, as illustrated in Figure 4.2. The OS provides a
shadow mapping by exporting a shadow region which has a translation only differing in its address
space (or flavor). References to the normal region are interpreted as ordinary memory operations
while references to the shadow region are interpreted as part of the PPC, prowiding with
authentic physical addresses. Recall that in a PPC command reference, the processor writes an
argument value to a fixed command location. In contrast, to provide an address as part of a PPC, the
addresswhich is referenced indicates a pointer that is part of the PPC. Note that a single user-level
reference to the shadow region providesGic with an authentic translation usable for a whole
physical page.

In the discussion of PPCs, we described how sequence number checking required us to restrict
PPC command space references to consecutive addresses. This allowed us to detect when refer-
ences arrive out of order or when a sequence is interrupted. Though address references using the
shadow mapping violate this restriction, the same sequence number guarantees can still be assured
by extending the rules to accommodate address references:

e PPCs are required to begin with a normal PPC command. This allows us to detect the case
where a sequence is interrupted and after the interrupt an address reference arrives first. Since
sequences beginning with an address are illegal, the reference can be discarded and the se-
quence noted to be invalid.
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e PPCs are required to maintain the sequence of the command references it does use. This
allows us to check the sequence when itis not interrupted. It also allows us to use conventional
techniques for checking the command references. Address references are ignored for the
purpose of sequence number checking.

e PPCs are discarded on context switches, as before.

The drawback to shadow mappings is that they require duplicate entries in the page table and
TLB: one for the normal mapping, one for the shadow mapping. Lenoski [Len92] points out that
shadow mappings might not need page table duplication if the TLB miss handler is modified to
anticipate misses for both the normal and shadow versions of the address. The downside to that
approach is it prohibits finer-grain protection of the mappings, and it requires modifications to the
TLB miss handler, which might impact normal-mode performance.

Providing Translations Through a MAGIC Software TLB

There is a second option available for providing authentic translations: performing the transla-
tion in MAGIC. Providing translations omAGIC via a software TLB has several advantages. The
TLB allows us to specify protocol operations without the need to communicate authentic physical
addresses tmAGIC during the protocol command sequence. For example, a message send that
transfers multiple pages of data can be specified as a single virtual address and length pair instead
of multiple physical page addresses. The ability to translate addresses efficiently also allows us
to sendvAGIC-level messages across the system using virtual addresses, which is useful in some
protocols.

In this section we describe two techniques for translating addresges@ia, focusing on the
implementation we find the most attractive, a software TLB. This alternative has different charac-
teristics than using shadow mappings, some of which address the limitations of that technique. At
the end of this section we compare the advantages and disadvantages of the different techniques for
providing translations.

In the shadow mapping approach, addresses were referenced by the processor during a PPC,
emerging on the bus as physical addresses. Instead, the processor could merely viasglthe
address down as one of the arguments to the PPC. Since PPC arguments are data values, they
emerge from the processor directly, without being translated or authenticated in any way. Recall
that MAGIC does not provide support for hardware address translation, as a simplification of the
design. InsteadviAGIC must translate these addresses in software.

We could implement the software translations in two distinct ways. The simplest alternative is
to read the page tables directly. This approach is initially attractive because it allows access to map-
pings for the complete address space, without the size limitations imposed by a TLB-like approach.
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However, an implementation which reads the tables directly encounters two serious drawbacks. The
first is that synchronization between the kernel amdsic would be required for access to the ta-

bles. Though it is possible to achieve this synchronization, the code is quite complicated, and it
introduces OS code int@AGIC, which we have strived to avord.Since virtual memory code is

deeply rooted in the kernel, implementing correct synchronization and avoiding deadlock is a diffi-
cult undertaking. The second issue is that the PP’s access to operating system data structures would
require care to assure taGIC data cache and the processor cache are consistent. Our other pro-
tocols have been designed intentionally to prewentic from caching application data, so this
would represent a significant additional source of errors.

The alternative to reading the page tables is implementing a cache of translatimasiio
we call asoftwareTLB. A software TLB mimics the same functionality provided by a hardware
structure. Because this TLB is kept consistent with the page tables, it would seem to introduce the
same issues as reading the page tables. In fact, the problem is greatly simplified. First, the TLB
only contains a small number of entries relative to the page table, so only those entries need to be
consistent. More importantly, since it is a copy of the entries, no synchronization is required to
access the TLB itself.

Careful design can achieve good performance using this approach: mappings are stored in a
concise hash table structure that makes translation efficient and permits full associativity (though
the TLB is searched serially, unlike a hardware approach). To gauge the software overhead, we
hand coded and scheduled a basic but fully functional software TLB using both virtual address and
process/address space matching for hit detection, as well as a write protect bit. Our implementation
incurs 8MAGIC cycles constant overhead plus 7 cycles for each entry searched. This provides
excellent performance if hashing is effective: a hit on the initial probe is thus only 15 cycles (150 ns),
while a scan of 16 entries would take 120 cycles (1s?

Of course, when a handler consults the TLB it may find a translation is not present. When a
TLB miss occurs, the PP requests the translation from the processor with an OSPC. This OSPC can
be optimized specially to make it efficient, but since it interrupts the processor the cost is still large.
After the interrupt, the software overhead on the main processor depends on the kernel in use and
on the status of the page itself; the common case is likely to be at least several microseconds. After
performing the translation, the processor installs the mapping in the software TLB using a PPC.

Since software TLB misses are expensive, the straightforward demand-driven approach to filling
the TLB may be impractical. Instead we are motivated to avoid these misses altogettrer by
loadingthe TLB (i.e., loading translations before they are needed).

>Though some dependencies on the operating system are inevitable, the vast majority of the code that implements
system “policies” executes on the main processor only. The OS-level interactionsiagtit are restricted in nature,
and in most cases are required to know very little about the OS implementation and policy details.

54 Chapter 4 Alternate Protocol Fundamentals



Pre-loading the Software TLB

One approach is to have the kernel notifxGIC when it creates new page mappings, under the as-
sumption that these mappings may be used soon. This is unlikely to be effective, however, since the
locality between mapping creations and the use of these addresses is probably too low, especially
given a relatively smalAGic TLB. A more effective technique is tairror the processor TLB in
MAGIC, so that any addresses currently usable by the processor would also hit in the software TLB.
This would require extending the processor TLB miss handlers to netifyic of the translation
it installs. While this is very easy to implement, and likely to be effective in largely eliminating
MAGIC software TLB misses, this technique would increase the cost of TLB misses on the proces-
sor. Unfortunately, since TLB miss handling costs can amount to a significant overhead in many
workloads, increasing this overhead is likely to decrease overall performance.

We could also pre-load the TLB through explicit hints from the application. In advance of using
a translation, the application could announce its intention tomss®c services and the translation
can be installed imAGIC’s TLB. Paradoxically, since authentication is required, this must be done
in a protected fashion using one of the reliable techniques (reiterated below).

1. A“null” PPC could be issued in advance, that merely touches the addresses in question. If
the addresses are found to miss in the software MA&5IC requests translations through an
OSPC.

2. A system call could also be used, asking the kernel to issue a kernel-level PPC to provide an
authentic mapping.

3. The shadow mapping technique could even be used to provide an authentic translation from

user level.

It may seem strange to suggest using these techniques in conjunction with a software TLB, since one
of the benefits of the TLB is tavoid these techniques! The motivation arises from the possibility

of reusingtranslations in the software TLB, and the observation that TLB misses\@1C must
interrupt the processor, which is much more expensive than installing the mapping in advance.
Naturally, the effectiveness of reusing translations depends on the reference stream of the program,
as well as the impact of effects such as multiprogramming on the contents of the software TLB.
Fortunately, the software TLB may be larger than a hardware TLB structure, increasing the chances

of reuse.

4.2.2 Guaranteeing Translations Remain Valid

OnceMAGIC receives authentic translations through one of the techniques described above, the re-
maining problem is to guarantee the validity of an address throughout its use by a protocol operation.
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The simplest solution is to lock the appropriate virtual pages to prevent the operating system from
changing the mapping. Many systems have used page locking to protect translations, such as the
Intel Paragon and Cray T3D [Int91, Cra93]. In some environments, locking pages may be a sensible
way to protect translations. FLASH, given our goal of providing a flexible, widely usable system,
page locking is undesirable. There are two styles of page locking, each with its own disadvantages:

First, pages may be locked in memory for the duration of the program. This solution defeats
the flexibility of demand paging, reducing the ability to share the machine. Alternatively, the pages
may be locked for the duration of a protocol operation. This is common in systems where address
changes are disallowed for the duration of DMA access. This latter approach is also undesirable
because it requires system calls every time a user program invokes a protocol operation. This
overhead can cause the primitive to be prohibitively expensive, such as the DMA hardware in the
Cray T3D which required a system call. The follow-on T3E eliminated DMA support altogether,
partly due to this high overhead [Sco096].

We propose three alternatives to page locking for maintaining the validity of physical addresses
in use bymaGic. The first two techniques assume thatGIC receives authentic physical addresses
as part of the user-level command sequence that describes a protocol operation. The third technique
removes this requirement by supporting a software TLB that allasic to perform translations
itself.

All of these techniques rely upon the operating system’s mechanism for keeping TLBs consis-
tent, commonly known as TLB shootdown. Black et al. [BR&B] describe this methodology to
prevent TLBs from accessing translations rendered obsolete by page mapping changes. In TLB
shootdown, a processor desiring to make mapping changes to pages visible to other processors must
first guarantee that obsolete copies of the mapping have been eliminated. Eliminating TLB entries
usually requires an interrupt to the involved processors since, unlike cache coherency, hardware
features for maintaining TLB consistency are usually not provided at the pins of the processor. The
initiator cannot make the mapping change until it knows that all the processors have removed the
old mapping.

When the processor receives a request to invalidate a TLB entry as part of a shootdown, one of
the things it must do is wait for all pending memory operations to complete. By doing so, it protects
these operations (which traverse the system with physical addresses) from any effect of the mapping
change. The techniques we describe here extend TLB shootdown to also coxtactto notify it
of the change. The three approaches we describe below use that notification in different ways.

The Hold-Off Technique

The hold-off techniqueextends TLB shootdown by treating alternate protocol operations as one of
the operations that must complete before the shootdown can be acknowledged. In essence, this
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treats the operation as a memory reference. Preventing translation changes from occurring through
hold-off can potentially lead to deadlock for certain types of operations. For this reason, the hold-
off technique is only applicable to operations that are guaranteed to coropléteir ownwithout
requiring any interaction with the main processors, which may require paging.

Even though the hold-off technique does not apply to all types of protocol operations, it is an
extremely simple and efficient mechanism for protecting translations in many protocols. Example
operations that can safely use hold-off include remote Fetch-and-Op or simple memory copy. How-
ever, operations such as a traditional synchronous message send can not use the hold-off technique
since they require interactions with other processes before completion.

Hold-off is implemented using a software counter maintainedvigic that represents the
number of outstanding protocol operations currently desiring to protect their translations. A protocol
operation enables hold-off by incrementing the count, then later when the operation completes it
releases its use of hold-off by decrementing it. To cooperate with hold-off, the operating system is
required to notifyMAGIC and to wait for a response before proceeding with a translation change. If
the hold-off count is zerayAGIC responds immediately. However, if the count is non-zereGic
delays the response to the processor until the count reaches zero.

Once the processor tries to change a translation and is forced to wait because hold-off is active,
we prevent the initiation of further operations that require hold-off (Operations in the middle of their
command sequence protocol are conservatively forced to retry when they attempt to commit). Since
the processor is prevented from initiating new protocol operations after a translation change arrives,
the counter is guaranteed to return to zero as long as the previous operations eventually complete.

The Invalidation Technique

Unlike hold-off, which temporarily prevents translation changes from taking placenvhkda-
tion techniquamerely uses the shootdown to notifacGic of the translation change. In response,
MAGIC invalidatesphysical addresses rendered obsolete by the change. When the physical address
is next used bwAGIc, the software handler detects the invalid address and requests a mapping for
the page from the main processor. Below, we briefly describe the required support for this technique.
To support the invalidation techniqu&aGic must be provided with theirtual addressas
well as the physical address. If the software TLB technique is used, the virtual address is readily
available. If a shadow mapping is used, we can utilize the otherwise unused data value passed to
MAGIC on a shadow mapping write. Specifically, the processor writes the virtual address as the
data value for the address referencea I a pointer to the memory in question, BBHADOW(a)
represents a pointer to the shadow mapping for a, the application would make its shadow mapping
reference ag(SHADOW(a)) = a . Though the data written is not authentic, incorrect virtual
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Figure 4.3 Example translation invalidation data structure.

addresses can at worst corrupt memory belonging to the requesting process and do not compromise
protection for other processés.

MAGIC keeps track of the physical addresses currently in use, so that it can quickly respond to
shootdown requests. Physical addresses provided®c are stored in the protocol’s state record
and also linked into a hash table of in-use physical pages, as shown in Figure 4.3. Using this data
structure, the PP can efficiently invalidate uses of a physical translation on a translation change
notification from the local compute processor. The PP writes a zero into each instance of the now-
obsolete physical address, since zero can be detected by subsequent handlers with a single branch.
An entry in the hash table is removed when the corresponding operation completes (we use doubly
linked lists so this can be done efficiently).

By convention, handlers for operations that use the invalidation technique check the validity
of a physical address in each handler that uses the address. If an invalid physical page address
is detectedMAGIC generates an OSPC, just as in the software TLB. This interrupts the processor
and communicates the corresponding virtual page address and the processdt: resumes
the operation once the processor responds with the new translation, running other handlers in the
interim.

The invalidation technique is quite efficient in the common case, i.e., when translations do not
change. Overhead is incurred at the end of initiation when the provided page addresses are added
to the appropriate linked lists. Similar overhead occurs to remove the addresses from the list when
the operation completes. The hand coded PP instruction sequence to add a translation to a list only
takes 8-9 cycles to execute, assuming an elementary XOR hash function. The time required to
check the address on each use is minimal, adding only a single branch instruction to the handler.
A potentially larger component is checking for and invalidating obsolete physical addresses when

®If the virtual address is incorrect, then one of two things occurs: Either the subsequent retranslation request fails
because the application does not have the necessary rights to access the region of memory, or a new translation is returned
even though it does not match the same location that was originally specified. Neither case compromises the protection
of otherprocesses’ memory.
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translations change. The exact latency of this operation depends on the effectiveness of the hash
table and length of the lists, which is related to the number of operations outstanding.

One of the limitations of the invalidation technique is that it can not protect remote physical
addresses. For example, consider a memory copy operation from a local to a remote buffer that is
implemented by sending destination physical addresses along with the data. Since the invalidation
technique allows translation changes to occur immediately, destination physical addresses that are in
transit could become stale. Note that this example would work correctly with the hold-off technique
since translation changes are delayed until the memory copy operation completes.

Software TLB

If we use a software TLB, it is essential that it be kept coherent with the processor page tables,
otherwise the translations it provides may be incorrect. Fortunately, the software TLB is able to
utilize the shootdown notification from the processor directly, removing the now-obsolete mapping
from its TLB if it is present. This assures the mappings in the software TLB are correct; to protect
translations already in use byaGic, handlers must check the TLB on each use of an address, to
be sure the translation is still valid.

We can reduce this latter source of overhead by using a software TLB in conjunction with the
invalidation technique. By using the invalidation technique normally, the PP is able to keep track
of outstanding physical addresses, and can invalidate them if the translation changes. This avoids
the need to retranslate in the software TLB on each handler, but instead the simpler test against
zero is sufficient. Alternatively, a variant of the invalidation technique can be used. Instead of
keeping track of where each use of a physical address is stored, protocols can keep a pointer to the
TLB entry where the translation was found and quickly check that the address is still present. This
variant reduces the cost of maintaining data structures for the invalidation technique and changing
translations, while increasing the cost to verify an address is valid on each use.

4.2.3 Comparing the Virtual Memory Techniques

In this section, we have described a family of techniques for both providing translations authenti-
cally and then protecting them while in use. We briefly review these techniques to illustrate some
of the trade offs between them.

For providing translations, the shadow mapping technigue is advantageous for its low overhead
and efficient utilization of existing processor translation capability. We use the shadow mapping
technique for providing translations in the memory copy protocol described in Chapter 5. However,
this technique does have several disadvantages. The most obvious is that it requires extra address
mappings to be exported to the application. These may consume additional TLB entries on the
main processor that may increase the number of TLB misses, reducing performance. A software
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TLB addresses avoids this problem because now only one processor TLB entry is needed—the one
that maps the desired PPC area. Instead, virtual addresses are passecttand translated there.

The drawback to the software TLB approach is that its performance is closely tied to translation
caching effectiveness. Furthermore, misses inmheIC software TLB are very expensive, since

they require processor interrupts, so pre-loading the TLB somehow may be required to achieve good
performance from this technique

For protectingtranslations, we described three techniques that trade off efficiency for function-
ality. While hold-off is by far the most efficient technique, deadlock can arise if hold-off is used in
some scenarios, so it must be avoided for those protocols. On the other hand, certain circumstances
requirethe use of hold-off to protect physical addresses in flight in the machine. The memory copy
protocol we describe in Chapter 5 must use hold-off for that reason. The invalidation and software
TLB techniques are somewhat more general and can avoid the deadlock cases of hold-off, but each
entails higher overheads. Fortunately, the flexibilityfGiC allows us to use the most appropriate
technique for each type of protocol operation, in addition to experimenting with some of the hybrid
approaches we described to improve performance.

In a recent paper, Schoinas and Hill study the issues for address translation in network inter-
faces using a range of approaches [SH98], many similar to the those presented here. Their paper
refers only to our software TLB technique but fails to refer to our other techniques for providing
and protecting translations [HGDG94, HBG7]. They present simulation results comparing their
approaches, ultimately concluding that software-based techniques similar to ours are usually suffi-
cient, though the ability to perform translations (i.e. read page tables) in the Nl is ideal if tractable.

4.3 Protection

The techniques described above allow a user process to specify protocol operations that are executed
by MAGIC on the process’ behalf. Our goal mASH is to provide protection for the services
provided byMAGIC, just as we would for any other system services provided to the user. We
consider briefly the kinds of protection that are needed, while noting that many of the protection
features are protocol-specific and are described in later chapters.

The most critical feature is assuring memory protectiomMAGIC operations—the same level
of protection the MMU would provide if the processor carried out the operations itself. To a large
extent this is achieved as part of the translation process described in Section 4.2. The shadow map-
ping approach leverages the processor MMU directly, so protection is assured. Assuring protection
for translations generated by a software TLB is slightly more complicated. We must take care to
inform MAGIC of the process (i.e., protection domain) which invokeg/esiC operation so that
software TLB misses can be satisfied in the address space of that process. As mentioned eatrlier,
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the operating system notifiesaGIC about the PID of the locally running process at context switch
points, so this information is readily available.

Other protection features are provided to address the low level semantics of the operations we
provide. For example, range checks must be made on arguments provisiecto to prevent
applications from accessing state which is invalid or belongs to other applications. When interac-
tion with other processes is required (e.g., the interrupts which can be caused by the delivery of
active messages), the protocol should assure that a process only sends to receivers interested in
communicating with it.

In the subsequent sections, we consider the details of protection relevant to the particular proto-
cols we implement. In certain cases, such as providing memory copy-based block transfer, memory
protection is sufficient. In others, additional protection features are needed.

4.4 Coherence of Alternate Protocols (PP Ownership)

The purpose of most of the alternate protocols we describe is to manipulate system memory in some
useful way. MAGIC is particularly appropriate for many data manipulation tasks since it has an
efficient memory access path based on its central location in the node. However, accessing memory
is not sufficient,MAGIC may need to get the current data from a processor cache. Similarly, if it
modifies memory, it must also keep processor caches coherent if its alternate protocols are to be
widely usable.

Clearly, FLASH provides the ability to keep caches coherent through the flexibilityagic.

The challenge we face is to integrate coherent memory manipulation with our alternate protocols
while achieving good performance and correct behavior. Unfortunately, the full cache coherence
protocol is complicated and very large.

Furthermore, integrating cache coherence with alternate protocols is not as straightforward as it
might seem. Intuitively, one might imagine that many cache coherence handlers could be leveraged
for alternate protocols directly. In nearly every case, these handlersitakstthe needed action,
but notexactlythe right one. We could make the handlers more general by installing checks to allow
them to perform one kind of coherence operation or another. Though this fosters direct code sharing,
it slows the handlers down in every case, including the case where cache coherence is used by itself.
We did not consider slowing down the common case for cache coherence to be an acceptable option.

Instead, we address two alternatives for maintaining coherence for alternate pratastis)
coherence suppornd PP ownership The choice between these options depends on the amount
of data processing which an alternate protocol provides. We explore protocols in later chapters that
use each of these techniques.

Custom coherence support is, as the name implies, a specialized implementation of coherence
handlers for a particular alternate protocol. In a custom implementation, a set of handlers is required
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that contains all the functionality needed to extract data from processor caches, update and maintain
the directory structure, and maintain coherence as needed (such as by sending invalidations, etc.).
The nature of a custom protocol like this is that it is used for a particular alternate protocol only.
In Section 5 we describe in detail the custom coherence protocol we implement to provide memory
Copy iNFLASH.

In this section, we consider the other alternative, which weRRllownership In many pro-
tocols, the requirements for coherently manipulating user data may be very mild. In the case of
Fetch-And-Op, for example, a single data word is manipulated, but it must be done coherently.
These situations do not warrant the complexity and code overhead of a custom coherence protocol.
Our approach in these cases is to leverageetigtingcache coherence protocol to allow the PP,
like any other processor, to participate in the coherence protocol and take ownership of a line to
modify it coherently. Thus the advantage of PP ownership is that it can be used from any protocol
without duplicating the coherence support. The cost of this reduced code size is that PP ownership
is somewhat less efficient, so it is only useful in protocols with mild requirements, as described
above.

To allow the PP to take ownership of lines, we leverage extensions that the cache coherence
protocol provides for the PCI 10 subsystem. We briefly describe this support, then explain how it
can be modified to allow the PP to take ownership of lines.

4.4.1 MAGIC |0 Subsystem

As described in Section 2JAGIC contains a PCI IO interface, which is one of the three hardware
interfaces that can make requestsvaGic. Unlike the processor, which maintains and controls
a large cache, the PCI IO bus has much milder requirements. To provide coherent IO operations,
MAGIC allows the 10 system to take ownership dfiagle lineat a time. Since the bus has no cache
in which to store the line, it is instead held in a data buffer which is “loaned” to the 10 interface
while in use. This allows the 10 system to modify pieces of the line coherently — necessary since
PCI only manipulates 32 bits of data at a time.

Since 10 can take ownership of lines, the cache coherence protocol is required to provide several
functions which go beyond the basic coherence protocol:

Request a line for the IO systemUnlike normal coherence requests for data, which originate in a
processor, this special request indicates that the data should be sent to the 10 system on the
requesting noderLASH requires the data to be explicitly sent to the 10 unit, so this message
type is required to distinguish processor and 10 requests.
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Figure 4.4 Example PP ownership table, which stores the currently outstanding requests.

Request a line currently held in the 10 system Since the 10 system may be the current owner of
a line, the coherence protocol must track the line’s presence in the 10 system and may need
to request it back to satisfy a processor request

4.4.2 PP Ownership

PP ownership leverages the protocol extensions for 10 to allow the PP to act as if it were part of
the 10 system. Building upon these protocol features—which are already present—allows alternate
protocols running on the PP to manipulate data coherently with only minor modifications to a few
cases in the coherence protocol.

First we establish a data structure that holds outstanding PP ownership requests, illustrated in
Figure 4.4. When the PP wants to request ownership it selects an available entry and fills in the
memory address and the address of a handler to execute when ownership is acquired. The request
may also store optional data arguments to be passed to the handler when executed. We implement
several support routines which read this data structure and send the request. The advantage of a
central implementation of these routines is that all alternate protocols can share PP ownership’s
code directly and avoid any code duplication. For reliability, the PP ownership table contains a
software queue record to allow the handlers to retry requests if needed.

The support routines send a request to the home of the memory line, just as the 10 system would.
Eventually the line arrives at the node, flagged to be delivered to the 10 subsystem. Normally the
cache coherence protocol would blindly send this to the 10 unit; we modify the reply handler to
first check the table of PP ownership requests. If it finds a match, it invokes the registered handler
instead, thus providing the PP with ownership and the most current copy of the data in a data buffer.
Once the PP is finished with the line, it calls a different routine to cleanly write this data back to the
home, just as it would from a processor or |0 system writeback.
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Figure 4.5. Example cases of PP Ownership building on top of the I/O support in the protocol. Solid
black dots indicate the only places where the protocol can tell the request is actually PP ownership
and not 10. Special actions are only required in those situations.

Figure 4.5 illustrates how this works, both for local and remote addresses (in the remote home
case, the node labeled “R” is the requester). This figure shows the case where the desired line is
dirty in a remote cache. The solid black dots indicate the only locations where special handling is
required to support PP ownership. By isolating the fact that the request is actually PP ownership,
the other handlers in the protocol can be used without modification.

Though we have modified the cache coherence protocol slightly to provide PP ownership, the
performance impact of the change should be negligible in the vast majority of cases. First, only the
IO extensions to the protocol are modified. Handlers for normal processor cache coherence are not
affected. In the 10 handlers when PP ownership is not active, checking the table is very efficient
and the request can quickly be sent on to the 10 unit. When PP ownership is in use, actual 10
operations incur mild overhead to check the table and therefore take longer. Fortunately, since the
10 system is generally used by low-performance devices such as disk and Ethernet, the performance
of these devices is unlikely to be affected by a delay of even hundreds®ic cycles (i.e., 1-2
microseconds).

The drawback to PP ownership, as we have alluded, is its overhead. This arises from the need to
guarantee acquisition of ownership despite temporary problems and corner cases that may arise. To
provide this assurance, we use the software queue and the other tables, all of which take time to set
up. Fortunately, in some cases, such as when the requested line is local and the directory indicates
the data is readily available, we can bypass some of these checks. In this “fast path” scenario, the
overhead of acquiring local PP ownership isM68G1C cycles (0.684s) and releasing it is 48 cycles
(0.48 11s). If the fast path does not apply and the fully robust version is required (e.g., for remote
memory lines) the overheads increase to 169 cycles (1sH6n the requesting node to acquire and
40 cycles (0.4Qus) to releas€.

’In the case of remote lines, the numbers listed arevtleeheadsntroduced by PP ownership. Not included is the
time at the home to request the line, that varies depending on its caching state as usual.
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PP Ownership Summary

PP ownership provides a mechanism for the occasional coherent access of data by the PP. Its goal
is to leverage existing handlers to the fullest extent possible, and to allow this support to be shared
by any alternate protocol. Despite its benefits, PP ownership is not well-suited for accessing large
amounts of data. In the next chapter, we describe how a custom coherence protocol can provide
significantly higher performance for a data-intensive memory copy protocol. In that protocol, even
though we provide custom coherence support, we still use PP ownership in a few situations, to
reduce the size of the protocol in corner cases where performance is less critical.

4.5 Summary

This chapter described a number of software mechanisms that are useful for the alternate protocols
we study. We consider these mechanisms separately since they are features that the various protocols
we study have in common.

Several of the mechanisms address the interaction between the processwcad We de-
scribed several techniques by which the processor can make requestsiaf, for example to
initiate alternate protocol operations. Similarly, we showed MMgIC can in turn make requests
of the processor, e.g., to request a page be mapped. We also described extensions to this interface to
support virtual memory with protection, allowing it to be used in the context of a modern operating
system.

We also introduced the difficulty in achieving cache coherence for alternate protocols within
MAGIC. Custom coherence protocols are used in some cases for peak performance. In this chapter
we described a technique called PP ownership that is more appropriate for protocols needing only
occasional coherent updates.
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Chapter 5

FLASH Memory Copy

In this chapter we consider in detail the design, implementation, and performance rafathie
memory copy protocol introduced in Section 3.1.4. The goal of this protocol is to provide high per-
formance data movement supportedMmyGic and exported directly to the user through a memory
copy interface. Furthermore, our ultimate aim is to fully integrate this protocol with cache-coherent
shared memory. This allows shared memory programs to use the protocol transparently to acceler-
ate block data transfer, in addition to more traditional uses for implementing message passing. By
leveraging the processerAGIC communication features described in Section 4.1, we export this
facility to the user without system calls but while maintaining protection and the ability to interact
with virtual memory.

We begin in Section 5.1 by describing the application programming interface to this memory
copy facility. Section 5.2 details how a restricted version of this interface with only limited coher-
ence support can be implemented using the embedded programmab#itxsd. In Section 5.3
we discuss the challenges and benefits of providing a fully general implementation of that interface,
then describe extensions to the basic implementation it requires. We study the performance of the
protocol in detail in Sections 5.4-5.5, characterizing its behavior using a variety of benchmarks and
applications. We conclude in Section 5.6 by discussing related work in this area.

5.1 FLASH Memory Copy Application Programming Interface

A fast block transfer primitive is important for both applications that exhibit large data movement
and the operating system itself. In addition, it can serve as a building block for message pass-
ing protocols such as the Message Passing Interface (MPI) standard. In fact, in response to our
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previously published work and to that of others, recently at least one new lightweight messaging
protocol has to emerged which effectively utilizes the kind of high performance communication we
advocate [BSSD96].

Unlike traditional message passing machines in which message passing is the only communi-
cation model,FLASH also provides cache-coherent shared memory functionality to the user. By
integrating the block transfer protocol with cache-coherent shared memory, we enable applications
to seamlessly utilize block transfer in shared memory programs as well. Frank and Vernon advo-
cate a similar approach with slightly richer semantics that integrates the ability to perform explicit
transfers as an optimization within a shared memory environment [FV93].

Our application programming interface for block data transfer is an version of the well-known
C-library bcopy call:

void fbcopy (char* src, char* dest, int len, uint64* flag);

Fbcopy copies the memory specified by e parameter (called thgource buffeyto the address
specified by thelest parameter (called th@estination buffex. len specifies the number of bytes

to copy. We extend the normal bcopy interface slightly by providing an additional parameter that
points to a user-visible completidiag incremented byAGiC when the transfer has finished.
Since fbcopy proceeds asynchronously to the application, the flag allows the main processor to
perform other calculations in parallel, if desired, then later test the flag for completion.

Given our goal of providing a single facility to be useful in a wide range of situations, we
export block transfer to the user in this straightforward way rather than constrain the user to a
more rigid interface. This allows programs to build higher level abstractions on top of this facility
very easily, rather than conform to a very specific model which may have undesired characteristics.
This issue is analogous to the debate between CISC (Complex Instruction Set Computer) and RISC
(Reduced Instruction Set Computer) architectures. Some CISC architectures provided instructions
that improved performance but were difficult for the compiler to identify or so specific they were not
widely applicable. Our choice of a simple primitive takes a distinctly RISC-like position, providing
instead a fundamental operation which can be used to build up more complicated semantics.

5.1.1 Sources of Complexity

Though the programming interface for the block transfer primitive is straightforward, an efficient
implementation of this interface amaGIC is nontrivial. WhileFLASH does provide the features we
need to implement block transfer, in practice we find that only through careful design of the data
transfer handlers can we achieve the levels of performance we desire.

Moreover, two issues arising from the integration of block transfer with shared memaory serve
to increase the difficulty of this implementation. Figure 5.1 illustrates these sources of complexity.
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Figure 5.1 Sources of complexity in memory copy. Buffers may be cached in any node on the
system, and physical pages of the block may be allocated out of remote memory.
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First, the cache-coherent shared memory support providedAsH allows the source and destina-

tion buffers to be cached in any node of the system. For the source buffer this means that the current
value of the data might be in another node’s cache; when the transfer is carried out the protocol must
retrieve the data from that node. Similarly, nodes caching the destination buffer must be notified
when the block transfer modifies the buffer so they can invalidate their old copies.

The second issue is a related one at the page level. The source and the destination buffers may
span multiple virtual memory pages, resulting in non-contiguous physical pages. Furthermore, the
physical pages may be scattered across different nodes of the machine for many reasons: process
and page migration for load balancing, sharing of data among cooperating processes running on
different nodes, and operating systems which can allocate pages on remote nodes [CHRG95]. As
a result, it is quite possible for the node requesting the transfer, calladitiagor, to be distinct
from the home nodes of the source buffer pages. The added complexity for handling this case arises
because coherent operations on a line must consult its directory state (located at its home node). We
refer to this issue agmote home support

Coherence Models

The first source of complexity described above—the choice of the coherence model for message
data—is a key issue in implementing data transfer on cache-coherent shared memory systems. Be-
low we discuss the various options and their corresponding tradeoffs. Kubiatowicz et al. present a
similar categorization in the context of message passing in Alewife [KA93].

The simplest option is to provideo coherencdor block transfer data. This corresponds to
reading the data directly from the source buffer and storing the data directly into the destination
memory without taking any coherence actions. This option is not acceptable in practice since it
precludes caching of either of these buffers. The second option, ¢adledcoherenceprovides
coherence if the message data is uncached or cached only at the home node. This closely matches
the functionality provided by most message passing architectures where each processor can only
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cache the data that resides in its local memory. The third and most general option is to futbvide
integration with coherencéoften referred to aglobal coherencewhich imposes no restrictions on

the caching of data. The additional functionality provided by fully integrating with coherence is
essential to make block transfer widely usable (e.g., memory copy used to achieve page migration
in a cache-coherent system). In cases when the lines are clean in local memory or are cached only
locally, full integration with coherence does essentially the same work as local coherence. Extra
coherence transactions are required only when message lines are cached remotely or have remote
homes.

We begin below by showing the implementation details for a simplified version of memory
copy that supports only local coherence. By using a slightly simplified model, we can focus on the
details of how transfers are fundamentally accomplished. In Section 5.3, we explain how this base
implementation can be extended to achieve full integration with coherence.

5.2 Locally Coherent Transfer Model

In this section, we describe a version of block transfer that provides only local coherence support.

This model is very similar to that provided in message passing machines where data cannot be
cached remotely and only local memory can be referenced by the processor. This restricted model
is used to show how we accomplish transfersliasH. The specific restrictions it entails are:

e The source buffer is only allowed to be cached by the source node, and the destination buffer
is only allowed to be cached at the destination node.

e The transfer can only be initiated by the processor on the home node of the source buffer.

5.2.1 Transfer Overview

The application initiates a block transfer by invoking the fbcopy library call (defined in Section 5.1),
which describes the transfertGic using the memory mapped interface described in Section 4.1.

An fbcopy call transferring one page requires four uncached write&c. These writes contain

the length of the transfer and the physical addresses of the source buffer, destination buffer, and com-
pletion flag. Longer transfers may require more writes for the additional pages inJoled.c

maintains a pool of state records used to store the description of the transfer during initiation. The
same record is used to maintain the intermediate state that encapsulates the current status during the
transfer. Physical addresses stored withAGIC memory copy state records are protected during

the transfer by the hold-off technique described in Section 4.2.2.

When using the double mapping technique described in Section 4.2.1, each page must be referenced as part of the
initiation, since they may not be physically contiguous. If translations are provided by a Software TLB, on the other hand,
the processor can specify a virtual address and a length, potentially reducing the number of commands in the initiation
sequence.
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Figure 5.2 Schematic transfer timeline, illustrating the processor and the source and destination
MAGIC chips. Medium gray bars are for transfer initiation and flag update, light gray bars are for
transfer setup and completion detection, and black bars are for the transfer and receive handlers.

Once a transfer is accepted mnGic, thetransfer handlerat the sending node sends the data
as a series of cache lines. For each line, the transfer handler (running on the protocol processor)
reads the appropriate data from memory into a data bufferaaic, adds header information to
form aFLASH message, and sends it to the destination node. We label the line at the source node
with its destination address so that it can be written to memory quickly. When it arrives at the
destination, it runs a handler to process the message, calleddkiee handler In this case, the
receive handler stores the accompanying data into the destination memory as part of the transfer.
The overall transfer process is illustrated in Figure 5.2.

We use the software queue to carry out the block transfer through multiple invocations of the
transfer handler at the sending node. Each time the message transfer handler is invoked, it sends
one or more lines of the message data, updates the transfer state, and reschedules itself using the
software queue. Note that even though each line of data is sent separately, the handler has the option
of sending multiple lines during each invocation. This technique, referred ¢buasking has the
potential to improve performance by amortizing the overhead of starting the transfer handler and
saving and restoring the transfer state. We evaluate the effect of this optimization in Section 5.2.3.

Transferring data as a series of cache line sized messages instead of a single large message has
several advantages:

Deadlock avoidance.FLASH is able to avoid deadlock using a combination of software conven-
tions and Inbox hardware assistance. As described in Section 2.3.6, to avoid deasitock
must stop sending further messages and yield the PP if outgoing queues fill. If block transfers
traveled as one large message,rhesH conventions would be insufficient to avoid deadlock
and would have to be completely redesigned. Deadlock is a sufficiently critical and difficult
issue that leveraging the existing deadlock techniques is invaluable.
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Coherence of transfer data. The coherence protocol mLASH maintains directory information at
cache line granularity. As we describe in Section 5.3, the complexity of maintaining coher-
ence of message data is reduced, and thus performance can be increased, when the transfer
size matches the coherence granularity.

Network and fairness advantages.The memory system andAGIC are designed and optimized
for transferring cache lines and therefore cache line packets are handled efficiently. In ad-
dition, allowing the service of cache-coherent operations to be finely interleaved with large
transfers is beneficial for achieving efficient overlap of computation and communication. The
network may also perform better if large messages are broken into pieces instead of traveling
as a single huge chunk.

Of course, the disadvantage of sending lines individually is that each one incurs two sources of
overhead: network headers and protocol processing. First, the message headers each line carries in
the network decrease the useful bandwidth. If we sent a larger block, headers would account for
less of the bandwidth used. Second, when the lines arrives at the destination, each runs a handler
to process its contents, as opposed to a handler processing a larger block. Fortunately, the impact
of these overheads is mitigated somewhaktliasH due to the large cache line size (128 bytes).
FLASH message headers add 16 bytes of overhead (11%); the handler overhead is studied later in
this chapter.

At any one time, the transfer concerns itself only with the data on the current source page. That
is, the source address never crosses a page boundary during an invocation of the transfer handler.
Instead, we wait for the data on the page to be received at the destination and acknowledged before
we advance the transfer to consider the next page. Breaking up multi-page transfers into single-
page ones reduces the complexity and overhead of transfer bookkeeping and state maintenance.
In Sections 5.2.2 and 5.3.2 we describe some of the sources of complexity that make this a good
engineering tradeoff. While breaking up multi-page transfers reduces complexity, it still allows a
substantial number of lines to be in flight (32 lines/4 KB page). Allowing many lines to be outstand-
ing is important for hiding message latency, especially when maintaining coherence {%7GH

Detecting Completion

An important problem to solve in the block transfer protocol is determining when all the data has
been committed to the destination memory. Only at that point can the destination buffer be made
available to its consumer; similarly only then are modifications to the source buffer guaranteed not
to affect the transfer. This problem is made even more difficult because we transfer data as a series
of cache lines instead of a single large block. For example, some lines of the transfer may fail or be
refused due to races or resource limitations. This requires the destination node to maintain a count
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of remaining message data so that an acknowledgment can be sent to the source when the final line
arrives.

