
DESIGN ISSUES IN HIGH

PERFORMANCE FLOATING

POINT ARITHMETIC UNITS

Stuart Franklin Oberman

Technical Report: CSL-TR-96-711

December 1996

This work was supported by NSF under contract MIP93-13701.

DESIGN ISSUES IN HIGH PERFORMANCE FLOATING POINT

ARITHMETIC UNITS

by
Stuart Franklin Oberman

Technical Report: CSL-TR-96-711

December 1996

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305-9040

Abstract
In recent years computer applications have increased in their computational complexity.

The industry-wide usage of performance benchmarks, such as SPECmarks, forces processor
designers to pay particular attention to implementation of the oating point unit, or FPU.

Special purpose applications, such as high performance graphics rendering systems, have
placed further demands on processors. High speed oating point hardware is a requirement
to meet these increasing demands. This work examines the state-of-the-art in FPU design

and proposes techniques for improving the performance and the performance/area ratio of
future FPUs.

In recent FPUs, emphasis has been placed on designing ever-faster adders and mul-
tipliers, with division receiving less attention. The design space of FP dividers is large,

comprising �ve di�erent classes of division algorithms: digit recurrence, functional itera-
tion, very high radix, table look-up, and variable latency. While division is an infrequent

operation even in oating point intensive applications, it is shown that ignoring its imple-
mentation can result in system performance degradation. A high performance FPU requires

a fast and e�cient adder, multiplier, and divider.
The design question becomes how to best implement the FPU in order to maximize

performance given the constraints of silicon die area. The system performance and area

impact of functional unit latency is examined for varying instruction issue rates in the
context of the SPECfp92 application suite. Performance implications are investigated for

shared multiplication hardware, shared square root, on-the-y rounding and conversion
and fused functional units. Due to the importance of low latency FP addition, a variable

latency FP addition algorithm has been developed which improves average addition latency
by 33% while maintaining single-cycle throughput. To improve the performance and area

of linear converging division algorithms, an automated process is proposed for minimizing
the complexity of SRT tables. To reduce the average latency of quadratically-converging

division algorithms, the technique of reciprocal caching is proposed, along with a method to
reduce the latency penalty for exact rounding. A combination of the proposed techniques
provides a basis for future high performance oating point units.

Key Words and Phrases: Addition, computer arithmetic, division, oating point,
rounding, variable latency

c Copyright 1997 by Stuart Franklin Oberman

All Rights Reserved

ii

Acknowledgments

This work would not have been possible without the help of many wonderful people.

I would like to thank my advisor, Michael Flynn, for all of his technical, �nancial,

and personal support during my years at Stanford. He believed in my abilities from

my �rst day at Stanford, and he has been a source of encouragement ever since.

I would like to thank my other readers Mark Horowitz and Cal Quate for their

e�orts to review the drafts of this dissertation. Mark Horowitz provided constructive

advice and acted as a reality-check for many of my ideas, improving both the content

and clarity of this research. Thanks to Martin Morf for the many discussions yielding

interesting ideas.

Thanks to Nhon Quach and Grant McFarland. I learned many of the \tricks"

of fast oating point from Nhon Quach, and these have inuenced the direction of

this research. Grant McFarland was always there to discuss a new idea or to read a

draft of a paper. Thanks to the other members of Professor Flynn's group for their

comments and discussions: Kevin Nowka, Hesham Altwaijry, Dan Zucker, Kevin

Rudd, and Steve Fu. Thanks also to the skeptics in the group who kept me honest

and often understood the subjects better than I: Gary Bewick, Andrew Zimmerman,

Brian Flachs, and John Johnson.

I extend sincere gratitude to my family. To my loving wife, Joy, who sacri�ced a

more comfortable living, helped support us, and ultimately helped drive me to the

completion of this work. To my mother, father, and sister who have always been

a tremendous source of encouragement, con�dence, and love. This dissertation is

dedicated to them.

iii

iv

Contents

Acknowledgments iii

1 Introduction 1

1.1 Background . 1

1.2 Design Space . 2

1.3 Arithmetic Operations . 3

1.4 Organization . 4

2 A System Perspective 6

2.1 Introduction . 6

2.2 System Level Study . 7

2.2.1 Instrumentation . 7

2.2.2 Method of Analysis . 8

2.3 Results . 9

2.3.1 Instruction Mix . 9

2.3.2 Compiler E�ects . 11

2.3.3 Performance and Area Tradeo�s 11

2.3.4 Shared Multiplier E�ects . 17

2.3.5 Shared Square Root . 19

2.3.6 On-the-y Rounding and Conversion 19

2.3.7 Consumers of Division Results 21

2.4 Summary . 23

v

3 Faster FP Addition 25

3.1 Introduction . 25

3.2 FP Addition Algorithms . 26

3.2.1 Basic . 26

3.2.2 Two-Path . 27

3.2.3 Pipelining . 28

3.2.4 Combined Rounding . 30

3.3 Variable Latency Algorithm . 32

3.3.1 Two Cycle . 32

3.3.2 One Cycle . 33

3.4 Performance Results . 38

3.5 Summary . 41

4 Division Algorithms 43

4.1 Introduction . 43

4.2 Digit Recurrence Algorithms . 44

4.2.1 De�nitions . 45

4.2.2 Implementation of Basic Scheme 46

4.2.3 Increasing Performance . 51

4.2.4 Quotient Conversion . 62

4.2.5 Rounding . 63

4.3 Functional Iteration . 63

4.3.1 Newton-Raphson . 64

4.3.2 Series Expansion . 66

4.4 Very High Radix Algorithms . 69

4.4.1 Accurate Quotient Approximations 69

4.4.2 Short Reciprocal . 72

4.4.3 Rounding and Prescaling . 74

4.5 Look-up Tables . 76

4.5.1 Direct Approximations . 76

4.5.2 Linear Approximations . 78

vi

4.5.3 Partial Product Arrays . 79

4.6 Variable Latency Algorithms . 80

4.6.1 Self-Timing . 81

4.6.2 Result Caches . 82

4.6.3 Speculation of Quotient Digits 83

4.7 Comparison . 84

4.8 Summary . 88

5 Faster SRT Dividers 91

5.1 Introduction . 91

5.2 SRT Division . 92

5.3 Implementing SRT Tables . 92

5.3.1 Divisor and Partial Remainder Estimates 92

5.3.2 Uncertainty Regions . 95

5.3.3 Reducing Table Complexity 97

5.4 Experimental Methodology . 98

5.4.1 TableGen . 98

5.4.2 Table Synthesis . 101

5.5 Results . 102

5.5.1 Same Radix Tradeo�s . 102

5.5.2 Higher Radix . 105

5.6 Summary . 109

6 Division and Reciprocal Caches 110

6.1 Introduction . 110

6.2 Reciprocal Caches . 111

6.2.1 Iterative Division . 111

6.2.2 Experimental Methodology . 112

6.2.3 Performance . 112

6.3 Division Caches . 116

6.4 Square Root Caches . 117

6.5 Summary . 117

vii

7 Fast Rounding 120

7.1 Introduction . 120

7.2 IEEE Rounding . 121

7.3 Division by Functional Iteration . 122

7.4 Previously Implemented Techniques 124

7.5 Reducing the Frequency of Remainder Computations 126

7.5.1 Basic Rounding . 126

7.5.2 Faster Rounding . 130

7.5.3 Higher Performance . 131

7.6 Faster Magnitude Comparison . 133

7.7 Summary . 135

8 Conclusion 136

8.1 Summary . 136

8.2 Future Work . 139

Bibliography 141

viii

ix

List of Tables

2.1 E�ects of compiler optimization . 15

2.2 Five regions of division latency . 17

4.1 Summary of algorithms . 86

4.2 Latencies for di�erent con�gurations 88

5.1 Gray encoding for maximally redundant radix 4 100

5.2 Radix 4 Tradeo�s . 102

5.3 Radix 2 . 104

5.4 Radix 8 . 105

5.5 Radix 16 . 106

5.6 Radix 32 . 107

6.1 Performance/area tradeo�s for reciprocal caches 114

7.1 Action table for RN rounding mode 122

7.2 Action table for basic method . 128

7.3 Action table using two guard bits . 132

7.4 Sign prediction . 134

x

List of Figures

2.1 Instruction mix . 10

2.2 Functional unit stall time distribution 10

2.3 Spice with optimization O0 . 12

2.4 Spice with optimization O3 . 12

2.5 Interlock distances: by application and cumulative average 13

2.6 Cumulative average add and mul interlock distances 13

2.7 CPI and area vs division latency - low latency 14

2.8 CPI and area vs division latency - full range 16

2.9 Excess CPI as a percentage of base CPI for multiple issue processors 18

2.10 Excess CPI due to shared multiplier 18

2.11 E�ects of on-the-y rounding and conversion 20

2.12 Consumers of division results . 22

2.13 Consumers of multiply results . 22

3.1 Two path algorithm . 29

3.2 Three cycle pipelined adder with combined rounding 31

3.3 Two or three cycle variable latency adder 34

3.4 One, two, or three cycle variable latency adder 36

3.5 Additional hardware for one cycle operation prediction 37

3.6 Histogram of exponent di�erence . 39

3.7 Histogram of normalizing shift distance 39

3.8 Performance summary of proposed techniques 41

4.1 Basic SRT Divider Topology . 47

xi

4.2 P-D diagram for radix-4 . 50

4.3 Higher radix using hardware replication 53

4.4 Three methods of overlapping division components 54

4.5 Higher radix by overlapping quotient selection 56

4.6 Radix-4 with overlapped remainder computation 58

4.7 Two stages of self-timed divider . 81

5.1 Uncertainty regions due to divisor and partial remainder estimates . . 96

5.2 Components of an SRT divider . 99

5.3 Design ow . 100

6.1 Hit rates for in�nite reciprocal caches 113

6.2 Hit rates for �nite reciprocal caches 113

6.3 Speedup from reciprocal caches . 115

6.4 Hit rates for division caches . 118

6.5 Hit rates for reciprocal/square root caches 118

7.1 Signi�cand format before rounding 121

8.1 Example FPU implementation . 139

xii

Chapter 1

Introduction

1.1 Background

A oating point number representation can simultaneously provide a large range of

numbers and a high degree of precision. As a result, a portion of modern micro-

processors is often dedicated to hardware for oating point computation. Previously,

silicon area constraints have limited the complexity of the oating point unit, or FPU.

Advances in integrated circuit fabrication technology have resulted in both smaller

feature sizes and increased die areas. Together, these trends have provided a larger

transistor budget to the processor designer. It has therefore become possible to imple-

ment more sophisticated arithmetic algorithms to achieve higher FPU performance.

Due to the complexity of oating point number systems, hardware implementa-

tions of oating point operations are typically slower than integer operations. Many

modern computer programs, such as scienti�c computation, 3D graphics applications,

digital signal processing, and system performance benchmarks have a high frequency

of oating point operations. The performance of these applications is often limited by

the speed of the oating point hardware. For these reasons, high performance FPUs

are now both practical and desirable.

The IEEE 754 oating point standard [1] is the most common oating point rep-

resentation used in modern microprocessors. It dictates the precisions, accuracy,

and arithmetic operations that must be implemented in conforming processors. The

1

CHAPTER 1. INTRODUCTION 2

arithmetic operations include addition, multiplication, division, and square root. The

design of a high performance IEEE conforming FPU requires a fast adder, multiplier,

divider, and square root unit. This research therefore investigates algorithms and im-

plementations for designing high performance IEEE conforming oating point units.

1.2 Design Space

The performance and area of a functional unit depend upon circuit style, logic im-

plementation, and choice of algorithms. The space of current circuit styles ranges

from fully-static CMOS designs to hand-optimized self-timed dynamic circuits. Logic

design styles range from automatically-synthesized random logic to custom, hand-

selected gates. The widest selection of design choices is available at the algorithmic

level, which is the focus of this dissertation.

The three primary parameters in FP functional unit design are latency, cycle time,

and area. The functional unit latency is the time required to complete a computation,

typically measured in machine cycles. Designs can be either Fixed Latency (FL) or

Variable Latency (VL). In a FL design, each step of the computation completes in

lock-step with a system clock. Further, any given operation completes after a �xed

quantity of cycles. The cycle time in a FL design is the maximum time between the

input of operands from registers and the latching of new results into the next set of

registers. In contrast, VL designs complete after a variable quantity of cycles. This

allows a result to be returned possibly sooner than the maximum latency, reducing the

average latency. They achieve their variability through either the choice of algorithm

(VLA) or choice of circuit design (VLC). VLA designs operate in synchronization

with a system clock. However, the total number of cycles required to complete the

operation varies depending upon other factors, such as the actual values of the input

operands. An example of a non-oating point VLA design is a hierarchical memory

system. In such a memory system, the total latency for a LOAD operation depends

upon the level in the hierarchy at which the requested data resides. VLC designs

need not have any internal synchronization with the rest of the system. Instead,

such a design accepts new inputs at one time, and it produces results sometime

CHAPTER 1. INTRODUCTION 3

later, independent of the system clock. A self-timed circuit is an example of a VLC

design. Self-timed designs use special circuits to allow for results to be generated as

soon as they are available. While self-timed designs reduce the average latency, they

often introduce additional complexity, including additional testing requirements and

integration issues with synchronous designs.

FL designs can be fully combinational or pipelined. Pipelining is a commonly

used technique for increasing the throughput of functional units. A functional unit

can be divided into smaller components by introducing explicit registers in-between

the components. In this way, the cycle time of the unit becomes the maximum time

for any of the components to complete. By increasing the number of components,

the cycle time of the unit is decreased at the expense of increasing the latency. The

primary motivation for pipelining is to allow for one operation to be initiated and

another to be completed in each machine cycle, with more than one operation in

progress at any time. As a result, the total latency for a sequence of operations is

reduced by exploiting the component-level parallelism. However, the introduction of

additional registers to hold the intermediate values contributes overhead in the form

of longer cycle times and area. These tradeo�s must be understood for optimal FL

and VLA functional unit design.

1.3 Arithmetic Operations

The most frequent FP operation is addition. Conceptually, it is the simplest oper-

ation, returning either the sum or di�erence of two FP numbers. In practice, FP

adders can be slow due to additional aligning and normalizing shifts, recomplementa-

tion, and rounding that may be required. A fast FP adder is vital to the performance

of an FPU, and thus techniques to reduce the latency of FP addition are investigated

in this dissertation.

Multiplication is typically the next-most frequent FP operation. As a result,

high-speed multiplication is also critical to a high performance FPU. Multiplication

involves the summation of several shifted partial products, each of which is a product

of the multiplicand and one digit of the multiplier. Thus, three steps are required

CHAPTER 1. INTRODUCTION 4

in multiplication: partial product generation, partial product reduction, and �nal

carry-propagate-addition. In practice, the partial products may be formed by direct

ANDing of the multiplier digit and the multiplicand, or they may be formed by one

of many bit scanning algorithms such as Booth's Algorithm [2]. The partial product

reduction is implemented by a series of carry-free adders, which are connected in

one of many di�erent topologies ranging from linear arrays to logarithmic trees. The

organization of these reduction trees has been the subject of previous research, much

of which is summarized in [3], [4], [5], and [6]. The �nal carry-propagate-addition

is an application of integer addition, a topic independent from FPU design [7]. The

remaining tradeo�s in multiplier design are: method of partial product generation,

topology and circuit design of the reduction tree, and the topology and circuit design

of the �nal carry-propagate adder. These tradeo�s involve the analysis of the delay

and area of the speci�c circuits and layouts in a given technology. As this dissertation

focuses primarily on algorithmic tradeo�s in functional unit design, an analysis of the

area and performance tradeo�s of FP multipliers is not presented here. Some of these

tradeo�s are presented in Al-Twaijry [3].

The least frequently occurring operations in an IEEE FPU are division and square

root. However, a slow divider implementation in a high performance FPU can result

in performance degradation. The theory of square root computation is very similar

to that of division, and thus much of the analysis for division can also be applied to

square root units. As the design space of division algorithms and implementations is

much larger than that of addition and multiplication, a considerable portion of this

dissertation is dedicated to analysis and algorithms for divider design.

1.4 Organization

The following chapters detail design issues in FPU design, a VLA algorithm for higher

performance FP addition, a taxonomy of division algorithms, and several FL and VL

techniques for increasing FP division performance.

Chapter 2 examines the system performance impact of functional unit latencies.

It also examines the performance implications of shared multiplication hardware,

CHAPTER 1. INTRODUCTION 5

shared square root, on-the-y rounding and conversion, and fused functional units.

This chapter forms a basis for the FPU performance requirements from a system

perspective, and it demonstrates the importance of a lower latency FP divider.

Chapter 3 presents a case study demonstrating the use of a variable latency func-

tional unit to achieve maximum performance. The study proposes a new oating

point addition algorithm which reduces the average addition latency while maintain-

ing single cycle throughput. This algorithm achieves higher performance by exploiting

the distribution of FP addition operands.

Chapter 4 presents �ve major classes of division algorithms in order to clarify the

design space of division algorithms and implementations. It analyzes the fundamental

design tradeo�s in terms of latency, cycle time, and area.

Chapter 5 analyzes in more detail techniques to minimize the complexity of

quotient-digit selection tables in SRT division implementations. The quotient-digit

selection function is often the major contributor to the cycle time of SRT dividers. By

minimizing the delay and area of the quotient-digit selection tables, the performance

and area of the overall divider implementation is improved.

Chapter 6 presents two variable latency methods for reducing average division

latency: division and reciprocal caches.

Chapter 7 clari�es the methodology for correct IEEE compliant rounding for

quadratically-converging division algorithms and proposes techniques to reduce the

latency penalty for exact rounding.

Chapter 8 summarizes the results of this research and suggests further areas of

oating point research.

Chapter 2

A System Perspective

2.1 Introduction

In recent FPUs emphasis has been placed on designing ever-faster adders and multi-

pliers, with division and square root receiving less attention. The typical range for

addition latency is 2 to 4 cycles, and the range for multiplication is 2 to 8 cycles.

In contrast, the latency for double precision division ranges from 6 to 61 cycles, and

square root is often far larger [8]. Most emphasis has been placed on improving the

performance of addition and multiplication. As the performance gap widened be-

tween these two operations and division, oating point algorithms and applications

have been slowly rewritten to account for this gap by mitigating the use of division.

Thus, current applications and benchmarks are usually written assuming that division

is an inherently slow operation and should be used sparingly.

This chapter investigates in detail the relationship between FP functional unit

latencies and system performance. The application suites considered for this study

included the NAS Parallel Benchmarks [9], the Perfect Benchmarks [10], and the

SPECfp92 [11] benchmark suite. An initial analysis of the instruction distribution

determined that the SPEC benchmarks had the highest frequency of oating point

operations, and they were therefore chosen as the target workload of the study to

best reect the behavior of oating point intensive applications.

6

CHAPTER 2. A SYSTEM PERSPECTIVE 7

These applications are used to investigate several questions regarding the imple-

mentation of oating point units [12]:

� Does a high-latency division/square root operation cause enough system per-

formance degradation to justify dedicated hardware support?

� How well can a compiler schedule code in order to maximize the distance be-

tween oating point result production and consumption?

� What are the e�ects of increasing the width of instruction issue on e�ective

division latency?

� If hardware support for division and square root unit is warranted and a multiplication-

based algorithm is utilized, should the FP multiplier hardware be shared, or

should a dedicated functional unit be designed?

� Should square root share the division hardware?

� What operations most frequently consume division results?

� Is on-the-y rounding and conversion necessary?

The organization of this chapter is as follows. Section 2 describes the method

of obtaining data from the applications. Section 3 presents the results of the study.

Section 4 analyzes and summarizes the results.

2.2 System Level Study

2.2.1 Instrumentation

System performance was evaluated using 11 applications from the SPECfp92 bench-

mark suite. The applications were each compiled on a DECstation 5000 using the

MIPS C and Fortran compilers at each of three levels of optimization: no optimiza-

tion, O2 optimization, and O3 optimization. O2 performs common subexpression

CHAPTER 2. A SYSTEM PERSPECTIVE 8

elimination, code motion, strength reduction, code scheduling, and inlining of arith-

metic statement functions. O3 performs all of O2's optimizations, but it also imple-

ments loop unrolling and other code-size increasing optimizations [13]. Among other

things, varying the level of compiler optimization varies the total number of executed

instructions and the distance between a division operation and the use of its result.

The compilers utilized the MIPS R3000 machine model for all schedules assuming

double precision FP latencies of 2 cycles for addition, 5 cycles for multiplication, and

19 cycles for division.

In most traditional computer architectures, a close match exists between high-

level-language semantics and machine-level instructions for oating point operations

[14]. Thus, the results obtained on a given architecture are applicable to a wide

range of architectures. The results presented were obtained on the MIPS architec-

ture, primarily due to the availability of the exible program analysis tools pixie and

pixstats [15]. Pixie reads an executable �le and partitions the program into its basic

blocks. It then writes a new version of the executable containing extra instructions to

dynamically count the number of times each basic block is executed. The benchmarks

use the standard input data sets, and each executes approximately 3 billion instruc-

tions. Pixstats is then used to extract performance statistics from the instrumented

applications.

2.2.2 Method of Analysis

To determine the e�ects of a oating point operation on overall system performance,

the performance degradation due to the operation needs to be determined. This

degradation can be expressed in terms of excess CPI, or the CPI due to the result

interlock. Excess CPI is a function of the dynamic frequency of the operation, the

urgency of its results, and the functional unit latency. The dynamic frequency of

an operation is the number of times that a particular operation is executed in the

application. The urgency of a result is measured by how soon a subsequent instruction

needs to consume the result. To quantify the urgency of results, interlock distances

were measured for division results. The interlock distance is the distance between the

production of a division result and its consumption by a subsequent instruction. It

CHAPTER 2. A SYSTEM PERSPECTIVE 9

is clear that the dynamic frequency is solely a function of the application, urgency is

a function of the application and the compiler, and functional unit latency depends

upon the hardware implementation. The system designer has the most control over

the functional unit latency. Through careful design of the processor architecture,

though, the designer has some limited inuence on the urgency. Adding extra registers

and providing for out-of-order instruction execution are two means by which the

system designer can inuence urgency.

2.3 Results

2.3.1 Instruction Mix

Figure 2.1 shows the average frequency of division and square root operations in the

benchmark suite relative to the total number of oating point operations, where the

applications have been compiled using O3 optimization. This �gure shows that simply

in terms of dynamic frequency, division and square root seem to be relatively unim-

portant instructions, with about 3% of the dynamic oating point instruction count

due to division and only 0.33% due to square root. The most common instructions

are FP multiply and add, but note that add, subtract, move, and convert operations

typically use the FP adder hardware. Thus, FP multiply accounts for 37% of the

instructions, and the FP adder is used for 55% of the instructions. However, in terms

of latency, division can play a much larger role. By assuming a machine model of a

scalar processor, where every division operation has a latency of 20 cycles and the

adder and multiplier each have a 3 cycle latency, a distribution of the excess CPI due

to FP stall time was formed, shown in �gure 2.2. The stall time is the period during

which the processor was ready to execute the next instruction, but an interlock on

the result of a previous un�nished FP add, multiply, or divide instruction prevented

it from continuing. This excess CPI reduces overall performance by increasing the

total CPI. Here, FP division accounts for 40% of the performance degradation, FP

add accounts for 42%, and multiply accounts for the remaining 18%. Therefore, the

performance of division is signi�cant to the overall system performance.

CHAPTER 2. A SYSTEM PERSPECTIVE 10

||0.0

|10.0

|20.0

|30.0

|40.0

 P
er

ce
nt

 o
f a

ll
F

P
 In

st
ru

ct
io

ns
 (

%
)

div sqrt mul add sub abs mov cvtd neg cvtw

Figure 2.1: Instruction mix

||0.0

|10.0

|20.0

|30.0

|40.0

|50.0

 F
P

 E
xc

es
s

C
P

I (
%

)

div add mul

Figure 2.2: Functional unit stall time distribution

CHAPTER 2. A SYSTEM PERSPECTIVE 11

2.3.2 Compiler E�ects

In order to analyze the impact that the compiler can have on improving system

performance, the urgency of division results was measured as a function of compiler

optimization level. Figure 2.3 shows a histogram of the interlock distances for division

instructions at O0, as well as a graph of the cumulative interlock distance for the spice

benchmark. Figure 2.4 shows the same data when compiled at O3. Figure 2.5 shows

the average interlock distances for all of the applications at both O0 and O3 levels

of optimization. By intelligent scheduling and loop unrolling, the compiler is able

to expose instruction-level parallelism in the applications, decreasing the urgency of

division results. Figure 2.5 shows that the average interlock distance can be increased

by a factor of three by compiler optimization.

An average of the division interlock distances from all of the benchmarks was

formed, weighted by division frequency in each benchmark. This result is also shown

in �gure 2.5 for the three levels of compiler optimization. In this graph, the curves

represent the cumulative percentage of division instructions at each distance. The re-

sults from �gure 2.5 show that the average interlock distance can be increased to only

approximately 10 instructions. Even if the compiler assumed a larger latency, there is

little parallelism left to exploit that could further increase the interlock distance and

therefore reduce excess CPI. If the compiler scheduled assuming a low latency, the

excess CPI could only increase for dividers with higher latencies than that for which

the compiler scheduled. This is because the data shows the maximum parallelism

available when scheduling for a latency of 19 cycles. If the compiler scheduled for a

latency much less than 19 cycles, then it would not be as aggressive in its schedul-

ing, and the interlock distances would be smaller, increasing urgency and therefore

excess CPI. The results for division can be compared with those of addition and

multiplication, shown in �gure 2.6.

2.3.3 Performance and Area Tradeo�s

The excess CPI due to division is determined by summing all of the stall cycles due

to division interlocks, which is the total penalty, and dividing this quantity by the

CHAPTER 2. A SYSTEM PERSPECTIVE 12

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|
18

|
>20

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Interlock Distance (instructions)

 D
iv

id
e

In
st

ru
ct

io
ns

 (
%

)

Figure 2.3: Spice with optimization O0

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|
18

|
>20

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Interlock Distance (instructions)

 D
iv

id
e

In
st

ru
ct

io
ns

 (
%

)

Figure 2.4: Spice with optimization O3

CHAPTER 2. A SYSTEM PERSPECTIVE 13

 O0 Avg = 3.34
 O3 Avg = 10.22

||0

|5

|10

|15

|20

 In
te

rlo
ck

 D
is

ta
nc

e
(I

ns
tr

uc
tio

ns
)

sp
ic

e2
g6

do
du

c

m
dl

jd
p2

to
m

ca
tv

or
a

al
vi

nn ea
r

su
2c

or

hy
dr

o2
d

na
sa

7

fp
pp

p

 O0
 O2
 O3

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|
18

|
>20

|0.0

|10.0

|20.0

|30.0

|40.0

|50.0
|60.0

|70.0

|80.0

|90.0

|100.0

 Interlock Distance (instructions)

 D
iv

id
e

In
st

ru
ct

io
ns

 (
%

)

Figure 2.5: Interlock distances: by application and cumulative average

 O0
 O3

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|
18

|
>20

|0.0

|10.0

|20.0

|30.0

|40.0

|50.0

|60.0

|70.0

|80.0

|90.0
|100.0

 Interlock Distance (instructions)

 A
dd

 In
st

ru
ct

io
ns

 (
%

)

 O0
 O3

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|
18

|
>20

|0.0

|10.0

|20.0

|30.0

|40.0

|50.0

|60.0

|70.0

|80.0

|90.0

|100.0

 Interlock Distance (instructions)

 M
ul

 In
st

ru
ct

io
ns

 (
%

)

Figure 2.6: Cumulative average add and mul interlock distances

CHAPTER 2. A SYSTEM PERSPECTIVE 14

 Issue 8
 Issue 4
 Issue 2
 Issue 1

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|
18

|
20

|0.00

|0.02

|0.04

|0.06

|0.08

|0.10

|0.12

|0.14

|0.16

|0.18

 Divide Latency (cycles)

 E
xc

es
s

C
P

I

� � Area

| | | | | | | | | | |

| 1.00

|
|

|
|

|
|

|
|
| 10.00

|
|

|
|

|
|

|
|
| 100.00

|
|

 A
re

a
in

 m
m

2
(r

be
)

(148100)

(14810)

(1481)

�
�

� �

�

�

�

Figure 2.7: CPI and area vs division latency - low latency

total number of instructions executed, as shown in equation 2.1.

CPIdiv =

P
stall time

total instructions

(2.1)

The performance degradation due to division latency is displayed in �gure 2.7. This

graph shows how the excess CPI due to the division interlocks varies with division unit

latency between 1 and 20 cycles for O3 optimization. Varying the optimization level

also changed the total number of instructions executed, but left the number of division

instructions executed constant. As a result, the fraction of division instructions is also

a function of optimization level. While CPI due to division actually increases from O0

to O2, the overall performance at O2 and O3 increases because the total instruction

count decreases. This e�ect is summarized in table 2.1, where the division latency is

taken to be 20 cycles.

Figure 2.7 also shows the e�ect of increasing the number of instructions issued per

cycle on excess CPI due to division. To determine the e�ect of varying instruction

issue rate on excess CPI due to division, a model of an underlying architecture must

CHAPTER 2. A SYSTEM PERSPECTIVE 15

Opt Level Div Freq Excess CPI

O0 0.33% 0.057

O2 0.76% 0.093

O3 0.79% 0.091

Table 2.1: E�ects of compiler optimization

be assumed. In this study, an optimal superscalar processor is assumed, such that the

maximum issue rate is sustainable. This model simpli�es the analysis while providing

an upper bound on the performance degradation due to division. The issue rate is

used to appropriately reduce the interlock distances. As the width of instruction issue

increases, urgency of division data increases proportionally. In the worst case, every

division result consumer could cause a stall equal to the functional unit latency. The

excess CPI for the multiple issue processors is then calculated using the new interlock

distances.

