
On the speedup required for combined input

and output queued switching

Balaji Prabhakar

Basic Research Institute in the Mathematical Sciences (BRIMS)

Hewlett-Packard Labs, Bristol.

Nick McKeown�

Departments of Electrical Engineering and Computer Science

Stanford University.

Abstract

Architectures based on a non-blocking fabric, such as a crosspoint switch, are

attractive for use in high-speed LAN switches, ATM switches and IP routers. These

fabrics, coupled with memory bandwidth limitations, dictate that queues be placed

at the input of the switch. But it is well known that input-queueing can lead to low

throughput, and does not allow the control of latency through the switch. This is in

contrast to output-queueing, which maximizes throughput, and permits the accurate

control of packet latency through scheduling. We ask the question: Can a switch

with combined input and output queueing be designed to behave identically to an

output-queued switch? In this paper, we prove that if the switch uses virtual output

queueing, and has an internal speedup of just four, it is possible for it to behave

identically to an output queued switch, regardless of the nature of the arriving tra�c.

Our proof is based on a novel scheduling algorithm, known as Most Urgent Cell First.

This result makes possible switches that perform as if they were output-queued, yet

use memories that run more slowly.

1 Introduction

Many commercial switches and routers today employ output-queueing1. When a packet

arrives at an output-queued (OQ) switch, it is immediately placed in a queue that is

dedicated to its outgoing line, where it will wait until departing from the switch. This

approach is known to maximize the throughput of the switch: so long as no input or

�
This research was initiated when Nick McKeown was visiting BRIMS, Hewlett-Packard Labs, Bristol

in September '96.

1
When we refer to output-queueing in this paper, we include designs that employ centralized shared

memory.

1



output is oversubscribed, the switch is able to support the tra�c and the occupancies of

queues remain bounded.

The use of a separate queue for each output means that 
ows of packets for di�erent

outputs are kept separate, and cannot interfere with each other. By carefully scheduling

the time a packet is placed onto the outgoing line, a switch or router can control the packet's

latency, and hence provide quality-of-service (QoS) guarantees. But output queueing is

impractical for switches with high line rates, or with a large number of ports. The fabric

and memory of anN�N switch must runN times as fast as the line rate. Unfortunately, at

high line rates, memories with su�cient bandwidth are simply not available. For example,

consider a 32 � 32 OQ switch operating at a line rate of 10Gbit/s. If we use a 512-bit

memory datapath, we require memory devices that can perform both a write and a read

operation every 1.6ns.

On the other hand, the fabric and the memory of an input queued (IQ) switch need

only run as fast as the line rate. This makes input queueing very appealing for switches

with fast line rates, or with a large number of ports. For a given speed of memory, it is

possible to build a faster switch; or for a given speed switch, it is possible to use slower,

lower-cost memory devices. For example, consider the 32� 32 switch operating at a line

rate of 10Gbit/s again. If the switch uses input-queueing instead of output-queueing, we

can use memory devices that perform a write and a read operation every 50ns. This is

readily achievable with commercially available memories.

But, the main problem of IQ switching is head-of-line (HOL) blocking, whose e�ect

on throughput can be severe. It is well-known that if each input maintains a single FIFO,

then HOL blocking can limit the throughput to just 58.6% [1].

One method that has been proposed to reduce HOL blocking is to increase the

\speedup" of a switch. A switch with a speedup of S can remove up to S packets from

each input and deliver up to S packets to each output within a time slot, where a time slot

is the time between packet arrivals at input ports. Hence, an OQ switch has a speedup of

N while an IQ switch has a speedup of 1. For values of S between 1 and N packets need

to be bu�ered at the inputs before switching as well as at the outputs after switching. We

call this architecture a combined input and output queued (CIOQ) switch.

Both analytical and simulation studies of a CIOQ switch which maintains a single

FIFO at each input have been conducted for various values of the speedup [2, 3, 4, 5, 6].

