
EXECUTABLE FORMAL MODELS OF

DISTRIBUTED TRANSACTION SYSTEMS

BASED ON EVENT PROCESSING

a dissertation

submitted to the department of electrical engineering department

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

John Jerome Kenney

June 1996

c Copyright 1996

by

John Jerome Kenney

ii

I certify that I have read this thesis and that in my opin-

ion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

David Luckham
(Principal Advisor)

I certify that I have read this thesis and that in my opin-

ion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Gio Wiederhold

I certify that I have read this thesis and that in my opin-

ion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Arthur Keller
(Computer Science Department)

Approved for the University Committee on Graduate

Studies:

Dean of Graduate Studies

iii

Preface

This dissertation presents formal models of distributed transaction processing (DTP)

that are executable and testable. These models apply a new technology, Rapide, an

object-oriented executable architecture description language designed for specifying

and prototyping distributed, time-sensitive systems. Rapide's execution model is

based upon partially ordered sets of events (posets) and can represent true concur-

rency. This dissertation shows how the Rapide technology can be applied to specify,

prototype, and test DTP models.

In particular, this dissertation speci�es a reference architecture for the X/Open

DTP industry standard. The standard describes several components and their inter-

faces, a few instances of a software architecture, as well as several protocols { including

the two{phase commit protocol. The reference architecture, written in Rapide, de-

�nes architectures and behaviors of systems that comply with the X/Open standard.

It contains machine processable de�nitions of the component interfaces, their behav-

iors, and how the components may be connected together into architectures. It also

includes formal, checkable constraints on the individual component behaviors and on

the communication protocols between the components.

An extension to the X/Open standard is also presented. We add to the stan-

dard's constraints and behaviors associated with the two{phase commit protocol for

the property atomicity, the constraints and behaviors for the property isolation via

the two{phase locking protocol. These DTP properties, protocols, and system ar-

chitecture are interpreted in views that leaves a family of models (or framework) for

testing DTP standards. Each view is a reference architecture that is formally de�ned

and may be simulated, animated, and related to other views.

iv

This dissertation also applies a technique developed previously by Gennart and

Luckham [28] for testing applications for conformance with reference architectures.

This technique is based upon pattern mappings. Pattern mappings specify relation-

ships between architectures, and they permit an application's execution to be auto-

matically runtime tested for conformance with the constraints of a reference architec-

ture. As an example of this technique, an executable application system is described,

and it's executions are shown to violate the published X/Open DTP standard.

We expect the technology described in this dissertation to demonstrate to X/Open

(and other standards organizations) that formal and poset{based speci�cation of

standards can contribute signi�cantly to automated conformance testing. Check-

ing conformance of products is of practical importance to companies like X/Open

who promote \open" standards. Currently, X/Open uses test suites that are very

costly in time and e�ort to produce and maintain. Improvements in the testing pro-

cess based upon Rapide should reduce this cost and aid early detection of defects,

assure quality, and minimising time{to{market. Furthermore, we are in process (col-

laboratively) with SRI International to extend the present X/Open DTP reference

architecture with security properties and to demonstrate conformance testing of an

actual system developed by SRI. Thus, the Rapide technology is poised revolutionize

the development and the automated conformance checking of industry standards.

v

Acknowledgements

I want to thank my advisor, Professor David Luckham, for suggesting this topic, for

encouraging me to pursue it through its various incarnations, and for providing both

�nancial and intellectual support throughout my dissertation research. He has helped

extensively in formulating and re�ning ideas and in guiding the overall direction of

the research.

I am also grateful to my associate advisors, Professors Gio Widerhold and Arthur

Keller, for their friendship, for helping me to become a Ph.D. student and a computer

scientist, for their willingness to serve on my committee, and for their comments and

advice. I will always be indebited to them for their guidance with their wisdom and

common sense through my �rst two years at Stanford.

I am also grateful to my fellow members in the PAVG projects who have been very

supportive. Special thanks to Doug Bryan, Walter Mann and James Vera for much

technical help and for building the Rapide compiler and several peripheral tools. I

also thank Suvan Gerlach for her assistance in dealing with \the system."

Years ago, my parents and my brothers taught me to love learning. I thank them

for that lesson and for their love; for without either one, this thesis would never have

been written.

I also want to thank my many friends, most notably Damian Rouson and Tim

Pinkston, for making my time at Stanford enjoyable.

Finally, I would like to thank my �ance, Deborah Wilson, for patiently encouraging

me in this work during the past several years and for impatiently urging me to �nish.

Her love, support, and understanding gave me the strength to write this thesis. I am

in her debt for the many hours I spent working when we could have been together,

vi

and I look forward to spending the rest of my life discharging that debt.

This work was supported by DARPA under the O�ce of Naval Research (ONR)

contract N00014-92-J-1928 and by AFOSR under Grant AFOSR91-0354. I was also

supported in part by the IBM Graduate Fellowship program. The views and con-

clusions in this document are those of the author and should not be interpreted as

representative of the o�cial policies, either expressed or implied, of the ONR or the

U.S. Government.

vii

Contents

Preface iv

Acknowledgements vi

1 Introduction 1

1.1 Transaction Systems : 1

1.1.1 Databases : 1

1.1.2 Consistency : 2

1.1.3 Atomicity : 2

1.1.4 Isolation : 4

1.1.5 Durability : 6

1.2 DTP Standards : 7

1.2.1 LU 6.2 : 7

1.2.2 ISO OSI-TP & OSI-CCR : 8

1.2.3 X/Open DTP : 8

1.2.4 POSIX : 8

1.3 Formal Methods : 9

1.3.1 Formal Methods : 9

1.3.2 Formal Speci�cation : 10

1.3.3 Reference Architecture : 10

1.3.4 Rapide : 11

1.4 Summary of Results : 12

1.4.1 Domain of DTP : 12

viii

1.4.2 X/Open DTP Reference Architecture : : : : : : : : : : : : : : 13

1.4.3 Isolation Extension : 14

1.4.4 Conformance Testing : 15

1.5 Related Work : 16

1.5.1 PAVG : 16

1.5.2 Software Architecture and Composition : : : : : : : : : : : : : 18

1.5.3 Concurrent and Simulation Languages : : : : : : : : : : : : : 20

1.5.4 Formal Methods : 21

1.5.5 Transaction Processing : 21

1.6 Outline : 22

2 Principles of Transaction Systems 24

2.1 Databases : 24

2.2 Transactions : 25

2.3 Isolation : 27

2.3.1 Serial Executions. : 27

2.3.2 Serializable Executions. : 28

2.3.3 Final{state Equivalence. : 28

2.3.4 View Equivalence. : 29

2.3.5 Conict Equivalence. : 29

2.4 Consistency : 30

2.4.1 Consistency Predicate : 30

2.4.2 Consistency Preserving Transaction : : : : : : : : : : : : : : : 30

2.5 Atomicity : 31

2.6 Durability : 32

2.7 Common Protocols : 33

2.7.1 Two{Phase Commit Protocol : : : : : : : : : : : : : : : : : : 33

2.7.2 Two{Phase Locking Protocol : : : : : : : : : : : : : : : : : : 33

2.7.3 Write{Ahead Logging Protocol : : : : : : : : : : : : : : : : : 34

3 Principles of Formalization 35

3.1 Event Processing : 39

ix

3.1.1 Event{based Semantics : 39

3.1.2 Concurrency versus Interleaving : : : : : : : : : : : : : : : : : 40

3.1.3 Causality based upon Dependency : : : : : : : : : : : : : : : 42

3.2 Interface Types : 45

3.2.1 Interface Type Constructors : : : : : : : : : : : : : : : : : : : 47

3.3 Pattern Language : 51

3.3.1 Basic Patterns : 52

3.3.2 Constants : 52

3.3.3 Composite Patterns : 53

3.3.4 Placeholders : 54

3.3.5 Iteration : 55

3.3.6 Pattern Macro : 55

3.3.7 Timing Operators : 56

3.3.8 Guarded Patterns : 58

3.4 Architectures : 58

3.4.1 Components : 59

3.4.2 Connections : 60

3.4.3 Service Connection : 63

3.5 Modules : 66

3.5.1 Process : 66

3.5.2 Triggering : 72

3.5.3 Module Constructor : 73

3.5.4 Behavior : 76

3.6 Constraints : 79

3.6.1 Never Constraints : 80

3.6.2 Match Constraints : 81

3.6.3 Data Object Model Constraints : : : : : : : : : : : : : : : : : 81

3.7 Event Pattern Mappings : 83

3.7.1 Map Generators : 84

3.7.2 Transition Rules : 85

3.7.3 Induced Dependencies : 86

x

3.7.4 Conformance to Range Constraints : : : : : : : : : : : : : : : 87

3.8 Tool Suite : 88

3.8.1 Compiler (Rpdc) : 88

3.8.2 Constraint Checking Runtime System (RTS) : : : : : : : : : : 88

3.8.3 Partial Order Browser (Pob) : : : : : : : : : : : : : : : : : : : 88

3.8.4 Simulation Animator (Raptor) : : : : : : : : : : : : : : : : : : 89

4 DTP Domain 90

4.1 Transaction Implementation and Execution : : : : : : : : : : : : : : : 93

4.1.1 Architecture : 94

4.1.2 Behaviors : 97

4.1.3 Execution : 99

4.2 Atomicity : 101

4.2.1 Architecture : 101

4.2.2 Atomicity Constraint : 105

4.2.3 Two{Phase Commit Protocol : : : : : : : : : : : : : : : : : : 105

4.3 Isolation : 109

4.3.1 Architecture : 110

4.3.2 Isolation Constraints : 112

4.3.3 Two{Phase Locking Protocol : : : : : : : : : : : : : : : : : : 119

4.4 Durability : 123

4.4.1 Architecture : 123

4.4.2 Durability Constraint : 125

4.4.3 Write{Ahead Logging protocol : : : : : : : : : : : : : : : : : : 126

5 X/Open Reference Architecture: Case Studies 129

5.1 Introduction : 129

5.2 Background : 133

5.2.1 Open Architecture Systems : : : : : : : : : : : : : : : : : : : 134

5.2.2 Branding : 134

5.2.3 Implementation : 136

5.2.4 Why Rapide? : 136

xi

5.3 Description of the Case Studies : 138

5.3.1 Architecture Study : 138

5.3.2 Protocol Requirements Study : : : : : : : : : : : : : : : : : : 141

5.3.3 Conformance Testing Study : : : : : : : : : : : : : : : : : : : 145

5.3.4 Isolation Extension Study : 148

6 Conclusions 151

6.1 Rapide Summary : 151

6.1.1 Architecture De�nition Language : : : : : : : : : : : : : : : : 151

6.1.2 Rapide Computation : 153

6.1.3 X/Open DTP Case Studies : : : : : : : : : : : : : : : : : : : 154

6.2 Original Contributions : 156

6.3 Future Research : 158

6.3.1 Rapide Improvements : 158

6.3.2 Practical Applications of Formal Methods : : : : : : : : : : : 159

A X/Open DTP Reference Architecture 160

A.1 Types : 161

A.1.1 Global Types : 161

A.2 Services : 164

A.2.1 TX (Transaction Demarcation) Service : : : : : : : : : : : : : 164

A.2.2 XA Service : 168

A.2.3 AR Service : 173

A.3 Interfaces : 174

A.3.1 Application Program Interface : : : : : : : : : : : : : : : : : : 174

A.3.2 Transaction Manager Interface : : : : : : : : : : : : : : : : : : 174

A.3.3 Resource Manager Interface : : : : : : : : : : : : : : : : : : : 176

A.4 Behaviors : 177

A.4.1 Transaction Manager Behavior : : : : : : : : : : : : : : : : : : 177

A.4.2 Resource Manager Behavior : : : : : : : : : : : : : : : : : : : 188

A.4.3 Application Program Module Generator : : : : : : : : : : : : 190

A.5 Architectures : 190

xii

B Bank System 192

B.1 Services : 192

B.1.1 Transaction Identi�er : 192

B.1.2 Application Program to Resource Manager Service : : : : : : 193

B.1.3 Application Program to Transaction Manager Service : : : : : 193

B.1.4 Transaction Manager to Resource Manager Service : : : : : : 194

B.1.5 Resource Manager to Lock Manager Service : : : : : : : : : : 194

B.2 Components : 196

B.2.1 Application Program : 196

B.2.2 Transaction Manager Interface and Behavior : : : : : : : : : : 197

B.2.3 Resource Manager : 201

B.2.4 Lock Manager : 203

B.2.5 Resources : 205

B.3 Architecture : 206

C Conformance Testing Maps 207

C.1 Rapide Maps : 207

C.2 Atomicity : 207

C.3 Isolation : 208

C.4 X/Open : 209

C.5 Bank System Execution : 209

C.6 Mapped Execution : 210

C.7 Violation : 210

Bibliography 210

Glossary 223

Index 226

xiii

List of Tables

xiv

List of Figures

3.1 A Rapide architecture (top layer) and system (all). : : : : : : : : : : 37

3.2 Timed poset : 43

3.3 Dependency poset : 44

3.4 Timed, dependency poset : 45

3.5 This example shows two reads of version ver1 on the object by two

modules that use the same data object. The nodes in the graph are

the events and the arcs are the dependencies. The evolution of the

state is depicted on the left{hand side with the tuple \<val1,ver1>"

indicating the value and version of the data object. At the top of the

�gure when the read calls occur, the state of the data object is the

same as at the bottom of the �gure when the read returns occur. : : 49

3.6 This example shows the READ!WRITE dependency; the write of

version ver2 on the object occurs after version ver1 is read. : : : : : : 50

3.7 This example shows the WRITE!WRITE dependency; the write of

version ver3 on the object after the write of version ver2. : : : : : : : 50

3.8 This example shows the WRITE!READ dependency; the read of ver-

sion ver2 on the object occurs after version ver2 is written. : : : : : : 51

3.9 An execution of a module constructed from Simple. : : : : : : : : : : 76

3.10 An execution of a module generated from the behavior. : : : : : : : : 79

4.1 Simple Transaction Architecture : 94

4.2 Data Object Interface Type Constructor : : : : : : : : : : : : : : : : 95

4.3 Application Program Interface Type Constructor : : : : : : : : : : : 95

4.4 Data Object Service Interface Type Constructor : : : : : : : : : : : : 96

xv

4.5 AP{Data Object View : 96

4.6 Fully Instantiated Architecture : 97

4.7 Single Version Integer Object Implementation : : : : : : : : : : : : : 98

4.8 Application Program's Behavior : 98

4.9 An Execution : 99

4.10 Atomicity View Architecture : 101

4.11 AP an RM Work Request Service : 102

4.12 Transaction Commitment Service : 103

4.13 Application Program Interface : 103

4.14 Resource Manager : 104

4.15 System Architecture : 104

4.16 Atomicity Constraint : 105

4.17 Transaction Commitment Service for the Two{Phase Commit Protocol 106

4.18 Two{Phase Commit Behavior : 107

4.19 Example Execution of Two{Phase Commit Protocol : : : : : : : : : : 108

4.20 Coordination Property : 109

4.21 Isolation View Architecture : 110

4.22 Isolation View of Resource Manager Interface : : : : : : : : : : : : : 111

4.23 An Example Resource Manager Implementation : : : : : : : : : : : : 111

4.24 Serial Execution Constraint : 113

4.25 Isolation { Conict Serializability Constraint : : : : : : : : : : : : : : 116

4.26 Lock{based Pessimistic Protocol Architecture : : : : : : : : : : : : : 120

4.27 Lock Manager Interface : 121

4.28 Lock Manager can be implemented with a process generator. : : : : : 122

4.29 Well{formed Transaction Constraint : : : : : : : : : : : : : : : : : : 122

4.30 Two{Phase Locking Constraint : 123

4.31 Durability Service : 125

4.32 Durability Constraint : 126

4.33 Log{based Protocol Architecture : 127

4.34 Write{Ahead Constraint : 127

xvi

A.1 Local Instance Architecture : 190

xvii

Chapter 1

Introduction

This chapter provides �rst a brief, general overview of the properties and implemen-

tation protocols associated with transaction systems. Section 1.2 briey describes

several exemplary standards for distributed transaction processing (DTP) systems.

Methods to deal with formally specifying the complexities of such systems are in-

troduced in Section 1.3, and this section also describes the bene�ts obtained from

a formal reference architecture. Section 1.4 summarizes the speci�c, original con-

tributions of the dissertation. An overview of some of the work related to these

contributions is given in Section 1.5, and Section 1.6 outlines and summarizes each

major part of this dissertation.

1.1 Transaction Systems

1.1.1 Databases

Databases are partial models that provide a means to record facts about particu-

lar aspects of a domain. Implicitly, databases have state, and at every instant the

database state is the collection of all the facts it contains. However, just as a model

changes to remain current, so must a database change. Changes are introduced into

a database by the execution of transactions. Transactions are programs that access

1

CHAPTER 1. INTRODUCTION 2

and manipulate the data1 in the database. As changes occur, the transaction system

insures the preservation of the database's validity.

