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Abstract

Designing with deep submicron feature size presents new challenges in complexity, performance,
and productivity. Information on routing congestion and interconnect area are critical in the pre-
RTL stage in order to forecast the whole die size, de�ne the timing speci�cations, and evaluate the
chip power consumption.

In this report, we propose a stochastic model for VLSI interconnect routing, which can be used to
estimate the routing congestion and the interconnect area in the pre-RTL stage. First, we de�ne
the uniform and geometric routing distributions, and introduce a simple and e�cient algorithm
to calculate the routing probabilities. We then derive the routing probabilities among multiple
functional blocks, and investigate the e�ects of routing obstacles. Finally, we map the chip to a
Cartesian coordinate system, and model routability based on the supply and demand distributions
of routing channels.
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1 INTRODUCTION

1.1 MOTIVATION

Designing with deep submicron feature size presents new challenges in complexity, performance,
and productivity. Modern state-of-the-art microprocessors contain more than ten million transistors
and the cycle times are generally less than �ve nanoseconds. For example, the Intel Pentium II
microprocessor has more than 17.5 million transistors and runs at 233MHz (4.3ns) [Mic97, Ass94].

While device delay decreases with smaller feature size, interconnect delay does not necessarily go
down because the die size remains roughly the same. Consequently, interconnect delay plays a
dominant role in the timing speci�cations, and chip oorplanning is crucial in determining the chip
performance. The most alarming point is that with conventional design methodology, it takes more
and more iterations between logic design and layout to �x the timing and area problems.

Information on the routing congestion and the interconnect lengths are critical in the pre-RTL
stage in order to forecast the whole die size, de�ne the timing speci�cations, and evaluate the chip
power consumption. Early accurate estimation can dramatically reduce the number of iterations
to �x the timing problems [Fle94, Goe94].

To reduce the complexity of the design, the chip is �rst partitioned into functional blocks. The
connections among the functional blocks are de�ned but the port locations are usually not �xed
because the functional blocks are not yet designed. At this point the design is by no means cast in
concrete, but we would attempt to answer the following questions:

� Is there any routing congestion areas?

� What is the total die size?

� What are the impacts when technology changes?

1.2 CONVENTIONAL APPROACH

In the pre-RTL stage, chip oorplanning is traditionally done manually by system architect. The
sizes of the functional blocks are estimated from the previous designs or some area model [Fly95].
The functional blocks are then placed based on experience and the timing requirements. In order
to estimate whether the chip is routable, the locations of the ports are arbitrarily assigned in each
functional block. The global router is then run to see if the chip is routable [PL88, SK94, SBP95].

The traditional approach is simple and straightforward, but it su�ers from several major drawbacks.
First, since the port locations are arbitrarily assigned in the pre-RTL stage, the actual routing may
be completely di�erent from the pre-RTL routing. The chip may be routable in the pre-RTL stage,
but not routable in the �nal design. Second, it does not provide any useful insights when technology
changes. Third, this approach depends heavily on the routing sequence. In other words, the chip
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may be routable if some wires are routed before the other wires. This is undesirable because the
actual routing sequence in the �nal stage will likely to be di�erent. Finally, the pre-RTL routing
can be very time consuming and does not provide immediate feedbacks to help system architects
optimize their oorplan.

1.3 RELATED WORK

In 1960 E. F. Rent proposed a simple relationship between \number of pins" versus \number of
circuits" in a logic design based on empirical data collected in IBM [LR71].

Np = KpNg
�

This equation is called Rent's rule, where Np is the number of pins, Ng is the number of gates, �
is Rent's constant, and Kp is a proportionality constant.

Rent's rule was later applied to derive the average interconnection length and expected wiring
area of a design given the number of gates and gate pitch [Don79, Gam81, Sch82, HHM84, Fer85].
Recently, Rent's rule was used to estimate the optimum interconnect dimensions for low power
applications [DDM96].

Since the parameters used in Rent's rule are determined from empirical data, it is useful to predict
the pin requirements and average interconnection lengths of future designs provided that the ar-
chitecture remains unchanged. On the contrary, if the architecture or design methodology changes,
the results will not be accurate [Bak87].

Other researchers have developed analytical expression for the routability of the circuits in the
Field-Programmable Gate Arrays (FPGA) [SP86, BRV93]. However, their models are limited to
the FPGA and do not apply to general VLSI design. In particular, the problems of oorplanning
and block placement were not addressed. These issues are crucial in deep submicron design.