A common conclusion of these studies is with S = 4 or 5 one can achieve about 99%

throughput when arrivals are independent and identically distributed at each input and

the distribution of packet destinations is uniform across the outputs.

But it has been shown that a throughput of 100% can be achieved with a speedup

of just one, if we arrange the input queues di�erently. That is, HOL blocking can be

eliminated entirely using a scheme known as virtual output queueing in which each input

maintains a separate queue for each output. It has been shown that for independent

arrivals, the throughput of an IQ switch can be increased to 100% [7]. We may draw the

2



conclusion: Speedup is not necessary to eliminate the e�ect of HOL blocking.

In practice, we are not only interested in the throughput of a switch, but also in the

latency of individual packets. This is particularly important if a switch or router is to

o�er QoS guarantees. Packets in an IQ switch not only contend for an output, they also

contend for entry into the switch fabric with packets that are destined for other outputs.

We call this phenomenon input contention. Each input can deliver only one packet into

the fabric at a time; if it has packets for several free outputs, it must choose just one

packet to deliver, holding other packets back. This places a packet at the mercy of other

packets destined for other outputs. This is in stark contrast with output-queueing, where

a packet is una�ected by packets destined for other outputs. We may draw the conclusion:

To control delay, we need a mechanism to eliminate input contention.

Previous studies of CIOQ switches make no guarantees about the delay of an individ-

ual packet, but only about average delay and throughput. We are interested in the delay

of individual packets. Hence our result subsumes previous work, and our approach is quite

di�erent. Rather than �nd values of speedup that work well on average, or with simplistic

tra�c models, we �nd the minimum speedup such that a CIOQ switch behaves identically

to an OQ switch for all types of tra�c. Here, \behave identically" means that, when the

same inputs are applied to both the OQ switch and to the CIOQ switch, the corresponding

output processes from the two switches are completely indistinguishable. Two processes

are indistinguishable if and only if their packet sequences are identical { both in terms of

packet-occurance times and packet identities. Further, we place absolutely no restrictions

on arrivals. Indeed, our formulation allows arrivals that can saturate the switch.

In other words, our formulation allows us to build a CIOQ switch that performs ex-

actly the same as an OQ switch, using memory devices operating more slowly. Speci�cally,

we prove that for a CIOQ switch to mimic an OQ switch it is su�cient that the speedup

equals four.

2 Exact mimicking of output-queueing

Consider the single stage, N � N switch shown in Figure 1. Throughout the paper we

assume that packets begin to arrive at the switch from time t = 1, the switch having

been empty before that time. Although packets arriving to the switch or router may have

variable length, we will assume that they are treated internally as �xed length \cells".

This is common practice in high performance LAN switches and routers; variable length

packets are segmented into cells as they arrive, carried across the switch as cells, and

reassembled back into packets again before they depart. We take the arrival time between

cells as the basic time unit. The switch is said to have a speedup of S, for S 2 f1; 2; � � � ; Ng

if it can remove up to S cells from each input and transfer at most S cells to each output

in a time slot. A speedup of S requires the fabric of the switch to run S times as fast

as the input or output line rate. As mentioned in the introduction, the extreme values

3



of S = 1 and S = N give a purely input-queued (IQ) and a purely output-queued (OQ)

switch respectively. For 1 < S < N bu�ering is required both at the inputs and at the

outputs, and leads to a combined input and output queued (CIOQ) architecture. The

following is the problem we wish to solve.

The speedup problem: Determine the smallest value of S, say Smin, and an appropriate

cell scheduling algorithm � that

1. allows a CIOQ switch to exactly mimic the performance of an output-queued switch

(in a sense that will be made precise),

2. achieves this for any arbitrary input tra�c pattern,

3. is independent of switch size.