1.1.2 Consistency

Determining the validity of the database involves checking that the data satis�es con-

straints placed on the database. One class of constraints, called integrity constraints,

restrict the static properties of database states and implicitly the dynamic proper-

ties of state transitions. The database is said to be consistent if it satis�es all its

integrity constraints. Consider the example of a bank that has, as its data, variables

representing the balances of the accounts and a variable representing the bank's total

assets. It has an integrity constraint that the system must maintain the equivalence

between the sum of all the balances of the accounts and the total assets. Whenever

a user deposits or withdraws from an account, the transaction system must change

both the account and the total assets variable to keep the database state consistent.

Consistency does not mean correctness, because eventhough a database is con-

sistent it may not be correct. Transactions can make factual errors. For example,

if a transfer transaction is incorrectly implemented as two deposits, rather than as

one deposit and one withdrawal. As long as after the transaction executes, the total

assests variable is equal to the sum of the accounts, the database will be consistent.

However, this transaction (and therefore the database) is obviously incorrect.

1.1.3 Atomicity

Often the database must become temporarily inconsistent in order to transform it to

a new consistent state. To cope with these temporary inconsistencies, sequences of

primitive actions on the database's resources are grouped to form larger transactions.

Since any transaction can be described as consisting of read and write operations

of simple data objects, these operations are taken as primitives. These primitive

1The terms resource and data objects are commonly used to refer to the data in the database.

The two terms are distinguished by assuming data objects are simple and have an interface limited to

reading and writing, while resources have more complex interfaces and are assumed to be composed

of several data objects.

CHAPTER 1. INTRODUCTION 3

operations are assumed to have behaviors that are not decomposable, i.e., atomic.

Atomic operations are operations that are performed entirely or not at all; they

cannot be only partially done at termination. In general, transactions are larger

atomic operations on the database that transform it from one consistent state to a

new consistent state.

The most common approach to achieving atomicity is the two{phase commit pro-

tocol [31, 32, 57]. The protocol divides transaction commitment into two phases.

Commitment refers to whether the transaction can end successfully, i.e., can do what

it was requested to do. In Phase 1, the polling phase, each resource is asked whether

it can commit its part of the transaction, if it is requested to do so. If a resource

determines that it can commit its work, it replies a�rmatively. This positive re-

sponse is a promise, guaranteeing that if asked to commit, it will. A negative reply

reports failure for any reason. When all the resources have responded, Phase 2, the

decision phase, is entered. If all resources responded a�rmatively, then all of the

resources are requested to commit their parts of the transaction creating a new con-

sistent state. Otherwise the resources are all requested to undo their parts of the

transaction thereby restoring the database to a previous, consistent state. Thus, the

entire transaction is ensured of being either atomically committed or undone.

Since transactions are atomic operations, if a transaction system has a critical

constituent primitive action that aborts or fails, making completion of the entire

transaction impossible, then the entire transaction must be undone. Failures are re-

lated to accidents encountered by the transaction system during a particular attempt

to ful�ll a transaction request. Why should the transaction system allow a transac-

tion that may fail to begin executing? That is because it is not always possible to

a priori determine whether a transaction will fail. Similar to system failure, abortion

is when the user wants the requested transaction to be undone. Of course, a user

may request an abort of a transaction at any time, but the transaction system may

not always be able to ful�ll an abortion request. In particular, if a transaction has

already ended, then the associated abortion request will be denied.

A general approach for undoing a transaction is to maintain a history of all changes

made to the database and the status of each transaction. This history is called a log.

CHAPTER 1. INTRODUCTION 4

It contains records that encode the set of data objects updated by the transactions

and their respective old and new values. Using the old and new values and a recovery

scheme, the transaction system can undo a transaction. The undo procedure scans

backwards from the end of the log until the beginning indicator for the transaction

is found. During this scan each record denoting a write for the transaction is used to

rewrite the old value back.

1.1.4 Isolation

Since even with abortion and failure transactions can maintain their atomicity, it

seems natural to assume that transactions explicitly mark the boundaries between

consistent database states. This assumption is often expressed as a property of

transactions: that if a transaction is begun on a consistent database state it will

be guaranteed to end with a state that is also consistent, i.e., transactions are con-

sistency preserving. However, transactions are only guaranteed to transform the

database between consistent database states when they do not overlap. Two transac-

tion executions overlap when they occupy the same time interval or access the same

resource. Therefore, the transaction system must also insure that transaction execu-

tions are non-overlapping. This property is called isolation. An isolated transaction

has changes that are invisible to other transactions happening at the same time.

If i) all transactions are consistency preserving and are executed in isolation from

other transactions, ii) initially the database state was consistent, and iii) the trans-

action system behaves \correctly," then every execution must result in a consistent

database state. This de�nition of correctness is based upon the concept of a serial

execution. In a serial execution, the transactions execute one at a time. This is one

correct way to execute them, because each consistency preserving transaction will

begin in a consistent database state and terminate with the database in a consistent

state. However, serial executions provide very poor performance, because they do

not allow transactions to concurrently share resources, and a single transaction rarely

requires all the resources. Clearly, for performance reasons, a more general notion of

correctness is needed.

If a transaction is executed concurrently with other transactions, then it is natural

CHAPTER 1. INTRODUCTION 5

to assume that the concurrent execution is correct if and only if its e�ects are the

same as that obtained by running the same transactions serially in some order. Since

a serial execution is correct, any execution that is equivalent to a serial execution

must also be correct. An execution that is equivalent to a serial execution is called a

serializable execution.

Clearly, the usefulness of serializability is dependent on the de�nition of equiva-

lence. Equivalence of transaction executions is commonly based upon conict. Con-

ict refers to the ability of an action's e�ect on the resources to adversely a�ect

another action's e�ect on the resources. If such interference is possible, those actions

are said to be in conict. Two actions are in conict if they operate on the same data

item and one of them is a write. An execution is conict serializable, if all conicting

actions in the execution are executed in the same order as some serial execution of

the same transactions.

Two general approaches have been used to achieve serializability: optimistic and

pessimistic. Pessimistic approaches limit transaction executions to only consistent

ones; transactions are prevented from executing unless they can be guaranteed a pri-

ori to never come into conict with any other transaction currently being executed.

This is called pessimistic, because it assumes maximum contention among concur-

rent transactions. For example, assume a transaction that will give a raise to the

lowest paid employee. When executed under a pessimistic approach, the transaction

would prevent any other transaction that would access the employees' salaries from

executing, because any employee may be selected as the lowest paid one.

One pessimistic protocol is called two{phase locking [23]. Locks are a synchroniza-

tion method in which transactions dynamically reserve data before accessing them.

In the �rst phase of the two{phase locking protocol, a transaction only acquires (does

not release) locks, and in the second phase the transaction only releases (does not

acquire) locks. The protocol ensures serializability, because it insures that the order

in which any two transactions access the same object (a possible source of conict)

is the same as the order in which those transactions access any other object.

Optimistic protocols [56] are not fundamentally based upon locking. These ap-

proaches are based upon the assumption that conicts occur infrequently. They allow

CHAPTER 1. INTRODUCTION 6

all transactions executions and then validate correctness at commitment. They work

by allowing updates to occur on a private copy of the data and then checking (ef-

fectively at commitment) to see whether there are in fact any conicts. If not, the

updates are installed in the database; otherwise the transaction is undone.

1.1.5 Durability

It is not enough to set the transaction system to just any consistent database state

whenever a transaction commits. The system must not erase the e�ects of committed

transactions. Transactions are durable, if their committed changes are guaranteed to

persist for other transactions. Durability in the ideal form is impossible to implement

because of failures that lose information. Once such a loss is detected, the durable

transaction system must attempt to restore the lost database state to the state that

existed prior to the occurrence of the failure. If too much information was lost, it will

be impossible to restore that previous state.

The process of restoring the state is called recovery. Recovery strategies and

algorithms are based upon replicating the data. The approaches range from making

an exact replica or duplicate copy of the data to using a log of all update operations.

Duplicate copies are used, because it is assumed the copies will have independent

failures from the primary copy and will provide a greater probability of having at

least one usable copy of the data. However, creating copies is commonly done only

when no transactions are being executed. Such quiescent times rarely occur naturally

during a system's execution, and if the system creates one, the user delays are often

unacceptable. Therefore, it is more common to maintain a log as the system executes.

After a failure, the information stored in the log is used to re{execute the transactions,

and thereby restore the database state.

Durability and the other transactional properties (atomicity, consistency and iso-

lation) are more di�cult to ensure when the transaction system is dispersed geo-

graphically around several sites. In particular, where control, knowledge (database

schema), processing or state is spread (or distributed) among the sites, each site de-

pendent on the others. As a consequence of dispersing the transaction processing

engines, the distributed system must adhere to common communication protocols (or

CHAPTER 1. INTRODUCTION 7

standards) to behave properly.

1.2 DTP Standards

Distributed transaction processing (DTP) is an important aspect of information sys-

tems, and it's importance will grow. As databases have become more commonplace

and decentralized, transactions have begun to execute across multiple databases. This

trend will continue, and the complexity and requirements on the interoperability be-

tween the transaction processing engines will increase.

To facilitate this trend, agreements on how transaction processing components

communicate will be needed. These agreements take the form of software interoper-

ation standards, i.e., models to which others must conform inorder to communicate.

Such standards describe component interfaces, behaviors, communication protocols,

and software architectures. For example, a typical DTP system is a collection of trans-

action processing engines, collections of data (databases) and application programs

that logically belong to the same system but are spread over sites of a computer

network. There are many DTP standards, and we describe only a few of the well

established or emerging ones.

1.2.1 LU 6.2

Systems Network Architecture (SNA) is IBM's architecture for data communication

between distributed systems. SNA's protocols have been enhanced via the \Logical

Unit 6.2" (LU 6.2) protocols [38] to support transaction processing and other func-

tion applications. LU 6.2 includes facilities for transaction invocation, data transfer,

two{phase commit, and recovery after transaction or network failure. It de�nes an

application programming interface (or API) and underlying layers of services. All of

the LU 6.2 protocols are \fully" speci�ed, published, and tested. However, its speci-

�cation is not in a form that is directly ameniable to automated testing nor reusable

to developing standards.

CHAPTER 1. INTRODUCTION 8

1.2.2 ISO OSI-TP & OSI-CCR

The International Standards Organization (ISO) has de�ned several standard pro-

tocols for \Open Systems Interconnection (OSI)" that allows transaction systems to

interoperate [42]. Two of these standards are signi�cant to this dissertation. They

are: Open System Interconnect | Transaction Processing (OSI-TP) [45] and Open

Systems Interconnection | Commit Control and Recovery (OSI-CCR) [43]. These

ISO{OSI standard protocols operate atop the OSI six{layer communications protocol

stack, and they do not de�ne any programming interfaces; they simply de�ne mes-

sage interfaces (or formats) to allow computers to interoperate using the two{phase

commit protocol.

1.2.3 X/Open DTP

X/Open Company Limited is de�ning a standard [98, 99, 100, 101] that includes an

application programming interface to allow applications to be portable. The X/Open

DTP standard's purpose is to de�ne a standard communication architecture through

which multiple application programs may share resources while coordinating their

work into transactions that may execute concurrently. It describes several compo-

nents and their interfaces, a few instances of a system architecture, as well as several

protocols | including the two{phase commit protocol. Overall, the X/Open DTP

documents total over 400 pages. Even so, the standard attempts to ensure only

the atomicity of transaction systems and does not (so far) address the other ACID

properties.

1.2.4 POSIX

The IEEE POSIX Working Group (Institute of Electrical and Electronics Engineers,

Portable Operating System Interface for Computing Environments) is producing stan-

dards for portable operating systems. POSIX refers collectively to a number of stan-

dards speci�cations, but at the time of this writing, the only a few speci�cations have

CHAPTER 1. INTRODUCTION 9

been approved. Most notable is POSIX.1 [80] which has taken a number of UNIX 2

concepts and replaced them with abstractions. Enabling otherwise UNIX incompat-

ible systems potentially \POSIX{compliant" (whatever that means). The standard

does not rede�ne UNIX; it de�nes interfaces, not an implementation.

One POSIX group (POSIX.11 [81]) is working on a standard for transaction pro-

cessing. This standard, like the POSIX.1 standard, may have some advantage as a

consensus standard, but in general they are too skimpy and watered down. Also,

because it is a consensus standard and vendors have di�erent interests, it might take

years before this POSIX extension is de�ned.

1.3 Formal Methods

Because of the complexity of DTP standards, especially their system architectures,

there is a need for a formal computational methodology for the design and construc-

tion of DTP systems, including the architectural aspects of the systems.

1.3.1 Formal Methods

Formal methods are mathematically based techniques for describing system proper-

ties. They provide frameworks for specifying, developing, and verifying systems in a

systematic, rather than ad hoc, manner. Formal methods can be used in all phases of a

system's development. They assist in performing system design during decomposition

and re�nement, as well as recording design decisions and assumptions. To learn from

the experiences of building a prototype system, developers can do a critical analysis

of its functionality and performance after it has been built. Using a formal method

will help the critical analysis in revealing unstated assumptions, inconsistencies, and

unintentional incompleteness in the system.

2UNIX is a registered trademark in the United States and other countries of Santa Cruz Opera-

tions, Inc., licensed exclusively through X/Open Company Limited.

CHAPTER 1. INTRODUCTION 10

1.3.2 Formal Speci�cation

A speci�cation serves as a contract, a valuable piece of documentation, and a means

of communication among a client, a speci�er, and an implementor. Speci�cations are

high level and declarative in nature; they describe the \what" rather than the \how."

If speci�cations are formal, they also serve as an expression of the correctness criteria

against which system implementations can be veri�ed and validated.

Speci�cally for transaction systems, each application has speci�c axioms of its

theory of integrity constraints. The veri�cation of integrity constraints involves the

consistency proof of the set of constraints. The validation of a transaction against

a set of integrity constraints involves the proof that the transaction preserves the

validity of the integrity constraints. Proofs of this nature ensure the correctness of

the system design. And such provably correct formal speci�cations are what is needed

to represent complex critical transaction system applications.

1.3.3 Reference Architecture

Formal methods are not just needed for the applications, but for the transaction

processing engines as well, albeit for di�erent reasons. The engine must ensure the

atomicity, isolation, and durability properties of the transactions as it executes them.

In general, ensuring such properties in a system is di�cult. One approach to han-

dling this di�culty is to emphasize architecture. Architectures should be represented

formally in a machine processable, architecture description language.

Architecture, when used in this context, deals with the gross overall structure and

composition of software components that are used to build a system. Each compo-

nent has an interface that de�nes the ways the component can communicate with

other components. A minimal architecture de�nition consists of a set of component

interfaces and a set of connections between those interfaces.

The component interfaces and connections alone are not su�cient to describe a

system; the behavior of the system is needed as well. The behavior can be described

in two ways, either as a constraint or as executable code. Programmer can use

executable code to develop a control ow abstraction of the system, and from this

CHAPTER 1. INTRODUCTION 11

abstraction understand what the system is doing. Executable code can be simulated,

and the programmer can observe what happened during that execution. Constraints

assist the programmer in further understanding the system by describing properties

of all conforming executions.

These requirements can be abstracted to de�ne a reference architecture, a clear,

precise, executable, and testable speci�cation of how a standard should be repre-

sented. A reference architecture should contain formal, machine processable de�ni-

tions of the component interfaces, their behaviors, and how the components may be

connected together into architecture instancess, as well as formal constraints on those

behaviors and on the communication protocols between the components. It can be

interpreted as both a goal and a yardstick. As a goal, it is clear description of the

desired behavior. As a yardstick, it must be precise and testable.

1.3.4 Rapide

This dissertation uses a new technology developed by the Program Analysis and

Veri�cation Group led by Prof. David Luckham, called Rapide [9, 67, 83, 84, 85,

86, 87, 88, 89], to de�ne reference architectures. In Rapide, it is possible to specify

a program as a collection of modules whose execution is triggered by speci�able

conditions. The speci�cations of the triggering conditions may include event execution

and state. Rapide uses potential causality and time between events, as well as the

state associated with the events as the primary triggering conditions. We de�ne the

potential causality relation as the transitive closure over the following: i) every event

a particular Rapide process generates potentially causes all subsequent events that

process generates, ii) the event denoting the sending of a message potentially causes

the event denoting the receiving of the same message, and iii) events triggered by a

condition are potentially caused by the condition. From this de�nition, it is easy to

see that potential causality is a partially ordered relation over events.

Rapide provides features for specifying and simulating both abstract system ar-

chitectures and protocols. This dissertation takes these constructs and speci�cations

and shows how to perform very powerful analyses with them. Partial orders of events

are used to develop algorithms and methodology to analyze the interactions among

CHAPTER 1. INTRODUCTION 12

transaction models, concurrency control mechanisms, recovery strategies, and ab-

stract system architectures.

1.4 Summary of Results

The speci�c contributions documented in this dissertation include:

� a de�nition of the distributed transaction processing domain,

� a reference architecture for the X/Open DTP industry standard,

� an extension to the X/Open reference architecture to specify isolation, and

� an application of a methodology for testing applications for conformance to

reference architectures developed by Gennart and Luckham [28].

1.4.1 Domain of DTP

This dissertation develops concepts and language for formally de�ning the domain of

DTP. A domain is a set of concepts, predicates, components, protocols, and archi-

tectures. The domain of DTP presented includes a collection of basic and prede�ned

types for formally specifying commitment protocols, concurrency control mechanisms,

recovery strategies, and abstract system architectures.