To facilitate this, the source node announces a transfer to the destination node before it begins.
This message is often referred to asesmvelope since it contains the “wrapping” information re-
garding the transfer. The envelope contains two pieces of information: the source’s message ID,
which uniquely identifies the transfer at the source node, and the message length. When the desti-
nation receives the envelope, it allocates a corresponding receive record for the tr&@iafar.we
count lines, in addition to its destination address each line must indicate which transfer it belongs
to. One approach uses the source message ID to indicate the transfer to which it belongs. This ID is
used to search a hash table to find the corresponding receive record. The remaining message count
in that record is decremented, and if zero then the transfer is complete. The destination notifies the
source with a transfer acknowledgment, labeled with the source message ID.

Though initial versions of the protocol followed the hash table approach, we quickly realized
that the hash table lookup was a significant source of overhead. A superior approach is to reply to
the envelope with an acknowledgment that providesdgination'smessage 1D, which uniquely
identifies thereceive recordhat was allocated. The source can then label each line with the desti-
nation message ID, which indicates the receive record number directly.

When the transfer is complete and the source receives an acknowledgement from the desti-
nation, it updates the application’s completion flag using the PP ownership technique described
in Section 4.4. Figure 5.2 illustrates when the flag update occurs. We employ PP ownership to
avoid implementing custom coherence support merely for the flag update. The coherence support
in fbcopy in Sections 5.2.2 and 5.2.2 is designed for the handling of bulk data and is not suited for
use in updating the completion flag.

5.2.2 Base Implementation

The performance-critical core of the protocol is the matching pair of handlers which send and re-
ceive the data lines of the message. We refer to these asitisfer handlerand thereceive handler

We begin by examining these handlers to illustrate the tasks they must perform to realize a block
transfer orFLASH. In Section 5.2.3, we show how this base implementation can be improved sig-
nificantly using a number of software optimizations. The ability to tune the protocol and perform
extensive software optimizations to improve performance is one of the key advantagesLefdhe
architecture.

2The envelope is merely refused if a receive record is not available, which provides flow control by limiting the
number of simultaneous transfers destined for any one node. If we only relied on source-side flow control, nothing would
prevent the destination from receiving many transfers simultaneously and becoming a hot spot.
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Transfer Handler

The transfer handler is responsible for sending the actual data lines of the block. This entails several
key functions:

e Locating the most up-to-date copy of the data. (This is important in the fully coherent model
we discuss later.)

e Re-mapping the source address to its corresponding destination address. Unlike normal cache
coherence operations in which a line never changes address as it moves around the system, in
a memory copy the source data must be stored ati¢isénation addressThis re-mapping
is straightforward in simple cases, but page crossings in the middle of the message and lines
requiring retry complicate this task.

e Maintaining the state of the transfer as it proceeds.

e Logging lines which experience problems during the send, or which the destination node is
unable to handle when they arrive. These lines must be retried so the transfer can complete.

Figure 5.3 presents the pseudo code for the base implementation of the transfer handler provid-
ing local coherence. We briefly discuss the details of this handler to highlight some important issues
and illustrate the concepts clearly before delving into optimized versions in later sections.

The transfer handler is scheduled onto the software queue since it needs to execute repeatedly.
As part of its scheduling task, the Inbox periodically selects the handler at the head of the software
gqueue instead of one of the hardware queues. When the handler starts up, it ascertains the current
position within the transfer by reading the memory copy state record. It immediately consults the
directory state for that address, and determines the appropriate action to take.

Recall that in the local coherence model we only allow lines to be cached in the local node (if
at all). We distinguish between the data being in the memory or the cache becasserequires
the protocol to explicitly request a dirty line from the local processor. This is in contrast to snoopy
bus-based designs where the same request checks both the memory and the processors’ caches.
Figure 5.4 shows the pseudo code for this implementation. We describe the various coherence cases
below:

The line is busy (pending). The coherence protocol may mark a line as busy if coherence opera-
tions on the line are in progress. This prevents conflicting operations on a line from occurring
simultaneously. In this implementation, if we find the line is busy we yield and try again later.

The line is clean in memory. In this case the data is read from memory, the message headers are
prepared, and the message injected into the network. Note that\si@e is only reading
the memory, outstanding shared copies require no special handling.
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void MemCpyFullAlignedTransfer()
{

Allocate data buffer;
if (no buffers available) {
Reschedule;

Read transfer state and address pointers;
Read directory state for source line;
if (Line bu%/) {

Reschedule;

if (Line Dirty) {
Form request for cache intervention;
Request line from cache;
Wait for cache controller reply;
if (Request Failed) {
Reschedule;

Write line to memory;
Update directory;
Form header for destination;
Send message;
} else { /I Clean
Read line from memory;
Form header for destination;
Send message;

}

Update remaining count;
if (Transfer done) {
if (Lines experienced problems) {
Switch to cleanup mode;
Reschedule;
} else {
Unschedule;

} else {
Reschedule;

Update source and destination pointers;
Check for destination page crossing;

Figure 5.3 Pseudo code for the base implementation of the locally coherent transfer handler.

The line is dirty in the processor cache.In this case we are required to explicitly fetch the line
from the processor's cache. We request a shared copy of the line, allowing the processor to
keep a shared copy for itself, rather than eliminate it altogéthée must examine the result
of the request for a very important reason: the processor may be writing the line back when
the request is made. Since thReasH processor interface does not consult the queue from
the processor to satisfyAGIC’s request, the request may fail to find the line in the cache
(indicating the writeback race). If this occurs, we are forced to yield the PP to allow the

®As discussed in Section 2.3.3, the R10000 does not provide a way to access the dirty line but still leave it in the dirty
state, thus our request for the data steals exclusive ownership of the line at the very least.
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Figure 5.4 Coherence handling in the locally coherent transfer model. At the source, the line must
be explicitly requested from the cache if needed. At the destination, outstanding copies must be
eliminated

writeback to occur—no other action can allewaGIC to access the most current copy of the
data.

If the access indicates the dirty copy was found, the PP can proceed, preparing the message
for the network. The data follows from the processor several cycles later; the data buffer logic
correctly synchronizes the merging of the data with the message. The PP first writes the data
to memory, then updates the directory state to indicate the line is clean in memory (with the
local processor as a sharer).

After handling the coherence actions, if needed, the PP forms the destination headers, labels
the line with its destination address, and issues it into the network. The remaining work in the
handler updates the state of the transfer in preparation for the next line, tracking the amount of data
remaining. If the transfer is complete, a check is made to see if any lines need to be retried (the retry
mechanism is described below), and if so a cleanup handler is selected to run next. If no lines need
to be retried, the handler removes itself from the software queue. In the normal case, the transfer
merely reschedules to send subsequent lines.

Finally, the source and destination pointers are updated. Our transfer implementation requests
acknowledgments from the destination node for each page, thus a source page crossing never occurs
in this handler. Source page crossings are handled instead by support routines that run when the
acknowledgment arrives from the destination. Since the destination address is unrelated to the
source address, however, the destination address may cross the page boundary at a different point,
so we must check explicitly for that condition. If the destination address crosses the page boundary,
we look up the subsequent page address (supplied during initiation) since it need not be physically
contiguous with the previous page.
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Receive Handler

When a line arrives at its destination, our goal is to store it to memory and update the count of
remaining messages as quickly as possible. Since this is an ownership-based protocol, it is normally
forbidden for a processor to write a line unless it has acquired exclusive access. Fortunately, in most
cases we can atomically (that is, within the same handler) reclaim ownership of the line, write the
data to memory, and update the directory state to indicate the memory copy is current. We explain
below how some cases prevent this operation from succeeding when the message arrives.

We previously described how we pass the destination’s message ID as part of each data message.
This allows the destination to find the transfer state quickly. In parallel, we also look up the directory
state for the destination line. Just as in the transfer handler, we may find the line in several different
states. Unlike the source side, since the destination nagetisg the memory, outstanding shared
copies must also be eliminated to maintain coherence. The coherence cases at the destination are
handled like this:

The line is busy (pending). Since the directory is busy, the arriving line can not be accepted. We
are forced to send a negative acknowledgment to the home.

The line is clean in memory. We write the data and leave the directory state unchanged.

The line is cached locally. We write the data, send an invalidation to the local processor, and reset
the directory state.

The line is dirty in the processor cache.Normally, a cache-coherent machine only allows the ex-
clusive owner of a line to modify it. Since our protocol writes the contents of the entire
destination buffer line at its home, we can modify the protocol to improve performance by
writing the linewithoutacquiring ownership in advance. We then send a special flavor of in-
validation we call airty invalidationto the remote node, telling its cache to discard its dirty
copy of the line without writing it back.

Unfortunately, just as in the transfer handler, the processor might be in the midst of writing
the line back and so our cache intervention may fail. If this occurs because our invalidation
failed, it squashes the block transfer data that has been written to memory. To detect this race,
the invalidation message checks the response from the cache. If the line is being written back,
a negative acknowledgment message is sent back to the destination node, triggering a retry of
the line from the source.

If the coherence processing for the line was successful, we update the count of lines remaining
in this transfer. If we find that the transfer has finished, we acknowledge the source, indicating
that the portion of the transfer announced by the envelope is safely committed to the destination
memory.

Section 5.2 Locally Coherent Transfer Model 77



Retrying Failed Lines

During the transfer, the transfer and receive handlers may encounter lines which experience prob-
lems in their delivery. For example, we described how the receive handler is forced to send a
negative acknowledgment to the home in some cases. In Section 5.3 we show that full integration
with coherence adds still more cases where lines may fail at the source, destination, or elsewhere in
the system because some participant is temporarily unable to cooperate.

To address the range of failure cases, we maintain state in the transfer record to indicate if lines
experienced problems in delivery. This is implemented as a bit vector in which one bit represents
the state of each line. When a line receives a negative acknowledgment from the destination node,
we calculate its offset within the transfer page and set the corresponding bit. For page sizes up to
8 KB and 128 byte cache lines, the 64 bit PP allows us to pack this vector into a single doubleword
(larger page sizes would dictate a more complicated implementation).

As shown in Figure 5.3, once the transfer completes its first attempt at sending the current
page, it consults the bit vector to see if any lines have received a NAK. If so, it esiéznsup
mode The cleanup handler locates set bits in the retry word (indicating failed lines) and regenerates
those requests. When it resends a line, it clears the related bit in the retry word so that subsequent
executions retry other failed lines. Retry messages are identical to the original request, and are
handled exactly the same way; they themselves may fail for similar reasons.

Improving Retry Performance

Generating a retry of failed line is very similar to the initial attempt at the line. However, since
random lines of the page may have failed, the performance of the handler in sending these lines is
lower than the initially sequential transfer. In part, this performance penalty comes from the need
to perform two address mapping functions as part of retry. The first mapping function concerns the
handling of negative acknowledgments. When negative acknowledgments arrive at the source, they
carry with them the destination address they were given. This address mesebse mappetb
generate the source address to which it corresponds. Second, when the retry is later being generated,
we need to regenerate the destination addrefsward mapthe source address to its corresponding
destination address.

The main difference between the initial transfer and retries is that we do not have a current
pointer into the destination buffer from which to address the retry message. Instead, we must ex-
plicitly calculate the destination address based on the offset into the send message. Complicating
this calculation is the possibility of page crossings in the destination buffer. Figure 5.5 illustrates
this complication, showing the source and destination buffers of the transfer (shaded), and the page
boundaries (heavy lines) for each buffer. Since the buffer addresses are user-supplied, there is noth-
ing to prevent them from having different page offsets, as shown. In general, they are not physically
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Source Dest

Figure 5.5 Page boundary crossings. Crossings may occur at different locations in the source and
destination buffers. Page boundaries (heavy lines) are shifted to indicate the offset at which they
occur in the transfer.

contiguous, so the physical address changes at page boundaries. Dashed lines show how mid-way
through a source page a destination buffer page crossing requires the transfer handler to change to a
new destination page.

To reduce the cost of handling destination page crossings, we pre-compute several useful con-
stants in the initialization of the transfer. These constants, which digest the addresses of the source
and destination pages and the page crossing locations, allow us to perform these re-mapping func-
tions more quickly.

5.2.3 Optimized Implementation

The base transfer implementation described provides the core block transfer functionality we desire,
but does not achieve the efficiency the underlying hardware provides. There are several software
techniques we can apply to this basic implementation to significantly improve its performance. The
first of these techniques targets the long latency to access lines in the processor cache. The second
technique amortizes the cost of the transfer over several lines, reducing the effective overhead.

Hiding Cache Access Latency

One drawback to the base implementation is the cost of handling lines that are dirty in the local
cache. Note that in the pseudo code shown in Figure 5.3, the request to the processor cache is im-
mediately followed by spinning on the cache reply. The processor’s delay in providing this response
is at least 15vAGIC cycles. During this delay, the base implementation does no useful work.

The first optimization seeks to hide some of the latency of performing these cache accesses by
doing other processing before spinning for the result. We can update the directory, advance the
transfer state, and prepare the headers of the message, all under the assumption that the cache later
responds to indicate success. This workpeculative however, because in the unlikely event of
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m

Figure 5.6 Potential benefit from chunking. The benefit derives in part from sharing start-up over-
heads between several lines. Light shaded blocks represent handler start-up overhead, dark shaded
blocks represent time taken processing actual transfer lines, arrows indicate messages leaving the
node for the destination.

a simultaneous writeback (described earlier), the cache access fails. In that case, the handler must
“roll back” its state modifications to undo the work done under this incorrect assumption.

Amortizing Transfer Overhead

Earlier we mentioned a technique calleldunkingwhich allows the transfer handler to send mul-
tiple lines in a single invocation. Chunking allows us to amortize the software overheads incurred
each time the handler starts up. This optimization is not applicable to the destination side because
there the transfer is still observed as a series of individual lines. Figure 5.6 illustrates how amorti-
zation may improve performance. Even though the overhead of the chunked implementation may
be higher, as shown, sharing the overhead is ultimately beneficial.

To implement chunking, we use software pipelining to send multiple lines within a loop. Pseudo
code for the chunked handler appears in Figure 5.7. Software pipelining provides several important
benefits in this handler. First, we build on the cache access optimization described above: chunking
allows the PP to perform speculative processing on the current line as well as the initial processing
for thenextline while waiting for the cache response. An additional benefit is that some key transfer
state can be kept in registers throughout the multiple lines. We set the maximum number of lines to
send in one burst, called tisbunk sizethough the handler may need to send fewer lines if outgoing
network queues fill.

Our implementation of the chunked transfer handler uses a carefully designed variable called the
chunking word This word contains a packed bit field array that holds key information for each of
the lines in the chunk: itsAGIC buffer number and an indication of whether the line was requested
from the cache. This allows us to advance the state for the software pipeline merely by shifting
the chunking word. Note that the bottom of the main loop checks the result for a cache access in
the previous iteration; this check can be done merely by consulting different bit field offsets in the
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}/0id MemCpyChunkedFullAlignedTransfer()

Calculate maximum allowed chunk size;

Preallocate buffers up to chunk size;

Determine actual chunk size based on buffer availability;
Read transfer state and address pointers;

Initialize chunking word;

while (Lines remain in chunk) {

if (Line busy) {
Set retry bit;

} else if (Line Dirty) {
Form request for cache intervention;
Request line from cache;
Mark line in chunking word as requested;
Speculatively update directory;

} else { /* Clean */
Read line from memory;
Form header for destination;
Send message;

}

if (Previous iteration marked requested in chunking word) {
Wait for cache controller reply;
if (Request Succeeded) {
Write line to memory;
Send line to destination;
} else {
Roll back directory state;
Mark retry bit;

}

Shift chunking word;

Advance transfer state;

Check for destination page crossing;
Decrement chunk lines remaining;

}

Handle final dirty check (identical to above)
Write back transfer state

Update remaining count;
if (Transfer done) {
if (Lines experienced problems) {
Switch to cleanup mode;
Reschedule;
} else {
Unschedule;

} else {
Reschedule;

Figure 5.7: Pseudo code for the optimized implementation of the locally coherent transfer handler
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Figure 5.8 Transfer handler performance for different chunking and caching parameters. The
x-axis labels indicate the maximum chunk size in cache lines and source buffer caching state (Un-
cached/Clean or Dirty). The y-axis and bar labels show the duratiom@ic cycles. “Norm”

shows the performance of a non-chunked version.

chunking word. By preallocating the data buffers for the handler, the software pipeline never runs
out of buffers mid-handler, but instead knoagriori how many buffers are available and can plan
the pipelining accordingly.

Unlike the handler which sends only one line, the chunked handlenaebort its work when
it encounters a busy line or a failed cache access. Since the other lines are independent they may still
succeed, so the handler instead forges onward to process the other lines, marking the failed lines for
retry by the cleanup handler. An advantage of this approach is that it allows more time before the
line is retried, which gives the transient case more time to resolve itself. If we retried right away, the
line might fail again for the same reason. The downside to this greedy approach is that processing
skipped lines later is slightly slower and cannot benefit from chunking. For example, using chunking
(at a chunk size of 4 lines), it takes 43 cycles for each uncached line and 62 cycles for each line that
is dirty in the processor cache. The retry handler, which processes lines individually takes 64 and
96 cycles to handle these same cases.

Figure 5.8 shows the performance of the transfer handler as a function of the chunk size. We
show two different source buffer caching states: uncached or dirty local. This plot also shows the
performance of the unchunked handler (“Norm”). As we might expect, chunking adds overhead
to the handler, so the unchunked version is faster than the 1-line chunked version. As the chunk
size increases, however, we see clear benefits from amortizing the overhead. These benefits show
diminishing returns around 4-5 lines. Amortizing overhead does have its cost: cache misses during
the transfer experience longer latency because the chunked transfer handler runs longer without
interruption than does the unchunked version. Figure 5.9 shows the total duration of the handler,
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Figure 5.9 Total transfer handler duration for different chunking and caching parameters. The bars
are labeled as in Figure 5.8.

which quantifies the potential for increase in cache miss latency. In practice, the best approach is to
balance these two effects. We use a chunk size of four in our experiments since this provides gains
from amortization while maintaining some degree of fair access to the PP.

5.2.4 Unaligned Transfers

In the simplest case, the data involved in a memory copy has the same offset within cache lines at
its source and destination. Such a transfer can be carried out by moving entire aligned cache lines
of data? However, if the destination address has a different cache line offset than the source, each
data word must change its positiarithin the cache lingby a distance related to the difference in
the offsets). One solution is to perform this function in PP software by loading a cache line then
realigning its data words individually. In the PP, this realignment is prohibitively expensive, adding
a minimum of 3 cycles per doubleword (48 cycles/line) to the transfer time.

To improve performance in this case, we introduced a hardware mecharisasina (described
in Section 2.3.4) that allows us to adjust alignment more efficiently. Figure 5.10 shows an example
block transfer illustrating how the mechanism we provide can adjust the alignment of words within
a line. In the example, the transfer begins and ends in the middle of cache line boundaries (panels
1 and 2). The same figure shows (panels 3 and 4) how the alignment would be changed during the
transfer for a cache line aligned destination buffer.

One of the insights we provide by this research is showing that block transfer support can be
efficient in FLASH using line-at-a-time transfers, and that we can effectively leverage the existing

“The only exceptions are the beginning and end of the block, which may be partial lines. We handle these boundary
conditions in the fbcopy library in the processor, since they are not performance-critical.
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Figure 5.1Q Support for arbitrary block transfer alignment.

support for data movement. The ability to change alignment of data, which extends high perfor-
mance to nearly all cases, is the only hardware feature we addesid@ for memory copy.

For full generality, each interface would have to support double buffer operations to the data
buffers, and would allow any alignment down to byte granularity. In practice, we expect the vast
majority of block transfers to require realignment only down to the 32-bit word size, since this
corresponds to the smallest integer data type used in most applications and the smallest floating
point data type available on the R10000. To reduce the hardware impastirc of providing this
feature, we provide double buffer support only from the memory interface.

Given this latter restriction supporting coherence for unaligned transfers requires that we first
collect any lines of the transfer data which are dirty and write them back to memory. We perform
this collect phase using a bit mask nearly identical in function to the one used for retry. In fact, we
use the same bit mask, but interpret it in a slightly different way. We initially rafirthe lines of
the message as needing collection, then we iterate once over the body to gather lines which are dirty
in the cache, clearing the bit for each line that succeeds.

Once the entire block is valid in memory, we switch to a special version of the transfer handler
designed especially for unaligned transfers. Since we have already collected the lines, this handler
is guaranteed that the copy in memory is up-to-date andgseore the directory state altogether
focusing instead on moving data efficiently. As a result, the transfer phase is actually faster than
in the normal case. As described in Section 2.3.4, the alignment hardware requires two memory
loads to fill a data buffer. If we generate only one realigned line, part of each load is wasted (i.e.,
2 memory loads are needed). However, if we generate multiple unaligned lines back to back, the
overflow from the second load forms the initial load for the third (and so on). Thus we only incur
one wasted load for the block (i.e.,+ 1 memory loads are needed felgenerated lines). For this
reason, unaligned loads can show even more gains from the chunking optimization described earlier.
Figure 5.11 shows the performance of unaligned transfers as a function of chunk size. Note that the
performance of the transfer phase is independent of caching state because the lines are always read
from memory, while the collect phase increases in cost when lines are dirty. To keep code size down
the collect phase does not take advantage of the ability to software pipeline—its overhead could be
reduced somewhat by expanding the code.
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Figure 5.11 Unaligned transfer performance as a function of chunk size and caching state.

5.3 Fully Coherent Transfer Model

While a number of previous systems have provided support for block transfer protocols [KA93,
BLAT94, RLW94, ACD"95, FAB™96], none addressed full integration with cache coherence.
These systems advocate the local coherence model described in the previous section which con-
strains the caching of source and destination buffers to their respective local nodes. However, this
model breaks down in a shared memory system running a modern operating system such as IRIX
in which processes may migrate to improve load balancing. In such an environment, assumptions
about the local coherence and local allocation of pages no longer hold; only a block transfer proto-
col without such restrictions is widely usable. More recently, several systems have begun to provide
coherent block transfer, especially for use by the operating system {l9BR.L97, WGH"97].

In this section, we describe the extensions to the protocol to provide full integration with cache
coherence. This entails both of the issues described in Section 5.1.1: supporting coherence of
message data despite remote caching, and supporting pages with remote homes.

5.3.1 Cache Coherence for Block Transfer Data

Providing efficient and transparent cache coherence is a key aspect of making primitives such as
block transfer easy to use in a shared memory environment. Since the source and destination data
may be cached anywhere in the system, the block transfer protocol must incorporate a subset of the
cache coherence protocol to efficiently obtain the latest data and maintain coherence of the source
and destination buffers. Figure 5.12 illustrates the caching scenarios we might encounter, using a
representation originally used by Lenoski [Len92]. We focus on portions of this figure to illustrate

the coherence solution. The description assumes that the data transfer occurs directly from the
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Figure 5.12 Example coherence scenario. This scenario illustrates the remote cases a fully inte-
grated protocol must support. The two large circles represent the source and destination nodes of
the transfer. Other circles represent lines of the transfer cached remotely, either in shared state (S),
or dirty (D).

home node of the source buffer to the home node of the destination buffer; Section 5.3.2 describes
the general case.

Coherence for Source Buffer Data

There are three cases to consider for coherence of the source buffer: the data is clean, the data is
dirty in the local processor's cache, or the data is dirty at a remote node. If the source node has
a valid copy of the data, it can be retrieved from the cache or memory as described previously.
However, when the data is dirty at a remote node, the task of retrieving the valid data requires
remote communication. The simplest solution is to pause the transfer, retrieve the line from the
remote node, send it to the destination, and then proceed with the transfer. Though straightforward,
this approach fails to exploit any parallelism in retrieving the data for multiple lines.

A more efficient solution is to accomplish the transfer in two distinct phases, one that collects
the dirty data of the source buffer from remote nodes and one that sends the data to the destina-
tion [KA93]. This technique, calledollect and sendallows the collect phase to retrieve multiple
lines simultaneously (similar to the way we implemented unaligned transfers in the previous sec-
tion). For a machine such &sAsH that performs transfers a cache line at a time, it is also possible
to pipeline the collect and send phases instead of keeping the phases distinct. In this approach, when
the handler detects that a line is dirty on a remote node it requests the line and proceeds with the
transfer. The response eventually arrives back at the source node and triggers a handler that sends
the line to the destination and writes the data back to memory. We refer to thiisedised collect
and send

Still another alternative is to send the data directly from the dirty remote node to the des-
tination node (similar in philosophy to the optimization basH for the three-hop dirty remote
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Figure 5.13 Source side coherence alternatives. In both cases the source node sends fbcopy mes-
sages to fetch dirty cache lines from the remote holders

case [LLG"90]). We refer to this as th®rwarding approach. The request from the source node to

the dirty remote node carries a single word of data that specifies the destination address. The dirty
node forwards the data to the destination node and sends a writeback to the source node. Figure 5.13
illustrates these two alternatives.

Compared to pipelined collect and send, forwarding reduces protocol overhead since the source
node can perform an ordinary writeback without remapping the message for sending to the destina-
tion node. On the other hand, there may be higher occupancy at the network interface of the dirty
node since forwarding leads to two outgoing messages (the writeback to the source node plus the
forwarded message to the destination node), compared to just one message for the collect and send
case. The total traffic is the same, but since forwarding sends both messages from the same network
port the messages are serialized. Thus the choice between the two approaches depends on the rela-
tive speeds of the network and the protocol processor. As we show in Section 5.4.3, the forwarding
approach is superior for network bandwidths of 400 MB/s per link or greater, assuming a 100 MHz
PP.

Coherence for Destination Buffer Data

The destination node must in turn coherently modify the data in the destination buffer, which re-
quires invalidating all stale copies of the data. The handler that receives the line writes it into the
destination buffer in memory and then eliminates any copies in processor caches. Figure 5.14 shows
the actions of the protocol. If there are any clean copies of the line, the handler sends an invalidation
request to each copy.

Like the locally coherent model, we accept lines which arrive at the destination even if they are
cached dirty. In the fully coherent model, this support is extended to handle lines cachetly
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Figure 5.14 Destination side coherence. The destination sends invalidations to nodes that have a
destination line cached dirty (D) or shared (S).

as well. In this case we send the dirty invalidation to the remote node, telling its cache to discard
its dirty copy of the line without writing it back. Similar to the locally coherent model, there is a
possible race between the arrival of the invalidation message and a writeback of the line from the
remote cache. If a writeback occurs before the invalidation arrives, the writeback overwrites the
block transfer data that has been written to memory. To detect this race, the invalidation message
checks the response from the remote cache. If the line has already been written back, a negative
acknowledgment message is sent back to the destination node, triggering a retry of the line from the
source.

5.3.2 Support for Remote Homes

So far we have assumed that the transfer is carried out by the initiator node. However, as described
in Section 5.1.1, the initiator node may be distinct from the home nodes of the source buffer pages.
Since the cache coherence protocol must consult the directory state to determine the appropriate
coherence action, the initiator must communicate with the home for each line of the transfer. The
naive approach of requesting each line individually leads to increased traffic in the network and
prevents the home node from leveraging the chunking optimization to increase performance. In
addition, this implementation is substantially more complicated, since it introduces many more
special cases and race conditions.

A better approach is to delegate the transfer to the home node and have it carry out the transfer
on the initiator’s behalf. After delegating the transfer to the home node, the protocol behaves exactly
as if the block transfer were initiated there. The only difference is that a completion signal is sent
from the home node back to the initiator node when the transfer is complete. Despite an overhead
of approximately 2.5:s to delegate the transfer, this approach leads to better overall performance
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Figure 5.15 Complete fbcopy protocol including remote home support. Transfers initiated at a
node other than the home of the source buffer are delegated to that node, as shown. The actions
inside the dashed box are present even when remote initiation is not required.

for transfers longer than a few lines. Figure 5.15 illustrates a remote home scenario, showing how
it can build on the existing implementation.

5.3.3 Implementation Issues

During the implementation of the protocol, we made some design decisions and observations that
are important to mention. We briefly describe these issues below:

Copies within a node. Our goal in providing block transfer is to accelerate copies between two
nodes, so we do not provide support for copies in which both buffers reside on the same node.
Since local memory access is highly optimized, our experience suggests that the processor is
more appropriate for thesatranodecopies. During transfer initiation, the protocol processor
checks the pages involved in the transfer to see if they are located on the same node. If so,
initiation returns a result code indicating that the processor should perform the copy; the
library then calls the normal bcopy routine. By encapsulating this functionality in the fbcopy
library call, the user can simply invoke fbcopy without regard for page placement.

Remote home parallelism. Though relatively unlikely, it is possible that the source pages of a
transfer are not only remote, but scattered among several nodes. Given the nature of remote
home transfers, there is nothing to prevent us from initiating multiple remote home transfers
simultaneouslyto increase the overall parallelism of the transfer. We have chosen not to
implement this feature for two reasons. First, this would significantly increase the complexity
of managing remote home transfers. Temporary resource shortages can cause any of the
remote home initiations to fail; by having only one remote initiation at a time, we reduce the
number of failure scenarios. Second, since it is fairly likely that the destination pages are

Section 5.3 Fully Coherent Transfer Model 89



collocated, having multiple simultaneous remote home transfers may cause an undesirable
hot spot at the destination.

Protocol code size.The total amount of handler code added for the fbcopy protocol is about 19 KB.
In contrast, the base cache coherence protocelAsH is about 44 KB. Although the block
transfer protocol code is only about 40% of the cache coherence protocol in size, it is much
larger than we had initially expected. As described in Section 4.4, cache coherence and block
transfer have similar, but slightly different needs. We could have added special cases in the
coherence protocol to promote code sharing, but since this would slow down cache coherence
it was deemed unacceptable.

5.4 Low-level Performance Analysis

In this section we consider the performance of the fbcopy protocol at a low level. We begin by
describing the simulation environment used in our experiments. We then provide a detailed analysis
of the block transfer protocol to illustrate the various factors that determine the overall performance
of this protocol orFLASH.

5.4.1 Simulation Environment

The simulation environment used in this study provides a complete model efAlsei system, al-
lowing us to accurately study its performance running a variety of workloads. We use the FlashLite
memory system simulator, described in Section 2.4.2, which models the performamess af

in detail. Simulation of the main processors and I/O system is provided by the SimOS environ-
ment [RHWG95].

The actual R10000 processor runs at 200 MHz, issuing up to four instructions per cycle. Un-
fortunately, we do not have a simulation model of the R10000 processor. Instead, we estimate its
performance by using a single-cycle processor model running at 400 MHz. Assuming the R10000 is
able to sustain only a fraction of its peak issue rate, this should at least approximate its performance.
We assume a two-level processor cache hierarchy. The first level consists of split 32 KB instruction
and data caches, both 2-way set associative with 64 byte lines. The second level is a unified 1 MB
cache, 2-way set associative with 128 byte lines. The time to satisfy a first level cache miss (second
level cache hit) is 50 processor cycles.

We simulate thenAGIC chip running at its target frequency of 100 MHz (for consistency in our
discussion, “cyclesalwaysrefers to 10 naMAGIC cycles). The memory system provideaGic
with the first 64-bit word of a cache line in 14 cycles, followed by an additional word on each
successive cycle (i.e., total of 15 extra cycles). Memory can be accessed with a new address during
the transfer stage. Accessing data in the processor’s cachevizent takes longer than accessing
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main memory because of the required processor intervention. In this case, the cache responds with
the state of the line after 15 cycles and with the first data word 5 cycles later, followed by 15 cycles
of transfer time for the remaining data words. Unlike memory, accessing the next line of data from
the processor cache is delayed until the previous transfer phase completes. As a comparison point
versus cache coherence, the latency for cache-coherent reladssia is approximately 27 cycles

for local misses and 111-191 cycles for remote misses (larger latency corresponds to the data being
dirty at a third node).

For this chapter, we model a network with a bandwidth of 400 MB/s, of which 320 MB/s
is usable (the rest is consumed by header overheadre we also assume an average network
latency of 22 cycles, which is appropriate for a snralAsH system requiring an average of three
hops.

In the actuaFLASH system, the PP instruction cache is only 16 KB. As noted in Section 5.3.3,
the complete block transfer protocol is approximately 19 KB, and cache coherence adds another
44 KB. If we simulated with the actual instruction cache size, the results would be dominated by
cache effects. Instead, we perform this and our other studies with a very large instruction cache to
allow us to isolate the fundamental issues in the protocol, and not hide them behind an implementa-
tion constraint of the initiakLASH system.

The fbcopy protocol and the base cache coherence protocol are specified in C and compiled to
PP instructions as described in Section 2.4. The results presented in this dissertation are based on
a cycle-accurate emulation of the actual protocol code. Even though the automatically generated
code is fairly efficient, higher performance can be achieved by hand tuning the compiled code—we
address this issue in Section 5.5.1.

5.4.2 Transfer Overhead

We divide the time to perform a data transfer into two paff¥:a fixed overhead portion, and
(i) a variable transfer time proportional to the size of the message. In this section we focus on
the overhead portion; the performance of the transfer portion is considered in detail in the next
section. Recall that Figure 5.2 provides a high-level illustration of the transfer. Figures 5.16 and 5.17
(explained in the next section) illustrate the transfer overhead more concretely including the data
presented below.

The total protocol overhead in fbcopy is about 84&GIC cycles or 6.8us. This represents
all the fixed costs occurring during the transfer that cannot be attributed the transfer part itself.
Table 5.1 explains the breakdown of this overhead by task. Note that the main processor is not
required to wait during the entire verification and startup phases listed in Table 5.1. After the PPC

5The final version of the&LASH system has switched to use the CrayLink interconnect, so the actual network band-
width in FLASH will be higher.
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Table 5.1 Breakdown of fbcopy overhead components, expressed
as 10 nvAGIC cycles.

| Phase | Overhead component | Cycles|
Initiation/ Initiation command processing 131
Verification | Transfer set-up and command verificatipn 233
Startup Envelope exchange with destination 102
Initial network latency 18
Completion | Receiver cleanup at completion 16
Final network latency 18
Cleanup and completion flag update 159

| Total overhead 677

has been verified, (approximately the first three microseconds), the processor can begin working in
parallel.

The high overhead in this protocol arises for several reasons. First, the fbcopy protocol accepts
several parameters from the application angicic must first verify them to protect the system.
Second, the set-up phase both initializes the transfer state and performs some calculations once
so that later the transfer handler can execute more quickly. Finally, updating the completion flag
coherently with PP ownership accounts for approximately df the final handler, as described in
Section 4.4.

This amount of protocol overhead is not fundamentamigsic itself, but rather it depends
primarily on the protocol characteristics. This implementation especially targets large message
sizes, for smaller messages a more lightweight approach would be used. We show in Chapter 6
thatMAGIC is able to support synchronization protocols at very low overhead through both careful
design and by providing a more lightweight interface than is possible in memory copy.

Furthermore, the complete overheads in traditional message passing machines may be higher
due to the cost of initiating a message reliably and with protection. One lightweight protocol imple-
mented on top of the Intel Paragon incurs ovepX8atency for a short message when all necessary
protection checks are used [BSSD96]. The Cray T3D requires approximatlyiprocessor in-
volvement merely to set up a transfer, despite having a dedicated block transfer engine. Our protocol
mitigates some of these set-up costs through the procegsmic interface techniques described in
Chapter 4.
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Figure 5.16 Time line of a two-node block transfer. Source and destination buffers are uncached.
The axis shows time in microseconds. Each block is a single handler runnimng@rc (long-
running handlers also show their execution time in 1&asic cycles.)

5.4.3 Transfer Bottlenecks

The performance of the block transfer protocol is determined by one of three possible bottlenecks:
source side processing, destination side processing, or network bandwidth. To illustrate these fac-
tors, Figures 5.16 and 5.17 show timelines of the handler occupancies for block transfers in two
different caching scenarios. The results are from the simulation of a 4 KB transfer initiated at the
source node, using the forwarding protocol and a maximum chunk size of 4 lines. We have divided
the handlers into four categorie@) those that handle initiation, retry, and completion flag update
(labeled Init/Retry/Flag){ii) those that send and receive the data messages (Trarfiferthose

that handle coherence for remotely cached copies (Coherencefivatitbse that process corner

case negative acknowledgments (Nak). We use thin vertical lines to indicate the end of each handler
and show the duration in cycles for handlers that last for more than 100 cycles.

Figure 5.16 shows a transfer in which both source and destination buffers are uncached. The
initiation phase consists of four uncached writes followed by an uncached read. The time line
shows the initiation phase on the source node followed by the communication of the “envelope” to
the destination, lasting about 3.5. Once the destination node replies, the source node repeatedly
invokes the chunked transfer handler, each time sending 4 lines (thus 8 invocations are needed to
send the entire 4 KB). The destination receives each line individually, acknowledging the source
when the transfer is complete. The total time for the transaction is aboup22\&ith the actual
transfer occupying about 16s. This corresponds to peak transfer bandwidth of about 276 MB/s
and an average bandwidth (including initiation and completion overheads) of 182 MB/s. Note the
gaps between invocations of the destination handler due to the faster processing of lines at the
destination.

The time line in Figure 5.17 shows a transfer using the forwarding protocol described in Sec-
tion 5.3.1 in which the source buffer is cached dirty at a remote node and the destination buffer is
uncached. For each line, the transfer handler sends a request to the dirty node to forward the line
directly to the destination. The dirty node also sends a writeback to the source node (visible as the

Section 5.4 Low-level Performance Analysis 93



7 N
D Init/Retry/Flag . Transfer ,A Nak &\ Coherence

Figure 5.17 Time line of a block transfer with the source buffer dirty on a remote node. In this
case, gueue limitations cause negative acknowledgements, forcing three lines to be retried.

short handlers on the source). The network is the bottleneck in this case: the dirty node’s protocol
processor sends messages faster (two messages every 62 cycles) than the network can absorb them
(one message every 40 cycles). This causes the outgoing network queue to fill three times during
the transfer. Each time, the handler detects the full outgoing queue and sends a NAK to the source
(visible on the dirty node in Figure 5.17 as the three short handlers between 23)2BAGIC

retries these requests successfully (between 26<3fh the dirty node). The increased coherence
handling in this transfer reduces the peak transfer bandwidth to 146 MB/s (or 118 MB/s including

the overhead). We previously described our approach to provide flow control for the receiver. This
example indicates that future research may wish to consider some degree of sender flow control as
well.