Figure 2.7 also shows how area increases as the functional unit latency decreases.

The estimation of area is based on reported layouts from [16], [17], [18], all of which

have been normalized to 1.0�m scalable CMOS layout rules. As division latencies

decrease below 4 cycles, a large tradeo� must be made. Either a very large area

penalty must be incurred to achieve this latency by utilizing a very high radix division

algorithm, or large cycle times may result if an SRT divider is utilized. Several classes

of division algorithms, including very high radix division, Newton-Raphson, and SRT

division are examined in more detail in chapter 4.

In order to make the comparison of chip areas technology independent, the register

bit equivalent (rbe) area model of Mulder [19] was used. In this model, one rbe

equals the area of a one bit storage cell. For the purposes of this study, an rbe

unit is referenced to a six-transistor static cell with high bandwidth, with an area

of 675f2, where f is the minimum feature size. The area required for 1 static RAM

bit, as would be used used in an on-chip cache, is about 0.6 rbe. Since all areas are

normalized to an f = 1:0�m process, 1 mm2
= 1481 rbe.

Figure 2.8 shows excess CPI versus division latency over a larger range of latencies.

CHAPTER 2. A SYSTEM PERSPECTIVE 16

 Issue 8
 Issue 4
 Issue 2
 Issue 1

|
0

|
10

|
20

|
30

|
40

|
50

|
60

|0.00

|0.05

|0.10

|0.15

|0.20

|0.25

|0.30

|0.35

|0.40

|0.45

|0.50

 Divide Latency (cycles)

 E
xc

es
s

C
P

I

� � Area

| | | | | | |

| 1.50

| 2.00

| 2.50

| 3.00

 A
re

a
in

 m
m

2
(r

be
)

(4443)

(3703)

(2962)

(2222)

�

�

�

Figure 2.8: CPI and area vs division latency - full range

This graph can roughly be divided into �ve regions. Table 2.2 shows that inexpensive

1-bit SRT schemes use little area but can contribute in the worst case up to 0.50 CPI

in wide-issue machines. Increasing the radix of SRT implementations involves an

increase in area, but with a decrease in excess CPI. The region corresponding to 4-bit

SRT schemes also represents the performance of typical multiplication-based division

implementations, such as Newton-Raphson or series expansion [20]. The additional

area required in such implementations is di�cult to quantify, as implementations to

date have shared existing multipliers, adding control hardware to allow for the shared

functionality. At a minimum, such implementations require a starting approximation

table that provides at least an 8 bit initial approximation. Such a table occupies a

minimumof 2 Kbits, or 1230 rbe. The �nal region consists of very-high radix dividers

of the form presented in [18] and [21]. To achieve this performance with CPI < 0.01,

large area is required for very large look-up tables, often over 500,000 rbe.

To better understand the e�ects of division latency on the system performance of

CHAPTER 2. A SYSTEM PERSPECTIVE 17

Divider Type Latency (cycles) Excess CPI Area (rbe)

1-Bit SRT > 40 < 0:5 < 3000

2-Bit SRT [20, 40] [0.10, 0.32] 3110

4-Bit SRT [10, 20] [0.04, 0.10] 4070

8-Bit SRT and [4, 10] [0.01, 0.07] 6665

Self-Timed

Very-High < 4 < 0:01 > 100; 000

Radix

Table 2.2: Five regions of division latency

multiple issue processors, the excess CPI due to division can be expressed as a per-

centage of the base processor CPI. Figure 2.9 shows this relationship quantitatively.

As instruction width increases, the degradation of system performance markedly in-

creases. Not only does increasing the width of instruction issue reduce the average

interlock distance, but the penalty for a division interlock relative to the processor

issue rate dramatically increases. A slow divider in a wide-issue processor can easily

reduce system performance by half.

2.3.4 Shared Multiplier E�ects

If a multiplication-based division algorithm is chosen, such as Newton-Raphson or

series expansion, it must be decided whether to use a dedicated multiplier or to share

the existing multiplier hardware. The area of a well-designed 3 cycle FP multiplier is

around 11 mm
2
, again using the 1.0�m process. Adding this much area may not be

always desirable. If an existing multiplier is shared, this has two e�ects. First, the

latency through the multiplier likely increases due to the modi�cations necessary to

support the division operation. Second, multiply operations may be stalled due to

conicts with division operations sharing the multiplier.

The e�ect of this on excess CPI is shown in �gure 2.10. The results are based

on an average of all of the applications when scheduled with O3. In all cases for a

division latency less than 20 cycles, the excess CPI is less than 0.07. For reasonable

CHAPTER 2. A SYSTEM PERSPECTIVE 18

 Issue 8
 Issue 4
 Issue 2
 Issue 1

|
0

|
10

|
20

|
30

|
40

|
50

|
60

|0

|50

|100

|150

|200

|250

|300

|350

|400

 Divide Latency (cycles)

 E
xc

es
s

D
iv

is
io

n
C

P
I (

%
)

Figure 2.9: Excess CPI as a percentage of base CPI for multiple issue processors

 Issue 8
 Issue 4
 Issue 2
 Issue 1

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|
18

|
20

|0.00

|0.01

|0.02

|0.03

|0.04

|0.05

|0.06

|0.07

 Divide Latency (cycles)

 E
xc

es
s

C
P

I S
tr

uc
tu

ra
l H

az
ar

d

Figure 2.10: Excess CPI due to shared multiplier

CHAPTER 2. A SYSTEM PERSPECTIVE 19

implementations of multiplication-based division, with a latency of approximately

13 cycles, the actual penalty is 0.02 < CPI < 0.04. For these applications, the

penalty incurred for sharing an existing multiplier is not large due to the relatively

low frequency of division operations. For special classes of applications, such as

certain graphics applications, division and multiplication frequencies could be higher,

requiring a separate division unit to achieve high performance.

2.3.5 Shared Square Root

The recurrence equation for square root is very close in form to that of division for

both subtractive and multiplicative algorithms. Accordingly, division hardware can

be implemented with additional functionality to perform square root computation.

The design tradeo� then becomes whether a possible increase in hardware complexity

and/or cycle time can be justi�ed by an increase in overall performance.

The results of this study show that oating point square root on the average

accounts for 0.087% of all executed instructions. This is a factor of 9.1 less than di-

vision. To avoid signi�cant performance degradation due to square root, the latency

of square root should be no worse than a factor 9.1 greater than division. However,

any hardware implementation of square root more than likely meets this requirement.

Even a simple 1 bit per iteration square root would contribute only 0.05 CPI for a

scalar processor. Accordingly, these results suggest that the square root implemen-

tation does not need to have the same performance as the divider, and the sharing

of division hardware is not crucial to achieving high system performance. Only if the

additional area is small and the cycle time impact is negligible should division and

square root share the same hardware.

2.3.6 On-the-y Rounding and Conversion

In a nonrestoring division implementations such as SRT, an extra cycle is often re-

quired after the division operation completes. In SRT, the quotient is typically col-

lected in a representation where the digits can take on both positive and negative

values. Thus, at some point, all of the values must be combined and converted into

CHAPTER 2. A SYSTEM PERSPECTIVE 20

 Issue 1
 Issue 2
 Issue 4
 Issue 8

|
0

|
5

|
10

|
15

|
20

|0

|25

|50

|75

|100

|125

 Divide Latency (cycles)

 A
dd

iti
on

al
 F

ra
ct

io
n

fo
r

E
xt

ra
 C

yc
le

 C
on

ve
rs

io
n

(%
)

Figure 2.11: E�ects of on-the-y rounding and conversion

a standard representation. This requires a full-width addition, which can be a slow

operation. To conform to the IEEE standard, it is necessary to round the result.

This, too, can require a slow addition.

Techniques exist for performing this rounding and conversion \on-the-y," and

therefore the extra cycle may not be needed [22]. Because of the complexity of

this scheme, the designer may not wish to add the additional required hardware.

Figure 2.11 shows the performance impact of requiring an additional cycle after the

division operation completes. For division latencies greater than 10 cycles, less than

20% of the total division penalty in CPI is due to the extra cycle. At very low division

latencies, where the latency is less than or equal to 4 cycles, the penalty for requiring

the additional cycle is obviously much larger, often greater than 50% of the total

division penalty.

CHAPTER 2. A SYSTEM PERSPECTIVE 21

2.3.7 Consumers of Division Results

In order to reduce the e�ective penalty due to division, consider which operations

actually use division results. Figure 2.12 is a histogram of instructions that consume

division results.

This can be compared with the histogram for multiply results, shown in �gure 2.13.

For multiply results, the biggest users are multiply and add instructions. Since both

add:d and sub:d use the FP adder, the FP adder is the consumer for nearly 50% of

the multiply results. Accordingly, fused operations such as multiply-accumulate are

useful. Because the multiply-add pattern occurs frequently in such applications and

it does not require much more hardware than the separate functional units, fused

multiply-adders are often used in modern processors.

Looking at the consumers of division results, the FP adder is the largest consumer

with 27% of the results. The second biggest consumer is the store operation with 23%

of the results. It is possible to overcome the penalties due to a division-store interlock,

though, with other architectural implementations. A limited number of registers can

require a division result to be spilled to memory through a store instruction. By

either adding registers or register renaming, it may be possible to reduce the urgency

due to store.

While the percentage of division results that the adder consumes is not as high

as for multiply results, it is still the largest user. A designer could consider the im-

plementation of a fused divide-add instruction to increase performance. In division

implementations where on-the-y conversion and rounding is not used, an extra ad-

dition cycle exists for this purpose. It may be possible to make this a three-way

addition, with the third operand coming from a subsequent add instruction. Because

this operand is known soon after the instruction is decoded, it can be sent to the the

three-way adder immediately. Thus, a fused divide-add unit could provide additional

performance.

CHAPTER 2. A SYSTEM PERSPECTIVE 22

| | | | | | | | | | | ||0

|5

|10

|15

|20

|25

|30

 P
er

ce
nt

 o
f a

ll
D

iv
id

e
In

st
ru

ct
io

ns

add.d swc1 mul.d cvt.d.s div.d cfc1 cvt.s.d mfc1 sub.d ctc1 c.lt.d

Figure 2.12: Consumers of division results

| | | | | ||0

|5

|10

|15

|20

|25

|30

|35

|40

|45

|50

 P
er

ce
nt

 o
f a

ll
M

ul
tip

ly
 In

st
ru

ct
io

ns

mul.d add.d sub.d swc1

Figure 2.13: Consumers of multiply results

CHAPTER 2. A SYSTEM PERSPECTIVE 23

2.4 Summary

This chapter has investigated the issues of designing an FP divider in the context

of an entire system. The frequency and interlock distance of division instructions in

SPECfp92 benchmarks have been determined, along with other useful measurements,

in order to answer several questions regarding the implementation of a oating point

divider.

The data shows that for the slowest hardware divider, with a latency greater than

60 cycles, the CPI penalty can reach 0.50. To achieve good system performance,

some form of hardware division is required. However, at very low divider latencies,

two problems arise. The area required increases exponentially or cycle time becomes

impractical. There is a knee in the area/performance curve near 10 cycles. Dividers

with lower latencies do not provide signi�cant system performance bene�ts, and their

areas are too large to be justi�ed.

The compiler can decrease the urgency of division results. Most of the perfor-

mance gain is in performing basic compiler optimizations, at the level of O2. Only

marginal improvement is gained by further optimization. The average interlock dis-

tance increases by a factor of three by using compiler optimization. Accordingly, for

scalar processors, a division latency of 10 cycles or less can be tolerated.

Increasing the number of instructions issued per cycle also increases the urgency

of division results. Increasing the number of instructions issued per cycle to 2 causes

a 38% increase in excess CPI, increasing to 4 causes a 94% increase in excess CPI,

and increasing to 8 causes a 120% increase in excess CPI. Further, as the width

of instruction issue increases, the excess CPI due to division increases even faster.

Wide issue machines utilize the instruction-level parallelism in applications by issuing

multiple instructions every cycle. While this has the e�ect of decreasing the base CPI

of the processor, it exposes the functional unit latencies to a greater degree and

accentuates the e�ects of slow functional units.

In most situations, an existing FP multiplier can be shared when using a mul-

tiplication based division algorithm. The results show that for a division latency

of around 13 cycles, the CPI penalty is between 0.025 and 0.040. While the CPI

CHAPTER 2. A SYSTEM PERSPECTIVE 24

penalty is low when the multiplier is shared and modi�ed to also perform division,

the designer must also consider e�ects on the multiplier which could have an impact

on cycle time.

On-the-y rounding and conversion is not essential for all division implementa-

tions. For division latencies greater than 10 cycles, the lack of on-the-y rounding

and conversion does not account for a signi�cant fraction of the excess CPI, and, as

a result, is not required. However, for very high performance implementations where

the area and complexity are already large, this method is a practical means of further

reducing division latency.

Addition and store operations are the most common consumers of division results.

Accordingly, the design of a fused divide-add unit is one means of achieving additional

system performance.

While division is typically an infrequent operation even in oating point intensive

applications, ignoring its implementation can result in system performance degrada-

tion.

Chapter 3

Faster FP Addition

3.1 Introduction

Chapter 2 shows that the most frequent FP operations are addition and subtraction,

and together they account for over half of the total FP operations in typical scienti�c

applications. Both addition and subtraction use the FP adder. Techniques to reduce

the latency and increase the throughput of the FP adder have therefore been the

subject of much previous research.

Due to its many serial component operations, FP addition can have a longer

latency than FP multiplication. Pipelining is a commonly used method to increase

the throughput of the adder, but it does not reduce the latency. Previous research

has provided algorithms to reduce the latency by performing some of the operations

in parallel. This parallelism is achieved at the cost of additional hardware. The

minimum achievable latency using such algorithms in high clock-rate microprocessors

has been three cycles, with a throughput of one cycle.

To further reduce the latency, we observe that not all of the components are needed

for all input operands. Two VLA techniques are proposed to take advantage of this

to reduce the average addition latency [23]. To e�ectively use average latency, the

processor must be able to exploit a variable latency functional unit. The processor

might use some form of dynamic instruction scheduling with out-of-order execution

in order to use the reduced latency and achieve maximum system performance.

25

CHAPTER 3. FASTER FP ADDITION 26

3.2 FP Addition Algorithms

FP addition comprises several individual operations. Higher performance is achieved

by reducing the maximum number of serial operations in the critical path of the al-

gorithm. The following sections summarize the results of previous research in the

evolution of high-performance oating-point addition algorithms. Throughout this

study, the analysis assumes IEEE double precision operands (a 64 bit word, compris-

ing a 1 bit sign, an 11 bit biased exponent, and a 52 bit signi�cand, with one hidden

signi�cand bit [1]).

3.2.1 Basic

The straightforward addition algorithm Basic requires the most serial operations. It

has the following steps [24]:

1. Exponent subtraction: Perform subtraction of the exponents to form the abso-

lute di�erence jEa � Ebj = d.

2. Alignment: Right shift the signi�cand of the smaller operand by d bits. The

larger exponent is denoted Ef .

3. Signi�cand addition: Perform addition or subtraction according to the e�ective

operation, which is a function of the opcode and the signs of the operands.

4. Conversion: Convert the signi�cand result, when negative, to a sign-magnitude

representation. The conversion requires a two's complement operation, includ-

ing an addition step.

5. Leading-one detection: Determine the amount of left shift needed in the case of

subtraction yielding cancellation. For addition, determine whether or not a 1

bit right is required. Priority encode (PENC) the result to drive the normalizing

shifter.

6. Normalization: Normalize the signi�cand and update Ef appropriately.

CHAPTER 3. FASTER FP ADDITION 27

7. Rounding: Round the �nal result by conditionally adding 1 ulp as required by

the IEEE standard. If rounding causes an overow, perform a 1 bit right shift

and increment Ef .

The latency of this algorithm is large, due to its many long length components.

It contains two full-length shifts, in steps 2 and 6. It also contains three full-length

signi�cand additions, in steps 3, 4 and 7.

3.2.2 Two-Path

Several improvements can be made to Basic in order to reduce its total latency.

These improvements come typically at the cost of adding additional hardware. These

improvements are based on noting certain characteristics of FP addition/subtraction

computation:

1. The sign of the exponent di�erence determines which of the two operands is

larger. By swapping the operands such that the smaller operand is always

subtracted from the larger operand, the conversion in step 4 is eliminated in all

cases except for equal exponents. In the case of equal exponents, it is possible

that the result of step 3 may be negative. Only in this event could a conversion

step be required. Because there would be no initial aligning shift, the result after

subtraction would be exact and there will be no rounding. Thus, the conversion

addition in step 4 and the rounding addition in step 7 becomemutually exclusive

by appropriately swapping the operands. This eliminates one of the three carry-

propagate addition delays.

2. In the case of e�ective addition, there is never any cancellation of the results.

Accordingly, only one full-length shift, an initial aligning shift, can ever be

needed. For subtraction, two cases need to be distinguished. First, when the

exponent di�erence d > 1, a full-length aligning shift may be needed. However,

the result never requires more than a 1 bit left shift. Similarly if d � 1, no

full-length aligning shift is necessary, but a full-length normalizing shift may be

required in the case of subtraction. In this case, the 1 bit aligning shift and the

CHAPTER 3. FASTER FP ADDITION 28

conditional swap can be predicted from the low-order two bits of the exponents,

reducing the latency of this path. Thus, the full-length alignment shift and

the full-length normalizing shift are mutually exclusive, and only one such shift

need ever appear on the critical path. These two cases can be denoted CLOSE

for d � 1, and FAR for d > 1, where each path comprises only one full-length

shift [25].

3. Rather than using leading-one-detection after the completion of the signi�cand

addition, it is possible to predict the number of leading zeros in the result di-

rectly from the input operands. This leading-one-prediction (LOP) can there-

fore proceed in parallel with the signi�cand addition using specialized hard-

ware [26],[27].

An improved adder takes advantage of these three cases. It implements the sig-

ni�cand datapath in two parts: the CLOSE path and FAR path. At a minimum, the

cost for this added performance is an additional signi�cand adder and a multiplexor

to select between the two paths for the �nal result. Adders based on this algorithm

have been used in several commercial designs [28],[29],[30]. A block diagram of the

improved Two Path algorithm is shown in �gure 3.1.

3.2.3 Pipelining

To increase the throughput of the adder, a standard technique is to pipeline the unit

such that each pipeline stage comprises the smallest possible atomic operation. While

an FP addition may require several cycles to return a result, a new operation can

begin each cycle, providing maximum throughput. Figure 3.1 shows how the adder

is typically divided in a pipelined implementation. It is clear that this algorithm �ts

well into a four cycle pipeline for a high-speed processor with a cycle time between 10

and 20 gates. The limiting factors on the cycle time are the delay of the signi�cand

adder (SigAdd) in the second and third stages, and the delay of the �nal stage to

select the true result and drive it onto a result bus. The �rst stage has the least

amount of computation; the FAR path has the delay of at least one 11 bit adder and

two multiplexors, while the CLOSE path has only the delay of the 2 bit exponent

CHAPTER 3. FASTER FP ADDITION 29

Rshift

LshiftRound

LOP

PENC

MUX

SigAdd

SigAdd

Exp Diff

FAR

+
Swap

+
Swap

Predict

CLOSE

Conversion

Figure 3.1: Two path algorithm

prediction logic and one multiplexor. Due to the large atomic operations in the second

stage, the full-length shifter and signi�cand adder, it is unlikely that the two stages

can be merged, requiring four distinct pipeline stages.

When the cycle time of the processor is signi�cantly larger than that required for

the FP adder, it is possible to combine pipeline stages, reducing the overall latency

in machine cycles but leaving the latency in time relatively constant. Commercial

superscalar processors, such as Sun UltraSparc [31], often have larger cycle times,

resulting in a reduced FP addition latency in machine cycles when using the Two

Path algorithm. In contrast, superpipelined processors, such as DEC Alpha [32],

have shorter cycle times and have at least a four cycle FP addition latency. For the

CHAPTER 3. FASTER FP ADDITION 30

rest of this study, it is assumed that the FP adder cycle time is limited to contain

only one large atomic operation, such that the pipelined implementation of Two Path

requires four stages.

3.2.4 Combined Rounding

A further optimization can be made to the Two Path algorithm to reduce the number

of serial operations. This optimization is based upon the realization that the rounding

step occurs very late in the computation, and it only modi�es the result by a small

amount. By precomputing all possible required results in advance, rounding and

conversion can be reduced to the selection of the correct result, as described by

Quach [33],[34]. Speci�cally, for the IEEE round to nearest (RN) rounding mode,

the computation of A + B and A + B + 1 is su�cient to account for all possible

rounding and conversion possibilities. Incorporating this optimization into Two Path

requires that each signi�cand adder compute both sum and sum+1, typically through

the use of a compound adder (ComAdd). A compound adder is a special adder that

computes sum and sum+1 while sharing some internal hardware to reduce the size.

Selection of the true result is accomplished by analyzing the rounding bits, and then

selecting either of the two results. The rounding bits are the sign, LSB, guard, and

sticky bits. This optimization removes one signi�cand addition step. For pipelined

implementations, this can reduce the number of pipeline stages from four to three.

The cost of this improvement is that the signi�cand adders in both paths must be

modi�ed to produce both sum and sum+1.

For the two directed IEEE rounding modes round to positive and minus in�nity

(RP and RM), it is also necessary to compute A+B + 2. The rounding addition of

1 ulp may cause an overow, requiring a 1 bit normalizing right-shift. This is not a

problem in the case of RN, as the guard bit must be 1 for rounding to be required.

Accordingly, the addition of 1 ulp will be added to the guard bit, causing a carry-out

into the next most signi�cant bit which, after normalization, is the LSB. However,

for the directed rounding modes, the guard bit need not be 1. Thus, the explicit

addition sum+2 is required for correct rounding in the event of overow requiring a 1

bit normalizing right shift. In [33], it is proposed to use a row of half-adders above the

CHAPTER 3. FASTER FP ADDITION 31

Rshift

Lshift

LOP

PENC

ComAdd

ComAdd

HalfAdd

MUX

Exp Diff
+

Swap
+

Swap

Predict

CLOSEFAR

Figure 3.2: Three cycle pipelined adder with combined rounding

FAR path signi�cand adder. These adders allow for the conditional pre-addition of

the additional ulp to produce sum+2. In the Intel i860 oating-point adder [35],[36],

an additional signi�cand adder is used in the third stage. One adder computes sum or

sum+1 assuming that there is no carry-out. The additional adder computes the same

results assuming that a carry-out occurs. This method is faster than Quach [33], as

it does not introduce any additional delay into the critical path. However, it requires

duplication of the entire signi�cand adder in the third stage. A block diagram of the

three cycle Combined Rounding algorithm based on Quach is shown in �gure 3.2. The

critical path in this implementation is in the third stage consisting of the delays of

the half-adder, compound adder, multiplexor, and drivers.

CHAPTER 3. FASTER FP ADDITION 32

3.3 Variable Latency Algorithm

From �gure 3.2, the long latency operation in the �rst cycle occurs in the FAR

path. It contains hardware to compute the absolute di�erence of two exponents and

to conditionally swap the exponents. Depending upon the FP representation used

within the FPU, the exponents are either 11 bits for IEEE double precision or 15

bits for extended precision. As previously stated, the minimum latency in this path

comprises the delay of an 11 bit adder and two multiplexors. The CLOSE path, in

contrast, has relatively little computation. A few gates are required to inspect the

low-order 2 bits of the exponents to determine whether or not to swap the operands,

and a multiplexor is required to perform the swap. Thus, the CLOSE path is faster

than the FAR path by a minimum of

�td � tmux + (tadd11 � t2bit)

3.3.1 Two Cycle

Rather than letting the CLOSE path hardware sit idle during the �rst cycle, it is

possible to take advantage of the duplicated hardware and initiate CLOSE path com-

putation one cycle earlier. This is accomplished by moving both the second and third

stage CLOSE path hardware up to their preceding stages. Since the �rst stage in

the CLOSE path completes very early relative to the FAR path, the addition of the

second stage hardware need not result in an increase in cycle time. For example,

in the implementation of the DEC Alpha 21164 FP adder [37], the �rst cycle of the

CLOSE path includes exponent prediction and swapping logic along with the signif-

icand carry-propagate-adder. In contrast, the �rst cycle of the FAR path contains

only the exponent di�erence hardware and swapping logic. However, the DEC adder

requires a constant 4 cycles for both CLOSE and FAR paths, 3 cycles to compute the

result and 1 cycle for driving the result out of the functional unit.

The operation of the proposed algorithm is as follows. Both paths begin specu-

lative execution in the �rst cycle. At the end of the �rst cycle, the true exponent

di�erence is known from the FAR path. If the exponent di�erence dictates that the

CHAPTER 3. FASTER FP ADDITION 33

FAR path is the correct path, then computation continues in that path for two more

cycles, for a total latency of three cycles. However, if the CLOSE path is chosen,

then computation continues for one more cycle, with the result available after a total

of two cycles. While the maximum latency of the adder remains three cycles, the

average latency is reduced due to the faster CLOSE path. If the CLOSE path is a

frequent path, then a considerable reduction in the average latency can be achieved.

A block diagram of the Two Cycle algorithm is shown in �gure 3.3.

Since a result can be placed on the output bus in either stage 2 or stage 3, some

logic is required to control the tri-state bu�er in the second stage to ensure that it

only gates a result when there is no result to be gated in stage 3. In the case of a

collision with a pending result in stage 3, the stage 2 result is simply piped into stage

3. While this has the e�ect of increasing the CLOSE path latency to three cycles in

these instances, it does not a�ect throughput. As only a single operation is initiated

every cycle, it is possible to retire a result every cycle.

The frequency of collisions depends upon the actual processor micro-architecture

as well as the program. Worst case collisions would result from a stream of consecutive

addition operations which alternate in their usage of the CLOSE and FAR paths.

The distance between consecutive operations depends upon the issue-width of the

processor and the number of functional units.

Scheduling the use of the results of an adder implementing Two Cycle is not

complicated. At the end of the �rst cycle, the FAR path hardware has determined

the true exponent di�erence, and thus the correct path is known. Therefore, a signal

can be generated at that time to inform the scheduler whether the result is available

at the end of one more cycle or two more cycles. In certain cases, one cycle may be

su�cient to allow for the proper scheduling of a result in a dynamically-scheduled

processor.

3.3.2 One Cycle

Further reductions in the latency of the CLOSE path can be made after certain

observations. First, the normalizing left shift in the second cycle is not required for

CHAPTER 3. FASTER FP ADDITION 34

Rshift Lshift

LOP

PENC

ComAdd

ComAdd

HalfAdd

Exp Diff
+

Swap

+
Swap

Predict

CLOSEFAR

Collision
Logic

+
Tri-state

Output

Collision Logic
+

Tri-State

Output

Figure 3.3: Two or three cycle variable latency adder

CHAPTER 3. FASTER FP ADDITION 35

all operations. A normalizing left shift can only be required if the e�ective operation is

subtraction. Since additions never need a left shift, addition operations in the CLOSE

path can complete in the �rst cycle. Second, in the case of e�ective subtractions,

small normalizing shifts, such as d � 2, can be separated from longer shifts. While

longer shifts still require the second cycle to pass through the full-length shifter,

short shifts can be completed in the �rst cycle through the addition of a separate

small multiplexor. Both of these cases have a latency of only one cycle, with little

or no impact on cycle time. If these cases occur frequently, the average latency is

reduced. A block diagram of this adder is shown in �gure 3.4.

The One Cycle algorithm allows a result to be gated onto the output bus in any of

the three stages. As in the Two Cycle algorithm, additional control for the tri-state

bu�ers is required to ensure that only one result is gated onto the bus in any cycle.

In the case of a collision with a pending result in any of the other two stages, the

earlier results are simply piped into their subsequent stages. This guarantees the

correct FIFO ordering on the results. While the average latency may increase due to

collisions, throughput is not a�ected.

Scheduling the use of the results from a One Cycle adder is somewhat more com-

plicated than for Two Cycle. In general, the instruction scheduling hardware needs

some advance notice to schedule the use of a result for another functional unit. It

may not be su�cient for this notice to arrive at the same time as the data. Thus, an

additional mechanism may be required to determine as soon as possible before the

end of the �rst cycle whether the result will complete either 1) in the �rst cycle or 2)

the second or third cycles. A proposed method is as follows. First, quickly determine

whether the correct path is the CLOSE or FAR path from the absolute di�erence of

the exponents. If all bits of the di�erence except for the LSB are 0, then the absolute

di�erence is either 0 or 1 depending upon the LSB, and the correct path is the CLOSE

path. To detect this situation fast, an additional small leading-one-predictor is used

in parallel with the exponent adder in the FAR path to generate a CLOSE/FAR

signal. This signal is very fast, as it does not depend on exactly where the leading

one is, only if it is in a position greater than the LSB.