An architecture speci�es the types of components of the system, the number each

type of component, and how the components interact so as to satisfy the requirements

of the system. The particular style of architecture [68] used in this dissertation is the

interface connection architecture. An interface connection architecture de�nes all

communication between the components of the system using only the interfaces. In-

terfaces specify both provided and required features. Connections are de�ned between

a required feature of one component and a provided feature of another. Thus, all of

the connections between components in an architecture are de�ned as connections

between interface features of those components. This is only possible because the

architecture de�nition language used allows component interfaces to specify required

features.

CHAPTER 1. INTRODUCTION 13

This dissertation also presents a methodology to analyze the architectures of the

DTP domain based upon developing prototypes. Prototype models are built because

the kinds of systems being modelled are not practical starting points for analysis or

experimentation, usually because they are too expensive to build, or inaccessible when

built, or simply too complex. The prototyping methodology used in this dissertation

is an example of evolutionary prototyping. Evolutionary prototyping is the process of

developing a prototype for a system gradually, satisfying some requirements before

attempting to improve its capabilities so as to satisfy others. There are several rea-

sons to do this. The most important is to understand the requirements themselves.

Information gained from the prototype should help uncover inconsistencies, incom-

pleteness and inaccuracies. If we simply try to build a program to satisfy everything

a once, we will be in danger of getting one big mess. This is another reason for for-

malizing programs, because the programs are too complex to reason about in their

natural, uni�ed state.

After building a prototype that satis�es the requirements, it is natural to expect

that the prototype's architecture should be a template for guiding the development of

the system (or family of systems). As a template, an architecture de�nes constraints

on a system. A system \has" that architecture if it conforms to those constraints (in a

sense to be de�ned), and if it does, then it meets the given requirements. Conformance

to architectural constraints can be checked at runtime, or, in some cases, decided by

proof methods.

1.4.2 X/Open DTP Reference Architecture

The description of the industry standard contained in the X/Open documents is in-

formal, consisting of English text together with component interfaces given in C. The

important features of the standard are the interfaces and protocols (in English and

state tables) by which the interface functions must be called in speci�ed sequences.

The calling sequences are described in terms of a single thread of control (or thread)

and C function calls.

Many di�erent systems with various applications and resources may satisfy this

CHAPTER 1. INTRODUCTION 14

standard. Ones that do are easier to combine together, thus promoting \open" sys-

tems. The goal of open systems is to build compliant systems with composable parts

from more than one software vendor at relatively low cost by \instantiating" an

\open" shared design.

The X/Open DTP shared design is a software architecture that should be less con-

cerned with the algorithms and data structures used within components than with

the overall system structure. Structural issues include: gross organization and global

control structure; assignment of functionality to system components; protocols for

communication and synchronization; scaling and performance; and selection amoung

design alternatives. The X/Open DTP architecture de�nes constraints on compliant

system instances and is therefore a standard. A standard in this sense is a con-

straint on the structure and behavior of compliant system instances. Codi�cation of

such architectural standards can be critically important in assuring that the various

components of a system are integrated correctly.

The reference architecture we developed for the X/Open standard is a formaliza-

tion that is executable and testable. It formally de�nes the component interfaces,

behaviors, and architectures. It also formally de�nes constraints and protocols on

the executions of the architectures. The approach formalizes many of the documents

informal ideas in terms of Rapide's computational model | partial orders of event

sets (posets).

1.4.3 Isolation Extension

The X/Open DTP standard is still evolving and currently only de�nes a commitment

protocol for ensuring atomicity, and even in this de�nition no guarantees are made in

the presence of failures. In the case of isolation, only very brief descriptions are given

that relate to only the basic forms, even though more relaxed forms of isolation are

viewed as a signi�cant advance for SQL2 [44]. We studied the e�ects of extending the

standard with several constraints for isolation and with prototypical behaviors that

implement the two{phase locking protocol that ensures isolation.

CHAPTER 1. INTRODUCTION 15

1.4.4 Conformance Testing

X/Open Company Limited is a consortium of vendors who are de�ning portability

standards for the UNIX environment. One function they perform is the branding of

compliant components. X/Open has introduced a trademark to identify products that

conform to its speci�cations. Branding assures the user that the product works as

outlined by the standard. When branding works (and X/Open hasn't yet got it work-

ing across the board), it ensures that information systems buyers can choose platform

vendor, or even application vendor, without fear of interoperability problems.

At present, X/Open endorses 750 products that carry the X/Open brand via

conformance testing. Conformance testing involves detecting di�erences between an

application's execution and a standard's constraints. Generally, such testing is called

runtime consistency checking. Runtime consistency checking is a technique for verify-

ing whether an execution of a program satis�es a speci�cation at run time. X/Open

markets their testing environment and test suite to software vendors who perform the

testing themselves. X/open receives the results from the vendor and uses the vendors'

disclosures as the basis for branding.

Current approaches for runtime consistency checking3 are limited and cannot de-

tect all violations of distributed transaction processing, e.g., a response to a poll based

upon some (not all) of its inputs. However, Rapide uses an execution model that al-

lows the encoding of causal information so that such violations may be detected. The

fundamental principle for conformance testing in Rapide is based upon event pat-

tern mappings. Event pattern mappings enable several improvements for consistency

checking including:

� fully automated testing of system behavior for conformance to reference archi-

tecture constraints,

� automated detection of constraint violations,

� causal history of violations for analysis of compliance errors, and

3We don't know very much about X/Open's speci�c \branding" techniques; this comment is

based upon discussions with several commercial DTP system vendors.

CHAPTER 1. INTRODUCTION 16

� possibility of permanent self{testings of systems, e.g., for critical properties like

security.

Thus, mappings specify relationships between architectures, and they permit an ap-

plication's execution to be automatically runtime tested for conformance with the

constraints of a reference architecture.

1.5 Related Work

This dissertation is related to a considerable amount of work done by others. Most

of the software architectural work was directly inuenced by and done in conjunction

with other members of the PAVG group at Stanford. A few other groups are working

on environments for designing and analyzing composable software systems, architec-

ture description languages, and software architecture models with varying levels of

formalization. Additionally, there has been much work on standardizing transaction

processing. There are several general transaction processing books and models, as

well as extensive work on formalizing the concurrency control strategies. Their work

will be highlighted below.

1.5.1 PAVG

Many of the concepts embodied in Rapide [83, 84, 85, 86, 87, 88, 89] have evolved

from prior work at Stanford in the Program Analysis and Veri�cation Group (PAVG)

led by Prof. David Luckham in association with Frank Belz from TRW. They have

(separately and together) made pioneering advances in the area of language design and

tool development for the purpose of applying formal methods and analysis techniques

to software and system design. Rapide has been de�ned, evaluated and evolved by

the Stanford/TRW ProtoTech and DSSA team, and is the result of a long series of

experimental prototyping and executable architecture de�nition languages (CPL [9,

67], Rapide-0.2 [14], Micro-Rapide [65, 66], Interim Rapide-1, Graphical Rapide),

which themselves drew heavily upon the prior work of the PAVG.

Anna [51, 59, 61, 69], developed by PAVG, is a language extension of Ada [94]

CHAPTER 1. INTRODUCTION 17

to include facilities for formally specifying the intended behavior of Ada programs.

Anna tools include a speci�cation analyzer, a tool for the debugging of and reasoning

about the implications of formal speci�cations; and a runtime annotation checker.

The Anna tool suite has been distributed to around sixty sites, twenty in academia

and forty in industry. There is an Anna User's Group mailing list with over �fty

active members.

TSL [36, 58, 62, 70] (Task Sequencing Language), developed by PAVG, is an

annotation and speci�cation language for multi-tasking Ada programs. The princi-

pal constructs in TSL are aimed at making it easy to describe sequences and other

patterns of events in a program that is executing on many processors simultane-

ously. TSL tools include a preprocessor that automatically instruments Ada code to

generate events for important tasking actions, a TSL run-time system that checks

speci�cations at run-time, and an interactive debugger.

VAL [5, 6], developed by PAVG, is an annotation language extension to VHDL [39]

suitable for speci�cation, especially speci�cation of timing behavior. A VAL tool suite

that implements run-time checking of VAL speci�cations has been implemented. This

tool suite includes a full VHDL front-end, and uses any commercial VHDL simulator

as a back-end. A version of VAL called VAL+ based on event patterns has also

been designed. A VAL+ speci�cation uses patterns of events to map a detailed

simulation consisting of many events to a more abstract simulation consisting of

fewer events. VAL+ has been applied hierarchically to map simulations consisting of

tens of thousands of events into a few events [27]. A paper on VAL+ [28] won best

paper award at the 1992 Design Automation Conference.

The Rapide technology e�ort has taken a group of approximately ten university

researchers over �ve years to produce. My speci�c contributions to this e�ort include

varying degrees of involvement in the design of the language and the implementation

of the tool suite. I contributed heavily to the language design, in particular, the

speci�cation of the runtime semantics of how events are matched and to a lesser

extent how component's interoperate [15]. However, I did not contribute very much

to the language's type system [71] nor the architecture de�nition concepts [64, 68].

CHAPTER 1. INTRODUCTION 18

I also participated in the development of the Rapide 1.0 tool suite as the prin-

cipal designer and implementor of the pattern matching parts of the compiler and

runtime system [50]. I also interacted with the primary implementor of the rest of

the compiler's backend in the design of the backend's interfaces. I also gave extensive

feedback to other tool builders on their code in detailed code reviews.

I have also used the language and tool suite to develop examples and methodologies

for maximizing the bene�ts of using the Rapide technology. The methodologies are

presented in this dissertation and summarized in [63], and the results of my teaching

examples will be released in [52].

1.5.2 Software Architecture and Composition

There have been other groups working to provide a scienti�c and engineering basis for

designing, building, and analyzing composable software systems, as well as languages,

tools, environments, and techniques to support such a basis. The Composable Soft-

ware Systems group at CMU led by David Garlan, Daniel Jacson, Mary Shaw, and

Jeannette Wing [26] is one example. Their innovative claim is that connectors are

�rst{class entities, just as components are, in a system. They also have an approach

for system consistency checking [4] and for conformance de�nition to an architectural

style [2].

Other work contributing to the �eld of languages, tools and environments for ar-

chitectural design include architecture description languages (ADLs). ADLs address

the need to �nd expressive notations for representing architectural designs and styles.

The focus of this research is to provide precise descriptions of the \glue" for com-

bining components into larger systems. Three other ADLs are related to Rapide:

LILEAnna [92], MetaH [95] and QAD [35].

Library Interconnect Language Extended with Annotated Ada (LILEAnna) re-

�nes and merges two preexisting languages, LIL [29] and Anna with mechanisms to

specify abstraction, composition and reuse of Ada [94] packages. Architecture speci-

�cation and construction are supported by two LILEAnna features called views and

makes. A view allows users to specify how generic parameters, exported services and

(for LILEAnna packages) imported services are bound to other LILEAnna theories,

CHAPTER 1. INTRODUCTION 19

packages and the objects exported by them. Make allows a user to specify how Ada

packages can be composed and instantiated to form other Ada packages, where views

can be used to re�ne and control this process.

MetaH is an ADL focused on capturing the connectivity and behavioral informa-

tion relevant to real{time scheduling, fault{tolerance, security, and scalable multi-

processing. It is not a complete environment on its own, but is intended to be used

with other specialized tools, languages, and library facilities that specify comonent

functionality, e.g., ControlH [48].

Given notations and models for characterizing software architectures, it becomes

possible to support architectural design with new tools and environments. Design

patterns [25] is one tool for architectural design. Design patterns is an abstraction

mechanism to promote reuse of software architectures. It captures the static and

dynamic structures and collaborations of components that arise when building soft-

ware from a domain. Design patterns is more concerned with recording and reusing

a software architectural design than with using the design as a reference.

It is clear that the format used by design patterns to encode a design is quite

useful for capturing general purpose programming. However, it is not obvious how

useful design patterns that rely on natural language rather than formal methods are at

capturing the added complexity of design associated with concurrent or distributed

programming. Design patterns represent a design primarily with only object dia-

grams and structured prose, and Schmidt [91] have found it necessary to augment a

design pattern with source code, because the system's behavior was not su�ciently

described. Also, his validation of patterns was done by human inspection rather than

by automated testing as is done in Rapide.

There is a de�nite need to integrate architectural activities into broad methods and

processes for software development, and to develop techniques for determining and

predicting properties of architectures. Moriconi and Qian [74] considers the problem

of architecture re�nement. The authors argue that re�nement should preserve certain

structural and semantic properties, and show how this notion leads to the use of

conservative extension as a re�nement criterion. Similarly, Inverardi and Wolf [46]

have developed an approach based on viewing software systems as chemicals whose

CHAPTER 1. INTRODUCTION 20

reactions are controlled by explicitly stated rules. Both approaches appear to be more

theoretical exercises than practical solutions.

Booch [12] also describes a method (or more accurately a notation) for capturing

the architecture of software systems, and it also exempli�es this method with several

case studies. This notation is able to capture the object{oriented, static as well as

dynamic properties of system architectures. However, this notation is not formal nor

ameniable to anything but the simplest machine{processable analysis.

In general, there are very few published case studies of architectural design in-

cluding retrospective analyses of architectural development. Many of the previously

described techniques include case studies, but the Domain Speci�c Software Archi-

tecture program sponsored by the U.S. Department of Defense [30] does not present

a general language or framework, but ratherly solely concentrates on case studies

on gathering architectural information. This is an excellent sourse of raw data from

which approaches can be abstracted.

Compositional mechanisms on middleware are an emerging �eld of research. One

example aimed at easing development of distributed runtime systems in a CORBA{

based environment [33] is Aster [47]. However, this work does not have (and we are

not aware of anyone else's work that has) the behavioral analysis or constraint{based

tools that Rapide has [68].

1.5.3 Concurrent and Simulation Languages

VHDL [39] is an IEEE standard hardware description language based on discrete

event simulation. Rapide generalizes many of the concepts that appear in VHDL.

The VHDL computation model is a totally ordered stream of events, while theRapide

model is a partial order. VHDL processes trigger on sets of events, while Rapide

processes trigger on more general patterns. VHDL architectures are static (�xed

number of components and �xed interconnections), while Rapide architectures are

dynamic.

Strand is a concurrent logic programming language. Rapide processes behave in

a manner similar to concurrent rules in Strand. Rapide patterns are more general in

that they operate on the partial order directly. Also, the communications architecture,

CHAPTER 1. INTRODUCTION 21

implicit in Strand, is made explicit in Rapide.

LOTOS [11] is a speci�cation language for distributed systems based on CSP [37].

LOTOS de�nes an interleaving semantics for concurrency, but recent work has begun

on de�ning a partial order based semantics for LOTOS. However, the LOTOS lan-

guage itself does not permit explicit use of the partial order the way patterns do in

Rapide.

1.5.4 Formal Methods

The European ESPRIT projects have been very active in the areas of formal speci-

�cation, concurrent systems speci�cation, and formal veri�cation (both methodology

as embodied in the VDM [10, 20] project, and underlying proof rules and formal

semantics as embodied in work based on CSP [37] and CCS [72]). A recent ESPRIT

project, PROCOS [16], is aimed at applying these kinds of speci�cations and proof

rules to build reliable concurrent systems. However, none of these languages and

underlying analysis techniques utilize partial order models of concurrency.

1.5.5 Transaction Processing

There exists a large amount of literature on transaction processing and transaction

processing systems. Some excellent, general books on database and transaction pro-

cessing systems include: Date [18, 19] Gray [32], Gray and Reuter [31], Korth and

Silverschatz [55], Papadimitriou [77], Ullman [93], and Wiederhold [96].

Formally specifying transaction processing properties and developing protocols

and system architectures for them has had considerable interest in the literature.

Babin [7] has developed a framework for transforming the requirements of transactions

into a system that implements them. However, not only is it unclear how much of

this process can be automated, but it also needs a formal language for specifying the

process logic and tools for verifying the correctness of the speci�cations.

Chrysanthis and Ramamritham [17] introduce ACTA, a framework for specify-

ing and reasoning about transaction structure and behavior. ACTA is not another

transaction model but is intended to unify the existing models with a semantic model

CHAPTER 1. INTRODUCTION 22

capable of specifying previously proposed transaction models. This framework is

quite expressive but neither a rational, methodology nor bene�ts of using it have

been presented.

Gabrielian [24] addresses the di�cult problem of formal speci�cation of real-time

systems. A speci�cation consists of a basic nondeterministic machine and of an or-

dered list of other machines which express constraints on the behavior of the future

system. The authors' approach combines the description of nondeterministic state

machines and temporal constraints in the same speci�cation language.

Agrawal and Dewitt [3] takes a uni�ed view of the problems associated with con-

currency control and recovery for transaction{oriented multiuser centralized database

management systems, and presents several integrated mechanisms.

1.6 Outline

This dissertation consists of six chapters and a set of supporting appendices. The

aim of the chapters is to concisely describe the contributions of the dissertation. The

appendices, on the other hand, provide useful supplemental information.