As discussed in Section 5.3.1, the decision to use forwarding instead of pipelined collect-and-
send (PC&S) depends on the relative cost of protocol processing and network bandwidth. Fig-
ure 5.18 shows the simulation results for these two alternativeisaigH, varying only the network
bandwidth and source caching state. For a slow network, the network overhead of the extra messages
in the forwarding approach is greater than the protocol processing overhead incurred by PC&S. At
higher bandwidth, these extra messages become less expensive and forwarding becomes more ef-
ficient. In this simulation, the crossover point is between 200 and 400 MB/s. Since we model a
400 MB/s network, we use the forwarding approach. Of course, in cases where severe contention
decreases effective network bandwidth, the PC&S approach may be more appropriate.

So far we have discussed two specific caching scenarios for source and destination side buffers.
Figure 5.19 shows the performance for other possible situations. This figure indicates whether the
performance limit in each case is network throughput, source side handlers, or destination side han-
dlers. As an example, 46 cycles for the uncached/clean case on the source side corresponds to one
fourth of the chunked handler occupancy of 184 cycles (shown in Figure 5.16). For a given caching
state, the peak transfer rate is limited by the slowest of these three components. For the destination
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Figure 5.18 Comparison of forward- Figure 5.19 Bottlenecks in fbcopy from the network,

ing (Fwd) vs. pipelined collect-and- source protocol processing, and destination protocol

send (PC&S) for different source buffer processing. The bottleneck incurred is given by the

caching states. slowest of the three components, as appropriate for the
caching state of the buffer: uncached (U), cached (C),
dirty (D), dirty remote (DR), clean with 1-3 sharers
(S1-S3).

side, the coherence portion of the bar shows the time to handle invalidation acknowledgments from
remote copies. One interesting effect is the sudden jump in destination node transfer handler cost
for two or more remote sharers (between the S1 and S2 bars in Figure 5.19). This is an artifact
of our cache coherence directory format, which stores the first sharer in the main entry but places
subsequent sharers on a linked list. The remote sharer cases are also impacted by the increasing
coherence overhead of 22 cycles per invalidation acknowledgment.

5.5 Benchmarks and Performance Comparison

In this section we extend the results in the previous section by studying the fbcopy protocol in the
context of microbenchmarks and applications. In these simulations we compare fbcopy with proces-
sor copy—we consider both regular bcopy and bcopy augmented with prefetch instructions [MG91].
Prefetched bcopy can be very effectiveAmasH due to its low latency network and highly op-
timized memory system, including a processor with an aggressive prefetching implementation.
FLASH also contains long (128 byte) cache lines, which can achieve many of the benefits of block
transfer [WSH94].

In the first section, we study the block transfer implementations without operating system ef-
fects. In subsequent sections we show experiments using the IRIX Version 5.3 operating system
from Silicon Graphics, Inc., which we modified to use fbcopy.

Section 5.5 Benchmarks and Performance Comparison 95



Table 5.2 Transfer latencies to send 4 KB using bcopy, prefetched bcopy, and fbcopy, expressed
in microseconds. The network traffic for the different cases is also listed. Buffer caching states are:
uncached (U), shared local/remote (L/R), dirty local/remote (DL/DR).

Source | Destination Caching State

Caching] Normal PP Faster PP | Network

State U/L R U/L R Traffic

U 65.8| 67.6| 62.2| 62.5 8 KB

Bcopy DL 47.7| 52.0| 45.0| 45.4 8 KB
DR 105.0| 106.8| 98.1| 98.3 12 KB

U 28.8| 30.0| 26.5| 27.3 8 KB

Pref Bcopy DL 20.5| 24.0| 19.5| 21.0 8 KB
DR 37.3| 38.6] 35.2| 36.1 12 KB

U 23.3| 33.4] 190|211 4 KB

Fbcopy DL 28.7| 33.7|19.2| 21.3 4 KB
DR 36.7| 37.7) 33.7| 34.6 8 KB

5.5.1 Microbenchmark Analysis

We first compare the performance of focopy against the other transfer primitives by simulating the
transfer of a 4 KB page between two nodes. As described in the previous section (and as shown
in Figure 5.19) the performance of coherent block transfer depends on the caching state of the
involved lines; we focus on several cases which tend to be more common in applications using
block transfer. For simplicity, we assume all the lines of a particular buffer are in the same caching
state. The transfer is executed at the home of the source buffer.

There is an additional caching effect which impacts processor copy since it must bring the
buffers into the cache. If this causes spills—which is likely—writebacks or replacement hints are
generated, which may increase the latency of the block transfer operation. To model this effect, we
first warm the caches with an equal mix of clean and dirty lines then cache the transfer buffers as
appropriate for the experiment. Since fbcopy does not bring the buffers into the processor cache, it
is immune to this effect.

Normal Protocol Processing

Table 5.2 shows the time required by the source node to perform the transfer in the scenarios de-
scribed above. Fbcopy significantly outperforms standard bcopy, executing the transfers more than
twice as fast in most cases. Bcopy incurs expensive cache misses to copy the data, which poorly uti-
lize the processor during the transfer. Prefetched bcopy largely avoids the miss penalties of bcopy by
acquiring the lines in advance of their use and by fetching multiple lines in parallel. This technique
is quite effective in improving transfer performance, so much so that in half the cases prefetched
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bcopy finishes the transfer faster than fbcopy. Notably, prefetched bcopy is faster when the source
buffer is dirty in the cache, since fbcopy incurs higher overhead to request the data from the cache.

However, processor copy techniques (including prefetched bcopy) tie up the processor for the
entire duration of the transfer, rendering it unable to perform other work. By delegating the block
transfer tovAGIC, fbcopy frees the processor to continue working while the transfer proceeds. The
effectiveness of the processor working in parallel will vary based on its use of already-cached data.
Miss-limited applications may or may not show gains as a result of increased miss latencies due to
the PP being occupied by the transfer.

Fbcopy also uses the network more efficiently. Processor copy fetches the entire destination
buffer even though it is immediately overwritten. In contrast, since fbcopy does not acquire owner-
ship of the destination buffer at the source, these lines never cross the network. Instead, focopy only
incurs network traffic for the data actually being transferred. The rightmost column of Table 5.2
shows the total traffic caused by the different implementations for a 4 KB transfer.

Consumption of Transfer Data

Though transfer time is important, the performance of block transfer is not based solely on that
factor. It may also include the time needed to “consume” the transfer data at the destination node.
To quantify this effect, we simulated reading the values in the buffer at the destination node after
the transfer.

Since the source node performs the transfer, in processor copy the destination buffer ends up
in the source node’s cache. When the buffer is consumed, the destination node experiences dirty
remote cache misses. Reading the buffer in this case takes. Because fbcopy deposits the data
in the memory of the destination node, only local misses are taken. As a result, the consumption
phase after fbcopy lasts only 2B3. Furthermore, in processor copy the data involved in the transfer
may replace unrelated lines still in use by the source node processor. This effect is particularly
significant in the primary cache, which can be completely filled by a mild-sized block transfer. The
impact of this cache pollution is application dependent, based on the amount of subsequent reuse of
the replaced lines. As an indication of the potential cost, it takes approximately &2refill the
8 KB of data displaced during a 4 KB processor copy (longer if the memory is remote).

Faster Protocol Processing

We also considered the effect of faster protocol processing to determine if the performance of fbcopy
is fundamental to the architecture. We altered our simulator to execute protocol code twice as fast,
allowing us to quantify the potential for increased performance due to protocol code optimizations

or a more aggressive protocol processor implementation.
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The results are shown in Table 5.2. They show mild gains in most cases for processor copy,
but more significant gains for fbcopy. This can be explained by looking at the performance limits
imposed by the different resources in the system. With faster protocol processing, cache misses are
serviced more rapidly, which improves the performance of processor copy. However, in the base
coherence protocol iALASH, the PP is only a few cycles slower than the memory system in the
common miss handlers so these gains are small [HGDG94,d@H Fbcopy, in contrast, gener-
ally performs more protocol processing per line. As a result, there is more potential for gains from
faster processing. While processor copy sees only 6—13% benefit from faster protocol processing,
fbcopy gains between 8-36% in these benchmarks.

5.5.2 Message Passing Interface (MPI)

To study the performance of block transfer operations in a more realistic context, we examine mes-
sage passing primitives from the Message Passing Interface (MPI) standard [Mes93]. We use ver-
sion 1.0.11 of MPICH from Argonne National Laboratory [GLS]. MPICH supports several different
underlying physical transport mechanisms, including one designed for shared memory multiproces-
sors such as the SGI Challenge. This code runs without modifications in the SimOS simulation
environment.

In the shared memory implementation of MPICH, bcopy is used to perform the data transfer
of large messages (2 KB or greater). MPICH uses IRIX’s support for allocating a shared memory
region between processes, while the rest of the application address spaces are private, consistent
with the distributed memory model of MPI. To send a message, the sender first copies the message
data from its private memory into the shared buffer. The receiver then copies the data from the buffer
into its private memory. We augmented the base MPI implementation to perform this operation with
fbcopy or prefetched bcopy instead of standard bcopy.

We implemented a basic two-node application using standard MPI send and receive primitives
in which data is communicated in a producer-consumer relationship. Figure 5.20 shows that for both
normal and faster protocol processing, focopy outperforms both normal and prefetched processor
copy over a range of message sizes. The gains from fbcopy increase with message size, due largely
to the amortization of fbcopy start-up overhead.

The flexibility of the protocol processor mAGIC enables an additional option not possible in
processor copy. Since the MPI send and receive routines execute at user level, maintaining private
address spaces requires two copies using the shared buffer as described above. We could avoid this
limitation by implementing buffer management functionalitymacic, allowing the receiver to
“post” its buffer to the sender in a protected fashion. With the aid of this support, the sender could
use fbcopy to transfer its message directly from the sender's memory to the receiver's memory,

98 Chapter 5 FLASH Memory Copy



735

659

Normal Protocol Processing j
500 Il raster Protocol Processing

400
300

200

End-to-End Time (microseconds)

100

BPF BPF BPF BPF
4 KB 8 KB 16 KB 32 KB

Figure 5.20 MPI transfer performance for a range of message sizes for the transfer techniques we
study: Bcopy (B), Prefetched Bcopy (P), and Fbcopy (F).

avoiding the temporary buffer entirely. This technique has the potential to perform better than all
two-copy implementations.

5.5.3 GNU tar Application

Since our protocol is fully integrated with cache coherence we can use it to accelerate block transfer
in shared memory applications as well. In fact, one of the biggest users of block transfer may be
the operating system itself. There are several kernel tasks that are primarily concerned with the
movement of block data, such as uiomove which is used to move I/O data between user and kernel
space. In this section, we focus on accelerating uiomove through the use of fbcopy or prefetched
bcopy. Modifying the IRIX kernel was straightforward since fbcopy and prefetched bcopy are
essentially drop-in replacements for bcopy. We study the impact of this acceleration on the GNU
tar application performing a conventional directory copy:

cd $OLD; tar cBf - . | (cd $NEW; tar xBf -)

We simulate three nodes, two executing the tar commands and the third modeling the buffer
cache in memory (we assume the buffer cache contains the files involved in the transfer). The first
tar process reads data from the buffer cache through a read system call, which uses uiomove to copy
the buffer cache data into the tar process’s user address space. The tar process sends the data into the
pipe buffer (in 10 KB chunks) using a write system call. The kernel again uses uiomove, this time
to bring the data from user space into kernel space. Similar actions occur on behalf of the second
tar process.
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Table 5.3 Simulation results for GNU tar using different memory copy implementations.

Normal PP Faster PP
B P F B P F

Overall benchmark:

Execution Time 215ms| 180 ms| 188 ms] 202 ms| 167 ms| 160 ms

Speedup (vs. bcopy) 1.00 1.19 1.14 1.00 1.21 1.26
Block Transfer in use:

% of execution time 30% 22% 27% 29% 20% 21%

CPU Occupancy forBT] 65ms| 39ms| 13ms| 59ms| 34ms| 12ms

We show the results from the tar application in Table 5.3. Both prefetched bcopy and fbcopy
show speedups over the standard bcopy implementation. Though fbcopy is slightly slower than
prefetching with normal protocol processing, with faster protocol processing it gains over prefetch-
ing. Furthermore, focopy has some advantages over processor copy in overall system resource uti-
lization. As shown in the table, the processor copy versions require more than three times as much
CPU occupancy to perform the same amount of block transfer. In the fbcopy version, this time
could be utilized for parallel computation, further increasing the performance of fbcopy relative to

processor copy techniques.

5.6 Related Work

As described in this chapter and Chapter 4, the goal of our message passing implementation in
FLASH is to provide high performance block transfer at user level. In addition, SinesH uses
a modern operating system, we require the protocol to provide protection and coexist with virtual
memory and multiprogramming. Though numerous systems have been proposed for supporting
message passing protocols efficiently, most of them do not address the issue of integrating message
passing with shared memory and cache coherence. Still others do not provide block transfer at user
level, or fail to fully support the features needed to make them usable in the context of a modern
operating system. Below we provide a comparison of our design with some of these systems.

Many systems and research proposals advocate provisions for direct user-level access to mes-
sage protocols. The messaging interface is typically eithemory mappear register based
The Connection Machine CM-5 provides access to the network through a memory mapped inter-
face [Thi91]. Register based approaches provide tighter coupling by moving the network interface
into the processor and providing direct access to the interface through special register9f)FK
HJ92, NWD93]. One of the problems with the above systems is that they are typically optimized
for short messages, thus limiting the achievable bandwidth for large transfers. Another drawback
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is that the compute processor handles the complete transfer, thus taking cycles away from the main
computation.

Several systems, such as the Intel Paragon [Int91] and *T [Bec92, NPA92], have proposed
delegating message protocol handling to a second processor on the node to alleviate overheads and
allow for overlap of computation and communication. Paragon uses a conventional processor that is
not well integrated with the network. *T provides tighter network integration, but requires the use
of custom processors as compute engines. Neither design has the ability to support cache-coherent
shared memory.

The approach in the Meiko CS-2 [HM93b] is more similarFt@sH since protocol processing is
delegated to a programmable network controller. However, they are not capable of supporting cache
coherence protocols and they providsegparateDMA unit. In FLASH, the controller is optimized
for efficient protocol handling and provides support for data movement such as block copy. In
addition, the cost and complexity of the controller is amortized by handling both cache coherence
and block transfer in a single flexible unit.

The sHRIMP system [BLA™94, BDFL96, FAB"96] from Princeton advocates the use of sim-
ple network controllers for supporting message passing style communicaiorimMP does not
provide hardware support for maintaining cache coherence s#ikevp philosophy is to separate
protection and buffer management issues from the data transfer functionality and to only support
the latter in hardwaresHRIMP provides two modes of data transfer. an explicit DMA transfer, and
an implicit transfer mode that gathers uncached processor writes and sends them to other nodes at
a word or block granularity. The implicit mode inherently involves substantial processor and bus
bandwidth overhead, but can be provided directly at user level once mappings have been established.
The DMA mode is more efficient, but may require system calls to assure protection.

The Cray T3D [Cra93] supports message passing within a single address space, but without
cache coherence. The T3D supports two modes of transfer: small messages (32 bytes) that interrupt
the destination processor, and large block transfer through a DMA engine. Both mechanisms incur
high overhead: small messages incur an interrupt cost on every message, and large transfers must
be initiated by an operating system call. In fact, the DMA facility on the T3D was found to be so
expensive (1000 processor cycles to start a transfer) that it was eliminated in the T3E [Sc096].

Alewife [ACD 191, KJAT93, KA93, ACD"95] integrates message passing and cache-coherent
shared memory within a single system. Each Alewife node has a hardware controller to handle
the common cases of cache coherence, and a DMA unit (in the controller) to facilitate message
passing. In addition, the main processor has an efficient memory-mapped interface to the controller
that is used for controlling message sends. Though most coherence transactions are handled by the
hardware controller, all user messages interrupt the processor for service. Thus, Alewife relies on
hardware support for fast processor interrupts. The drawback to this approach is that interrupting the
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processor can take time away from other computation. In addition, Alewife does not provide support

for virtual memory, and provides protection only between the kernel and user processes, leaving
user processes unprotected from one another. An extended version of Alewife called FUGU has
been proposed to address some of these limitations [MKAK94, VMBG}. Also, while the Alewife

research has addressed the issue of coherence of message data, only local coherence is supported in
hardware.

Typhoon [RLW94], a machine architecture proposed by the University of Wisconsin, shares
many of the same philosophies AsASH. The design uses a SPARC processor within the network
controller to allow execution of software handlers. Therefore, many of the mechanisms we have
discussed for efficiently supporting message protocols are directly applicable to Typhoon, though
they have not been studied for that system.

More recently, commercial systems have finally begun to emerge that provide integration of
cache coherence and block transfer. Each of these systems has attacked the problem from a different
perspective.

Like FLASH, the NUMA-Q system [LC96] from Sequent Computer Systems (previously known
as STING), also embeds a programmable communication controller within the memory system. In
that system, block transfer is not easily supported for a range of reasons, including a more rigid
association of (their equivalent of) data buffers and handlers.

The Mercury Interconnect Architecture [WG197] was designed by HAL Computer Systems
as part of the HAL S1 system. The S1 uses the Mercury Interconnect to join together 4-processor
Pentium Pro SMP systems and provide both cache-coherent shared memory and message passing.
HAL uses a multilayer approach similar to a traditional network stack to ease the design and verifi-
cation of the Mercury Interconnect. At the lowest level, the Fast Frame Mover (FFM) provides the
analogue to the physical, data link and networking layers of the OSI reference model, concerning
itself with the high performance movement of packets. The next level, the Reliable Packet Mover
(RPM) provides a reliable transport layer, hiding packet errors occurring in the FFM layer. Fi-
nally, the Interconnect Services Manager (ISM) provides high level protocol services such as cache
coherence or message passing.

Like FLASH, the S1 system provides a memory copy facility supported by the communication
controller. Their conclusions are similar to ours, that the memory copy engine has several advan-
tages:(i) it can have more lines outstanding than the processoi(ignalansferring directly from
source to destination requires only one bus transit per line instead of two {@@HIn their sys-
tem, the memory copy engine provides significant performance benefits over processor-based copy.
In FLASH the benefits from memory copy are more modest, in part because the R10000 processor
provides aggressive support for prefetching that allows it to hide memory latency more effectively
than the Pentium Pro.
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The Silicon Graphics Origin architecture [LL97] and in particular the flagship Origin 2000
system is very similar teLASH in many respects. It also consists of R10000 processors connected
by the CrayLink interconnect. The key difference is that the Origin node controller, called the Hub
chip, is hardware-based and not programmable. As a result, Origin is able to achieve slightly lower
latencies thamLASH for remote operations. The drawback to a hardware-based approach is that the
coherence protocol is fixed and cannot be changed to improve performance, fix problems, or add
features.

Origin provides a block transfer engine which provides full integration with cache coherence.
The engine is restricted to cache line aligned transfers, making it usable for page copying, but less
usable for more general block transfer needs. The block transfer engine is used by the operating
system primarily to accelerate page movement and is not exported to the user. Interestingly, Origin
overloads directory state bits associated with 10 to implement the coherence operations for block
transfer. This is similar to our approach in PP ownership, and probably was chosen to reduce the
additional protocol support needed to provide this feature.

The S3.mp system at Sun Microsystems is a research project that designed a scalable CC-
NUMA machine based on a microcoded controller. Their system provides a number of advanced
features that allow the system to be composed of an array of workstations, similar in some respects to
DistributedrLASH [KOH *94]. The block transfer facility in S3.mp maintains full coherence at both
source and destination. It can send at most 4 KB at a time, with no support for unaligned transfers.
Unlike FLASH, which can support many simultaneous transfers, S3.mp provides only one transfer
at a time in their microcode. Initiation is somewhat expensive, requiring nearly 10 stores to special
I/O registers, and restrictive since it requires physical addresses be provided. The processor detects
the completion of transfers through polling, though interrupt support was also planned [Now97].

5.6.1 Discussion

Woo et al. [WSH94, Wo096] studied the benefits of block transfer in scientific and engineering
applications, including the impact of prefetching as an alternative to block transfer. Many of their
conclusions were similar to ours. They showed that prefetching can achieve similar gains to block
transfer in some applications while others performed better using block transfer. They also found
that applications are able to effectively utilize the spatial locality afforded by longer cache lines.
However, while their study found limited use of block transfer in those applications, the workloads
we consider expose some additional opportunities for block transfer, such as in the operating system.
Compared with the aggressive networkrirasH, other systems typically have a larger dispar-

ity between local and remote access times. For example, if the network latency increased by a
factor of four in the tar workload with faster protocol processing, fbcopy would show a speedup
of 1.42 over bcopy, versus 1.22 speedup for prefetched bcopy. In addition, as researchers consider
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systems in which remote access latencies are even longer, such as the proposed Distrlsuted
machine [KOH 94], coherent block transfer is also attractive for migration and replication of pages

to improve memory locality [VDGR96]. The ability of prefetching to hide the long latency of an
inter-node block transfer depends on the number of outstanding accesses the processor supports.
In our simulations we permit four outstanding prefetches, as in the R10000; more prefetch buffers
would decrease the advantages of fobcopy.

Though not provided by the R10000, some modern architectures such as PowerPC and the Sun
UltraSPARC include support for block loads and stores. For example, UltraSPARC can load or
store blocks of floating point registers directly from or to memory without affecting some levels of
the cache hierarchy [Sun95]. This support affords a unique opportunity to avoid cache pollution
from processor block copy. However, implementation concerns such as restrictions on the number
of simultaneous block operations may limit the applicability of these operations for achieving inter-
node transfers.

5.7 Summary

The design of the fbcopy protocol has shown that block transfer can be fully integrated with cache
coherence with manageable complexity. Though the performance of a transfer decreases when co-
herence actions must be taken, fbcopy achieves near-peak network bandwidth when transfer buffers
are uncached or cached only locally. Since our fully integrated solution does not degrade perfor-
mance in locally coherent scenarios, there is little motivation to restrict the implementation to local
coherence.

From a performance perspective, though it is not appropriate for all situations, focopy offers
some advantages over processor copy techniques. Our study of MPI primitives demonstrated that
fbcopy enables significant performance gains over implementations of the MPI communication li-
brary using processor copy. While the microbenchmark results showed that prefetched bcopy out-
performs fbcopy in some cases, through optimizations modeled by faster protocol processing we
demonstrated that fbcopy can match or exceed the performance of prefetched bcopy. Fbcopy also
results in lower network traffic since it transfers only the data inherently being communicated and
avoids polluting the processor’s cache with the data moved by the transfer. The results from the tar
application also showed that fbcopy achieves competitive performance with a fraction of the CPU
occupancy of processor copy technigues. This parallelism can be utilized at the application level
to reduce the effective cost of block transfer communication. Finally, while gains from fbcopy in
FLASH are modest due to its relatively low remote memory latency, the potential benefits are much
greater in systems with longer remote latencies.

Our study of block transfer also illustrates a number of more general conclusions about alternate
protocols inFLASH. Particularly significant is the observation thasGic can efficiently provide
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fbcopy using the same hardware support as cache coherence. One of the particular reasons this
hardware can support block transfer so effectively is that it uses a generalized data buffer interface.
The protocol processor can efficiently allocate and deallocate buffers, and can load and store them
with dedicated instructiondlfock andsblock ). This interface is sufficiently flexible that the

only change needed for fbcopy is a minor extension to change data alignment. Contrast this ap-
proach with other systems that include a programmable controller, such as STING [LC96] which
associates a single data buffer with a handler. This precludes techniques like chunking that we use
to achieve high performance. Overall, this result argues for providing flexible data movement hard-
ware accessed by efficient interfaces, rather than rigid data movement approaches designed for any
one protocol.
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Chapter 6

FLASH Synchronization Primitives

The second class of communication we study in the context of a programmable communication
controller is synchronization. Our study focuses on the two common synchronization primitives
described in Section 3.2: locks and barriers. We study conventional implementations of these prim-
itives and attack their shortcomings using support from the embedded flexibility ef A1 sys-

tem.

Efficient synchronization primitives are extremely important to support scalable multiproces-
sors. In his boolHigh Performance Computer ArchitecturBtone [Sto90] argues that multipro-
cessor performance is not bounded by aggregate processing power (MIPS or MFLOPS), but that as
system size scales, the fundamental concurrency is limited by the frequency with which the system
can synchronize. To make the point concrete, he coins the term MSYPS (Million SYnchronizations
Per Second) as one possible metric of synchronization throughput. Conventional approaches to
synchronization often limit scalability by degrading in performance as systems grow. Our focus in
this chapter is to improve synchronization performance (latency and throughput) and maintain these
advantages as the machine size grows, in an attempt to increase the scalabilityshesystem
can achieve.

Achieving high performance synchronization is a challenge due to its specific requirements.
One of the most important features of synchronization primitives is achieving low overhead. Since
synchronization primitives are targeted for use within conventional applications using shared mem-
ory, the primitives must be integrated with the cache coherence protocol. Our goal of achieving low
overhead prompts a different approach to this integration than was used in memory copy. Synchro-
nization also entails the interaction of many different processors, unlike memory copy which (in
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the common case) involved two processors in tight communication. This characteristic requires our
protocols to take special steps to avoid contention by distributing work around the system.

This chapter is organized as follows: In Sections 6.1 and 6.2, we present the lock and barrier
protocols in detail by describing:

e the unique performance metrics for the synchronization primitive.

e the benefits and shortcomings of existing techniques and the opportunities to improve upon
them using custom protocol support.

e the design and implementation of a custeoasH version of that primitive that achieves
these goals.

In each section, we consider the performance of the primitive in isolation, similar to the analysis
of FLASH memory copy in Section 5.4. By studying each primitive in a controlled environment and
in the context of microbenchmarks, we can more clearly identify its performance characteristics
and its potential to improve real application performance. In Section 6.3 we consider the perfor-
mance impact of these primitives in the context of scientific applications taken from the SPLASH
benchmark suite.

6.1 FLASH Locks

The first synchronization primitive we consider as a candidate for cust@ai®H protocol support

is locks. A lock providesmutual exclusioni.e., only a single processor can hold a lock at any

one time. Locks are typically used to assure exclusive access to critical resources, code, or data
structures. A processor requests the lock througgtlaoperation, and releases it with anlock

the time during which the lock is held is known asréical section

Our motivation for considering locks for custom protocol support stems from some fundamental
observations about the performance of locks implemented on top of shared memory. On the one
hand, as we discussed in Section 3.2.1, shared memory locks tend to perform fairly well in situations
where contention is low. There has been considerable focus on improving shared memory locking
performance: the cache coherence protocol is well-tuned for simple line exchanges, and the caching
of locks enables rapid re-acquisition by the previous holder. However, shared memory locks degrade
significantly in performance and characteristics as contention increases.

We begin in Section 6.1.1 by describing the desirable characteristics of locks overall. Then, to
motivate the need for protocol support, we focus in Section 6.1.2 on the drawbacks of a few rep-
resentative conventional implementations of locks and examine in detail the source of performance
degradation under contention. In Section 6.1.3 we describe the application interfagstolocks.
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Sections 6.1.4-6.1.7 describe the detailed implementation of the lock protocol, highlighting how it
attacks some of the shortcomings of conventional locks through specialized protocol support. In
Section 6.1.8 we study the performanceroisH locks in isolation. We present application results
using these locks later in the chapter (Section 6.3) after presenting the protoeph s barriers.
Finally, Section 6.1.9 considers the broader related work on locking synchronization primitives.

6.1.1 Metrics for Evaluating Lock Performance

We begin by our discussion of locks by describing the desirable characteristics of a lock primitive.
We explore both qualitative features that are desirable as well as quantitative performance metrics
used to compare lock implementations cleanly. We refer back to these metrics later to evaluate the
success of our lock implementation.

Fairness

One important characteristic of locks is providifajrnessfor all lock accesses. In other words,
given simultaneous requests for a lock each processor should be equally likely to succeed in acquir-
ing it. Furthermore, if a processor does not succeed, it should effectively have higher priority in
successive attempts (providing a round-robin behavior). Among other drawbacks, a lack of fairness
can decrease performance by introducing a load imbalance in the system. This can arise in several
different ways. For example, if a lock were used to dynamically distribute work to processors, a
lack of fairness would cause some processors to wait longer to allocate work and thus waste oth-
erwise useful time. Alternatively, if work is distributed statically, a lack of fairness in access to
shared resources can cause some processors’ work to take longer than others, also causing a load
imbalance.

A severe breakdown in fairness may result in a condition caflanyationin which a processor
never succeeds in acquiring the lock and thus cannot make forward progress. ResearebagsHhe
project found that when nodes are connected by a low-dimensional network, processors which are
far from a memory location can easily be starved due to network effects in combination with the
cache coherence protocol [Hei97]. Consider the example of many processors attempting to gain
ownership of alock line. Under network congestion that causes negative acknowledgements, nearby
nodes can retry very quickly while a far away node takes longer and may never win the race to the
home. The nature of this problem is such that it may not be possible to assure fairness through
processor software techniques alone.
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Low Overhead / High Throughput

In general, the goal of parallel applications is to scale in performance as the machine size grows.
Of course, one aspect of scalability comes from the application, which must be structured to re-
move real serialization bottlenecks. But a second critical aspect is to provide high synchronization
throughput which in this case corresponds to locks being acquired and releatms averhead
Overhead in locks corresponds to time spent during the acquisition of an available lock or the tran-
sition of the lock from one holder to the next. In each case, the dead time due to synchronization
overhead renders the lock-protected resource unavailable to the application even though it is actually
unused.

The most difficult challenge in achieving low overhead in locks is assuring that the overhead
remains low as the machine scales and contention increases. Unfortunately, synchronization primi-
tives constructed on top of cache-coherent shared memory often do not match the inherent commu-
nication needed to synchronize, but instead incur communication which is an artifact of the coher-
ence protocol. Such artifactual communication can worsen as more processors attempt to acquire
the lock, causing performance to degrade. We study this problem in detail in the next section.

For the purposes of measuring locking overhead, we consider two different classes of accesses to
locks: contended and non-contended. We separate these classes since they isolate different features
of the lock implementations we study. In each case, we isolate a performance metric which reflects
the latency which is the locking bottleneck.

Non-contended Acquire Latency

We begin with non-contended locks, ones which are found to be free when requested. In this case,
the latency to acquire the lock is set by the duration of the lock primitive itself, which we refer
to asacquire latency Figure 6.1 illustrates this latency in several situations, showing in particular
that acquire latency is not necessarily constant. In the first acquisition by node B, the lock was
previously held on node A and so the lock must be fetched remotely. In the second acquisition,
node B re-acquires the same lock again, which may be faster in primitives that support caching of
locks.

Furthermore, locking performance may also vary basedliohnodes acquire the lock, since
requests for memory are typically sent to the memory’s home. Therefore, lock requests by the
home node or requests for locks whose previous holder was the home have higher performance than
exchanges between remote nodes in some lock implementations.
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Figure 6.1 Non-contended and contended lock acquisition latencies. Non-contended acquisition
acquire latencys measured from the time the lock primitive begins until it completes with the lock
(top). Contended acquisitidmand-off latencys measured from when node A releases the lock until
the lock operation on node B completes, since the duration the lock is held by node A is function of
the application not the lock primitivédtton).

Contended Hand-Off Latency

We separately consider the performance of contended locks, ones which are found to be held by
another processor when requested. In this case, we cannot use the acquire latency metric to evaluate
the lock, since the lock is unavailable when requested and the waiting duration is dependent on the
application and not the locking primitive. Instead, the critical metric for contended locks is the time
taken to hand-off the locknce it is releasedThis metric, callechand-off latencyignores the time

spent waiting for a busy lock and focuses on the remaining overhead during exchanges. Figure 6.1
also illustrates hand-off latency. As illustrated, we measure hand-off latency as the duration from
when the unlock primitive completes (indicating that the lock was released) until the new holder’'s
lock primitive completes (indicating that it has successfully acquired the lock).

6.1.2 Conventional Lock Implementations

We begin by studying conventional lock implementations to understand their advantages and short-
comings. One drawback we study in particular is performance degradation under contention. Our
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simulation results from controlled stand-alone tests in the absence of contention show that a ba-
sic shared memory lock can be acquired from a remote node in abesit When contention is
introduced—128 processors concurrently accessing the same lock—acquiring the lock takes 57
on average. In our application results, which include contention from normal shared memory ac-
cesses as well, shared memory lock acquisition latency can egegethl hundrednicroseconds.

We analyze two implementations below to understand the source of this slowdown.

LL/SC-Based Lock

Conventional lock implementations utilize the atomic memory update primitives provided by the
processor to modify a shared memory location. In the R10000 (and other processors such as the
DEC Alpha), atomic memory updates are provided by a pair of special memory operations called
load linkedandstore conditionallcommonly referred to asL /SO [MIP96, SW95]. Load linked
operates as a normal load, except it causes the processor to watch for other transactions on the
address which was read. The processor can then update the data in its cache as desired. Later,
the store conditional to that address only succeeds if no conflicting operations occurred for that
line since the LL, and the line is still intact in the cache. If a conflict does arise, such as another
store occurred since the LL executed, the SC does not modify the memory, but instead returns a
failure result code in a register. This failure can be detected and the entire LL/SC sequence can then
be retried until the sequence completes atomically [Gha95, MIP96]. We use exponential back-off
between failed lock attempts to reduce subsequent contention.

A basic lock implementation, which we refer to as LL/SC locks, uses the atomicity provided by
LL/SC atomically updated a shared flag. We present its implementation in Appendix B, Figure B.1.
The direct usage of these primitives is very fast in the absence of contention, and allows locks to
be cached and thus reacquired rapidly. However, as contention increases, the performance of the
LL/SC lock rapidly degrades.

The inefficiency of LL/SC locks due to contention arises from the characteristics of the cache
coherence protocol. A lock represents a unique entity that only one processor can hold at a time.
Cache coherence, on the other hand, is fundamentally designed to permit the segplitgson
of data. Consider the situation illustrated in Figure 6.2, in which one processor (node 0) is holding
the lock and several others (nodes 1-4) are waiting for it to be released. Node O finishes its use of
the lock and wants to release it. Since nodes 1-4 are spinning on the lock address, node 0 no longer
has exclusive ownership and must request an upgrade, which invalidate the sharers. In Figure 6.3,
the lock holder is granted ownership and can release the lock, as the former sharers acknowledge the
invalidations. Following the invalidation, the requesters all miss in their cache in quick succession,
and request the lock. This causes a rush of requests to the home node, illustrated in Figure 6.4. The
first request to arrive is sent to Node 0 to fetch the modified copy from the cache, while the other
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Figure 6.4 A rush of requesters follows an unlock. One requester gets the lock line first while
others are negatively acknowledged. Note the accumulated traffic from this exchange is significant,

though little communication inherently occurs.
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Figure 6.5 MCS Lock queueing approach. MCS Locks consist of an array of lock structures,
connected in a linked list fashion to form a queue. Each node spins on the lock bit in its record,
allowing waiters to be released individually. The lock pointer L indicates the tail of the list, where
new waiters are added.

nodes receive negative acknowledgements because the line is marked pending. The rush of requests
swamps the protocol processor, preventing the lock writeback from occurring and delaying other
requests for that node.

Furthermore, since the decision of who holds the lock next is purely based on a race to the
home, this implementation also fails to provide fairness for the ordering of lock acquisitions. In
fact, starvation or livelock may result if certain processors tend to consistently lose the race for the
lock, for example because of network topology, or if where ownership is granted and then stolen
away before the lock can be acquired [KCA92].

To address both the problem of fairness and the rush of requesters, ideally the lock would be
provided to the next holder more directly. In fact, some coherence protocols have proposed exten-
sions to the base protocol to improve transactions such as lock hand-off [CBZ91, BZS93, KCDZ94,
KBG97]. The other lock primitives we study provide this feature through queueing of requesters.

MCS Lock

As the previous section shows, LL/SC suffers from serious problems due to contention. One way to
address the contention problems of LL/SC locks is to implemeueaeof lock waiters insoftware
One such implementation is called MCS Locks, proposed by Mellor-Crummey and Scott [MCS91a].
For systems without hardware support for locking, MCS locks are one of the most efficient prim-
itives [MLH94, KBG97]. Many other implementations of software queued locks have also been
proposed, each with slightly different characteristics; we consider those other implementations in
Section 6.1.9.

The pseudo code for the MCS lock implementation used in our study is shown in Appendix B,
Figure B.2. An MCS lock is implemented as a linked list of lock structures, illustrated in Figure 6.5.
Each structure corresponds to a waiter for the lock; the head of the list is the current holder. By
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Figure 6.6. Extraneous caching in MCS lock queues. The process of enqueueing a record through
shared memory operations caches the previous node’s record as well. The extra shared copy must
be invalidated when the lock is granted to that node. For example, Node 1's MCS lock record is
cached by node 2. When node 0 clears node 1's lock flag allowing it to continue, an invalidation is
generated to node 2 as well.

making each waiter spin in its own (locally allocated) structure, MCS locks prevent any one node
from becoming a hot spot.

Since MCSis a queued lock, it is able to provide fairness and significantly reduce the contention-
based performance degradation which occurs in LL/SC-based locks. MCS locks incur no rush of
requesters at an unlock. Instead, the next waiter is individually released from spinning to acquire
the lock. However, since MCS locks are built on top of shared memory, they still encounter two
sources of artifactual communication.

First, the MCS queue tail is updated internally with LL/SC to assure atomicity. As a result,
contention can arise from simultaneous requests for the lock. Fortunately, unlike LL/SC locks,
contention of this nature only arises on tingial request for an MCS lock. Once a requester is
gueued for the lock it spins locally in its cache until its turn arrives, avoiding further contention.

The second source of artifacts arises when a lock waiter is released. As explained above, only the
next waiter is released on an unlock. However, the construction of the queue in software causes extra
caching of MCS lock records, as illustrated in Figure 6.6. The source of this caching is as follows:
when a node adds itself to the queue through shared memory accesses, it caches the previous node’s
record to update itaext pointer. The previous node is still spinning on theked bit, so it re-
requests the line, leaving a shared copy at both nodes. As a result, releasing the next waiter requires
an invalidation be sent tits successor node as welhich is purely artifactual.

6.1.3 FLASH Lock Application Programming Interface

The goal of our lock implementation is to use the support provided by the programmable commu-
nication controller to further improve locking performance. Of course, our approach is merely one
possible implementation of locking using the flexibility#fnAsH. Just as irFLASH memaory copy,

we export lock functionality to the application through a library call. This allows us to hide the
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details of the locking implementation and export a simple array of numbered locks to the system.
We provide two basic locking calls:

void FLASHLock (int lockNumber);
void FLASHUnlock (int lockNumber);

FLASHLock requests that the numbered lock be acquired for the process. This call spins internally
until the lock is held. FLASHUnlock releases a lock held by the application, passing it on if
another process is waiting.