Predicting in the �rst cycle whether or not a CLOSE path operation can complete

CHAPTER 3. FASTER FP ADDITION 36

Rshift Lshift

LOP

PENC

ComAdd

ComAdd

HalfAdd

Exp Diff
+

Swap

+
Swap

Predict

CLOSEFAR

Collision
Logic

+
Tri-state

Output

Collision Logic
+

Tri-State

Output

Collision
Logic

+
Tri-state

Output

Figure 3.4: One, two, or three cycle variable latency adder

CHAPTER 3. FASTER FP ADDITION 37

CLOSEFAR

LOP

E EA

LOP

Sig SigAB B

CLOSE SMALL
SHIFT

Add Sub

ONE CYCLE

Figure 3.5: Additional hardware for one cycle operation prediction

in one or two cycles may require additional hardware. E�ective additions require no

other information than the CLOSE/FAR signal, as all CLOSE path e�ective additions

can complete in the �rst cycle. In the case of e�ective subtractions, an additional

specialized leading-one-predictor can be included in the signi�cand portion of the

CLOSE path to predict quickly whether the leading one is in any of the high order

three bits. If it is in these bits, then it generates a one cycle signal; otherwise, it

generates a two cycle signal. A block diagram of the additional hardware required for

early prediction of one cycle operations is shown in �gure 3.5. An implementation of

this early prediction hardware should produce a one cycle signal in less than 8 gate

delays, or about half a cycle.

CHAPTER 3. FASTER FP ADDITION 38

3.4 Performance Results

To demonstrate the e�ectiveness of these two algorithms in reducing the average

latency, the algorithms were simulated using operands from actual applications. The

data for the study was acquired using the ATOM instrumentation system [38]. ATOM

was used to instrument 10 applications from the SPECfp92 [11] benchmark suite.

These applications were then executed on a DEC Alpha 3000/500 workstation. The

benchmarks used the standard input data sets, and each executed approximately

3 billion instructions. All double precision oating-point addition and subtraction

operations were instrumented. The operands from each operation were used as input

to a custom FP adder simulator. The simulator recorded the e�ective operation,

exponent di�erence, and normalizing distance for each set of operands.

Figure 3.6 is a histogram of the exponent di�erences for the observed operands,

and it also is a graph of the cumulative frequency of operations for each exponent

di�erence. This �gure shows the distribution of the lengths of the initial aligning

shifts. Note that 57% of the operations are in the FAR path with Ed > 1, while 43%

are in the CLOSE path. A comparison with a di�erent study of oating point addition

operands [39] on a much di�erent architecture using di�erent applications provides

validation for these results. In that study over 30 years ago, six problems were traced

on an IBM 704, tracking the aligning and normalizing shift distances. There 45% of

the operands required aligning right shifts of 0 or 1 bit, while 55% required more than

a 1 bit right shift. The similarity in the results suggests a fundamental distribution

of oating point addition operands in scienti�c applications.

An implementation of the Two Cycle algorithm utilizes the two cycle path 43%

of the time with a performance of:

Average Latency = 3� (:57) + 2� (:43) = 2:57 cycles

Speedup = 3=2:57 = 1:17

Thus, an implementation of the Two Cycle algorithm has a speedup in average addi-

tion latency of 1.17, with little or no e�ect on cycle time.

Implementations of the One Cycle algorithm reduce the average latency even fur-

ther. An analysis of the e�ective operations in the CLOSE path shows that the total

CHAPTER 3. FASTER FP ADDITION 39

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|
18

|
>20

|0.0

|10.0

|20.0

|30.0

|40.0

|50.0

|60.0

|70.0

|80.0

|90.0

|100.0

 Exponent Difference

 F
re

qu
en

cy
 (

%
)

�

�

�

�

�

�

�

�

�
�

�
�

� � � � � � � �

�

Figure 3.6: Histogram of exponent di�erence

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|
18

|
>20

|0.0

|10.0

|20.0

|30.0

|40.0

|50.0

|60.0

|70.0

|80.0

|90.0

|100.0

 Left Shift Distance

 F
re

qu
en

cy
 (

%
)

�

�

�

�

�
�

�
� � � � � � � � � � � � �

�

Figure 3.7: Histogram of normalizing shift distance

CHAPTER 3. FASTER FP ADDITION 40

of 43% can be broken down into 20% e�ective addition and 23% e�ective subtraction.

As e�ective additions do not require any normalization in the close path, they com-

plete in the �rst cycle. An implementation allowing e�ective addition to complete in

the �rst cycle is referred to as adds, and has the following performance:

Average Latency = 3 � (:57) + 2� (:23) + 1 � (:20) = 2:37 cycles

Speedup = 3=2:37 = 1:27

Thus, adds reduces the average latency to 2.37 cycles, for a speedup of 1.27.

Figure 3.7 is a histogram of the normalizing left shift distances for e�ective sub-

tractions in the CLOSE path. From �gure 3.7, the majority of the normalizing shifts

occur for distances of less than three bits. Only 4.4% of the e�ective subtractions in

the CLOSE path require no normalizing shift. However, 22.4% of the subtractions

require a 1 bit normalizing left shift, and 25.7% of the subtractions require a 2 bit

normalizing left shift. In total, 52.5% of the CLOSE path subtractions require a left

shift less than or equal to 2 bits. The inclusion of separate hardware to handle these

frequent short shifts provides a performance gain.

Three implementations of the One Cycle algorithm could be used to exploit this

behavior. They are denoted subs0, subs1, and subs2, which allow completion in the

�rst cycle for e�ective subtractions with maximum normalizing shift distances of 0, 1,

and 2 bits respectively. The most aggressive implementation subs2 has the following

performance:

Average Latency = 3 � (:57) + 2� (:11) + 1 � (:32) = 2:25 cycles

Speedup = 3=2:25 = 1:33

Allowing all e�ective additions and those e�ective subtractions with normalizing shift

distances of 0, 1, and 2 bits to complete in the �rst cycle reduces the average latency

to 2.25 cycles, for a speedup of 1.33.

The performance of the proposed techniques is summarized in �gure 3.8. For each

technique, the average latency is shown, along with the speedup provided over the

base Two Path FP adder with a �xed latency of three cycles.

C
H
A
P
T
E
R
3
.
F
A
S
T
E
R
F
P
A
D
D
IT
IO
N

4
1

| |
2.0

|

2.2

|

2.4

|

2.6

|

2.8

|

3.0

 Average Latency (cycles)

two path

two cycle

adds

subs0

subs1

subs2

3.0/1.00

2.57/1.17

2.37/1.27
2.36/1.27

2.31/1.30

2.25/1.33

F
i
g
u
r
e
3
.
8
:
P
e
r
f
o
r
m
a
n
c
e
s
u
m
m
a
r
y
o
f
p
r
o
p
o
s
e
d
t
e
c
h
n
i
q
u
e
s

3
.5

S
u
m
m
a
r
y

T
h
e
r
e
a
r
e
t
w
o
t
e
c
h
n
i
q
u
e
s
f
o
r
r
e
d
u
c
i
n
g
t
h
e
a
v
e
r
a
g
e
l
a
t
e
n
c
y
o
f
F
P
a
d
d
i
t
i
o
n
.
P
r
e
v
i
o
u
s

r
e
s
e
a
r
c
h
h
a
s
s
h
o
w
n
t
e
c
h
n
i
q
u
e
s
t
o
g
u
a
r
a
n
t
e
e
a
m
a
x
i
m
u
m
l
a
t
e
n
c
y
o
f
t
h
r
e
e
c
y
c
l
e
s
i
n
h
i
g
h

c
l
o
c
k
-
r
a
t
e
p
r
o
c
e
s
s
o
r
s
.
A
d
d
i
t
i
o
n
a
l
p
e
r
f
o
r
m
a
n
c
e
c
a
n
b
e
a
c
h
i
e
v
e
d
i
n
d
y
n
a
m
i
c
i
n
s
t
r
u
c
t
i
o
n

s
c
h
e
d
u
l
i
n
g
p
r
o
c
e
s
s
o
r
s
b
y
e
x
p
l
o
i
t
i
n
g
t
h
e
d
i
s
t
r
i
b
u
t
i
o
n
o
f
o
p
e
r
a
n
d
s
t
h
a
t
u
s
e
t
h
e
C
L
O
S
E

p
a
t
h
.
I
t
h
a
s
b
e
e
n
s
h
o
w
n
t
h
a
t
4
3
%

o
f
t
h
e
o
p
e
r
a
n
d
s
i
n
t
h
e
S
P
E
C
f
p
9
2
a
p
p
l
i
c
a
t
i
o
n
s

u
s
e
t
h
e
C
L
O
S
E
p
a
t
h
,
r
e
s
u
l
t
i
n
g
i
n
a
s
p
e
e
d
u
p
o
f
1
.
1
7
f
o
r
t
h
e
T
w
o
C
ycle

a
l
g
o
r
i
t
h
m
.

B
y
a
l
l
o
w
i
n
g
e
�
e
c
t
i
v
e
a
d
d
i
t
i
o
n
s
i
n
t
h
e
C
L
O
S
E

p
a
t
h
t
o
c
o
m
p
l
e
t
e
i
n
t
h
e
�
r
s
t
c
y
c
l
e
,

a
s
p
e
e
d
u
p
o
f
1
.
2
7
i
s
a
c
h
i
e
v
e
d
.
F
o
r
e
v
e
n
h
i
g
h
e
r
p
e
r
f
o
r
m
a
n
c
e
,
a
n
i
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f

t
h
e
O
n
e
C
ycle

a
l
g
o
r
i
t
h
m

a
c
h
i
e
v
e
s
a
s
p
e
e
d
u
p
o
f
1
.
3
3
b
y
a
l
l
o
w
i
n
g
e
�
e
c
t
i
v
e
s
u
b
t
r
a
c
t
i
o
n
s

r
e
q
u
i
r
i
n
g
v
e
r
y
s
m
a
l
l
n
o
r
m
a
l
i
z
i
n
g
s
h
i
f
t
s
t
o
c
o
m
p
l
e
t
e
i
n
t
h
e
�
r
s
t
c
y
c
l
e
.
T
h
e
s
e
t
e
c
h
n
i
q
u
e
s

CHAPTER 3. FASTER FP ADDITION 42

do not add signi�cant hardware, nor do they impact cycle time. They provide a

reduction in average latency while maintaining single cycle throughput.

Chapter 4

Division Algorithms

4.1 Introduction

Many algorithms have been developed for implementing division in hardware. These

algorithms di�er in many aspects, including quotient convergence rate, fundamental

hardware primitives, and mathematical formulations. In this chapter, a taxonomy of

division algorithms is presented which divides the classes based upon the di�erences

in the hardware operations used in their implementations, such as multiplication,

subtraction, and table look-up.

Division algorithms can be divided into �ve classes: digit recurrence, functional

iteration, very high radix, table look-up, and variable latency [40]. Many practical

division algorithms are not pure forms of a particular class, but rather are combi-

nations of multiple classes. For example, a high performance algorithm may use a

table look-up to gain an accurate initial approximation to the reciprocal, use a func-

tional iteration algorithm to converge quadratically to the quotient, and complete in

variable time using a variable latency technique.

In the past, others have presented summaries of speci�c classes of division algo-

rithms and implementations. The most common implementation of digit recurrence

division in modern processors has been named SRT division by Freiman [41], taking

its name from the initials of Sweeney, Robertson [42] and Tocher [43], who discovered

43

CHAPTER 4. DIVISION ALGORITHMS 44

the algorithm independently in approximately the same time period. Two funda-

mental works on division by digit recurrence are Atkins [44], which is the �rst major

analysis of SRT algorithms, and Tan [45], which derives and presents the theory of

high-radix SRT division and an analytic method of implementing SRT look-up tables.

Ercegovac and Lang [22] is a comprehensive treatment of division by digit recurrence.

The theory and methodology of division by functional iteration is described in detail

in Flynn [46]. Soderquist [47] presents a survey of division by digit recurrence and

functional iteration along with performance and area tradeo�s in divider and square

root design in the context of a specialized application.

This chapter synthesizes the fundamental aspects of these and other works, in

order to clarify the division design space. The �ve classes of division algorithms are

presented and analyzed in terms of the three major design parameters: latency in

system clock cycles, cycle time, and area. Other issues related to the implementation

of division in actual systems are also presented. The majority of the discussion is de-

voted to division. The theory of square root computation is an extension of the theory

of division. As shown in chapter 2, square root operations occur nearly ten times less

frequently than division in typical scienti�c applications, suggesting that fast square

root implementations are not crucial to achieving high system performance. However,

most of the analyses and conclusions for division can also be applied to the design of

square root units.

4.2 Digit Recurrence Algorithms

The simplest and most widely implemented class of division algorithms is digit re-

currence. Digit recurrence algorithms retire a �xed number of quotient bits in every

iteration. Implementations of digit recurrence algorithms are typically of low com-

plexity, utilize small area, and have relatively large latencies. The fundamental choices

in the design of a digit recurrence divider are the radix, the allowed quotient digits,

and the representation of the partial remainder. The radix determines how many bits

of quotient are retired in an iteration, which �xes the division latency. Larger radices

can reduce the latency, but increase the time for each iteration. Judicious choice of

CHAPTER 4. DIVISION ALGORITHMS 45

the allowed quotient digits can reduce the time for each iteration, but with a cor-

responding increase in complexity and hardware. Similarly, di�erent representations

of the partial remainder can reduce iteration time, with corresponding increases in

complexity.

Various techniques have been proposed for further increasing division performance,

including staging of simple low-radix stages, overlapping sections of one stage with

another stage, and prescaling the input operands. All of these methods introduce

tradeo�s in the time/area design space. This section introduces the principles of digit

recurrence division, along with an analysis of methods for increasing the performance

of digit recurrence implementations.

4.2.1 De�nitions

Digit recurrence algorithms use subtractive methods to calculate quotients one digit

per iteration. SRT division is the name of the most common form of digit recurrence

division algorithm. The input operands are assumed to be represented in a normalized

oating point format with fractional signi�cands of n binary digits in sign-magnitude

representation. The algorithms presented here are applied only to the magnitudes

of the signi�cands of the input operands. Techniques for computing the resulting

exponent and sign are straightforward. As mentioned earlier, the IEEE standard

de�nes single and double precision formats, where n=24 for single precision and n=53

for double precision. The signi�cand consists of a normalized quantity, with an explicit

or implicit leading bit to the left of the implied binary point, and the magnitude of the

signi�cand is in the range [1,2). To simplify the presentation, this analysis assumes

fractional quotients normalized to the range [0.5,1).

The quotient is de�ned to comprise k radix-r digits with

r = 2
b

(4.1)

k =

n

b
(4.2)

where a division algorithm that retires b bits of quotient in each iteration is said

to be a radix-r algorithm. Such an algorithm requires k iterations to compute the

CHAPTER 4. DIVISION ALGORITHMS 46

�nal n bit result. For a fractional quotient, 1 unit in the last place (ulp) = r�n.

Note that the radix of the algorithm need not be the same as that of the oating

point representation nor the underlying physical implementation. Rather, they are

independent quantities. For typical microprocessors that are IEEE 754 conforming,

both the physical implementation and the oating point format are radix-2.

The following recurrence is used in every iteration of the SRT algorithm:

rP0 = dividend (4.3)

Pj+1 = rPj � qj+1divisor (4.4)

where Pj is the partial remainder, or residual, at iteration j. In each iteration, one

digit of the quotient is determined by the quotient-digit selection function:

qj+1 = SEL(rPj ; divisor) (4.5)

The �nal quotient after k iterations is then

q =

kX
j=1

qjr
�j

(4.6)

The remainder is computed from the �nal residual by:

remainder =

8<
: Pn if Pn � 0

Pn + divisor if Pn < 0

Furthermore, the quotient has to be adjusted when Pn < 0 by subtracting 1 ulp.

4.2.2 Implementation of Basic Scheme

A block diagram of a practical implementation of the basic SRT recurrence is shown in

�gure 4.1. The critical path of the implementation is shown by the dotted line. From

equations (4.4) and (4.5), each iteration of the recurrence comprises the following

steps:

� Determine next quotient digit qj+1 by the quotient-digit selection function, a

look-up table typically implemented as a PLA or combinational logic.

CHAPTER 4. DIVISION ALGORITHMS 47

TABLE

D

MUX

q
j+1

Pj+1

Pj

SUBTRACTOR

Figure 4.1: Basic SRT Divider Topology

CHAPTER 4. DIVISION ALGORITHMS 48

� Generate the product qj+1� divisor.

� Subtract qj+1� divisor from the shifted partial remainder r � Pj

Each of these components contributes to the overall cost and performance of the

algorithm. Depending on certain parameters of the algorithm, the execution time

and corresponding cost can vary widely.

Choice of Radix

The fundamental method of decreasing the overall latency (in machine cycles) of the

algorithm is to increase the radix r of the algorithm. The radix is chosen to be a

power of 2. The product of the radix and the partial remainder can then be formed

by shifting. Assuming the same quotient precision, the number of iterations of the

algorithm required to compute the quotient is reduced by a factor f when the radix is

increased from r to rf . For example, a radix 4 algorithm retires 2 bits of quotient in

every iteration. Increasing to a radix 16 algorithm allows for retiring 4 bits in every

iteration, halving the latency. This reduction does not come for free. As the radix

increases, the quotient-digit selection becomes more complicated. It can be seen from

�gure 4.1 that quotient selection is on the critical path of the basic algorithm. The

cycle time of the divider is de�ned as the minimumtime to complete this critical path.

While the number of cycles may have been reduced due to the increased radix, the

time per cycle may have increased. As a result, the total time required to compute an

n bit quotient is not reduced as expected. Additionally, the generation of all required

divisor multiples may become impractical or infeasible for higher radices. Thus, these

two factors can o�set some or possibly all of the performance gained by increasing

the radix.

Choice of Quotient Digit Set

In digit recurrence algorithms, some range of digits is decided upon for the allowed

values of the quotient in each iteration. The simplest case is where, for radix r, there

are exactly r allowed values of the quotient. However, to increase the performance

CHAPTER 4. DIVISION ALGORITHMS 49

of the algorithm, we use a redundant digit set. Such a digit set can be composed of

symmetric signed-digit consecutive integers, where the maximumdigit is a. The digit

set is made redundant by having more than r digits in the set. In particular,

qj 2 Da = f�a;�a+ 1; : : : ;�1; 0; 1; : : : ; a� 1; ag

Thus, to make a digit set redundant, it must contain more than r consecutive integer

values including zero, and thus a must satisfy

a � dr=2e

The redundancy of a digit set is determined by the value of the redundancy factor �,

which is de�ned as

� =

a

r � 1

; � >
1

2

Typically, signed-digit representations have a < r � 1. When a = d r
2
e, the represen-

tation is called minimally redundant, while that with a = r � 1 is called maximally

redundant, with � = 1. A representation is known as non-redundant if a = (r � 1)=2,

while a representation where a > r�1 is called over-redundant. For the next residual

Pj+1 to be bounded when a redundant quotient digit set is used, the value of the

quotient digit must be chosen such that

jPj+1j < �� divisor

The design tradeo� can be noted from this discussion. By using a large number of

allowed quotient digits a, and thus a large value for �, the complexity and latency of

the quotient selection function can be reduced. However, choosing a smaller number

of allowed digits for the quotient simpli�es the generation of the multiple of the

divisor. Multiples that are powers of two can be formed by simply shifting. If a

multiple is required that is not a power of two (e.g. three), an additional operation

such as addition may also be required. This can add to the complexity and latency

of generating the divisor multiple. The complexity of the quotient selection function

and that of generating multiples of the divisor must be balanced.

After the redundancy factor � is chosen, it is possible to derive the quotient

selection function. A containment condition determines the selection intervals. A

CHAPTER 4. DIVISION ALGORITHMS 50

qj=2

qj={1,2}

qj=1

qj={0,1}

qj=0

Divisor

1

2

3

4

5

1/3D

2/3D

4/3D

5/3D

8/3D

Sh
if

te
d

P
ar

ti
al

 R
em

ai
nd

er

1 1.5 2

Figure 4.2: P-D diagram for radix-4

selection interval is the region in which a particular quotient digit can be chosen.

These expressions are given by

Uk = (�+ k)d Lk = (��+ k)d

where Uk (Lk) is the largest (smallest) value of rPj such that it is possible for qj+1 = k

to be chosen and still keep the next partial remainder bounded. The P -D diagram

is a useful visual tool when designing a quotient-digit selection function. It plots the

shifted partial remainder vs. the divisor. The selection interval bounds Uk and Lk

are drawn as lines starting at the origin with slope � + k and �� + k, respectively.

A P-D diagram is shown in �gure 4.2 with r = 4 and a = 2. The shaded regions are

the overlap regions where more than one quotient digit may be selected.

Residual Representation

The residual can be represented in either of two di�erent forms, either redundant or

nonredundant forms. Conventional two's complement representation is an example of

CHAPTER 4. DIVISION ALGORITHMS 51

a nonredundant form, while carry-save two's complement representation is an example

of a redundant form. Each iteration requires a subtraction to form the next residual. If

this residual is in a nonredundant form, then this operation requires a full-width adder

requiring carry propagation, increasing the cycle time. If the residual is computed in

a redundant form, a carry-free adder, such as a carry-save adder (CSA), can be used

in the recurrence, minimizing the cycle time. However, the quotient-digit selection,

which is a function of the shifted residual, becomes more complex. Additionally,

twice as many registers are required to store the residual between iterations. Finally,

if the remainder is required from the divider, the last residual has to be converted to

a conventional representation. At a minimum, it is necessary to determine the sign

of the �nal remainder in order to implement a possible quotient correction step, as

discussed previously.

Quotient-Digit Selection Function

Critical to the performance of a divider is the e�cient implementation of the quotient

selection function. If a redundant representation is chosen for the residual, the residual

is not exactly known, and neither is the exact next quotient digit. However, by using

a redundant quotient digit set, the residual does not need to be known exactly to

select the next quotient digit. It is only necessary to know the exact range of the

residual in �gure 4.2. The selection function is realized by approximating the residual

Pj and divisor to compute qj+1. This is typically done by means of a small look-

up table. The challenge in the design is deciding how many bits of Pj and divisor

are needed, while simultaneously minimizing the complexity of the table. Chapter 5

presents a methodology for performing this analysis along with several techniques for

minimizing table complexity.

4.2.3 Increasing Performance

Several techniques have been reported for improving the performance of SRT division

including [48], [49], [50], [51], [52], [53], [16], [54], [55], [56], [17]. Some of these

approaches are discussed below.

CHAPTER 4. DIVISION ALGORITHMS 52

Simple Staging

In order to retire more bits of quotient in every cycle, a simple low radix divider can

be replicated many times to form a higher radix divider, as shown in �gure 4.3. In

this implementation, the critical path is equal to:

titer = treg + 2(tqsel + tqDsel + tCSA) (4.7)

One advantage of unrolling the iterations by duplicating the lower-radix hardware is

that the contribution of register overhead to total delay is reduced. The more the

iterations are unrolled, the less of an impact register overhead has on total delay.

However, the added area due to each stage and the increase in cycle time must be

carefully considered.

In general, the implementation of divider hardware can range from totally se-

quential, as in the case of a single stage of hardware, to fully combinational, where

the hardware is replicated enough such that the entire quotient can be determined

combinationally in hardware. For totally or highly sequential implementations, the

hardware requirements are small, saving chip area. This also leads to very fast cy-

cle times, but the radix is typically low. Hardware replication can yield a very low

latency in clock cycles due to the high radix but can occupy a large amount of chip

area and have unacceptably slow cycle times.

One alternative to hardware replication to reduce division latency is to clock the

divider at a faster frequency than the system clock. In the HP PA-7100, the very

low cycle time of the radix-4 divider compared with the system clock allows it to

retire 4 bits of quotient every machine cycle, e�ectively becoming a radix-16 divider

[57]. In the succeeding generation HP PA-8000 processor, due to a higher system

clock frequency, the divider is clocked at the same frequency as the rest of the CPU,

increasing the latency (in cycles) by a factor of two [58].

The radix-16 divider in the AMD 29050 microprocessor [59] is another example

of achieving higher radix by clocking a lower radix core at a higher frequency. In

this implementation, a maximally-redundant radix-4 stage is clocked at twice the

system clock frequency to form a radix-16 divider. Two dynamic short CPAs are

used in front of the quotient selection logic, such that in one clock phase the �rst

CHAPTER 4. DIVISION ALGORITHMS 53

CPA

TABLE

MUX

Pj D

MUX

CSA

Quotient

CONVERTER

CPA

TABLE

D

MUX

CSA

Quotient

CONVERTER

Figure 4.3: Higher radix using hardware replication

CHAPTER 4. DIVISION ALGORITHMS 54

QS DMF PRF

QS DMF PRF

QS DMF PRF

QS DMF PRF

QS

QS

DMF

DMF PRF

PRF

1)

2)

3)

QS q quotient selection
DMF qD divisor multiple formation
PRF rp-qD partial remainder formation

Figure 4.4: Three methods of overlapping division components

CPA evaluates and the second CPA precharges, while in the other clock phase the

�rst CPA precharges and the second CPA evaluates. In this way, one radix-4 iteration

is completed in each phase of the clock, for a total of two iterations per clock cycle.

Overlapping Execution

It is possible to overlap or pipeline the components of the division step in order to

reduce the cycle time of the division step [56]. This is illustrated in �gure 4.4. The

standard approach is represented in this �gure by approach 1. Here, each quotient

selection is dependent on the previous partial remainder, and this de�nes the cycle

time. Depending upon the relative delays of the three components, approaches 2 or 3

may be more desirable. Approach 2 is appropriate when the overlap is dominated by

partial remainder formation time. This would be the case when the partial remainder

is not kept in a redundant form. Approach 3 is appropriate when the overlap is

dominated by quotient selection, as is the case when a redundant partial remainder

is used.

CHAPTER 4. DIVISION ALGORITHMS 55

Overlapping Quotient Selection

To avoid the increase in cycle time that results from staging radix-r segments together

in forming higher radix dividers, some additional quotient computation can proceed in

parallel [22],[49],[56]. The quotient-digit selection of stage j+2 is overlapped with the

quotient-digit selection of stage j+1, as shown in �gure 4.5. This is accomplished by

calculating an estimate of the next partial remainder and the quotient-digit selection

for qj+2 conditionally for all 2a+ 1 values of the previous quotient digit qj+1, where

a is the maximum allowed quotient digit. Once the true value of qj+1 is known, it

selects the correct value of qj+2. As can be seen from �gure 4.5, the critical path is

equal to:

titer = treg + tqsel + tqDsel + 2tCSA + tmux(data) (4.8)

Accordingly, comparing the simple staging of two stages with the overlapped quotient

selection method for staging, the critical path has been reduced by

�titer = tqsel + tqDsel � tmux(data) (4.9)

This is a reduction of slightly more than the delay of one stage of quotient-digit selec-

tion, at the cost of replicating 2a+ 1 quotient-digit selection functions. This scheme

has diminishing returns when overlapping more than two stages. Each additional

stage requires the calculation of an additional factor (2a+1) of quotient-digit values.

Thus the kth additional stage requires (2a + 1)
k
replicated quotient-selection func-

tions. Because of this exponential growth in hardware, only very small values of k

are feasible in practice.

Prabhu [60] discusses a radix-8 shared square root design that utilizes overlapping

quotient selection in the Sun UltraSPARC microprocessor. In this implementation,

three radix-2 stages are cascaded to form a radix-8 divider. The second stage con-

ditionally computes all three possible quotient digits of the the �rst stage, and the

third stage computes all three possible quotient digits of the second stage. In the

worst case, this involves replication of three quotient-selection blocks for the second

stage and nine blocks for the third stage. However, by recognizing that two of the

CHAPTER 4. DIVISION ALGORITHMS 56

q

q

{d}

y

{d} {d}

rPj rPjad -ad

rPj

Pj+1

d

d

Pj+2

rPj+1

j+2
q

j+1

qSel
logic

qSel
logic

qSel
logic

CSA CSA

CSA

CSA

* * * short CSA

MUX

qD

qD

j+1

Figure 4.5: Higher radix by overlapping quotient selection

CHAPTER 4. DIVISION ALGORITHMS 57

nine blocks conditionally compute the identical quotient bits as another two blocks,

only seven are needed.

Overlapping Remainder Computation

A further optimization that can be implemented is the overlapping of the partial

remainder computation, also used in the UltraSPARC. By replicating the hardware

to compute the next partial remainder for each possible quotient digit, the latency of

the recurrence is greatly reduced.

Oberman [16] and Quach [54] report optimizations for radix-4 implementations.

For radix-4, it might seem that because of the �ve possible next quotient digits,

�ve copies of partial remainder computation hardware are required. However, in

the design of quotient-selection logic, the sign of the next quotient digit is known

in advance, as it is just the sign of the previous partial remainder. This reduces the

number of copies of partial remainder computation hardware to three: 0, �1, and �2.

However, from an analysis of a radix-4 quotient-digit selection table, the boundary

between quotient digits 0 and 1 is readily determined. To take advantage of this, the

quotient digits are encoded as:

q(�2) = Sq2

q(�1) = Sq1q2

q(0) = q1q2

q(1) = Sq1q2

q(2) = Sq2

In this way, the number of copies of partial remainder computation hardware can

be reduced to two: 0 or �1, and �2. A block diagram of a radix-4 divider with

overlapped remainder computation is shown in �gure 4.6. The choice of 0 or �1 is

made by q1 early, after only a few gate delays, by selecting the proper input of a

multiplexor. Similarly, q2 selects a multiplexor to choose which of the two banks of

hardware is the correct one, either the 0 or �1 bank, or the �2 bank. The critical

path of the divider becomes: max(tq1,tCSA)+ 2tmux+ tshortCPA+treg. Thus, at the

CHAPTER 4. DIVISION ALGORITHMS 58

TABLE

MUX

Pj D

CSA

Quotient

CSA

MUX

MUX MUX

pj

q

q

1

2

Dividend Divisor

short CPA short CPA

Figure 4.6: Radix-4 with overlapped remainder computation

CHAPTER 4. DIVISION ALGORITHMS 59

expense of duplicating the remainder computation hardware once, the cycle time of

the standard radix-4 divider is nearly halved.