11
VOQ

Input 1

VOQ
NN

VOQ
N1

VOQ
1N

Ouput 1

Output N
Input N

Figure 1: A schematic of a CIOQ switch

In an OQ switch, arriving cells are immediately forwarded to their corresponding out-

puts. This (a) ensures that outputs never idle so long as there is a cell destined for them

in the system, and (b) allows the departure of cells to be scheduled to meet latency con-

straints. Because of these features an OQ switch has the highest possible throughput and

allows a tight control of cell latency which is important for supporting multiple qualities-

of-service (QoS). We will require that any solution of the speedup problem possess these

two desirable features; that is, a CIOQ switch must exactly mimic the performance of an

OQ switch in the following sense.

Identical Behavior: Consider an OQ switch whose output bu�ers are �rst-in-�rst-out

(FIFO). A CIOQ switch is said to behave identically to an OQ switch if, under

identical inputs, the departure time of every cell from both switches is identical.

To complete the description of the model, we refer to Figure 1 again. All input and

output bu�ers are assumed to have in�nite capacity. Each input maintains a separate

FIFO queue for cells destined for each output. Hence, there are N FIFO queues at each

input. Call these queues Virtual Output Queues (VOQs) { with the understanding that

V OQij bu�ers cells at input i destined for output j. Finally, we wish to make explicit the

4



assumption that the output bu�ers of the CIOQ switch are not necessarily FIFO, although

the OQ switch whose performance it is mimicking has FIFO output bu�ers.

A scheduling algorithm selects a matching between inputs and outputs in such a way

that each non-empty input is matched with at most one output and, conversely, each

output is matched with at most one input. Such a matching is a prelude to a transfer of

cells from the input side to the output side. A CIOQ switch with a speedup of S is able

to make S such transfers each time slot.

3 MUCFA: A scheduling algorithm that achieves iden-

tical behavior

In this section we present a novel scheduling algorithm that allows a CIOQ switch with a

small speedup to behave identically to an OQ switch for any input tra�c. The algorithm

is called the Most Urgent Cell First Algorithm (MUCFA).

We begin by introducing the notion of a \phase".

De�nition For a switch with speedup S, a time slot is said to be divided into S equal

phases. During each phase �i, 1 � i � S, the switch can remove at most one cell from

each input and can transfer at most one cell to each output.

It is assumed that cells arriving at the switch will do so at the beginning of phase �1,

while departures from the switch take place at the end of phase �S .

A crucial aspect of MUCFA is the concept of the \urgency of a cell". Recall that

the de�nition of \identical behavior" requires a CIOQ switch to identically match cell

departures with an OQ switch when they are both subjected to identical inputs. Therefore,

our de�nition of identical behavior requires a CIOQ switch and a reference OQ switch.

This is illustrated in Figure 2.

The urgency of a cell is �rst explained with respect to the reference OQ switch. Every

arriving cell to this switch is stamped with a number, which is its \urgency value" at that

time. This number indicates the time from the present that it will depart from the switch.

At each successive time slot, the urgency value is decremented by one. When the value

reaches zero, the cell will depart. Alternatively, since the bu�ers of the OQ switch are

FIFO, the urgency of a cell at any time equals the number of cells ahead of it in the output

bu�er at that time.

More precisely, if a cell c arrives at input i at time T and departs from output j

at time D � T , its urgency at any time R, T � R � D, equals D � R. Suppose there

are two cells, a and b, in the bu�er at output j at some time, with urgencies ua and ub,

respectively. Cell a is said to be \more urgent" than b if ua < ub. Given that the output

bu�er is FIFO, it is clear that if b arrived at the switch after a then necessarily ua < ub.

5



If a and b arrive at the same time, then ua < ub i� the number of the input port at which

a arrives is less than the number of the input port at which b arrives. That is, the OQ

switch is assumed to transfer cells from inputs to outputs in a round robin fashion starting

with the smallest numbered input �rst.