A third call, the implementation of which we leave to the operating system designers, is respon-
sible for allocating a physical range of locks to an application that requests it. The allocation of
locks is analogous to physical memory management. InterrrliysH “physical” lock numbers
are unique across the entire machine. By mapping each application to use different physical locks,
the operating system can virtualize this resource like physical memory and allow each application’s
“virtual” lock range to begin at zero.

Goals of FLASH Locks

The primary goal oFLASH locks is to address the limitations associated with conventional shared
memory locking implementations. In particular, as we showed earlier, shared memory locks may
incur significant artifactual communication under contention. Our lock primitive specifically targets
these high contention situations, and strives to eliminate artifactual communicatigrietely We

pay particular attention to optimizing the lock hand-off following an unlock. A second goal is to
assure fairness across lock requesters and eliminate the rush of requesters following an unlock. Our
protocol uses queueing to help achieve both of these goals.

We also attempt to match the advantages of shared memory locks in non-contended situations,
such as low latency to acquire a free lock. In addition, we aim to support caching of locks to
permit efficient repeated acquires by the same processor, another worthwhile characteristic of shared
memory locks.

6.1.4 FLASH Lock Implementation

This section describes the implementation ofghesH lock protocol in detail, focusing on its dif-
ferences from the conventional cache coherence protocol and the approach kisegsHimemory

copy. We begin by presenting the protocol operation itself, describe its protocol state layout, and
explain the unique way we support cached lock state. In Section 6.1.5 we discuss several key design
choices and the alternatives approaches we did not choose. Section 6.1.6 explores two subtle issues
that arise from multiprogramming and from processors failing to acquire a lock in a timely fashion.
That section describes techniques to assure the protocol is robust in the face of these situations.
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Protocol Overview

At a high level, the operation of lock protocol is somewhat similar to shared memory locks based on
exclusive ownership of cache lines. As in shared memory, locks are represented in the cache and are
acquired using atomic memory update primitives. Also like shared memory locks, a cached lock can
be acquired and released repeatedly without external communication (assuming another processor
has not requested it). The major differences are in the underlying protocol implementation and
the exact interface to request and release locks. These differences allow the protocol to match the
inherent communication needed for locking and avoid the drawbacks of shared memory locks.

The most significant change as compared to the cache coherence protocol is that the lock pro-
tocol stores lock state imAGIC at each node. This enables the protocol to construct a distributed
queue of waiters that can pass the lock directly to the next holdesiimgle messageAs in cache
coherence, each lock is assigned a home node, but in this protocol the home’s only responsibility is
tracking the tail of the queue of waiters.

Internally, the protocol uses a concept calletbken which is analogous to ownership of a
cache line, but has different properties that are more compatible with locking. In short, tokens
represent permission to acquire a lock, similar to the way a token-ring networking protocol allows
only one sender at a time. Unlike ownership, however, which may be stolen away while a lock is
held (Figure 6.2), tokens must remain at the node while the lock is held. We explain below how
tokens are manipulated and identify the advantages of this approach.

Lock State

First we describe the lock protocol state, to illustrate how the protocol stores locks internally. Fig-
ure 6.7 illustrates the state, which consists of 64 bits per lock stored at each node. The fields are
used as follows:

Token (T) Indicates whether the token is present. The processor spins on this bit when it waits for
the token to arrive, and clears it when it yields the token.

Locked (L) Indicates whether the lock is currently locked. If the processor finds the token present,
it acquires the lock by setting this bit. Just as in any read-modify-write operation, there is a
race in which the processor sees the token present, but then loses the token before the Locked
bit is set, so LL/SC is used to assure atomicity when setting this bit. This does not suffer the
same problems as LL/SC locks because this state is local to the node.

Seen (S) Indicates if the processor has acquired the lock at least once after being granted the token.
Our protocol guarantees the lock can be acquired once, to assure fairness and eliminate the
“window of vulnerability” problem in conventional locks [KCA92]. To provide this, the Seen

Section 6.1 FLASH Locks 117



TIL|S|E|ICIH R 1| Q Next Holder Home/Queue T4dil Queue Index unused
111111111 12 12 8 23

Figure 6.7: Lock protocol internal state format.

bit is cleared when the token is granted and an arriving token request is queued if it finds Seen
is still clear (even if the lock is unlocked). In the same atomic sequence that sets the Locked
bit, the processor sets the Seen bit as well. Though it is critical to fairness, the Seen bit has
some subtle correctness implications. In particular, the toaktbe acquired after the token
arrives at the node or Seen prevents it from being claimed by another node. We expand on
this issue later and describe extensions to the protocol to ensure correctness in all cases.

Externally Requested (E) Indicates whether other processors have requested the token. The node
retains the token at an unlock if this bit is cleared, otherwise it gk C to send the token
to the next processor in line.

Cached (C) Indicates if the processor is currently caching the lock state. This tells the protocol if
the processor cache must be consulted to read the current Locked bit value.

Home (H) Indicates if this node is the home for this lock. Unlike shared memory locks such as
those iNDASH, since each node stores lock state any one can be used as the home for the
lock. The application designates a home node for each lock when it is initialized, allowing
the locks to be spread across the machine easily.

Requested (R) Indicates whether the processor has requested the token for itself. It is cleared when
the token is granted. We describe in Section 6.1.6 how this bit is needed to solve a locking
problem that arises in multithreaded environments.

Initialized (I) Indicates the lock has been configured and is ready for use. Access to an uninitialized
lock should deliver an exception to the application via the operating system.

Queue (Q) Indicates that the NAK avoidance queue is currently in use. The lock protocol is able
to avoid negative acknowledgments in almost every case because processor requests guar-
antee outgoing queue space. The one exception is when the Home node forwards a token
request to the queue tail (described below) in which case, just as in cache coherence, the
incoming request is not guaranteed outgoing request space. If the outgoing queue is full,
we could NAK the original request, however this significantly complicates the protocol and
reintroduces many of the problems of conventional locks. Instead, we maintain a simple cir-
cular queue at the lock home (not shown) to defer requestersier, thus eliminating NAKs
completely. Deferred requests are completed using the software queue when queue space be-
comes available. This approach brings the protocol into full compliancerwitaH deadlock
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avoidance conventions and assures fairness in every situation without impacting common case

performance.

Next Holder Used to store the successor node, the one which will be granted the token when this
node unlocks.

Home/Queue Tail For a node which is not the home, this field indicates which node has been
designated the home for this lock. The home uses this field instead to indicate the current
queue tail of the lock.

Queue Index Since lock homes are assigned dynamically, the lock allocates a NAK avoidance
queue from a preallocated pool when it is designated the home and stores the queue index
number in this field.

Though it incurs higher state overhead than cache coherence, maintaining protocol state at each
node has several particular advantages. First, it enables the protocol to construct a distributed queue
that enables very efficient hand-off. It also enalliessiC to store the token reliably when it arrives
and save it locally if replaced from the processor cache (instead of sending it to the home). The
former use is critical to allow the protocol pusha token to a node (similar in many respect to an
update-based coherence protocol), a feature otherwise impossilesn because the processor
does not support update operations into the processor cache itself.

A similar technique was used imasH for its cache coherence implementation, using a board-
level cache called Remote Access CaclRAC). Two of the major reasons to use a RAC were to
hold (i) lines supplied from a remote node before a local processor cache completes its read request
(an artifact of thepAsH implementation, which required the read to retry after the line arrived at the
node), andii) remote lines replaced by the local processor cache [Len92].

Lock Protocol Operations

Building on the protocol state explanation, this section describes the operation of the lock protocol
by illustrating how the protocol handles the different locking situations that can arise. Unlike the
cache coherence protocol which is extremely complicated, the diagrams illustrated here show essen-
tially the entire protocol. This concise design is one of the benefits of our implementation, allowing

it to sharemAGIC caches with the cache coherence protocol more effectively than a heavier protocol
like memory copy. Figure 6.8 describes the symbols used in the diagrams.

To acquire a lock, the processor begins by reading the lock address in its cache to see if it holds
the token. The result is not cache-coherent memory, but a copy of the lock state from the local
MAGIC chip, as illustrated in Figure 6.9. If the token is present, a conventional LL/SC sequence is
used to atomically set the Locked bit, just as in shared memory locks.

Section 6.1 FLASH Locks 119



Token Holder The node holding the lock token.

Requester A node requesting the token.

Queued Requester A prior requester, queued for the token

Home The lock’s designated home node.

FLASH Message A message between twoAGIC chips
(or betweermAGIC and the processor cache).

| @06

Node Pointer Internal protocol state that points to another node
(no communication is implied).

Figure 6.8 Legend of symbols in lock protocol diagrams.

Unlike shared memory locks which acquire ownership automatically upon a write, if the token
is not present the node must request it explicitly using an uncached commamdsto. Here a
single write (a PPR) is sufficient to express the token request. In Section 6.1.5 we explain how an
explicit request is needed due to the combination of processor speculation and the fairness guarantee
we provide. The PPR cause®GIcC to request the token from the lock’s home node, as illustrated
in Figure 6.10.

The home’s only responsibility in the lock protocol is to track the last node which requested
the lock, thequeue tail When it receives a token request, it forwards it to the queue tail and then
updates the tail to reflect the new requester. At this point, three cases may occur:

No queue exists, the lock is unlockedSince no queue exists, the forwarded token request reaches
the token holder, illustrated in Figure 6.10. ThewaGIC extracts the cached lock state from
the processor to see if the Locked bit is set. In this case it finds it unlocked, so it forwards
the token to the original requester. Unlike cache coherence, no acknowledgment is sent to
the home. When the token reaches the requesting noggiC invalidates the cached state
on which the processor is spinning. The processor re-reads the state and, seeing the token,
acquires the lock by setting the Locked bit as before.

No queue exists, the lock is lockedIn this case, illustrated in Figure 6.11, the token holdecic
finds instead that the processor has currently asserted the lock. It is thus unable to yield the
token, and instead stores the requester’s node number as its successor. By indicating that
the lock has been requested, the processor will yield the token when it unlocks, as described
below.
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e Read of lock state misses in processor cache (1).

e MAGIC generates cached representation from inte
lock protocol state, noting it is cached by the proces-
sor.

e Reply to processor with lock state (2),

e If token is present, processor atomically sets the
Locked bit in its cache, asserting the lock.

Processor

R A )

MAGIC

Figure 6.9 Request for local lock state fromaGic.

e Processor reads lock state (Figure 6.9) and finds token
absent.

e Processor issues token request PPRAcGIC, caus-
ing request to lock home (1), then spins on the lock
state waiting for the token.

e Home forwards request to queue tail (2), interna._,
points to node R as new queue tail (a).

e Token holdemAGIC extracts lock state from proces-
sor if cached. Finding it unlocked, it forwards the
token to node R (3).

o Atnode RMAGIC invalidates cached lock state, caus-
ing spinning processor to re-request it.

e With the token now present, Node R sets Locked bit
in its cache, asserting the lock.

Figure 6.10 Token request for lock currently at another node, no queue pending (Unlocked).

e Node R requests token from home as before.

e Home forwards request queue tail (2), internally
points to node R as new queue tail (a).

e Token holdemAGIC extracts lock state from proces-
sor if cached. Finding it locked, it internally points to
node R to receive the token next (b), forming a queue.

e It also marks lock as requested to indicate the proces-
sor should yield the token on an unlock (Figure 6.14).

Figure 6.11 Token request for a lock currently at another node, no queue pending (Locked).

¢ Node R requests token from home as before.

e Home forwards request to queue tail (2), points ®
node R as new queue tail (a). 2

e Queued node internally points to node R as its suc- a
cessor (b). @ 1

Figure 6.12 Request for a lock with a queue of waiters pending.
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¢ Unlock operation clears Locked bit, requesting lock
state fromMmAGIcC if not cached.

e Since state indicates no external requesters, the token @
is kept, the lock state remains cached, and no external
communication is required.

Figure 6.13 Unlock operation in cache when no queue is pending.

Unlock operation clears Locked bit, requesting lock
state fromMAGIC if not cached. 1 @ @
Since state indicates a queue is present, processc
sues unlock PPR t@AGIc and clears token bit. o
MAGIC sends token to successor node (1).
SuccessoMAGIC supplies token to processor as in
Figure 6.10.

Note that lock Home is not involved in lock hand-off.

Figure 6.14 Unlock operation with one or more requesters pending.

A queue exists for the lock. In this case, the home node’s queue tail points not to the token holder,
but to the last node in the queue of waiters. When it receives the forwarded token request,
the current queue tail stores the requester’'s node number as its successor, illustrated in Fig-
ure 6.12.

Now we turn to the unlock operation, which is extremely efficient in this protocol. To unlock,
the processor first clears the Locked bit in the cached lock state, fetching iMr@rcC if it is not
cached: Then it consults the state to see if another node has requested the lock. In the first case, no
request has been posted, so it retains the token and the lock state remains in its cache (Figure 6.13).
Subsequent lock operations (Figure 6.9) can succeed in the cache without interactior@ith
if no other intervening request occurs.

On the other hand, the unlock may see that another node has requested the lock, illustrated in
Figure 6.14. To assure fairness, our protocol requires the token be yielded; the processor yields the
token using a second kind of PPR to reliably indicat&tasic it has unlocked MAGIC clears the
token indication and sends it to the successor node it stored previously. When the token reaches the
new holder, it is provided to the processor as usual, by invalidating the cached lock state. Note that
this hand-off consists of a single message and does not involve the home.

Efficient Lock Caching

As we described, our protocol differs from cache coherence in that cached lock state is not global
memory, but is a representation of the losglGIC’s lock protocol state.MAGIC constructs the

A request may have extracted the line to consult the Locked bit, or the state may be replaced from the cache due to a
conflict, just as any other line.
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processor’s representation by reading the lock protocol state from the PP cache and storing it in
a data buffer explicitly. Rather than add special cases to the coherence protocol’'s miss handlers
to provide this feature, we use ASH's address space capability (explained in Section 4.1.1) to
indicate locks addresses are different than conventional memory. We program the Jump Table to
select a miniature coherence protocol (part of the lock protocol) to service cache misses in this
“lock space”. We use a similar technique in our implementatiorLefSH barriers in Section 6.2.

It may seem surprising to use a separate coherence protocol just for lock requests, but in contrast
with the sizeable cache coherence and memory copy protocols, the entire lock protocol (including
the coherence handling) consists of oagven handlersoccupying less than 3 KB. This concise
design is possible because the lock coherence protocol is not required to handle the huge number
of cases that arise in a normal cache coherence protocol from the interaction of local and remote
caching. Instead, by separating requests for the current lock state (intra-node communication) from
requests for token movement (inter-node communication), the number of cases can be dramatically
reduced. In Section 6.1.7 we explore the specific components of the protocol to provide an overview
of how it is structured.

6.1.5 Protocol Discussion

The lock implementation we describe is only one possible implementation we might use. In this
section we briefly discuss two design issues for the protocol to illustrate why several features were
made. First we consider a different queueing approach and illustrate its drawbacks. Then we discuss
the impact of processor speculation on the protocol design.

Centralized Queued Locking

Our initial implementation used a centralized queue of waiters, stored at the lock home. In that
approach, requests for the lock token are sent to the home followed by a later reply from home
with the token. Unfortunately, the home is a serious bottleneck since it is involved twice for each
contended lock acquisition(i) when the request arrives for the token, causing the requester to be
gueued, andii) when the token is released by the previous holder in the queue. Furthermore, the
token hand-off is slower since it must traverse through the home to determine which node should
receive it next.

We also considered a modified version that targets this inefficiency by telling the current holder
in advance who the following holder will be. This implementation, illustrated in Figure 6.15, allows
the holder to forward the token, then notify the home node outside the critical path. In response, the
home issues a new forwarding request to the new holder. Though this optimization improves the
lock hand-off latency significantly, the home is still consulted twice, so for short critical sections
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Figure 6.15 The centralized queue locking approach fonsH locks. The queue is stored com-
pletely at the home; only the current token holder knows which node follows it in the queue. The
arrows illustrate the token exchange process, which both passes the token to the next holder and sets
up the next round of forwarding.

it limits performance. The distributed queue approach we use provides the same direct forward-
ing benefits of this centralized queue, but further improves performance by completely eliminating
interaction of the home after the initial request.

Avoiding Problems from Processor Speculation

Recall that token requests are explicit in the protocol and not associated with a lock state request. It
may seem like a natural optimization to request the token whenever the processor fetches the lock
state to launch the request as early as possible. Unfortunately, the aggressive speculation performed
by the R10000 combined with the fairness guarantee of our protocol makes this approach unusable.
If the protocol were to request the token because of a speculative request and then the processor
never actually acquired the lock, the cleared Seen bit would prevent the token from leaving the
node and deadlock would occtirAs a result, token movement must only occur coincident with a
definite intention to acquire the lock, so we use uncached operations which are never speculated.
As we show in the microbenchmark analysis, the inability to launch the token request immediately
increase&LASH lock non-contended acquire time as compared to shared memory approaches.

Similarly, the protocol carefully defines the semantics of cached lock state such that the presence
(or absence) of the lock state in the processor's cache does not by itself indicate whether the lock is
held. Lock state in the cache merely indicates that the processor miatghestedn the lock. This

2In fact, the timeout implementation described in Section 6.1.6 eventually reclaims the lock to avoid deadlock, but the
situation should be avoided where possible.
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is essential because the processor may speculatively request the lock state, and conversely because
cache conflicts may cause the lock state to be replaced while it is still in use. Insteadluthef

the Locked bit (which is never speculatively modified) is used to indicate its status, similar to shared
memory locks.

6.1.6 Multiprogramming/Multithreading Issues

Despite the careful effort to prevent token requests from ever occurring speculatively, there are still
some situations in which a token that arrives at a node is not subsequently acquired. One such
situation occurs in multiprogrammed or multithreaded environments where a processor requests a
token and then is somehow preempted before it arrives. The process may also migrate to another
processor before it resumes. A related problem occurs when two threads (or processes) executing on
the same node try to access the same lock. This section describes solutions to these problems. For
the remainder of this section, we use “multiprogramming” and “process” terminology for brevity,

but identical issues arise from multithreading and our solutions apply there as well.

Reclaiming Unused Lock Tokens with Timeouts

Previously, we assumed that a token could only be requested by an application which was actu-
ally intended to acquire it. Unfortunately, multiprogramming may preempt such a process before
the requested token arrives. Depending on the situation, the process might be descheduled for a
significant length of time during which the cleared Seen bit prevents other nodes from taking the
token.

If the preemption is long enough, it may be in the best interests of overall performance to reclaim
the token to allow other nodes to use the lock in the interim. Similarly, if the process is stopped (or
worse, killed), then correctness requires that the token be reclaimed to allow other processors to use
it. Note that in both cases we are referring to a lock which was not actually acquired; if the node
acquired the lock then it must be retained to assure correctness of the critical section. If a process
dies or is suspended while holding a lock, operating system intervention is required to restore the
system to a consistent state.

We handle both of these cases through a software-managed timeout mechanism. The effect of
this mechanism is to change the Seen bit guarantee (described previously): the processor is still
assured the ability to acquire the lock at least ohcg only within a certain timeout region

The difficulty in providing this mechanism is implementing it efficiently. Different applications
could be using many locks simultaneously on the same processor, each of which requires its own
timeout. There are many approaches that might be used to address this problewe Appaoach
might store a “token grant time” in each lock record and then periodically walk the entire array
of locks, checking to see if any locks have exceeded the allowed timeout. The performance of
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Figure 6.16 Timeout bit vector structure and lock correspondence.

this approach is incredibly poor since not only must it examine each lock record, but it also incurs
PP data cache misses for the locks which were not actually used. This cache traffic makes this
approach prohibitively expensive and seriously disrupts the cache working state. On the other end
of the spectrum, we might maintain a linked list of locks that were recently granted tokens and their
arrival times, and periodically walk the list. For very light lock usage, this approach may be ideal,
but with even mild usage the timeout data structure can grow to a significant size and experience
similar cache drawbacks.

Instead, the approach we choose attempts to balance these two extremes and eliminate extrane-
ous cache traffic associated with timeout checking. It is based on a bit vector indicating which locks
have received token grants recently. Locks indicated by the bit vector are scanned periodically to
verify they have not timed out since the token grant. The key innovation in this approach is that it
marks recent token grants at a carefully selected coarse granularity: a single bit in the vector repre-
sents the number of locks that can be stored in a single protocol processor cache line. This allows
the timeout bit vector storage to be very compact, and yet the timeout checking for the group of
locks is efficient since they are resident in the cache at the same time.

In the currenfFLASH lock implementation, a 128 B protocol processor data cache line can hold
sixteen locks, thus a single bit in the vector indicates that one or more of the sixteen locks on that
line received a token grant recently. By extrapolation, a bit vector consisting of only a single PP
cache line (128 B = 1024 bits) can represent 16U4sH locks. Figure 6.16 illustrates this bit
vector approach. For the rest of this section, we describe an implementation for 16K locks; larger
implementations can be generated simply by scaling the bit vector.

The timeout mechanism is invoked periodically by the Idle HandlemAsic, described in
Section 2.3.5. We anticipate providing generous timeouts, on the order of the process time slice of
several milliseconds, which keeps timeout checking overhead very low. Once invoked, the timeout
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InitTimeoutlteration()

if (timeoutCheckDone) { /* Verify prior round finished */
return; [* Start new check next time */

copy AgingTimeouts to CheckingTimeouts;
copy InstallTimeouts to AgingTimeouts;
clear InstallTimeouts;

Initialize timeout checking;
timeoutCheckDone = O0;
SWQSchedule(TimeoutChecker);

}
E’imeoutChecker()
scan CheckingTimeouts for nonzero bits by doublewords;
if (entire mask is zero) {
timeoutCheckDone = 1;
SWQUnschedule();
return;
check = first nonzero doubleword in CheckingTimeouts;
pos = FindFirstSetBit(check);
/* Check one line of locks at most, to share PP */
foreach lock on line given by (check,pos)
if (lock.Token && !lock.Seen) {
/* Found one. Clean up as appropriate: */
if (lock.Requested) {
Verify network queue space;
lock.Token = 0; /* Steal lock away */
Send lock to external requester;
} else {
lock.Seen = 1, [* Allow external requests */
}
ClearBit(check,pos);
) SWQReschedule();

Figure 6.17 Pseudo code for theLAsH lock timeout mechanism.

mechanism schedules itself to execute from the software queue repeatedly until its processing com-
pletes (the duration varies based on the intensity and locality of lock activity). The pseudo code for
the timeout mechanism appears in Figure 6.17. It refers to three bit masks of the nature described
above:

InstallTimeouts This vector is where new token grants are recorded. The grant handler is
responsible for setting the bit corresponding to the lock being granted.

AgingTimeouts  when a new timeout round begirigastallTimeouts is copied here. This
assures that a lock has at least one full timeout period after its grant.

CheckingTimeouts  This vector is used to perform the actual timeout checking.
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The space overhead of the mechanism is constant and extremely low: only three cache lines to
store the three bit vectors. The advantage of the vector approach is the varying granularity at which
locks can be scanned. The first scanning occurs on doublewords, each of which represents a full
1 K locks (64 bits*16 locks/bit). This allows inactive lock ranges to be eliminated very quickly.
Once an active doubleword is found, the Find First Set Bit (FFSB) instruction can be used to scan
for activity in hardware at a 16-lock granularity. Set bits cause examination of a group of 16 locks
individually. Locks found to have received a token grant without a subsequent request lose their
Seen-bit protection or are sent to the next requester, if present.

Retrying Token Requests

Multiprogramming has still another unfortunate effect on locking. Requests for a lock token are
tracked based on thmedeon which they originated. Just as in shared memory locks, there is nothing
to prevent one process from requesting the lock, and then before the token arrives multiprogramming
causes another process to execute. If the second process desires the same lock, it may consume the
token that arrives for the other process’s request. In fact, if the lock is requested elsewhere, the
token may also be lost before the first process ever has a chance to acquire the lock.

The risk is that the first process will not realize its token was consumed by another process and
will blithely spin waiting for it. We solve this problem by clearing the Requested bit when the token
is lost. As part of its spin loop, theLASHLock routine must check the Requested bit to see if its
request is still active. If it sees it clear, it re-requests the token. This mechanism is also important
to support the timeout mechanism: If a process is preempted just after its lock request and its token
arrives then times out, this technique assures it issues a new token request if needed when it later
resumes execution.

This issue elucidates the exact granularity of the fairness guarankesi locks provide: the
processoris granted the lock in a fair mannerLASH locks, like shared memory locks, have no
way of controlling which process on that processor actually acquires the lock after the token arrives
at a processor. Moreover, any solution attempted at a low level runs the risk of causing higher-
level problems such as priority inversion, so this issue is better solved, if needed, by a higher-level
mechanism [SRL90].

6.1.7 Protocol Handlers

One of the clear successes in the lock protocol is its very compact protocol code. This allows the
lock protocol to share the PP instruction cache with cache coherence much more effectively than
the FLASH memory copy protocol, for example. Table 6.1 enumerates the handler components of
the FLASH lock protocol, which all told amount to less than 3 KB. This compact design was enabled
by two key design decisions.
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Table 6.1 Summary of thecLASH lock protocol handlers.

Handler Name/
Handler Size (bytes)

Description

[lom

re-
hints

SOr.

LockStatusRead The “cache miss” handler for lock protocol state requests f
104 B the processor. It doesot cause any token movement. This han-
dler provides exclusive ownership even if a read-only copy ig
quested, eliminating the need for upgrades and replacement
in the protocol.
LockWriteback The handler for lock protocol state writebacks from the proces
208 B Should a lock line be replaced from the cache, it collects the

rent values of the locked and seen bits and updateglsec lock
state.

PIGetLockToken

cur-

Requests a token needed by the processor but found to be absent.

200 B This is invoked explicitly by a processor PPR.

PlUnlock Invoked explicitly by a processor PPR, this handler accepts a token

152 B from the processor following an unlock that noticed an external
request was pending. This handler sends the token to the|next
processor in line.

NIRequestLockToken | This handler serves two roles: it accepts new requests for the|lock

1272 B token (if invoked at the lock home), and requests to steal a Jock
token away (if invoked elsewhere). These two functions form|the
majority of the lock protocol’s token movement functionality, thus
this handler is the largest.

NIGrantLockToken Accepts an incoming token from the network, invalidating the|re-

128 B lated lock state, if cached, to cue the processor.

SWRequestLockToken | Executing from the software queue, this regenerates a queued lock

528 B request which could not be handled due to outgoing network queue

limitations.

Total size: 2880 B

| (includes a support subroutine not listed) \

First, by referring to locks in an alternate address space, a custom coherence protocol could be

used that was able to avoid the complexities of integrating with the full-fledged coherence protocol.
As Table 6.1 shows, just two handlers (LockStatusRead and LockWriteback) are needed to provide

the majority of coherence functions.

Second, token movement was largely separated from coherence functions, which reduced the
total number of cases to be handled. Instead, five handlers have the primary responsibility of moving
tokens (there is a minor interaction with coherence since they are required to notify the cache upon

token arrival).
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6.1.8 Lock Performance in Isolation

In this section we evaluate the performance of the lock protocol using a range of metrics. We
begin as we did in Chapter 5 by considering the performance at a very low level, examining the
characteristics ofFLASH locks and other alternative locking primitives. We perform this study

of locks in the context of microbenchmarks that compare this range of primitives in a controlled
manner. This allows us to isolate the performance differences between the primitives in various
operating situations. Later, in Section 6.3, we consider the performance impact of the locks in the
context of applications.

We do not attempt to compare against each of the wide range of alternatives for implementing
locks in software. Rather, we focus our comparisomrigfsH locks against several key choices to
allow us to isolate and explain the major effects. Other researchers have considered the breadth of
software alternatives in detail in previous publications [MCS91a, MLH94, KBG97]. Specifically,
in our analysis of locking performance we consider the two different lock primitives we described
earlier in this chapter. LL/SC-based locks and MCS locks. We include the LL/SC lock in this
study despite it being a fairly simplistic lock implementation because it is nonetheless widely used
in applications, and because load linked and store conditional operations are commonly provided
by many processor manufacturers. We study MCS locks since they provide essentially the highest
performance available from processor software techniques alone.

The simulation environment used in this chapter is the same one described in Sections 2.4.2
and 5.4.1. The only difference is that this study was performed after the switch to the CrayLink
network [Gal96], so we model it in our simulations.

Non-Contended Lock Acquisition

We first study non-contended locks, ones which are available when requested, using the acquire
latency metric introduced in Section 6.1.1. We measure non-contended acquire latency using a
hand-crafted microbenchmark that isolates the test to eliminate other activity in the system. The
results are shown in Table 6.2. As we described, the acquire latency varies based on whether the
nodes involved are the home node where the lock is allocated, so we explore the permutations of
whether the previous holder and new requester are the home node of the lock. The remote to remote
case considers the transfer between two different nodes, neither of which is the lock home. Finally,
since these locking primitives permit caching, we consider the acquire latency when the same node
re-acquires a cached lock it previously held. Cached re-acquire times are independent of where the
lock is allocated.

As expected, the results show that shared memory techniques allow low acquire latency for locks
which are available. In fact, the performance of LL/SC locks and MCS locks is nearly identical in
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Table 6.2 Acquire latency for an available lock (microseconds). The results are shown for the
three different locking primitives and with different combinations of lock requesters. FlTAgH
Aggressive variant is explained in the text.

Previous Lock Locking Primitive
Holder Requester | LL/SC | MCS | FLASH FLASH
Normal | Aggressive
Lock Home Remote 1.13 | 1.17 2.64 2.25
Remote Lock Home 1.06 | 1.11 2.43 2.06
Remote | Other Remotgg 1.45 | 1.50 | 3.01 2.64
Same node re-acquire 0.03 | 0.07 | 0.12 0.50

these cases. For available locks, MCS locks perform little additional work as compared to LL/SC
locks, which is one of the benefits of the MCS technique.

Unfortunately,FLASH locks (Normal) are much slower than shared memory locks in the acquire
time metric for two specific reasons. First, the initial request flrsH lock takes longer than that
for shared memory locks. To acquireaasH lock, the processor first requests the lock status and
if it finds the token missing, only then does it request it via a PPR. This introduces an extra round
trip as compared to shared memory locks which immediately requests the lock from the initial miss.

As we explained earlier, the presence of speculation prevents us from launching the token re-
qguest from the lock status read handler. Were the token request able to be launched there it would
decreas&LASH lock acquire latency by about 0.45. One alternative exists in software that works
correctly despite processor speculation: within the lock library call we could issue the token request
blindly beforereading the lock status, essentially prefetching the token. The performance of this
approach is listed underAsH “Aggressive” in Table 6.2. When the token is not present, this suc-
ceeds in reducing the acquire latency by approximately.@.4in the case of lock re-acquisition,
the token request handler correctly ignores the request if the token is already present, however it still
ties up the protocol processor. This delays the subsequent lock status read if the lock is not cached,
increasing re-acquire time by about the same B.4or delays other reads such as accesses within
the critical section. The choice between these two flavors depends on the expectation of whether the
lock may be reacquired; these results suggest extendirg s+ lock API to provide this version
for cases where re-acquisition is unlikely.

Another approach to handling speculative requests from the processor is merely to ignore the
problem and request the token when the processor issues the lock state read. The timeout mechanism
in the protocol ensures correctness should speculation occur, though the latency could be as high as
several milliseconds. If speculative requests are sufficiently infrequent, this approach mightincrease
overall performance.
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The second reasaiASH locks are slower is caused by the token movement protocol’s handling
of lock state cached by the processor. When a node’s request for the token reaches the current token
holder, several things must happen. First, the token holder must examinadthe state to verify
that it has the token and expects to able to supply it. There are a number of cases in the protocol,
largely due to queueing, so this state check is nontrivial. Then, if it finds the lock state is cached by
the processor (typically the case) it must extract the state from the cache to see if the lock is currently
asserted. This request must wait for the processor cache’s reply and then examine the result, unlike
the cache coherence protocol’s forwarding which can launch the message early andsaliano
stream the data out the network as it arrives from the processor. These effects combine to make the
token request handler (NIRequestLockToken) inefficient for available locks, about @erall.
Optimizations to this handler may improve the performance of the state check phase slightly, but
the processor cache request is fundamental and accounts for a significant fraction of the handler.

Contended Lock Acquisition

Despite the slow performance for uncontended loekasH locks perform extremely well under
contention, i.e. when locks are found to be held by another processor when requested. The two
effects in particular which affect acquire latency do not impact contended lock hand-off latency.
First, the extra latency of token requests is hidden because the lock is held and cannot be supplied
immediately. Second, the token request is enqueued at the current holder, thus the cache access
is not in the critical path. Instead, when the lock is later released it is handed off directly to the
requester at very low latency.

To evaluate contended lock performance, we use a microbenchmark that reflects a number of
processors making one update each to a lock-protected data structure. This benchmark, like the pre-
vious one, carefully eliminates other activity in the system to isolate synchronization performance.
In fact, to reduce even the interference from accesses in the critical section, and to intensify the
contention to the theoretical worst case, we eliminate the data structure modification itself. Instead,
each processor merely acquires the lock and releases it immediately. Later in this section we con-
sider a different microbenchmark that simulates a lock being repeatedly acquired and released, to
study the performance of contended accesses arriving in a stochastic fashion.

In this benchmark, one processor (the lock home) acquires and holds the lock for a long time
while all the other processors request the lock and find it busy. Then the home finally releases the
lock and the benchmark begins, continuing until all processors are able to acquire and release the
lock a single time. In each of the lock primitives, steady state is reached during the initial wait phase
for the lock, which has two different forms: In the case of LL/SC locks, each node caches the lock
value indicating it is already held. When the lock is later released, these nodes all rush to the home.
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Table 6.3 Two results from the contended locking microbenchmark: hand-off latency and all-
acquire latency (microseconds).

Total Hand-Off Latency All-Acquire Latency
Processors (single lock) (NumProcs- 1 locks)
LL/SC | MCS | FLASH | LL/SC | MCS | FLASH
2 1.7/1.1, 0.8 1.0 2.8 15 14
4 3.3 15 1.0 10.5 9.4 4.5
8 6.3 1.6 1.0 28.5| 194 9.5
16 10.1 1.6 1.0 77.4| 40.8 18.5
32 17.0 1.6 1.0] 189.8| 85.9 39.3
64 304| 1.6 1.0| 449.2| 174.9 75.7
128 574 1.6 1.0] 1214.4| 398.6| 159.4

The queued lock primitives, on the other hand, construct a queue of waiters during this time when
the lock is unavailable, and then smoothly transition the lock down the list.

From this benchmark we can measure two useful quantities. The flrahd-off latencyin-
troduced earlier, which measures the time from the initial release until the first waiter succeeds in
acquiring the lock. This metric is useful to isolate the overhead from contended hand-off with no
other interference. The second metric is the total duration of the benchmark which we refer to as
all-acquire latency Note that for a given number of processaots,all-acquire latency measures
n — 1 total lock acquisitions and releases, since the home node holds the lock to allow the initial
condition to stabilize. While hand-off latency is a useful metric for isolating one effect, all-acquire
latency also includes other costs such as unlock overhead, and thus reflects the realistic performance
of a series of acquisitions in a row.

Table 6.3 shows the results of the benchmark for the primitives we study, over a range of ma-
chine sizes. We see that both MCS andsH achieve essentially constant hand-off latency, since
there is no contention within the release process as a result of the pre-constructed queue. LL/SC on
the other hand degrades in performance as more nodes rush for the lock when it is released. LL/SC
locks, unlike the other techniques, perform better when next lock holder is the home. The 1.1
hand-off latency corresponds to this case.

All-acquire latency results are also presented in Table 6.3; in addition, Figure 6.18 plots all-
acquire latency divided by the number of lock acquisitioms-(1) the benchmark executes. In the
figure, a flat horizontal curve corresponds to ideal scalability—a lock with performance independent
of machine size. We see that both MCS &ndsH locks essentially achieve this ideal. The y-value
of the curve shows absolute per-lock time, which fansH (about 1.3us) is lower than that of
MCS (2.8us), as expected from the hand-off latency results. Note that the difference between the
two is larger than difference in the hand-off latency results since the all-acquire time includes unlock

Section 6.1 FLASH Locks 133



w100}
e}
c
o
g 90} + LL/SC locks
3 <~ MCS locks
S aok ©  FLASH locks
E
S
g 70F
-
& sof
[
£
F sof
40F
3.0F -t
20F
é ....... O o
..................... O R e N O
ok o O
0.0 ' ' ' ' . ‘ .
2 4 8 16 32 64 128

Number of Processors

Figure 6.18 Results from the high contention benchmark under simulation. The plot illustrates
average time in microseconds per lock, as a function of machinealzacuire latencydivided
by NumProcs- 1).

operations, which are also slower for MCS. LL/SC locks are inferior in every respect: the absolute
overhead is higher, and the curve’s positive slope reflects increasing overhead as the machine scales.

One other effect the hand-off latency and the figure both show is a jump in latency for MCS
locks from 2 to 4 processors and then essentially constant performance from then on. This arises
from the MCS unlock operation which is able to do less work when it reaches the end of the queue.
For two processors, the queue is only one-long, so this effect is visible there.

Contended Lock Acquisition (Real Machine)

Since the results for contended lock acquisition were generated from simulation, it is interesting to
verify our scalability conclusions using a real system where possible. Thoughrasal system

is not yet available, we are able to evaluate the scalability of the LL/SC and MCS lock primitives
using a 16-processor Silicon Graphics 02000. The 02000 provides a reasonable comparison point
since it shares witALASH the same processor and network. The major difference is that the 02000
uses a proprietary hardware node controller in place oMhkelc chip, and our system only has

16 processors. Unlike simulation which allowed us full visibility into the processor, measuring
individual lock times accurately is not possible on the real system. However, we are able to measure
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Figure 6.19 Results from the high contention benchmark running on the Silicon Graphics
Origin 2000 multiprocessor. The plot illustrates average time per lock acquisdilbacquire la-
tencydivided by NumProcs- 1)

the all-acquire latency with reasonable precision using the 800 ns granularity hardware counter in
the 02000.

The 02000 results from the same contended lock benchmark are shown in Figure 6.19. We
see that the times per lock are uniformly slower than those from simulation (by a factor between
approximately 1.5-2). The absolute overheads for these primitives is a function of many different
effects, including the detailed processor and cache controller timing and so it is not surprising that
our simulator does not exactly match.