Chapter 2 describes the principles behind transaction systems. It de�nes the

distributed transaction processing terminology to be used in the dissertation.

Chapter 3 describes an approach to de�ne models for formally specifying and

developing prototypes of distributed time{sensitive systems, including their architec-

tural aspects. Many examples written in Rapide, and this chapter can be used as

an overview of the Rapide technology.

Chapter 4 de�nes and formally speci�es transaction processing system architec-

tures, properties and protocols. Each property and corresponding exempliary imple-

mentation is speci�ed via a Rapide reference architecture, complete with component

interfaces, connections, constraints, and behaviors.

Chapter 5 applies the Rapide technology to specify and test conformance to a

distributed transaction processing standard, the X/Open DTP reference model.

Chapter 6 contains our conclusions, including a review of the original contributions

of this dissertation, as well as our ideas for continuing this research.

CHAPTER 1. INTRODUCTION 23

Appendix A is the Rapide reference architecture for the X/Open DTP industry

standard.

Appendix B is the code for the example banking system.

Appendix C contains the maps used to perform the conformance testing.

Chapter 2

Principles of Transaction Systems

2.1 Databases

A database consists of individual data objects that are based upon the basic building

blocks of the database's data model. The nature and size of the objects are de�ned

by the data model. In general, each object is assumed to have a name and to be

assignable with values from its domain. The collection of all such values determines

the state of the database. Current systems use a relational data model where the

objects manipulated are regular. They may be large, like relations, or small like

individual tuples or even the attributes of tuples. Relational systems also restrict

every data object in the database to have exactly one value at any time. However,

this value changes as updates are made. This semantic model of data objects is called

a single{version model, since only a single value (or version) exists at any time.

The single{version semantic model is contrasted with multi{version or temporal

models that keep old data values for the data objects. Multi{version models retain

old versions after a new version containing the new value of the object is created.

One of the mechanisms required by systems using multiple versions is some method

to determine which of the many possible versions a transaction should read.

De�nition 2.1.1 Let E denote the set of all data objects in the database, and 8e 2 E,

let dom(e) denote the domain of object e. An unique state, s, is de�ned to be an

interpretation (or a function with a domain E and range
S
e2E dom(e)) that assigns

24

CHAPTER 2. PRINCIPLES OF TRANSACTION SYSTEMS 25

to each object e 2 E one value from the appropriate domain dom(e), denoted by s[e].

8e 2 E : s[e] 2 dom(e): Let S represent the set of all unique states.

2.2 Transactions

The state of the database is not static. It is continually undergoing changes due to

transactions (or operations) performed on the system that modify the database state.

Transactions are the units of work performed by a transaction processing system, and

in the single{version semantic model they change the database from one unique state

to another. Thus, in the single{version semantic model a transaction can be modelled

as a function from unique states to unique states.

De�nition 2.2.1 A transaction, t, in the single{version semantic model is a map-

ping from S to S. The result of a transaction, t, applied to unique state s is another

unique state denoted t(s):

A transaction is a computer program, where a distinction is made between the

program code and the program's execution. A transaction implementation is the

program code and describes what executions of the transaction are going to be like.

In general, a transaction may be made up of other transactions. As transactions

are broken down into smaller and smaller pieces, the eventual result is a primitive

action. Primitive actions are the simplest operations the TP system can perform.

They form the basis from which all transactions will be composed.

Which actions should be chosen as primitive? Since all actions (operations) on

objects are expressible (at the lowest level) in terms of reads and writes of data,

those actions are selected to be primitive. They respectively return and modify the

database state. Hence with no loss of generality, read and write actions are de�ned

to be primitive.

De�nition 2.2.2 Let w(t; e) and r(t; e) denote respectively a write and a read primi-

tive action by transaction t on object e. Also, let a(t; e) denote either primitive action

by transaction t on object e.

CHAPTER 2. PRINCIPLES OF TRANSACTION SYSTEMS 26

A transaction implementation is structured such that it contains other nested

transactions or primitive actions and a partial ordering on those \sub" actions. The

partial ordering reects the intention of the programmer. In the single{version se-

mantic model, the ordering is a total order. This structure may be attened out

to an equivalent transaction that contains only primitive actions. The ordering on

the primitive actions of the equivalent transaction is obtained by substituting the

primitive actions for the subactions.

A transaction's execution is based upon an ordering and a function for each trans-

action. The ordering is over the set of subactions associated with the transaction.

This ordering reects the dependencies of the subactions that occurred in the execu-

tion. The result produced by the transaction is determined by the runtime execution

order of the subactions. The only formal restriction placed on this ordering is that if

two actions are related in the ordering associated with the transaction implementa-

tion, then the execution ordering cannot reverse that relationship. In other words, if

a transaction designer de�nes subaction p to occur after subaction q, then it must be

the case that all actions of p follow the corresponding actions in q.

The function assigns a virtual database state to the transaction. In a virtual

database state, every object in the database is assigned a value, but the state may

not actually exist at any time. This database state represents the values read by

the transaction. If the transaction does not read an object, then any value from the

object's domain written by another transaction can be used.

De�nition 2.2.3 A transaction t is a tuple (T; I;R;X), where T is a set of subac-

tions, I is a partial order on T , R � T �T is a mathematical relation on T such that

(ti; tj) 2 I� ! (tj; ti) 62 R�; where I� and R� are the transitive closure of P and R

respectively, and X is a mapping from T to a version state. If tk 2 T; then X(tk) is

the input state of tk.

Either (X(ti))(e) is the original value assigned to e, or there exists some other

transaction tj such that (X(ti))(e) = (tj(X(tj)))(e), meaning some other transaction

tj has updated the value of e and ti accessed the modi�ed value. In the single{version

semantic model, a transaction consists of only primitive actions, execute these actions

CHAPTER 2. PRINCIPLES OF TRANSACTION SYSTEMS 27

sequentially (R is a total order), and allow only one version of each data object.

2.3 Isolation

A transaction processing systemmay execute more than one transaction, and isolation

answers the question, \How should the correct execution of concurrent transactions

be de�ned?" Since it is always possible that transactions will execute one at a time

(serially), it is reasonable to assume that the normal, or intended, result of a trans-

action is the result obtained when it is executed with no other transactions executing

concurrently. Thus, the concurrent execution of several transactions is assumed to

be correct if and only if its e�ect is the same as that obtained by running the same

transactions serially in some order.

Alternatively this principle can be viewed as a property of transactions. That is, a

transaction shall not make updates to the database that a�ect the other transactions

happening at the same time. This de�nes isolation; transactions are isolated only

when they do not overlap other transactions, where the overlap is with respect to

time or database state.

2.3.1 Serial Executions.

An execution is serial if each transaction runs to completion before the next one

starts. Speci�cally, no action of a transaction can be found temporally between the

�rst action and the last action of another transaction in the execution. This is the

opposite of concurrent execution, where the transactions overlap in time; when the

execution of transaction's actions overlaps with another transaction's actions. Thus,

a serial execution is one in which all of the transactions do not overlap in time.

De�nition 2.3.1 An execution R is a serial execution, Serial(R), of transaction T

i�: 8ti; tj 2 T : i 6= j ! ([8a(i; ei) 2 ti; a(j; ej) 2 tj : (a(i; ei); a(j; ej)) 2 R] ^

[8a(i; ei) 2 ti; a(j; ej) 2 tj : (a(j; ej); a(i; ei)) 2 R]).

CHAPTER 2. PRINCIPLES OF TRANSACTION SYSTEMS 28

2.3.2 Serializable Executions.

Forcing the transactions to obey a serial execution will lead to poor performance,

because serial executions do not take advantage of possible concurrency. To permit

greater concurrency while preserving consistency, a transaction system's execution

of a set of transactions may be serializable. An execution is serializable (SR) if it

is \equivalent" to some serial execution of those same transactions. In other words

it must be possible to order the actions of the transactions t1; t2; : : : ; tn such that t1

\sees" the initial database, and t2 \sees" the database that would have been produced

if t1 had run to completion, etc. The execution produced by this sequential view of the

transactions' executions is called a serialization or linearization of the transactions.

Since serializability is based on equivalence to a serial execution, the question

of de�ning serializability transforms into de�ning this equivalence. Three common

de�nitions of equivalence can be found in the literature [77]. These are �nal-state

equivalence, view equivalence and conict equivalence. Each of these de�nitions de-

scribe progressively smaller classes of correct executions, but each smaller class has

advantages which o�set the reduction in potential concurrency.

Note, there may also be correct executions that are non{serializable. De�nitions

for non{serializable executions generally involve using additional information about

the transaction model. These de�nitions are useful, becasuse they can be used to

aviod hotspots that degrade performance.

2.3.3 Final{state Equivalence.

An execution is �nal{state equivalent to a serial execution if it leaves the database

in a state which could be reached by a serial execution. Intuitively, two executions

are �nal{state equivalent if they produce the same �nal state of the database for

all interpretations of transactions and all initial database states. The problem with

this equivalence is the database states generated during the execution is unimportant.

Thus, transactions could see inconsistent database states, and therefore, the execution

would, of course, violate our isolation constraint.

CHAPTER 2. PRINCIPLES OF TRANSACTION SYSTEMS 29

2.3.4 View Equivalence.

An execution is view equivalent to a serial execution if every transaction executes

upon a database state that could be generated by a serial execution. Since serial exe-

cutions are considered to correct, this ensures that every transaction sees a consistent

database state. In order for an execution to be view serializable, one criterion is that

if a transaction, say t1, reads a value for a data item written by another transaction,

t2, then any third transaction, t3, which writes that data item must either do so after

the read step of t1 or before the write step of t2 in the execution. A common view

inconsistency problem is the phantom tuple anomaly [23]. It arises when one trans-

action examines a group of tuples, and then before the �rst transaction ends, another

transaction inserts a new tuple that would have belonged to the group.

2.3.5 Conict Equivalence.

This de�nition is used commonly used as \the" de�nition of serializability, since it

can be recognized in polynomial time, and there exist e�cient algorithms to ensure

that an execution is conict serializable (CSR). Conict equivalence is a proper subset

of view equivalence, thus an execution that is CSR has had all transactions to view

consistent databases.

Conict equivalence constrains that every pair of conicting operations between

transactions should be ordered the same as in a serial execution. Conict refers to

the ability of a action's e�ect on the objects to adversely a�ect another action's e�ect

on the objects. If such interference is possible, those actions are said to be in conict.

The only way actions can interfere with each other is through reads and writes of

shared data objects. The read set of a transaction is the set of objects the transaction

reads, and the write set is the set of objects the transaction writes. Thus, two

transactions conict if the read set or write set of one intersects the write set of the

other. If two transactions have one or more conicts, all of the conicts must be

ordered the same as in a serial execution.

Two read primitive actions by two di�erent transactions to the same object can-

not violate consistency, because reads do not change the object state. Only write

CHAPTER 2. PRINCIPLES OF TRANSACTION SYSTEMS 30

primitive actions may create violations. Two write primitive actions to an object

by the same transaction do not violate consistency, because it is assumed that the

transaction knows what it is doing to its data; it is assumed that if a transaction runs

in isolation, it will correctly transform the database state. Consequently, only write{

related interactions between two concurrent transactions can create inconsistency or

violate isolation.

2.4 Consistency

The transaction processing system ensures that the data in the database is correct.

Isolation de�nes the correctness during concurrent executions, and consistency de�nes

correctness before and after executions. Consistency constrains the values of the

data and ensures the database state satis�es certain properties called consistency

constraints.

2.4.1 Consistency Predicate

Transaction consistency is based on the notion that it is possible to determine whether

or not the database state is consistent. Any validity (or consistency) metric is assumed

to be expressible as a predicate on the values of the data objects.

De�nition 2.4.1 Let P denote the validity predicate on unique states. A transaction

t is de�ned to be consistency preserving, CP, if and only if it maps from a consistent

state, P(s), to a consistent state, P(t(s)), i.e., t 2 CP i� 8s 2 S : P(s)! P(t(s)).

2.4.2 Consistency Preserving Transaction

A consistency preserving transaction is de�ned to be a transaction that upon execut-

ing in isolation on a initially consistent database, will terminate with the database

in a state that also satis�es the database consistency constraint. When a set of

consistency preserving transactions is serializably executed on an initially consistent

database state, each transaction will read and produce a consistent database state

and therefore the system will end in a consistent database state.

CHAPTER 2. PRINCIPLES OF TRANSACTION SYSTEMS 31

Theorem 2.4.2.1 A property of serial executions, which is a requirement for trans-

action processing applications, is that each transaction executes upon a consistent

database state. This property holds assuming i) the initial database state c0 is consis-

tent, ii) if a transaction is executed in isolation, it will preserve the database consis-

tency, and iii) the system doesn't allow for the existence of arbitrary states after the

executions of transactions.

Proof: A consistent database state cn will be obtained from the initial, consistent

database state c0 if the transactions are executed serially, since there will be an

ordering of the transactions, t1; t2; : : : ; tn; such that t1 sees the initial state c0, for

each i > 1 transaction ti sees the consistent state, ci, that will be produced by

running t1; t2; : : : ; ti�1 sequentially to completion, and cn is the state produced by tn.

2.5 Atomicity

Transactions are not guaranteed to execute to completion, but instead are ensured

to a weaker but still su�cient property: transactions are performed entirely or not

at all; they cannot be only partially executed at termination. This all{or{nothing

property is called atomicity.

This ideal de�nition is commonly re�ned to deal with the e�ect of a transaction

on the database state. The execution of an atomic transaction will leave the system

in either the state derived from all of the instructions or the initial state. Atomic

transactions consist of instructions that when executed transform the system from

one state to another. They may also be implemented by more than one instruction,

and in some cases their execution may have to be stopped, and the state of the system

restored. Upon being restored and if the transaction was isolated from every other

transaction, then it will be as if the transaction never happened. This process of

restoring states is called undoing the transaction.

During the execution of a transaction, the system may wish to abort the trans-

action or whoever invoked the transaction may decide to abort it. The invoker (or

user) may wait to see the results before deciding whether to issue the abort or commit

request, and the user can even �rst issue a commit request and later change his mind

CHAPTER 2. PRINCIPLES OF TRANSACTION SYSTEMS 32

and issue an abort request. If the system receives an abort request and can abort the

transaction, i.e., the transaction can be undone, then it undoes the transaction and

issues an aborted result. If the system receives an abort request but cannot undo the

transaction then the system will issue an not aborted result.

2.6 Durability

The e�ects of a committed transaction's execution must not be erased, but rather the

system must guarantee them to be permanent for other transactions. This property

is called durability; if a transaction is durable, then its changes will persist. However,

durability in this ideal form is impossible to implement because of processor failure,

transmission failure, disk crash or even catastrophic failures like natural disasters. In

each of these cases, some of the information concerning the database is lost.

Failures are related to accidents encountered by the transaction system during a

particular attempt to ful�ll a transaction request. Why should the transaction system

allow a transaction that may fail to begin executing? That is because it is not always

possible to a priori determine whether a transaction will fail or not.

Once such a loss is detected, the system must restore the database state to the

state that existed prior to the occurrence of the failure. Detecting the loss is not

very di�cult, and the primary concern of the database designers is the restoration.

Performing this restoration is usually accomplished through the initiation of various

backup and crash recovery procedures on the system storage.

Storage is traditionally viewed as a hierarchy. The lowest level of storage is volatile

storage, like main and cache memory. This data is transient and easily lost due to

system crash or power failure. Information residing in nonvolatile storage usually

survives system crashes but may be lost. Typical nonvolatile storage devices are

disks and magnetic tapes, which have failures like media failures or head crashes.

Stable storage is the highest level of the storage hierarchy, and information residing

in it is \never" lost. Theoretically, this cannot be guaranteed, because stable storage

media are still susceptible to catastrophic failures like �res, earthquakes, oods, wars

or acts of God.

CHAPTER 2. PRINCIPLES OF TRANSACTION SYSTEMS 33

2.7 Common Protocols

There are several common protocols for ensuring atomicity, isolation, and durability.

Of course, they are not perfect solutions, and this dissertation will omit (for simplicity)

discussion on their limitations and the various extensions to the protocols to improve

their generality. Instead (for brevity) this dissertation will concentrate on the most

common, general approaches.

2.7.1 Two{Phase Commit Protocol

Atomicity is ensured by coordinating managers of the database's resources to make

a common decision about the commitment of the transaction. The most common

commit protocol is the two{phase commit protocol. It is so called, because the protocol

is divided into two phases. In the �rst phase, called the polling phase, each resource's

manager is asked whether that resource can commit its part of the transaction, if

it is requested to do so at some time in the future. This is a \prepare to commit"

message. If a resource manager can commit its work, it prepares to do so and replies

a�rmatively. A negative reply reports failure for any reason. When all the resource

managers have responded, phase 2, the decision phase, is entered. If all of the resource

managers responded a�rmatively, then the decision is made to commit, and all of

the resource managers are subsequently requested to commit (otherwise they are

requested to abort) their parts of the transaction. Thus, the entire transaction is

assured of being atomic.