1.4 OUR APPROACH

In this report, we propose a stochastic model for VLSI interconnect routing.

First, we de�ne the routing probabilities between two points in a Cartesian coordinate system. The
routing probabilities are derived based on uniform and geometric routing distributions. The uni-
form routing distribution assumes all possible routes between the two points are equally probable.
However, most modern routers prefer routing with minimum vias in order to reduce interconnect
delay. The geometric routing distribution takes the router preference into consideration. A simple
and e�cient algorithm is proposed to calculate the routing probabilities.

Second, we derive routing probabilities among multiple functional blocks, and investigate the e�ects
of routing obstacles. Our algorithm is enhanced to handle the multiple blocks and routing obstacles.
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Finally, we compress multiple metal layers into a single logical layer and map the chip into a
Cartesian coordinate system. We model routability based on the supply and demand distributions
of routing channels. The idea is that a chip is routable if and only if the supply exceeds the demand
everywhere on the die.

2 UNIFORM ROUTING DISTRIBUTION

2.1 ROUTING BETWEEN TWO POINTS

In a Cartesian coordinate system, consider a route from point A at (0; 0) to point B at (m;n).
Assuming that there is no routing obstacles between A and B and the route can either run hori-
zontally or vertically at each grid point, the shortest routing distance is equal to m + n. This is
called the Manhattan distance between A and B.

If the routing is limited to the Manhattan distance, there are m+nCm di�erent number of ways to
route from A to B. The combination m+nCm is derived from the fact that there are m+n "tracks"
between A and B, out of which m "tracks" have to go horizontal [Fel70].

As shown in Figure 1, there are 4C2 = 6 di�erent ways to route from A to B for m = n = 2.

A (0,0)

B (2,2)

Figure 1: Routing between Two Points

The number of routes between A and B increases when A and B are further apart. Actually, the
number of routes forms a two-dimensional Pascal triangle (Figure 2).

2.2 DERIVATION

Suppose all the m+nCm routes have equal probabilities. The routing from point A to point B is
said to follow uniform routing distribution.
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A (0,0) 1 1 1 1

1 2

1

1

3

3

1

4

1

6

4

Figure 2: Routing Combinations

First, we can derive the probability that the route goes through a point P at coordinate (x; y)
where 0 � x � m and 0 � y � n (Figure 3).

A (0,0)

B (m,n)

P (x,y)

Figure 3: Routing through a Point (Uniform Routing Distribution)

The number of routes from A to B that pass through point P is equivalent to the number of routes
from A to P multiplied by the number of routes from P to B, which is equal to:

x+yCx � m+n�x�yCm�x

Hence, the probability that the route goes through point P is:

x+yCx � m+n�x�yCm�x � m+nCm

Second, we can derive the probability that the route passes through any particular track (Figure 4).

The number of routes from point A to point B that pass through (x; y) and then (x+ 1; y) is:

x+yCx � m+n�x�y�1Cm�x�1 or
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A (0,0)

B (m,n)

  (x,y) (x+1,y)

Figure 4: Routing through a Horizontal Track (Uniform Routing Distribution)

x+yCx � m+n�x�y�1Cn�y

Hence, the probability that the route passes through (x; y) and then (x+ 1; y) is:

x+yCx � m+n�x�y�1Cn�y � m+nCm

A (0,0)

B (m,n)

(x,y)

(x,y+1)

Figure 5: Routing through a Vertical Track (Uniform Routing Distribution)

Similarly, the probability that the route passes through (x; y) and then (x; y + 1) is:

x+yCx � m+n�x�y�1Cm�x � m+nCm

2.3 ALGORITHM

It is very computationally intensive to calculate each routing probability individually. There is a
faster and easier way to calculate the routing probabilities.

At each grid point the route has to go either right or down. Suppose P00
0

and P00
00

are the
conditional probabilities that the routing will go right and down respectively (Figure 6).

P00
0

= 0C0 � m+n�1Cn � m+nCm = m� (m+ n)

P00
00

= 0C0 � m+n�1Cm � m+nCm = n� (m+ n)
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A (0,0)

B (m,n)

P00’

P00”

Figure 6: Conditional Routing Probabilities (Uniform Routing Distribution)

P00
0

� P00
00

= m� n

From Section 2.2, we can derive the above equations. The equations imply that the conditional
probabilities depend solely on the ratio of m and n. We can apply this property to �nd out the
routing probabilities for all the horizontal and vertical tracks. The step-by-step algorithm is shown
below.