0 

Speedup

3

2

1

S = 2

3

2

1

S = 3
Speedup

1

2

3 3

2

1

1 0 

3 2 

4 2 
4 3 

3 
2 1 

1 

0 

0 

4 3 2 1 0 

0 1 2 3 4 

3 2 1 

Figure 2: A CIOQ switch (left) and its reference OQ switch (right).

Now consider the CIOQ switch. By assumption, the same input is applied to it and

to the OQ switch. Therefore, cell c arrives at input i at time T and is destined for output

j. Since the speedup may now be less than N , c may not be forwarded to the bu�er at

j during time slot T . But, the crucial point is that c may not be required at output j for

some time, because its clone in the OQ switch is some distance from the HOL. Therefore,

the urgency is an indication of how much time there is before c is needed at its output

if the CIOQ switch is not to fail in identically matching the behavior of the OQ switch.

This motivates the following de�nition.

De�nition The urgency of a cell in a CIOQ switch at any time is the distance its clone

is from the head of the output bu�er in the corresponding reference OQ switch.

The cells in any output bu�er of the CIOQ switch are arranged in increasing order

of urgencies, with the most urgent cell at the head. Once cell c is forwarded to its output

in the CIOQ switch, its position is determined by its urgency and the preceding ordering

requirement.

We are now ready to describe the Most Urgent Cell First Algorithm (MUCFA).

Phase-by-phase description of MUCFA

1. At the beginning of each phase outputs try to obtain their most urgent cells from the

inputs.

2. If more than one output requests an input, then the input will grant to that output

whose cell has the smallest urgency number. If there is a tie between two or more

outputs, then the output with the smallest port number wins.

3. Outputs that loose contention at an input will try to obtain their next most urgent cell

from another input.

6



4. When no more matching of inputs and outputs is possible, cells are transferred and

MUCFA goes to the next phase (Step 1).

The operation of MUCFA over one time slot is illustrated by means of an example in

Figure 3. Note that at the beginning of phase 1, both outputs 1 and 2 request input 1 to

obtain their most urgent cells. Since there is a tie in the urgency of their requests, by our

assumption input 1 grants to output 1. Output 2 proceeds to obtain its next most urgent

cell which happens to be at input 2 and has an urgency of 3.

5 

Speedup

2 3 

2 

2 1 

S = 24 

3 

0 

Beginning of Phase 2

1 

4 0 

0 

3 

1 

Speedup

2 3 

2 

2 1 
0 

0 

1 

S = 24 

3 

4 

End of Phase 1

3 

0 

1 

Speedup

2 3 

2 

2 
0 

0 
S = 24 

3 

1 3 

0 1 

1 

End of Phase 2

4 

Speedup

2 3 

2 
3 

2 1 
0 

0 

1 

0 1 

S = 24 

3 

4 

Beginning of Phase 1

5 

5 

5 

Figure 3: The operation of a 3�3 CIOQ switch with S = 2 over one time slot under

MUCFA. The dashed lines indicate the \output thread" of the cell with urgency 5 in

V OQ23.

In general, we can make the following key observation about the working of MUCFA:

During any phase, a cell will not be transferred from its input to its output for one of two

(and only two) reasons

Input contention: The output is ready to receive the cell, but the input wants to send a

more urgent cell. (In the example of Figure 3, output 2 can't receive its most urgent

cell in phase 1 because input 1 wants to send to output 1.)

Output contention: The input wants to send the cell, but the output wants to receive

a more urgent cell. (In phase 2 of the example of Figure 3, input 2 can't send its

most urgent cell because output 3 wants to receive from input 3.)

7



3.1 MUCFA and the Stable Marriage Problem

The way in which MUCFA matches inputs and outputs is a variation of the stable marriage

problem, which was �rst introduced by Gale and Shapley in 1962 [8]. Solutions to the stable

marriage problem �nd a \stable" and complete matching between inputs and outputs. A

match is unstable if there is an input and output who are not matched to each other, yet

both prefer the other to their partner in the current matching. A stable matching is any

matching that is not unstable. There exists a well-known algorithm (the Gale-Shapley

algorithm, or GSA) that will always �nd a stable matching in N iterations.