2.7.2 Two{Phase Locking Protocol

The two{phase locking protocol is used to implement isolation. The isolation theorems

state that transactions can execute concurrently in isolation if the objects each trans-

action reads and writes are disjoint from those written by others or if the changes to

shared resources that a transaction e�ects do not become visible outside the transac-

tion until the transaction commits. The theorems indicates how locking can achieve

this: lock everything you access and hold all locks until commit.

CHAPTER 2. PRINCIPLES OF TRANSACTION SYSTEMS 34

2.7.3 Write{Ahead Logging Protocol

The durability of transactions is assured using volatile, non{volatile and stable storage

devices via recovery strategies and protocols. The di�culty in designing them is in

the methodology of optimally using the storage hierarchy such that modi�cations to

the database persist only if the associated transaction commits. Many approaches

are based upon maintaining a log of all changes made by each transaction. One in

particular, called the write{ahead logging protocol, requires that the changes to the

database be recorded in the log before the resources. Upon detection of a failure, the

transaction system uses the log to redo all of transactions, and thereby restore the

database state.

Chapter 3

Principles of Formalization

This chapter presents concepts for formal modelling of distributed programs and uses

Rapide [9, 67, 83, 84, 85, 86, 87, 88, 89] to exemplify the modelling concepts. A formal

model of distributed programs must include how a distributed program is composed

of executable parts called components and how the components are composed to

de�ne the system's behavior. A system's set of components and behavior is called

the system's architecture.

The behavior of the architecture is dependent upon how its components behave

individually, and how the components communicate to one another. The behavior of

a component de�nes the relationship between the input the component reacts to and

the output the component generates. Communication between the components must

be made through connections that de�ne the relationship between the output commu-

nication a component generates and the input communication the other components

receive.

A behavior de�nition can be expressed in two ways: as a constraint and as an ex-

ecutable speci�cation. Executable speci�cations are procedural processes that receive

input and generate output communication. Constraint speci�cations (or constraints)

are declarative conditions on the executable speci�cations. Constraint and executable

speci�cations may be used, not only to de�ne but also to analyze an architecture.

Comparative analysis of an architecture can be performed formally if the ex-

ecutable and constraint speci�cations are also formal. Such analysis is useful for

35

CHAPTER 3. PRINCIPLES OF FORMALIZATION 36

several reasons:

� prove properties about the speci�cations, e.g., prove that the constraint speci-

�cations are satis�able,

� construct an executable speci�cation by manipulating the constraint speci�ca-

tion,

� verify that an executable speci�cation satis�es a constraint speci�cation, either

by mathematical argument, called validation, or by checking at runtime that the

execution produced by the executable speci�cation conforms to the constraint

speci�cations, and

� check the conformance of a system architecture to a more general architecture

speci�cation.

Conformance checking of architectures is performed by interpreting a system ar-

chitecture, called the domain architecture, as if it were another architecture, called

the range architecture. The interpretation maps executions of the domain architec-

ture onto the \universe" of the range architecture to produce a range execution. This

kind of mapping is especially useful when the range execution can be checked for

conformance to the constraints of the range architecture. In this way, the domain

architectures' executions can be checked for conformance to the range architecture's

constraints.

Rapide will be used to illustrate these formal modelling concepts. Rapide is

an object{oriented executable architecture description language designed for specify-

ing and prototyping distributed, time{sensitive systems. It separates a component's

interface speci�cation, e.g., the constituents by which the component communicates

with other components, from the component's executable speci�cation, called its

module. A Rapide architecture consists of a collection of interfaces, a collection of

connections between the interfaces, and a set of formal constraints that de�ne legal

and illegal behavior.

Figure 3.1 shows a system of modules connected together in an architecture. The

shaded parallelograms represent interfaces, the thick lines represent connections and

CHAPTER 3. PRINCIPLES OF FORMALIZATION 37

Figure 3.1: A Rapide architecture (top layer) and system (all).

the boxes represent modules. The architecture is shown as the set of interfaces and

connections; the system is shown as the set of modules wired together by the archi-

tecture.

The reader may imagine an architecture executing by communication owing up

from the modules to their interfaces, along the architecture connections to other

interfaces, and down into the receiving modules, and so on. Each module and con-

nection can execute independently and concurrently. The communication at each

interface must satisfy the constraints in the interface, and the communication in the

connections must satisfy the architecture's constraints.

Rapide's execution model is based upon partially ordered sets of events (posets).

The partial orders used are time and potential causality between events. Briey, when

a Rapide architecture executes it generates a poset. When an event is generated, it

can produce a reaction in the connections and modules. Modules and connections will

typically await the generation of some events and some condition of the program's

state associated with those events, and then react to them. A module or connection

CHAPTER 3. PRINCIPLES OF FORMALIZATION 38

reacts by executing some code that may include modi�cations to the program's state

and the generation of additional events. Modules and connections often cycle through

waiting, reacting, and generating events many times. The generated poset is checked

for violations of the interface and architectural constraints.

The system in Figure 3.1 (i.e., the interfaces, connections, and modules) di�ers

from a program written using Ada [94] packages or C++ [22] classes in that the mod-

ules communicate only if there are connections between their interfaces. In Rapide

the architecture can be de�ned before the modules are written. It is a framework for

composing modules, and it also constrains the communication between the modules

of the system.

The system in Figure 3.1 can be written in Rapide to support di�erent analysis

methods. It can be executable to allow simulation and animation of the behavior

of the architecture. It can also be a purely constraint{based de�nition of the allow-

able behavior of the system. Thirdly, the constraint{based de�nition can be used to

check the architecture's behavior, as well as an actual implementation's behavior, for

conformance to the constraints.

The rest of this chapter describes the underlying formalism of Rapide as well as

the interface constituents that may be used to communicate with other components.

The �rst section will address the formal computational model that is based upon event

processing. Section 3.2 describes how to declare constituents of component interfaces.

The basis for the architectural connections, executable and constraint speci�cations is

the event pattern language described in Section 3.3. How to connect the component

interfaces together into architectures is addressed in Section 3.4. The individual

components (and therefore the architectures) are executable, and Section 3.5 describes

the constructs used to associate executable speci�cations with component interfaces.

Section 3.6 describes the constraint speci�cations that are compiled into runtime

monitoring code. Finally, Section 3.7 addresses how to relate architectures to one

another using event pattern mappings.

CHAPTER 3. PRINCIPLES OF FORMALIZATION 39

3.1 Event Processing

3.1.1 Event{based Semantics

Distributed program executions, especially the interactions between di�erent com-

ponents of programs, may be formally modelled with events or states. State{based

approaches generally model program executions as sequences (or traces) of states,

where the state of a program is de�ned as values given to the set of variables con-

tained in the program. A trace of states represents the states of the program at

successive points in time. Unfortunately, in state{based models, the interactions of

the system are not obvious, and they have to be inferred from the changes in state.

In event{based approaches, such as Rapide, each event represents the occurrence

of some activity within a program, e.g., an interaction between two components.

Events are classi�ed by actions and functions that de�ne the kinds of activities that

may occur during a distributed program's execution. Actions model asynchronous

communication, and functions model synchronous communication between compo-

nents. The execution of an action call will generate a single event, while a function's

execution will generate two events, representing the call and return of the function.

Thus, event{based models represent component interaction in a more natural and

understandable manner than state{based models.

An event contains information such as the process and component generating the

event, the name of the operation being invoked, and the data being passed.

The syntax for actions and functions is:

action name declaration ::= action mode identi�er ` (' [formal parameter list] `)' `;'

mode ::= in j out

function name declaration ::=

function identi�er ` (' [formal parameter list] `)' [return type expression] `;'

CHAPTER 3. PRINCIPLES OF FORMALIZATION 40

For example,

action in Write(value : Data);

function Read() return Data;

Commentary: This example illustrates action and function declarations. It declares

a Write action that contains a formal parameter of type Data, denoted by value, and

a Read function that contains no formal parameters. A Write event with a value of

5 is generated when a process makes a call to the declared action passing 5 as a

parameter, e.g., Write(5). Note the use of the action mode, in, will be explained in

the Section 3.2.

3.1.2 Concurrency versus Interleaving

Historically, an event{based execution has been modelled as a trace of events where

the events in the execution are totally ordered. Executions that are modelled as traces

of events are de�cient in that they cannot truly represent a concurrent occurrence of

events. Such models do not distinguish concurrency from interleaving of events. For

example, if two events, say A and B, are concurrent then the set of traces fAB;BAg

(all the interleavings of A and B) represent the fact that A and B are concurrent.

The same two traces also represent arbitrary non{deterministic interleaving of A and

B. Thus, any system that must distinguish between concurrency and interleaving

cannot be adequately modelled by trace models.

Pratt [82] proposed models that can distinguish between concurrency and inter-

leaving. These models are called event{based models with true concurrency. Instead

of traces, these models are based upon partially ordered sets of events (or posets).

Time is one such partial order. In time{based models, activities that occur before

other activities are given lesser timestamps, while later activities are given greater

timestamps. Concurrency is represented by sharing the same timestamp value.

Temporal poset models have a characteristic that make time an unpractical par-

tial order for accurately representing concurrency, because activities that are modelled

with the same timestamp value may not have been concurrent. A single clock may

CHAPTER 3. PRINCIPLES OF FORMALIZATION 41

produce timestamps that are not precise enough to distinguish concurrent from se-

quential activities. In this case, two events that are marked with the same timestamp

value, may not have occurred concurrently. One may have represented an activity

that preceded the other activity, but because the timestamp granularity was not �ne

enough, the two events were stamped with the same temporal value.

Additionally, distributed models may use more than one clock, each of whose

timestamps are incomparable to the other clocks. In such situations, it is impossible

to determine if events with incomparable timestamps actually occurred concurrently.

Such a limitation usually leads the modeler to assume that incomparable timestamps

implies concurrency.

Of course, a general solution to these two characteristics is to use one global,

�ne{grained clock. However, such a single, �ne{grained clock model is not a practical

starting point for representing distributed programs. Thus, a model of distributed

programs that use only a temporal ordering, in general, is not an ideal choice, nor is

it the only choices, to distinguish concurrency in distributed programs.

Another partial ordering used by Pratt to make the distinction between concur-

rency and interleaving is called causality. An event is caused by another if the �rst

event could not have occurred without the occurrence of the second event. If there

are two events that did not cause each other, they are said to be independent. Con-

currency is de�ned to be causal independence in the poset, i.e., if two events occur

independently in the causal partial order, they could have occurred concurrently in

the execution.

Thus, we decided to use an event{based model that uses causality and time, since

together these partial orders can naturally represent concurrency information between

events that cannot be expressed by trace models. Additionally, the causal information

is quite useful in analyzing program executions, and the causal dependency cannot

be expressed in an obvious and understandable way using only traces, i.e., totally

ordered sequences.

De�nition 3.1.1 A partial order on a set S is an irreexive, anti{symmetric and

transitive relation � on the elements of S.

CHAPTER 3. PRINCIPLES OF FORMALIZATION 42

Note this dissertation refers to the set on which the partial order relation is de�ned

and the partial order relation, together, as a partial order. It will be clear from the

context whether the relation or the set and the relation are meant.

A total order is a partial order that is also a total relation.

De�nition 3.1.2 A total order on a set S is a partial order � on S such that if s1

and s2 are distinct elements in S then s1 � s2 or s2 � s1:

3.1.3 Causality based upon Dependency

Causal relationships between events are represented in Rapide by the dependency

partial order. An event B depends on an event A, written (A! B) if and only if:

1. A and B are generated by the same process, and A is generated before B. (Pro-

cesses are sequential; all events generated by a process have a total dependency

ordering), or

2. A process is triggered by A and then generates B, or

3. A process generates A and then assigns to a variable1 v. Another process reads

(in Rapide called dereferencing) v and then generates B. Note: this is a form

of data dependency where an assignment to a ref object is analogous to a write

of a protected variable, and the dereference is a read of the value written, or

4. A! C and C ! B; (i.e., transitivity).

Less formally, if an event B depends on an event A, then A must occur before B.

Alternatively, A causes B.

Rapide programs may contain multiple clocks, and a Rapide execution uses a

separate temporal ordering to express timing between events with respect to each

clock in the program. A consequence of the rules of time and dependency is that

there is a consistency relation between the dependency order and temporal orders: an

1The traditional programming language concept of \variable" is implemented in Rapide using

objects of reference types which are de�ned in [86].

CHAPTER 3. PRINCIPLES OF FORMALIZATION 43

Site 1

<time 1> event 1

Site 2

<time a>event a

<time 2>

<time b>

<time c>

event 2event 3

event b

Communication

event c

Figure 3.2: Timed poset

event cannot occur temporally earlier (by any clock) than an event that it depends on.

Also, the various time orderings obey a consistency invariant: if event A temporally

precedes event B for one clock, B cannot temporally precede A for another clock.

For example, please note the posets in Figs. 3.2, 3.3 and 3.4 that respectively show

for the same execution a timed poset, dependency poset, and a timed, dependency

poset (the union of the timed and dependency posets).

Commentary: The example graphs in Figs. 3.2, 3.3 and 3.4 illustrates that a timed,

dependency poset is more expressive that either a timed poset or a dependency poset.

In all of the graphs a labeled node represents the occurrence of an event at one of two

sites; the nodes labeled with a number occur at site 1, and the nodes labeled with

a letter occur at site 2. An arrow from one node to another represents dependency

between the events, e.g., in Fig. 3.3 event 2 depends on event 1.

In the timed posets the timestamps of the site 1's (2's) events is denoted by a

label to the left (right) of and parallel to the event's associated node. Thus, event 1

occurs at time 1, events 2 and 3 occur at time 2, event a at time a, event b at time

CHAPTER 3. PRINCIPLES OF FORMALIZATION 44

Site 1

event 1

Site 2

event a

event 2

event 3 event b

Communication

event c

Figure 3.3: Dependency poset

b, and event c at time c.

The example models a distributed system where each site has its own clock, and

time progresses in the �gures top to bottom, e.g., site 1's event 1 is temporally earlier

than site 1's events 2 and 3. Since events 2 and 3 are given the same timestamp,

they are concurrent. Similarly, site 2's event a is earlier than site 2's event b that is

again earlier than site 2's event c. Since the numbered timestamps and the alphabetic

timestamps come from di�erent clocks, they are incomparable.

In the timed poset, the dashed arrow emphasises the fact that the dependency

occurring because site 1 (event 2) communicates with site 2 (event b), is not repre-

sentable in a model that only has time.

In the dependency poset, the following can be deduced for the dependencies: event

1 causally precedes event 2 that precedes both events 3 and b, and event b precedes

event c. Event a could have executed concurrently with all of the other events. In

this poset, the thick arrow emphasises that the communication dependency that was

not representable in the timed poset is represented in this model.

CHAPTER 3. PRINCIPLES OF FORMALIZATION 45

Site 1

<time 1> event 1

Site 2

<time a>event a

<time 2>

<time b>

<time c>

event 3event 2

event b

Communication

event c

Figure 3.4: Timed, dependency poset

In the timed, dependency poset, all of the previous information could have been

determined. However, we are still unable to determine whether event 1 and event a

occurred concurrently.

3.2 Interface Types

The interface type of a component consists of the set of constituents by which the

component communicates with other components. An interface type has seven kinds

of declarative regions | (i) a provides part, (ii) a requires part, (iii) an action part,

(iv) a private part, (v) a service part, (vi) a constraint part and (vii) a behavior part.

Declarations may be names of types, names of modules or names of functions, and

they associate a type with the identi�er, but do not give an implementation.

CHAPTER 3. PRINCIPLES OF FORMALIZATION 46

Interface types are declared using the following syntax:

type declaration ::= type identi�er is interface expression ` ;'

interface type expression ::=

interface f interface constituent g

[behavior behavior declaration]

end [interface]

interface constituent ::=

provides f interface declarative item g

j requires f interface declarative item g

j action f action name declaration g

j private f interface declarative item g

j service f service declarative item g

j constraint pattern constraint list

All modules of an interface type must contain types, modules, and functions matching

the declarations in the provides part, and these types, modules, and functions are vis-

ible, which means that they may be referred to outside the module. The constituents

of a requires part are names of components that are visible to the module but are not

contained within it. Those requires components are assumed to be contained within

another external module. The constituents of a private part are only visible and used

within modules of the interface type.

The constituents of an action part may be used by any component in the system.

Exactly how is dependent upon the mode of the action. Out actions declare the types

of events the component may generate and thereby send to other components, while

in actions are used by other components to send events of the action type into the

component.

The service, constraint and behavior parts of interfaces are discussed later in this

chapter. The behavior part of an interface type will be described in Section 3.5.4, the

constraint part in Section 3.6, and the service part in Section 3.4.3.

CHAPTER 3. PRINCIPLES OF FORMALIZATION 47

For example,

type Data Object is interface

provides

Read : function() return Data;

Write : function(d : Data);

end interface Data Object;

Commentary: This example illustrates the use of provides constituents of an interface

type. The interface type Data Object contains two name declarations, Read andWrite.

Components of type Data Object must contain actual objects (functions) with these

names that other components may also use. Note that this interface has no requires

or private parts.

3.2.1 Interface Type Constructors

Interface type constructors are templates for interface types. The templates contain

slots into which type and object expressions may be placed to obtain a type expres-

sion. Type constructors are de�ned using type constructor declarations, and their

\instantiation" to a type expression is called a type{constructor application.