A (0,0)

B (m,n)

P00 P10P00’

P00”

P10’

P10”

Figure 7: Routing for the First Row (Uniform Routing Distribution)

Step 1: Set the probability at point A ( P00 ) to 1.0.

Step 2: Calculate the probabilities coming out from point A.

P00
0

= P00 � m� (m+ n)

P00
00

= P00 � n� (m+ n)

Step 3: Calculate the probabilities at (1; 0).

P10 = P00
0

P10
0

= P10 � (m� 1)� (m+ n� 1)

P10
00

= P10 � n� (m+ n� 1)

Step 4: Similarly, calculate the probabilities at (2; 0), (3; 0), ..., (m; 0) on the �rst row.
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A (0,0)

B (m,n)

Figure 8: Routing for the Remaining Rows (Uniform Routing Distribution)

Step 5: Calculate the probabilities at (0; 1), (1; 1), ..., (m; 1) on the second row.

P01 = P00
00

P01
0

= P01 � m� (m+ n� 1)

P01
00

= P01 � (n� 1)� (m+ n� 1)

P11 = P01
0

+ P10
00

P11
0

= P11 � (m� 1)� (m+ n� 2)

P11
00

= P11 � (n� 1)� (m+ n� 2)
� � �

Step 6: Repeat step 5 for the 3rd, 4th, ..., nth rows.

2.4 EXAMPLES

Example 2.1: Routing probabilities for m = 1 and n = 1.

A (0,0)

B (1,1)

0.5

0.5 0.5

0.5

Example 2.2: Routing probabilities for m = 3 and n = 2.

A (0,0)

B (3,2)

0.6

0.4

0.3

0.3

0.1 0.2

0.2

0.1

0.1

0.4

0.3 0.4 0.3

0.1 0.3

0.3

0.6

Figure 9: Uniform Routing Distribution Examples
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3 GEOMETRIC ROUTING DISTRIBUTION

In uniform routing distribution, we model all possible routes between the two end points to have
equal probabilities. So we can write:

Prob[route has 2 bends] � Prob[route has 1 bend] =
(Number of routes with 2 bends) � (Number of routes with 1 bend)

Prob[route has 3 bends] � Prob[route has 2 bend] =
(Number of routes with 3 bends) � (Number of routes with 2 bends)

However, most modern routers do not follow uniform routing distribution. The routers typically
prefer wires with less vias (or bends) because vias consume a lot of space and their electrical
impedance can cause signi�cant wiring delay. The geometric routing distribution takes the router
preference in consideration, by using a geometric scaling factor � . � is between zero and one.

Prob[route has 2 bends] � Prob[route has 1 bend] =
� � (Number of routes with 2 bends) � (Number of routes with 1 bend)

Prob[route has 3 bends] � Prob[route has 2 bend] =
� � (Number of routes with 3 bends) � (Number of routes with 2 bends)

....

Prob[route has N+1 bends] � Prob[route has N bend] =
� � (Number of routes with N+1 bends) � (Number of routes with N bends)

A (0,0)

B (2,2)

Figure 10: Routing from (0,0) to (2,2) (Geometric Routing Distribution)

For example, suppose we want to route from (0,0) to (2,2). There are two routes with 1 bend, two
routes with 2 bends, and two routes with 3 bends (Figure 10).
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Prob[route has 1 bend] = 2 � (2 + 2 � + 2 �2) = 1 � (1 + � + �2)
Prob[route has 2 bends] = 2 � � (2 + 2 � + 2 �2) = � � (1 + � + �2)
Prob[route has 3 bends] = 2 �2 � (2 + 2 � + 2 �2) = �2 � (1 + � + �2)

3.1 DERIVATION

If either m or n is equal to zero, there is only one way to route from A to B. But if both m and
n are non-zero, the routing will have at least one bend. The maximum number of bends is equal
to (2 �m � 1) if m and n are the same; otherwise the maximum number is 2 �min(m;n). For
instance, the maximum number of bends is 4 for m = 3, n = 2.