As for scalability, we see similar trends to those encountered in simulation. MCS time is nearly
constant, but does have a clear increase as more processors are involved. Despite our careful at-
tempts to isolate this benchmark while executing on a real system, an unknown effect or source
of interference is clearly at work here, unlike simulation where we are able to achieve complete
isolation and perfect visibility. LL/SC lock time increases as before, though in this case we see
significant performance degradation even at 16 processors, amplifying all the more the need for
queued locking even for small machines.
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Stochastic Contended Lock Acquisition

By design, the contention microbenchmark described in the previous section is very controlled,
to carefully isolate the performance of lock hand-off under contention. It is somewhat artificial,
however, since it allows the entire queue of waiters to be constructed in advance.

In this section we study a less contrived high-contention microbenchmark that interleaves lock
requests throughout its execution, similar to the one used in [KBG97] and [LA94]. This benchmark
is less convenient for isolating the exact performance costs because of the random nature of the
events it contains, but is somewhat more representative of the real performance an application might
encounter.

[The] microbenchmark.. accesses a critical section in a loop repeatedly (the bench-
mark accesses the critical section a total of 3,200 times; these accesses are distributed
evenly among the processors). Once in the critical section, a processor waits 800 cycles
before releasing the lock (this stall simulates access to, and computation of, protected
data). After release, the releasing processor waits for a random time selected from a
uniform distribution. The mean of the distribution is five times the critical section delay
(4,000 cycles) [KBG97].

We attempt to tune the benchmark to match the delays used by these prior researchers, though
our different time and processor modeling is likely to cause the absolute magnitude of the results to
differ. In particular, we retain the factor of five difference between critical section length and mean
acquisition interval, in an attempt to provide the same degree of contention as previous studies.

Figure 6.20 illustrates the results for this benchmark, expressed as its total execution time. As
before, LL/SC scales poorly, causing lock throughput to degrade quickly. For MC$Lash
locks the execution time is essentially constant over a wide range of machine sizes (8—-128 proces-
sors), which corresponds to desirable lock throughput independent of machine size. As the machine
scales, execution time does increase slightly as a result of requests to rejoin the lock queue. Overall,
the performance of MCS armlLAsSH do not significantly differ. Since a large fraction of the bench-
mark execution time is spent idling inside the simulated critical section, only a small fraction of the
time is actually spent in transitioning locks, and thus speedup is limited by Amdahl’s law.

These microbenchmarks foreshadow the results from application simulations we present in Sec-
tion 6.3. In some cases we find that extremely high contention for locks limits performance, and
in those situationsLASH locks show gains from improving communication. In cases where the
contention is less severe, or represents only a small fraction of the application, we find that im-
provements fronFLASH locks are milder and tend to be similar to MCS, which also achieves the
bulk of the gains as compared to LL/SC.
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Figure 6.20 Performance of the stochastic contended lock microbenchmark under simulation. The
plot illustrates overall execution time of the benchmark, in milliseconds.

6.1.9 Related Work

Locking synchronization has been studied in many different contexts and by different approaches.
We present the related work most relevanttesH locks, and to the large scale parallel process-
ing environment we study. We focus in particular on one primitiyeLB, as it is shares many
common characteristics with thireASH lock. We also consider approaches to attack the artifactual
communication problem by avoiding locking altogether.

Graunke and Thakkar [GT90] present a performance comparison of synchronization primitives
for a bus-based multiprocessor. Their analysis advocates the use of back-off for locks experiencing
mild contention, or queue locks when the contention is significant. In their experiments using a
simple benchmark, queue locks were superior in most metrics past 5—-10 processors on a Sequent
Symmetry.

In two related papers, Anderson [And89, And90] studies the performance of spin lock primi-
tives. These studies focus primarily on different kinds of delays between lock retries, designed to
reducing contention heuristically. The papers find that the exponential back-off technique, in which
a processor's maximum wait time increases exponentially as contention repeats, is a practical ap-
proach for its simplicity and performance. Anderson also presents a queue lock primitive, but it is
inferior to the MCS lock in many respects.
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Earlier in this chapter we described in detail the MCS lock primitive introduced by Mellor-
Crummey and Scott [MCS91a, MCS91b]. Since their original papers, a humber of researchers
have studied their primitive and described modifications to improve its performance in specific
situations. Herlihy et al. [HLS95] present a range of techniques for software counting including a
custom version of MCS locks for that purpose.

Magnusson et al. study the MCS lock primitive closely using analytical techniques and propose
two new lock primitives, the LH lock and the M lock [MLH94]. Their analysis demonstrates that
under contention the MCS lock release requires an additional memory read as compared to LH,
but that LH requires additional acquire traffic when locks are not reacquired by the same processor
successively.

The M lock uses an ingenious approach to optimize performance still further: packed with the
word storing the lock’s status it indicates the last writer of the lock. This allows the M lock release
routine to avoid a global write if a lock queue did not form when the lock was held, while still
allowing the lock to be released in a single operation if one did. The M lock thus improves global
traffic in some regimes as compared to MCS, which is especially valuable as systems scale, at a
cost of increased lock primitive code length, which may detract from its advantages in cases where
critical sections are small or contention is lowadd et al. [KBG97] suggest that the extra cache
miss can be eliminated from the MCS lock by collocating the lock indication with the next pointer.
We use their approach in our implementation of MCS locks.

An approach calledeactive synchronizatiois proposed by Lim and Agarwal [LA94] to address
the tradeoff between lock regimes. Instead of relying on a single lock variant for all situations, they
describe how the lock primitive can detect contention (from failed acquire attempts) and change to
a more resilient protocol. This allows the latency advantages of light protocols in low-contention
cases with the throughput benefits of protocols like MCS as contention increases. Though we do not
study this approach iALASH, the ability to select different protocol characteristics withinGic
makes this approach well-suited to our environment. In particular, this technique may be useful to
address the performance limitations of non-contermledsH locks, selecting a different primitive
in that regime instead. We reflect on the use of reactive synchronization-like technicriessin
in Section 6.4.

The DASH system [Len92] provided an special facility in the protocol to implement a kind of
queued lock by extending the coherence protocol. Lock and unlock operatioRstrare accessed
through uncacheable alternate memory spaces but lock values otherwise appear as normal memory
locations, both similar to our approaahasH provides an operation calledgsanting unlockwhich
invalidates only ainglerandom waiter for the lock instead of invalidating all processors as dsual.
This avoids a rush of requesters following an unlooikasH also provides an operation to force a

3A random waiter is released because the bit vector coherence directory struatasHadoes not maintain a notion
of ordering that could be used to provide FIFO access to the lock.
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line to its home, which is used at a lock release so the next holder’s request may be satisfied at home.
This combination of support helps to reduce lock contention, though it lacks the ability to transfer
locks directly from holder to holder provided lpyASH locks andQoOLB.

Falsafi et al. [FLR 94] advocate the use of application-specific communication protocols to
increase performance using knowledge of an application’s characteristics. They describe a range
of custom protocol maodifications including changes to the coherence model and granularity and
optimized synchronization. They refer to a message-based lock protocol built on top of the Tem-
pest interface that optimizes lock hand-off as compared to MCS locks. ALksH locks, their
performance gains come from matching synchronization traffic to the underlying primitive rather
than layering on top of shared memaory. Their paper does not describe the protocol itself, but their
results agree with our findings that custom synchronization support in this environment can show
significant gains.

One important observation is that their paper describes a fairly broad range of custom protocol
optimizations, among them coherence protocols that include update functionality. Several of these
optimizations are not possible in the curremiAsH prototype due to its processor interface and
system design choices we described previously. For example, update operations are not permitted
by the R10000 bus interface, amdGIiCc does not implement a remote access cache to hold updates
in the memory system (though a RAC could be implemented in software).

Their study focuses on the Tempest interface running on the Blizzard-E system (described in
[SFL'94]), which allows them a wider range of operations but at far lower performance than a ded-
icated hardware implementation. A hardware Tempest implementation, such as Typhoon [RLW94]
would likely entail implementation-specific restrictions similarFtasH.

Distributed Queueing: SClandQoLB

Previous research work has proposed the use of distributed queueing for both cache coherence pro-
tocols as well as locking. One use of distributed queueing is to store the sharers of a cache line in
the Scalable Coherent Interface (SCI) coherence protocol [Mic93]. This approach differs from the
centralized sharer list approach mfasH, Alewife, and many others. Despite our positive results
using distributed queueing for locks, Heinrich found that an implementation of the SCicoherence
protocol forFLASH was very complex [Hei97]. In particular this complexity arises because SCI-
maintains distributedioubly-linkedlists, and must be able to remove sharers from anywhere in the
list to handle cache line replacements.

The QoLB synchronization primitive@Queue On Lock Bitoriginally calledQosB) was intro-
duced by the Wisconsin Multicube project, and then subsequently used to support locking in the
SClprotocol [GVW89, KBG97, Go097]. The most detailed explanatioQ@iB, including details
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acquire(line)

do {
whiI_e (QOLB(line))

; /* Spin */
} while (Test&Set(line.lock));

release(line)

Unset(line.lock);
UnQOLB(line);

Figure 6.21 Pseudo code for a lock implemented with theLB primitive, taken from [AGGW92].

of one proposed implementation within SCI, is provided by Aboulenein et al. [AGGW92]. Concep-
tually, theQoLB approach is very similar teLASH locks. In fact, the basiQoLB interface can be
implemented directly on the existirrgAsH lock primitive; we describe the features@bLB below

to explain the correspondence.

Figure 6.21 shows how locks are implemented usinggbeBs primitive. In short,QoLB per-
forms three functiond(i) It indicates the processor’s intent to acquire the lock, and requests the lock
be fetched to the node. The parallels the token request PPR issued witlrirngie lock library.

(i) 1t returns a result immediately to indicate if the line is currently present on the node. The value
it returns corresponds to the bit in tikeAsH lock status line that indicates token presence. The
while loop in Figure 6.21 corresponds to a loop indideASHLock that spins waiting for the token

to arrive. (i) It enqueues the requester on an SClwaiter queue (using a specialmode) to pro-

vide FIFO access to the line and permit direct holder-to-holder handrofSH locks provide both

these characteristics by default for locks, since locks use a dedicated protocol instead of building on
conventional shared memory.

SinceQoLB is non-blocking, it can be used to prefetch the lock before it is actually needed,
an optimization studied in detail by Woest and Goodman [WG91]. AthesH lock API does not
currently provide this mode, but it could be supported merely by separating out the token request
from polling or spinning for lock arrival. The downside to prefetching in bothLB and FLASH
locks is that once the lock (or in our case, lock token) is granted to a node, other nodes are prevented
from acquiring the lock (during a timeout window) even if it has not actually been asserted. This
suggests that lock prefetching must be used carefully to avoid lengthening the effective critical
section duration.

The QoLB primitive doesnot acquire the lock itself, like the token requestApasH. Both
protocols acquire the lock once the token is presentQ@rB returns success) using an atomic
memory update primitive such as Test-And-Set or LL/SC. SmoeB locks operate on normal
memory locations, use of theoLs primitive itself is optional since the atomic operation still
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operates correctly (though at lower performance) using normal shared memory mechanisms if the
line was not previously fetched. lLASH locks, on the other hand, the token fetcineiguiredsince
they do not fall back to the normal cache coherence protocollixes.

This design difference leads to two other differences between the primitives. First, when a lock
is fetched inQOLB, it carries with it a line of data, which appears in the cache with the lock. This
prefetching-likecollocation effect can be very beneficial, particularly if the lock protects a small
data structureFLASH locks cannot easily provide this feature because locks are treated separately
from cache coherence. Though this is a minor drawback to our approach, keeping the lock protocol
separate from the coherence protocol is one of the reasons that it is so compact, and thus performs
so well.

On the other hand this difference caugesLB to suffer from an unfortunate flaw that occurs
if a lock line is replaced or if a processor tries to acquire a lock not already present in its*cache.
In those cases SCltakes over and perforrmem@mnal exclusive read, which destroys the queue of
waiters that accumulated. This does not violate mutual exclusion, but it does violate the FIFO
ordering guarantee and requires the queue be reconstructed (very likely in a differentrrder).
locks prevent this failure mode since atomic operations only act on the local copy of the lock line,
with the queue being maintained reliably by the lock protocoMa®ic. The timeout solution in
FLASH locks is also superior to that afoLB because their solution steals the lock in a manner that
often results in this queue breakdown situation. HLasH token holder takes too long and the
token is stolen, only that node is forced to request the token again.

QOLB has been evaluated using an analytical approach both for the basic primitive [AGGW92]
and focusing on the prefetching effect [WG91]. More recerglyLB has been studied under sim-
ulation to compare it against other locking alternatives [KBG97]. At the level of detail of these
studies,QoLB andFLASH locks perform similarly, except that we do not explore lock prefetching
and can not readily support the ability to collocate data with locks given our current state implemen-
tation. The results of these studies show similar trends to ours, though the simulated microbench-
mark results predict larger gains frogpLB over MCS than we experienced withASH locks.

This difference may arise from remote memory costs being higher under SCI(reducing the apparent
performance of MCS locks) or from differences in our microbenchmark timing.

In a recent technical report,agi describes a purely software implementatioroafis called
SOFTQOLB[KG98]. This implementation uses the Blizzard run-time system [S#] to provide
the Tempest interface on top of a cluster of commaodity workstations. Since this environment differs
considerably from the one we study, the results of that paper are not readily comparable to ours.

“This can occur due to migration, multiprogramming, and from a race condition be@@EBreturning success and
the atomic update primitive.
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Avoiding Mutual Exclusion

One alternative to improving locking performance is to avoid the requirement for mutual exclusion
altogether. Researchers have explored several different approaches to this problem; in general they
require specialized hardware support or application software modifications. We discuss the first of
these primitives, Fetch-and-Op, in more detail in Chapter 7; a more detailed study of them is beyond
the scope of this dissertation.

The NYU Ultracomputer and the IBM RP3 (Research Parallel Processor Prototype) projects
introduce a synchronization operation called Fetch-And-Op [GLR83, G&K PBG 85, FG91].
Fetch-and-Op performs atomic updates at the memory location itself using specialized hardware,
thus avoiding the pinging of contended lines between different processor caches. These projects also
explored a specialized interconnect calledaanbining network The combining network switch,
described in Section 7.2.1, improves performance further in high contention scenarios by merging
different processors’ requests as they traverse the network, reducing multiple memory updates to
a single one. Fetch-and-Op is ideally suited to a class of simple critical sections such as dynamic
work distribution, it can also be used in concert with some of the techniques described below to
support more complex updates. The Cray T3D implemented a single Fetch-and-Increment register
per node to support work distribution; the T3E extended this support to operate on memory and
added Fetch-and-Add functionality as well [Cra93, Sco96].

Wait-free(also called_ock-freg synchronization techniques allow cooperating processes to as-
sure consistent data structure updates without using a lock-protected critical section. This can be
achieved by a number of software or hardware techniques. Herlihy [Her90] describes software
techniques that can be used to avoid mutual exclusion, including one technique in which processes
“help” each other so that updates by one processor do not cause another processor’s pending opera-
tion to become inconsistent.

More recently, Herlihy et al. [HM93a] describe hardware support to enable lock-free character-
istics at much lower overhead. This support, caliehsactional memoryprovides the ability to
atomically update several memory locations at once and to detect other updates that render previous
accesses inconsistent, similar in concept to the semantics provided by transactions in a modern rela-
tional database. This approach is particularly appropriate for snoopy bus-based machines or cache-
coherent machines with sequentially consistent memory. In an environmeRtAke! containing
distributed memory and weak memory consistency, transactional memory requires additional mem-
ory fence operations to provide the appearance of sequential consistency.

As an alternative to using hardware support, Shavit et al. [ST95] present STM, a software-based
implementation of transactional memory using LL/SC. Their implementation constructs a table de-
scribing pending memory modifications, somewhat similar to the information stored in hardware
in the original paper. Their experiments using STM on the MIT Alewife machine show that it
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outperforms other non-blocking software synchronization approaches, but that STM and other non-
blocking techniques are inferior to queue locking methods such as MCS Locks.

6.2 FLASH Barriers

The second synchronization primitive we study is barriers. The semantics of a barrier is that a
processor which arrives at a barrier may not proceed past it until all other processors reach the
barrier as well. This functionality is often nicknamedesdezvougmeeting), since it forces the
execution of processors to meet before proceeding further.

Barriers are typically placed in applications with phase-based characteristics. There the barrier
is used to assure that no processor proceeds to a subsequent phase until all have finished the current
one. This is particularly important if values computed by processors in phefide read by other
processors in phase+ 1. Without the barrier, processors might read partially completed results
from phase; if, for example, a load imbalance has made the phase durations on each processor
differ.

High performance barriers are important in some classes of applications that synchronize fre-
quently. Scott [Sco96] describes a proprietary meteorological application in production use on the
Cray T3E in which a 128 processor system requires a barrier every200he T3E can achieve a
barrier in 155 in software using special message passing features, or in approximatelysing
special barrier hardware support. We show later that even a highly optimized barrier implemen-
tation on top of cache-coherent shared memory can takes3I0or 128 processors. This section
presents a barrier protocol ferAsH that can achieve the same synchronization in,fequiring
no additional hardware beyond the facilities already presentAsH for cache coherence.

The outline of this section is similar to the section on locks. We begin in Section 6.2.1 by
describing a methodology for analyzing barrier performance. Then, in Section 6.2.2 we present
several conventional barrier implementations, to illustrate the strengths and weaknesses of these
approaches. We present the application programming interface of theurem barrier in Sec-
tion 6.2.3, and then describe its design and implementation in Section 6.2.4. We show the code
organization and size in Section 6.2.5. We study the performaneeasiH barriers in isolation in
Section 6.2.6 (application results for locks and barriers are presented later in Section 6.3). Finally,
Section 6.2.7 summarizes some additional related work in this area.

6.2.1 Metrics for Evaluating Barrier Performance

We begin our analysis as we did for locks by describing the desirable characteristics for barriers.
Then, since barriers are a more complicated synchronization primitive than locks we establish a
framework that can be used to compare different barrier implementations consistently.
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The critical performance characteristic of barriers is achieving low overhead and high through-
put (i.e., barriers per second). Barrier overhead appears as the dead time during which some or
all the processors are forced to wait at the barrier even though all have arrived and satisfied the
required rendezvous. Conventional barrier implementations fail to achieve low overhead for many
of the same reasons as locks, in particular artifactual communication within the barrier primitive.
Moreover, since barriers necessarily involve all the processors, contention based performance degra-
dation can readily occur.

Low barrier overhead has scalability benefits for parallel applications. Since synchronization
represents time not spent doing useful work, applications are typically crafted to increase grain
size and decrease synchronization frequency. Reducing barrier overhead may enable finer grain
synchronization that eases application design, enables scalability in new application classes, or
increases the machine size to which existing applications can productively scale.

Besides hand-written applications, finer granularity synchronization can also benefit automat-
ically parallelized applications. The SUIF compiler [HAR6] parallelizes applications by iden-
tifying independent threads (e.g., DOALL loops in FORTRAN), executing them in parallel, and
then synchronizing the processors with a barrier. The parallelism detected by the compiler is often
very fine, and thus reducing synchronization overhead is important to increase the fraction of loops
which can be sped up by parallelization. Due in part to high synchronization costs, coarse loops
are currently the primary focus of these compilers [BAR96, B238]. Section 6.2.4 describes
how FLASH can support a unique kind of barrier tailored specifically to the structure of compiler-
parallelized applications.

Barrier Nomenclature

Isolating the performance of a barrier is more difficult than in locks for two primary rea@dhsr-

riers fundamentally require the participation of multiple processors, and so there is more parallelism
involved in the operation, ang) there are some interactions between barriers and the application
that executes them. To isolate these effects, we define two metrics below that serve to analyze the
two main components of barrier performance while at the same time reducing the interference from
application behavior.

We begin by establishing some nomenclature for barrier operation; Figure 6.22 illustrates a
generic barrier instance. For this analysis, the actual processor numbers are not significant, we
focus instead on the relative indices with which processors join and leave the barrier.

On the left side of the figure are the arriving processors, named symbolically by the order in
which theyjoin the barrier:J; ... J,. Our analysis considers a processor to have joined the barrier
when itbeginsexecution of the barrier primitive in the program. Furthermore, we say that agival
occurs at time ,, thus the array of arrival times is denoted ... ¢, .
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Figure 6.22 Barrier nomenclature illustration, showing fall-through latency and release latency.

Similarly, the right side of the figure names the processors belegisedfrom the barrier:
Ry ... R,. Processors are released when tfieish executing the barrier primitive and resume
application processing, designated in a similar way; ...tg,. Note that the join and release
orders need not be correlated, i.e., the first joining procegsoeed not be the one released first,
R, etc.

Barrier Fall-through Latency

The first metric of barrier quality, as illustrated in Figure 6.22, is referred fallhrough latency
Fall-through latency indicates how long the barrier takes to process the final arrivhkegimte-
leasing processors (i.e., the latency from the last arrival at the bdjrientil the first processor is
releasedR;). We can therefore define fall-through latertgyas follows:

th = tp, —ts,

One goal of a barrier implementation is to minimize this fundamental latency since it reflects time
whenno useful work is being done by any processtmsan ideal barrier, once the final procesdpr

arrives at the barrier (satisfying the barrier condition) the processors would immediately be released.
In practice, the fall-through latency is a non-zero interval during which the barrier communicates
the final arrival, realizes that the condition has been satisfied, and notifies the first processor.

We define fall-through latency to carefully exclude the intefval J,,] since the arrival times
themselves areota characteristic of the barrier, they are a characteristic of the application in which
the barrier executes. The nature of the arrival times does have an effect, however, since they may
change the contention within the barrier implementation. Fall-through latency is thus not a constant
for a particular barrier implementation, but varies. We study two cases for fall-through latency:

The best possible fall-through latency for the barrier primitive is achieved when all the proces-
sors but one have arrived at the barrier well in advancgy,af In this case, the final arrival finds
the least contention within the barrier since every other processor is idling. We call this the “late
arrival”’ case.

On the other hand, the processors might arrive at the barrier at exactly the same time. This
case might occur in particular if the application phase is short and there is little opportunity for
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load imbalance across the processors. In that situation, called the “simultaneous arrival” case, the
processors experience contention within the barriersaridcreases. Each implementation varies
in the severity of the performance degradation caused by simultaneous arrivals.

An important goal of any barrier implementation is to avoid performance degradation associated
with coincident arrivals. The motivation for this is clear: simultaneous arrivals at the barrier are the
bestachievable load balance in the system! If the barrier operates more slowly in that situation, it
detracts from system performance in this otherwise desirable case.

Barrier Release Latency

The second metric of barrier quality, as illustrated in Figure 6.22 is referredrelegse latency
Release latency corresponds to the latency from when the first processor is released from the barrier
Ry until the last processor is releasBg. Thus, we can define release latemgyas follows:

trel = tr, — tR,

Unlike fall-through latency, which varies based on the stochastic nature of the arrivals, release
latency is to first order a pure characteristic of the barrier itself. In an ideal barrier, release latency
is zero, corresponding to all processors being released simultaneously. In practice, the barrier takes
a finite time to communicate to the other processors that the barrier has been achieved and release
them. In fact, this release phase is subject to contention if implemented inefficiently, which may
explode as the number of processors increases.

The second goal of a barrier implementation is to reduce release latency. This is desirable for
several reasons. First, releasing processors at different times may introduce a load imbalance in the
system at the start of the subsequent phase. A more simultaneous barrier release thus provides better
characteristics to the programmer. It may also allow communication in the subsequent phase to be
more carefully crafted or provide timing measurements a consistent starting point.

More concretely, release latency reflects the amount of timstedin the barrier primitive’s
release phase, and thus release latency should be minimized. For example, if we assume that proces-
sors are released uniformly over the interial,, ¢, |, then the average time wasted per processor
in the barrier isw + (try — tr,)/2 = ti + trel/2. In general, once the barrier is satisfied, it takes
betweeniy andty + tre fOr a processor to emerge.

6.2.2 Conventional Barrier Implementations

In this section, we study several indicative barrier implementations on top of shared memory to
identify their characteristics and limitations. As in locks, this dissertation does not attempt to ex-
haustively cover the extremely broad range of software barrier implementations that have been pro-
posed in the literature. Other researchers have studied these alternatives in the context of a variety
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Figure 6.23 Schematic illustration of barrier primitive types: conventional and master-slave. The
conventional barrier (left) joins all processors and then releases them all simultaneously. The
master-slave barrier (right) joins all processors then releases a single one for a serial/coordination
phase. The master then releases the slaves with an explicit command.

.
A

of systems [MCS91a, FG91, MCS91b]. Our analysis instead selects a range of primitives that are
very common, or illustrate key concepts that are useful in guiding our design. We focus on the MCS
Barrier  MCS91a, MCS91b] in particular as a comparison point agaimstH barriers, since it has

the highest performance of the conventional algorithms in most cases.

The primary focus of this analysis is on implementations that provide the basic barrier function-
ality in which all processors rendezvous and then are released simultaneously. A slightly modified
barrier primitive is appropriate in some applications such as auto-parallelizing compilers. In the
modified barrier, which we refer to asmaaster-slavebarrier, the processors rendezvous as usual,
except that only a single processor (the “master”) is initially released. This allows the master to per-
form some coordination work in isolation such as setting up parallel computation for the “slaves”.
Then using an second release routine the master explicitly releases the slaves to complete the barrier.
Figure 6.23 illustrates the difference between conventional and master-slave barriers. We present a
barrier specially designed for master-slave functionality and also show how other barrier implemen-
tations can be converted to a master-slave style.

LL/SC-Based Barrier

We begin as in locks with a simple barrier implementation, which is based on an atomically-updated
count of waiters. The pseudo code for this implementation appears in Appendix B, Figure B.3.
When each processor arrives at the barrier, it increments the count using LL/SC to guarantee atom-
icity. Associated with the barrier is alsogeneration numbewhich indicates which barrier in-
stantiation is currently underway. To implement the release portion, a processor reads the current
generation number and then spins waiting for it to change. The last processor to arrive resets the
count and increments the generation number.

Though it does not contain an explicit lock, this barrier suffers from essentially the same con-
tention problem occurring in LL/SC locks described in Section 6.1.2. Access to the barrier count
not only swamps the home node with requests, but also experiences repeated failed SC attempts
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Figure 6.24 Example binary tournament barrier tree for an 8-processor application. In this ex-
ample, pairs of nodes at each power of two modulus meet in successive rounds, requiring several
meetings by some nodes.

if multiple processors attempt the update in close proximity. As a result, the effective traffic to
achieve this barrier may grow exponentially in high contention cases (since each additional proces-
sor may cause each other processor to fail). In practice, as our microbenchmark results show, this
barrier's performance under contention is so poor that it is practically unusable for system sizes of
32 processors or beyond.

Tournament Tree Barrier

As the machine scales, contention for the centralized data structure in the LL/SC barrier implemen-
tation skyrockets. A technique proposed by may researchers to address this problem is to implement
instead a barrier tree data structure. Hengsen et al. [HFM88] proposed a special tree barrier imple-
mentation called a Tournament barrier which uses repeated pairwise synchronization. After every
synchronization, one of the two processors proceeds to the next level to synchronize with another
processor. This approach, illustrated in Figure 6.24, forms a type of tree in which any meeting
experiences contention from only two processors. It can also be generalized to form a tree of any
dimensionality oradix (i.e., a binary or “2-ary” tree has radix 2). The algorithm we study uses two
such trees, one for joining the barrier (shown in Figure 6.24) and another where processors spin to
be released (not shown).

Since LL/SC barriers scale so poorly, we use a basic tournament tree barrier implementation as
the baseline for our application measurements later in this chapter. The implementation we use was
written by Chris Holt as part of theLAsH project. Pseudo code for this implementation appears
in Appendix B, Figure B.4. In this implementation, each tree node rendezvous is performed by
updating a lock-protected count. By distributing the work across the machine, the contention for
any lock is low, but a small degree of artifactual communication from the embedded lock is possible.
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Figure 6.25 Example 3-ary barrier join tree Figure 6.26 Example binary (2-ary) barrier
for an 8-processor application. release tree for an 8-processor application.

MCS Tree Barrier

Mellor-Crummey and Scott [MCS91a] present an optimized barrier structure that improves perfor-
mance still further through a combination of techniques. The pseudo code for the MCS barrier
implementation appears in Appendix B, Figure B.5. Unlike most previous barrier approaches, MCS
barriers use no locking within their implementation. Instead, each processor is reserved a dedicated
flag location to write in its parent’s node in the tree. Since there are never multiple writers, locking
is not required beyond the atomicity of a single write, which is guaranteed by the processor.

These flags are also intentionally packed together in the parent’s structure, which causes false
sharing. Our simulations show a counterintuitive benefit from this approach as compared to one
where each flag is on its own cache line, even in the simultaneous arrival case. Despite the false
sharing it causes during the writes, packing the flags reduces the total number of misses the parent
must take to read its children’s arrivals. In addition, the cache coherence protocol uses forwarding
to transfer lines between false sharing processors, which is fairly efficient.

The MCS barrier uses a different tree structure than the tournament barrier; hypothetical join
and release trees of this type are illustrated in Figures 6.25 and 6.26. The benefit of this type of
tree is that each node is only required to update a single flag when it arrives, unlike the loop that
may walk several tree levels in the tournament-style barrier. Likewise, they also enable significantly
simpler release logic, which reduces release latency considerably as compared to the tournament
barrier. Note that there is no reason the join and release trees must have the same topology; in this
case we show a release tree using a different radix than the join tree.

MCS barriers can also be adapted to provide master-slave functionality merely by returning
from the barrier at the root before releasing the children. A second primitive (not shown) can be
used to release the children as usual once the master finishes executing the serial computations.
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Basic Master-Slave barrier

The third primitive we consider was used in a study of the SUIF auto-parallelizing compiler, and
designed specifically to provide master-slave functionality [BAR96]. This primitive is not a tree
barrier, but instead is a very simple approach to achieve efficient barriers at small machine sizes. Its
pseudo code appears in Appendix B, Figure B.6.

Like MCS barriers, this implementation contains an array of integer flags that are updated in-
dependently, avoiding the need for atomic update techniques. It also packs its flag array within the
same cache line, causing false sharing. This simple implementation performs very well up to about
8 processors, as do the low-radix tree node joins in MCS barriers. As the number of processors
grows, however, performance quickly degrades from the contention for the barrier array.

6.2.3 FLASH Barrier Application Programming Interface

As in locks, we present a library call interface to the barrier primitive, with barriers referenced by

a numbered array. Though in practice an application usually needs only one barrier, we support
an array in case, for example, several subsets of an application’s processors want to use barriers
independently.

void FLASHBarrier (int barrierNumber, int index);

FLASHBarrier indicates that the processor with indedex has reached the given barrier. This
primitive returns once the other processors reach the barrier as well. Before this primitive can be
used, it must first be configured. As we describe in the next section, this configuration constructs
the barrier tree internally between the involvedGic chips. We provide a routine that constructs

a variable-radix barrier tree:

void InitFLASHBarrier (int barrierNumber, int index,
int totalProcs, int joinRadix, int releaseRadix,
int masterSlave);

This routine constructs the portion of the join and release trees for prodgedsar (out of a total
of totalProcs  ).° It communicates the tree informationGIC using a PPC that we describe
later in this section. It can generate join and release trees of the same or different radix as specified
by the parameters.

Just as in locks, the operating system is required to export an interface to provide the page
mappings for access toAGIC. As before, a memory-based interface allows the barrier resource
to be numbered beginning at zero for each application, hiding the sharing of physical machine
resources from the user.

®Note that we do not specify the actual processor numbers in this interface. Instead we rely on the operating system
to provide information about the mapping between application processor indices and physical processor allocation.
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Master-SlaveFLASH Barrier

FLASH barriers can also provide master-slave barrier functionality. The additional parameter for
barrier initialization abovemnasterSlave can be used to select this barrier feature. In this mode,
only the root processor (index zero) is released when the barrier is satisfied. Once it has finished the
needed coordination processing, it releases the other processors using an additional call:

void FLASHReleaseBarrier (int barrierNumber);

Goals of FLASH Barriers

Our barrier protocol is specifically geared to combat the problem of artifactual communication by
matching the underlying communication to the barrier operation. This allows the protocol to avoid
high contention for shared barrier state and eliminate negative acknowledgements altogether. Fur-
thermore, by eliminating communication artifacts the protocol reduces the impact of simultaneous
barrier arrivals, bringing the average performance closer to the “late arrival” best case.

The second goal is to reduce the barrier overhead as reflected in the fall through and release
latencies described earlier. Ideally, by reducing overhead we may be able to provide a primitive that
performs efficiently over a wide range of machine sizes.

6.2.4 FLASH Barrier Implementation

TheFLASH barrier implementation uses some of the same concepts asAbe lock primitive in-
troduced earlier in this chapter. Even though barriers seem like a more complicated operation than
locks given that all processors are involved, it turns out that the barrier protocol is fairly straightfor-
ward.

This occurs for several reasons. First, barrier trees are set up statically, unlike the queues in
FLASH locks which are constructed dynamically. Thus, emelsiCc knows in advance its “place”
in the barrier. Furthermore, unlike locks, where a centralized resource (the token) is ultimately the
focus, barriers lend themselves to parallelism through the tree structure. Thus, no centralized home
is needed to direct the operation as was the case with token requests. Finally, there are fewer race
conditions in barriers, since the state is very regular.

The resulting barrier protocol achieves excellent performance, contains absolutely no artifac-
tual communication or negative acknowledgements, and is very compact (as we describe in Sec-
tion 6.2.5).

Barrier Tree Construction and Terminology

Fundamental to the operation mfASH barriers are two distinct barrier trees.ASH barriers use a
tree structure like that of MCS barriers but the tree structure is storeghByc and is never directly
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Figure 6.27 Barrier protocol internal state format.

visible to applications. As introduced earlier, Figure 6.25 shows a hypothetical barrier join tree. For
FLASH batrriers, join tree vertices correspondricasH nodes while edges correspond to messages
carrying requests to join the barrier. Note in particular that interior vertices of the tree coincide
with FLASH nodes as do leaf vertices. Before a node can send a message to its parent in the tree, it
must have received join requests from all its children as well as the local processor. Leaf vertices
each only receive a single join request, from the local processor. Similarly, Figure 6.26 illustrates

a release tree for the same nodes. Here the edges correspond to release messages indicating the
barrier has been satisfied.

To represent these trees internally, each nodeAgIC maintains an 8-byte record for each
barrier. Figure 6.27 shows the intermaAGIC barrier protocol state format used to store this infor-
mation. The barrier configuration in this state is stored statically and is provided to thetkeat
by a PPC performed within the barrier initialization call. The version we show uses 8-bit pointers
and can thus support systems up to 256 processors. Larger systems can be supported by reducing
the number of children permitted and increasing the pointer size. The fields are used as follows:

Root (R) Set if this node is the root of the barrier tree.

Sense(S) A toggling sense bit indicator used in reporting barrier completion to the processor. This
is used to avoid a race condition in procesgaGIC communication and improve perfor-
mance.

Two Phase (T) Indicates whether the barrier is configured for two-phase operation, which causes
release behavior to differ at the tree root.

Initialized (1) Indicates the barrier has been configured and is ready for use. Access to an unini-
tialized barrier should deliver an exception to the application via the operating system.

Join Count This count tracks theurrent number of processors which have arrived at the barrier.
This consists of messages from the network as well as join indications from the local proces-
sor.

Join Total This read-only field stores the total number of joins expected at this node; when that
many is received the vertex can notify its parent. The value in this field is larger than the
Release Total because it counts the local processor join as well.
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Release CountWhen a barrier release has only partially completed due to outgoing network queue
limitations, this field stores the number of children which have been notified. By separating
join and release, early-released processors can join again immediately without affecting the
release.

Release Total This read-only field stores the number of release tree children for this node, which
corresponds to the number of valid children in the release tree child array.

Join Tree Parent Indicates the barrier join tree parent node, unused for the root node (we detect
the root using the R bit for higher performance).

Release Tree Children A packed bit vector of release tree children, the nodes which must receive
a release indication when the barrier is achieved.

Though our approach benefits all application sizes, it is especially suited for large-scale parallel
applications, since those are the ones which tend to use barriers the most, and tend to suffer the most
from the artifactual communication in software techniques. For performance, those applications
also typically run with processes attached to a particular processor, thus our choice of static barrier
trees is appropriate. However, due to the static tree the barrier must be reconfigured should the
process/processor mapping change due to machine scheduling or multiprogramming (this function
could be performed transparently to the application by the operating system communicating with
MAGIC).

A related effect arises from parallel applications running in degenerate modes such as with
multiple processes on single processor. This situation is supported by the protocol, but the tree
must be configured that way in advance by incrementing the Join Count field. Thus it merely
appears as if multiple barrier participants are joining on the local node. Here, as in the case above,
multiprogramming effects which cause the processor mapping to change require the barriers be
reconfigured.

Barrier Join

The join phase of the barrier begins when the first processorrlaiSHBarrier . The barrier join
is similar to the token request in locks, but with a small difference. In locks, the cache is checked
first to see if the token is present before it is requested. In barriers, no tokens are used—instead,
the processor immediately issues a PPRAGIC asking to join the barrier. This PPR is analogous
to the token request in locks: since it is uncached, the barrier join operation is reliable and atomic.
The join PPR is a read, and it returns the value of the barrier sense indiedtoethe barrier. The
sense indicator is a single bit that toggles when the barrier is achieved.

The library call then requests the cacheable barrier state, which is provided by the barrier proto-
col and not the cache coherence protocol (similar to themvagH lock state requests are handled).
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For barriers, this state contains merely a single valid word that is the current value of the barrier
sense indicator. The barrier spins on this value until it is the opposite of the starting sense returned
from the initial PPR. By returning the starting sense indicator value from the PPR we avoid a race
in which the barrier is satisfied after the PPR but before the barrier status is requested (this might
occur if the processor is the very last to arrive). By relying on the starting sense value from the PPR,
the processor immediately detects the barrier as satisfied when the cacheable state returns.

Within MAGIC, the join request cues the barrier tree to be consulted. If the join represents the
last join expected at this vertex of the join tneeGIC sends a join message to its parent in the tree.
This carries on until ultimately the final join arrives at the root, cueing the root node to begin the
release phase, described below.

The protocol code for the join phase is very compact. The only exceptional case arises when a
join arrives in the network that cues a message to the next level of the tree. If network queue space
is not available for the outgoing join message the software queue is needed to issue the message
later. Fortunately, the software queue retry always succeeds since the SWQ is selected only when
gueue space is available.

Barrier Release

When the final join reaches the rosdAGIC begins the release phase. Each release event causes
three actions to occur:

e It updates the barrier state to reflect the release. This includes toggling the sense indicator
both to indicate the barrier is satisfied and to prepare for the next barrier. It also initializes
the join counts so that the barrier operates correctly in case some processors join the barrier
again before all others have been released.