For example,

type Data Object TC(type Data; init val : ref(Data) is nil(Data)) is interface

type Call Type is enum Action t, Function t end enum;

provides

Read : function() return Data;

Write : function(d : Data);

action

in Read call();

out Read retn(value : Data);

in Write call(value : Data);

out Write retn();

CHAPTER 3. PRINCIPLES OF FORMALIZATION 48

private

action

Read(c : Call Type; value : Data; version : Integer);

Write(c : Call Type; value : Data; version : Integer; initial : Boolean);

end interface Data Object TC;

Commentary: This example illustrates the use of type constructors. Data Object TC

is a type constructor. It has one type parameter Data that can be replaced by

any type during application. A second, optional parameter init val may be re-

placed by any reference to an object of the Data type. Data Object TC contains

eight name declarations. The provides functions, Read and Write, will be associated

with bodies de�ned by components whose type is constructed by an application of

Data Object TC. Similarly, these components, whose type is constructed by an appli-

cation of Data Object TC, must also de�ne in actions, Read call and Write call, and

they may generate the out actions, Read retn and Write retn. The private actions,

Read andWrite, are de�ned by and may only be used by Data Object TC components.

Note the Read and Write functions are not associated with the similarly named

actions (Read call, Read retn, Write call and Write retn) by the semantics of functions

and actions in the Rapide language.

Data Object Model

Since the Data Object TC type constructor will be the subject of all of the rest of the

examples given in this chapter, we will give a brief description of the model of data

objects for which it was designed. Data objects are entities that store data values, e.g.,

memory or variables in computer programming languages. Without loss of generality

data objects can be modelled with a basis of only two kinds of operations, reads and

writes. A read operation returns the value of the object, while a write operation

supplies a new value for the object. An object goes through a sequence of \versions"

as it is written and read by the operations. We distinguish between version and value,

because during an object's lifetime it may have the same value but never the same

version. Reads do not change the object version, but each time an object is written

CHAPTER 3. PRINCIPLES OF FORMALIZATION 49

<val1,ver1>

<val1,ver1>

Read_call

Read_return
(val1)

Read_call

Read_return
(val1)

Figure 3.5: This example shows two reads of version ver1 on the object by two
modules that use the same data object. The nodes in the graph are the events and
the arcs are the dependencies. The evolution of the state is depicted on the left{hand

side with the tuple \<val1,ver1>" indicating the value and version of the data object.
At the top of the �gure when the read calls occur, the state of the data object is the
same as at the bottom of the �gure when the read returns occur.

it gets a new, unique version. Thus, each object has a version generated at the time

of the write operation as a part of it's value.

Read and write operations are represented in Rapide's poset{based execution

model as pairs of events, a call and a return event. Thinking in terms of this model

suggests a data ow graph, fragments of which are shown in Figures 3.5{3.8. The

�gures show the four possible executions of two operations operating on versions

of an object. These executions exhibit dependencies between the read and write

operations. Figure 3.5 depicts that there are no READ!READ dependencies. This

is because operations reading the same version of an object create no depencency

on one another. Only write operations create versions and dependencies. Another

subtle point is the READ!WRITE dependency case, depicted in Figure 3.6 That

dependency states that the Read read the object before the Write altered the object.

Contrast Figure 3.6 with Figure 3.8 where the read reads after the write producing a

WRITE!READ dependency.

In a single{version semantic model, every read returns the value last written.

Multiversion models provide increased concurrency by allowing multiple versions of

CHAPTER 3. PRINCIPLES OF FORMALIZATION 50

<val1,ver1>

<val1,ver1>

<val1,ver1>

<val2,ver2>

Write_call
(val2)

Write_return

Read_call

Read_return
(val1)

Read->Write

Figure 3.6: This example shows the READ!WRITE dependency; the write of version
ver2 on the object occurs after version ver1 is read.

<val1,ver1>

<val1,ver1>

<val2,ver2>

<val3,ver3>

Write_call
(val3)

Write_return

Write_call
(val2)

Write_return

Write->Write

Figure 3.7: This example shows the WRITE!WRITE dependency; the write of

version ver3 on the object after the write of version ver2.

CHAPTER 3. PRINCIPLES OF FORMALIZATION 51

<val1,ver1>

<val1,ver1>

<val2,ver2>

<val2,ver2>

Read_call

Read_return
(val2)

Write_call
(val2)

Write_return

Write->Read

Figure 3.8: This example shows the WRITE!READ dependency; the read of version
ver2 on the object occurs after version ver2 is written.

an object to coexist; old versions of an object can still be read after a new version

is written. This is exempli�ed in Figure 3.8. The value returned by the read in

the �gure is val2 which represents the single{version semantcs. The multiversion

semantics would allow the value returned to be either val2 or val1, the version before

the write.

3.3 Pattern Language

When a Rapide program is executing, the program's computation consists of the

timed, dependency poset and the state of the program's variables. Computations are

speci�ed using pattern speci�cations (or patterns) that are an extension of regular

expressions [54] to specify posets instead of sequences of events. Each pattern de�nes

a set of posets and state, called its instances. The process of recognizing whether a

poset is an instance of a pattern is called pattern matching.

This section informally de�nes pattern speci�cations and gives examples of pattern

speci�cations and operators. The formal de�nition of the pattern language may be

found in [85].

CHAPTER 3. PRINCIPLES OF FORMALIZATION 52

Patterns may be constructed using the following syntax:

pattern ::=

basic pattern j ` (' pattern `)'

j empty j any

j pattern binary pattern operator pattern

j pholder decl list pattern

j pattern `^ ' ` (' iterator expression binary pattern operator `)'

j pattern where boolean expression

j pattern macro

binary pattern operator ::= `!' j `jj' j or j and j `�' j `�'

iterator expression ::= `�' j `+' j expression

3.3.1 Basic Patterns

A basic pattern is simply the name of an action, with optional parameter associations.

A basic pattern speci�es a set of posets, each of which is a single event labeled by the

action with the given parameters.

For example,

Read retn(o)

Commentary: This example illustrates the use of basic patterns. The pattern is only

matched by Read retn events whose �rst parameter is equal to the object \o."

3.3.2 Constants

There are two pattern constants, empty and any. The empty pattern is matched

only by the empty poset, the poset that consists of zero events. The any pattern is

matched by any single event; that is, by any poset that consists of one event.

CHAPTER 3. PRINCIPLES OF FORMALIZATION 53

3.3.3 Composite Patterns

Composite patterns are pattern expressions built from smaller patterns; while basic

patterns are always matched by exactly one event, composite patterns may potentially

be matched by any number of events. The binary pattern operation `!' on patterns

is called the dependent combinator, `jj' is called the independent combinator, `or' is

called the disjunction combinator, `and' is called the conjunction combinator, `�' is

called the disjoint conjunction combinator, and `�' is called the equivalent conjunction

combinator. Informal semantics for each combinator is given below.

� Dependent: P ! P'. A match of patterns P and P' where all of the events

that matched P' depend on all of the events that matched P.

� Independent: P jj P'. A match of patterns P and P' where none of the events

that matched P are dependent on any of the events that matched P' and vice

versa.

� Disjunction: P or P'. A match of pattern P or a match of pattern P'.

� Conjunction: P and P'. A match of patterns P and P'.

� Disjoint Conjunction: P � P'. A match of patterns P and P' where all of

the events that matched P are distinct from the events that matched P'.

� Equivalent Conjunction: P � P'. A match of pattern P that is also a match

for P'.

For example,

Read call ! Read retn(o)

Commentary: This example illustrates the use of dependent composite patterns.

The pattern is only matched by a poset consisting of two events, a Read call and

a Read retn event whose �rst parameter is equal to the object \o." They are ordered

in the poset, with the Read call event causally preceding the Read retn event.

CHAPTER 3. PRINCIPLES OF FORMALIZATION 54

3.3.4 Placeholders

Patterns may contain occurrences of placeholders. There are two kinds of placehold-

ers: universal and existential. Placeholders beginning with \?" are called existential

placeholders because of their similarity to the logical quanti�er 9. Existential place-

holders represent \holes" in the patterns, where any value that is of the type the

placeholder was de�ned may �t.

Placeholders beginning with \!" are called universal placeholders because of their

similarity to the logical quanti�er 8. Universal placeholders are used in representing

multiple instances of the pattern in which they occur, one instance for each object

in the type of the universal placeholder. The operator in the universal placeholder

declaration indicates the relationship the instances of the subpatterns have with each

other. Placeholders may be declared in a pattern by giving a list of placeholder

declarations, followed by a pattern.

The syntax of a placeholder declaration and placeholder declaration list is:

pholder decl list ::= ` (' pholder decl f ` ;' pholder decl g `)'

pholder decl ::=

`?' identi�er f `,' `?' identi�er g in expression

j `!' identi�er in expression by operator

A poset C matches the pattern (?i in T) P(?i) if there exists an object o whose

type is (or is a subtype of the type) de�ned by the expression T such that P(o)

is matched by C. A poset C matches the pattern (!i in T by Op) P(!i) if, where

L = [o 1; o 2; : : :] is the list of objects whose type is (or is a subtype of the type)

de�ned by the expression T and poset C matches P(o 1) Op P(o 2) Op : : :. Place-

holder declarations may appear within patterns so the replacement can be restricted

to subpatterns.

For example,

(!d in Integer range 1 . . 10 by !) Write call(!d)

CHAPTER 3. PRINCIPLES OF FORMALIZATION 55

Commentary: This example illustrates the use of universal placeholders. The uni-

versal placeholder !d is de�ned with respect to the binary pattern operator !. This

pattern is matched by a poset that contains ten totally ordered Write call events,

where each event's parameter, the universal placeholder !d, has a value in the integer

range 1 . . 10, and there is exactly one event for each value in the range.

3.3.5 Iteration

An iteration pattern has the following syntax:

P^(binary pattern operator iterator expression),

where iterator expression is one of �, +, or n. Such a pattern is matched by itera-

tor expression, � (zero or more), + (one or more), and n (exactly n), matches of P,

each match being related to the others by binary pattern operator.

For example,

Read retn^(� �)

Commentary: This example illustrates the use of iteration patterns. This pattern

is matched by zero or more distinct Read retn events. A poset consisting of three

Read retn events would actually contain eight matches for this pattern: one of size

zero (the empty poset), three of size one, three of size two, and one of size three.

3.3.6 Pattern Macro

Pattern macros can be used to abstract and parameterize a pattern, and to de�ne

new operations on patterns.

The syntax for de�ning pattern macros is:

pattern macro ::= pattern identi�er ` (' [macro parameter list] `)' is pattern ` ;'

macro parameter list ::= macro parameter f ` ;' macro parameter g

CHAPTER 3. PRINCIPLES OF FORMALIZATION 56

macro parameter ::=

macro parameter

j type parameter

j pattern identi�er list

Pattern macros serve several purposes. They may act as reusable patterns to

be used in more than one location. They also simplify patterns by breaking them

up into smaller units. Recursive macros allow the de�nition of patterns that are

otherwise inexpressible. Finally, new pattern operators can be de�ned using macros

(see Section 3.3.7).

For example,

pattern Ticks() is Tick ! Ticks();

Commentary: Assume Tick is an action name. The pattern \Ticks" is an instance of

the above macro. It describes an in�nite chain of ordered Tick events. Pattern macros

permit the description of in�nite poset that are otherwise inexpressible. Iteration can

only describe �nite, though arbitrarily large poset.

3.3.7 Timing Operators

The timing operators are prede�ned macros that allow patterns to refer to the time at

which events are generated. All timing operators can be de�ned in terms of a single

basic timing operator, during, that is not otherwise expressible in the language. The

pattern during(P, t1, t2, clk), where P is a pattern, t1 and t2 are of type Integer, and

clk is of type Clock, is matched by a poset C such that (1) C matches P, and (2) all

events in C are related to clk, and (3) t1 is the minimum (earliest) clk.Start value of,

and t2 is the maximum (latest) clk.Finish value of any event in C.

The during pattern macro declaration is:

pattern during(pattern P; Time1, Time2 : Integer; C : Clock).

CHAPTER 3. PRINCIPLES OF FORMALIZATION 57

The other temporal pattern operators are de�ned as:

pattern at(pattern P; Time : Integer; C : Clock) is during(P,Time,Time,C);

pattern before(pattern P; Time : Integer; C : Clock) is

(?First, ?Last in Integer) during(P,?First,?Last,C) where ?Last <= Time;

pattern after(pattern P; Time : Integer; C : Clock) is

(?First, ?Last in Integer) during(P,?First,?Last,C) where ?First >= Time;

pattern within(pattern P; Time : Integer; C : Clock) is

(?First, ?Last in Integer) during(P,?First,?Last,C) where (?Last�?First <= Time);

pattern within(pattern P; Time1, Time2 : Integer; C : Clock) is

(?First, ?Last in Integer) during(P,?First,?Last,C)

where Time1 <= ?Last�?First and ?Last�?First <= Time2;

pattern \<"(pattern P1, P2; C : Clock) is

(?First, ?Last, ?First2, ?Last2 in Integer)

during(P1,?First,?Last,C) � during(P2,?First2,?Last2,C) where ?Last1 < ?First2;

For convenience, an in�x shorthand is de�ned for the timing macros. Any tim-

ing macro of the form op(P,T1,T2,C) may be written as P op(T1,T2) by C, and

op(P,T,C) may be written as P op T by C. If the clock C is omitted, the default

clock is used.

For example,

Read call < Read retn

Commentary: This example illustrates the use of the less than pattern operator that

is de�ned by a pattern macro. The pattern is only matched by a poset consisting of

two events, a Read call and a Read retn event. They are ordered in the poset, with

the Read call event temporally preceding the Read retn event.

CHAPTER 3. PRINCIPLES OF FORMALIZATION 58

3.3.8 Guarded Patterns

Context may be determined by the use of guards. A match of pattern P where guard

occurs when the poset matches P and the boolean expression guard is true. References

to state in guard refer to their values when the last event participating in the match

of P is generated.

For example,

Read call where state value = 0

Commentary: This example illustrates the use of a guarded pattern. The pattern is

only matched by Read call events that are generated when the value of state value is

equal to zero.

3.4 Architectures

Architectures declare component interfaces and connections between requires and

provides constituents of component interfaces. Architectures may also declare formal

constraints that de�ne legal and illegal patterns of communication among the compo-

nent interfaces. Components are modules that can generate and receive events as well

as call and execute functions. As a result of a connection, (i) events generated by one

component cause events to be received at another component, or (ii) functions called

by one component are executed by another component. In this way, architectures

de�ne dataow and synchronization between components using only their interfaces.

An architecture is a template for a family of systems. As an analogy, architectures

can be viewed as printed circuit boards in which interfaces play the role of sockets

into which component chips can be plugged, and connections play the role of wires

between the sockets. Components communicate only if there are connections between

their interfaces.2 Thus, Rapide architectures are communication networks, de�ned

independently of actual implementations.

2This notion of communication integrity is not enforced by the semantics of Rapide but rather

via a particular style of writing Rapide programs.

CHAPTER 3. PRINCIPLES OF FORMALIZATION 59

An architecture is declared in Rapide using the following syntax:

architecture declaration ::=

architecture identi�er ` (' [parameter list] `)' [return interface expression] is

[module constituent list]

[connect f connection g]

end [architecture] [identi�er] `;'

connection ::=

pattern connector pattern ` ;'

j other kinds of pattern connections : : :

connector ::= `to' j `=>' j ` jj>'

3.4.1 Components

Components are active modules, active in the sense that they can receive and generate

events, make function calls, execute functions, as well as contain other active and

passive modules. As a stylistic rule but not a language restriction, neither active

modules nor references to active modules can be passed as a parameter of an action

or function call. This restriction ensures communication integrity. Active modules

only communicate through their interfaces.

Components can themselves be architectures. This provides a simple capability to

develop a hierarchically structured architecture rather than one at communication

structure. When an interface in an architecture is associated with a module or an-

other architecture, the resulting architecture is called an instance of the original one.

The second (sub)module's interface or (sub)architecture's return interface expression

must conform to (be a subtype of) the component interface it is being associated

with. If omitted, the return interface expression of an architecture is the empty inter-

face, called Root. Figure 3.1 depicted a fully instantiated architecture in which each

interface has been associated with a module.

CHAPTER 3. PRINCIPLES OF FORMALIZATION 60

3.4.2 Connections

Whenever an event is generated and its associated action is a constituent of a compo-

nent interface's provides part, that event will be tested to see if it matches any of the

architecture's connection rules. If the event matches a connection's left{hand side (a

pattern), the connection will trigger , causing the events on the right{hand side of the

connection to be generated at another component interface's requires part. Similarly

for functions, if a function is called and the function was declared as a constituent of a

component interface's requires part, that function call will be compared will the archi-

tecture's connection rules. If the function call matches a connection's left{hand side,

the connection will trigger, causing the function on the right{hand side to be called.

The returned value from the right{hand side's call will be passed back to the original

left{hand side's call as its return value. A component's requires function calls will

be aliased to some other component's provides functions. Thus, connections de�ne a

ow of events and remote function calls between components. A crucial point is that

any connection only depends upon the interfaces of component modules of a system,

and not upon the actual modules that might be implementing those interfaces.