MUCFA can be implemented using the GSA with preference lists as follows. Output

j �rst assigns a preference value to each input i, equal to the urgency of the cell at head-

of-line of V OQij . If V OQij is empty then the preference value of input i for output j is

set to +1. The preference list of the output is the ordered set of its preference values for

each input. Likewise, each input assigns a preference value for each output, and creates

the preference list accordingly. A matching of inputs and outputs can then be obtained

using GSA. The relationship between the stable marriage problem and cell scheduling is

explored in more detail in [9].

4 The main result

Theorem 1 An N �N CIOQ switch operating under MUCFA can behave identically to

an OQ switch, regardless of input tra�c patterns and for arbitrary values of N , so long

as its speedup S � 4.

Theorem 2, which is a strengthening of Theorem 1 will be proved in the next section.

For now, we will explore some of the implications of Theorem 1, assuming that it is true.

This will allow us to come to certain conclusions which help in the statement and proof of

Theorem 2. In order to proceed, we will need to introduce the concept of \output threads"

and \input threads".

De�nition At any time, the output thread of a cell c which is queued in V OQij is the

ordered set of all cells c0 which are queued in V OQi0j , 1 � i0 � N , and are more urgent

than c. The thread of output j is the output thread of its least urgent cell.

For example, the output thread of the cell with urgency �ve in V OQ23 at the begin-

ning of phase 1 (see Figure 3) has cells with urgencies f0; 1; 2; 3; 4g. The output thread of

the same cell at the beginning of phase 2 has cells with urgencies f1; 2; 3; 4g. The dashed

lines in Figure 3 indicate the output thread of this cell at the beginning of phases 1 and 2.

De�nition The input thread of a cell c queued in V OQij is the ordered set of all cells

c0 which are in V OQij0 , 1 � j0
� N , and are more urgent than c. If cells p and q have

the same urgency then p is placed before q in an input thread if p's output has a smaller

8



number than q's output. The thread of input i is the input thread of its least urgent cell.

For example, the input thread of the cell with urgency three in V OQ13 at the begin-

ning of phase 1 (see Figure 3) has cells with urgencies f1; 1; 2g. The input thread of the

same cell at the beginning of phase 2 has cells with urgencies f1; 2g.

With these de�nitions, one may draw some inferences about MUCFA. (The following

discussion is intended to motivate the statement and proof of Theorem 2 and is therefore

presented in an informal manner.) Consider a CIOQ switch with speedup S operating

under MUCFA from time 1, having been empty before that time. It will fail to behave

identically to an OQ switch at time T if an input thread has S + 1 or more cells with

urgency 0. If this should happen, then clearly there are not enough phases to transfer all

the most urgent cells to their outputs, and MUCFA fails. Therefore, if MUCFA causes a

CIOQ switch with speedup S to behave identically as an OQ swith, it must be the case

that every input thread has S or fewer cells with urgency 0 at the beginning of every time

slot. Conversely, if there are always S or fewer cells with urgency 0 at each input, then

MUCFA never fails. We record this in the following lemma.

Lemma 1 A CIOQ switch with speedup S operating under MUCFA behaves identically to

an OQ switch if, and only if, there are S or fewer cells with urgency 0 in each input at all

times.

Since cells in an input thread are ordered according to urgency, this is the same as

saying that a cell with urgency 0 cannot appear in the (S + 1)th position in any input

thread. Similarly, it is also clear that a cell with urgency 1 cannot appear in the (2S+1)th

position at any time (assuming that every 0 occupies a position less than or equal to S),

as this would lead to a failure of MUCFA in the next cell time. In general, Lemma 1 is

equivalent to the statement: A CIOQ switch with speedup S operating under MUCFA

behaves identically to an OQ switch if, and only if, a cell with urgency l cannot occupy

position (l + 1)S + 1 in an input thread at any time.