¢ It invalidates the local processor’s cached barrier state to indicate the sense has changed.

e It sends messages to its children in the release tree, indicating they should release in turn.

Meanwhile, the processor barrier routine is spinning on the sense bit in the barrier state. When
it receives the invalidation, it requests the state again, detects that the barrier sense bit has changed,
and exits the barrier routine allowing the application to resume.

Within MAGIC the release phase has similar network deadlock concerns as does the join, in fact
slightly more complex. When a release message arrives at a node, it often musiitgpidrelease
messages out to the next level of the tree. The software queue is needed here as well and in fact
several retries may be needed depending on the release tree radix.
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Master-Slave Barrier Variant

Supporting the master-slave barrier variant [BAR96] requires only a small modification to the pro-
tocol. The root node normally detects the barrier is complete and then launches the release. For
barriers marked as master-slave, the satisfied barrier notifies only the root processor (by invalidat-
ing its cache) and then stops. By requiring the master processor to be the root of the barrier trees,
releasing the master alone is straightforward.

The master then detects in the standard way that the barrier has been satisfied and can perform
coordination processing. Once it finishes, its calFtdASHReleaseBarrier  cues the protocol
to begin the release phase by notifying the children in the release tree.

6.2.5 Protocol Handlers

As in locks, the barrier protocol is very compact, allowing it to work in tandem with cache co-
herence without degrading performance significantly from cache effects. Table 6.4 enumerates the
handler components of the protocol, which is slightly larger than 2 KB in total. The compactness
in this protocol arises from many of the same characteristics as in the lock protocol, described in
Section 6.1, including the use of a special coherence protocol for barrier state accesses.

6.2.6 Barrier Performance in Isolation

In this section we evaluate the performance ofghesH barrier protocol using the metrics intro-
duced in Section 6.2.1. We study barrier primitives in the context of microbenchmarks that iso-
late the two extremes of barrier performance: late arrival and simultaneous arrival. We also study
the range of barrier primitives introduced earlier, to comparesH barriers against existing tech-
niques. Finally, we briefly consider master-slave barrier primitives. In that case we consider the
basic master-slave barrier as well as a master-slave variant of the MCS barrier. We describe several
master-slave implementations usiigpSH barriers, highlighting the benefit that flexibility provides

for allowing protocol customization. Later, in Section 6.3, we consider the performance impact of
FLASH barriers in the context of SPLASH-2 applications. This section uses the same simulation
environment that was used for locks.

Fall-through Latency

We begin our analysis with barrier fall-through lateney)(for the range of primitives we study.

Recall that fall-through latency corresponds to the latency from the last arrival at the barrier until
the first processor is released. This latency is not constant but instead varies based on the processor
arrival characteristics. The best performance occurs in the late arrival case in which all but one
processor is waiting at the barrier and the final processor arrives much later. Table 6.5 presents
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Table 6.4 Summary of thecLASH barrier protocol handlers.

Handler Name/ Description

Handler Size (bytes)

BarrierStatusRead The “cache miss” handler for the barrier coherence protgcol.

112B This provides the processor with the current barrier sense ingdica-
tor value, that toggles when the barrier is achieved.

BarrierReplacementHint | This handles barrier state being replaced from the cache. Uplike

16 B locks, the barrier protocol does not need to track the caching of
barrier state, so this handler is merely a nop.

PIBarrierJoin Accepts a processor request to join the barrier. This is invgked

568 B explicitly by the barrier join PPR.

PIBarrierRelease For master-slave barriers;LASHReleaseBarrier causes|

232B this handler to release the other waiters once the master’s co-
ordination processing is complete.

NIBarrierJoin Accepts a join request from the network. If all nodes have joined

552 B it passes the join to the next level of the tree, or begins the release
phase (if the join has reached the root).

NIBarrierRelease Accepts release requests and propagates it to the children in the

272B release tree.

ReleaseBarrier A shared subroutine that sends release requests to the children in

176 B the tree. Shared by NIBarrierRelease and SWBarrierRelease.

SWaBarrierJoin (88 B) Software Queue handlers to resume a join or release suspénded

SWaBarrierRelease (224 B)| by queue limitations.

Total size: 2240 B \ \

the late arrival fall-through latency for the barrier primitives we study, using the root node as the
final processor to arrive. At the other extreme, simultaneous arrival, every processor arrives at the
barrier at exactly the same time. In this case, contention for barrier resources is at its greatest and
performance decreases as a result. Table 6.6 presents the fall-through latency for simultaneous
arrival.

In practice, the barrier performance falls somewhere between the two extremes of late and si-
multaneous arrivals. Moreover, these tests were carried out in carefully-crafted isolation to eliminate
other activity in the system. Within an application, the current activity in the system such as that
from the cache coherence protocol may affect the barrier performance in ways other than those
reflected in these tests.

For late arrival, LL/SC performs well up to 16 processors, but for larger sizes and for even
small systems under simultaneous arrival its fall-through latency explodes from contention for the
barrier data structure. This contention clearly motivates the need for tree barriers for even mild-sized
systems.
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Table 6.5 Barrier fall-through latencyt) for late arrival, using a range of primitives and parame-
ters (microseconds). For consistency, the tree root processor is the last one to arrive at the barrier.

Total | LL/SC | Tourn| Tourn] MCS| MCS | MCS| FLASH | FLASH | FLASH | FLASH | FLASH

Procs. 2-ary | 4-ary | 2-ary| 4-2-ary| 4-ary| l-ary | 2-ary | 3-ary | 4-ary | 5-ary
4 3.6 4.9 48] 25 2.6 3.7 1.4 1.4 14 1.4 1.4
8 3.6 4.8 48] 25 25 5.3 1.3 1.4 14 15 15
16 3.7 4.9 49] 25 2.6 5.7 1.3 1.4 14 15 15

32 73.5 50/ 49| 26 2.5 59 1.3 1.4 14 15 15
64 186.8 5.1 5.0] 26 2.6 5.9 13 14 1.4 1.5 15
128 771.6 5.2 5.11 2.6 2.5 5.8 13 14 1.4 1.5 1.5

Table 6.6 Barrier fall-through latencytf) for simultaneous arrival, using a range of primitives and
parameters (microseconds).

Total | LL/SC | Tourn| Tourn] MCS| MCS | MCS | FLASH | FLASH | FLASH | FLASH | FLASH

Procs. 2-ary | 4-ary | 2-ary| 4-2-ary| 4-ary| l-ary | 2-ary | 3-ary | 4-ary | 5-ary
4 8.4] 10.4| 15.3| 6.7 71| 84 2.6 21 2.0 2.0 2.0
8 25.8] 15.0f 18.8] 10.8 11.2| 14.0 4.9 2.7 2.6 2.6 25

16 70.9] 18.3| 28.4] 15.9 16.1| 18.6 9.5 3.3 3.2 2.9 3.1
32 171.4] 21.9| 32.6] 20.1 19.3| 22.6] 18.7 3.9 3.7 3.5 3.0
64 419.6] 25.7| 40.8] 26.2 26.0| 29.3] 37.3 4.6 4.5 4.0 4.2
128 | 1000.2} 31.6| 45.7] 32.9 30.3| 34.6] 744 5.5 4.6 4.7 4.4

The first tree technique, the tournament tree barrier (“Tourn”), scales much better though it is
essentially the slowest absolute performer of all the tree primitives. For late arrivals, the tournament
tree structure easily explains the result, since the last arrival must traverse the several rounds of
the tournament even if it is the root. For simultaneous arrivals, contention for the lock at each
round causes the performance degradation as compared to late arrival. Note especially that the
4-ary tree performs slightly better for late arrival since it reduces the depth of the tree, while the
2-ary is superior for simultaneous arrival since contention is higher when barrier rounds involve 4
processors.

The MCS barrier scales similarly to the tournament barrier, though its absolute performance is
slightly better. For MCS we show not only 2-ary and 4-ary join trees but also a hybrid barrier using
radix 4 for join and radix 2 for release, referred to as MCS 4-2-ary. This additional variant allows
us to isolate several interesting effects.

For late arrivals, the traditional tree structure used by MCS allows the tree root to join with
only a single round, unlike the tournament approach. This accounts for the difference between the
2-ary fall-through latency for MCS and Tourn. Aside from the number of rounds, by comparing
the 4-processor late arrival result for a 2-ary Tourn and 4-2-ary MCS (each of which has only one
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round), we see that the pre-computed tree of MCS is also more efficient than the dynamic tree
calculations performed in the tournament barrier.

Finally we present theLASH barrier, which for tree radix of 2 or more outperforms every other
technique at every machine size. We presemtsH barriers with tree radix 1 (corresponding to a
line of processors, a degenerate tree) to illustrate that the communication within the primitive is very
efficient. Up to 32 processors, even this naive barrier configuration outperforms the MCS batrrier.
It also shows the benefit provided by a tree for simultaneous arrivals. Though increasisig
tree radix provides essentially monotonic improvement, the bulk of the gains is achieved merely by
radix 2.

In the simultaneous arrival case, the benefits.a@fsH barriers are particularly evident. Under
the contention simultaneous arrivals cause, every other technique incurs some form of artifactual
communication, the impact of which increases with machine size. By matching the inherent com-
munication needed by a barrier, theasH technique eliminates these artifacts and achieves nearly
an order of magnitude speedup at 128 processors as compared to the next best technique, the MCS
barrier.

The results also show an interesting result that is not immediately obvious: late &trfcal
FLASH barriersincreaseswith increasing radix. This effect can also be seen in the difference be-
tween late arrival fall-through latency in MCS 4-2-ary and MCS 4-ary. Even thougheasures
only the initial release from the barrier, this effect occurs from the increasdeasetree radix. In
a tree barrier, the root is the first processor released, so the fall-through latency generally reflects
the time for the root to emerge. When the radix grows, however, the root must perform more work
(i.e., release more processors) before leaving the barrier primitive. In the case of MCS, this work
happens inline in the barrier software, and thus the increase in late-agrivatween MCS 4-2-ary
and MCS 4-ary is noticeable, 2.8 at 128 processors. The same effect occur AsH barriers but
in a different way. Unlike MCS, once the barrier is achiewexsIC notifies the tree root processor
immediately However, before that processor can leave the barrier, it must fetch the status word and
view the barrier sense change. That miss cannot be satisfiethdyc until the barrier protocol
handler finishes releasing the root’s children. FortunatelyLixsH unlike MCS the difference is
very small, only 0.4s at 128 processors.

Release Latency

The barrier release latency results are very straightforward to analyze, and are completely indepen-
dent of the nature of the barrier arrivals. We therefore present a single set of release latency results,
shown in Table 6.7, that applies to both late and simultaneous arrivals.

LL/SC barrier release is inefficient, as expected, due to the rush of requesters to read the barrier
generation number when updated by the home. Surprisingly, the release phase in tournament tree
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Table 6.7 Barrier release latency,{) for a range of primitives and parameters (microseconds).

Total | LL/SC | Tourn| Tourn] MCS| MCS | MCS| FLASH | FLASH | FLASH | FLASH | FLASH

Procs. 2-ary | 4-ary | 2-ary| 4-2-ary| 4-ary| l-ary | 2-ary | 3-ary | 4-ary | 5-ary
4 3.2 59| 54| 48 48| 3.4 1.2 0.8 0.2 0.2 0.2
8 741 145| 16.7| 8.4 84| 55 3.4 14 0.9 0.9 0.9

16 15.4] 25.8| 22.3] 12.0 12.0f 8.9 7.7 2.0 1.6 1.0 1.0
32 31.7] 39.8] 41.9] 15.6 15.7| 12.0] 16.2 2.6 1.6 1.8 1.7
64 63.6] 57.1| 47.8] 19.7 19.7| 16.3] 33.6 3.3 2.3 1.9 1.9
128 127.0} 78.1| 77.7) 245 24.2| 21.4] ©68.6 4.0 3.1 2.8 2.8

barriers is also fairly inefficient, despite its use of a release tree. This occurs for several reasons,
some of which are due to the implementation we were given and not fundamental to the tourna-
ment algorithm in general. First, during the release, it employs lock-protected flag update just as

in the join, even though each release tree flag has only one writer. This overly conservative ap-
proach causes extra references in the release critical path. Second, as in the fall-through case, the
tournament-style barrier means each processor loops and may need to release processors at several
levels in the tree. Furthermore, it orders the processor releases inefficiently, causing the release tree
propagation to be nonuniform and reducing the parallelism it might otherwise achieve.

MCS barriers perform much better, due in part to the very simple release structure that allows
much lower overhead than the tournament tree barrier. As for the choice of release tree radix,
the original description of MCS barriers [MCS91b] suggests that a release tree of radix 2 is best
based on a theoretical analysis. In contrast, our results show a MCS having consistent though mild
improvement from increasing release tree radix from 2 to 4. The difficulty of predicting real machine
behavior, especially due to contention, argues for a execution- or simulation-driven methodology to
select parameters rather than a purely theoretical one.

FLASH barriers once again outperform the other techniques by a wide margin. In the release
phase of &LASH barrier, the release messages are delivered directly to the nodes in the tree. When
they arrive, the barrier protocol amaGIC then propagates those release messages to other nodes in
the tree without any processor interaction. The result of this design isdhamote cache misses
are taken by any processor to determine the barrier has been satisfied. Instead, each processor’s
local barrier status flag is invalidated at the same time the barrier’s state is modifiedsic to
indicate completion. All that is required is a local cache miss for the barrier state and the processor
is released.

Contrast this with even the most efficient software tree release technique. Using the processor,
even updating a simple flag involves acquiring ownership and invalidating the currently spinning
processor(s). Thenin response the previously spinning node must miss remotely to fetch the updated
value. Only then can the waiter propagate the release to its children in the barrier tree in the same
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manner. Avoiding these repeated processor cache misses in the critical path and encapsulating this
entire release tree processNIAGIC is one of the most clear-cut successes ofhesH barrier
protocol.

Master-Slave Barrier Performance

We now turn to the master-slave barrier variant to consider the performance of various primitives in
that different mode. We study several classes of conventional primitives, beginning with the basic
master-slave primitive [BAR96], and a two-phase variant of the MCS barrier. We also study three
ways in which master-slave barriers can be implemented muidlsH barriers.

In the first of these implementations, we observe that conventrnaH barriers performed so
well in our previous tests that one viable approach may be ttvusback-to-backrLASH barriers,
with the serial portion occurring in the middle. We refer to this as then5H Naive” approach.

Our second implementation, referred to aAsSH+Flag”, uses &LASH barrier followed by a

spin loop on a shared memory flag. The flag is set by the master after it completes the serial
computations. Finally we consider the custom designed master-slave versioaaf barriers
described in Section 6.2.4 in which the master alone is released once the barrier is satisfied. After
its serial processing the master performs an additional PPR to cue the release. The advantage of this
approach is that it uses the optimized tree release mechanism. For comparison purposes and to help
ascertain the overhead of the extra process®EC communication, we also show the results of

the same benchmark for a conventiorahSH barriernot providingmaster-slave functionality but

merely releasing all processors simultaneously.

For this evaluation we use a microbenchmark that simulates the operation that takes place within
an automatically parallelized application. In a loop iterating 32 times, we simulate the processors
joining at a master-slave barrier. The master processor is released first, and then immediately re-
leases the slaves. By eliminating the actual parallel and serial work in this benchmark it focuses
exclusively on synchronization performance and illustrates the overhead from barrier synchroniza-
tion in the limit as the computation becomes very fine. The latency we report for this benchmark is
the average length of one iteration of the loop, which corresponds essentially to the total overhead
incurred from the barrier primitive.

Table 6.8 shows the results over a range of machine sizes of interest for this style of primitive.
The basic master slave barrier performs very well for small machines, even surpassing MCS up to 8
processors. Beyond that, however, contention for the barrier renders it unusable. MCS barriers were
easily adapted to master-slave mode and show similar scaling to the conventional mode described
previously.

The FLASH barrier variants show several useful results. First and foremost, even the Naive
solution using two back to back barriers outperforms the conventional implementations. Note that
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Table 6.8 Master-Slave Barrier microbenchmark results, showing the average iteration latency of
back-to-back master-slave barriers with immediate release by the master. The latency for a con-
ventional 4-aryFLASH barrier not providing master-slave functionality is shown on the right for
comparison purposes.

Master-Slave Barrier Implementations

Total Basic| MCS | FLASH | FLASH | FLASH | FLASH
Processory M-S | M-S | Naive | + Flag | Custom| Conv.
2-ary | 4-ary | 4-ary 4-ary 4-ary

2 3.9 4.6 3.9 3.3 2.5 2.0
4 9.2| 103 4.9 5.2 3.0 2.5
8 19.9| 21.7 7.6 9.2 4.3 3.8
16 43.0| 244 8.3 18.8 4.7 4.2
32 286.6| 36.7 11.2 35.1 6.1 5.6

the Naive approach latency is (within error margins) exactly double that of the conventional (non-
master-slaveFLASH barrier. As might be expected, treAsH+Flag approach does not improve
performance due to contention for the flag, illustrating importance of using a tree-based release
mechanism. The best performer overall is the custom desmirrexH master-slave variant. It scales

in essentially the same way as the conventignalsH primitive on the right, but slows uniformly

by 0.5, from the latency to notify the processor and receive the PPR that releases the slaves.

6.2.7 Related Work

In Section 6.2.2 we presented several key barriers as background for our protocol design and imple-
mentation. Below we describe the broader background research on barrier synchronization.

A novel barrier implementation called the butterfly barrier is described by Brooks [BI86] in
which a series of pairwise synchronizations is carefully orchestrated between the processors. Once
this O(log n) series completes, the processors are guaranteed to have arrived at the barrier. Though
each synchronization is based on locks, by distributing communication the butterfly reduces con-
tention for each lock to only two processors. Similar logarithmic performance is provided by tree-
based barriers, and many implementations inclugirgsH barriers also reduce the total number of
communications in the critical path as compared to the butterfly.

Hengsen et al. [HFM88] make three modifications to the butterfly barrier that successively im-
prove it. First, they introduce a sense change to reduce the barrier code size slightly. Next they
reduce barrier traffic by a factor of two throughligseminatioralgorithm, in which the symmetric
pairwise synchronizations are replaced by an asymmetric communication pattern that also satis-
fies the condition. Finally they present yet another modified communication pattern they call a
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tournament which we described in Section 6.2.2. In the original tournament barrier, all proces-
sors ultimately spin on a single flag, which is a source of contention in invalidation-based cache
coherence protocols.

In their journal paper on synchronization, Mellor-Crummey and Scott [MCS91a] present a sur-
vey of the major classes of barrier implementations. They first optimize the tournament barrier
of Hengsen et al. through the use of a release tree, thus eliminating the contention for a single
flag. They also introduce a new barrier primitive that improves performance still further through
careful data structure and code optimizations [MCS91b], which is the MCS barrier we describe in
Section 6.2.2.

Similar to Mellor-Crummey and Scott, Woest and Goodman [WG91] present a survey of barrier
techniques, but with an emphasis on their implementation usingah& primitive we describe in
Section 6.1.9. In that aspect they find theLs implementations to have no significant advantage
in particular because barriers do not utilize the collocation beqefits provides.

Woest and Goodman also study the barrier release phase, including the use of a broadcast (up-
date) write primitive to quickly update all waiters. Interestingly, they find that even though the
broadcast write release is extremely efficient, the initial serialized read misses to fetch the noti-
fication address to each processor must be amortized over many barriers for the combination to
show gains. Only a combination of broadcast write and combining reads would make the approach
tractable; as a result, they conclude that tree wakeup may be a superior approach in general [WG91].

In a similar approach to that used by Anderson for locks [And89], Agarwal and Cherian [AC89]
study various software back-off strategies to reduce contention in barriers. One major focus of
their analysis was reducing the exploding network traffic arising from barriers under contention,
as well as decreasing overall waiting time. They present several back-off implementations and
parameters which achieve a balance between these two goals, though their focus is on non-tree
barriers. The barriers they study are not appropriate for large scale systems, however, and tree
barrier implementations eliminate much of the need for the back-off techniques they study.

The Cray T3D [Cra93] provides a dedicated physical barrier/efineéavork that can synchro-
nize the entire machine in less tham2 The T3E [Sc096] virtualizes the barrier support to make
it easier to share by providing 32 different barrier/eureka units at each processor, while maintaining
approximately the same performance. T3E also enables “fuzzy” barriers in which the processor can
perform unrelated work while it waits at the barrier, then either poll or be interrupted to detect the
barrier is achievedrLASH barriers can provide fuzzy semantics merely by extending the APl with
a call that returns after issuing the join indicatiormaGic and one which polls the current barrier
status.

®A “eureka” is a non-blocking parallel-OR function, enabling a processor to quickly indicate completion to the others,
such as in a parallel search implementation. By comparison, a barrier is a blocking parallel AND.
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Scalable Counting Techniques

Many researchers study scalable counting techniques, one application of which is the implemen-
tation of barriers. In [HLS95], Herlihy et al. compare counting implementations using a range
of hardware and software support. They find that lock-based techniques degrade quickly as ma-
chine size increases and that only software combining trees or counting networks were truly scal-
able. They show software-only implementations of counting trees and counting networks using
both shared memory and message passing techniques. In their experiments on the MIT Alewife,
both primitives scaled well, though the message passing implementations achieved approximately
twice the throughput. TheLASH barrier implementation uses messages betweerC chips in a

similar way to the primitives they describe.

Freudenthal [FG91] describes the hardware-supported scalable counting technique Fetch-And-
Add to provide barriers and other types of synchronization. We could mirror these techniques by
providing Fetch-and-Add using protocol supportMaGIC (as we describe in Section 7.2.1) and
then in turn building barriers on Fetch-and-Add. Still, theasH barrier protocol we describe
achieves much higher performance by instead tailoring the communication specifically for barriers.

6.3 Lock and Barrier Performance Impact in Applications

This section considers the performance benefitsLaSH locks and barriers within the context of

real applications from the SPLASH-2 benchmark suite. We show three applications, to illustrate
a number of different ways that synchronization is used in practice, and to study whether or not
synchronization improvements translate to application gains.

Application analysis of synchronization is significantly more difficult than the microbenchmark
approach used earlier since many effects occur at once. We use the intuition and the baseline per-
formance metrics provided by the microbenchmarks as an overall guide to our analysis. However,
it is important to note that the performance metric results we measured using microbenchmarks are
usually not attainable in applications due to other interfering effects. Furthermore, the microbench-
marks cannot predict all the performance gains or losses we encounter, since synchronization inter-
acts with application communication, unlike the controlled environment of the microbenchmarks.

In particular, at large machine sizes we sometimes encounter gains larger than the microbenchmarks
predict. These arise because shared memory contention is reduced by the use of optimized synchro-
nization, and thus unrelated shared memory accesses improve as well. This effect is particularly
prevalent inFLASH, which relies on negative acknowledgements to avoid deadlocks when queues
fill. As a result,FLASH encounters “cliffs” where high contention causes traffic to increase further

as NAKs are generated.
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For the purposes of this study, we broadly classify poor scalability into two major categories.

In some cases, fundamental contention for shared resources, load imbalance, or other effects limit
application parallel efficiency and prevent additional processors from reducing execution time. In
other cases, the application is designed suitably and is inherently capable of scaling well, but inef-
ficient synchronization limits the performance. We focus on this latter case, to determine whether
optimized synchronization can improve efficiency and scalability. Restructuring the application al-
gorithms to address the more fundamental scalability limits of the former case is beyond the scope
of this dissertation.

6.3.1 Application Descriptions and Characteristics

To study this problem, we have selected three scientific applications, all from the SPLASH-2 bench-
mark suite [WOT 95]. The applications we consider are Water, a water molecule simulation,
Barnes, an N-body simulation based on the Barnes-Hut method, and Ocean, a simulation of ocean
currents. These applications are fairly well suited for the synchronization primitives we study since
they use significant locks or barriers and scale well to reasonably large machines (32 processors
or larger) where our techniques become applicable. The other SPLASH-2 applications we do not
study may benefit from our primitives as well, though their use of synchronization tends to be more
mild. For our scalability measurement we consicenstant problem sizecaling—the problem size
is held fixed while the machine size is increased. As such, we focus on computation time as our pri-
mary metric, which highlights concretely the benefits from adding additional processors. We study
relatively small problems for these applications both for simulation tractability and to explore the
scalability constraints imposed by conventional synchronization techniques. It is important to real-
ize that real systems may not execute applications with this high degree of synchronization, but we
use them to stress the synchronization mechanisms intensely and push the limits of the primitives.
Our study focuses exclusively on the synchronization characteristics in these applications; other
researchers have studied their behavior more generally. Woo et al. [\ @&)TWo0096] present their
structure and design, and describe their working set and communication characteristics in detail.
Kuskin [Kus97] and Heinrich et al. [HK®94] present simulation results for Barnes and Ocean
and describe their overall behavior enAsH, focusing in particular on the effects of flexibility
on memory access times. Table 6.9 summarizes the synchronization within these applications; the
exact counts vary based on machine size. We begin by describing the applications and identifying
the nature of their synchronization usage.

Water

Water is a molecular dynamics application that evaluates the forces and potentials that occur over
time in a system of liquid water molecules. The algorithm computes the Newtonian equations for
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Table 6.9 Application problem size and synchronization usage overview. Synchronization usage
counts vary by problem size and/or processor count.

| Application | Problem Size | Processors | Locks | Barriers |

Water 512 molecules| 16-128 procs 19,000-135,000 17
Water 1024 moleculeg 32-128 procy 70,000-273,00q 17
Barnes 8192 bodies | 16-128 procy 8,000-10,000 16
Ocean 256x256 ocean 16-64 procs 400-1,600 143
Ocean 514x514 ocean 32-64 procs 500-1,200 156

motion of water molecules within a box, iterating over a number of time steps in an attempt to reach
steady state [SWG92].

We consider the “N squared” version of Water presented in the SPLASH-2 suite, which uses
an O(n?) algorithm to compute the inter-molecule interactions. The extensive use of locking in
Water primarily arises in this phase. Each processor first computes in a private array the change in
inter-molecular forces arising from its molecules. Then it applies those changes to other processors’
molecules under lock protection per molecule (or group of molecules). Water uses several barriers
to divide phases, but as Table 6.9 illustrates, its synchronization is overwhelmingly dominated by
locks, so we focus on its locking characteristics.

Barnes

Barnes simulates the interaction of a set of bodies in three dimensions over a series of time steps.
It uses the Barnes-Hut hierarchical N-body method to compute the interaction forces between the
particles [HS95]. The SPLASH-2 implementation of Barnes includes a number of data structure
optimizations to improve performance [WO®5]. The particles are stored in an octree structure,
which is traversed repeatedly (once per particle) to determine the force on each particle. In a separate
phase, the forces are then used to update each particle’s position, and the process iterates.

The complex structure of Barnes causes it to enlist a variety of synchronization primitives. Most
notably, Barnes uses significant locking, in particular an array of locks used in two different portions
of the algorithm. First, each group of bodies is protected by one of these locks as the program walks
the tree to update both forces on a body and their position. Locks are also used to coordinate during
a load balancing phase in which the assignment of bodies to processors is adjusted.

Barnes also uses a flag per tree element to determine when the tree walking has finished and
the processor can enter the barrier. These updates only have a single reader and writer, and thus
do not require mutual exclusion through locks. Like Water, Barnes also uses barriers, though the
phases in Barnes are very long and thus the barriers account for only a trivial portion of the runtime.
Therefore, we focus our analysis of Barnes on its locking characteristics.

Section 6.3 Lock and Barrier Performance Impact in Applications 165



Ocean

The Ocean application models large-scale ocean movements over time based on eddy and bound-
ary currents. We use a recent version of Ocean containing modifications to improve performance
on shared memory systems, part of the SPLASH-2 benchmark suite \8&)T In particular,
the ocean model is partitioned using a 4-D grid, so that grid portions can be allocated on the
processor which manipulates them. This version also applies a red-black Gauss-Seidel multigrid
solver [Bra77] in place of the SOR solver used in prior versions. Finally, it includes extensive
prefetching instructions to improve the performance of shared memory accesses.

Ocean is based on an iterative algorithm, and each iteration is further broken up into ten phases.
As a result, Ocean makes extensive use of barriers to protect the consumption of data generated in
the previous phase by other processors, executing approximately 150 barriers overall. In fact, only a
very small amount of locking is done in Ocean, thus the potential for gains from optimized locking
is small. We focus our analysis of Ocean instead on its barrier synchronization.

6.3.2 Water

The baseline version of Water is based on LL/SC locks, just as in our microbenchmarks. We gen-
erate two other versions, one using MCS locks, the other usingLik®H locks presented in Sec-

tion 6.1/ As before, LL/SC and MCS locks each use exponential back-off when contention is
detected in their atomic updates. In the environment we use, we are able to simulate systems up
to 128 processors before encountering limits in our simulators themselves and the simulation hosts.
This limitation is not fundamental tBLASH or the protocols we describe. In particular, we expect

the potential for gains frorALASH locks only to increase at larger machine sizes.

We use an array of 512 locks at all problem sizes to protect the molecule data structures. We
configure all the implementations to match this limit so the results can be compared directly. For
512 molecules, this allows a single lock per molecule while at the 1024 molecule problem size, two
molecules share a lock. In practice, locks would not be shared in this manner due to the contention
it causes. We include these results merely to illustrate what might happen if much higher contention
is encountered in an application that poorly structures its synchronization.

Synchronization Usage

Water uses locks to protect updates to shared data structures in two different ways. First, it employs
individual locks to guard updates to several central summary variables. More importantly, it uses an
array of locks associated with a molecule (or a group of molecules) in the problem, which protect

"We study the use of the normalAsH primitive, not the Aggressive variant described in Section 6.1.8.
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Figure 6.28 Water computation time using different lock techniques.

updates to the current force on each molecule. Our three application variants for Water convert both
uses of locks to use the primitive under study (LL/SC, MCS;1a¥SH).

In the normal SPLASH-2 version, the array of locks is typically padded to avoid false sharing,
but is allocated from memory on a single node. Our initial simulations found that this centralized
allocation was a serious problem in the application since the node where the locks are allocated is
overwhelmed with requests and becomes a bottleneck. To eliminate this problem and allow LL/SC
and MCS locks to perform as well as possible, we modified the lock array to distribute the lock
allocation across the nodes of the machine and stripe the lock ordering to reduce contention as much
as possible. FoFLASH locks, which can use any node as the home, we matched this distribution
exactly to attempt to reproduce the same behavior. We do not present the results for the poorly
allocated application, but the gains from distribution were significant: LL/SC lock compute time for
512 molecules decreased by 32% at 64 processors, 67% at 128 processors. MCS locks saw similar
gains as well.

Simulation Results Format

We run Water at two problem sizes: 512 molecules and 1024 molecules, and over machine sizes
from 16—128 processors, excluding the smallest machine for the larger problem size. The computa-
tion time for Water (execution time excluding initialization) is presented in Figure 6.28.
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To analyze the application behavior in more detail, we present a table of detailed statistics about
each simulation and a series of histograms that illustrate the lock metrics introduced earlier. We
begin by explaining the format of each, since the data for other applications is presented similarly,
then return to Water specifically and describe its table and histogram results.

Table 6.10 presents the resulting statistics for Water, with one row for each simulation. Each
group of three rows corresponds to a particular problem and machine size, explored using the three
different locking primitives we study. The second column presents the computation times illustrated
in Figure 6.28. The next two columns show the percentage of time the application spent in synchro-
nization, expressed as average and maximum times over the processors. This statistic is important,
but it is not always straightforward to use for this analysis since it does not differentiate funda-
mental wait time due to inherent mutual exclusion in the application from the performance of the
primitive itself. To complement the sync time and help separate these effects, the far right columns
show the lock metrics we introduced earlier, measured using our simulator’s ability to watch for
synchronization primitives without perturbing the application. Those columns present the acquire
latency and hand-off latency metrics as before, as well as a breakdown showing the fraction of locks
encountering the acquire case (available when requested) or hand-off case (held when requested).

In many cases we find that contention for the protocol processor itself can be significant in
determining the performance of the application. The middle columns attempt to characterize this
contention in two ways. First, we show the average read miss latency encountered by the appli-
cation. As an aggregate statistic, this must be used with caution, but it generally provides a good
overall indication of the effects of contention. Next to it we show protocol processor occupancy,
i.e., the fraction of time the protocol processor is busy. Like sync time we show average and max-
imum; maximum is useful to illustrate that worst case occupancy is sometime severe, which can
limit performance.

The lock metric averages presented in the table are useful, but they hide the fact that locking
behavior is not homogeneous. To illustrate more closely the locking effects that occur, we present
a histogram of these two metrics as well. The histograms, such as Figure 6.29 show acquire latency
(“Non-Contended”) and hand-off latency (“Contended”). The bar height showsatinet of lock
acquisitions with latency (in microseconds) less than or equal to that listed below the bar. Note
that both axes are logarithmic since the lock counts vary by such a wide margin, and because bars
far to the right (i.e., long latency events) may contribute significantly to the overall performance
even though they have much lower counts. Each column of plots represents a particular application,
problem size, and machine size. By stacking them vertically it allows a straightforward comparison
of the bins in the three related simulations.
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Table 6.1Q0 Water lock results summary: Each group of rows reflects one problem and machine
size combination across the three different lock primitives. The remaining columns are as follows:
compute time of the application; the percentage of the application compute time spent in synchro-
nization (average and maximum across the processors); the average latency of a cache read miss; the
fraction of time the protocol processor is busy (average and maximum as before); average acquire
and hand-off latency as defined previously, with the fraction of locks encountering each case.

% of Time | Avg PP Acquire Hand-Off
Lock | Compute] inSync | Read] Occupancy] Latency Latency
Primitive| Time | Avg | Max | Miss | Avg | Max | (and fraction)| (and fraction)

512 molecules, 16 processors, 19k lock acquisitions.
LL/SC| 304 ms| 8%|18%]| 1.3us| 2%| 2%| 1.2us 99%| 5.1us 1%
MCS| 304 ms|] 8%|17%]| 1.3us]| 2%| 2%| 1.7us 98%| 15us 2%
FLASH| 307 ms| 8%|18%]| 1.1us| 2%| 2% 3.4us 98%| 1l.4dus 2%

512 molecules, 32 processors, 35k lock acquisitions.
LL/SC| 165 ms| 12%|22%]| 1.8us | 4% | 7%| 1.8us 98%| 7.4us 2%
MCS| 163 ms| 11%| 21%]| 1.6us | 3%| 5%| 1.9us 97%| 1.7us 3%
FLASH| 165 ms| 11%|21%]| 1.2us | 4%| 5% 3.7us 93%| 1.7us 7%

512 molecules, 64 processors, 69k lock acquisitions.
LL/SC| 110 ms| 29%| 37%]| 2.7us | 6%| 21%]| 2.9us 94%| 18.9us 6%
MCS| 100 ms| 23%| 32%]| 2.1 us | 6%| 13%| 2.2us 91%| 2.0us 9%
FLASH 97 ms| 18%| 28% | 1.5us | 7%| 13%| 4.3us 84%| 2.0us 16%

512 molecules, 128 processors, 135k lock acquisitions.

LL/SC| 148 ms| 74%| 79%] 5.9us | 5%| 50%| 8.3us 89%| 66.8us 11%
MCS 78 ms| 46%| 54%| 2.7us | 7%| 27%| 2.7us 84%| 2.2us 16%
FLASH 68 ms| 37%| 46% | 1.8us | 9% | 18%| 4.6us 75%| 2.3us 25%

1024 molecules, 32 processors, 70k lock acquisitions.

LL/SC| 442 ms| 11%| 15%]| 1.4us | 3%| 6%| 2.1us 98%| 13.8us 2%
MCS| 435ms| 10%| 14%]| 1.4us | 3%| 10%| 2.0us 97%| l.4us 3%
FLASH| 440 ms| 11%| 15%]| 1.2us | 2%| 3%] 3.8us 95%| 1.7us 5%

1024 molecules, 64 processors, 136k lock acquisitions

LL/SC| 254 ms| 19%| 25%]| 2.1us | 4%| 10%| 2.7us 96%| 21.4us 4%
MCS| 246 ms| 15%]| 21%] 2.0us | 5%| 25%| 2.3us 93%| 2.0us 7%
FLASH | 246 ms| 14%| 20%| 1.6us | 6% | 37%] 4.4us 84%| 1.9us 16%

1024 molecules, 128 processors, 273k lock acquisitions

LL/SC| 251 ms| 44%|55%]| 7.2us | 6%| 45%| 4.7us 89%| 42.2us 11%
MCS| 246 ms| 40%|56%]| 8.0us | 6%| 51%] 4.4us 79%| 4.1us 21%
FLASH | 189 ms] 26%| 39% | 5.2us | 7%| 63%] 4.9us 74%| 2.1lus 26%
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Figure 6.29 Water, 16 processors, 512 mols., Figure 6.30 Water, 32 processors, 512 mols.,
LL/SC lock latency histograms. LL/SC lock latency histograms.
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FLASH lock latency histograms. FLASH lock latency histograms.
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Figure 6.36 Water, 128 procs., 512 mols.,
LL/SC lock latency histograms.
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MCS lock latency histograms.
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FLASH lock latency histograms.

Section 6.3 Lock and Barrier Performance Impact in Applications

171



105 105

104 L 104 L
108 £ 108 ¥
102 - 102

L s LT TITT1111 — it ——— 10t -
100 —mewmooo!!oooooo T RO e & S 100 mmmmmooooo!ooo! T RO e S SRS
Non-Contended i Contended ' Non-Contended ' Contended i
Figure 6.41 Water, 32 procs., 1024 mols., Figure 6.42 Water, 64 procs., 1024 mols.,
LL/SC lock latency histograms. LL/SC lock latency histograms.
108 3 108 3
104 3 104 3
103 3 I 103 3 I
102 £ | -- 102
101 E u 100 SRR - - - —
Non-Contended i Contended ’ Non-Contended i Contended ’
Figure 6.43 Water, 32 procs., 1024 mols., Figure 6.44 Water, 64 procs., 1024 mols.,
MCS lock latency histograms. MCS lock latency histograms.
108 3 108 3
104 104

103 103

102 102

=
o
=3
h_

=
o
=3
h_

O R S e e O e R PEREsEE T e SRR e EsEE 100 =mesoena

Non-Contended o Contended a Non-Contended Contended
Figure 6.45 Water, 32 procs., 1024 mols., Figure 6.46 Water, 64 procs., 1024 mols.,
FLASH lock latency histograms. FLASH lock latency histograms.