A (0,0)

B (m,n)

1

2

3

4

Figure 11: Routing from (0,0) to (3,2) (Geometric Routing Distribution)

As described in Section 2.1, there are m+nCm di�erent ways to route from A to B if the routing is
limited to Manhattan distance. Out of the m+nCm di�erent routes, there are

2 � m�1C0 � n�1C0 routes have 1 bend

m�1C1 � n�1C0 + m�1C0 � n�1C1 routes have 2 bends
2 � m�1C1 � n�1C1 routes have 3 bends

m�1C2 � n�1C1 + m�1C1 � n�1C2 routes have 4 bends
2 � m�1C2 � n�1C2 routes have 5 bends
...
2 � m�1Ck�1 � n�1Ck�1 routes have 2k-1 bends

m�1Ck � n�1Ck�1 + m�1Ck�1 � n�1Ck routes have 2k bends (if m > k; n > k)

m�1Ck � n�1Ck�1 routes have 2k bends (if n = k)

n�1Ck � m�1Ck�1 routes have 2k bends (if m = k)

Proof:

� Number of routes which have 2k-1 bends

Assume the �rst segment is horizontal and the last segment is vertical. Excluding the �rst
and the last segments, there are k � 1 horizontal segments and k � 1 vertical segments. The
positions of the k�1 vertical segments are chosen from m�1 positions, whereas the positions
of the k � 1 horizontal segments are chosen from n� 1 positions.
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If the �rst segment is horizontal, the number of routes is m�1Ck�1 � n�1Ck�1. Similarly, if
the �rst segment is vertical, the number of routes is also m�1Ck�1 � n�1Ck�1.

Hence, the total number of routes is

2 � m�1Ck�1 � n�1Ck�1.

� Number of routes which have 2k bends

Assume the �rst and the last segments are horizontal. Excluding the �rst and the last
segments, there are k�1 horizontal segments and k vertical segments. The positions of the k
vertical segments are chosen fromm�1 positions, whereas the positions of the k�1 horizontal
segments are chosen from n� 1 positions.

If the �rst segment is horizontal, the number of routes is m�1Ck � n�1Ck�1. Similarly, if
the �rst segment is vertical, the number of routes is m�1Ck�1 � n�1Ck.

Hence, the total number of routes is

m�1Ck � n�1Ck�1 + m�1Ck�1 � n�1Ck.

Please note that when m = k, the �rst and the last segments cannot be horizontal and the
�rst term does not exist. Similarly, when n = k, the �rst and the last segments cannot be
vertical and the second term does not exist.

For instance, for m = 3, n = 2, there are 5C3 = 10 di�erent routes.

2 � 2C0 � 1C0 = 2 routes have 1 bend

2C1 � 1C0 + 1C0 � 1C1 = 3 routes have 2 bends
2 � 2C1 � 1C1 = 4 routes have 3 bends

2C2 � 1C1 = 1 routes have 4 bends

Total = 10 routes

3.2 ALGORITHM

In this section, we will derive an algorithm to calculate the probability that the routing passes
through each horizontal and vertical track.

� Horizontal Track

As described in Section 2, there are x+yCx � m+n�x�y�1Cn�y possible routes from A to
B that pass through (x; y) and then (x+1; y). First, we need to �nd out how many of those
routes have one bend, two bends, etc.

Consider the routing from point A to point P at (x; y), we can apply the same arguments
in Section 3.1. The only di�erence is that there is an additional bend if the last segment is
vertical.
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A (0,0)

B (m,n)

  (x,y) (x+1,y)

Figure 12: Routing through a Horizontal Track (Geometric Routing Distribution)

x�1C0 � y�1C0 routes have 1 bend

x�1C1 � y�1C0 + x�1C0 � y�1C0 routes have 2 bends

x�1C1 � y�1C1 + x�1C0 � y�1C1 routes have 3 bends

x�1C2 � y�1C1 + x�1C1 � y�1C1 routes have 4 bends

x�1C2 � y�1C2 + x�1C1 � y�1C2 routes have 5 bends
: : :

x�1Ck�1 � y�1Ck�1 + x�1Ck�2 � y�1Ck�1 routes have 2k-1 bends

x�1Ck � y�1Ck�1 + x�1Ck�1 � y�1Ck�1 routes have 2k bends

From point (x+ 1; y) to point B, we can derive the following equations.