Let us suppose that MUCFA behaves identically to an OQ switch at all times when

the speedup equals S. It is clear that it will also behave identically at every speedup

S0 > S. Indeed, more ought to be true: Under identical inputs if a tagged cell c is

forwarded to its output F phases after its arrival when the speedup is S, then it must be

forwarded to its output within F 0
� F phases when the speedup is S0. In particular, if c

belongs to the thread of input i at time T when the speedup is S0, then it also belongs to

the thread of input i at time T when the speedup is S. This implies the following crucial

point.

Key observation If MUCFA behaves identically to an OQ switch at speedup S, then at

any speedup S0
� S a cell with urgency l cannot appear at position S(l+1)+1 in an input

thread.

We believe, but haven't yet proved, that MUCFA behaves identically to an OQ switch

9



when S = 2. If this were true, then the preceding observation would read: If MUCFA

behaves identically to an OQ switch at speedup S = 2, then at any speedup S0
� 2 a cell

with urgency l cannot appear at position 2(l+1)+1 in an input thread. In Theorem 2 we

prove the following stronger statement for S � 4: At the beginning of each time slot T , a

cell with urgency l does not occupy position l + 1 in an input thread; excluding any cell

that might have just arrived. If this property were true of all input threads at all times

then clearly MUCFA never fails to behave identically to an OQ switch, and Theorem 1 is

veri�ed.

5 A speedup of 4 su�ces

In this section we shall prove Theorem 2 from which Theorem 1 follows as a corollary. But

�rst, we need to develop the following lemma.

Lemma 2 Consider a tagged cell c which, at the beginning of time slot T , is at an input

of a CIOQ switch with speedup S operating under MUCFA. If c remains in its input at

the end of time slot T and is not forwarded to its output, then a totality of S cells either

from c's input thread or from its output thread must be delivered to their outputs during

time slot T .

Proof This is a consequence of input and output contention. That is, c is not forwarded

to its output during a phase either because a cell in its input thread or a cell in its output

thread has kept its input or, respectively, its output busy. And there are S such phases in

each time slot.

Theorem 2 Consider an N�N CIOQ switch operating under MUCFA with a speedup of

S. Suppose that the switch has been operating from time slot 1, having been empty before

that time. Let Si(t) be the thread at input i just at the beginning of time slot t, before any

new cells have arrived. Then for each i and for each t, it is never the case that a cell with

urgency l occupies position l + 1 in Si(t) so long as S � 4.

Proof Suppose T is the �rst time that such a thing happens at some input, say I .

That is, SI(T ) has a cell of urgency l occupying position l + 1. Consider the thread

SI
l+1(T ) � SI(T ) consisting of the �rst l+1 cells of SI(T ). Note that the least urgent cell

of SI
l+1(T ) has an urgency of l.

(1) Let c be the cell belonging to SI
l+1(T ) that arrived earliest, and let u be its urgency

at time T . It follows that u � l. It also follows that c arrived at least l+1 cell times

ago.

(2) Suppose c actually arrived at time T � A. By (1) A � l + 1, and c's urgency upon

arrival equals u+A precisely.

10



(3) By Lemma 2, every time slot that c is in the system on the input side, a totality of

S cells belonging to the input and/or output threads of c must be sacri�ced in order

to prevent c from going to its output.

(4) Since c arrives at time T �A and remains in its input until time T � 1, the number

of \sacri�ce cells" required during this time period equals the number of phases in

[T �A; T � 1] which equals S �A.

(5) By assumption of T being the �rst time at which things go wrong, the maximum

number of cells in c's input thread at time T � A is less than or equal to u + A.

These are possible \sacri�ce cells".

(6) By de�nition of urgency, the maximum number of cells in c's output thread at time

T �A is less than or equal to u+A. These are also possible \sacri�ce cells".

(7) Putting (5) and (6) together, when c arrives, the maximum number of sacri�ce cells

in its input and output threads is no more than 2(u+A).