172 Chapter 6 FLASH Synchronization Primitives



105

104

108

102

10t

100 HANMINOND NO00Q00000000 —AANMINONDIOO000000000D
SREIB8RE888 SREIBERE888
A A

Non-Contended Contended

Figure 6.47. Water, 128 procs., 1024 mols.,
LL/SC lock latency histograms.
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Figure 6.48 Water, 128 procs., 1024 mols.,
MCS lock latency histograms.
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Figure 6.49 Water, 128 procs., 1024 mols.,
FLASH lock latency histograms.
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Performance Analysis

We discuss the major effects in Water using the statistics table and histograms introduced above,
beginning with small machine sizes and then incrementally considering the effects which arise as
the system scales. For 16 and 32 processor machines in either problem size, lock performance is not
a bottleneck for a number of reasons. The statistics table shows the total number of locks is fairly
small. Each processor executes an essentially fixed number of locks per molecule, so lock counts
grow with machine size. Processors also have ample work, so synchronization time is only about
15-20%, and PP occupancy is low. In these cases, the lock acquire latency metric tracks closely the
microbenchmark predictions. Hand-off latency performs better than the worst case we established
earlier, since every processor is not contending for the lock as in our microbenchmark. The lock
metric histograms (columns under Figures 6.29, 6.30, and 6.41) show that locking is well-behaved,
with events of any significant frequency taking less tham40

At 64 processors in both problem sizes, the application continues to scale reasonably well,
though synchronization time begins to be more significant. This suggests that the application is be-
ginning to reach its scalability limits by exhausting the highly parallelizable work that was sufficient
for smaller machine sizes. PP occupancy has also increased to between 13-20%, though this still
provides reasonable response time and thus average read miss latency increases only mildly. Both
MCS andrLASH locks show mild latency gains over LL/SC at this size, as well as lower occupancy.
We see that contended lock acquisitions remain efficient through queueing at apeutvBile
LL/SC has degraded to 18 on average. The frequency of contended accesses for LL/SC locks is
still low at this problem size, so the impact of this degradation is low. The lock metric histograms
(columns under Figures 6.35, and 6.42) show the lock metrics more clearly. LL/SC encounters
some long latencies for non-contended locks, but mostly achieves low latency and a fair number of
cached re-acquisitions (the leftmost bar). MCS (Figure 6.37) improves the non-contended perfor-
mance by reducing overall contention that causes long acquire latamcyH locks (Figure 6.39),
also reduce very slow acquires, however, as our microbenchmarks indicated, the minimum acquire
latency is over 2us (except for cached re-acquires).

Once the size reaches 128 processors, synchronization contention increases, causing perfor-
mance to degrade for LL/SC, which is less efficient in that regime. For 512 molecules, LL/SC
spends 74% of its time in synchronization, in part due to exponential back-off during contention.
The non-synchronization portion of compute time is also longer than the other primitives, with high
PP occupancy (50% worst case) from synchronization increasing average miss time considerably.
The hand-off latency average of & is readily apparent from Figure 6.36, which indicates many
locks take in excess of 106 to transition. Queued locking dramatically improves this situation: the
hand-off latency average is essentially unchanged from 64 processors, and PP occupancy remains
lower, improving average read miss latency. Figures 6.38 and 6.40 show that queued techniques
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encounter a sharp peak centered asand only relatively few locks experience long waits (due to
gueueing for the PP). At this sizelL.AsH locks improve computation time by 12% over MCS, in
part because more locks take the contended case whesel locks communicate more efficiently.

Part of the shift from non-contended to contended acquisitions is due to the fairness in queued
lock techniques reducing the cached re-acquires as compared to LL/SC. This effect is visible in all
the Water histograms in the leftmost non-contended histogram bar. The LL/SC lock implementation
lacks fairness, and so a nhode can release and re-acquire a lock quickly, even if other processors are
actively requesting it. Since the node acquired ownership to unlock, re-acquisition can succeed in
the cache until other sharers request the line again. MCS locks provide fairness, though delays from
contention to join the queue may allow some unfair re-acquisitions.

For 1024 molecules at 128 processors, the effects are similar to 512 molecules but are more
significant, leading to a 23% improvement in execution time witAsH locks as compared to
MCS. Lock acquisition frequency is about the same as 512 molecules since the execution time
doubles and so does the lock count. However, PP occupancy is extremely high at this size, and
the average read miss time degrades considerably, especially for the conventional synchronization
techniques. Accounting for the occupancy increase is the higher contention for locks at this size
from two molecules sharing a lock. Despite the higher contentiorsH acquire latency degrades
only slightly compared to smaller runs because the algorithm is more communication-efficient. In
contrast, Figure 6.48 shows that the high occupancy causes an increase in very slow MCS hand-offs,
resulting in an average hand-off latency of 4.4, the first significant degradation in MCS we see.

We reiterate that the gains shown here for the 1024 molecule problem size are larger than would
be encountered in practice since molecules share locks artificially. In fact, lock contention would
probablydecreasdor a given machine size in Water if problem size and total lock count scaled
together.

6.3.3 Barnes

Our study of Barnes is similar to that of Water, using the same application variants. Like Water,
Barnes uses an array of locks to protect the data structures that track the bodies it simulates. We
encountered similar contention problems due to central allocation of the lock array in Barnes, so we
distributed this array as before, matching the distributionsH locks provide. The array of locks

is limited to 512 locks as in Water.

Synchronization Usage

Barnes computes interaction forces in three dimensions between patrticles (or “bodies”), such as
planets in a galaxy. Unlike th@(n?) algorithm used in Water to compute intermolecular forces,
Barnes uses a hierarchical method which aggregates nearby groups of particles into their weighted

Section 6.3 Lock and Barrier Performance Impact in Applications 175



+—+ LL/SC Locks
- -+ MCS Locks
® OO FLASH Locks

200

Compute Time (ms)

100 -

0 | | | |
16 32 64 128

Number of Processors

Figure 6.50 Barnes computation time using different lock techniques.

average. In this way, distant particles can reduce the computational complexity of calculating in-
teractions while bounding the error that is introduced by adapting the level where aggregation is
permitted. One symptom of the difference in this algorithm is that lock count in Barnes increases
only about 25% from 16—128 processors, unlike Water where the count scales exponentially.

As introduced earlier, Barnes uses its array of locks for two functions: to protect updates to a
group of particles and to protect a processor’s data structures during the load balance phase where
processor assignment is modified. Our simulations indicate that neither of these two phases is
uniquely prone to contention; each contains some locks which experience high contention, but it is
very non-uniform. This is probably due to the nature of the algorithm in which the communication
patterns vary somewhat based on the particular traits of the bodies being simulated. Overall, Barnes
lock acquires encounter contention somewhat more frequently than in WaterLagsd locks
perform well over the entire range of processors as a result.

Performance Analysis

We simulate Barnes running the 8192-body problem on machines from 16—-128 processors. Our
performance metric as before is computation time, but since initialization and cold-start time is

significant we report the execution time of one phase of the application after it has reached steady
state. The execution time is illustrated in Figure 6.50. Table 6.11 shows the statistics summary
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Table 6.11 Barnes lock results summary. The columns use the same format explained in Table 6.10.

% of Time| Avg PP Acquire Hand-Off
Lock | Computel in Sync Read | Occupancy Latency Latency
Primitive| Time | Avg |Max| Miss | Avg | Max | (and fraction)| (and fraction)

8k bodies, 16 processors, 8.8k lock acquisitions.
LL/SC| 241ms| 3%| 5%]| 1O0wus| 2%| 4% 1.7us 95%| 6.2us 5%

MCS| 238 ms|] 2%| 3%] O09us| 2%| 3%]| 0.3us 93%| 1.3us 7%
FLASH| 237ms| 2%| 3%]| O9us| 2%| 8%]|] 0.5us 90%| 1.6us 10%

8k bodies, 32 processors, 9.0k lock acquisitions.
LL/SC| 130ms| 9% |11%]| 1.3us| 2%| 7% 2.0us 93%| 14.2us 7%
MCS| 123ms] 5%| 6%| 1.1lus] 2%| 5% 0.3us 89%| 1.8us 11%
FLASH| 123 ms| 4%| 6%]| 1.1us| 3%| 13%| 0.6us 84%| 1.7us 16%

8k bodies, 64 processors, 9.3k lock acquisitions
LL/SC| 108 ms| 34%|42%| 5.8us| 4%| 61%| 2.1us 93%| 27.5us 7%
MCS 71 ms] 13%| 16%] 1.7us| 5%| 33%| 0.4us 80%| 2.5us 20%
FLASH 68 ms| 9% | 12%| 1.4us| 5%| 28%| 0.8us 78%| 1.6us 22%

8k bodies, 128 processors, 10.0k lock acquisitions
LL/SC| 185 ms| 49%| 79%]| 22.9us | 4%| 63%| 2.8us 88%| 42.3us 12%
MCS| 115 ms| 39%| 64%]) 14.7us | 5% | 61%| 0.8us 53%| 3.2us 47%
FLASH 59 ms| 27%| 42%]| 6.6us| 6% | 49%| 1.8us 46%| 1.5us 54%

in the same format as Water. In Barnes, HesH lock version of the application achieves the
best execution time at every problem size, though the gains only become significant beyond 64
processors.

We note first the conspicuous difference between Figures 6.53 and 6.55 for then@n-
contended histogram bar. This effect, also present but less visible in the Water histograms, arises
because the minimumLASH acquire latency for a lock not already present is more thag, 2vhile
MCS acquire latency is sometimes below2 The 1us bar for both cases represent rapid cached
re-acquisition of a previously held lock, which occur very frequently in Barnes. Table 6.11 lists
the average of these two effects for acquire latency, which is why it appears to be less than the
microbenchmark predictions.

Beginning with the 16 processor simulation, Figure 6.51 shows that even at this small size,
LL/SC locks perform poorly and encounter a wide range of lock latencies. The queued lock prim-
itives achieve much more uniform behavior, and perform similarly. At this size the lock metrics
favor MCS slightly, though the average miss latency is slightly lowerrfersH (beyond the pre-
cision shown in the table), accounting for the marginally faster execution time. Similar effects are
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Figure 6.51 Barnes, 16 procs., 8k bodies, Figure 6.52 Barnes, 32 procs., 8k bodies,
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Figure 6.53 Barnes, 16 procs., 8k bodies, Figure 6.54 Barnes, 32 procs., 8k bodies,

MCS lock latency histograms. MCS lock latency histograms.
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Figure 6.55 Barnes, 16 procs., 8k bodies, Figure 6.56 Barnes, 32 procs., 8k bodies,

FLASH lock latency histograms. FLASH lock latency histograms.
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Figure 6.57 Barnes, 64 procs., 8k bodies,
LL/SC lock latency histograms.
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Figure 6.59 Barnes, 64 procs., 8k bodies,
MCS lock latency histograms.
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Figure 6.61 Barnes, 64 procs., 8k bodies,
FLASH lock latency histograms.
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LL/SC lock latency histograms.
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Figure 6.62 Barnes, 128 procs., 8k bodies,
FLASH lock latency histograms.
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visible at 32 processors; the higher PP occupancyifasH at that size may be due to less efficient
non-contended lock handling, though contended performance begins to surpass MCS locks.

At 64 processorsFLASH contended lock performance actually improves as compared to 32
processors, while MCS locks and LL/SC continue to degrade. PP occupancy for the shared mem-
ory lock approaches increases as well, particularly LL/SC, coupled with an increase in cache miss
latency. These effects combine to yield a 4% execution time advantageAsH locks. In all
primitives, non-contended performance degrades slightly, though cached re-acquisitions remain a
large component and thus the average latency remains low.

For the 128 processor system, the trend of these effects continues, causing the execution time
both shared memaory lock primitives to slow as compared to 64 processors. In contrast, the version
using FLASH locks continues to scale, achieving a 49% gain versus MCS locks at 128 processors
and a 16% gain versus the best case achieved by shared memory locks (MCS locks at 64 proces-
sors). A major reason for this result is the shift in lock acquisitions to the contended case, which
occurs for each scaling step but is particularly prevalent at 128 processors. At this size, LL/SC
contended performance is nearly a factor of 30 slower thaisH locks, and MCS is twice as slow,
so the increase in contended lock acquisitions enables appreciable gains.fiem Contended
FLASH locks also eliminate artifactual communication that reduces protocol processor congestion
and improves average cache miss latency. The 128 processor simulations show significant queueing
effects in the outgoing network queues (not shown in the table) and an increase in negative acknowl-
edgements as a result. Reducing PP occupancy helps abate both effects and improves performance
noticeably.

Note that at this large machine size, the results from Barnes are somewhat unpredictable since
the system is spending a significant amount of time in synchronization. Thrugn locks show
clear gains at this size, we observe that Barnes might employ different synchronization primitives
or restructure the algorithms somewhat if execution at this operating point were desired.

6.3.4 Ocean

For the Ocean application, we focus our study on barriers. The baseline version is based on the
tournament tree barrier we describe earlier, since the elementary LL/SC barrier performs so poorly
itis unusable. We generate two other versions, one using the MCS barrier, the other usimgsthe
barrier presented in Section 6.2.

For each barrier primitive we use the configuration that our microbenchmark results show per-
forms approximately the best, using as a meftig- t,¢ Since that represents the worst case release
from the barrier. For Tournament barriers we use radix 2 trees, and for MCS barriers we use radix
4. TheFLASH barrier uses a 4-ary tree even though 5-ary is slightly faster in an attempt to distribute
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the tree more evenly over the processors and reduce the likelihood that the outgoing network queue
fills, requiring recovery using the software queue.

Synchronization Usage

Ocean is an iterative algorithm with ten separate phases per iteration. Barriers are used between
every phase to assure results are completed before they are read by other processors. They are also
used within the multigrid solver to separate its internal phases, in fact the solver’s barriers comprise
about 85% of the barriers in the application. Overall, the application uses about 150 barriers in the
region we study.

Ocean encounters a wide range of phase lengths, ranging from very short ones that update a
global sum to longer ones that do significant communication and computation. In the multigrid
solver phases, immediately after the barrier it copies either the red or black portion of the grid,
then executes the relaxation phase on the other. The subsequent phase then does the same on the
opposite portions of the grid. These grid copy phases utilize extensive prefetching that causes
intense communication immediately after the barrier. This characteristic has a significant impact on
the performance effects we see.

Its frequent barriers, combined with the presence of some very short phases offers the potential
for some performance improvement from optimizing barriers. Our results match this expectation in
some cases, especially larger machine sizes. However, the characteristics of the application’s algo-
rithms, especially the multigrid solver, makes Ocean very sensitive to communication performance
within its phases. Though improving barrier performance is one important aspect, optimized barri-
ers may also increase contention if different processors interact differently or operate more closely
in lock step as a result. Due to these balancing effects we find the execution time gains from barriers
vary by problem size, even though the barrier metrics themselves measured from the application run
show unequivocal gains fromL.ASH barriers.

Simulation Results Format

We run Ocean at two problem sizes: 258x258 over 16—64 processors and 514x514 for 32—64 proces-
sors. As our primary metric for Ocean, we report execution time for five phases of the application,
excluding the first phase so that the application is executing in steady state. If the application were
executed for more time steps than simulation permits, this time should scale linearly. The execu-
tion time results are presented in Figure 6.63. Like the previous applications, we show a range of
statistics in Table 6.12 with the leftmost seven columns characterizing the execution time, synchro-
nization time, and occupancy characteristics as before. In this case the two rightmost columns show
averages of the barrier metrics introduced in Section 6.2.1.
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Figure 6.63 Ocean computation time using different barrier techniques.

Just as in locks, we find that the barrier performance varies somewhat during the run based on
the different places it is used, so we also present a histogram of fall-though and release latency. The
histograms use the same format as before, except that the y-axis is now linear due to the significantly
smaller number of barriers than locks.

Unlike the microbenchmark analysis in which arrivals at the barrier were carefully controlled,
in this case the arrival characteristics are determined largely by the application. We introduce two
additional metrics in our analysis to analyze the arrivals since, as we showed earlier, the arrival
characteristics can significantly affect barrier performance. The fitasisarrival interval, which
measures the duration between the last and next-to-last arrival (in the nomenclature of Section 6.2.1,
this can be expressed#@s — t;, _,). This metric provides some indication of the severity of arrival
contention: when last arrival interval is large, the late arrival case approximately applies. However,
when it is small, this metric does not show how many other arrivals were nearby. The second metric,
calledall arrival interval, addresses this question somewhat by measuring the duration between the
first and last arrival (in the nomenclature of Section 6.2;1,— ¢;,). It provides an indication of
the arrival spread (to gauge the overall contention) and also shows the load imbalance between the
processors. Comparing synchronization time between runs of the same size is also useful to gauge
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Table 6.12 Ocean barrier lock results summary. The leftmost seven columns use the same format
explained in Table 6.10. The remaining columns show barrier-specific results (all in microseconds):
the average interval between the last and next-to-last barrier arrival; the average interval between
the first and last barrier arrival; the median and mean for each of the fall-through and release latency
metrics as defined earlier .

% of Time | Avg. PP Last | All Fall-Through] Release
Barrier| Compute] in Sync | Read | Occupancy Arriv. | Arriv. Latency Latency
Primit. | Time | Avg | Max | Miss | Avg | Max | Interv. | Interv.| Med. | Mean] Med. | Mean

(1) | (us) | (us) | (us) | (us) | (us)

258x258 Ocean, 16 processors, 143 barriers.
Tourn 122 ms] 14%| 19%| 1.0us | 14%| 19% 17 165 | 11.2| 10.7 | 19.4 | 21.3
MCS 121 ms| 12%| 16%]| 1.1us | 14%| 20%]| 26 157 {10.8| 115] 9.2 | 11.2
FLASH | 123 ms| 13%| 18%]| 1.1us | 14%| 19%] 41 182 24| 26| 12| 14

258x258 Ocean, 32 processors, 143 barriers.
Tourn 82 ms| 27%| 33%| 4.2us | 12%|27%| 28 211 | 12.3] 119 31.1| 41.4
MCS 74 ms| 23%| 33%| 3.6 us | 12%| 24%| 11 172 114.0| 13.8| 149 | 234
FLASH 77 ms]| 20%| 31%]| 5.1pus | 12%| 25%] 11 199 26| 29| 21| 31

258x258 Ocean, 64 processors, 143 barriers.
Tourn 67 ms| 44%| 57%] 5.1us | 14%|39%| 19 263 | 15.6 | 15.4| 40.0 | 50.7
MCS 78 ms| 45%| 58%| 7.8 us | 12%| 32%] 20 332 | 145| 154 23.1| 294
FLASH 57 ms] 41%| 50%] 4.3us | 15%| 33%| 16 209 30| 45| 21| 4.0

514x514 Ocean, 32 processors, 156 barriers.
Tourn | 258 ms| 14%| 18%] 0.7 us | 15%| 22%] 30 326 | 13.9| 13.8 ]| 28.8| 36.3
MCS | 256 ms] 13%]| 16%] 0.7 us | 15%| 23%| 38 311 | 13.7| 14.0]| 14.6| 205
FLASH | 255 ms| 12%| 16%] 0.7 us | 15%| 23%] 37 319 30| 33| 21| 21

514x514 Ocean, 64 processors, 156 barriers.
Tourn | 213 ms| 31%| 42%]| 5.1us | 12%| 31%] 56 640 | 16.0 | 15.9] 41.7 | 59.0
MCS 199 ms| 30%| 39%| 4.0us | 12%| 32%| 71 508 | 14.2 | 15.2| 26.2 | 62.7
FLASH | 222 ms| 31%]|46%] 5.4us | 11%|40%| 78 735 3.0| 33| 21| 438

load imbalance, since it gives another indication of processors waiting at the barrier while others
are still working.

Our results show that these auxiliary metrics have heterogeneous characteristics (even more so
than fall-through and release latency), so we illustrate them with histograms as well. For the Ocean
results, therefore, a single page contains two columns of plots for a particular problem size, barrier
metrics on the left, and arrival characteristics on the right.
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Figure 6.64 Ocean, 16 procs., 258x258, Tourn. barrier meigét) and arrival(right) histograms.
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Figure 6.65 Ocean, 16 procs., 258x258, MCS barrier mefiedt) and arrival(right) histograms.
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Figure 6.68 Ocean, 16 procs., 258x258,AsH barrier metriq(left) and arrival(right) histograms.
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Figure 6.67 Ocean, 32 procs., 258x258, Tourn. barrier meigét) and arrival(right) histograms.
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Figure 6.68 Ocean, 32 procs., 258x258, MCS barrier mefiedt) and arrival(right) histograms.
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Figure 6.69 Ocean, 32 procs., 258x258,AsH barrier metriq(left) and arrival(right) histograms.
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Figure 6.7Q Ocean, 64 procs., 258x258, Tourn. barrier meigét) and arrival(right) histograms.
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Figure 6.71 Ocean, 64 procs., 258x258, MCS barrier mefiedt) and arrival(right) histograms.
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Figure 6.72 Ocean, 64 procs., 258x258,AsH barrier metriq(left) and arrival(right) histograms.
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Figure 6.73 Ocean, 32 procs., 514x514, Tourn. barrier meigét) and arrival(right) histograms.
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Figure 6.74 Ocean, 32 procs., 514x514, MCS barrier mefiedt) and arrival(right) histograms.
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Figure 6.75 Ocean, 32 procs., 514x514,AsH barrier metriq(left) and arrival(right) histograms.
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Figure 6.76 Ocean, 64 procs., 514x514, Tourn. barrier meigét) and arrival(right) histograms.
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Figure 6.77. Ocean, 64 procs., 514x514, MCS barrier mefiedt) and arrival(right) histograms.
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Figure 6.78 Ocean, 64 procs., 514x51A,AsH barrier metriq(left) and arrival(right) histograms.
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Barrier Performance Analysis

Unlike the previous applications we study, Ocean contains a sufficient number of barriers to allow
us to study their performance adequately in the context of real application behavior. We begin
by considering the performance of the barrier primitive itself, using the mefti@nd ¢, and
comparing to the results of the microbenchmark analysis. Then we return to the larger issue of
analyzing the performance impact of barriers on the application overall.

Table 6.12 shows that based on the performance metiessH barriers are superior to the
other techniques in every case. As predicted, the gains are between a factor of 4 up to more than an
order of magnitude. Beginning with fall-through latenty, to compare with the microbenchmarks
we must first determine the nature of the barrier arrivals. For this we use the last arrival interval
histograms (such as the column of figures under Figure 6.64, right). These indicate that about half
the time the final barrier arrivals occur less thams3f each other, corresponding to the simultane-
ous arrival case. The other half encounter about 8r more between the final two arrivals, which
corresponds roughly to the late arrival case. The results in Table 6.12 shovy tmatches this
analysis and is approximately the average of the late and simultaneous arrival predictions from the
microbenchmarks. The barrier metric histograms (such as the column of figures under Figure 6.64,
left) reflect this as well. Though the histogram granularity does not show this in detail, the pro-
nounced fall-through latency peak reflects a fairly smooth distribution between the two extremes of
late and simultaneous arrival when examined at higher resolution.

The release latency also corresponds fairly closely to the microbenchmark predictions. In most
cases the latency increases slightly, due to traffic introduced into the system by the earliest released
processors. The microbenchmarks isolated the barrier itself and thus did not encounter interfer-
ence of this kind. The release latency histograms show the performance of the three primitives in
more detail. The most notable effect is that the release performance of the software techniques is
less resilient to contention degrading significantly in some casessH barriers achieve release
performance close to the predictions, and encounter much less degradation from contention.

Returning to fall-through latency, we notice that a small fraction ofrihesH barriers have
longer latency than the microbenchmark predictions. Figure 6.72 (left) shows this effect clearly
in the 20us histogram bar (i.e., fall-through latency between 10+2Q. This arises from the
application and coherence protocol: in the relaxed consistency mode we use, invalidation acknowl-
edgements for exclusive ownership requests can be collected in the background after a write has
completed. Thus, the processor may complete its work and reach the barrier while invalidations
are still outstanding. Internally, tieASH barrier executes an uncached read to communicate with
MAGIC. This read causes an implicit memory fence by the processor that forces all invalidations
to be counted before the read can issue. For consistency, and to account for all the overheads of
the different primitives we study, we count barrier fall-through latency from the start of the final
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processor’s barrier routine, and thus the delay while the invalidation acknowledgements arrive is
counted towards the fall-through latency. This effect is unavoidable given the coherence protocol,
and reflects one part of the fundamental synchronization the barrier provides.

In Table 6.12 we show both mean and median barrier metrics to illustrate that the median case is
in line with the predictions, while the mean is perturbed slightly by instances of this effect. Though
the other barrier primitives are subject to this effect as well, we notice that in practice they do
not encounter as many slow eventsragsH barriers. While this effect is deeply dependent on
the ordering and timing of requests within the application, it is likely that the significantly more
uniform release characteristicsmfasH barriers is responsible for arrivals at the subsequent barrier
with more acknowledgements outstanding.

Overall Performance Analysis

Now that we have analyzed the barrier performance specifically, we consider the application as a
whole to understand why its performance does not track the clear improvementsLisxsm barri-
ers. The most important observation is that even though the standard barrier primitives are far less
efficient thanFLASH barriers, they still account for only a fraction of the execution time. The impact
of the primitive itself forn barriers is bounded betweeits) andn (¢ + trel), SINCE every processor
must waittg;, but only the worst case processor wajts- tr¢. If we consider the tournament barrier
as a reference point, across the range of simulations the lower bound is always less than 3%, and the
upper bound is less than 10% in nearly every case. Only for the 64 processor/258 problem size does
the maximum barrier contribution reach about 14%. Thus, the barrier primitive’s performance itself
is only responsible for some of the application-level performance differences in our results. We also
encounter differences in ttapplication’sexecution resulting from the synchronization primitives.

Looking first at the 258x258 problem size in Table 6.12, we see thatitheH barrier trans-
lates to improved application performance overall, especially as machine size grows. Notice that
all arrival interval, which provides an indication of load balance, deteriorates markedly with the
other barriers, while witltFLASH barriers it stays fairly constant. At 64 processerasH also re-
duces average read miss latency by reducing the communication artifacts due to barriers. These
effects combine to provide an overall execution time improvement at 64 processors of 14% versus
tournament barriers and 26% versus MCS.

For the 514x514 problem size, however, we see very different behavior. On the one hand,
barrier performance metrics indicakeASH barriers clearly outperform the other primitives for
this problem size as well. Unfortunately, we also find increases in average read miss latency, PP
occupancy, and all arrival latency fetAsH barriers as compared to the tournament barrier and
MCS. Overall, therLASH barrier execution time is 4% slower than the tournament barrier and 10%
slower than MCS. We describe two factors that are likely contributors to this slow-down, arising
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from both application andLASH system characteristics, though other application interactions may
also be at work.

First, this version of Ocean uses aggressive prefetching, that accounts for between 50-75% of
all the read misses. These prefetches are used especially in the multigrid solver’s red-black grid
copy phases, which occur right after a barrier. Prefetches immediately after the barrier may not only
impede the barrier itself, but also swamp the protocol processors and cause network queues to fill.
TheFLASH barrier's more uniform release characteristics exacerbate this contention and may cause
performance to degrade as a result.

A second factor that may contribute to the performance differences is that the three barrier
primitives release processors in a different order. The trees themselves not only have different
structure, but even if they were the same, the releases would still differ greatly in their timing.
Differences in processor communication patterns or bottlenecks are likely to be stimulated by this
effect. Still, this effect does not seem to dominate, since the last arrival interval histograms indicate
the final arrivals tend to have approximately the same characteristics across the different primitives,
suggesting no single hode dominates as the critical path.

Overall, we see that theLAsH barrier technique offers the ability to improve performance,
as shown particularly in the 258x258 problem size that spends significant time in barriers. Ocean’s
communication patterns and other effects dominate in the 514x514 problem, even though the barrier
metrics show the primitive’s performance itself remains robust even in those circumstances. These
indications reinforce our microbenchmark analysis thatsH barriers are a powerful technique
that offers the ability to synchronize at low cost, even at large machine sizes.

6.4 Discussion

This section reflects on the design of the synchronization primitives to identify their successes and
propose approaches to address their limitations. Overall, we find that these protoeokssieipro-

vide an interesting counterpoint to the memory copy protocol we studied in Chapter 5. To provide
coherent data movement at high performance, memory copy contained significant amount of pro-
tocol code and state. The synchronization primitives focus instead on achieving high performance
through specialization and by striving to keep the protocol code small and efficient.

Locks

The FLASH lock protocol we describe represents only one of the many approaches to improving
lock performance with specialized support. Our approach focuses closely on reducing artifactual
communication for contended lock accesses. This choice turns out to be very effective, showing
improvements for both Water and Barnes at large machine sizes. The performance improvements
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come not only from reducing lock latency itself, but even more importantly from the reduction in
protocol processor occupancy artifactual communication causes.

On the other hand, consistent with the predictions and explanation of our microbenchmark anal-
ysis, we find thatLASH locks do not perform as well for non-contended accesses. In fact, at small
application sizes where contention is low, we sometimes see a slight slowdown from the use of the
FLASH technique. In those cases,AsH locks increase the lock latency and occupancy since our
handlers are longer and there is little or no artifactual communication to eliminate.

To address this limitation, future research in this area might consider a primitive that more ef-
fectively achieves the advantages of shared memoryasgH locks. We suggest three approaches
to such a hybrid that are natural extensions of the technique we pré@$extybrid solution where
both shared memory armd AsH lock primitives are used, and are selected by the programmer using
knowledge of the application characteristi¢g) A dynamic hybrid primitive implemented in the
lock library, such as reactive synchronization, where the lock shiftsHonaH-based mode when
contention is detected [LA94]. The back-off interval in the existing LL/SC primitives would allow
this detection to be done at little or no impact when contention is not prg@@na dynamic hybrid
primitive implemented irMAGIC, a unique opportunity provided by the flexibility mLASH. This
would operate similarly to the dynamic application-level primitive, falling back to shared memory
in low contention, but by encapsulating the protocol in the memory system it is completely trans-
parent to the processor. Assuming we adopt one of these solutions to address the low contention
limitations of FLASH locks, the resulting primitive will have favorable characteristics over the broad
spectrum of locking regimes. This may makeasH locks a more resilient and stable protocol to
use in general, especially in cases where a lock’s contention behavior is not clearly understood, or
cannot easily be anticipated.

We also note that our implementation encounters a number of limitations from allowing locks
to be cached, such as those caused by speculation. Earlier we described the “Aggressive” lock vari-
ant, which attempts to mitigate somewhat the impact of speculation. More broadly, our application
results find that caching of locks is not always critically important: in Barnes we find cached re-
acquisitions are fairly common, and help brirgasH lock non-contended performance closer to
that of the shared memory, while in Water its usage is less common. We might take advantage of
this observation and consider a lock variant whites notsupport caching of locks. In such a
primitive, the processor would communicate with the protocol processor via PPRgdigriock
and unlock. This implementation would reduce the penalty associated with non-contended
locks by eliminating two cache accesses in the critical path (one to read the lock state at the re-
quester, and one to extract it from the current holder’s cache) and would reduce the lock protocol's
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complexity and code size still further. Using a token-based approach, which we find provides sig-
nificant benefits, this implementation would even permit local re-acquisition, though not at cache
speeds.

Barriers

The barrier protocol builds upon conventional shared memory tree-barrier approaches by integrating
a custom version intMAGIC. Our simulations across microbenchmarks and applications shows
that based on the barrier metrics, this approach outperforms the other alternative in every case.
Furthermore, even though application interference inevitably causes barrier performance to degrade
somewhat as compared to the isolated predictionsgitheH barrier protocol degrades much less

than others.

On the other hand, our evaluationffasH barriers within the Ocean application shows mixed
gains. In some cases,ASH barriers do not improve overall execution time, probably due to other
contention effects exposed in the application. Eliminating synchronization bottlenecks may always
expose secondary bottlenecks of this sort. Other applications with less communication contention
may show clearer gains from the improvement of barrier performance itself.

The barrier approach we choose is based on a static assignment of processes to processors. The
internal MAGIC barrier tree requires reconfiguration if the mapping changes due to multiprogram-
ming. While this is a restriction, we feel it matches the usage patterns of scientific applications,
which use barriers the most frequently. Applications of that class generally attach to processors to
improve locality. They also perform extensive memory placement operations to indicate their mem-
ory locality patterns; optimizing the barrier tree for processor assignment is a related optimization.
In a commercial system environment in which attaching to processors is not permitted, the oper-
ating system would be employed to provisieGiC with an updated processor assignment when
mappings change, so the barrier tree can be updated to match.

6.5 Summary

This chapter presents two custom synchronization protocolsLfesH, locks and barriers. In each

case, the design focuses on the low-level communication pattern the operation requires and identifies
how conventional software shared memory implementations deviate from those patterns due to the
cache coherence protocol.

The lock protocol targets in particular high contention situations where shared memory locks de-
grade significantly. Our protocol is based on a distributed queueing approach that permits locks to be
handed directly from one holder to the next. It also permits caching of locks to allow re-acquisition
without external communication. Our approach is similar in many respects tpdhe primitive
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supported by SCI, but our primitive is more robust and is somewhat simpler. Our evaluation of
FLASH locks using microbenchmarks shows that contended performance improves significantly as
compared to non-queued locks, and gains about 40% over MCS locks, a software queued lock im-
plementation, though non-contended performance is inferior to both alternatives. We also study
applications taken from the SPLASH-2 benchmark suite, findingrbasH locks enable contin-

ued scaling to 128 processors where speedup often drops off after 64 using conventional locks.
These gains derive from superior locking as well as decreased controller occupancy arising from a
reduction in communication artifacts.

The barrier protocol follows conventional software tree-barrier approaches, while implementing
the operation entirely withimAGic. Just as in locks, this approach reduces communication artifacts
from contention to join the barrier, and improves performance by communicating directly between
nodes. Microbenchmark analysis demonstrates that the join phase of the barrier outperforms even
tree-based shared memory approaches by an order of magnitude under contention, and a factor of
two to four when a single processor arrives late. The release performance is also significantly faster
and thus more uniform, releasing 128 processors withir.3Besides the normal barrier, we also
demonstrate a variant which provides master-slave functionality, which is useful in some programs
such as those generated by an auto-parallelizing compiler. Simulations using the Ocean applica-
tion from the SPLASH-2 suite confirm the microbenchmark predictions of the barrier performance
metrics, and further show that AsH barriers maintain their performance under application inter-
ference better than conventional approaches. Execution time benefits are mixett barriers
improve overall performance for some cases, while others encounter secondary bottlenecks in the
application.

The synchronization protocols benefit greatly from the flexibilityeiGic overall, though two
features are particularly useful. First, the presence of alternate address spaces allows the protocols
to respond to cache misses for lock or barrier state with different handlers than for normal misses.
This avoids the need to add special cases to the cache coherence protocol. Second, the flexibility
of the Jump Table allows these specialized coherence handlers to be dispatched directly rather than
through software, which would erode many of the latency gains the protocols achieve.
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Chapter 7

Extensions and Future Directions

The flexibility provided by the unique design @RGIC allows theFLASH system to support a wide
range of functionality not possible in conventional systems. In the previous chapters, we have stud-
ied in detail several protocols that use this flexibility to accelerate specific kinds of communication
operations. In this chapter, we describe a wide range of other protocols which may be promising
directions of future research.

7.1 Active Messages

Chapter 5 describes the “block transfer” uses of message passing, focusing on the benefits it can
provide for efficient communication. Some message passing programming models also provide the
ability to invoke computation on a remote node when the message arrives therbseryl, in

NX [Pie88]. Note the contrast between this kind of “imperative” communication model and shared
memory, which typically relies on the receiver explicitly polling to check if external communication
has arrived. Researchers have named this imperative style of communicatitve messages
because of the computation such messages invoke upon receipt [VECGS92].

In this section, we describe the design space for active messagas\en. There are two
issues which characterize our options for an active message implementation: The first is whether
the computation expressed in the message should be executed on the main procesgacoc Sn
Protocol Processor. The second issue is whether to allow the user to provide arbitrary code to
execute as an active message handler or only to allow system-level code.

!Some shared memory systems implementations, suphss [Len92], do provide a means to send inter-processor
interrupts. What we describe here is a somewhat more advanced technique for invoking computation remotely.
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7.1.1 Processor-Implemented Active Messages

The obvious starting point for active messages is to carry out the computation on the main processor.
The main processor provides several advantages over the Protocol Processor. First, it is highly
optimized for general code, more so than the PP which is geared towards stylized handlers with
fairly mild computational requirements. Second, unlike the PP, the main processor provides floating
point support in hardware. Finally, it provides the ability to run user code directly using hardware
memory management features.

However, the strengths of the main processor are also to blame for its main weakness: invoking
computation there has a high start-up cost. Through the processor intevfaGce; controls a
special bus that can interrupt the processor when needed. Unfortunately, deep pipelining, long-
latency floating point operations, large register files (which must be saved and restored), and OS
protection requirements all combine to make the interrupt latency very large in the R10000 (as in
most modern high performance processors running conventional operating systems). The R10000
vectors to an interrupt handler 12—20 cycles after the interrupt is asserted. The software start-up
cost may be as high as hundreds of cycles once the processor responds, depending on the operating
system and whether or not a fast interrupt vector is reserved for this use.

This drawback aside, invoking active messages on the processor is a powerful technique to
explore. One feature we will need to provide is a means of supplying the handler address to the
main processor when a message arrives. In some processors which deal with messaging more
directly, support for receiving a message and its handler PC is highly integrated with the proces-
sor [CSS91, DFK'92, NPA92, ACD 95]. In our case, we are forced to rely on the R10000’s in-
terrupt handler requesting the message fromneIC when it is ready to service the active message.

For performance, this interface should allow the processor to read the active message efficiently
(i.e., cache it), but also unambiguously indicate that the message processing is complete (in case
another message is waiting). These issues render a high-performance main-processor interface to
active messages a challenging implementation. We describe our approach to requesting service on
the processor in Section 4.1.3.

Protection Levels

Protection remains an important issue for the implementation of active messages. Active messages
could execute either at user-level or kernel-level—each places protection burdens on the sending
and receiving processors amaGIC chips.

User-level handlers are the most flexible and widely usable since applications can provide their
own code to run upon message arrival. Running handlers at user level is straightforward on the
processor since it already provides the protection features that are required. However, user-level
code must run in an address space appropriate for its application, which raises several issues:
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e To provide this support, the processors amdziC need to communicate thauthenticated
identity of the sender so the appropriate address space can be selected. The operating system
andMAGIC cooperate sS®AGIC can provide the identity of the sender at low latency.

e Once the appropriate address space is selected, the OS must generate a context in which
the handler can run. This may take a form similar teignal handler (which uses the
application’s stack, thus suspending the application until the handler completes). If handlers
are to be more general and run concurrently with the destination process, additional threads
of activation must be ready in advance (or be prepared on the fly).

e The OS must verify the valid association of sender and receiver. This, combined with in-
stalling the correct address space further increases the handler-invocation latency above the
hardware’s lower bound.