A connection can also relate events generated at the interface of the architecture

to events at its components' interfaces, and conversely { thus de�ning dataow into

and out of the architecture.

If an architecture contains more than one connection, they will all trigger and

execute concurrently.

Basic Pattern Connections

The simplest kind of connection relates two basic patterns. When an event matches

the left{hand side basic pattern, the right{hand side will be executed. In this case the

right{hand side is also a basic pattern. The execution of the right{hand side consists

of generating the event matching to the right{hand side basic pattern. If this pattern

does not contain parameters of the action, then the parameters of the triggering event

are taken as default parameters of the action call expression.

Depending on the kind of connector used, the relationship between the events

CHAPTER 3. PRINCIPLES OF FORMALIZATION 61

generated may vary. If the connector is basic (denoted by to) the generated event

is causally and temporally equivalent to the event that matched the left{hand side.

The pipe connection (denoted by =>) will result in the generated event causally

following the triggering event, and causally following all events generated by previous

executions of the connection. An agent connection (denoted by jj>) will also result in

the generated event causally following the triggering event, but the connection doesn't

causally relate the generated event to the events generated by previous executions of

the connection.

For example,

connect AP.Read call to Obj.Read call;

Commentary: This example illustrates the use of a basic connection. The left{hand

side of the connection is a basic pattern that is only matched by Read call events

generated by the AP component. When such a match triggers the connection, a

Read call event will be generated and made available to the Obj component.

Function Connections

A requires function in one interface may be connected to a provides function in another

interface.

For example,

connect AP.Write to Obj.Write;

Commentary: This example illustrates the use of function connections. The func-

tions are declared in the interfaces of AP and Obj. The functions must be type-

compatible [49]. This connection has the e�ect that whenever AP calls its requires

function Write, the call is executed as a call to Obj's provides function with the same

arguments; the return values are returned to AP as the result if its call.

CHAPTER 3. PRINCIPLES OF FORMALIZATION 62

Patterns in Connections

An architecture is not restricted to a static hardware paradigm. The use of patterns in

connections provides a powerful feature for specifying both static and dynamic archi-

tectures. A static architecture has a �xed number of components and the conditions

under which they communicate do not vary | the printed circuit board example.

A dynamic architecture may contain varying numbers of components and the con-

ditions under which they communication can also vary | a distributed transaction

processing system is an example of a dynamic architecture, since it may have varying

numbers of resources and communication conditions. Often, communication between

sets of components in a system can be speci�ed using a single Rapide connection.

For example:

connect (?D in Data) AP.Write call(?D) to Obj.Write call(?D);

Commentary: This example illustrates the use of patterns in connections. A requires

action of the AP is connected to a provides action of the Obj. The syntax (?D in Data)

declares the type of objects (Data) that may be bound to the placeholder ?D. In

general, a pattern may be pre�xed by a list of these placeholder declarations. The

connection de�nes event ow between the AP and Obj; whenever the AP generates

a Write call event then the Obj will receive a causally and temporally equivalent

Write call event with the same data.

For example:

connect

(?A in AP, ?D in Data) ?A.Write call(?D)

to (!O in Data Object TC jj) !O.Request Receive(?D);

Commentary: The connection connects every AP to every Data Object TC. The

connection triggers whenever any application program generates a Write call event

and results in generating Write call events with the same Data (?D) at every module

that is a subtype of Data Object TC. Each data object's Request Receive event is

CHAPTER 3. PRINCIPLES OF FORMALIZATION 63

dependent upon the application program's Write call event, but is independent of

any of the other data object's Request Receive events.

3.4.3 Service Connection

Often related constituents in an interface can be grouped into disjoint sets. For ex-

ample, a transaction manager in the X/Open DTP industry standard has a set of

constituents for interacting with applications (the TX set, see Section A.2.1) and

another set for interacting with resource managers (the XA set, see Section A.2.2).

Interface constraints relate members within a set, but the two sets are almost entirely

independent. It is convenient to structure such interfaces into separate sets of con-

stituents so that it is clear how interface constraints apply. But more importantly,

this structuring of the interfaces can be used to de�ne large numbers of connections

correctly in large architectures.

Services

Complex interfaces can be structured into related sets of constituents called services.

Services provide the ability to encapsulate a related set of constituents of the enclosing

interface and to allow large numbers of connections between components to be de�ned

by a single connection rule.

The syntax for services is:

service declaration item ::= basic name list ` :' [dual] interface type expression ` ;'

Consider,

type Resource is interface

service DO : Data Object TC(Integer);

end interface Resource;

The DO service in the Resource interface denotes all of the actions, functions and

nested services (if any) constructed from applying Integer to the Data Object TC

CHAPTER 3. PRINCIPLES OF FORMALIZATION 64

type constructor. To name them, the name \DO" is appended with the usual \."

notation before the name of the constituent. If the service were dual, the same

constituents would be denoted except that the modes of the service's constituents are

reversed; provides (requires) functions become requires (provides) functions, and in

(out) actions become out (in) actions.

Service Connection

An architecture can connect together dual services in component interfaces. Such a

connection denotes sets of basic connections, one for each constituent in the service.

A service and a dual service of the same type may be connected together since they

have complimentary provides and requires constituents.

For example,

type Application is interface

service DO : dual Data Object TC(Integer);

end interface Application;

architecture DTP Architecture() is

A : Application; RM : Resource;

connect

A.DO to RM.DO;

end architecture DTP Architecture;

Commentary: Here the dual DO services of an Application and a Resource are con-

nected by a single rule. This connection denotes the following set of basic connections

between each pair of constituents with the same name in the two services:

A.DO.Read to RM.DO.Read;

A.DO.Write to RM.DO.Write;

P.DO.Read call() to RM.DO.Read call();

(?i : Integer) RM.DO.Read retn(?i) to A.DO.Read retn(?i);

(?i : Integer) A.DO.Write call(?i) to RM.DO.Write call(?i);

RM.DO.Write retn() to A.DO.Write retn();

CHAPTER 3. PRINCIPLES OF FORMALIZATION 65

Service Set Connection

A service set declaration declares a set of services of the enclosing interface, each of

which has the type of the interface expression (or its dual). Each service of the set can

be named by indexing the service set name with a literal of the range or enumeration

type used as the service set index.

The syntax for a service set is:

service set declaration ::=

basic name list ` (' f service set index g `)' `:' [dual] interface type expression ` ;'

Service sets are connected to other services using connection generators.

The syntax for connection generators is:

connection generator ::=

generation scheme generate

connection

end [generate] [(if j for)] `;'

generation scheme ::=

if expression

j for expression in expression next expression

j for identi�er ` :' type expression in expression

For example,

type Application Program(NumRMs : Integer) is interface

service Rsrcs(1 . . NumRMs) : dual Data Object TC(Integer);

end interface Application Program;

architecture DTP Architecture(NumRMs : Integer) is

AP : Application Program(NumRMs);

Rs : array[Integer] of Resource;

CHAPTER 3. PRINCIPLES OF FORMALIZATION 66

connect

for i : Integer in 1 . . NumRMs generate

AP.Rsrcs(i) to Rs[i].AP;

end generate;

end architecture DTP Architecture;

Commentary: This example illustrates the expressive power of service sets and service

set connections. The application program interface type constructor has a set of

NumRMs dual data object services for communication with the resources labeled

Rsrcs, and Rsrcs(i) is the ith data object service in the set. The architecture connects

the application program AP to the array of resources Rs with a connection generator.

3.5 Modules

Modules are de�ned by a set of processes (possibly empty) that observe events and

react to them by executing arbitrary code that in turn may generate new events.

Modules are a general construct for encapsulating the implementation of a component.

Consequently, modules can be either values of a \small" passive type such as Integer

or values of a \large" active type such as a multi{threaded subsystem.

A module must de�ne the provides constituents of its interface and may de�ne

additional constituents, called internal constituents, not found in its interface. These

internal constituents may themselves be other modules (or children).

Rapide de�nes the conformance rules (by means of interface types and con-

straints) that determine which modules may be associated with which interfaces.

3.5.1 Process

A process is an independently executing single thread of control. Processes are con-

structed from sequential statements, including action calls that generate events and

reactive statements that react to events. Since processes are single{threaded, each

event a process generates is dependent on the preceding event generated by the pro-

cess. Thus, all events generated by a process form a total dependency ordering.

CHAPTER 3. PRINCIPLES OF FORMALIZATION 67

The syntax of processes is:

process ::= statement list j generate statement

For example,

for I : Integer in 1 . . NumObjs do DO(I).Write call(0); end do;

Commentary: This process consists of a single for statement. It makes Write calls to

several DO service set members, and then terminates. The Write calls are all causally

related in a total order.

Event Generation, Availability and Observation

The rules for event communication are given in the Executable Language Reference

Manual [84] which describes the process of event generation, availability and obser-

vation in detail. In summary, at run{timeRapide processes generate events through

the execution of action and function calls. When an event is generated, it is imme-

diately made available to other processes or connections. Constituents whose events

are available to a process of a particular module are as follows: the in, private and

internal actions of the module, and the out actions of constituent modules of the

module. Events become unavailable to a process after they have participated in the

triggering of that process, see Section 3.5.2.

Once an event becomes available to a process, it will subsequently be observed

by the receiving process. A consistency relation holds between the observation and

dependency orders, called the orderly observation principle: events are observed by a

process one by one in some total order that is consistent with the dependency partial

order.

Timing Clause Statements

The generation of an event may be delayed for some time period after the execution

of an action call statement via timing clauses. As stated before in Section 3.1.2, time

CHAPTER 3. PRINCIPLES OF FORMALIZATION 68

is modelled in Rapide as a partial order; activities that occur before other activities

are given lesser timestamps, while later activities are given greater timestamps, and

(possibly) concurrent activities are given the same timestamp. The purpose of a

timing clause is to model activities that have duration or occur some time in the

future. Therefore, an event, which models a particular activity, has two timestamps:

its start and �nish times. A timing clause modi�es the generation of an event by

determining the start and �nish timestamps.

A Rapide clock is a monotonically increasing counter. The rate at which it

increases is not related to any physical unit, but rather is controlled by the program

execution. This kind of clock provides what is oftern referred to as simulation time,

as opposed to real{time. A clock's counter value is a timestamp, and an increase

in time is referred to as a tick. A clock ticks when there are no more events to be

generated with the current timestamp. A single Rapide architecture may contain

multiple clocks, and an event may be timed with respect to one or more clocks.

The syntax for timing clauses is:

timing clause ::=

action call pause timing expression

j action call delay timing expression

j action call after timing expression

timing expression ::= expression j type expression

A timing clause may only be applied to action calls, and it must include an

expression. The timing expression may denote a single object or type. When an

object is given, the object must be of type C.Ticks (Integer), and if a type is used,

then it must be a subtype of C.Ticks, where C is called the named clock of the timing

clause.

Timing clauses that use pause t will slow the execution of the action call for

the t ticks of the clock. That is, if the action call begins with the named clock's

current counter value is n, then the call will complete when the counter value is n+ t.

The event will be generated and made available at timestamp n + t, and the start

CHAPTER 3. PRINCIPLES OF FORMALIZATION 69

timestamp of the event will be n, while the �nish timestamp will be n + t. Thus,

the pause timing clause can be used to model the occurrences of activities that have

duration.

A delayed action call is equivalent to the same call, substituting delay for pause,

with the following exception. The action call will generate an event e with start

timestamp n and �nish timestamp n+ t, and any event that is or becomes available

to the process at timestamp s relative to the named clock, where n � s � n+ t, will

never be observed by the process executing the timing clause.

Timing clauses that use after t schedule the generation of the event for t ticks in

the future. The start and �nish timestamp of the event will both be n+ t.

If any of the timing clauses is parameterized with a value that is less than or equal

to zero, it is equivalent to the same call without a timing clause. If a type expression

is given, then it must be a subtype of C.Ticks for some clock C. Such a timing clause

is speci�es an arbitrary value in the range of the type expression. That is an arbitray

value in the range is selected, and if the range is empty, the prede�ned exception

Timing Error is raised.

For example,

Write retn() after C.Ticks range 1 . . 3;

Commentary: This example statement schedules the generation of a Write retn event

1, 2 or 3 ticks (non{deterministically chosen) in the future.

Note: Timed statements are very similar to timing clauses and enable a module to

allow time to pass without generating an event. The e�ect of executing a timed

statement is the same as executing an action call with an identical timing clause,

except that no event is generated.

The syntax for timed statements is:

timed statement ::=

pause timing expression ` ;'

j delay timing expression ` ;'

CHAPTER 3. PRINCIPLES OF FORMALIZATION 70

Reactive Statements

Reactive statements are used to respond to events observed by a process.

The syntax of the reactive statements is:

await stmt ::=

await

pattern [`=>' f stmt g

pattern choices

end [await] `;'

pattern choices ::= f or pattern choice g

pattern choice ::= pattern `=>' f stmt g

when stmt ::=

when pattern do stmt list end when ` ;'

The fundamental reactive statement is the await statement; the when statement

is a commonly used form of the await statement that has a special syntax. An await

statement includes one or more patterns that may be matched by observed events;

when a match of a pattern is observed, a (possibly null) body of statements associ-

ated with that pattern, called its alternative, is executed. If more than one pattern is

matched by the observed events, an arbitrary choice is made among the them. The

match of the pattern chosen is said to trigger the execution of its alternative. The

scope of placeholders in an await statement's pattern extends to its alternative. One

can think of an await statement alternative as a parameterized list of statements,

such that upon observing a triggering match, an instance of the alternative is execu-

tion, where the placeholder occurrences in the alternative have been replaced by the

substituting values determined in matching.

CHAPTER 3. PRINCIPLES OF FORMALIZATION 71

For example,

await

Read call =>

Read(Action t, $val, $ver) � Read retn($val);

or (?v in Data) Read retn^(� �) � Write call(?v) =>

val := ?v;

ver := $ver + 1;

Write(Action t, $val, $ver, False) � Write retn();

end await;

Commentary: This example consists of one await statement. In brief, the above

statement waits for either a single, available and observed Read call event or any

number of available and observed Read retn events and a Write call event. If the

Read call event triggers, then a Read and a Read retn event will be generated. The

values of the parameters will be determined by dereferencing the (assumed) global

val and ver reference objects. If the Read retn and Write call events trigger, then the

two state assignments will be executed and a Write and a Write retn event will be

generated. The value assigned to val in the �rst assignment is equal to the value given

the Write call event that was bound in matching the pattern.

When statements are a special syntactic form of await statements; they model \rules"

that �re repeatedly upon observation of a triggering match. The following when

statement

when pattern do stmt list end when ` ;'

is equivalent to:

loop do await pattern => stmt list end when ` ;' end loop;

CHAPTER 3. PRINCIPLES OF FORMALIZATION 72

For example,

when (?v in Data) Read retn^(� �) � Write call(?v) do

val := ?v;

ver := $ver + 1;

Write(Action t,$val,$ver,False) � Write retn();

end when;

Commentary: This example consists of one when statement. It repeatedly waits for

any number of available and observed Read retn and a Write call event, performs two

state assignments, and generates a Write and a Write retn event in response to them.

3.5.2 Triggering

When a process needs to match a pattern3 before it can continue processing, the

process will look through its pool of available, observed events to �nd such a match.

Upon �nding such a match, the process is said to be triggered, and the events that

participated in the triggering are then unavailable to that process. If no match is

found, the process is blocked until one is found.

If the triggering process �nds more than one match in the pool, three relations on

the matches are used to select one:

Maximal: Given two matches A and B, match A is maximal if and only if match

B is contained in match A and there are elements in match A that are not

contained in match B.

Earlier: Intuitively, given two matches A and B, match A is earlier if there is a

consistent cut through the execution poset where match A occurs above the

cut, but match B does not. The term earliest refers to the transitive of earlier.

First: Given two matches A and B, match A is �rst if and only if any event in

match A was observed before every event in match B.

3The pattern being matched is either a particular pattern or one of a group of patterns.

CHAPTER 3. PRINCIPLES OF FORMALIZATION 73

For modules (see Section 3.5.3), the earliest, maximal match (with that priority)

among the pool will be used, and for behaviors (see Section 3.5), the �rst, earliest,

maximal is used. If given all these rules, there more than one match, an arbitrary

choice is made.

De�nition 3.5.1 Given a set S and a partial order < on S, a consistent cut of <

is a partial order <0 on S0 such that S0 � S; <0 � <; and e0 2 S0 ^ e 2 S ^

e < e0 ! e 2 S0:

3.5.3 Module Constructor

Modules are generally created using a module generator. A module generator declares

a function that returns a unique module every time it is called. Each call to the

generator will generate a new module.