Range Reduction

Higher radix dividers can be designed by partitioning the implementation into lower

radix segments, which are cascaded together. Unlike simple staging, in this scheme

there is no shifting of the partial remainder between segments. Multiplication by the

radix r is performed only between iterations of the step, but not between segments.

The individual segments reduce the range of the partial remainder so that it is usable

by the remaining segments [22],[49].

A radix-8 divider can be designed using a cascade of a radix-2 segment and a

radix-4 segment. In this implementation the quotient digit sets are given by:

qj+1 = qh + ql qh 2 f�4; 0; 4g; ql 2 f�2;�1; 0; 1; 2g

However, the resulting radix-8 digit set is given by:

qj+1 = f�6; : : : ; 6g � = 6=7

When designing the quotient-digit selection hardware for both qh and ql, it should be

realized that these are not standard radix-2 and radix-4 implementations, since the

bounds on the step are set by the requirements for the radix-8 digit set. Additionally,

the quotient-digit selections can be overlapped as discussed previously to reduce the

cycle time. In the worst case, this overlapping involves two short CSAs, two short

CPAs, and three instances of the radix-4 quotient-digit selection logic. However,

to distinguish the choices of qh = 4 and qh = �4, an estimate of the sign of the

partial remainder is required, which can be done with only three bits of the carry-

save representation of the partial remainder. Then, both qh = 4 and qh = �4 can

share the same CSA, CPA and quotient-digit selection logic by muxing the input

values. This overall reduction in hardware has the e�ect of increasing the cycle time

by the delay of the sign detection logic and a mux.

The critical path for generating ql is given by:

titer = treg + tsignest + tmux + tCSA + tshortCPA + tqlsel + tmux(data) (4.10)

CHAPTER 4. DIVISION ALGORITHMS 60

In order to form Pj+1, q
l
is used to select the proper divisor multiple which is then

subtracted from the partial remainder from the radix-2 segment. The additional

delay to form Pj+1 is a mux select delay and a CSA. For increased performance, it

is possible to precompute all partial remainders in parallel and use ql to select the

correct result. This reduces the additional delay after ql to only a mux delay.

Operands Scaling

In higher radix dividers the cycle time is generally determined by quotient-digit selec-

tion. The complexity of quotient-digit selection increases exponentially for increasing

radix. To decrease cycle time, it may be desirable to reduce the complexity of the

quotient-digit selection function using techniques beyond those presented, at the cost

of adding additional cycles to the algorithm. From an analysis of a quotient-digit se-

lection function the maximum overlap between allowed quotient digits occurs for the

largest value of the divisor. Assuming a normalized divisor in the range 1=2 � d < 1,

the greatest amount of overlap occurs close to d = 1. To take advantage of this over-

lap, the divisor can be restricted to a range close to 1 by prescaling the divisor [48],[61].

In order that the quotient be preserved, either the dividend also must be prescaled, or

else the quotient must be postscaled. In the case of prescaling, if the true remainder is

required after the computation, postscaling is required. The dividend and the divisor

are prescaled by a factor M so that the scaled divisor z is

1 � � � z = Md � 1 + � (4.11)

where � and � are chosen in order to provide the same scaling factor for all divisor

intervals and to ensure that the quotient-digit selection is independent of the divisor.

The initial partial remainder is the scaled dividend: the smaller the range of z,

the simpler the quotient-digit selection function. However, shrinking the range of z

becomes more complex for smaller ranges. Thus, a design tradeo� exists between

these two constraints.

By restricting the divisor to a range near 1, the quotient-digit selection function

becomes independent of the actual divisor value, and thus is simpler to implement.

The radix-4 implementation reported by Ercegovac [48] uses 6 digits of the redundant

CHAPTER 4. DIVISION ALGORITHMS 61

partial remainder as inputs to the quotient-digit selection function. This function

assimilates the 6 input digits in a CPA, and the 6 bit result is used to consult a

look-up table to provide the next quotient-digit. The scaling operation uses a 3-

operand adder. If a CSA is already used for the division recurrence, no additional

CSAs are required and the scalings proceed in sequence. To determine the scaling

factor for each operand, a small table yields the proper factors to add or subtract

in the CSA to determine the scaled operand. Thus, prescaling requires a minimum

of two additional cycles to the overall latency; one to scale the divisor, and one to

assimilate the divisor in a carry-propagate adder. The dividend is scaled in parallel

with the divisor assimilation, and it can be used directly in redundant form as the

initial partial remainder.

Enhancements to the basic prescaling algorithms have been reported by Mon-

tuschi [52] and Srinivas [55]. Montuschi uses an over-redundant digit set combina-

tion with operand prescaling. The proposed radix-4 implementation uses the over-

redundant digit set f�4, �3, �2, �1, 0g. The quotient-digit selection function uses

a truncated redundant partial remainder that is in the range [�6; 6], requiring four

digits of the partial remainder as input. A 4-bit CPA is used to assimilate the four

most signi�cant digits of the partial remainder and to add a 1 in the least signi�cant

position. The resulting 4 bits in two's complement form represent the next quotient

digit. The formation of the �3d divisor multiple is an added complication, and the

solution is to split the quotient digit into two separate stages, one with digit set

f0;�4g and one with f0;�1;�2g. This is the same methodology used in the range

reduction techniques previously presented. Thus, the use of a redundant digit set

simpli�es the quotient-digit selection from requiring 6 bits of input to only 4 bits.

Srinivas [55] reports an implementation of prescaling with a maximally redun-

dant digit set. This implementation represents the partial remainder in radix-2 digits

f�1; 0;+1g rather than carry-save form. Each radix-2 digit is represented by 2 bits.

Accordingly, the quotient-selection function uses only 3 digits of the radix-2 encoded

partial remainder. The resulting quotient digits produced by this algorithm belong

to the maximally redundant digit set f�3; � � � ;+3g. This simpler quotient-digit se-

lection function decreases the cycle time relative to a regular redundant digit set with

CHAPTER 4. DIVISION ALGORITHMS 62

prescaling implementation. Srinivas reports a 1.21 speedup over Ercegovac's regu-

lar redundant digit set implementation, and a 1.10 speedup over Montuschi's over-

redundant digit set implementation, using n = 53 IEEE double precision mantissas.

However, due to the larger than regular redundant digit sets in the implementations

of both Montuschi and Srinivas, each requires hardware to generate the �3d divisor

multiple, which in these implementations results in requiring an additional 53 CSAs.

4.2.4 Quotient Conversion

As presented so far, the quotient has been collected in a redundant form, such that the

positive values have been stored in one register, and the negative values in another.

At the conclusion of the division computation, an additional cycle is required to

assimilate these two registers into a single quotient value using a carry-propagate

adder for the subtraction. However, it is possible to convert the quotient digits as

they are produced such that an extra addition cycle is not required. This scheme is

known as on-the-y conversion [62].

In on-the-y conversion, two forms of the quotient are kept in separate registers

throughout the iterations, Qk and QMk. QMk is de�ned to be equal to Qk � r�k.

The values of these two registers for step k + 1 are de�ned by:

Qk+1 =

8<
: (Qk; qk+1) if qk+1 � 0

(QMk; (r � jqk+1j)) if qk+1 < 0

and

QMk+1 =

8<
: (Qk; (qk+1 � 1)) if qk+1 > 0

(QMk; (r � jqk+1j � 1)) if qk+1 � 0

with the initial conditions that Q0 = QM0 = 0. From these conditions on the values

of Qk and QMk, it can be seen that all of the additions can be implemented with

concatenations. As a result, there is no carry or borrow propagation required. As

every quotient digit is formed, each of these two registers is updated appropriately,

either through register swapping or concatenation.

CHAPTER 4. DIVISION ALGORITHMS 63

4.2.5 Rounding

For oating point representations such as the IEEE 754 standard, provisions for

rounding are required. Traditionally, this is accomplished by computing an extra

guard digit in the quotient and examining the �nal remainder. One ulp is con-

ditionally added based on the rounding mode selected and these two values. The

disadvantages in the traditional approach are that 1) the remainder may be negative

and require a restoration step, and 2) the the addition of one ulp may require a full

carry-propagate-addition. Accordingly, support for rounding can be expensive, both

in terms of area and performance.

The previously described on-the-y conversion can be extended to perform on-

the-y rounding [63]. This technique requires keeping a third version of the quotient

at all times QPk, where QPk = Qk + r�k. The values of this register for step k + 1 is

de�ned by:

QPk+1 =

8>>><
>>>:

(QPk; 0) if qk+1 = r � 1

(Qk; (qk+1 + 1)) if �1 � qk+1 � r � 2

(QMk; (r � jqk+1j+ 1)) if qk+1 < �1

Correct rounding requires the computation of the sign of the �nal remainder and

the determination of whether the �nal remainder is exactly zero. Sign detection logic

can require some form of carry-propagation detection network, such as in standard

carry-lookahead adders, while zero-remainder detection can require the logical ORing

of the assimilated �nal remainder. Faster techniques for computing the sign and zero-

remainder condition are presented in [22]. The �nal quotient is appropriately selected

from the three available versions.

4.3 Functional Iteration

Unlike digit recurrence division, division by functional iteration utilizes multiplication

as the fundamental operation. The primary di�culty with subtractive division is the

linear convergence to the quotient. Multiplicative division algorithms are able to take

advantage of high-speed multipliers to converge to a result quadratically. Rather

than retiring a �xed number of quotients bits in every cycle, multiplication-based

CHAPTER 4. DIVISION ALGORITHMS 64

algorithms are able to double the number of correct quotient bits in every iteration.

However, the tradeo� between the two classes is not only latency in terms of the

number of iterations, but also the length of each iteration in cycles. Additionally,

if the divider shares an existing multiplier, the performance rami�cations on regular

multiplication operations must be considered. It is shown in chapter 2 that in typical

oating point applications, the performance degradation due to a shared multiplier is

small. Accordingly, if area must be minimized, an existing multiplier may be shared

with the division unit with only minimal system performance degradation. This

section presents the algorithms used in multiplication-based division, both of which

are related to the Newton-Raphson equation.

4.3.1 Newton-Raphson

Division can be written as the product of the dividend and the reciprocal of the

divisor, or

Q = a=b = a� (1=b); (4.12)

where Q is the quotient, a is the dividend, and b is the divisor. In this case, the

challenge becomes how to e�ciently compute the reciprocal of the divisor. In the

Newton-Raphson algorithm, a priming function is chosen which has a root at the

reciprocal [46]. In general, there are many root targets that could be used, including

1
b
,

1
b2
,
a
b
, and 1� 1

b
. The choice of which root target to use is arbitrary. The selection

is made based on convenience of the iterative form, its convergence rate, its lack of

divisions, and the overhead involved when using a target root other than the true

quotient.

The most widely used target root is the divisor reciprocal
1
b
, which is the root of

the priming function:

f(X) = 1=X � b = 0: (4.13)

The well-known quadratically converging Newton-Raphson equation is given by:

xi+1 = xi �
f(xi)

f 0
(xi)

(4.14)

CHAPTER 4. DIVISION ALGORITHMS 65

The Newton-Raphson equation of (4.14) is then applied to (4.13), and this iteration

is then used to �nd an approximation to the reciprocal:

Xi+1 = Xi �
f(Xi)

f 0
(Xi)

= Xi +
(1=Xi � b)

(1=X2
i)

= Xi � (2 � b�Xi) (4.15)

The corresponding error term is given by

�i+1 = �2i (b)

and thus the error in the reciprocal decreases quadratically after each iteration. As can

be seen from (4.15), each iteration involves two multiplications and a subtraction. The

subtraction is equivalent to forming the two's complement and is commonly replaced

by it. Thus, two dependent multiplications and one two's complement operation are

performed each iteration. The �nal quotient is obtained by multiplying the computed

reciprocal with the dividend.

Rather than performing a complete two's complement operation at the end of

each iteration to form (2 � b � Xi), it is possible instead to simply implement the

one's complement of b�Xi, as was done in the IBM 360/91 [64] and the Astronautics

ZS-1 [65]. This only adds a small amount error, as the one's and two's complement

operations di�er only by 1 ulp. The one's complement avoids the latency penalty of

carry-propagation across the entire result of the iteration, replacing it by a simple

inverter delay.

While the number of operations per iteration is constant, the number of iterations

required to obtain the reciprocal accurate to a particular number of bits is a function

of the accuracy of the initial approximation X0. By using a more accurate starting

approximation, the total number of iterations required can be reduced. To achieve

53 bits of precision for the �nal reciprocal starting with only 1 bit, the algorithm will

require 6 iterations:

1! 2 ! 4 ! 8! 16 ! 32 ! 53

By using a more accurate starting approximation, for example 8 bits, the latency can

be reduced to 3 iterations. By using at least 14 bits, the latency could be further

reduced to only 2 iterations. Section 4.5 explores in more detail the use of look-up

tables to increase performance.

CHAPTER 4. DIVISION ALGORITHMS 66

4.3.2 Series Expansion

A di�erent method of deriving a division iteration is based on a series expansion. A

name sometimes given to this method is Goldschmidt's algorithm [66]. Consider the

familiar Taylor series expansion of a function g(y) at a point p,

g(y) = g(p) + (y � p)g0(p) +
(y � p)2

2!

g00(p) + � � �+
(y � p)n

n!
g(n)(p) + � � � :(4.16)

In the case of division, it is desired to �nd the expansion of the reciprocal of the

divisor, such that

q =

a

b
= a� g(y); (4.17)

where g(y) can be computed by an e�cient iterative method. A straightforward

approach might be to choose g(y) equal to 1=y with p = 1, and then to evaluate the

series. However, it is computationally easier to let g(y) = 1=(1+y) with p = 0, which

is just the Maclaurin series. Then, the function is

g(y) =

1

1 + y
= 1 � y + y2 � y3 + y4 � � � � : (4.18)

So that g(y) is equal to 1/b, the substitution y = b � 1 must be made, where b is

bit normalized such that 0:5 � b < 1, and thus jY j � 0:5. Then, the quotient can be

written as

q = a�
1

1 + (b� 1)

= a�
1

1 + y
= a� (1 � y + y2 � y3 + � � �)

which, in factored form, can be written as

q = a� [(1� y)(1 + y2)(1 + y4)(1 + y8) � � �]: (4.19)

This expansion can be implemented iteratively as follows. An approximate quo-

tient can be written as

qi =
Ni

Di

where Ni and Di are iterative re�nements of the numerator and denominator after

step i of the algorithm. By forcing Di to converge toward 1, Ni converges toward q.

CHAPTER 4. DIVISION ALGORITHMS 67

E�ectively, each iteration of the algorithm provides a correction term (1+ y2i) to the

quotient, generating the expansion of (4.19).

Initially, let N0 = a and D0 = b. To reduce the number of iterations, a and b

should both be prescaled by a more accurate approximation of the reciprocal, and

then the algorithm should be run on the scaled a0 and b0. For the �rst iteration, let

N1 = R0 � N0 and D1 = R0 � D0, where R0 = 1 � y = 2 � b, or simply the two's

complement of the divisor. Then,

D1 = D0 �R0 = b� (1� y) = (1 + y)(1� y) = 1� y2:

Similarly,

N1 = N0 �R0 = a� (1 � y):

For the next iteration, letR1 = 2�D1, the two's complement of the new denominator.

From this,

R1 = 2�D1 = 2� (1� y2) = 1 + y2

N2 = N1 �R1 = a� [(1� y)(1 + y2)]

D2 = D1 �R1 = (1 � y2)(1 + y2) = (1� y4)

Continuing, a general relationship can be developed, such that each step of the iter-

ation involves two multiplications

Ni+1 = Ni �Ri and Di+1 = Di �Ri (4.20)

and a two's complement operation,

Ri+1 = 2�Di+1 (4.21)

After i steps,

Ni = a� [(1� y)(1 + y2)(1 + y4) � � � (1 + y2i)] (4.22)

Di = (1� y2i) (4.23)

Accordingly, N converges quadratically toward q and D converges toward 1. This

can be seen in the similarity between the formation of Ni in (4.22) and the series

CHAPTER 4. DIVISION ALGORITHMS 68

expansion of q in (4.19). So long as b is normalized in the range 0:5 � b < 1, then

y < 1, each correction factor (1 + y2i) doubles the precision of the quotient. This

process continues as shown iteratively until the desired accuracy of q is obtained.

Consider the iterations for division. A comparison of equation (4.22) using the

substitution y = b � 1 with equation (4.15) using X0 = 1 shows that the results are

identical iteration for iteration. Thus, the series expansion is mathematically identi-

cal to the Newton-Raphson iteration for X0 = 1. Additionally, each algorithm can

bene�t from a more accurate starting approximation of the reciprocal of the divisor

to reduce the number of required iterations. However, the implementations are not

exactly the same. Newton-Raphson converges to a reciprocal, and then multiplies by

the dividend to compute the quotient, whereas the series expansion �rst prescales the

numerator and the denominator by the starting approximation and then converges di-

rectly to the quotient. Thus, the series expansion requires the overhead of one more

multiplication operation as compared to Newton-Raphson. Each iteration in both

algorithms comprises two multiplications and a two's complement operation. From

(4.15), the multiplications in Newton-Raphson are dependent operations. In the se-

ries expansion iteration, the two multiplications of the numerator and denominator

are independent operations and may occur concurrently. As a result, a series expan-

sion implementation can take advantage of a pipelined multiplier to obtain higher

performance in the form of lower latency per operation. In both iterations, unused

cycles in the multiplier can be used to allow for more than one division operation

to proceed concurrently. Speci�cally, a pipelined multiplier with a throughput of 1

and a latency of l can have l divisions operating simultaneously, each initiated at

1 per cycle. A performance enhancement that can be used for both iterations is to

perform early computations in reduced precision. This is reasonable, because the

early computations do not generate many correct bits. As the iterations continue,

quadratically larger amounts of precision are required in the computation.

In practice, dividers based on functional iteration have used both versions. The

Newton-Raphson algorithm was used in the Astronautics ZS-1 [65], Intel i860 [67],

and the IBM RS/6000 [68]. The series expansion was used in the IBM 360/91 [64]

and TMS390C602A [69]. Latencies for such dividers range from 11 cycles to more

CHAPTER 4. DIVISION ALGORITHMS 69

than 16 cycles, depending upon the precision of the initial approximation and the

latency and throughput of the oating-point multiplier.

4.4 Very High Radix Algorithms

Digit recurrence algorithms are readily applicable to low radix division and square

root implementations. As the radix increases, the quotient-digit selection hardware

and divisor multiple process become more complex, increasing cycle time, area or

both. To achieve very high radix division with acceptable cycle time, area, and

means for precise rounding, we use a variant of the digit recurrence algorithms, with

simpler quotient-digit selection hardware. The term \very high radix" applies roughly

to dividers which retire more than 10 bits of quotient in every iteration. The very

high radix algorithms are similar in that they use multiplication for divisor multiple

formation and look-up tables to obtain an initial approximation to the reciprocal.

They di�er in the number and type of operations used in each iteration and the

technique used for quotient-digit selection.

4.4.1 Accurate Quotient Approximations

In the high radix algorithm proposed by Wong [18], truncated versions of the nor-

malized dividend X and divisor Y are used, denoted Xh and Yh. Xh is de�ned as

the high-order m + 1 bits of X extended with 0's to get a n-bit number. Similarly,

Yh is de�ned as the high order m bits of Y extended with 1's to get a n-bit number.

From these de�nitions, Xh is always less than or equal to X and Yh is always greater

than or equal to Y . This implies that 1=Yh is always less than or equal to 1=Y , and

therefore Xh=Yh is always less than or equal to X=Y .

The algorithm is as follows:

1. Initially, set the estimated quotient Q and the variable j to 0. Then, get an

approximation of 1=Yh from a look-up table, using the topm bits of Y , returning

an m bit approximation. However, only m � 1 bits are actually required to

CHAPTER 4. DIVISION ALGORITHMS 70

index into the table, as the guaranteed leading one can be assumed. In parallel,

perform the multiplication Xh � Y .

2. Scale both the truncated divisor and the previously formed product by the recip-

rocal approximation. This involves two multiplications in parallel for maximum

performance,

(1=Yh)� Y and (1=Yh)� (Xh � Y)

The product (1=Yh) � Y = Y 0
is invariant across the iterations, and therefore

only needs to be performed once. Subsequent iterations use only one multipli-

cation:

Y 0 � Ph;

where Ph is the current truncated partial remainder. The product Ph � 1=Yh

can be viewed as the next quotient digit, while (Ph � 1=Yh)� Y is the e�ective

divisor multiple formation.

3. Perform the general recurrence to obtain the next partial remainder:

P 0
= P � Ph � (1=Yh)� Y; (4.24)

where P0 = X. Since all products have already been formed, this step only

involves a subtraction.

4. Compute the new quotient as

Q0
= Q+ (Ph=Yh)� (1=2j) (4.25)

= Q+ Ph � (1=Yh)� (1=2j)

The new quotient is then developed by forming the product Ph � (1=Yh) and

adding the shifted result to the old quotient Q.

5. The new partial remainder P 0
is normalized by left-shifting to remove any lead-

ing 0's. It can be shown that the algorithm guarantees m� 2 leading 0's. The

shift index j is revised by j0 = j +m� 2.

6. All variables are adjusted such that j = j0, Q = Q0
, and P = P 0

.

CHAPTER 4. DIVISION ALGORITHMS 71

7. Repeat steps 2 through 6 of the algorithm until j � q.

8. After the completion of all iterations, the top n bits of Q form the true quotient.

Similarly, the �nal remainder is formed by right-shifting P by j � q bits. This

remainder, though, assumes the use of the entire value of Q as the quotient. If

only the top n bits of Q are used as the quotient, then the �nal remainder is

calculated by adding Ql � Y to P , where Ql comprises the low order bits of Q

after the top n bits.

This basic algorithm reduces the partial remainder P by m � 2 bits every iteration.

Accordingly, an n bit quotient requires dn=(m� 2)e iterations.

Wong also proposes an advanced version of this algorithm [18] using the same

iteration steps as in the basic algorithm presented earlier. However, in step 1, while

1=Yh is obtained from a look-up table using the leading m bits of Y , in parallel

approximations for higher order terms are obtained from additional look-up tables,

all indexed using the leading m bits of Y . These additional tables have word widths

of bi given by

bi = (m� t� t) + dlog2 te � (m� i�m� i) (4.26)

where t is the number of terms of the series used, and thus the number of look-up

tables. The value of t must be at least 2, but all subsequent terms are optional. The

advanced version reduces P 0
by m � t � t � 1 bits per iteration, and therefore the

algorithm requires dn=(m � t� t� 1)e iterations.

As in SRT implementations, both versions of the algorithm can bene�t by storing

the partial remainder P in a redundant representation. However, before any of the

multiplications using P as an operand take place, the top m + 3 bits of P must be

carry-assimilated for the basic method, and the top m+ 5 bits of P must be carry-

assimilated for the advanced method. Similarly, the quotient Q can be kept in a

redundant form until the �nal iteration. After the �nal iteration, full carry-propagate

additions must be performed to calculate Q and P in normal, non-redundant form.

The hardware required for this algorithm is as follows. At least one look-up table

is required of size 2
m�1m bits. Three multipliers are required: one multiplier with

CHAPTER 4. DIVISION ALGORITHMS 72

carry assimilation of size (m+ 1)� n for the initial multiplications by the divisor Y ,

one carry-save multiplier with accumulation of size (m+1)�(n+m) for the iterations,

and one carry-save multiplier of size (m+ 1)�m to compute the quotient segments.

One carry-save adder is required to accumulate the quotient in each iteration. Two

carry-propagate adders are required: one short adder at least of size m + 3 bits to

assimilate the most signi�cant bits of the partial remainder P , and one adder of size

n+m to assimilate the �nal quotient.

A slower implementation of this algorithm might use the basic method with m =

11. The single look-up table would have 2
11�1

= 1024 entries, each 11 bits wide,

for a total of 11K bits in the table, with a resulting latency of 9 cycles. A faster

implementation using the advanced method with m = 15 and t = 2 would require a

total table size of 736K bits, but with a latency of only 5 cycles. Thus, at the expense

of several multipliers, adders, and two large look-up tables, the latency of division

can be greatly reduced using this algorithm. In general, the algorithm requires at

most dn=(m � 2)e+ 3 cycles.

4.4.2 Short Reciprocal

The Cyrix 83D87 arithmetic coprocessor utilizes a short reciprocal algorithm similar

to the accurate quotient approximation method to obtain a radix 2
17
divider [70],[71].

Instead of having several multipliers of di�erent sizes, the Cyrix divider has a single

18x69 rectangular multiplier with an additional adder port that can perform a fused

multiply/add. It can, therefore, also act as a 19x69 multiplier. Otherwise, the general

algorithm is nearly identical to Wong:

1. Initially, an estimate of the reciprocal 1=Yh is obtained from a look-up table. In

the Cyrix implementation, this approximation is of low precision. This approx-

imation is re�ned through two iterations of the Newton-Raphson algorithm to

achieve a 19 bit approximation. This method decreases the size of the look-up

table at the expense of additional latency. Also, this approximation is chosen to

be intentionally larger than the true reciprocal by an amount no greater than

2
�18

. This di�ers from the accurate quotient method where the approximation

CHAPTER 4. DIVISION ALGORITHMS 73

is chosen to be intentionally smaller than the true reciprocal.

2. Perform the recurrence

P 0
= P � Ph � (1=Yh)� Y (4.27)

Q0
= Q+ Ph � (1=Yh)� (1=2j) (4.28)

where P0 is the dividend X. In this implementation, the two multiplications of

(4.27) need to be performed separately in each iteration. One multiplication is

required to compute Ph � (1=Yh), and a subsequent multiply/add is required

to multiply by Y and accumulate the new partial remainder. The product

Ph � (1=Yh) is a 19 bit high radix quotient digit. The multiplication by Y

forms the divisor multiple required for subtraction. However, the multiplication

Ph�(1=Yh) required in (4.28) can be reused from the result computed for (4.27).

Only one multiplication is required in the accurate quotient method because the

product (1=Yh) � Y is computed once at the beginning in full precision, and

can be reused on every iteration. The Cyrix multiplier only produces limited

precision results, 19 bits, and thus the multiplication by Y is repeated at every

iteration. Because of the specially chosen 19 bit short reciprocal, along with

the 19 bit quotient digit and 18 bit accumulated partial remainder, this scheme

guarantees that 17 bits of quotient are retired in every iteration.

3. After the iterations, one additional cycle is required for rounding and post-

correction. Unlike the accurate quotient method, on-the-y conversion of the

quotient digits is possible, as there is no overlapping of the quotient segments

between iterations.

Thus, the short reciprocal algorithm is very similar to the accurate quotient al-

gorithm. One di�erence is the method for generating the short reciprocal. However,

either method could be used in both algorithms. The use of Newton-Raphson to

increase the precision of a smaller initial approximation is chosen merely to reduce

the size of the look-up table. The fundamental di�erence between the two methods

is Cyrix's choice of a single rectangular fused multiplier/add unit with assimilation

CHAPTER 4. DIVISION ALGORITHMS 74

to perform all core operations. While this eliminates a majority of the hardware

required in the accurate quotient method, it increases the iteration length from one

multiplication to two due to the truncated results.

The short reciprocal unit can generate double precision results in 15 cycles: 6

cycles to generate the initial approximation by Newton-Raphson, 4 iterations with

2 cycles per iteration, and one cycle for postcorrection and rounding. With a larger

table, the initial approximation can be obtained in as little as 1 cycle, reducing the

total cycle count to 10 cycles. The radix of 2
17

was chosen due to the target format

of IEEE double extended precision, where n = 64. This divider can generate double

extended precision quotients as well as double precision in 10 cycles. In general, this

algorithm requires at least 2dn=be + 2 cycles.

4.4.3 Rounding and Prescaling

Ercegovac and Lang [21] report a high radix division algorithm which involves obtain-

ing an accurate initial approximation of the reciprocal, scaling both the dividend and

divider by this approximation, and then performing multiple iterations of quotient-

selection by rounding and partial remainder reduction by multiplication and subtrac-

tion. By retiring b bits of quotient in every iteration, it is a radix 2
b
algorithm. The

algorithm is as follows to compute X=Y :

1. Obtain an accurate approximation of the reciprocal from a table to form the

scaling factor M . Rather than using a constant piecewise approximation, this

method uses the previously presented technique of linear approximation to the

reciprocal.

2. Scale Y by the scaling factor M . This involves the carry-save multiplication of

the b+ 6 bit value M and the n bit operand Y to form the n+ b+ 5 bit scaled

quantity Y �M .

3. Scale X by the scaling factor M , yielding an n + b + 5 bit quantity X �M .

This multiplication along with the multiplication of step 2 both can share the

(b + 6) � (n + b + 5) multiplier used in the iterations. In parallel, the scaled

CHAPTER 4. DIVISION ALGORITHMS 75

divisor M � Y is assimilated. This involves an (n + b+ 5) bit carry-propagate

adder.

4. Determine the next quotient digit, needed for the general recurrence:

Pj+1 = rPj � qj+1(M � Y) (4.29)

where P0 = M � X. In this scheme, the choice of scaling factor allows for

quotient-digit selection to be implemented simply by rounding. Speci�cally,

the next quotient digit is obtained by rounding the shifted partial remainder

in carry-save form to the second fractional bit. This can be done using a short

carry-save adder and a small amount of additional logic. The quotient-digit

obtained through this rounding is in carry-save form, with one additional bit

in the least-signi�cant place. This quotient-digit is �rst recoded into a radix-4

signed-digit set (-2 to +3), then that result is recoded to a radix-4 signed-digit

set (-2 to +2). The result of quotient-digit selection by rounding requires 2(b+1)

bits.