We may also want to provide kernel-level active messages for inter-node kernel communication.
Kernel active messages share the requirements of user-level ones, especially the requirement for
authentication, to assure that only other kernels should be able to generate them.

7.1.2 MAGIC -Implemented Active Messages

Unlike previous systems that provided flexibility only in the compute processor, the Protocol Pro-
cessor inMAGIC enables us to execute active message handlers in the memory system as well. This
flexibility allows us to invoke handlers at significantly lower latency than on the main processor,
and to provide the handler with more direct access to the network. On the other hand, the design
of the PP places significant restrictions on the code that can be executed there (as described in
Section 2.3.2).

System-level

The protection limitations of the Protocol Processor only permit it to exdouséedcode, similar

to system-level code on the processor. In other words, handlers may be invoked only by privileged
users and must satisfy all the handler requirementsaafic. One form these system-level handlers

may take is a set of available functions that are previously verified to be trusted. In a broader sense,
the alternate protocols described in this thesis are examples of the functions that can be provided. If
other handlers are desired, they must be verified in advance, since the PP provides little protection
against errant handlers.
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User-level

Despite the restrictions on handlers, there remain techniques which could be used to provide user-
level handlers on the Protocol Processor. These techniques serve to assure protection for the system
either statically, in advance, or at run-time. Though allowing user-level handlers to execute, the
need to conservatively assure protection for the system is likely to reduce the performance of user-
level handlers substantially. A more detailed evaluation of the performance and implementation of
user-level active messagesAIbASH is beyond the scope of this dissertation.

Compile-Time Verification Instead of writing protocol handler instructions directly (or through
conventional compilation), they could be expressed in a specialized high-level language and
converted by a custom compiler to protocol code. At the same time, this compiler could
verify the code satisfies the requirements for correct handlers and only accesses valid data.
To assure this correctness, theGic features which provide direct hardware access would be
expressed as calls in the high level language. In translating these calls, the compiler can insert
the necessary correctness checks to prevent them being used inappropriately. For example,
a send instruction would only be permitted if queue-space requirements were guaranteed
by appropriate static invariants or coupled with a run-time queue-space check inserted by the
compiler. Using a compiler to generate the protocol code has the advantage of utilizing the
PP directly, but assuring the handler correctness requirements in a compiler is likely to be
very difficult.

Run-Time Emulation and Sandboxing An alternative to specialized compilation is the reliance
on exclusively dynamic checks for correctness. As an extreme solution, arbitrary user code
could beemulatedon the Protocol Processor, with the emulator performing protection checks
where needed to ensure correctness. Emulation makes it is easier to guarantee valid han-
dler execution, but does so at a significant performance cost. Most emulation systems slow
down execution between a factor of 50 to several hundred as compared to native execu-
tion [DLHH94, RHWG95]. The slow down to emulate the PP is likely to be still worse
because it normally executes two instructions per cycle. Despite this performance degrada-
tion, for short handlers performing basic tasks emulation may be faster than interrupting the
compute processor.

The sandboxing technique proposed by Wahbe et al. [WLAG93] provides some of the fea-
tures we require for direct user-level handler execution. Sandboxing entails rewriting the ob-
ject code of an untrusted module so that loads and stores are very efficiently prevented from
modifying memory outside an allowed region. Although preventing inappropriate memory
accesses by user-level handlers is an important component of the protection we require, it
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still does not assure that handlers terminate ormseic-resources appropriately. The en-
vironment described in [WLAG93] relies on a preemptive operating system and traditional
operating system memory management features as a safety net in some cases. We would
need to add runtime checks around potentially hazardous instructions like sends and Is/ss
instructions, and also insert periodically executing code to allow the PP to regain control

if the handler exceeds reasonable run time limits. Given those additional requirements, a
sandboxing-like technique has the potential to greatly improve performance for user-level
handlers running on the PP as compared to emulation or naive per-instruction checks.

7.2 Other Protocols

The protocols described previously are only a subset of the many possible ones that could be im-
plemented orFLASH. In this section we briefly consider several of the other possible protocols to
provide a broader picture of the features thGiC can support. Some of these protocols have
already been studied by other researchers in the contesttasfH, while others are potential fu-

ture research directions. A more detailed analysis of these protocols is beyond the scope of this
dissertation.

7.2.1 Fetch-and-Op

As part of the NYU Ultracomputer and IBM Research Parallel Processor Prototype (RP3) projects,
researchers developed a scalable synchronization primitive knowetets-and-Addwhich serves

as an alternative to synchronization based on locks [GLR83, G83KPBG"85, FG91]. Fetch-and-

Add provides a single atomic read-modify-write (an add) to a memory location. A generalization of
Fetch-and-Add igetch-and-Opalso known ag-etch-and®), in which Op can be essentially any
math operation.

To explain the semantics of Fetch-and-Add, consider a memory location X with starting value
1000. Consider two processors executifgichAndAdd(X,1)  simultaneously. When the re-
guests arrive at memory, one of the updates occurs first, but each occurs atomically. As a result, one
of the processors updates location X to 1001 (receiving 1000 as its return value), the other updates
it to its final value of 1002 (and receive 1001 as its result). Regardless of the interleaving, Fetch-
and-Add assures that the final result is 1002 and that the two processors each receive unique return
values 1000 and 1001. Non-atomic updates could mistakenly leave location X with the value 1001
and return value 1000 to both processors.

The implementation of Fetch-and-Op is attractive for high-contention situations since the op-
eration is executed at thmemory If normal cacheable operations were used, the memory line
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Figure 7.1 The NYU Ultracomputer’s Combining network (taken from [GG83]). Left: The
dance-hall machine architecture with processors and memory elements separate and connected by
an indirect Omega network. Right: the extensions to the network switch to provide the combining
function.

would instead move around the system as the updates were performed, with each request experi-
encing long remote access penalties. In the Ultracomputer, in fact, the memory and a specially-
designed interconnect calleccambining networkcooperate to accomplish this task still more effi-
ciently [GGK™83]. Figure 7.1 illustrates this network: the left panel shows a high-level view of the
Omega network used to connect processors and memory. This type of system is commonly referred
to as adance hallarchitecture, since the processors and memory are each grouped together. The
Ultracomputer extended the Omega network switch, shown at right, to provide the combining func-
tion. If the switch detects two Fetch-and-Add operations to the same location, it aggregates them
into a single operation representing a superposition of the two and passes the combined operation
onward. Later, when the result Y returns, the switch expands the operation to satisfy the two original
requests.

In FLASH, Fetch-And-Op on integers is relatively easy to implement in the Protocol Processor.
Since protocol handlers cannot be preempted, the PP handler merely needs to carry out a read-
modify-write cycle to assure atomicity. Unfortunately, floating point operations would need to be
emulated in PP software or executed directly on the compute processor (through interrupts). To
estimate the performance of an IEEE 754 compliant floating point add in the Protocol Processor we
studied the code generated by our compiler fgce math library function implemented in C. The
latency of this operation varies widely between 20-100 cycles depending on the operands. Given
the high cost of processor interrupts, this approach may still be faster than using the main processor.

7.2.2 Global Reduction Operations

Some massively parallel systems provide a special flavor of parallel communication,glabet
reduction operationgor simply global op3. These are similar to barriers since all processors ren-
dezvous during the operation, but unlike barriers, global ops also compute a parallel arithmetic
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operation in the process. That is, each processor provides a numeric argument to the global op, and
at the completion of the operation, each processor receives the result some function applied to the
numbers provided by all the nodes. For example, in a glatidleach processor provides a number
z;,0 < i < n, wheren is the number of nodes participating. As the return value from the global
add, each processor is returned the sum of all the velugs wherefy ., = >"7"  z;.

Global ops are provided by a variety of systems, e.g.: NX [Pie88] provides a range of global
op functions such agdsum() , MPI [Mes93] provides théMPI_Reduce function. FLASH, too,
can provide global ops in the Protocol Processor, with the caveat that only integer operations can be
implemented directly. Floating point would need to be emulated, as described in the discussion of
Fetch-and-Op (Section 7.2.1).

7.2.3 Fault Containment, Reliability, and Recovery

In a collaborative effort between the system designers and the operating systemrgraipre-
searchers have been designing support for reliability in the system. This design uses two major
cooperating thrusts: a scalable fault-containing operating system, and techniques for fault detec-
tion, containment, and recovery through support from custamic protocol code.

Hive Operating System The operating system group of tlFeASH project is designing a new
UNIX operating system calletive [CRD"95]. Hive extends the commercial IRIX oper-
ating system from Silicon Graphics to improve scalability and reliability and to increase its
awareness of the machine’s NUMA characteristics. To improve reliability, with the aid of
the hardware support described below, Hive divides the system into fault containment bound-
aries called cells. Hive also leverages fast active message support for kernel communication
between cells, each of which runs their own copy of the kernel.

Fault Detection, Containment and RecoveryUnderlying the Hive system are advanced protocol
features thatdetect faultghat occur,prevent faultdrom affecting other processors or cells,
andrecoverdata or nodes corrupted because of faults [TB@]. Collectively known as the
recovery protocqlthese handlers ensure the system’s integrity by using the special handler
MAGIC executes periodically, called théle handlerto check for problems. If error condi-
tions are detected, the handlers bring the system to a quiescent state and explore the system to
determine the extent of the fault’s effect. The protocol then restores to full operation the viable
portion of the system, and isolates and disables nodes that have experienced hard failures.

7.2.4 Performance Monitoring

One of the many beneficial uses of the flexibilityMAGIC is to export performance monitoring
features to the system. Performance monitoring can be used to study the system at several different
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levels. To the designers 6f.AsH, performance monitoring is useful to determine how efficiently
the MAGIC chip is functioning. This feedback can enable the designers to customize some pro-
grammable parameters in the chip to optimize its performance, to determine if software or hardware
errors are occurring, and to examine whether bottlenecks exist in the current design. Performance
monitoring of this sort is provided in two ways. Hardware counters embeddeddnc provide
a view of hardware events too small or too difficult to measure in PP software. Instrumented han-
dler code (selected using a special sampling feature of the Inbox Jump Table) is used to read these
counters at appropriate times and measure higher-level events like protocol caching effectiveness.
At another level, performance monitoring can be used by the application programmer to study
not the system, but rather the performance of the application running on it. In the past, tools such as
MemSpy [Mar93] have relied on program simulation or run-time statistical sampling to determine
program behavior. Some processors, such as the Intel Pentium also provide a counter-based facility
that can be used to provide simple performance statistics. Binary rewriting tools such as pixie for
MIPS systems and similar tools [SCHd1] instrument executables to provide exact profiling, though
they perturb application execution. fnASH, performance monitoring can be provided much more
powerfully through support fromAGIC, including the visibility of details not available through any
existing techniques. The FlashPoint protocol [MOH96] implements performance monitoring in this
style by extending the coherence protocol to maintain additional information about memory system
behavior. Verghese et al. [VDGR96] also ugeGic to feed memory access statistics to the op-
erating system to guide page migration and replication decisions. Unlike FlashPoint which merely
provides the programmer with information useful for tuning the application by hand, in this case
performance monitoring may allow the kernel to dynamically improve application performance.
The ability to provide protocols such as FlashPoint, to dynamically influence page migration, and
to supply the programmer or operating system with real-time feedback is a powerful advantage of
FLASH.

7.3 Summary

This section described a range of other alternate protocols that may be interesting research direc-
tion for FLASH or similar machines. We described active messages, an alternative communication
style that shows promise for an efficient implementation with support faamic. Our discussion
focused on the range of design choices available in that protocol and to its users.

We identified two memory access primitives with unique characteristics targeted at supporting
different contended scenarios. Fetch-And-Op is designed for simple manipulations under high-
contention, while global ops are used to export all-to-all communication primitives using the facili-
ties of the machine as efficiently as possible. Both of these primitives are likely to perform well on
FLASH and may benefit from the implementation techniques used for synchronization primitives.
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We also identified a few other interesting uses of the embedded flexibilipnefc. Operating
systems can leverage this flexibility to increase performance, reliability, and scalability. System
designers and application programmers can use the increased visibility into the memory system to
better understand the performance tradeoffs in their designs.
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Chapter 8

Conclusions

A programmable protocol engine provides a novel and powerful model for supporting many classes
of communication within a multiprocessor. This research studies one such environment in particular,
the FLASH Multiprocessor, which was designed from the beginning with embedded flexibility in the
memory system. Complementing previous studieslafsH focusing on cache coherence, this
dissertation presents an analysis of issues for other protecetsi can support.

Our study shows that the programmable protocol engineLixsH is able to effectively sup-
port protocols such as block transfer and synchronization using the same hardware provided for
implementing cache coherence. This is due in large part to the flexible designwhthe node
controller, which provides an optimized programmable protocol engine and generalized commu-
nication mechanisms that efficiently move data in parallel. It is also a result of the careful design
of the protocols themselves, which identify the critical limitations in conventional implementations
and leverage the node controller’s support to address them.

8.1 Interface Between Processor and Controller

One of the major issues in dividing communication functionality between the processor and con-
troller is effectively supporting their interaction. Interfaces with high overhead or functionality
restrictions can limit the ability of alternative protocols maGIC to improve performance or co-
operate with processor applications. Addressing the limitations of prior research, our approaches
enable processor-controller interaction at low overhead while also supporting modern operating
system requirements.
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In the first part of this interface we describe techniques to provide efficient, reliable communi-
cation between the processor andGic, such as the ability to invoke alternate protocol functions.

The main innovation of this approach is the ability to reliably communicatemAiiiC at user level
without system calls, while assuring protection and atomicity even in the presence of multiprogram-
ming. We find that our specially designed memory-mapped interface is a convenient and powerful
approach since it builds on the processor’s existing memory interface and requires only minor sup-
port from the operating system. We provide a related technique for communicatiormkanc

to the processor using interrupts, allowing the processor to service critical requests generated by
protocol handlers.

Second, we present novel techniques to enaialeiC to cooperate with the virtual memory
facility of the processor operating system. This requirement is unique to our study since the cache
coherence protocol operates entirely using physical addresses, while many classes of alternate pro-
tocols must support virtual addresses. Our techniques enable reliable virtual address communication
from the processor tBAGIC and also protect the integrity of those addresses while they are in use,
should paging cause the mappings to change. Theughic lacks a hardware-based TLB due to
design complexity tradeoffs, we demonstrate how software approaches including a software TLB
can efficiently support similar functionality.

The combination of user-level access to the communication controller and support for protection
and virtual memory is unique feature of tReAsH architecture, enabled by the flexibility of the
node controller. By providing these features for efficient operating system coexistence, we find the
alternate protocols we study fetaGIC can be used effectively by conventional applications with
few or no restrictions.

8.2 Memory Copy

Ouir first detailed protocol study considers memaory copy functionality, in which the processor del-
egates the transfer taAGIC. The controller performs the transfer in the background, enabling
parallel computation and communication. Our study of memory copy identifies conclusions in two
areas in particular:

First, unlike systems which provide custom support for block transfer, our protocol shares the
same hardware as cache coherence andmiagsc transfers the data to the destination processor
a line at a time. On the one hand, we find that sending lines individually requires careful proto-
col design to achieve high performance. We show how techniques such as software pipelining and
software-controlled speculative execution are invaluable to optimize data transfer. We also observe
that transfers using this design must have a common cache-line alignment between source and desti-
nation buffers for peak performance. Changing data alignment is expensive in software, motivating
the addition of a simple hardware featurerirasH to realign data as it is loaded into data buffers

206 Chapter 8 Conclusions



(the only additional feature provided for memory copy). Using this feature, unaligned transfers are
very efficient, though they are still 25-50% slower than aligned transfers due to additional protocol
processing needs.

On the other hand, sending lines individually and at the same granularity managed by the co-
herence protocol provides a number of useful benefits, especially given our approach of providing
complete integration with cache coherence. First, sending individual lines allows increased paral-
lelism that is valuable to hide remote communication latency such as that caused when data needed
by the transfer is found to be cached remotely. It also enables more aggressive protocol designs,
which we explore in detail, unlike prior approaches which rely on first flushing the involved data
from all the caches in the system.

Second, many prior systems have provided a transfer model with restricted coherence support
calledlocal coherencgarguing that it reduces complexity, improves performance, and optimizes
the common case. Our observations suggest that remote caching is prevalent and that only a fully-
integrated protocol can be readily used within shared memory applications, including the operating
system, without restrictions. Our implementation supports the complete generality provided by a
cache-coherent shared memory system in which data may be cached remotely, and may be allocated
from remote memory. The results of our study also suggest that providing full coherence support
comes at a fairly low cost. Though the additional work required to handle arbitrary caching of
message data decreases transfer performance when used, the presence of this support does not no-
ticeably slow the local caching cases and thus there is little motivation to restrict the implementation
to just local coherence.

We evaluate the memory copy primitive using microbenchmarks that isolate its usage within
shared memory or message passing programs, and an application highlighting block transfer use by
the operating system. We find that block transfeminGic provides some advantages including
improving overall performance in certain cases. In other cases processor copy with prefetching can
match the raw performance, but does so at a cost of occupying the processor and polluting its cache,
both of which theFLASH protocol avoids. While gains from the protocol are small to modest in
FLASH due to its relatively low remote memory latency, the potential benefits stand to be much
greater in systems with longer remote latencies, or where protocol processing throughput improves
from hardware or software optimizations.

8.3 Synchronization

We also study lock and barrier synchronization primitives using custom protocol support from
MAGIC. These protocols are motivated by the observation that synchronization primitives imple-
mented on top of shared memory incur significant wasted communication due to cache coherence,
especially under contention. By targeting this “artifactual” communication, our protocols improve
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Table 8.1 Protocol code size summary. The cache coherence protocol is included as a comparison
point.

| Protocol | Code Size|
Memory Copy 19 KB
Locks 2.8KB
Barriers 2.2 KB
Cache Coherence (dynamic pointers) 44 KB

contended synchronization performance and also decrease the impact of high contention cases on
the rest of the system.

Our lock protocol takes an aggressive approach utilizing distributed queueing, enabling a lock to
be transferred from one holder to the next using a siAgkssH message. Unlike previous protocols
that use distributed queueing for cache coherence, such as SCI which maintains distributed doubly-
linked lists, our approach is simple, efficient, and is specialized to perform a single function well.
Our protocol is also more resilient to exceptional conditions that arise and is more robust at assuring
fairness than some prior approaches such@ss, because we maintain state withmGiCc and
not processor caches. One limitation to our approach is that it cannot easily support collocation of
locks and application data, a feature enabled by protocols sugbiasthat are more closely linked
with cache coherence. Collocation is most useful when locks protect small data structures that can
fit on the same cache line, thus its potential benefits are lower for the typically larger lock-protected
data structures in the applications we study. Our protocol is also less appropriate for low-contention
cases, since shared memory performs very well in that regime. We propose a range of future research
to address that limitation through protocol modifications or hybrid implementations.

The barrier protocol is similar to optimized shared memory approaches except that its tree com-
municates between theAaGic chips on different nodes. Our results show unequivocal gains from
this implementation, demonstrating that the additional communication between the processor and
MAGIC in conventional barriers amounts to significant overhead. Though barriers are somewhat
less prevalent than locks in parallel applications, reducing their cost may encourage their more
widespread use. Furthermore, research in areas such as auto-parallelizing compilers suggests that
the ability to synchronize processors at extremely low overhead will become increasingly valuable;
theFLASH barrier variant customized for that class of applications shows similar improvements over
conventional techniques.

One secondary attribute of both synchronization protocol implementations is that they are in-
credibly compact, fostering improvedaGic instruction cache sharing with the major cache co-
herence protocol running on the machine. The cache coherence and memory copy protocols are
significantly larger—as much as an order of magnitude. Table 8.1 summarizes the code sizes of
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the protocols we study and the cache coherence protocol (for comparison). This compact synchro-
nization protocols are made possible )y specializing each protocol to provide only a specific
operation,(ii) providing a simple interface to communicate with the protocol, @iydcarefully
designing the protocol to reduce the code explosion from local and remote interactions. While not
all protocols can utilize these optimizations, it demonstrates that useful protoceisdot can be

very compact in some cases.

8.4 Flexible Controller Design Observations

Previous studies afLAsH focus predominantly on the features and limitations which impact cache-
coherent shared memory protocols. One benefit of our study is that it considetsagie design,

and in particular the microarchitecture mirGiC, with an eye towards a very different class of
usage. This section reflects on several design issues for flexible controllers, integrating together the
observations from across the different parts of our study.

One area with significant impact on our protocols is the processor itself and the processor inter-
face. In general, our protocols benefit from flexible control over the manipulation of data, especially
the manipulation of processor caching. Paradoxically, our protocols’ needs for controlling the cache
are more advanced than those of the cache coherence protocol, largely because we perform more
complex operations such as block transfer. The R10000 andABe&c processor interface support
this effort by allowing two outstanding cache extraction interventions. Though the R10000 sup-
ports even more, we find two requests to be sufficient for performance and that the complexity of
managing more requests is prohibitive anyway.

On the downside, the R10000 interface has two particular limitations. First, it does not allow
updates to be “pushed” into the cache, even for data which it currently holds. This increases the
overhead and complexity of some cases, such as updating cached lock and barrier state, which
instead invalidate the cache and yield the PP to allow the spinning processor to miss. In block
transfer, it also reduces the protocol’s ability to supply data to the processor in anticipation of its
use, which is one reason prefetching can sometimes outperform our block transfer protocol. Second,
the R10000 prevents the user from flushing lines out of the cache, restricting this operation to
privileged levels only. This limitation, combined with the presence of processor speculation, forces
the processoMAGIC communication techniques to use uncached accesses, which are less efficient.
The inability to flush lines also prevents the processor from writing back data in anticipation of
an upcoming block transfer, which would improve its performance. These two restrictions are not
surprising given the needs of most coherence protocols and microprocessor applications, but they
are unfortunate from the perspective of the protocols we study.

Another way in which our protocols taxAGIC more than cache coherence is our heavy usage
of data buffers. For example, we find great benefits in our block transfer protocol from the ability to
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software pipeline the main transfer handler. This amortizes transfer overhead across multiple lines
and hides processor cache access latency behind other proceggiagc’s general data buffer
mechanism and the protocol processor’s ability to control data movement manually are necessary to
enable these optimizations. Both of these features are in contrast with more restrictive data buffer
approaches used by recent commercial systems simifaateH.

One significant design tradeoff related to data buffers is the tracking of outstanding requests.
The Sequent NUMA-Q system stores a “handler continuation” for requests that are launched, which
resumes when the associated reply arriwessIC uses a “fire-and-forget” approach where no state
is kept for lines once they are launched. Aside from the fault tolerance implications we do not
address, this has a clear performance tradeoff. The continuation-based approach reduces overall
latency by allowing the reply to be processed immediately at the point in the handler after the
initial send. In contrastmAGIC is forced to dispatch a new handler for the reply message and
(typically) analyze state to determine how to process it. Despite this drawback, the continuation-
based approach necessarily imposes fundamental limits on the number of outstanding messages due
to practical hardware constraints. Processor prefetching has similar limitations. We find the ability
to have many block transfer lines in flight invaluable for hiding latency, an effect which was also
observed by other researchers, and will be amplified as effective network latencies grow.

Another important feature afiaGiC for our protocols is the flexibility afforded by the pro-
grammable handler dispatch table, the “Jump Table”. The Jump Table allows handlers to be dis-
patched using a number of criteria, including address spaces and uncached read and write flavors.
Our protocols rely heavily on those distinguishing marks to cue special handling wit@mnc.

For example, the ability to launch a separate coherence protocol using a different address space
was integral to the synchronization protocols we study. Though software dispatch could always be
used, its performance is significantly slower; the generality in the Jump Table combined with careful
message encoding enabled us to completely avoid software dispatch in all common case handlers.

Given our aggressive use of programmability and the wide range of characteristics in the proto-
cols we study, itis predictable that we should advocate generality within the mechanigiisi
From a practical perspective, however, the needs for flexibility must be tempered with the require-
ments to achieve high performance for machine common cases like cache coherence. Our experi-
ence suggests thataGic achieves a surprisingly effective balance between these two conflicting
goals, allowing a wide range of communication types to be supported in a single system.
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Appendix A

MAGIC Implementation Details

This appendix extends the basic descriptionveGic in Chapter 2, providing some lower-level
detail about several parts of the design.

A.1 PP Instruction Set

As described in Section 2.3.2, the core instruction set of the PP is based loosely on that of the MIPS
R3000, with extensions to improve performance of common protocol operations. Table A.1 sum-

marizes the instruction set of the protocol processor. Most of the instructions are self-explanatory;
the data buffer operations (Iblock, sblock) are described in more detail in the discussion of the data
buffers in Section 2.3.4.

A.2 Processor Interface

Section 2.3.3 describes the processor interface briefly. We expand on this initial description to
clarify the function of the Pl Reply Register and explain the kinds of operations the Pl can support.

A.2.1 PIReply Register

Since the R10000 controls its own second-level cache, the Pl handles interventions by issuing the
request on the bus and then waiting for a response. This response time from an intervention is vari-
able because the processor may be in the middle of a long-latency operation that needs to complete
before it can answer. In fact, the PP may or may not be interested in the response code provided
by the processor. This arises because some requests (such as invalidations), always succeed and
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Table A.1: Summary of thevAaGIC Protocol Processor instruction set.

| Instructions | Instruction Class | Description \

add, sub, and, | ALU Ops Standard ALU operations

or, nor, xor

sll, sllv, srl, srlv | Shifts Shifts, including support for shifts of more than
32 bits

opi, opfi, opifi Bitfield operations Generate a mask of contiguous bits and comhine
it with a register operand,op can be add, and,
or, xor). e.g..andfi $1, $2, 62, 63 —A
mask of two high bits is anded with $2 and storned
in $1.

insfi, insifi Bitfield insertion Insert data into a contiguous bitfield in a register

ffsb Bit vector Find first set bit

j, i jal Jumps Unconditional constant and register jumps; jump
and link

beq, bne Fast-compare branch | Branch on equality/inequality of registers

blez, bgtz, bltz, | Zero-compare branch| Branch on inequality comparisons against zerg

bgez

bbs, bbc Bit testing branches Branch on bits set or clear

Id, sd Load/Store Load or store doublewords (only doublewords
supported)

Is, ss MAGIC state access | Load or store internallAGIC state variables

send Message Send Send a message to the processor, network, or{lO

switch/ldctxt Context Switch Load the two portions of the next message into
registers, and jump to the next handler entry point

inv, copybk, MAGIC data cache Explicitly invalidate or copy back lines from the

Itag, stag maintenance MAGIC data cache, or manipulate tags directly.

Iblock/sblock Data buffer memory | Explicitly fill or spill a data buffer, either with g

operations single double word or a full cache line of data.

so the protocol handler need not consult the response. Other requests may fail (such as a request
for a particular address in the cache if the line is not found), and so the protocol must wait for the
response to see if the requested data can be delivered. The PP indicates its intention to the PI using
a flag in the message. If the PP indicates that it is waiting for the response, the Pl writes a reserved
location called thé®l Reply Registewith the result code.

The PP can have only two outstanding requests for which it has requested a response. The
Pl Reply Register acts as a special kind of response queue: once the response is read, it frees the
register to indicate the result of the next response. Thus, no special handling is required to read
the nextrequest’s status reply: each request’s result arrives the order they were issued. Instead, the
protocol must take care to read the Pl Reply Register exactly once for each request.
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Table A.2: Explanation of Processor Interface interventions (partial list).

| Op type] Description \

Get Request a copy of a line suspected to be in the cache. If the line is held in exclusive
mode, return a shared copy of the data, leaving the line in the cache in the $hared
state. The state reply indicates the state (shared, exclusive, invalid/not-present) of the
line when the request arrived.
GetX Request a copy of a line suspected to be in the cache. Return the data and femove
the line from the cache entirely. The state reply indicates the state (shared, exdlusive,
invalid/not-present) of the line when the request arrived.
Inval Invalidate a line in the cache (regardless of its caching state), and do not retyrn the
data. The state reply indicates the state of the line when the request arrived.| Note:
Under normal circumstances, this request should never be issued for a line which is
in the cache in the exclusive state, since that copy is the most up-to-date copy|of the
line. However, we describe a scenario in our message passing protocol in Chapter 5
in which we can optimize our protocol by invalidating exclusive lines in particular
circumstances.
Put Reply to a processor request, installing the line in the shared state. A Put may dgnly be
issued for a line previously requested by the processor. No state reply is provided.
PutX Reply to a processor request, installing the line in the exclusive state. A PutX may
only be issued for a line previously requested by the processor. No state reply is
provided. Note: if the processor requested the line in the shared state (i.e., with a
Get), itis legal to reply to the processor with a line in the exclusive state (i.e., with a
PutX). We leverage this feature to optimize the lock protocol in Chapter 6
NAK NegativelyAcK nowledge a processor request. This may cause the processor tp reis-
sue the request, depending on whether the original request was speculative and later
determined to be unnecessary. The use of NAKSs is critical for deadlock avoidance in
case node resources are temporarily insufficient [FBG, LLG"92, KOH"94]. No
state reply is provided.

A.2.2 Supported Pl Operations

The PI provides a wide range of operations on data in the processor’s cache, all of which find utility
in the protocols we describe. Table A.2 briefly describes the semantics of these operations. In the
table, we describe the processor’s response to the request when sextigyto the PI. Similarly

named requestsom the processor are requests for the related coherence operatiomfrera.
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Appendix B

Synchronization Primitive
Implementations

This appendix presents the pseudo code for the conventional lock and barrier primitives we compare
against, as a reference for understanding their implementation-specific effects we encounter in our
simulations.

B.1 Locks

We begin with the lock implementations we study in Section 6.1.2. Figure B.1 shows the LL/SC-
based lock. The lock is first read using an LL operation. This load may find the lock held elsewhere,
and if so it repeats the load (spinning in its cache) until the lock is again available. Then the
processor tries to assert the lock itself and update memory using an SC operation. Failed attempts
due to contention are addressed using exponential back-off in an attempt to decrease contention in
successive rounds.

Figure B.2 shows the MCS lock, which improves performance over LL/SC through queue-
ing [MCS91a]. We use the version of MCS locks based on the atomic store primitives Fetch-And-
Store and Compare-And-Swap, which we internally implement with LL/SC. Fetch-and-Store works
as follows: given an address and a value, it atomically reads the address, writes the supplied new
value, and returns the old value. Compare-and-Swap is a conditional atomic store: given an address,
an “old” value, and a “new” value, it atomically reads the address, compares the result to the “old”
value, and if they match, stores the “new” value in memory, otherwise leaves memory unchanged.
It returns a constant 1 or O to indicate whether the store occurred.
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Lock()
TryLock:
lock = LoadLinked (lockAddr);

if (lock) /* Lock locked elsewhere */
goto TryLock;

lock = 1; [* Try to acquire lock */

result = StoreConditional (lockAddr, lock);

if (result) { [* Contention for lock */
ExpBackOff(); [* Wait a random amount */
goto TryLock;

/* 1 now hold the lock */

Figure B.1: Pseudo code for a load-linked/store-conditional-based lock implementation.

typedef struct MCSnode

struct MCSnode *next;
volatile int locked;
} MCSnode;

typedef MCSnode *MCSlock;
[* L points to the shared lock */

[* 1 points to the requester's local queue entry */
,{AcquireMCSIock(MCSIock L, MCSlock 1)

I->next = NULL; /* Initially | has no successor */
pred = FetchAndStore(L, I); /* Make | new tail, return old */
if (pred) { [* Lock is not free */
I->locked = 1; /* Indicate lock is not free */
pred->next = I; /* Enqueue myself */
while (I->locked) /* Spin on lock */
continue;
}
ReleaseMCSlock(MCSlock L, MCSlock 1)
if (I->next == NULL) { [* Currently no successor */
if (CompareAndSwap(L, |, NULL)) {
return; /* Still no successor, lock free */
}
while (I->next == NULL)
continue; [* Wait for successor to enqueue */
}
I->next->locked = NULL; /* Release successor */

Figure B.2. Pseudo code for the Mellor-Crummey Scott (MCS) lock implementation, adapted
from [MCS91a].

216 Appendix B Synchronization Primitive Implementations



typedef struct {
int count;
int padding[]; /* Pad to new cache line */
int generation;

} barrier_t;

Barrier(barrier_t *barrier, int num_procs)

int gen = barrier->generation;

loop:
count = LoadLinked(&barrier->count);
count++;
if (count == num_procs)

count = 0;
result = StoreConditional (&barrier->count, count);
if (‘result)

goto loop;
if (count == 0) {

barrier->generation = gen+1;
return;

while (gen == barrier->generation)
continue;

Figure B.3: Pseudo code for the LL/SC-based barrier implementation.

B.2 Barriers

This section describes the barrier primitives we studied in Section 6.2.2. The basic LL/SC barrier
implementation is shown in Figure B.3. This barrier operates in a similar manner to the LL/SC lock
primitive in that it updates a shared variable under mutual exclusion.

Figure B.4 presents the tournament tree barrier we study, implemented by Chris Holt. It uses a
tree represented by an array of structures, in which a tree node’s parent and children are calculated
based on offsets into the array. The algorithm to manipulate an array-packed tree data structure
is well-known and is abstracted here for brevity. Each tree node rendezvous and release is per-
formed by manipulating a lock-protected count. Unlike the originally proposed tournament barrier,
processors statically know which will advance up the tree based on their processor number.

The MCS barrier implementation is shown in FigureB.5 [MCS91a]. At a low level, this prim-
itive differs from the tournament barrier in several ways besides those mentioned in Section 6.2.2.
First, unlike the tournament barrier approach described above, MCS uses a pointer-connected set of
tree nodes instead of a packed array structure. By pre-calculating the tree linkage when the barrier
is initialized, MCS barriers eliminate tree position calculations when the barrier executes. MCS
barriers also use a toggling barrier sense indicator so that each iteration of the barrier does not need
to reinitialize the release tree.

Section B.2 Barriers 217



struct {

Iockat lock; /* Assure atomic flag increment */
int flag;
int padding; /* Padding to reach page size */

} PaddedFlag;

PaddedFlag *joinTree;
PaddedFlag *releaseTree;

inline
waitAndClearFlag(PaddedFlags *tree, int offset, int count)

while (tree[offset]->flag < count)
; /* Wait for others’ signal */
clear tree[offset]->flag; [* Initialize for next barrier */

inline
incrFlag(PaddedFlags *tree, int offset)

LOCK(tree[offset]->lock);
tree[offset]->flag++;
UNLOCK(tree[offset]->lock);

}

[* Tree expressions used below
*

* my_parent: my parent’s offset in the tree

* my_children: my children’s rendezvous for this tree level
*

TournamentTreeBarrier(int Procld, int num_procs)

if (leafNode) {
incrFlag(joinTree, my_parent)
waitAndClearFlag(releaseTree, Procld, 1);
[* Wait to be released */

}

while (I advance up the tree) { _
walitAndClearFlag(joinTree, my_children, JOIN_RADIX);
Advance level and update position in tree;

if (I will not advance further) {
incrFlag(joinTree, my_parent);
waitAndClearFlag(releaseTree, Procld, 1);
[* Wait to be released */

}
}
if (tree root) { /* Wait for final round */
waitAndClearFlag(joinTree, my_children, JOIN_RADIX);
}

while (I have children) {
incrFlag(releaseTree, my_children);
[* Release my children */
Advance level and update position in tree;

Figure B.4: Pseudo code for the tournament tree barrier implementation.
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typedef struct {
volatile int wsense;
int *parentPointer;
int *childPointersf]MCS_LEAVE_RADIX];
int haveChild[MCS_JOIN_RADIX];
volatile int cnotReady[MCS_JOIN_RADIX];
int dummy;

} MCSTreeNode_t

[* Tree expressions used below

*

* child(i, radix, num_procs)

* Pointer to my I-th child in tree of specified radix with

*  maximum node count num_procs, or zero if no such child.

*

* parent(radix, num_procs)

* Pointer to my parent in tree of specified radix with maximum
*/ node count num_procs or zero if the root.

*

INitMCSBarrier(int procld, int num_procs)

MCSTreeNode_t *node = nodes[procld];
node->wsense = 0;

[* Construct join tree */
for (j=0...MCS_JOIN_RADIX) {
node->haveChild[]] = node->cnotReady[j] =
(child(j, MCS_JOIN_RADIX, num_procs) != 0);

node->parentPointer =
& parent(MCS_JOIN_RADIX, num_procs)->cnotReady;

[* Construct release tree */
for (= 0 ..MCS_LEAVE_RADIX) {
node->childPointers][j] =
) & child(j, MCS_LEAVE_RADIX, num_procs)->wsense;
}

MCSBarrier(int procld, int *sense)
MCSTreeNode_t *node = nodes[procld];

[* Wait for children to join */
repeat until node->cnotReady[0 ... MCS_JOIN_RADIX] all zero;

[* Initialize join tree for next time */
node->cnotReady[0 ... JOIN_RADIX] =
node->haveChild[0 ... JOIN_RADIX];

*(node->parentPointer) = 0; /* Join with my parent */
if (procld = 0) {
while (*sense != node->wsense)
continue; [* Spin locally on sense flag */

}
*(node->childPointers[0 ... MCS_LEAVE_RADIX]) = *sense;

[* Release my children */
*sense = ! *sense; [* Flip sense for next time */

Figure B.5: Pseudo code for the Mellor-Crummey Scott (MCS) barrier implementation, adapted
from [MCS91al].
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typedef struct MasterSlaveBarrier {
volatile int entered[MAXPROCS];

char _padoOf]; /* Pad to cache line */
volatile int genNumber;

char _pad1i[]; /* Pad to cache line */
int copyGenNumber;

char _pad2[]; /* Pad to cache line */

} MasterSlaveBarrier;

[* Used by slaves joining the barrier */
MSBarrier_SlaveEnter(MasterSlaveBarrier *b, int myid)

int gen = b->genNumber;

b->entered[myid] = 1,

while (gen == b->genNumber)
continue;

}

[* Used by the master to join the barrier */
MSBarrier_MasterEnter(MasterSlaveBarrier *b, int numProcs)

int i
for (i=1; i<numProcs; i++) {
while (!b->entered]i])
continue;

Lzero(b—>entered, numProcs * sizeof(int)) N
[* Master falls through while slaves continue waiting */

[* Used by the master to release the slave waiters once
the master’'s coordination processing is finished */
MSBarrier_Release(MasterSlaveBarrier *b)

b->copyGenNumber++;
b->genNumber = b->copyGenNumber;

Figure B.6. Pseudo code for the Basic Master-Slave barrier implementation

Finally we show the basic master-slave barrier implementation in Figure B.6. This implemen-
tation is similar to the functionality of a single tree node in the MCS barrier, since it uses an array
of flags (calledentered ) packed tightly together.
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