m�x�2C0 � n�y�1C0 routes have 1 bend

m�x�2C1 � n�y�1C0 + m�x�2C0 � n�y�1C0 routes have 2 bends

m�x�2C1 � n�y�1C1 + m�x�2C0 � n�y�1C1 routes have 3 bends

m�x�2C2 � n�y�1C1 + m�x�2C1 � n�y�1C1 routes have 4 bends

m�x�2C2 � n�y�1C2 + m�x�2C1 � n�y�1C1 routes have 5 bends
: : :

m�x�2Ck�1 � y�1Ck�1 + m�x�2Ck�2 � n�y�1Ck�1 routes have 2k-1 bends

m�x�2Ck � y�1Ck�1 + m�x�2Ck�1 � n�y�1Ck�1 routes have 2k bends

The total number of bends is equal to the number of bends from A to (x; y) plus the number
of bends from (x+ 1; y) to B.

Hence, the probability that the routing passes through (x; y) and (x+ 1; y) is:

[x�1C0 � y�1C0 + (x�1C1 � y�1C0 + x�1C0 � y�1C0) � �+ : : :][m�x�2C0 � n�y�1C0 � �+ (m�x�2C1 � n�y�1C0 +m�x�2C0 � n�y�1C0) � �
2 + : : :]

2 �m�1C0 � n�1C0 + (m�1C1 � n�1C0 + n�1C1 � m�1C0) � � + 2 �m�1C1 � n�1C1 � �
2 + : : :

� Vertical Track

Similarly, the probability that the routing passes through (x; y) and (x; y + 1) is:

[x�1C0 � y�1C0 + (x�1C1 � y�1C0 + x�1C0 � y�1C0) � �+ : : :][m�x�1C0 � n�y�2C0 � �+ (m�x�1C0 � n�y�2C1 +m�x�1C0 � n�y�2C0) � �
2 + : : :]

2 �m�1C0 � n�1C0 + (m�1C1 � n�1C0 + n�1C1 � m�1C0) � � + 2 �m�1C1 � n�1C1 � �
2 + : : :

3.3 EXAMPLES

For m = 3 and n = 2, the routing probabilities on all the tracks are shown for various � in
Figure 14.
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A (0,0)

B (m,n)

(x,y)

(x,y+1)

Figure 13: Routing through a Vertical Track (Geometric Routing Distribution)

4 PROBABILISTIC ROUTING ALGORITHM

The geometric routing distribution models real routers pretty well. However, the formulas to
calculate the routing probabilities are complex and the computational time is long. There is a
much simpler and quicker way.

At each point, we can assume that the routing probability is divided into two components. The �rst
component follows the uniform routing distribution described in Section 2. The second component
always goes straight. We de�ne � as the fraction of the routing probability belonged to the �rst
component. Obviously, (1 � �) is the fraction of the routing probability belonged to the second
component.

The algorithm are described in Section 4.1 and Section 4.2, and the results are then presented and
analyzed in Section 4.3 and Section 4.4.

4.1 DERIVATION

Consider a point P at (x; y) between point A and point B. There are two incoming routing
probabilities (p1 and p2) and two outgoing routing probabilities (p3 and p4). Probability that the
route passes through point P = p1 + p2 = p3 + p4.

Now, we divide p1 into two components (p1A and p1B), where

p1A = p1� �

p1B = p1� (1� �)

The �rst component ( p1A ) follows the uniform routing distribution as described in Section 2.
Similarly, p2 is divided into p2A and p2B . The second component ( p1B ) always avoid bends
and goes straight unless the routing hits the right or the bottom edge.

So, we get the following equations.

p1A = p1� �

12



Example 3.1: Routing probabilities for � = 0.

A (0,0)

B (3,2)

0.5

0.5

0.5

  0

0.5   0

  0

0.5

0.5

0.5

0 0 0

0.5 0.5

  0

0.5

Example 3.2: Routing probabilities for � = 0:5.

A (0,0)

B (3,2)

0.57

0.43

0.38

0.19

0.22 0.16

0.16

0.22

0.22

0.43

0.22 0.24 0.22

0.22 0.38

0.19

0.57

Example 3.3: Routing probabilities for � = 1:0.