5. Perform the multiplication qj+1 � z, where z is the scaled divisor M � Y , then

subtract the result from rPj . This can be performed in one step by a fused

multiply/add unit.

6. Perform postcorrection and any required rounding. As discussed previously,

postcorrection requires at a minimumsign detection of the last partial remainder

and the correction of the quotient.

Throughout the iterations, on-the-y quotient conversion is used.

The latency of the algorithm in cycles can be calculated as follows. At least

one cycle is required to form the linear approximation M . One cycle is required to

scale Y , and an additional cycle is required to scale X. dn=be cycles are needed

for the iterations. Finally, one cycle is needed for the postcorrection and rounding.

Therefore, the total number of cycles is given by

Cycles = dn=be + 4

CHAPTER 4. DIVISION ALGORITHMS 76

The hardware required for this algorithm is similar to the Cyrix implementation.

One look-up table is required of size 2
bb=2c

(2b + 11) bits to store the coe�cients of

the linear approximation. A (b + 6) � (b + 6) carry-save fused multiply/add unit is

needed to generate the scaling factor M . One fused multiply/add unit is required of

size (b + 6) � (n + b + 5) to perform the two scalings and the iterations. A recoder

unit is necessary to recode both M and qj+1 to radix-4. Finally, combinational logic

and a short CSA are required to implement the quotient-digit selection by rounding.

4.5 Look-up Tables

Functional iteration and very high radix division implementations can both bene�t

from a more accurate initial reciprocal approximation. Further, when a only low-

precision quotient is required, it may be su�cient to use a look-up table to provide

the result without the subsequent use of a re�ning algorithm. Methods for forming

a starting approximation include direct approximations and linear approximations.

More recently, partial product arrays have been proposed as methods for generating

starting approximations while reusing existing hardware.

4.5.1 Direct Approximations

For modern division implementations, the most common method of generating start-

ing approximations is through a look-up table. Such a table is typically implemented

in the form of a ROM or a PLA. An advantage of look-up tables is that they are

fast, since no arithmetic calculations need be performed. The disadvantage is that a

look-up table's size grows exponentially with each bit of added accuracy. Accordingly,

a tradeo� exists between the precision of the table and its size.

To index into a reciprocal table, it is assumed that the operand is IEEE normalized

1:0 � b < 2. Given such a normalized operand, k bits of the truncated operand are

used to index into a table providing m bits after the leading bit in the m + 1 bit

fraction reciprocal approximation R0 which has the range 0:5 < recip � 1. The total

size of such a reciprocal table is 2
km bits. The truncated operand is represented

CHAPTER 4. DIVISION ALGORITHMS 77

as 1.b01b
0
2 � � � b

0
k, and the output reciprocal approximation is 0.1b01b

0
2 � � � b

0
m. The only

exception to this is when the input operand is exactly 1, in which case the output

reciprocal should also be exactly 1. In this case, separate hardware is used to detect

this. All input values have a leading-one that can be implied and does not index

into the table. Similarly, all output values have a leading-one that is not explicitly

stored in the table. The design of a reciprocal table starts with a speci�cation for

the minimum accuracy of the table, often expressed in bits. This value dictates the

number of bits (k) used in the truncated estimate of b as well as the minimumnumber

of bits in each table entry (m). A common method of designing the look-up table

is to implement a piecewise-constant approximation of the reciprocal function. In

this case, the approximation for each entry is found by taking the reciprocal of the

mid-point between 1.b01b
0
2 � � � b

0
k and its successor, where the mid-point is 1.b01b

0
2 � � � b

0
k1.

The reciprocal of the mid-point is rounded by adding 2
�(m+2)

and then truncating

the result to m + 1 bits, producing a result of the form 0.1b01b
0
2 � � � b

0
m. Thus, the

approximation to the reciprocal is found for each entry i in the table from:

Ri =

$
2
m+1 �

1

^b+ 2
�(k+1)

+ 2
�(m+2)

!%
=2m+1

(4.30)

where b̂ = 1:b01b
0
2 � � � b

0
k.

Das Sarma [72] has shown that the piecewise-constant approximation method for

generating reciprocal look-up tables minimizes the maximum relative error in the

�nal result. The maximum relative error in the reciprocal estimate �r for a k-bits-in

k-bits-out reciprocal table is bounded by:

j�rj =

����R0 �
1

b

���� � 1:5 � 2
�(k+1)

(4.31)

and thus the table guarantees a minimum precision of k+0:415 bits. It is also shown

that with m = k + g, where g is the number of output guard bits, the maximum

relative error is bounded by:

j�rj � 2
�(k+1) �

�
1 +

1

2
g+1

�
(4.32)

Thus, the precision of a k-bits-in, (k+ g)-bits-out reciprocal table for k � 2, g � 0, is

at least k+ 1� log2(1 +
1

2g+1
). As a result, generated tables with one, two, and three

CHAPTER 4. DIVISION ALGORITHMS 78

guard bits on the output are guaranteed precision of at least k+0:678 bits, k+0:830

bits, and k + 0:912 bits respectively.

In a more recent study, Das Sarma [73] describes bipartite reciprocal tables. These

tables use separate table lookup of the positive and negative portions of a reciprocal

value in borrow-save form, but with no additional multiply/accumulate operation

required. Instead, it is assumed that the output of the table is used as input to a

multiplier for subsequent operations. In this case, it is su�cient that the table produce

output in a redundant form that is e�ciently recoded for use by the multiplier. Thus,

the required output rounding can be implemented in conjunction with multiplier

recoding for little additional cost in terms of complexity or delay. This method is a

form of linear interpolation on the reciprocal which allows for the use of signi�cantly

smaller tables. These bipartite tables are 2 to 4 times smaller than 4-9 bit conventional

reciprocal tables. For 10-16 bit tables, bipartite tables can be 4 to more than 16 times

smaller than conventional implementations.

4.5.2 Linear Approximations

Rather than using a constant approximation to the reciprocal, it is possible to use a

linear or polynomial approximation. A polynomial approximation is expressed in the

form of a truncated series:

P (b) = C0 + C1b+ C2b
2
+ C3b

3
+ � � � (4.33)

To get a �rst order or linear approximation, the coe�cients C0 and C1 are stored in

a look-up table, and a multiplication and an addition are required. As an example, a

linear function is chosen such as

P (b) = �C1 � b+ C0 (4.34)

in order to approximate 1=b [74]. The two coe�cients C0 and C1 are read from two

look-up tables, each using the k most signi�cant bits of b to index into the tables and

each returning m bits. The total error of the linear approximation �la is the error

due to indexing with only k bits plus the truncation error due to only storing m bit

CHAPTER 4. DIVISION ALGORITHMS 79

entries in each of the tables. It is shown in [74] that the coe�cients should be chosen

in order to minimize the maximium relative error, which is then

j�laj < 2
�(2k+3)

+ 2
�m

(4.35)

Setting m = 2k+3 yields j�laj < 2
�(2k+2)

, and thus guaranteeing a precision of 2k+2

bits. The total size required for the tables is 2
k � m � 2 bits, and a m � m bit

multiply/accumulate unit is required.

Schulte [75] proposes methods for selecting constant and linear approximations

which minimize the absolute error of the �nal result for Newton-Raphson implemen-

tations. Minimizing the maximumrelative error in an initial approximation minimizes

the maximum relative error in the �nal result. However, the initial approximation

which minimizes the maximum absolute error of the �nal result depends on the num-

ber of iterations of the algorithm. For constant and linear approximations, they

present the tradeo� between n, the number of iterations, k, the number of bits used

as input to the table, and the e�ects on the absolute error of the �nal result. In gen-

eral, linear approximations guarantee more accuracy than constant approximations,

but they require additional operations which may a�ect total delay and area.

Ito [74] proposes an improved initial approximation method similar to a linear

approximation. A modi�ed linear function

A1 � (2
^b+ 2

�k � b) +A0 (4.36)

is used instead of �C1�b+C0 for the approximation to 1=b. In this way, appropriate

table entries are chosen for A0 and A1. The total table size required is 2
k � (3k + 5)

bits, and the method guarantees a precision of 2:5k bits.

4.5.3 Partial Product Arrays

An alternative to look-up tables for starting approximation is the use of partial prod-

uct arrays [76],[77]. A partial product array can be derived which sums to an approx-

imation of the reciprocal operation. Such an array is similar to the partial product

array of a multiplier. As a result, an existing oating-point multiplier can be used to

perform the summation.

CHAPTER 4. DIVISION ALGORITHMS 80

A multiplier used to implement IEEE double precision numbers involves 53 rows

of 53 elements per row. This entails a large array of 2809 elements. If Booth encod-

ing is used in the multiplier, the bits of the partial products are recoded, decreasing

the number of rows in the array by half. A Booth multiplier typically has only 27

rows in the partial product array. A multiplier sums all of these boolean elements to

form the product. However, each boolean element of the array can be replaced by

a generalized boolean element. By back-solving the partial product array, it can be

determined what elements are required to generate the appropriate function approx-

imation. These elements are chosen carefully to provide a high-precision approxima-

tion and reduce maximum error. This can be viewed as analogous to the choosing of

coe�cients for a polynomial approximation. In this way, a partial product array is

generated which reuses existing hardware to generate a high-precision approximation.

In the case of the reciprocal function, a 17 digit approximation can be chosen

which utilizes 18 columns of a 53 row array. Less than 20% of the array is actually

used. However, the implementation is restricted by the height of the array, which

is the number of rows. The additional hardware for the multiplier is 484 boolean

elements. It has been shown that such a function will yield a minimum of 12.003

correct bits, with an average of 15.18 correct bits. An equivalent ROM look-up table

that generates 12 bits would require about 39 times more area. If a Booth multiplier

is used with only 27 rows, a di�erent implementation can be used. This version uses

only 175 boolean elements. It generates an average of 12.71 correct bits and 9.17 bits

in the worst case. This is about 9 times smaller than an equivalent ROM look-up

table.

4.6 Variable Latency Algorithms

Digit recurrence and very high radix algorithms all retire a �xed number of quotient

bits in every iteration, while algorithms based on functional iteration retire an in-

creasing number of bits every iteration. However, all of these algorithms complete

in a �xed number of cycles. This section discusses several VLA methods for imple-

menting dividers that compute results in a variable amount of time. The DEC Alpha

CHAPTER 4. DIVISION ALGORITHMS 81

MUX

MUX

 3b
CSA

 3b
CSA

 3b
CPA

 3b
CPA

 3b
CPA

 55b
CSA

Qsel
Logic

MUX

MUX

 3b
CSA

 3b
CSA

 3b
CPA

 3b
CPA

 3b
CPA

 55b
CSA

Qsel
Logic

+D
0

-D

+D
0

-D

+D

-D

+D

-D

Remainder Remainder
Remainder

Quot_Digit

Quot_Digit

Quot_Digit

i

i

i-1

i-1

i+1

i+1

Figure 4.7: Two stages of self-timed divider

21164 [32] uses a simple normalizing non-restoring division algorithm, which is a pre-

decessor to �xed-latency SRT division. Whenever a consecutive sequence of zeros or

ones is detected in the partial remainder, a similar number of quotient bits are also

set to zero, all within the same cycle. In [32], it is reported that an average of 2.4

quotient bits are retired per cycle using this algorithm.

This section presents three additional techniques for reducing the average latency

of division computation. These techniques take advantage of the fact that the com-

putation for certain operands can be completed sooner than others, or reused from

a previous computation. Reducing the worst case latency of a divider requires that

all computations made using the functional unit will complete in less than a certain

amount of time. In some cases, modern processors are able to use the results from

functional units as soon as they are available. Providing a result as soon as it is ready

can therefore increase overall system performance.

4.6.1 Self-Timing

A recent SRT implementation returning quotients with variable latency is reported

by Williams [17]. This implementation di�ers from conventional designs in that it

uses self-timing and dynamic logic to increase the divider's performance. It comprises

�ve cascaded radix-2 stages as shown in �gure 4.7. Because it uses self-timing, no

CHAPTER 4. DIVISION ALGORITHMS 82

explicit registers are required to store the intermediate remainder. Accordingly, the

critical path does not contain delay due to partial remainder register overhead. The

adjacent stages overlap their computation by replicating the CPAs for each possible

quotient digit from the previous stage. This allows each CPA to begin operation

before the actual quotient digit arrives at a multiplexor to choose the correct branch.

Two of the three CPAs in each stage are preceded by CSAs to speculatively compute

a truncated version of Pi+1�D, Pi+1+D, and Pi+1. This overlapping of the execution

between neighboring stages allows the delay through a stage to be the average, rather

than the sum, of the propagation delays through the remainder and quotient-digit

selection paths. This is illustrated in �gure 4.7 by the two di�erent drawn paths. The

self-timing of the data path dynamically ensures that data always ow through the

minimal critical path. This divider, implemented in a 1.2�mCMOS technology, is able

to produce a 54-b result in 45 to 160ns, depending upon the particular data operands.

The Hal SPARC V9 microprocessor, the Sparc64, also implements a version of this

self-timed divider, producing IEEE double precision results in about 7 cycles [78].

4.6.2 Result Caches

In typical applications, the input operands for one calculation are often the same

as those in a previous calculation. For example, in matrix inversion, each entry of

the matrix must be divided by the determinant. By recognizing that such redundant

behavior exists in applications, it is possible to take advantage of this fact and decrease

the e�ective latency of computations.

Richardson [79] presents the technique of result caching as a means of decreasing

the latency of otherwise high-latency operation, such as division. This technique

exploits the redundant nature of certain computations by trading execution time for

increased memory storage. Once a computation is calculated, it is stored in a result

cache. When a targeted operation is issued by the processor, access to the result

cache is initiated simultaneously. If the cache access results in a hit, then that result is

used, and the operation is halted. If the access misses in the cache, then the operation

writes the result into the cache upon completion. Various sized direct-mapped result

CHAPTER 4. DIVISION ALGORITHMS 83

caches were simulated which stored the results of double precision multiplies, divides,

and square roots. The applications surveyed included several from the SPEC92 and

Perfect Club benchmark suites. Signi�cant reductions in latency were obtained in

these benchmarks by the use of a result cache. However, the standard deviation of

the resulting latencies across the applications was large. Chapter 6 investigates in

more detail the use of caches to reduce average division latency.

4.6.3 Speculation of Quotient Digits

A method for implementing an SRT divider that retires a variable number of quotient

bits every cycle is reported by Cortadella [80]. The goal of this algorithm is to use a

simpler quotient-digit selection function than would normally be possible for a given

radix by using fewer bits of the partial remainder and divisor than are speci�ed for

the given radix and quotient digit set. This new function does not give the correct

quotient digit all of the time. When an incorrect speculation occurs, at least one

iteration is needed to �x the incorrect quotient digit. However, if the probability of

a correct digit is high enough, then the resulting lower cycle time due to the simple

selection function o�sets the increase in the number of iterations required.

Several di�erent variations of this implementation were considered for di�erent

radices and base divider con�gurations. A radix-64 implementation was considered

which could retire up to 6 bits per iteration. It was 30% faster in delay per bit

than the fastest conventional implementation of the same base datapath, which was a

radix-8 divider using segments. However, because of the duplication of the quotient-

selection logic for speculation, it required about 44% more area than a conventional

implementation. A radix-16 implementation, retiring a maximum of 4 bits per cycle,

using the same radix-8 datapath was about 10% faster than a conventional radix-8

divider, with an area reduction of 25%.

CHAPTER 4. DIVISION ALGORITHMS 84

4.7 Comparison

Five classes of division algorithms have been presented. In SRT division, to reduce

division latency, more bits need to be retired in every cycle. However, directly in-

creasing the radix can greatly increase the cycle time and the complexity of divisor

multiple formation. The alternative is to stage lower radix stages together to form

higher radix dividers, by simple staging or possibly overlapping one or both of the

quotient selection logic and partial remainder computation hardware. All of these

alternatives lead to an increase in area, complexity and potentially cycle time. Given

the continued industry demand for ever-lower cycle times, any increase must be man-

aged.

Higher degrees of redundancy in the quotient digit set and operand prescaling

are the two primary means of further reducing the recurrence cycle time. These two

methods can be combined for an even greater reduction. For radix-4 division with

operand prescaling, an over-redundant digit set can reduce the number of partial

remainder bits required for quotient selection from 6 to 4. Choosing a maximally

redundant set and a radix-2 encoding for the partial remainder can reduce the number

of partial remainder bits required for quotient selection down to 3. However, each of

these enhancements requires additional area and complexity for the implementation

that must be considered. Due to the cycle time constraints and area budgets of

modern processors, SRT dividers are realistically limited to retiring fewer than 10 bits

per cycle. However, a digit recurrence divider is an e�ective means of implementing

a low cost division unit which operates in parallel with the rest of a processor.

Very high radix dividers are used when it is desired to retire more than 10 bits per

cycle. The primary di�erence between the presented algorithms are the number and

width of multipliers used. These have obvious e�ects on the latency of the algorithm

and the size of the implementation. In the accurate quotient approximations and

short-reciprocal algorithms, the next quotient digit is formed by a multiplication Ph�

(1=Yh) in each iteration. Because the Cyrix implementation only has one rectangular

multiply/add unit, each iteration must perform this multiplication in series: �rst this

product is formed as the next quotient digit, then the result is multiplied by Y and

CHAPTER 4. DIVISION ALGORITHMS 85

subtracted from the current partial remainder to form the next partial remainder,

for a total of two multiplications. The accurate quotient approximations method

computes Y 0
= Y � (1=Yh) once at the beginning in full precision, and is able to

used the result in every iteration. Each iteration still requires two multiplications,

but these can be performed in parallel: Ph � Y 0
to form the next partial remainder,

and Ph � (1=Yh) to form the next quotient digit.

The rounding and prescaling algorithm, on the other hand, does not require a

separate multiplication to form the next quotient digit. Instead, by scaling both

the dividend and divisor by the initial reciprocal approximation, the quotient-digit

selection function can be implemented by simple rounding logic directly from the re-

dundant partial remainder. Each iteration only requires one multiplication, reducing

the area required compared with the accurate quotient approximations algorithm, and

decreasing the latency compared with the Cyrix short-reciprocal algorithm. However,

because both input operands are prescaled, the �nal remainder is not directly usable.

If a remainder is required, it must be postscaled. Overall, the rounding and prescaling

algorithm achieves the lowest latency and cycle time with a reasonable area, while

the Cyrix short-reciprocal algorithm achieves the smallest area.

Self-timing, result caches, bit-skipping, and quotient digit speculation have been

shown to be e�ective methods for reducing the average latency of division computa-

tion. A reciprocal cache is an e�cient way to reduce the latency for division algo-

rithms that �rst calculate a reciprocal. While reciprocal caches do require additional

area, they require less than that required by much larger initial approximation look-

up tables, while providing a better reduction in latency. Self-timed implementations

use circuit techniques to generate results in variable time. The disadvantage of self-

timing is the complexity in the clocking, circuits, and testing required for correct

operation. Quotient digit speculation is one example of reducing the complexity of

SRT quotient-digit selection logic for higher radix implementations.

Both the Newton-Raphson and series expansion iterations are e�ective means of

implementing faster division. For both iterations, the cycle time is limited by two

multiplications. In the Newton-Raphson iteration, these multiplications are depen-

dent and must proceed in series, while in the series expansion, these multiplications

CHAPTER 4. DIVISION ALGORITHMS 86

Algorithm Iteration Latency (cycles) Approximate

Time Area

SRT Table + dn
r
e + scale Qsel table +

MUX + CSA

sub

Newton-Raphson 2 serial (2dlog2
n
i
e+ 1)tmul + 1 multiplier +

mults table + control

series expansion 1 mult
1

(dlog2
n
i
e+ 1)tmul + 2, tmul > 1 multiplier +

2dlog2
n
i
e+ 3, tmul = 1 table + control

accurate quotient 1 mult (dn
i
e+ 1)tmul 3 multipliers +

approx table + control

short reciprocal 2 serial 2dn
i
etmul + 1 short multiplier +

mults table + control

round/prescale 1 mult (dn
i
e + 2)tmul + 1 multiplier +

table + control

Table 4.1: Summary of algorithms

may proceed in parallel. To reduce the latency of the iterations, an accurate initial

approximation can be used. This introduces a tradeo� between additional chip area

for a look-up table and the latency of the divider. An alternative to a look-up table

is the use of a partial product array, possibly by reusing an existing oating-point

multiplier. Instead of requiring additional area, such an implementation could in-

crease the cycle time through the multiplier. The primary advantage of division by

functional iteration is the quadratic convergence to the quotient. Functional itera-

tion does not readily provide a �nal remainder. Accordingly, correct rounding for

functional iteration implementations is di�cult. When a latency is required lower

than can be provided by an SRT implementation, functional iteration is currently the

primary alternative. It provides a way to achieve lower latencies without seriously

impacting the cycle time of the processor and without a large amount of additional

hardware.

A summary of the algorithms from these classes is shown in table 4.1.

1When a pipelined multiplier is used, the delay per iteration is tmul, but one cycle is required at

the end of the iterations to drain the pipeline.

CHAPTER 4. DIVISION ALGORITHMS 87

In this table, n is the number of bits in the input operands, i is the number of

bits of accuracy from an initial approximation, and tmul is the latency of the fused

multiply/accumulate unit in cycles. None of the latencies include additional time

required for rounding or normalization.

Table 4.2 provides a rough evaluation of the e�ects of algorithm, operand length,

width of initial approximation, and multiplier latency on division latency. All operands

are IEEE double precision mantissas, with n = 53. It is assumed that table look-ups

for initial approximations require 1 cycle. The SRT latencies are separate from the

others in that they do not depend on multiplier latency, and they are only a function

of the radix of the algorithm for the purpose of this table. For the multiplication-based

division algorithms, latencies are shown for multiplier/accumulate latencies of 1, 2

and 3 cycles. Additionally, latencies are shown for pipelined as well as unpipelined

multipliers. A pipelined unit can begin a new computation every cycle, while an

unpipelined unit can only begin after the previous computation has completed.

From table 4.2, the advanced version of the accurate quotient approximations

algorithm provides the lowest latency. However, the area requirement for this imple-

mentation is tremendous, as it requires at least a 736K bits look-up table and three

multipliers. For realistic implementations, with tmul = 2 or tmul = 3 and i = 8,

the lowest latency is achieved through a series expansion implementation. However,

all of the multiplication-based implementations are very close in performance. This

analysis shows the extreme dependence of division latency on the multiplier's latency

and throughput. A factor of three di�erence in multiplier latency can result in nearly

a factor of three di�erence in division latency for several of the implementations.

It is di�cult for an SRT implementation to perform better than the multiplication-

based implementations due to infeasibility of high radix at similar cycle times. How-

ever, through the use of scaling and higher redundancy, it may be possible to im-

plement a radix-256 SRT divider that is competitive with the multiplication-based

schemes in terms of cycle time and latency. The use of variable latency techniques,

such as self-timing, can provide further means for matching the performance of the

multiplication-based schemes, without the di�culty in rounding that is intrinsic to

the functional iteration implementations.

CHAPTER 4. DIVISION ALGORITHMS 88

Algorithm Radix Latency (cycles)

SRT 4 27

8 18

16 14

256 7

Initial Approx Latency (cycles)

Algorithm Pipelined (bits) tmul = 1 tmul = 2 tmul = 3

Newton-Raphson either i = 8 8 15 22

either i = 16 6 11 16

series expansion no i = 8 9 17 25

no i = 16 7 13 19

yes i = 8 9 10 14

yes i = 16 7 8 11

accurate quotient either i = 8 (basic) 8 16 24

approximations either i = 16 (basic) 5 10 15

either i = 13 and 3 6 9

t = 2 (adv)

short reciprocal either i = 8 15 29

either i = 16 9 17

round/prescale no i = 8 10 19 28

no i = 16 7 13 19

yes i = 8 10 18 26

yes i = 16 7 10 14

Table 4.2: Latencies for di�erent con�gurations

4.8 Summary

In this chapter, the �ve major classes of division algorithms have been presented.

The classes are determined by the di�erences in the fundamental operations used in

the hardware implementations of the algorithms. The simplest and most common

class found in the majority of modern processors that have hardware division support

is digit recurrence, speci�cally SRT. Recent commercial SRT implementations have

included radix 2, radix 4, and radix 8. These implementations have been chosen in

part because they operate in parallel with the rest of the oating point hardware and

CHAPTER 4. DIVISION ALGORITHMS 89

do not create contention for other units. Additionally, for small radices, it has been

possible to meet the tight cycle-time requirements of high performance processors

without requiring large amounts of die area. The disadvantage of these SRT imple-

mentations is their relatively high latency, as they only retire 1-3 bits of result per

cycle. As processors continue to seek to provide an ever-increasing amount of sys-

tem performance, it becomes necessary to reduce the latency of all functional units,

including division.

An alternative to SRT implementations is functional iteration, with the series ex-

pansion implementation the most common form. The latency of this implementation

is directly coupled to the latency and throughput of the multiplier and the accuracy

of the initial approximation. The analysis presented shows that a series expansion

implementation provides the lowest latency for reasonable areas and multiplier la-

tencies. Latency is reduced in this implementation through the use of a reordering

of the operations in the Newton-Raphson iteration in order to exploit single-cycle

throughput of pipelined multipliers. This has the disadvantage that the multiplier

is completely occupied until completion of the division iterations. In contrast, the

Newton-Raphson iteration itself, with its serial multiplications, has a higher latency.

However, if a pipelined multiplier is used throughout the iterations, more than one

division operation can proceed in parallel. For implementations with high division

throughput requirements, both iterations provide a means for trading latency for

throughput.

If minimizing area is of primary importance, then such an implementation typ-

ically shares an existing oating-point multiplier. This has the e�ect of creating

additional contention for the multiplier, although this e�ect is minimal in many ap-

plications. An alternative is to provide an additional multiplier, dedicated for division.

This can be an acceptable tradeo� if a large quantity of area is available and maximum

performance is desired for highly parallel division/multiplication applications, such

as graphics and 3D rendering applications. The main disadvantage with functional

iteration is the lack of remainder and the corresponding di�culty in rounding.

Very high radix algorithms are an attractive means of achieving low latency while

also providing a true remainder. The only commercial implementation of a very

CHAPTER 4. DIVISION ALGORITHMS 90

high radix algorithm is the Cyrix short-reciprocal unit. This implementation makes

e�cient use of a single rectangular multiply/add unit to achieve lower latency than

most SRT implementations while still providing a remainder. Further reductions in

latency could be possible by using a full-width multiplier, as in the rounding and

prescaling algorithm.

The Hal Sparc64 self-timed divider and the DEC Alpha 21164 divider are the only

commercial implementations that generate quotients with variable latency depending

upon the input operands. Reciprocal caches have been shown to be an e�ective means

of reducing the latency of division for implementations that generate a reciprocal.

Quotient digit speculation is also a reasonable method for reducing SRT division

latency.

Chapter 5

Faster SRT Dividers

5.1 Introduction

The most common division implementation in commercial microprocessors is SRT

division. There are many performance and area tradeo�s when designing an SRT

divider. One metric for comparison of di�erent designs is the minimum required

truncations of the divisor and partial remainder for quotient-digit selection. Atkins

[44] and Robertson [42] provide such analyses of the divisor and partial remainder

precisions required for quotient-digit selection. Burgess and Williams [81] present in

more detail allowable truncations for divisors and both carry-save and borrow-save

partial remainders. However, a more detailed comparison of quotient-digit selection

complexity between di�erent designs requires more information than input precision.

This chapter analyzes in detail the e�ects of algorithm radix, redundancy, divi-

sor and partial remainder precision, and truncation error on the complexity of the

resulting table. Complexity is measured by the number of product terms in the �nal

logic equations, and the delay and area of standard-cell implementations of the tables.

These metrics are obtained by an automated design ow using the speci�cations for

the quotient-digit selection table as input, a Gray-coded PLA as an intermediate rep-

resentation, and an LSI Logic 500K standard-cell implementation as the output. This

chapter also examines the e�ects of additional techniques such as table-folding and

longer external carry-assimilating adders on table complexity. Using the methodology

91

CHAPTER 5. FASTER SRT DIVIDERS 92

presented, it is possible to automatically generate optimized high radix quotient-digit

selection tables.

5.2 SRT Division

As discussed in chapter 3, SRT dividers comprise the following steps in each iteration

of the recurrence:

� Determine next quotient-digit qj+1 by the quotient-digit selection function

� Generate the product qj+1 � divisor

� Subtract qj+1 � divisor from r � Pj to form the next partial remainder

Each of these components can contribute to the overall cost and performance of

the algorithm. To reduce the time for partial remainder computation, intermediate

partial remainders are often stored in a redundant representation, either carry-save

or signed digit form. Then, the partial remainder computation requires only a full

adder delay, rather than a full width carry-propagate addition. In a standard SRT

implementation, the largest contributor to cycle time is the �rst step, quotient-digit

selection. The rest of this chapter is concerned with the quotient-digit selection

component.

5.3 Implementing SRT Tables

5.3.1 Divisor and Partial Remainder Estimates

To reduce the size and complexity of the quotient-digit selection table for a given

choice of radix r and maximum allowable quotient digit a, it is desirable to use as

input to the table estimates of the divisor and shifted partial remainder which have

fewer bits than the true values. In IEEE oating point, the input operands are in the

range 1 � D < 2. Thus, a leading integer one can be assumed for all divisors, and

the table only requires fractional divisor bits to make a quotient-digit selection. The

CHAPTER 5. FASTER SRT DIVIDERS 93

shifted partial remainder, though, requires both integer and fractional bits as inputs

to the table. The shifted partial remainder rPj and divisor d can be approximated by

estimates rP̂j and d̂ using the c most signi�cant bits of rPj and the � most signi�cant

bits of d. The c bits in the truncated estimate rP̂j can be divided into i integer

bits and f fractional bits, such that c = i + f . The table can take as input the

partial remainder estimate directly in redundant form, or it can use the output of a

short carry-assimilating adder that converts the redundant partial remainder estimate

to a nonredundant representation. The use of an external short adder reduces the

complexity of the table implementation, as the number of partial remainder input

bits are halved. However, the delay of the quotient-digit selection function increases

by the delay of the adder.