(8) Between T �A+1 and T �1, the maximum number of cells that can arrive at input

I is less than or equal to A� 1. Of these arrivals l will belong to SI
l+1(T ) and hence

cannot be \sacri�ce cells". This implies that the maximum number of sacri�ce cells

that can arrive at input I after c is no more than A� 1� l.

(9) A grand total on the maximum possible \sacri�ce cells" is (putting (7) and (8)

together): 2(u+A) +A� 1� l = 3A+ u+ (u� l)� 1. But,

3A+ u+ (u� l)� 1 � 3A+ u (since u � l)

� 4A� 1 (since u � l � A� 1):

(10) The number in (9) falls short of the requirement in (4) if S � 4. This contradiction

proves the theorem.

6 Conclusion

With the continued demand for faster and faster switches, it is increasingly di�cult to

implement switches that use output queueing or centralized shared memory. Before long,

it may become impractical to build the highest performance switches and routers using

these techniques.

It has been argued for some time that most of the advantages of output-queuing (OQ)

can be achieved using combined input and output queueing (CIOQ). While this has been

argued for very speci�c, benign tra�c patterns there has always been a suspicion that the

advantages would diminish in a more realistic operating environment.

Our result proves that a CIOQ switch can behave identically to an OQ switch, or

one using centralized shared memory. Perhaps more importantly, we show this is true for

11



any sized switch, or for any tra�c arrival pattern. The three su�cient conditions for this

result to hold are: (i) virtual output queues are maintained at each input, (ii) at the end

of each cell time, a novel scheduling algorithm, which we call Most Urgent Cell First be

used to con�gure the non-blocking switch fabric, and (iii) the switch fabric and memory

run four times as fast as the external line rate; i.e. at a speedup of four.

Acknowledgement: The authors thank Mingyan Zhu of Stanford University for various

discussions of the speedup problem. Nick McKeown would also like to thank Jeremy

Gunawardena, Scienti�c Director of Hewlett-Packard's Basic Research Institute in the

Mathematical Sciences (BRIMS), for inviting him to BRIMS where much of this work was

initiated.

References

[1] M. Karol, M. Hluchyj, and S. Morgan: \Input Versus Output Queueing on a Space

Division Switch", IEEE Trans. Comm, 35(12) pp.1347-1356`

[2] C-Y. Chang, A.J. Paulraj, T. Kailath: \A Broadband Packet Switch Architecture

with Input and Output Queueing," Proc. Globecom '94, p.448-452.

[3] I. Iliadis and W.E. Denzel: \Performance of packet switches with input and output

queueing," Proc. ICC `90, Atlanta, GA, Apr. 1990. p.747-53.

[4] A.L. Gupta and N.D. Georganas, \Analysis of a packet switch with input and output

bu�ers and speed con straints," Proc. InfoCom `91, Bal Harbour, FL, Apr. 1991,

p.694-700.

[5] Y. Oie; M. Murata, K. Kubota, and H. Miyahara, \E�ect of speedup in nonblocking

packet switch," Proc. ICC `89, Boston, MA, Jun. 1989, p. 410-14.

[6] J.S.-C. Chen and T.E. Stern, \Throughput analysis, optimal bu�er allocation, and

tra�c imbalance study of a generic nonblocking packet switch," IEEE J. Select. Areas

Commun., Apr. 1991, vol. 9, no. 3, p. 439-49.

[7] N. McKeown, V. Anantharam, J. Walrand: \Achieving 100%Throughput in an Input-

Queued Switch", INFOCOM '96, pp.296-302.

[8] Gale, D.; Shapley, L.S.; \College Admissions and the stability of marriage", American

Mathematical Monthly, Vol.69, pp9-15, 1962.

[9] N. McKeown: \Scheduling Algorithms for Input-Queued Cell Switches", PhD Thesis,

University of California at Berkeley, May 1995.

12