A (0,0)

B (3,2)

0.6

0.4

0.3

0.3

0.1 0.2

0.2

0.1

0.1

0.4

0.3 0.4 0.3

0.1 0.3

0.3

0.6

Figure 14: Geometric Routing Distribution Examples

p1B = p1� (1� �)
p1 = p1A + p1B

p2A = p2� �

p2B = p2� (1� �)
p2 = p2A + p2B

p3A = (p1A + p2A)� (n� y)� (m+ n� x� y)
p3B = p1B
p3 = p3A + p3B

= (p1 + p2)� � � (n� y)� (m+ n� x� y) + p1� (1� �)

p4A = (p1A + p2A)� (m� x)� (m+ n� x� y)
p4B = p2B
p4 = p4A + p4B
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A (0,0)

p1

p2

p3

p4

P (x,y)

B (m,n)

Figure 15: Probabilistic Routing Algorithm Equations

= (p1 + p2)� � � (m� x)� (m+ n� x� y) + p2� (1� �)

If we start from point A and calculate all the routing probabilities from point A to point B.
The routing probabilities may not be symmetrical, i.e., Pxy 6= P(m�x)(n�y). Typically, these two
probabilities are close but not identical.

One simple solution is to assume we route from point A to point B half of the time and from point
B to point A half of the time. After we have calculated all the routing probabilities, we need to
average out (Pxy and P(m�x)(n�y)), (Pxy

0

and P(m�x�1)(n�y)
0

), (Pxy
00

and P(m�x)(n�y�1)
00

) as shown
in Figure 16.

A (0,0)

Pxy

(x,y)

B (m,n)

(m-x,n-y)

P(m-x)(n-y)

Pxy ’

Pxy ”

P(m-x)(n-y-1)”

P(m-x-1)(n-y)’

Figure 16: Symmetry of Routing Probabilities

4.2 ALGORITHM

Step 1: Set the probability at point A ( P00 ) to 1.0.
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A (0,0)

B (m,n)

P00 P10P00’

P00”

P10’

P10”

Figure 17: Probabilistic Routing Algorithm (Step 1 to 3)

Step 2: Calculate the probabilities coming out from point A.

P00
0

= P00 �m� (m+ n)

P00
00

= P00 � n� (m+ n)

Step 3: Calculate the probabilities at (1; 0).

P10 = P00
0

P10
0

= P10 � � � (m� 1)� (m+ n� 1)+ P00
0

�(1� �)

P10
00

= P10 � � � n� (m+ n� 1)

A (0,0)

B (m,n)

Figure 18: Probabilistic Routing Algorithm (Step 4 to 6)

Step 4: Similarly, calculate the probabilities at (2; 0), (3; 0), ..., (m; 0) on the �rst row.

Step 5: Calculate the probabilities at (0; 1), (1; 1), ..., (m; 1) on the second row.

P01 = P00
00

P01
0

= P01 � � �m� (m+ n� 1)

P01
00

= P01 � � � (n� 1)� (m+ n� 1)+ P00
00

�(1� �)

P11 = P01
0

+ P10
00

P11
0

= P11 � � � (m� 1)� (m+ n� 2)+ P01
0

�(1� �)

P11
00

= P11 � � � (n� 1)� (m+ n� 2)+ P10
00

�(1� �)
� � �

Step 6: Repeat step 5 for the 3rd, 4th, ..., nth rows.

Step 7: To �x the problem of symmetry, recalculate all routing probabilities using:
Pnew xy = Pnew (m�x)(n�y) = ( Pxy + P(m�x)(n�y) )� 2
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4.3 EXAMPLES

In these examples, m = 3 and n = 2. The routing probabilities on all the tracks are shown for
various � in Figure 19.

Example 4.1: Routing probabilities for � = 0.

A (0,0)

B (3,2)

0.5

0.5

0.5

  0

0.5   0

  0

0.5

0.5

0.5

0 0 0

0.5 0.5

  0

0.5

Example 4.2: Routing probabilities for � = 0.667.

A (0,0)

B (3,2)

0.58

0.42

0.38

0.20

0.21 0.17

0.17

0.21

0.21

0.42

0.21 0.24 0.21

0.21 0.38

0.20

0.58

Example 4.3: Routing probabilities for � = 1.0.

A (0,0)

B (3,2)

0.6

0.4

0.3

0.3

0.1 0.2

0.2

0.1

0.1

0.4

0.3 0.4 0.3

0.1 0.3

0.3

0.6

Figure 19: Probabilistic Routing Algorithm Examples

4.4 COMPARISON WITH GEOMETRIC ROUTING DISTRIBUTION

The geometric routing distribution is closely related to the probabilistic routing algorithm. When
� = � � (2 � �), the routing probabilities derived from the geometric routing distribution and
the probabilistic routing algorithm are almost identical. In most cases, the percentage di�erence
between the two derivations is below 2%.
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As shown in Figure 20, the percentage di�erence is 1.4% for m = n = 4, � = 0:5, � = 0:667.