It is not possible to determine the optimal choices of � and f analytically, as several

factors are involved in making these choices. However, it is possible to determine a

lower bound on � using the continuity condition and the fact that the next partial

remainder must remain bounded:

2
�� �

2� � 1

a� �
(5.1)

� �

&
� log2

2� � 1

a� �

'
(5.2)

Because the divisor has a leading one, only the leading b = � � 1 fractional bits are

required as input to the table. The next quotient-digit can then be selected by using

these estimates to index into a 2
b+c

entry lookup table, implemented either as a PLA

or random logic.

Assuming a nonredundant two's complement partial remainder, the estimates have

nonnegative truncation errors �d and �p for the divisor and shifted partial remainder

estimates respectively, where

�d � 2
�b � 2

�n+1 � 2
�b

(5.3)

�p � 2
�f � 2

�n+1 � 2
�f

(5.4)

Thus, the maximum truncation error for both the divisor and the nonredundant

shifted partial remainder estimates is strictly less than 1 ulp.

CHAPTER 5. FASTER SRT DIVIDERS 94

For a redundant two's complement partial remainder, the truncation error depends

upon the representation. For a carry-save representation, the sum and carry estimates

each has nonnegative truncation error �p, assuming that both the sum and carry

estimates are represented by the c most signi�cant bits of their true values. The

resulting estimate rP̂j(cs) has truncation error

�p(cs) � 2� (2
�f � 2

�n+1
) � 2

�f+1
(5.5)

Thus, the maximum truncation error for an estimate of a carry-save shifted partial

remainder is strictly less than 2 ulps.

From this discussion, the number of integer bits i in rP̂j can be determined ana-

lytically. Using the general recurrence for SRT division, the maximum shifted partial

remainder is given by

rPj(max) = r�dmax (5.6)

For IEEE operands,

dmax = 2 � 2
�n+1

(5.7)

For a carry-save two's complement representation of the partial remainder, the trun-

cation error is always nonnegative, and therefore the maximum estimate of the partial

remainder is

rP̂j(max) =

j
r � �� (2 � 2

�n+1
)� 2

f
k
=2f (5.8)

The minimum estimate of the partial remainder is

rP̂j(min) =

l
�(r � �� (2 � 2

�n+1
)� �p(cs))� 2

f
m
=2f (5.9)

Accordingly, i can be determined from

rP̂j(max) � rP̂j(min) + 1 � 2
i

(5.10)

i �
l
log2(rP̂j(max) � rP̂j(min) + 1)

m
(5.11)

CHAPTER 5. FASTER SRT DIVIDERS 95

5.3.2 Uncertainty Regions

By using a redundant quotient-digit set, it is possible to correctly choose the next

quotient-digit even when using the truncated estimates rP̂j and d̂. Due to the trun-

cation error in the estimates, each entry in the quotient-digit selection table has an

uncertainty region associated with it. For each entry, it is necessary for all combina-

tions of all possible values represented by the estimates rP̂j and d̂ to lie in the same

selection interval. For a carry-save representation of the shifted partial remainder,

this involves calculating the maximum and minimum ratios of the shifted partial re-

mainder and divisor, and ensuring that these ratios both lie in the same selection

interval:

ratiomax =

8<
:

rP̂j+�p(cs)

d̂
if Pj � 0

rP̂j

d̂
if Pj < 0

(5.12)

ratiomin =

8><
>:

rP̂j

d̂+�d
if Pj � 0

rP̂j+�p(cs)

d̂+�d
if Pj < 0

(5.13)

If an uncertainty region is too large, the maximum and minimum ratios may span

more than one selection interval, requiring one table entry to return more than one

quotient-digit. This would signify that the estimate of the divisor and/or the shifted

partial remainder has too much truncation error. Figure 5.1 shows several uncertainty

regions in a radix 4 P-D plot. Each uncertainty region is represented by a rectangle

whose height and width is a function of the divisor and partial remainder truncation

errors. The value of ratiomax corresponds to the upper left corner of the rectangle,

while ratiomin corresponds to the lower right corner. In this �gure, the four valid

uncertainty regions include a portion of an overlap region. Further, the lower right

uncertainty region is fully contained within an overlap region, allowing the entry

corresponding to that uncertainty region to take on the quotient-digits of either 0 or

1. The other three valid uncertainty regions may take on only a single quotient-digit.

The upper left uncertainty region spans more than an entire overlap region, signifying

that the corresponding table entry, and as a result the entire table, is not valid. To

determine the valid values of b and f for a given r and a, it is necessary to calculate

the uncertainty regions for all 2
b+i+f

entries in the table. If all uncertainty regions

CHAPTER 5. FASTER SRT DIVIDERS 96

qj=2

qj={1,2}

qj=1

qj={0,1}

qj=0

Divisor

1

2

3

4

5

U2

U1

L2

U0

L1

Valid uncertainty regions

Illegal uncertainty region

Sh
if

te
d

P
ar

ti
al

 R
em

ai
nd

er

ratiomax

ratiomin

Figure 5.1: Uncertainty regions due to divisor and partial remainder estimates

CHAPTER 5. FASTER SRT DIVIDERS 97

are valid for given choices of b, i, and f , then they are valid choices.

5.3.3 Reducing Table Complexity

The size of the table implementation can be reduced nearly in half by folding the

table entries as suggested in Fandrianto [82]. Folding involves the conversion of the

two's complement representation of rP̂j to signed-magnitude, allowing the same table

entries to be used for both positive and negative values of rP̂j . This reduction does

not come for free. First, it requires additional logic outside of the table, such as a

row of XOR gates, to perform the representation conversion, adding external delay

to the quotient digit selection process. Second, it may place further restrictions

on the table design process. When a carry-save representation is used for rPj and

a truncated estimate rP̂j is used to consult the table, the truncation error is always

nonnegative, resulting in an asymmetrical table. To guarantee the symmetry required

for folding, additional terms must be added to the table, resulting in a less than

optimal implementation.

A complexity-reducing technique proposed in this study is to minimize �p. When

using an external carry-assimilating adder for a truncated two's complement carry-

save partial remainder estimate, the maximum error �p(cs) is approximately 2
�f+1

.

This error can be further reduced by using g fractional bits of redundant partial

remainder as input to the external adder, where g > f , but only using the most

signi�cant f fractional output bits of the adder as input to the table. The maximum

error in the output of the adder is

�p(adder) = 2
�g

+ 2
�g � 2

�n+1
(5.14)

Then, by using f bits of the adder output, the maximum error for the input to the

table is

�p(cs) = 2
�f � 2

�g
+ �p(adder)

= 2
�f

+ 2
�g � 2

�n+1 � 2
�f

+ 2
�g

(5.15)

For the case g = f , the error remains approximately 2
�f+1

. However, by increasing

g, the error �p(cs) is reduced, converging towards the error for a nonredundant partial

CHAPTER 5. FASTER SRT DIVIDERS 98

remainder which is approximately 2
�f
. Reducing the truncation error �p(cs) decreases

the height of the uncertainty region in the PD diagram. This has the e�ect of allowing

more of the entries' uncertainty regions to fully �t within overlap regions, increasing

the exibility in the logic minimization process, and ultimately reducing the com-

plexity of the �nal table. A block diagram illustrating the various components of an

SRT divider is shown in �gure 5.2.

5.4 Experimental Methodology

The focus of this chapter is to quantitatively study the relationship between the pa-

rameters of the tables r, a, b, i, f , and g, and the complexity of the tables. Complexity

is measured by the number of product terms in the switching equations for the table

and by the delay and area of combinational logic implementations of these equations.

A carry-save two's complement representation is used for the partial remainder in all

tables. The design ow used to automatically generate quotient-digit selection tables

in random logic is shown in �gure 5.3.

5.4.1 TableGen

The program TableGen performs the analytical aspects of the quotient-digit selection

table design. This program takes the table parameters as input and produces the un-

minimized PLA entries necessary to implement the table. First, all of the uncertainty

regions for all entries in the table are computed. TableGen determines whether or not

the choice of input parameters results in a valid table design. If the table is valid, it

then computes the allowable quotient-digits for each entry in the table, based upon

the size of the uncertainty region. The allowable quotient-digits are then written in

PLA form for all 2
i+b+f

possible shifted partial remainder and divisor pairs.

To allow for the greatest reduction in the complexity of the table implementations,

we use a Gray code to encode an entry's allowable quotient-digits. In a Gray encoding,

neighboring values only di�er in one bit position [83]. This allows for the e�cient

representation of multiple allowable quotient-digits in the PLA output, while still

CHAPTER 5. FASTER SRT DIVIDERS 99

TABLE

Pj D

MUX

CSA

CONVERTER

i+g

i+f

i+f

(optional)

b

q
j+1

Pj+1

Pjs c

i+g

Pj+1s c

CPA

Figure 5.2: Components of an SRT divider

CHAPTER 5. FASTER SRT DIVIDERS 100

Table Spec PLA Entries Logic Equations Standard Cell Netlist
TableGen Espresso Synopsys

Figure 5.3: Design ow

Allowable Digits Encoding

0 00

1 01

0 or 1 0x

2 11

1 or 2 x1

3 10

2 or 3 1x

Table 5.1: Gray encoding for maximally redundant radix 4

only requiring dlog2 re bits. The Gray-coding of the digits is recommended to ensure

that given a choice between two allowable quotient-digits in an overlap region, the

optimal choice can be automatically determined that results in the least complex logic

equations.

Accordingly, there are dlog2 re outputs of the table which are the bits of the

encoded quotient-digit. Table entries where ratiomin and ratiomax are both greater

than � � r are unreachable entries. Thus, their outputs are set to don't care. An

example of Gray-coding for r = 4 and a = 3 is shown in table 5.1. In this example,

a value of x implies a don't care. Because the table stores digits in encoded form, all

tables in this study require an explicit decoder to recover the true quotient-digit and

select the appropriate divisor multiple. This results in the addition of a decoder delay

into the critical path. However, since all tables in this study use the same encoding,

this is a constant delay that only grows as the log of the radix. Alternatively, the

quotient-digits could be stored in an unencoded form, removing the need for the

decoder. Optimal logic minimization becomes a much more di�cult problem for

unencoded digits.

CHAPTER 5. FASTER SRT DIVIDERS 101

Espresso is used to perform logic minimization on the output PLA. This produces a

minimizedPLA and the logic equations representing the PLA in sum of products form.

The number of product terms in these expressions is one metric for the complexity

of the tables. To verify the correctness of the tables, an SRT divider was simulated

using a DEC Alpha 3000/500 with the minimized logic equations as the quotient-digit

selection function. After each table was generated, the equations were incorporated

into the simulator. Several thousand random and directed IEEE double precision

vectors were used as input to the simulator, and the computed quotients for each

table were compared with the computed results from the Alpha's internal FPU.

5.4.2 Table Synthesis

To quantify the performance and area of random logic implementations of the ta-

bles, each table was synthesized using a standard-cell library. The Synopsys Design

Compiler [84] was used to map the logic equations describing each table to an LSI

Logic 500K 0.5�m standard-cell library [85]. In the mapping stage, low attening

and medium mapping e�ort options were used. However, area was always sacri�ced

to reduce the latency. In order to minimize the true critical path of the tables, the

input constraints included the late arrival time of all partial remainder inputs due to

an external carry-assimilating adder.

Area and delay estimates were obtained from a Design Compiler pre-layout report.

Each delay includes intrinsic gate delay, estimated interconnect wire delay, and the

input load of subsequent gates. All delays were measured using nominal conditions.

Each area measurement includes both cell and estimated routing area. The delay and

area are reported relative to those for a base radix 4 table, which is Gray-coded with

i = 3, f = 3, g = 3, and d = 3. The base table requires 43 cells and has a delay of

1.47ns.

The results are presented in tables 5.2 through 5.6. The complexity of the tables

is measured by the number of product terms, the relative delay, and the relative area

for each con�guration. The terms result contains both the number of product terms

for each output of the table, as well as the total number of terms in the table. For a

CHAPTER 5. FASTER SRT DIVIDERS 102

given radix r, there are exactly nout = log2 r outputs of the table. Accordingly, this

column �rst lists the number of terms in each of the nout outputs. Because there is

usually some internal sharing of product terms, the last number, which is the total

number of unique terms required to implement the table, is typically less than the

sum of the terms for the individual outputs. The reported delay is the worst-case

delay of any of the nout outputs, typically corresponding to the output which has the

highest number of product terms.

5.5 Results

5.5.1 Same Radix Tradeo�s

Description a b i f g Terms Relative Table Relative Table

Delay Area

Baseline 2 3 4 3 3 19,8,25 1.00 1.00

2 3 4 3 4 17,8,23 0.88 0.93

2 3 4 3 5 17,8,23 0.84 0.91

2 3 4 2 52 14,6,18 0.77 0.77

Folded 2 3 4 3 4 13,5,17 0.79 (1.30) 0.65 (0.85)

Folded +

t-bit conv 2 3 4 3 4 12,4,16 0.71 (1.58) 0.57 (0.83)

Line Encode 2 3 4 3 4 17,7,23 0.84 0.86

Choose Highest 2 3 4 3 4 22,13,33 1.05 1.23

Max Red 3 2 5 1 1 6,9,14 0.80 0.54

3 2 5 1 52 3,6,9 0.63 0.30

Note: b, i, f, and g are the bit �eld sizes shown in �gure 5.2.

Table 5.2: Radix 4 Tradeo�s

Table 5.2 shows the results for various radix 4 con�gurations. The parameters

varied in this table are 1) the number of g bits vs f bits, 2) folding, 3) method of

choosing values in the overlap regions, and 4) the amount of redundancy. The �rst

entries examine the e�ects of using g bits of the redundant partial remainder into the

short CPA outside of the table, while only using f bits of the adder output as input

CHAPTER 5. FASTER SRT DIVIDERS 103

to the table. Simply extending the CPA by one bit reduces the delay by 12% and area

by 7%. Extending the CPA by two bits reduces the delay by 16% and area by 9%.

In the limit, where g = n and a full-mantissa carry propagate addition is required,

the delay and area are both reduced by 23%. Increasing the width of the CPA by as

little as one or two bits can reduce the complexity of the table.

The next two entries demonstrate the e�ects of using folded tables. For both

tables, it is assumed that f = 3 and g = 4, which matches the format of the table

suggested in Fandrianto [82]. The use of only a two's complement to sign-magnitude

converter yields the �rst folded table, which achieves an additional delay reduction

of 10% and an additional area reduction of 30% over the f = 3 g = 4 table without

folding. This introduces a serial delay of an XOR gate external to the delay of the

table. When the sign-magnitude converter is combined with a \t-bit converter", which

further constrains the range of input values to the table, the table delay is reduced

relative to the simple folded table by an additional 10%, and the area is reduced by

an additional 12%. This converter introduces the serial delay of an OR gate external

to the table. These results show that folding can reduce the size and delay of the

table. However, the delay of the required external gates must be considered for the

overall design. If the sum of the XOR and OR gate delays is less than 29% of the

base table delay, table folding can result in a net decrease in delay.

The parenthesized values for these two entries represent the delay and area of

table when the required external gates are included in the calculation. When the

XOR gates are implemented in this standard cell technology, they account for about

66% of the unfolded table delay. This is in part due to the more complex functionality

of the XOR gate relative to the other utilized gates. It is also due to the high fanout

of the sign of the partial remainder which must drive the select signals of 5 XOR

gates. The total delay of the folded table with the row of XOR gates is 49% greater

than the unfolded table, but the area is reduced by 8%. When the \t-bit converter"

is implemented through the addition of a row of OR gates driven my the MSB of

the ones-complemented partial remainder, the total delay increases by 80% over the

unfolded table, but the area is reduced by 10%. Thus, in this technology, the use

of either table-folding technique results in higher overall delay, as the added delay

CHAPTER 5. FASTER SRT DIVIDERS 104

a b i f g Terms Relative Table Relative Table

Delay Area

1 0 4 0 0 3 0.35 0.07

Table 5.3: Radix 2

from the external gates is greater than the corresponding reduction in table delay.

However, these techniques do allow for a small reduction in total area.

Di�erent encodings of the quotient-digits can change the complexity of the tables.

The lower bound for delay and area of the table is achieved when each boundary

between two consecutive quotient-digits is individually encoded. The recovery of the

unencoded quotient-digit may require a large external decoder. When using such a

\line" encoding scheme, again with f = 3 and g = 4, the delay and area are reduced

by 5% and 8% respectively relative to the base Gray-coded table, also with f = 3

and g = 4. However, the external decoder delay grows linearly with increasing a for

line encoding, while only growing as the log of a for Gray-coding. Another common

encoding scheme always uses the highest digit whenever a choice is available between

two consecutive quotient-digits. This is represented in the table as \choose highest"

encoding. While simplifying the table generating process, this method increases the

resulting table delay by 19% and area by 32% over the base f = 3 g = 4 table. Thus,

this study shows that Gray-coding of the quotient-digits achieves delays and areas

approaching the lower bound of line encoding, while requiring less complex external

decoders.

The redundancy of the digit set has an impact on table complexity. The �nal

entries in the table are for maximally redundant radix 4 tables, with a = 3. For an

implementation with f = g = 1, the delay and area are reduced by 20% and 46%

respectively. When g increases to n = 52, requiring a full mantissa-width CPA, the

delay is further reduced by 21% and the area by 44%. If the hardware is available to

generate the 3x divisor multiple, the iteration time can be reduced by over 20%, due

to the reduction in table complexity and length of the external short CPA.

CHAPTER 5. FASTER SRT DIVIDERS 105

a b i f g Terms Relative Table Relative Table

Delay Area

4 7 5 4 4 137,59,114,292 1.85 10.2

7 5 4 5 111,48,94,240 1.76 8.80

6 5 5 5 110,50,94,240 1.70 8.85

5 5 6 6 104,50,85,221 1.67 8.21

5 5 5 3 3 42,19,69,122 1.45 5.21

4 5 4 4 35,14,57,103 1.47 4.05

6 5 5 2 2 26,35,39,92 1.46 4.82

4 5 3 3 24,33,38,88 1.46 4.46

3 5 5 5 27,29,33,78 1.36 4.03

7 6 6 1 1 16,23,43,76 1.46 3.90

3 6 2 2 15,21,35,64 1.41 3.53

Note: b, i, f, and g are the bit �eld sizes shown in �gure 5.2.

Delay and Area are relative to Baseline in table 5.2.

Table 5.4: Radix 8

Table 5.3 shows the complexity of a basic radix 2 table. This table can be im-

plemented by a single three-input gate, as it only has 3 PLA terms, which can be

contrasted with the 25 terms in the baseline radix 4 table. The resulting delay is 65%

less than the base radix 4 table, while 93% less area is required. Accordingly, the

radix 2 table is 2.86 times faster than the base radix 4 table, and 2.40 times faster

than a g = 5 radix 4 table.

5.5.2 Higher Radix

Tables 5.4, 5.5, and 5.6 show the complexity for tables that directly implement

radix 8, 16, and 32 respectively. The allowable choices of i, b, and f determined in

this study correspond with the results presented in [81] for radix 8 and 16. In this

study, the allowed operand truncations are extended to radix 32. For radix 16 and

radix 32, the minimally redundant con�gurations required 20 or more inputs to the

table. Due to computational constraints, table optimization was limited to con�gura-

tions containing fewer than 20 inputs. Those con�gurations where optimization was

infeasible are denoted with a dagger in the tables.

CHAPTER 5. FASTER SRT DIVIDERS 106

a b i f g Terms Relative Table Relative Table

Delay Area

8 11 6 5 5 y y y
8 6 6 6 y y y
7 6 8 8 y y y

9 7 6 4 4 198,98,176,481,871 2.56 32.9

6 6 5 5 170,81,154,410,745 2.50 29.0

10 7 6 3 3 120,58,231,280,616 2.37 24.8

6 6 4 4 105,57,191,240,530 2.32 21.4

5 6 5 5 96,49,183,227,497 2.24 21.1

11 6 6 3 3 80,44,159,258,484 2.21 21.1

5 6 4 4 68,39,142,208,418 2.10 18.9

12 7 6 2 2 79,138,144,228,481 2.17 25.0

6 6 3 3 66,112,119,172,373 2.09 19.1

13 6 6 2 2 60,105,105,207,393 2.14 20.4

5 6 3 3 62,104,99,186,344 2.07 18.5

14 5 6 2 2 48,101,136,169,383 2.14 20.2

4 6 6 6 54,92,110,139,310 2.06 16.5

15 9 7 1 1 47,76,135,193,383 2.16 19.2

5 7 2 2 39,69,99,136,281 2.03 15.4

4 7 3 3 42,61,93,125,261 1.94 14.8

Note: b, i, f, and g are the bit �eld sizes shown in �gure 5.2.

Delay and Area are relative to Baseline in table 5.2.

Table 5.5: Radix 16

For a given choice of radix and redundancy, there exists more than one possible

table design. As discussed previously, a minimum number of divisor estimate bits is

required as input for a given con�guration. This corresponds to a maximum number

of partial remainder bits that need be used. However, it is possible to trade an

increase in divisor bits for a reduction in the number of partial remainder bits. This

might initially seem desirable, as the partial remainder bits must �rst be assimilated

in an external adder, adding to the overall iteration time. By using a fewer number

of partial remainder bits in the table, the external adder can be smaller, reducing

the external delay. However, for carry-save partial remainders, the maximum partial

CHAPTER 5. FASTER SRT DIVIDERS 107

a b i f g Terms Relative Table Relative Table

Delay Area

17 9 7 5 5 y y y
8 7 6 6 y y y

18 9 7 4 4 y y y
8 7 5 5 y y y
7 7 7 7 y y y

19 8 7 4 4 351,208,352,945,1633,3119 4.56 141

7 7 5 5 309,191,308,860,1445,2767 4.18 79.1

20 9 7 3 3 312,164,660,891,1527,3218 4.69 144

7 7 4 4 257,156,531,727,1215,2592 4.24 106

21 8 7 3 3 237,128,507,649,1274,2499 4.13 73.2

7 7 4 4 206,118,424,541,1060,2099 4.06 94.8

6 7 6 6 180,108,366,466,912,1826 3.91 80.5

22 7 7 3 3 192,119,450,733,1032,2127 4.31 101

6 7 5 5 178,90,356,596,794,1696 4.07 80.9

23 7 7 3 3 158,85,365,607,946,1865 4.11 92.5

6 7 4 4 140,84,316,527,814,1621 3.86 78.6

24 9 7 2 2 207,408,421,678,1073,2243 4.62 92.5

7 7 3 3 147,327,314,491,780,1678 3.63 86.8

6 7 4 4 142,286,277,458,699,1497 3.61 73.3

25 8 7 2 2 185,330,318,543,985,1978 4.36 99.6

6 7 3 3 144,252,258,425,747,1534 3.70 76.3

26 8 7 2 2 154,291,299,607,838,1783 3.95 91.6

6 7 3 3 123,249,235,505,687,1475 3.73 75.1

27 7 7 2 2 141,263,266,535,798,1620 3.73 86.4

6 7 3 3 126,221,227,439,661,1377 3.63 73.7

28 7 7 2 2 146,233,359,494,717,1578 3.86 82.0

6 7 3 3 134,218,322,413,599,1327 3.76 74.4

29 7 7 2 2 226,233,342,431,697,1480 3.75 82.1

6 7 3 3 116,188,259,349,573,1241 3.73 69.8

30 6 7 2 2 145,220,318,461,656,1433 4.14 76.0

5 7 7 7 165,184,252,351,505,1143 3.78 61.0

31 11 8 1 1 y y y
6 8 2 2 89,170,241,399,555,1158 4.05 61.3

5 8 4 4 86,152,219,333,486,1021 3.52 57.2

Table 5.6: Radix 32

CHAPTER 5. FASTER SRT DIVIDERS 108

remainder truncation error �p(cs) is greater than the maximumdivisor truncation error

�d. By trading-o� fewer partial remainder bits for more divisor bits, the height of the

uncertainty region increases at approximately twice the rate at which the width of

the region decreases. As a result, the overall uncertainty region area increases as

fewer partial remainder bits are used. This result is presented in tables 5.4, 5.5, and

5.6. For any given choice of radix and redundancy, the use of the maximum number

of divisor bits and minimum number of partial remainder bits results in the largest

number of total product terms, and typically the largest delay and area. As the

number of divisor bits is reduced and the number of partial remainder bits increased,

the number of product terms, the delay, and the area are all typically reduced.

This study con�rms that as the radix increases, the complexity of the tables also

increases. Fitting the average area at a given radix to a curve across the various

radices determines that the area increases geometrically with increasing radix:

Area = :1R2
(5.16)

for radixR, where this area is the table area relative to that of the base radix 4 divider.

Similar analysis of average table delay demonstrates that table delay increases only

linearly with an increase in the number of bits retired per cycle. Increasing the

radix of the algorithm reduces the total number of iterations required to compute the

quotient. However, to realize an overall reduction in the total latency as measured in

time, the delay per iteration must not increase at the same rate. Thus, to realize the

performance advantage of a higher radix divider, it is desirable for the delay of the

look-up table to increase at no more than the rate of increase of the number of bits

retired per cycle.

For radix 8, the delay is on the average about 1.5 times that of the base radix 4

table. However, it can require up to 10 times as much area. While radix 16 tables

have about 2 times the base delay, they can require up to 32 times the area. In the

case of radix 32, it was not even possible to achieve a delay of 2.5 times the base

delay, the maximum desired delay, with actual delays between 3.5 and 4.7. The area

required for radix 32 ranges from 57 to 141 times the base area. These results show

that radix 16 and 32 are clearly impractical design choices, even ignoring practical

CHAPTER 5. FASTER SRT DIVIDERS 109

implementation limitations such as generating all divisor multiples. This study shows

that it is possible to design radix 8 tables with reasonable delay and area; a minimally-

redundant radix 8 table is demonstrated to be a practical design choice.

5.6 Summary

This chapter has proposed a methodology for generating quotient-digit selection tables

from a table speci�cation through an automated design ow. Using this process,

performance and area tradeo�s of quotient selection tables in SRT dividers have been

presented for several table con�gurations. The use of Gray-coding is shown to be a

simple yet e�ective method that allows automatically determining optimal choices of

quotient-digits which reduce table complexity.

Short external carry-assimilating adders are necessary to convert redundant partial

remainders to a non-redundant form. By extending the length of these adders by as

little as one or two bits, table complexity can be further reduced. The conventional

wisdom for SRT table speci�cation is that the length of the partial remainder estimate

should be reduced at the expense of increasing the length of the divisor estimate in

order to reduce the width, and thus the delay, of the external adder. However,

this study shows that such a choice also increases the size and delay of the table,

mitigating the performance gain provided by the narrower adder. Accordingly, the

overall iteration time is not reduced through such a tradeo�.

As the radix increases, the table delay increases linearly. However, the area in-

creases quadratically with increasing radix. This fact, combined with the di�culty in

generating all of the required divisor multiples for radix 8 and higher, limits practical

table implementations to radix 2 and radix 4.

Chapter 6

Division and Reciprocal Caches

6.1 Introduction

Computer applications often use the same input operands as those in a previous

calculation. In matrix inversion, for example, each entry must be divided by the

determinant. By recognizing and taking advantage of this redundant behavior, it is

possible to decrease the e�ective latency of computations.

Richardson [79] discusses the technique of result caching as a means of decreasing

the latency of otherwise high-latency operations, such as division. This technique

exploits the redundant nature of certain computations by trading execution time

for increased memory storage. Once a result is calculated, it is stored in a result

cache. When an operation is initiated, the result cache can be simultaneously accessed

to check for a previous instance of the computation. If the previous computation

result is found, the result is available immediately from the cache. Otherwise, the

operation continues in the functional unit, and the result is written into the cache

upon completion of the computation.

This chapter investigates two techniques for decreasing the average latency of

oating-point division. Both techniques are based on recurring or redundant com-

putations that can be found in applications. When the same divide calculation is

performed on multiple occasions, it is possible to store and later reuse a previous

result without having to repeat the lengthy computation. For multiplication-based

110

CHAPTER 6. DIVISION AND RECIPROCAL CACHES 111

division implementations, the reciprocal can be reused rather than the quotient, in-

creasing the likelihood of the computation being redundant [86]. Additionally, due to

the similarity between division and square root computation, the quantity of redun-

dant square root computation is investigated.

6.2 Reciprocal Caches

6.2.1 Iterative Division

As discussed in chapter 4, division can be implemented in hardware using the following

relationship:

Q =

a

b
= a� (

1

b
);

where Q is the quotient, a is the dividend, and b is the divisor. Certain algorithms,

such as the Newton-Raphson and series expansion iterations, are used to evaluate the

reciprocal [46]. Whereas Newton-Raphson converges to a reciprocal and then mul-

tiplies by the dividend to compute the quotient, Goldschmidt's algorithm typically

prescales both the dividend (a) and the denominator (b) by an approximation of the

reciprocal and converges directly to the quotient. In this study, we use a modi�ed

implementation of the series expansion or Goldschmidt's algorithm to converge to the

reciprocal. As the desired result is the reciprocal, only the divisor need be prescaled

by the initial reciprocal approximation. The initial numerator is the reciprocal ap-

proximation itself. Higher performance can be achieved by using a higher precision

starting approximation. Due to the quadratic convergence of these iterative algo-

rithms, the computation of 53-bit double precision quotients using an 8-bit initial

approximation table requires 3 iterations, while a 16-bit table requires only 2 itera-

tions. This results in a tradeo� between area required for the initial approximation

table and the latency of the algorithm, as discussed in chapter 4. In this study, the

additional tradeo� is presented between larger initial approximation tables and cache

storage for redundant reciprocals.

CHAPTER 6. DIVISION AND RECIPROCAL CACHES 112

6.2.2 Experimental Methodology

To obtain the data for the study, ATOM [38] was used to instrument several appli-

cations from the SPECfp92 [11] and NAS [9] benchmark suites. These applications

were then executed on a DEC Alpha 3000/500 workstation. All double precision

oating-point division operations were instrumented. For division, the exponent is

handled in parallel with the mantissa calculation. Accordingly, the quotient mantissa

is independent of the input operands' exponents.

For reciprocal caches, the cache tag is the concatenation of the divisor mantissa

and a valid bit, for a total of 53 bits. Because the leading one is implied for the

mantissas, only 52 bits per mantissa need be stored. The cache data is the double

precision reciprocal mantissa, with implied leading one, and the guard, round, and

sticky bits for a total of 55 bits. These extra bits are required to allow for correct

rounding on subsequent uses of the same reciprocal, with possibly di�erent rounding

modes. The total storage required for each entry is therefore 108 bits.

When a division operation is initiated, the reciprocal cache is simultaneously ac-

cessed to check for a previous instance of the reciprocal. If the result is found, the

reciprocal is returned and multiplied by the dividend to form the quotient. Otherwise,

the operation continues in the divider, and upon computation of the reciprocal the

result is written into the cache.

6.2.3 Performance

Reciprocal cache hit rates were �rst measured assuming an in�nite cache. These re-

sults are shown in �gure 6.1. The average hit rate of all 11 applications is 81.7%, with

a standard deviation of 27.7%. From �gure 6.1, it can be seen that the application

tomcatv is unusual in that it has no reciprocal reuse, as demonstrated by its 0% hit

rate. When tomcatv is excluded, the average hit rate is 89.8%, and the standard

deviation is only 6.2%. Fully-associative reciprocal caches of �nite size were then

simulated, and the resulting hit rates are shown in �gure 6.2. Figure 6.2 shows that

most of the redundant reciprocal computation is captured by a 128 entry cache, with

a hit rate of 77.1%.

CHAPTER 6. DIVISION AND RECIPROCAL CACHES 113

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 In
fin

ite
 R

ec
ip

ro
ca

l C
ac

he
 H

it
R

at
e

%

do
du

c

m
dl

jd
p2

to
m

ca
tv

or
a

su
2c

or

hy
dr

o2
d

na
sa

7

fp
pp

p

ap
pb

t

ap
pl

u

ap
ps

p

Figure 6.1: Hit rates for in�nite reciprocal caches

| | | | | | | | ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Entries

 F
in

ite
 R

ec
ip

ro
ca

l C
ac

he
 H

it
R

at
e

%

8 16 32 64 128 256 512 1024 2048

Figure 6.2: Hit rates for �nite reciprocal caches

CHAPTER 6. DIVISION AND RECIPROCAL CACHES 114

ROM Size Cache Entries Latency (cycles) Extra Area (bits)

8-bit 0 10 0

16-bit 0 8 1,046,528

8-bit 8 9.48 864

8-bit 32 8.69 3,456

8-bit 64 7.14 6,912

8-bit 128 5.06 13,824

8-bit 512 4.79 55,296

8-bit 2048 4.56 221,184

Table 6.1: Performance/area tradeo�s for reciprocal caches

To determine the e�ect of reciprocal caches on overall system performance, the

e�ective latency of division is calculated for several iterative divider con�gurations.

For this analysis, the comparison is made with respect to the modi�ed implementa-

tion of Goldschmidt's algorithm discussed previously. It is assumed that a pipelined

multiplier is present with a latency of 2 cycles and a throughput of 1 cycle.

The latency for a division operation can be calculated as follows. An initial

approximation table look-up is assumed to take 1 cycle. The initial prescaling of the

dividend and the divisor requires 2 cycles. Each iteration of the algorithm requires

2 cycles for the 2 overlapped multiplications. The �nal result is available after an

additional cycle to drain the multiplier pipeline. Thus, a base 8-bit Goldschmidt

implementation without a cache requires 10 cycles to compute the quotient. Two cases

arise for a scheme using a reciprocal cache. A hit in the cache has an e�ective latency

of only 3 cycles: 1 cycle to return the reciprocal and 2 to perform the multiplication by

the dividend. A miss in the cache su�ers the base 10 cycle latency plus an additional

2 cycles to multiply the reciprocal by the dividend, as per the modi�ed Goldschmidt

implementation. While the modi�ed Goldschmidt implementation does not explicitly

require a multiplication to prescale the initial numerator, this does not result in

a reduction in latency. When a pipelined multiplier is used, the latency of this

multiplication is completely overlapped with the other operations. The results of this

analysis are shown in table 6.1.

CHAPTER 6. DIVISION AND RECIPROCAL CACHES 115

|
1

| | | | | | | | |
10

| | | | | | | | |
100

|0.50

|0.75

|1.00

|1.25

|1.50

|1.75

|2.00

|2.25

|2.50

 Total Storage Area

 S
pe

ed
up

�

�

�

�

�

�

�

Figure 6.3: Speedup from reciprocal caches

Figure 6.3 shows the performance of the di�erent cache sizes relative to an 8-bit

initial approximation table implementation. Here, the speedups are measured against

the total storage area required, expressed as a factor of the 8-bit initial approximation

table size, which is 2048 bits. This graph demonstrates that when the total storage

is approximately eight-times that of an 8-bit implementation with no cache, a re-

ciprocal cache can provide a signi�cant increase in division performance, achieving

approximately a two-times speedup. When the total area exceeds eight-times the

base area, the marginal increase in performance does not justify the increase in area.

A reciprocal cache implementation can be compared to the use of a 16-bit initial ap-

proximation table, with a total storage of 1M bits. This yields an area factor of 512,

with a speedup of only 1.25. The use of various table compression techniques could

reduce this storage requirement. However, the best case speedup with no reciprocal

cache and requiring 2 iterations is still 1.25.

CHAPTER 6. DIVISION AND RECIPROCAL CACHES 116

6.3 Division Caches

An alternative to a reciprocal cache to reduce division latency is a division cache. A

division cache can be used for any form of divider implementation, regardless of the

choice of algorithm. For a division cache, the tag is larger than that of a reciprocal

cache, as it comprises the concatenation of the dividend and divisor mantissas, and a

valid bit, forming 105 bits. Accordingly, the total storage required for each division

cache entry is 160 bits. The functionality of the division cache is similar to that of

the reciprocal cache. When a division operation is initiated, the division cache can be

simultaneously accessed to check for a previous instance of the exact dividend/divisor

pair. If the result is found, the correct quotient is returned. Otherwise, the oper-

ation continues in the divider, and upon computation of the quotient, the result is

written into the cache. The number of computations reusing both operands at best

will be equal to and will be typically less than the number reusing only the same

divisor. However, reciprocal caches restrict the form of algorithm used to compute

the quotient, while division caches allow any divider implementation.

Hit rates were measured for each of the applications assuming an in�nite divi-

sion cache. The average hit rate was found to be 57.1%, with a standard deviation

of 36.5%. When analyzing only those applications that exhibited some redundant

computation, excluding tomcatv and su2cor, the average hit rate is 69.8%, with a

standard deviation of 25.8%. Thus, the quantity of redundant division in the appli-

cations compared with redundant reciprocals was lower and more variant.

Fully-associative �nite division caches were simulated, and the resulting hit rates

are shown in �gure 6.4, along with the hit rates of the reciprocal caches with the

same number of entries. The results of �gure 6.4 demonstrate a knee near a division

cache of 128 entries, with an average hit rate of 60.9%. In general, the shape of the

reciprocal cache hit rate tracks that of the division cache. For the same number of

entries, though, the reciprocal cache hit rate is larger than that of the division cache

by about 15%. Thus, the quantity of redundant division in the applications compared

with redundant reciprocals was lower and more variant. Additionally, a division cache

requires approximately 50% more area than a reciprocal cache with the same number

CHAPTER 6. DIVISION AND RECIPROCAL CACHES 117

of entries. Further performance and e�ciency analysis of division caches is presented

in [87].

6.4 Square Root Caches

The implementation of square root often shares the same hardware used for division

computation. A variation of Goldschmidt's algorithm can be used to converge to

the square root of an operand [24]. Thus, the question arises as to the quantity

of redundant square root computation available in applications. Because both the

reciprocal and square root operations are unary, they can share the same cache for

their results.

In a similar experiment for square root, hit rates were measured for �nite shared

reciprocal/square root caches, where both reciprocals and square roots reside in the

same cache. The results are shown in �gure 6.5. The shared cache results show that

for reasonable cache sizes, the square root result hit rates are low, about 50% or less.

Although the frequency of square root was about 10 times less than division, the

inclusion of square root results caused interference with the reciprocal results. This

had the e�ect of decreasing the reciprocal hit rates, especially in the cases of 64 and

128 entries. Thus, this study suggests that square root computations should not be

stored in either a dedicated square root cache or a shared reciprocal cache, due to the

low and highly variant hit rate of square root and the resulting reduction in reciprocal

hit rate.

6.5 Summary

This chapter has shown that redundant division computation exists in many applica-

tions. Both division caches and reciprocal caches can be used to exploit this redundant

behavior. For high performance implementations, where a multiplication-based algo-

rithm is used, the inclusion of a reciprocal cache is an e�cient means of increasing

performance. In this scenario, too, a division cache could be used. However, the high

standard deviation of a division cache's hit rates compared with that of a reciprocal

CHAPTER 6. DIVISION AND RECIPROCAL CACHES 118

 Reciprocal Cache
� � Division Cache

| | | | | | | | ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Entries

 H
it

R
at

e
%

8 16 32 64 128 256 512 1024 2048

�

�

�

�

�

�

Figure 6.4: Hit rates for division caches

 Reciprocal
� � Square Root

| | | | | | | | ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Entries

 H
it

R
at

e
%

8 16 32 64 128 256 512 1024 2048

�
�

�

�

� �

Figure 6.5: Hit rates for reciprocal/square root caches

CHAPTER 6. DIVISION AND RECIPROCAL CACHES 119

cache argues against its usage and for the use of a reciprocal cache. Additionally,

the analysis has shown that these applications do not contain a consistently large

quantity of redundant square root computation. Thus, the caching of square root

results as a means for increasing overall performance is not recommended.

The primary alternative previously to decrease latency of multiplication-based

division algorithms has been to reduce the number of iterations by increasing the size

of the initial approximation table. This chapter demonstrates that a reciprocal cache

can often be an e�ective alternative to large reciprocal tables. The inclusion of a

reasonably sized reciprocal cache can consistently provide a signi�cant reduction in

division latency.

Chapter 7

Fast Rounding

7.1 Introduction

Linear converging division algorithms retire a �xed number of quotient digits in each

iteration. After each iteration, a partial remainder is available. At the conclusion

of the iterations, the quotient is available, as is the �nal remainder. By noting the

sign and magnitude of the �nal remainder, it is possible to adjust the quotient ap-

propriately by 1 ulp to obtain an exactly rounded result that complies with the IEEE

oating-point standard. In contrast, both Newton-Raphson and Goldschmidt's algo-

rithms produce a quotient, but with no �nal remainder. For exact rounding of the

quotient, it is typically necessary to use an additional multiplication of the quotient

and the divisor and then to subtract the product from the dividend to form the �-

nal remainder. Accordingly, quadratically-converging algorithms can incur a latency

penalty of one multiplication and a subtraction in order to produce IEEE exactly

rounded quotients.

Previous implementations of quadratically-converging dividers have demonstrated

various techniques of achieving close-to-exact rounding as well as exact rounding.

However, all implementations with exactly rounded quotients have su�ered from a

rounding penalty. In this chapter, an extension of a VLA technique presented by

Schwarz [88] is proposed which further reduces the frequency of �nal remainder cal-

culations required by increasing the precision of the quotient. For those cases where

120

CHAPTER 7. FAST ROUNDING 121

a �nal remainder calculation is required, a technique is proposed which reduces the

full-width subtraction to combinational logic operating on one bit of the dividend,

one bit of the back multiplication product, and the sticky bit from the multiplier.

7.2 IEEE Rounding

The IEEE oating point representation describes two di�erent formats: single and

double precision. The standard also suggests the use of extended precision formats,

but their use is not mandatory. The most common format used in modern processors

is double precision, which comprises a 1-bit sign, an 11-bit biased exponent, and a 52-

bit signi�cand with one hidden signi�cand bit, for a total of a 64 bits. A signi�cand is

a normalized numberM , such that 1 �M < 2. The standard includes four rounding

modes: RN, RZ, RM, and RP. RN is unbiased rounding to nearest, rounding to even

in the case of a tie. It guarantees that the �nal result has at most �0:5 ulp error due

to rounding. RZ is simple truncation. The two directed rounding modes RM and

RP are round towards minus in�nity and round towards plus in�nity respectively.

Exactly rounded results must be computable for all four rounding modes. The result

generated by an operation according to any of the four rounding modes must be the

machine number which is identical to an intermediate result that is correct to in�nite

precision and is then rounded according to the same rounding mode.

The signi�cand immediately before rounding has the format as given in �gure 7.1.

In this �gure, L is the LSB before rounding, G is the guard bit, and S is the sticky

1.

desired
precision

L G S

Figure 7.1: Signi�cand format before rounding

bit. The guard bit is one bit less signi�cant than is strictly required by the precision

of the format. The sticky bit is essentially a ag, noting the existence of any bits in

CHAPTER 7. FAST ROUNDING 122

the result less signi�cant than the guard bit. It is the logical OR of all of the less

signi�cant bits in the result.

To implement rounding for each of the rounding modes, an action table listing the

appropriate procedure for all combinations of L, G, and S can be written. An example

action table for RN is shown in table 7.1. The rightmost column of the action table

L G S Action A

X 0 0 Exact result. No rounding. 0

X 0 1 Inexact result, but is correctly rounded. 0

0 1 0 Tie case with even signi�cand, so correctly rounded. 0

1 1 0 Tie case with odd signi�cand, so round to nearest even. 1

X 1 1 Round to nearest. 1

Table 7.1: Action table for RN rounding mode

dictates whether the result should be rounded. Rounding is accomplished by adding

A to L to obtain the correct machine number. Such a table can be implemented

simply in random logic. Similar tables can be written for the other three rounding

modes.

For division, the complication is the determination of the sticky bit. This deter-

mination requires knowledge of the magnitude of the �nal remainder. Since division

by functional iteration does not directly provide the remainder, the design challenge

is how to gain the information in the remainder while incurring as minimal a latency

penalty as possible.

7.3 Division by Functional Iteration

Techniques for performing division by functional iteration have been presented in

chapter 4. However, the Newton-Raphson and Goldschmidt algorithms were pre-

sented assuming that the multipliers used within the iterations were full-precision.

For a complete analysis of the design space as it relates to exact rounding, it is nec-

essary to consider other multiplier precisions. A performance enhancement that can

CHAPTER 7. FAST ROUNDING 123

be used for both algorithms is to perform early computations in reduced precision.

This is acceptable, because the early computations do not generate many correct bits.

As the iterations continue, quadratically larger amounts of precision are required in

the computation. However, this has an e�ect on the precision of the �nal quotient

approximation. Consider the series expansion algorithm. For n bit input operands,

so long as all multiplications are at least 2n bits wide, then

Di+1 = 0:11 � � � xxx

approaching 1 from below. Similarly Ni+1 approaches the quotient from below. Ac-

cordingly the �nal n bit result can have at most a 1 ulp error which satis�es:

0 � �t < 2
�n

and therefore the error in the �nal n bit result Q0
is satis�ed by:

0 � Q�Q0 < 2
�n

(7.1)

where Q is the in�nitely precise result. Should either of the two iteration products

Di+1 = Di �Ri

or

Ni+1 = Ni �Ri

be computed with multipliers which return only the top k bits, where k < 2n, round-

ing error is added into the approximation. If the multiplications return only the top

k bits of precision in the result, then

Rit = 2 �Dit

This induces rounding error �r in Di+1 that satis�es

j�rj < 2
�(k+1)

Because of the resulting error in Di+1, it converges to 1, but it converges from either

below or above rather than from strictly below.

CHAPTER 7. FAST ROUNDING 124

7.4 Previously Implemented Techniques

There have been three main techniques used in previous implementations to compute

rounded results when using division by functional iteration. The IBM 360/91 imple-

mented division using Goldschmidt's algorithm [64]. In this implementation, 10 extra

bits of precision in the quotient were computed. A hot-one was added in the LSB of

the guard bits. If all of the 10 guard bits were ones, then the quotient was rounded

up. This implementation had the advantage of the fastest achievable rounding, as

it did not require any additional operations after the completion of the iterations.

However, while the results could be considered \somewhat round-to-nearest," they

were de�nitely not IEEE compliant, and there was no concept of exact rounding in

this implementation.

Another implementedmethod requires a datapath twice as wide as the �nal result,

and it is the method used to implement division in the IBM RS/6000 [68]. The

quotient is computed to a little more than twice the precision of the �nal quotient,

and then the extended result is rounded to the �nal precision. An explanation of this

procedure is as follows. Consider that the dividend X and the divisor Y are both

normalized and represented by b bits, and the �nal quotient Q = X=Y is represented

by b bits. Note that the exact halfway quotient can not occur when dividing two b bit

normalized numbers. For an exact halfway case, the quotient would be represented

by exactly a b+1 bit number with both its MSB and LSB equal to 1, and thus having

exactly b � 1 bits between its most signi�cant and least signi�cant 1's. The product

of such a number with any non-zero �nite binary number must also have the same

property, and thus the dividend must have this property. But, the dividend is de�ned

to be a normalized b bit number, and thus can it can have a maximum of b � 2 bits

between its most signi�cant and least signi�cant 1's.

To obtain b signi�cant bits of the quotient, b bits are computed if the �rst quotient

bit is 1, and b+ 1 bits if the �rst quotient bit is 0. At this point, because the exact

halfway case can not occur, rounding can proceed based solely on the values of the

next quotient bit and the sticky bit. The sticky bit is 0 if the remainder at this point

is exactly zero. If any bit of the remainder is 1, then the sticky bit is 1. Let R0 be

CHAPTER 7. FAST ROUNDING 125

the value of the remainder after this computation, assuming the �rst bit is 1:

X = Q0 � Y +R0; with R0 < 2
�b

Then, compute another b bits of quotient, denoted Q1.

R0 = Q1 � Y +R1; with R1 < 2
�2b

Q1 is less than 2
�b
, with an accuracy of 2

�2b
, and Y is normalized to be accurate

to 2
�b
. Accordingly if Q1 = 0, then R0 = R1. But, R0 can equal R1 if and only if

R0 = R1 = 0. This is because R0 < 2
�b

and R1 < 2
�2b

and Y is a b bit quantity.

Similarly, if Q1 6= 0, then the remainder R0 can not equal 0. The computation

proceeds in the same manner if the �rst quotient bit is 0, except that b+ 1 bits will

have been computed for Q0. By computing at most 2b+ 1 bits, the sticky bit can be

determined, and the quotient can be correctly rounded.

The RS/6000 implementation uses its fused multiply-accumulate for all of the

operations to guarantee accuracy greater than 2n bits throughout the iterations.

After the completion of the additional iteration,

Q0
= estimate of Q =

a

b
accurate to 2n bits

A remainder is calculated as

R = a� b�Q0
(7.2)

A rounded quotient is then computed as

Q00
= Q0

+R � b (7.3)

where the �nal multiply-accumulate is carried in the desired rounding mode, providing

the exactly rounded result. The principal disadvantage of this method is that it

requires one additional full iteration of the algorithm, and it requires a datapath at

least two times larger than is required for non-rounded results.

A third approach is that which was used in the TI 8847 FPU [69]. In this scheme,

the quotient is also computed with some extra precision, but less than twice the

CHAPTER 7. FAST ROUNDING 126

desired �nal quotient width. To determine the sticky bit, the �nal remainder is

directly computed from:

Q =

a

b
�R

R = a� b�Q

It is not necessary to compute the actual magnitude of the remainder; rather, its

relationship to zero is required. In the worst case, a full-width subtraction may be

used to form the true remainder R. Assuming su�cient precision is used throughout

the iterations such that all intermediate multiplications are at least 2n bits wide for

n bit input operands, the computed quotient is less than or equal to the in�nitely

precise quotient. Accordingly, the sticky bit is zero if the remainder is zero and one

if it is nonzero. If truncated multiplications are used in the intermediate iterations,

then the computed quotient converges toward the exactly rounded result, but it may

be either above or below it. In this case, the sign of the remainder is also required

to detect the position of the quotient estimate relative to the true quotient. Thus,

to support exact rounding using this method, the latency of the algorithm increases

by at least the multiplication delay necessary to form Q� b, and possibly by a full-

width subtraction delay as well as zero-detection and sign-detection logic on the �nal

remainder. In the TI 8847, the relationship of the quotient estimate and the true

quotient is determined using combinational logic on 6 bits of both a and Q� b.

7.5 Reducing the Frequency of Remainder Com-

putations

7.5.1 Basic Rounding

To simplify the discussion and analysis of the rounding techniques in the rest of this

chapter, it is assumed that the input operands are normalized signi�cands in the range

[0.5,1), rather than the IEEE range of [1,2). The analysis is equivalent under both

conditions and there is no loss of generality. Accordingly, 1 ulp for such a normalized

n bit number is 2
�n
. The basic rounding technique is as follows. Depending upon

CHAPTER 7. FAST ROUNDING 127

the widths of the multiplications and the precision of the initial approximation, there

are three di�erent cases that need to be considered.

Case 1:

The multiplications used in the iterations return at least 2n bit results for n bit

operands. Su�cient iterations of the algorithm are then implemented such that the

quotient is accurate to n + 1 bits with an error strictly less than 1 ulp of this n + 1

bit quantity. As the �nal result only has n bits, the quotient estimate has an error

strictly less than +0:5 ulp, and this estimate satis�es:

0 � Q�Q0 < 2
�(n+1)

(7.4)

The steps to correctly round this quotient estimate are:

� Add 2
�(n+2)

to Q0
.

� Truncate the transformed Q0
to n+1 bits to form Q00

. Q00
will then have strictly

less than �0:5 ulp error.

� Form the remainder R = a� b�Q00
, which is an n bit by (n+ 1) bit product.

� By observing the sign and magnitude of R and bit n + 1, the guard bit, all

IEEE rounding modes can be implemented by choosing either Q00
, Q00

+2
�n
, or

Q00 � 2
�n
.

After the addition in the �rst step, Q0
satis�es:

�2�(n+2) � Q� (Q0
+ 2

�(n+2)
) < 2

�(n+2)
(7.5)

Truncation in the second step induces an error satisfying

0 � �t < 2
�(n+1)

(7.6)

after which the result Q00
satis�es

�2�(n+2) � Q�Q00 < 2
�(n+1)

(7.7)

Thus, the result can have an error of [-0.25,+0.5) ulp. This can be rewritten as a

looser but equivalent error bound of (-0.5,+0.5) ulp. Accordingly, the observation

CHAPTER 7. FAST ROUNDING 128

Guard Bit Remainder RN RP (+/-) RM (+/-) RZ

0 =0 trunc trunc trunc trunc

0 - trunc trunc/dec dec/trunc dec

0 + trunc inc/trunc trunc/inc trunc

1 = 0 | | | |

1 - trunc inc/trunc trunc/inc trunc

1 + inc inc/trunc trunc/inc trunc

Table 7.2: Action table for basic method

of the guard bit and the sign and equality to zero of the remainder are su�cient

to exactly round the quotient. The rounding in the last step is accomplished by

conditionally incrementing or decrementingL. The action table for correctly rounding

Q00
is shown in table 7.2. For the directed rounding modes RP and RM, the actual

action may depend upon the sign of the quotient estimate. Those entries that contain

two operations such as pos/neg are for the sign of the �nal result itself being positive

and negative respectively. As discussed earlier, the exact halfway case can not occur

in division, and thus the table row with G = 1 and R = 0 has no entries.

Case 2:

A similar methodology can be used should the estimate converge to the in�nitely

precise value from either above or below. Such a situation occurs when multipliers

are used in the iterations returning fewer than 2n bits, adding either truncation or

rounding error to the estimate, and when the two's complement operation is replaced

by the simpler one's complement, also adding a �xed error to the estimate. This added

error causes convergence to the in�nitely precise quotient from either side rather than

strictly from below. Assuming that at least n+2 bits of quotient are computed with

su�cient iterations to guarantee an accuracy of n+1 bits as before, then the estimate

Q0
can have at most a �0:5 ulp error, and it satis�es

�2�(n+1) < Q�Q0 < 2
�(n+1)

(7.8)

due to the convergence to the quotient from above or below. This is not su�cient

precision for rounding using the guard bit. Instead, the estimate must be accurate to

CHAPTER 7. FAST ROUNDING 129

n + 2 bits, requiring at least 2 additional bits, rather than 1, to be computed in the

iterations. Then, the estimate satis�es

�2�(n+2) < Q�Q0 < 2
�(n+2)

(7.9)

In this case, the addition of 2
�(n+2)

is again performed

�2�(n+1) < Q� (Q0
+ 2

�(n+2)
) < 0 (7.10)

and after truncation to n+ 1 bits forms Q00

�2�(n+1) < Q�Q00 < 2
�(n+1)

(7.11)

After these adjustments, rounding proceeds in the same manner as discussed previ-

ously using table 7.2.

Case 3:

A �nal possibility is that due to large errors in the initial approximation, the bounds

on the error in the quotient estimate are inclusive rather than exclusive. Assuming

as before that at least n+ 2 bits of quotient are computed with an accuracy of n+ 2

bits, then the estimate satis�es

�2�(n+2) � Q�Q0 � 2
�(n+2)

(7.12)

The addition of 2
�(n+2)

to Q0
yields

�2�(n+1) � Q� (Q0
+ 2

�(n+2)
) � 0 (7.13)

After truncation to n + 1 bits, the truncation error �t causes Q
00
to satisfy

�2�(n+1) � Q�Q00 < 2
�(n+1)

(7.14)

Due to the lower inclusive point, it is not possible to round directly as before. To allow

the same rounding methodology, it is necessary to force this bound to be exclusive

rather than inclusive. To do this, it is necessary that the accuracy of the original

quotient estimate Q0
have more than n+2 bits of accuracy. As an example, if Q0

has

n+ 3 bits of accuracy using at least n+ 3 bits of quotient, then it will satisfy

�2�(n+3) � Q�Q0 � 2
�(n+3)

(7.15)

CHAPTER 7. FAST ROUNDING 130

The addition of 2
�(n+2)

to Q0
forms

�2�(n+3) � 2
�(n+2) � Q� (Q0

+ 2
�(n+2)

) � 2
�(n+3) � 2

�(n+2)
(7.16)

and after truncation to n+ 1 bits forming Q00

�2�(n+3) � 2
�(n+2) � Q�Q00 < 2

�(n+1)
(7.17)

which clearly satis�es

�2�(n+1) < Q�Q00 < 2
�(n+1)

(7.18)

after which rounding may proceed using table 7.2. This analysis shows that in this

case it is necessary for the quotient estimate to have an accuracy of strictly greater

than n+ 2 bits.

7.5.2 Faster Rounding

By observing the entries in table 7.2, it can be seen that for any of the rounding modes,

half of the column's entries are identical. These identical entries are shown in bold

type in the table. Accordingly, for all rounding modes, only half of the entries require

knowledge of the remainder itself. As an example, for RN, if G = 0, then the correct

action is truncation, regardless of the sign or magnitude of the remainder. However,

if G = 1, then the sign of the remainder is needed to determine whether truncation

or incrementing is the correct rounding action. Similarly, for RP, if G = 1, then the

correct rounding action is to increment if the sign of the quotient is positive, and

truncation if negative. Again, no computation of the remainder is required. These

results are similar to those reported in [88].

Implementation of such a variable latency divider is as follows. The iterations for

computing the quotient estimate Q0
are carried to at least n + 2 bits assuming an

error bound of

0 � Q�Q0 < 2
�(n+1)

As previously discussed, other error bounds on the quotient estimate can be tolerated

by employing more accuracy in the results. Thus, the technique presented can be

CHAPTER 7. FAST ROUNDING 131

easily modi�ed to handle other error bounds. The quantity 2
�(n+2)

is then added to

Q0
. This can be done either in a dedicated additional addition step, or, for higher

performance, as part of a fused multiply-accumulate operation in the last iteration

of the division algorithm. Depending upon the rounding mode and the value of G, it

may be possible to round immediately. Otherwise, it may be necessary to perform the

back-multiplication and subtraction to form the �nal remainder, and to observe its

magnitude and sign in order to begin rounding. Thus, assuming a uniform distribution

of quotients, in half of the cases a back-multiplication and subtraction is not required,

reducing the total division latency.

7.5.3 Higher Performance

The previously discussed technique requires the computation of one guard bit, and in

so doing, allows for the removal of the back-multiplication and subtraction in about

half of the computations. This method can be extended as follows. Consider that at

least n+3 bits of quotient estimate are computed such that there are two guard bits

with an error in this estimate of at most 1 ulp. This estimate Q0
then satis�es:

0 � Q�Q0 < 2
�(n+2)

(7.19)

The preliminary steps to correctly round this quotient estimate are similar to the

previous technique:

� Add 2
�(n+3)

to Q0
.