Case 1 (Geometric Routing Distribution - � = 0:5):

A (0,0)

B (4,4)

0.50

0.50

0.31

0.19

0.31 0.19

0.14

0.17

0.10

0.15

0.19 0.19 0.15

0.14 0.18

0.18

0.18

0.08

0.17

0.10

0.14

0.08

0.17 0.15

0.08 0.10

0.18 0.19

0.19

0.10 0.15 0.19

0.08 0.17

0.14

0.31

0.31

0.50

0.19

0.50

Case 2 (Probabilistic Routing Algorithm - � = 0:667):

A (0,0)

B (4,4)

0.50

0.50

0.31

0.19

0.31 0.19

0.13

0.17

0.09

0.15

0.19 0.19 0.15

0.13 0.18

0.18

0.18

0.08

0.17

0.09

0.13

0.08

0.17 0.15

0.08 0.09

0.18 0.19

0.19

0.09 0.15 0.19

0.08 0.17

0.13

0.31

0.31

0.50

0.19

0.50

Figure 20: Probabilistic Routing Algorithm Results

The relationship between � and � is:

� = � � (2� �)
� = 2� �� (1 + �)

Proof:

Consider only probability p1 and assume probability p2 is zero for now. The same argument can
also apply to p2:

p3 = Prob[route does not have bend at P]
= p1� (1� �) + p1� � � (n� y)� (m+ n� x� y)
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A (0,0)

p1

p2

p3

p4

P (x,y)

B (m,n)

 (x+1,y)

(x,y+1)

Figure 21: Comparison with Geometric Routing Distribution

p4 = Prob[route has bend at P]
= p1� � � (m� x)� (m+ n� x� y)

First, examine the case when (m�x) = (n�y). The vertical distance between P and B is equal to
the horizontal distance. The possible routes from (x+1; y) to B are similar to those from (x; y+1)
to B because the two rectangles as shown in the diagram are identical. The only di�erence is that
routes passing through (x+ 1; y) have an extra bend.

p4 = p1� � � (m� x)� (m+ n� x� y)
= p1� � � 2
= p1� �� (1 + �)

Hence, we get
� = � � (2� �)
� = 2� �� (1 + �)

When (m� x) 6= (n� y), we need to take the e�ect of the geometry of the rectangles into account.

p4 = p1� � � (m� x)� (m+ n� x� y)
� p1� �� (1 + �) � 2� (m� x)� (m+ n� x� y)

This is only an approximation because the probabilistic routing algorithm only consider the routing
from P to B, whereas the geometric routing distribution consider the whole routing from point A
to point P and then to B. Thus,

� � � � (2� �)
� � 2� �� (1 + �)
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A (0,0)

p1

p2

p3

p4

P (x,y)

B (m,n)

 (x+1,y)

(x,y+1)

Figure 22: Probabilistic Routing Algorithm Scaling Factor

5 OTHER CONSIDERATIONS

5.1 ROUTING BETWEEN TWO BLOCKS

In the pre-RTL stage, we know the dimensions of the functional blocks and the number of con-
nections among the functional blocks. But we do not know the exact port locations. Assume the
probability density function of the port location is uniformly distributed on the functional block.
We can divide each functional block into small rectangular tiles, and distribute the number of con-
nections among the tiles. Note that the functional block can be of any shape and does not need to
be rectangular.

For example, we want to connect 360 wires between block A and block B. Now, block A is divided
into 6 tiles and block B is divided into 6 tiles. Each tile in block A has to connect to each tile in
block B with 360� (6 � 6) or 10 wires.

Block A

Block B

Figure 23: Routing from Block A to Block B

We can apply the same algorithm even if the port location is not uniformly distributed on the
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functional block. For instance, if we know that the port is located near the left edge of the
functional block, we just need to distribute the wires among the tiles in that region and safely
ignore all the other tiles.

5.2 ROUTING OBSTACLES

A (0,0)

p1

p2

p3

B (m,n)

Obstacle

Figure 24: Routing Obstacle Overview

Assume there is a routing obstacle between point A and point B.

Step 1: Use the original algorithm but ignore all the routing probabilities going into the obstacle.