� Truncate the transformed Q0
to n + 2 bits to form Q00

. Q00
will then have at

most �0:25 ulp error.

The action table for correctly rounding this quotient estimateQ00
is shown in table 7.3.

From this table, for each rounding mode, only in 1 out of the 4 possible guard bit

combinations is a back-multiplication and subtraction needed, as denoted by the bold-

faced operations. In all of the other guard bit combinations, the guard bits themselves

along with the sign of the �nal result are su�cient for exact rounding.

These results can be generalized to the use of m guard bits, with m � 1:

CHAPTER 7. FAST ROUNDING 132

Guard Bits Remainder RN RP (+/-) RM (+/-) RZ

00 =0 trunc trunc trunc trunc

00 - trunc trunc/dec dec/trunc dec

00 + trunc inc/trunc trunc/inc trunc

01 =0 trunc inc/trunc trunc/inc trunc

01 - trunc inc/trunc trunc/inc trunc

01 + trunc inc/trunc trunc/inc trunc

10 = 0 | | | |

10 - trunc inc/trunc trunc/inc trunc

10 + inc inc/trunc trunc/inc trunc

11 = 0 inc inc/trunc trunc/inc trunc

11 - inc inc/trunc trunc/inc trunc

11 + inc inc/trunc trunc/inc trunc

Table 7.3: Action table using two guard bits

� Add 2
�(n+m+1)

to Q0
.

� Truncate the transformed Q0
to n + m bits to form Q00

. Q00
will then have at

most �2�m ulp error.

� In parallel, observe the guard bits and begin computation of the remainder

R = a� b�Q00
.

� If the guard bits are such that the sign and magnitude of the remainder are

required, wait until the remainder is computed and then round. Otherwise,

begin rounding immediately.

After the conversion in the �rst two steps, Q00
satis�es:

�2�(n+m) < Q�Q00 < 2
�(n+m)

(7.20)

By inspecting the m guard bits, a back-multiplication and subtraction are required

for only 2
�m

of all cases. Speci�cally, the RN mode needs the computation to check

the position around the mid-point between two machine numbers. The other three

modes use the guard bits to check the position around one of the two machine numbers

CHAPTER 7. FAST ROUNDING 133

themselves. The examination of the m guard bits dictates the appropriate action in

all of the other cases.

7.6 Faster Magnitude Comparison

For those cases where it is necessary to have information regarding the remainder,

it is not necessary to perform the complete calculation of the remainder. Rather,

the essential elements are the sign of the remainder and whether the remainder is

exactly zero. Stated slightly di�erently, what is required is whether the remainder is

greater than, less than, or exactly equal to zero. The design challenge becomes how to

compute this information in less time than that required for an n bit multiplication,

subtraction, and subsequent zero-detection logic.

Recall that in the worst case the remainder can be computed from:

a� b�Q00
= R

Since the remainder's relationship to zero is the information desired, the equation can

be rewritten as:

a� b�Q00 ?
= 0

or

a
?
= b�Q00

Clearly, the back multiplication of b � Q00
is required for this comparison, and this

multiplication should be carried in RZ mode, with no e�ective rounding. However, to

reduce the latency penalty, it may be possible to remove the full-width subtraction,

replacing it with simpler logic. The remaining question is the number of bits of both

a and b�Q00
that are required in this comparison.

Recall from (7.20) that the maximum error in Q00
is �2�(n+m)

. Therefore, the

maximum error in the product b�Q00
with respect to a can be derived as follows:

bmax = 1� 2
�n

(7.21)

CHAPTER 7. FAST ROUNDING 134

Xlsb Ylsb Error in Y Sign of X � Y

0 0 < :01111 � � � -

0 1 > :01111 � � � +

1 0 > :01111 � � � +

1 1 < :01111 � � � -

Table 7.4: Sign prediction

errormax = bmax �Q00

= (1� 2
�n
)� (�2�(n+m)

) (7.22)

or

�2�(n+m)
+ 2

�(2n+1) < error < 2
�(n+m) � 2

�(2n+1)
(7.23)

So long as the number of guard bits m is greater than or equal to 1, then the absolute

value of the error in the product b � Q00
is strictly less than 0:5 ulp. Accordingly,

the sign of the di�erence between a and b � Q00
can be exactly predicted by only

examining the LSB of a and the LSB of b�Q00
.

To demonstrate how this prediction can be implemented, consider the entries in

table 7.4. In this table, let X = a and Y = b�Q00
, each with n bits. From this table,

it is clear that the sign of the di�erence can be written as:

Sign = Xlsb XNOR Ylsb (7.24)

Thus, the sign of the di�erence can be computed by using one gate, rather than

requiring a complete full-width carry-propagate addition. This hardware is su�cient

to handle the RN rounding mode which only requires the sign of the remainder

and no information about the magnitude itself. Again, this is because RN only

requires remainder information when trying to determine on which side of the mid-

point between two machine numbers the true quotient lies. As the exact halfway case

can not occur, exact equality to zero of the remainder need not be checked.

For the other three rounding modes, RP, RM, and RZ, remainder information is

used to detect if the true quotient is less than, greater than, or exactly equal to a

CHAPTER 7. FAST ROUNDING 135

machine number. Rather than using additional hardware to detect remainder equality

to zero, it is proposed to reuse existing hardware in the FP multiplier. For proper

implementation of IEEE rounding for FP multiplication, most FP multipliers use

dedicated sticky-bit logic. The sticky-bit of the multiplier is a ag signifying whether

all bits below the LSB of the product are zero. In the context of the product of the

back-multiplication of b � Q00
, this sticky-bit signals whether the product is exactly

equal to a, and thus whether the remainder is exactly zero.

For those cases in RP, RM, and RZ requiring remainder information, the product

b�Q00
is computed using RZ, and the LSB of a and b�Q00

are observed, along with

the sticky-bit from the multiplier. After using equation (7.24) to determine the sign,

the following switching expressions can be used:

(b�Q00
== a) = Sign AND Sticky (7.25)

(b�Q00 > a) = Sign AND Sticky (7.26)

(b�Q00 < a) = Sign (7.27)

7.7 Summary

In division by functional iteration, extensions to VLA techniques for reducing the

rounding penalty have been proposed. By using m bits of extra precision in the

adjusted quotient estimate, a back-multiplication and subtraction are required for

only 2
�m

of all cases, reducing the average latency for exactly-rounded quotients

formed using functional iteration. Further, a technique has been presented which

reduces the subtraction in the remainder formation to very simple combinational

logic using the LSB's of the dividend and the back product of the quotient estimate

and the divisor, along with the sticky bit from the multiplier. The combination of

these techniques allows for increased division performance in processors which can

exploit a VLA functional unit.

Chapter 8

Conclusion

8.1 Summary

High performance oating point units require high throughput, low latency functional

units. For maximum system performance, the FPU must include a high performance

FP adder, multiplier, and divider. As computer applications continue to increase

their oating point instruction content, the demand for higher performance FPUs

continues to increase.

The most frequent operation in FP intensive applications is addition. We have

proposed a VLA technique for FP addition to reduce the average latency by exploiting

the distribution of operands. The realization that not all operands require all of the

components in the addition dataow yields a speedup of as much 1.33 in average

addition performance for high clock-rate microprocessors.

In spite of the low division frequency in FP applications, high latency dividers have

a signi�cant e�ect on system performance. In order to keep the CPI penalty due to

division low, double precision division latency should be designed to be substantially

below 60 cycles, a typical performance of some of today's simpler microprocessors.

For scalar processors, a target of 10 cycle division latency is suggested. As the number

of instructions issued per cycle increases, this target decreases, as the e�ects of a slow

divider are accentuated by the increase in the urgency for division results. Depending

upon the desired design-point on the performance/area curve, either SRT division or

functional iteration may be appropriate.

136

CHAPTER 8. CONCLUSION 137

SRT division is a good choice when higher latency division is acceptable. How-

ever, in spite of the apparent simplicity of SRT dividers, the SRT algorithm contains

su�cient complexity to warrant continued investigation into next-quotient-digit table

design, as demonstrated by the infamous aw in the Intel SRT divider [89]. In this

dissertation, a methodology has been proposed to reduce the latency of SRT quotient-

digit selection tables, and thus increase SRT divider performance. Through the use

of Gray-encoding and slightly longer external carry-assimilating adders, SRT table

complexity can be reduced in terms of delay and area. While directly increasing the

radix of an SRT divider reduces the total number of iterations required, the time per

iteration must not also increase if an overall increase in performance is to be achieved.

Due to the increase in next-quotient-digit table delay and area for higher radices, the

individual stages in realistic SRT divider implementations are likely limited to radix

2 or 4. Further research on the application of aggressive circuit techniques to low

radix dividers may yet allow low radix stages to be competitive in terms of latency.

For implementations where higher performance is required, division by functional

iteration is the primary alternative. Both the Newton-Raphson and Goldschmidt it-

erations converge quadratically to the quotient. This is important for current long

formats, such as double precision (53 bits) and double extended precision (64 bits),

but it is especially important for possible future precisions, such as quad precision

(113 bits). Goldschmidt's algorithm achieves lower latency by reordering the opera-

tions and exploiting pipelined multipliers. Both iterations can order the operations

in order to exploit unused cycles in a pipelined multiplier allowing multiple division

operations to be in progress simultaneously. This is particularly important for special-

purpose applications, such as 3D graphics, that have a high throughput requirement.

We have proposed two VLA techniques to further increase the performance of

division by functional iteration. First, reciprocal caches are often e�ective in re-

ducing average division latency by exploiting redundant reciprocal computations.

A reasonably-sized reciprocal cache in conjunction with a Goldschmidt divider can

achieve a two-times speedup in average latency. However, while many applications

contain a large quantity of redundant reciprocals, there exists those which do not.

Further investigation may be required to analyze the underlying distributions in more

CHAPTER 8. CONCLUSION 138

detail. Second, while functional iteration leads to fast division implementations, these

implementations su�er from the lack of a readily-available �nal remainder and the

corresponding di�culty and latency penalty for exact rounding. We have therefore

shown that by computing extra guard bits in the quotient the frequency of the latency

penalty can be reduced quadratically in proportion to the added precision. The la-

tency penalty itself can be reduced by replacing the required carry-propagate-addition

with a comparison of two bits.

This dissertation demonstrates that VL functional units provide a means for

achieving higher performance than can be obtained through FL-only implementa-

tions. The next generation of performance-oriented processors require exible and

robust micro-architectures to best exploit the performance achievable with VLA and

VLC FPUs. As superscalar processors become more complex and move to higher

widths of instruction issue, it becomes even more imperative that processors incorpo-

rate VLA functional units due to the increased exposure of the latencies of individual

FP functional units.

Bringing together many of the themes of this dissertation, we suggest one pos-

sible organization of such a high performance FPU in �gure 8.1. The pipelined FP

adder in this FPU uses the proposed VLA addition algorithm. A pipelined VLA FP

multiplier is shown that could be possibly designed along the lines of the VLA ad-

dition algorithm of chapter 3, although further research is required to determine the

implementation details. Further, the multiplier allows for either full-width operands

or two sets of half-width operands. Such an arrangement facilitates data-parallel op-

erations desirable for many graphics applications. Division is computed through the

Newton-Raphson iteration. This allows for more than one division operation to be in

progress simultaneously, providing higher division throughput. Dedicated hardware

is included to provide a very accurate initial reciprocal approximation. A small recip-

rocal cache returns frequently-computed reciprocals at a much lower latency. VLA

exact rounding is supported in this implementation by using a multiplier with wider

precision than is strictly required in order to compute several extra guard bits in the

pre-rounded quotient estimate. These guard bits greatly increase the probability that

the quotient can be exactly rounded without an additional back-multiplication.

CHAPTER 8. CONCLUSION 139

VLA FP Adder VLA FP Multiplier

Division Initial
Approximation

Selectable
parallelism

Reciprocal
Cache

Newton-Raphson
Control

VLA Division
Rounding Control

Figure 8.1: Example FPU implementation

8.2 Future Work

There are many aspects of oating point unit design left to be investigated. Several

design issues in division remain unsolved. Currently, the computation of exactly

rounded quotients still has a �nite probability of incurring a latency penalty when

implementing division by functional iteration. While it has been shown how this

probability can be greatly reduced, it can not be eliminated for all operands. Further

research would investigate techniques for computing exactly rounded quotients with

no additional latency penalty for all combinations of operands.

The �eld of approximation theory as it relates to reciprocal table design continues

to be an active area of research. Higher performance division is possible by having

more accurate initial reciprocal and reciprocal square root approximations. The tables

that provide these approximations still remain large. It should be possible to design

even smaller tables with greater accuracy, without the addition of signi�cant delay.

The trend in oating point formats continues to change. For 3D graphics appli-

cations, single precision operations typically provide su�cient range and precision.

In contrast, scienti�c applications demand increasing amounts of precision, spawning

CHAPTER 8. CONCLUSION 140

the development of quad precision formats of 113 bits and more. The implications

of both of these extremes on functional unit design are very important. The trade-

o�s for these cases are most likely di�erent than of those for the current standard of

double precision. Investigating and understanding these tradeo�s is fundamental for

designing future FPUs.

Bibliography

[1] ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic,

1985.

[2] A. D. Booth, \A signed binary multiplication technique," Quarterly Journal of

Mechanics and Applied Mathematics, vol. 4, no. 2, pp. 236{240, 1951.

[3] H. Altwaijry and M. Flynn, \Performance/area tradeo�s in Booth multipliers,"

Technical Report No. CSL-TR-95-684, Computer Systems Laboratory, Stanford

University, November 1995.

[4] G. Bewick and M. J. Flynn, \Binary multiplication using partially redundant

multiples," Technical Report No. CSL-TR-92-528, Computer Systems Labora-

tory, Stanford University, June 1992.

[5] V. G. Oklobdzija, D. Villeger, and S. S. Liu, \A method for speed optimized

partial product reduction and generation of fast parallel multipliers using an

algorithmic approach," IEEE Transactions on Computers, vol. 45, no. 3, pp.

294{306, March 1996.

[6] A. R. Omondi, Computer Arithmetic Systems, Prentice Hall, 1994.

[7] N. T. Quach and M. J. Flynn, \High-speed addition in CMOS," IEEE Trans-

actions on Computers, vol. 41, no. 12, pp. 1612{1615, December 1992.

[8] Microprocessor Report, various issues, 1994-96.

[9] NAS Parallel Benchmarks 8/91.

141

BIBLIOGRAPHY 142

[10] G. Cybenko, L. Kipp, L. Pointer, and D. Kuck, \Supercomputer performance

evaluation and the perfect benchmarks," in International Conference on Super-

computing, June 1990, pp. 254{266.

[11] SPEC Benchmark Suite Release 2/92.

[12] S. F. Oberman and M. J. Flynn, \Design issues in division and other oating-

point operations," to appear in IEEE Transactions on Computers, 1997.

[13] DEC Fortran Language Reference Manual, 1992.

[14] J. C. Huck and M. J. Flynn, Analyzing Computer Architectures, IEEE Computer

Society Press, Washington, D.C., 1989.

[15] M. D. Smith, \Tracing with pixie," Technical Report No. CSL-TR-91-497,

Computer Systems Laboratory, Stanford University, November 1991.

[16] S. Oberman, N. Quach, and M. Flynn, \The design and implementation of a

high-performance oating-point divider," Technical Report No. CSL-TR-94-599,

Computer Systems Laboratory, Stanford University, January 1994.

[17] T. E. Williams and M. A. Horowitz, \A zero-overhead self-timed 160-ns 54-

b CMOS divider," IEEE Journal of Solid-State Circuits, vol. 26, no. 11, pp.

1651{1661, November 1991.

[18] D. Wong and M. Flynn, \Fast division using accurate quotient approximations

to reduce the number of iterations," IEEE Transactions on Computers, vol. 41,

no. 8, pp. 981{995, August 1992.

[19] J. M. Mulder, N. T. Quach, and M. J. Flynn, \An area model for on-chip

memories and its application," IEEE Journal of Solid-State Circuits, vol. 26, no.

2, pp. 98{105, February 1991.

[20] M. Darley, B. Kronlage, D. Bural, B. Churchill, D. Pulling, P. Wang, R. Iwamoto,

and L. Yang, \The TMS390C602A oating-point coprocessor for Sparc systems,"

IEEE Micro, vol. 10, no. 3, pp. 36{47, June 1990.

BIBLIOGRAPHY 143

[21] M. D. Ercegovac, T. Lang, and P. Montuschi, \Very high radix division with

selection by rounding and prescaling," IEEE Transactions on Computers, vol.

43, no. 8, pp. 909{918, August 1994.

[22] M. D. Ercegovac and T. Lang, Division and Square Root: Digit-Recurrence

Algorithms and Implementations, Kluwer Academic Publishers, 1994.

[23] S. F. Oberman and M. J. Flynn, \A variable latency pipelined oating-point

adder," in Proceedings of Euro-Par'96, Springer LNCS vol. 1124, August 1996,

pp. 183{192.

[24] S. Waser and M. Flynn, Introduction to Arithmetic for Digital Systems Designers,

Holt, Rinehart, and Winston, 1982.

[25] M. P. Farmwald, On the Design of High Performance Digital Arithmetic Units,

Ph.D. thesis, Stanford University, August 1981.

[26] E. Hokenek and R. K. Montoye, \Leading-zero anticipator (LZA) in the IBM

RISC System/6000 oating-point execution unit," IBM Journal of Research and

Development, vol. 34, no. 1, pp. 71{77, January 1990.

[27] N. T. Quach and M. J. Flynn, \Leading one prediction - implementation, gen-

eralization, and application," Technical Report No. CSL-TR-91-463, Computer

Systems Laboratory, Stanford University, March 1991.

[28] B. J. Benschneider et al., \A pipelined 50-Mhz CMOS 64-bit oating-point

arithmetic processor," IEEE Journal of Solid-State Circuits, vol. 24, no. 5, pp.

1317{1323, October 1989.

[29] M. Birman, A. Samuels, G. Chu, T. Chuk, L. Hu, J. McLeod, and J. Barnes,

\Developing the WTL 3170/3171 Sparc oating-point co-processors," IEEE Mi-

cro, vol. 10, no. 1, pp. 55{63, February 1990.

[30] P. Y. Lu, A. Jain, J. Kung, and P. H. Ang, \A 32-mop 32b CMOS oating-

point processor," in Digest of Technical Papers, IEEE International Solid-State

Circuits Conference, 1988, pp. 28{29.

BIBLIOGRAPHY 144

[31] D. Greenley et al., \UltraSPARC: the next generation superscalar 64-bit

SPARC," in Digest of Papers. COMPCON 95, March 1995, pp. 442{451.

[32] P. Bannon and J. Keller, \Internal architecture of Alpha 21164 microprocessor,"

in Digest of Papers COMPCON '95, March 1995, pp. 79{87.

[33] N. T. Quach and M. J. Flynn, \An improved algorithm for high-speed oating-

point addition," Technical Report No. CSL-TR-90-442, Computer Systems Lab-

oratory, Stanford University, August 1990.

[34] N. Quach and M. Flynn, \Design and implementation of the SNAP oating-point

adder," Technical Report No. CSL-TR-91-501, Computer Systems Laboratory,

Stanford University, December 1991.

[35] L. Kohn and S. W. Fu, \A 1,000,000 transistor microprocessor," in Digest of

Technical Papers, IEEE International Solid-State Circuits Conference, 1989, pp.

54{55.

[36] H. P. Sit, M. R. Nofal, and S. Kimn, \An 80 MFLOPS oating-point engine

in the Intel i860 processor," in Digest of Technical Papers, IEEE International

Conference on Computer Design, 1989, pp. 374{379.

[37] J. A. Kowaleski, G. M. Wolrich, T. C. Fischer, R. J. Dupcak, P. L. Kroesen,

T. Pham, and A. Olesin, \A dual execution pipelined oating-point CMOS pro-

cessor," in Digest of Technical Papers, IEEE International Solid-State Circuits

Conference, 1996, pp. 358{359.

[38] A. Srivastava and A. Eustace, \ATOM: A system for building customized pro-

gram analysis tools," in Proceedings of the SIGPLAN '94 Conference on Pro-

gramming Language Design and Implementation, June 1994, pp. 196{205.

[39] D. W. Sweeney, \An analysis of oating-point addition," IBM Systems Journal,

vol. 4, pp. 31{42, 1965.

[40] S. F. Oberman and M. J. Flynn, \Division algorithms and implementations," to

appear in IEEE Transactions on Computers, 1997.

BIBLIOGRAPHY 145

[41] C. V. Freiman, \Statistical analysis of certain binary division algorithms," IRE

Proceedings, vol. 49, pp. 91{103, 1961.

[42] J. E. Robertson, \A new class of digital division methods," IRE Transactions

on Electronic Computers, vol. EC-7, no. 3, pp. 88{92, September 1958.

[43] K. D. Tocher, \Techniques of Multiplication and Division for Automatic Binary

Computers," Quarterly Journal of Mechanics and Applied Mathematics, vol. 11,

Pt. 3, pp. 364{384, 1958.

[44] D. E. Atkins, \Higher-radix division using estimates of the divisor and partial

remainders," IEEE Transactions on Computers, vol. C-17, no. 10, pp. 925{934,

October 1968.

[45] K. G. Tan, \The theory and implementation of high-radix division," in Pro-

ceedings of the 4th IEEE Symposium on Computer Arithmetic, June 1978, pp.

154{163.

[46] M. Flynn, \On division by functional iteration," IEEE Transactions on Com-

puters, vol. C-19, no. 8, pp. 702{706, August 1970.

[47] P. Soderquist and M. Leeser, \An area/performance comparison of subtractive

and multiplicative divide/square root implementations," in Proceedings of the

12th IEEE Symposium on Computer Arithmetic, July 1995, pp. 132{139.

[48] M. D. Ercegovac and T. Lang, \Simple radix-4 division with operands scaling,"

IEEE Transactions on Computers, vol. C-39, no. 9, pp. 1204{1207, September

1990.

[49] J. Fandrianto, \Algorithm for high-speed shared radix 8 division and radix 8

square root," in Proceedings of the 9th IEEE Symposium on Computer Arith-

metic, July 1989, pp. 68{75.

[50] S. E. McQuillan, J. V. McCanny, and R. Hamill, \New algorithms and VLSI

architectures for SRT division and square root," in Proceedings of the 11th IEEE

Symposium on Computer Arithmetic, July 1993, pp. 80{86.

BIBLIOGRAPHY 146

[51] P. Montuschi and L. Ciminiera, \Reducing iteration time when result digit is

zero for radix 2 SRT division and square root with redundant remainders," IEEE

Transactions on Computers, vol. 42, no. 2, pp. 239{246, February 1993.

[52] P. Montuschi and L. Ciminiera, \Over-redundant digit sets and the design of

digit-by-digit division units," IEEE Transactions on Computers, vol. 43, no. 3,

pp. 269{277, March 1994.

[53] P. Montuschi and L. Ciminiera, \Radix-8 division with over-redundant digit

set," Journal of VLSI Signal Processing, vol. 7, no. 3, pp. 259{270, May 1994.

[54] N. Quach and M. Flynn, \A radix-64 oating-point divider," Technical Report

No. CSL-TR-92-529, Computer Systems Laboratory, Stanford University, June

1992.

[55] H. Srinivas and K. Parhi, \A fast radix-4 division algorithm and its architecture,"

IEEE Transactions on Computers, vol. 44, no. 6, pp. 826{831, June 1995.

[56] G. S. Taylor, \Radix 16 SRT dividers with overlapped quotient selection stages,"

in Proceedings of the 7th IEEE Symposium on Computer Arithmetic, June 1985,

pp. 64{71.

[57] T. Asprey, G. Averill, E. DeLano, R. Mason, B. Weiner, and J. Yetter, \Perfor-

mance features of the PA7100 microprocessor," IEEE Micro, vol. 13, no. 3, pp.

22{35, June 1993.

[58] D. Hunt, \Advanced performance features of the 64-bit PA-8000," in Digest of

Papers COMPCON '95, March 1995, pp. 123{128.

[59] T. Lynch, S. McIntyre, K. Tseng, S. Shaw, and T. Hurson, \High speed divider

with square root capability," U.S. Patent No. 5,128,891, 1992.

[60] J. A. Prabhu and G. B. Zyner, \167 MHz Radix-8 oating point divide and

square root using overlapped radix-2 stages," in Proceedings of the 12th IEEE

Symposium on Computer Arithmetic, July 1995.

BIBLIOGRAPHY 147

[61] A. Svoboda, \An algorithm for division," Information Processing Machines, vol.

9, pp. 29{34, 1963.

[62] M. D. Ercegovac and T. Lang, \On-the-y conversion of redundant into conven-

tional representations," IEEE Transactions on Computers, vol. C-36, no. 7, pp.

895{897, July 1987.

[63] M. D. Ercegovac and T. Lang, \On-the-y rounding," IEEE Transactions on

Computers, vol. 41, no. 12, pp. 1497{1503, December 1992.

[64] S. F. Anderson, J. G. Earle, R. E. Goldschmidt, and D. M. Powers, \The IBM

System/360 Model 91: Floating-point execution unit," IBM Journal of Research

and Development, vol. 11, pp. 34{53, January 1967.

[65] D. L. Fowler and J. E. Smith, \An accurate, high speed implementation of

division by reciprocal approximation," in Proceedings of the 9th IEEE Symposium

on Computer Arithmetic, September 1989, pp. 60{67.

[66] R. E. Goldschmidt, \Applications of division by convergence," M.S. thesis, Dept.

of Electrical Engineering, Massachusetts Institute of Technology, Cambridge,

Mass., June 1964.

[67] Intel, i860 64-bit microprocessor programmer's reference manual, 1989.

[68] P. W. Markstein, \Computation of elementary function on the IBM RISC Sys-

tem/6000 processor," IBM Journal of Research and Development, pp. 111{119,

January 1990.

[69] H. M. Darley et al., \Floating Point / Integer Processor with Divide and Square

Root Functions," U.S. Patent No. 4,878,190, 1989.

[70] W. S. Briggs and D. W. Matula, \A 17x69 Bit multiply and add unit with

redundant binary feedback and single cycle latency," in Proceedings of the 11th

IEEE Symposium on Computer Arithmetic, July 1993, pp. 163{170.

BIBLIOGRAPHY 148

[71] D. Matula, \Highly parallel divide and square root algorithms for a new gen-

eration oating point processor," in SCAN-89, International Symposium on

Scienti�c Computing, Computer Arithmetic, and Numeric Validation, October

1989.

[72] D. DasSarma and D. Matula, \Measuring the accuracy of ROM reciprocal ta-

bles," IEEE Transactions on Computers, vol. 43, no. 8, pp. 932{940, August

1994.

[73] D. DasSarma and D. Matula, \Faithful bipartite ROM reciprocal tables," in

Proceedings of the 12th IEEE Symposium on Computer Arithmetic, July 1995,

pp. 12{25.

[74] M. Ito, N. Takagi, and S. Yajima, \E�cient initial approximation and fast

converging methods for division and square root," in Proceedings of the 12th

IEEE Symposium on Computer Arithmetic, July 1995, pp. 2{9.

[75] M. J. Schulte et al., \Optimal initial approximations for the Newton-Raphson

division algorithm," Computing, vol. 53, pp. 233{242, 1994.

[76] E. Schwarz, \High-radix algorithms for high-order arithmetic operations," Tech-

nical Report No. CSL-TR-93-559, Computer Systems Laboratory, Stanford Uni-

versity, January 1993.

[77] E. Schwarz and M. Flynn, \Hardware starting approximation for the square root

operation," in Proceedings of the 11th IEEE Symposium on Computer Arith-

metic, July 1993, pp. 103{111.

[78] T. Williams, N. Patkar, and G. Shen, \SPARC64: A 64-b 64-active-instruction

out-of-order-execution MCM processor," IEEE Journal of Solid-State Circuits,

vol. 30, no. 11, pp. 1215{1226, November 1995.

[79] S. E. Richardson, \Exploiting trivial and redundant computation," in Pro-

ceedings of the 11th IEEE Symposium on Computer Arithmetic, July 1993, pp.

220{227.

BIBLIOGRAPHY 149

[80] J. Cortadella and T. Lang, \High-radix division and square root with specula-

tion," IEEE Transactions on Computers, vol. 43, no. 8, pp. 919{931, August

1994.

[81] N. Burgess and T. Williams, \Choices of operand truncation in the SRT division

algorithm," IEEE Transactions on Computers, vol. 44, no. 7, pp. 933{937, July

1995.

[82] J. Fandrianto, \Algorithm for high-speed shared radix 4 division and radix 4

square root," in Proceedings of the 8th IEEE Symposium on Computer Arith-

metic, May 1987, pp. 73{79.

[83] A. Barna and D. Porat, Integrated Circuits in Digital Electronics, John Wiley

and Sons, 1973.

[84] Synopsys Design Compiler version v3.2b, 1995.

[85] LSI Logic lcb500k standard-cell library, 1994.

[86] S. F. Oberman and M. J. Flynn, \Reducing division latency with reciprocal

caches," Reliable Computing, vol. 2, no. 2, pp. 147{153, April 1996.

[87] S. F. Oberman and M. J. Flynn, \On division and reciprocal caches," Technical

Report No. CSL-TR-95-666, Computer Systems Laboratory, Stanford University,

April 1995.

[88] E. Schwarz, \Rounding for quadratically converging algorithms for division and

square root," in Proceedings of 29th Asilomar Conf. on Signals, Systems, and

Computers, October 1995, pp. 600{603.

[89] H. P. Sharangpani and M. L. Barton, \Statistical analysis of oating point aw

in the pentium processor," Intel Corporation, November 1994.