Step 2: After we have �nished all routing probabilities from A to B, we have to remove all the
routing probabilities going into the obstacle, i.e., p1, p2 and p3. These probabilities are
routed backward to point A. These backward routing probabilities are deducted from the
original forward routing probabilities.

Step 3: Finally, all routing probabilities have to be multiplied by 1�(1�p1�p2�p3) to compensate
for the "missing" probabilities.

A routing obstacle example is shown in Figure 25.

5.3 COMMON CONNECTIONS AMONG MULTIPLE BLOCKS

Suppose we need to connect M wires among block A, B and C. We can assume that we need to
connect M � f wires from A to B, M � f wires from B to C and M � f wires from C to A,
where f is a scaling factor depending on the number of blocks and the block locations.

One simple way is to ignore the block locations, we can assume f = 2� 3. The reason is that we
make three block connections when only two are needed. In general, if we want to connect M wires
among N blocks, we will need to make NC2 block connections when only (N � 1) are needed.
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Step1: Derive the routing probabilities as before.

A (0,0)

B (2,2)

0.5 0.33

0.17 0.33

0.33

0.33

0.17 0.5

0.3

0.5 0.17

Step 2: Route the obstacle probabilities backward.

A (0,0)

B (2,2)

0.5 0.33

0.17 0.33

0.33

0.33

0.17 0.5

0.3

0.5 – 0.17 = 0.33

Step 3: Compensate for the "lost" probabilities.

A (0,0)

B (2,2)

0.6 0.4

0.2 0.4

0.4

0.4

0.2 0.6

0.4

0.4

Figure 25: Routing Obstacle Algorithm
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f = (N � 1) � NC2

= 2�N

In reality, f is even smaller because the rectilinear length of the Steiner tree is shorter than the
(N � 1) connections between blocks.

Block B

Block A

Block C

Figure 26: Connections among Multiple Blocks

5.4 CONGESTION MODEL

5.4.1 CARTESIAN COORDINATES

As shown in Figure 27, each grid point represents a rectangular tile on the die which contains
a number of horizontal and vertical routing channels. The dimensions of the tile are directly
proportional to the number of routing channels in each tile. It is important to choose the dimensions
carefully. If the dimension is too big, we cannot locate the local routing congestion precisely. On
the other hand, if the dimension is too small, the congestion model may produce a lot of false
congestion alarms. From our empirical data, the tile should contain at least 100 routing channels
to give a meaningful routing estimate.

(0,0) (2,0) (3,0)

(0,1)

(1,0)

(1,1) (2,1) (3,1)

Figure 27: Stochastic Congestion Model
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5.4.2 CHANNEL SUPPLY

After the tiles are mapped to the Cartesian coordinate system, we can compress the multiple metal
layers into one single logical metal layer. Now, each metal layer has its own metal pitch, metal
width and porosity requirements. Within each rectangular tile, we can determine the total number
of horizontal and vertical channels available for routing.

Example:

M1 metal pitch = 1 micron
M2 metal pitch = 1 micron
M3 metal pitch = 2 microns
M4 metal pitch = 4 microns

Suppose each rectangular tile is 100 microns by 100 microns. Metal tracks in M1 and M3 runs
horizontally, while metal tracks in M2 and M4 runs vertically. Each tile contains 150 (= 100� 1 +
100 � 2) horizontal tracks and 125 (= 100� 1 + 100� 4) vertical tracks.

5.4.3 ROUTING CONGESTION

Based on the routing density model developed in Section 2 to Section 5 we can determine if there
is any routing congestion in any location by simply subtracting the horizontal and vertical channel
supplies from their corresponding routing densities. If the result is negative, there is routing
congestion in that particular location. The layout may still be routable if the congestion is localized.
However, the routing may have to extend beyond the Manhattan distance.

The idea is that the chip is routable if and only if the channel supply exceeds the channel demand
in every single tile of the chip.

6 CONCLUSION AND FUTURE WORK

In this report, we proposed a new stochastic congestion model for VLSI interconnect routing. A
simple and e�cient algorithm was presented to calcuate the routing densities, which can be used
to predict routability and estimate the total die size.

Our congestion model is actually very general and can apply to any VLSI designs. But it is
particularly useful for pre-RTL oorplanning because this model does not require the actual port
locations.

Based on this model, we are building a software prototype to verify the theory and look for further
re�nements.
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