The syntax for module generators is:

module generator ::=

module identi�er ` (' [parameter list] `)' [return interface expression] is

[module declaration list]

[constraint module pattern constraint list]

[connect module connection list]

[initial module statement list]

[(parallel j serial) process `jj' process]

[�nal module statement list]

end [module] [identi�er] `;'

CHAPTER 3. PRINCIPLES OF FORMALIZATION 74

For example,

module Simple(type Data; init : ref(Data) is nil(Data))

return Data Object(Data,init) is

val : var Data;

ver : var Integer := 0;

Read : function() return Data is

begin

Read(Function t,$val,$ver);

return $val;

end function Read;

Write : function(value : Data) is

begin

val := value;

ver := $ver + 1;

Write(Function t,$val,$ver,False);

end function Write;

connect

(?v in Data) Read(Action t,?v) to Read retn(?v);

(?v in Data, ?u in Integer) Write(Action t,?v,?u,False) to Write retn();

initial

if not (init.Is Nil()) then

val := $init;

Write(Action t,$init,$ver,True);

end if ;

parallel

when Read call do Read(Action t,$val,$ver); end when;

jj

when (?v in Data) Read retn^(� �) � Write call(?v) do

val := ?v;

ver := $ver + 1;

Write(Action t,$val,$ver,False);

end when;

end module Simple;

CHAPTER 3. PRINCIPLES OF FORMALIZATION 75

Commentary: This example illustrates a module generator for the Data Object TC

interface type declared in Section 3.2.1. Simple de�nes two local variables, val and

ver, that are not visible outside of this module generator. It also de�nes two functions

that were declared provides in its interface. Functions can generate events as well

as return values, and in this case, the functions generate events that are private |

because the associated actions were de�ned private in the interface.

Simple de�nes two connections. The �rst connection will generate a Read retn event

(via an out action call) every time a private Read event with an action t Call type

is generated. Similarly, the other connection generates Write retn events when Write

events are generated.

When a module is initialized just after being created by an application of the

module generator Simple, the module will test whether it has been given an initial

value (init). If it has (init will not be Nil), the initial value will be store in the local

variable val and a private Write event signifying this occurrence will be generated.

During execution the module may receive Read call and Write call events. Upon

observing a Read call event, the module will generate a private Read event, and upon

observing a Write call event, the module will update its local variables representing

its value and version and generate a private Write event. its state will be updated

appropriately

A possible execution of a module generated from an application of Simple is given in

Figure 3.9. This execution features the execution of an application that initially issues

a Read call event. This requests were observed by the data object after the initial part

of the object was executed and generated the Write(function t,init val,0,True) event.

The data object's processing of the Read call event causes the generation of a Read

and a Read retn event. Upon receiving the Read retn event, the example application

generates a Write call and two more Read call events. The data object observes and

processes the events in the following order: i) one of the Read call events, ii) the

Write call event, and iii) the other Read call event. Every data object execution will

produce the characteristic write, followed by a set of reads, followed by another write,

as the object goes through its sequence of versions.

CHAPTER 3. PRINCIPLES OF FORMALIZATION 76

Write
(function_t,init_val,0,True)

Read_retn
(init_val)

Read_call
Read

(action_t,init_val,0)

Write
(action_t,val1,1,False)

Read
(action_t,init_val,0)

Read
(action_t,init_val,0)

Write_retn

Read_retn
(init_val)

Write_call
(val1)

Read_call

Read_retn
(init_val)

Read_call

Figure 3.9: An execution of a module constructed from Simple.

3.5.4 Behavior

An interface type may contain a behavior part that is an abstract de�nition of the

behavior of conforming modules to the type. If a module is not supplied for a compo-

nent of an interface type, a default module will be generated from this behavior part.

The behavior part of an interface consists of a set of types, objects, and transition

rules. The objects model abstract state, and the transition rules specify how modules

of the interface type react to patterns of observed events by changing their states

and generating events. State transition rules are simple, �nite state machine{like

CHAPTER 3. PRINCIPLES OF FORMALIZATION 77

constructs that are more declarative than the procedural module generators.

The syntax for module generators is:

behavior ::= [declaration list] begin f state transition rule g

state transition rule ::= [pholder decl list] pattern op body ` ;'

op ::= `=>' j ` jj>'

body ::= [f state assignment g] [poset generator ` ;']

poset generator ::= restricted pattern

A state transition rule consists of an optional list of placeholder declarations fol-

lowed by a pattern, an op symbol, and a body. The pattern found on the left side of

the op symbol is called the state transition rule's trigger. A transition rule de�ned

using the => op symbol is called a pipe, and one de�ned using the jj> op symbol is

called an agent.

A body consists of an optional set of statements followed by an optional restricted

pattern that describes a set of posets (called a poset generator). The scope of the

outermost placeholder declarations in the trigger extends throughout the body.

The default module is generated from an interface behavior via a fairly straight{

forward translation with only minor semantic changes. Each state transition rule

is translated into a repeating process that awaits the generation of a match for the

trigger, and executes the body. As a generated module's processes execute, they

are synchronized such that only one process may trigger and execute at a time. To

determine which process to trigger, all of the matches for all of the pattern triggers

are collected from the processes pools of available, observed events, and the �rst,

earliest, maximal match (with that priority) is chosen (see Section 3.5.2). Once an

event participates in the triggering of a process (state transition rule), it becomes

unavailable to that process, but will remain available to all of the others. Thus,

an event may take part in triggering a given rule at most once, although it may

participate in triggering several rules.

CHAPTER 3. PRINCIPLES OF FORMALIZATION 78

An action call statement in the body of a transition rule may include the after

timing clause, but not the other timing clauses. A further restriction is that the

pattern in the body may not contain the � operator. These restrictions

For example,

behavior

val : var Data;

ver : var Integer := 0;

Read : function() return Data is

begin

Read(Function t,$val,$ver);

return $val;

end function Read;

Write : function(value : Data) is

begin

val := value;

ver := $ver + 1;

Write(Function t,$val,$ver,False);

end function Write;

begin

Start =>

if not (init.Is Nil()) then

val := $init;

Write(Action t,$init,$ver,True);

end if ;;

Read call jj>

Read(Action t,$val,$ver) � Read retn($val);;

(?v in Data) Read retn^(� �) � Write call(?v) =>

val := ?v;

ver := $ver + 1;

Write(Action t,$val,$ver,False) � Write retn();;

CHAPTER 3. PRINCIPLES OF FORMALIZATION 79

Write
(function_t,init_val,0,True)

Read
(action_t,init_val,0)

Read
(action_t,init_val,0)

Read
(action_t,init_val,0)

Write
(action_t,val1,1,False)

Read_retn
(init_val)

Read
(action_t,init_val,0)

Write_retn

Read_retn
(init_val)

Read_retn
(init_val)

Read_call

Read
(action_t,init_val,0)

Read_retn
(init_val)

Read_retn
(init_val)

Write_call
(val1)

Read_callRead_call Read_call

Read_call

Figure 3.10: An execution of a module generated from the behavior.

3.6 Constraints

A good constraint language is a powerful speci�cation weapon, particularly when sup-

ported by useable and e�cient tools. In developing distributed systems to meet given

requirements, a �rst step is a capability to specify intended behavior. Constraints

may involve very simple assertions about the input and output values of a function or

complex results of scenarios of activity between communication, but independently

CHAPTER 3. PRINCIPLES OF FORMALIZATION 80

executing, systems of objects. Typically the latter might be communication protocols

that are part of the speci�cation of reliability, security, or time{critical requirements.

A constraint language must be able to express these various kinds of speci�cations.

In the case of distributed systems, constraints on causal event histories provide a

powerful new kind of speci�cation language. We argue, in fact, that this kind of spec-

i�cation language is necessary for expressing detailed requirements on distributed

object systems.

Prior experience with the Rapide constraint language has shown that constraint

checking tools are e�ective and necessary in analyzing complex simulations for prop-

erties that are often too complex for the human viewer. Constraints may be utilized

either to specify the behavior of single components, in which case they are part of

interface de�nitions, or they can specify communication between objects, in which

case they apply to architecture connections.

The behavior of Rapide program may be constrained by pattern constraints that

are based upon pattern speci�cations. Pattern constraints denote the patterns of

events and state that are acceptable and unacceptable. This dissertation only uses

the simplest kind of Rapide pattern constraints, the never constraint that disallows

any observation of the given pattern. Other more complex constraints are described

in the Rapide Constraint Language Reference Manual [87].

Every pattern constraint is associated with a Rapide module and constrains only

those events that were made available to it. For a pattern constraint occurring in an

interface de�nition, each module of the interface must satisfy that constraint. For a

pattern constraint occurring in a module generator, each module created by a call to

the generator must satisfy that constraint.

3.6.1 Never Constraints

A never constraint de�nes a pattern that should never occur.

CHAPTER 3. PRINCIPLES OF FORMALIZATION 81

The syntax of a never constraint is:

pattern constraint ::= [label] never pattern ` ;'

No match of the given pattern should occur in the visible poset. If any such match

exists, the constraint is violated.

3.6.2 Match Constraints

match constraints are used to specify event patterns that should occur during the

execution of a program.

The syntax of a match constraint is:

pattern constraint ::= [label] match pattern ` ;'

A match constraint constrains a subset of the visible computation to match the

given pattern. The computation constrained is all of the events associated with basic

patterns occuring in the given pattern. This subcomputation must be an exact match

of the pattern for the constraint to be satis�ed.

3.6.3 Data Object Model Constraints

Several example constraints from the interface declared in Section 3.2.1 and imple-

mented in Sections 3.5.4 and 3.5.3 include:

Initialization. The example below illustrates the never constraint. The constraint

requires that two Write events whose initial parameters are true may not exist in an

execution. This constraint expresses that a data object can only be initialized once.

never Write(initial is True) � Write(initial is True);

CHAPTER 3. PRINCIPLES OF FORMALIZATION 82

One{To{One Correspondence of Private and Out Events. There should be

an equivalence between private and out events.

match ((?val in Data) Read(?val) ! Read retn(?val))^(� �);

match (Write(initial is False) ! Write retn)^(� �);

Version Semantics. Read returns are not necessarily ordered, while write returns

are totally ordered. This is because writes must create a new version that must be

causally after the preceding version, while there is no such constraint on reads. Note:

versions are generated in a sequence.

match Write retn^(! �);

A key property is that version numbers increase monotonically. Any two write returns

must be causally ordered such that the version number of the dependent write return

(?v2) must be greater than the version number of the preceding write return (?v1).

never (?v1, ?v2 in Integer) Write(version is ?v1) ! Write(version is ?v2)

where ?v1 >= ?v2;

If initially each object starts with a version number of 1 and each write increments the

version number by 1, then at the leading edge of any consistent cut in the computation,

the object's version number will be equal to the number of writes of that object before

that edge.

match Write(version is 1, initial is True) ! Write^(! �);

match (?v in Integer) Write^(! ?v) � (Write^(! �) ! Write(version is ?v));

Single Version Semantics. Reads must return the last value written, and the

versions must occur in sequences where a write occurs and is followed by any number

of read returns that are followed by another version.

CHAPTER 3. PRINCIPLES OF FORMALIZATION 83

match ((?d in Data)(?v in Integer) Write(?d,?v) ! Read(?d,?v)^(� �))^(! �);

3.7 Event Pattern Mappings

Event pattern mappings (or maps) provide a powerful mechanism for de�ning rela-

tionships among architectures. The main purpose for maps is to de�ne how executions

of one architecture may be interpreted as executions of another architecture. In many

cases, there is quite a wide ranges of di�erences among how a system can be viewed

architecturally. For example, when two architectures of a system are at di�erent lev-

els of abstraction, many events in one may correspond to just one event in the other

(as is often the case in hierarchical design). Patterns provide the necessary expressive

power to de�ne hierarchical as well as non{hierarchical kinds of mappings.

More generally, a map can interpret the executions of several architectures taken

together (called domains) as executions of another range architecture. A signi�cant

bene�t from interpreting domain executions as range executions is that the range

execution generated by a map must satisfy the constraints of the range. Moreover,

maps are composable; maps can be domain parameters in the de�nition of other maps.

Thus, maps can be used as constraints on their domains and as domain parameters

of other maps.

CHAPTER 3. PRINCIPLES OF FORMALIZATION 84

3.7.1 Map Generators

Maps are created by calling map generators.

The syntax of a map generator is:

map generator ::=

map identi�er ` (' [formal parameter list] `)' from domain list to range is

f declaration g

[constraint f constraint g]

rule f agent state transition rule g

end [map] [name] `;'

agent state transition rule ::= pattern ` jj>' f state assignment g [poset generator] `;'

The actual parameters of a map generator invocation must correspond to the

formal parameters of the map generator. These parameters serve the same purpose

as formal parameters of function calls, to pass data values to the map generator. The

data values passed are intended to be non{active modules, i.e., modules that neither

receive nor generate events.

While formal parameters are used to pass non{active modules, the list of domain

indicators is used to pass active modules or maps. If the domain indicator is a type

expression, then the actual domain must be a module (or map) whose interface type

(or range type) must be a subtype of the domain indicator's type. If the domain

indicator is a module generator name, then the actual domain must be a module

generated from that module generator or a map whose range indicator is the same

module generator.

Since there are no real range constituents in a map, there is not an explicit range

constituents' state. The map must provide the state by de�ning of constituents with

the same name of the same type inside the map. If the constraints need values from

a range constituent's state, the map will return the corresponding state from within

the map.

Declaration of the range may be repeated in the map declarations. Maps may

declare objects, and such objects are called state components. A map generator has

CHAPTER 3. PRINCIPLES OF FORMALIZATION 85

visibility to the declarations in the interfaces of its domains and range, as well as the

internal declarations of the module generators if the module generator name is the

domain indicators. It can therefore name the actions of the interfaces of the domains

and range as well as actions of their components.

3.7.2 Transition Rules

The principle feature of maps is the agent state transition rule that also occurs in

interface behavior parts (Section 3.5.4). The agent state transition rule provides the

necessary expressive power needed to de�ne correspondences between architectures.

Each rule observes patterns of events in the domains, triggers on them, and generates

a poset in the range. The range poset could be a possible behavior of the range

archicture, but it is not requires to be. It is generated solely by the map rather than

by any execution of the range architecture.

The events that are made available to the map are as follows. If an actual domain

of the map corresponds to an indicator that is a type expression, then the map

observes the events of the requires and provides parts (but not a behavior part) of

the domain's interface. If an actual domain of the map corresponds to an indicator

that is a module generator, then the map observes the events generated in the domain

if that event is generated by a call to an action or function of the domain's interface or

its components' interfaces { again only the requires and provides parts (not behavior

part). If the actual domain is a map, then the map observes all events generated by

the domain. Thus, a map can see inside (one level) of its domain objects, and all the

way down inside another map.

The range actions called are limited to those in the range's interface type. That

is, a map may call provides, requires and private actions of the range interface type,

as well as provides, requires and private actions of modules declared in the range

interface type. Maps may also explicitly call the implicitly declared call and return

actions of functions.

CHAPTER 3. PRINCIPLES OF FORMALIZATION 86

3.7.3 Induced Dependencies

A natural question to ask is whether there are any dependencies between: i) the

events produced in the range, and ii) between domain events and range events. The

answer to the second part of the question is no. Events of the range poset are

causally independent to events of the domain poset. And for the answer to the

former question, the range events generated by each triggering of a map rule have at

least the dependency order de�ned by the poset generator in the body of the map's

agent state transition rule. Additionally, events generated by separate triggerings of

the rules can have a dependency order de�ned in terms of the dependencies between

the domain events that triggered the rules. This is called an induced dependency;

dependencies among events of the range poset are induced from the dependencies

among the events of the domain poset.

The user has a choice from several induced orderings as de�ned below:

For all events e, f generated in the range of some map, f depend upon e if and

only if i) e and f were generated by the same rule, by the same triggering, and the

poset generator in the body of the agent state transition rule speci�ed f to depend

upon e, or ii) T ; U , where T is the domain poset that triggered e and U similarly

triggered f . The following are the de�nitions of ; that users may choose from:

none: There is never an induced ordering between map events, i.e., T ; U i� false.

strong: There is an induced ordering i� all events that triggered e precede all events

that triggered f , i.e., T ; U i� 8a 2 T; b 2 U : (a! b):

maxima: There is an induced ordering i� all events in the maxima (de�ned below)

of the trigger of e precede all events in the maxima of the trigger of f , i.e.,

T ; U i� 8a 2Maxima(T); b 2Maxima(U) : (a! b):

dominance: There is an induced ordering i� for all events a in the trigger of e,

there exists an event b in the trigger of f such that a precedes b, i.e., T ; U i�

8a 2 T; 9b 2 (U � T)(a! b):

di�: There is an induced ordering i� all events in the trigger of e precede all events

CHAPTER 3. PRINCIPLES OF FORMALIZATION 87

in the trigger of f that aren't also triggering events of e, i.e., T ; U i� 8a 2

T; b 2 (U � T) : (a! b):

De�nition 3.7.1 An event a that is a member of poset P is in the maxima of P

if and only if there isn't another event b that is also a member of P and causally

precedes a, i.e., a 2 Maxima(P) i� a 2 P^ 6 9b 2 P : b! a:

3.7.4 Conformance to Range Constraints

The range poset generated by a map must satisfy the map's constraints that are

derived from the range's constraints. If the range indicator is an interface type, the

map's constraints will include that interface's constraints, and if the range indicator

is a module generator name, the map's constraints include both the constraints in

the interface type and in the module generator's body.

Maps are intended to be used as an architecture analysis tool. An applications

of maps has been to runtime compare an architecture with a standard (or reference)

architecture as will be shown in Section 5. Comparison of architectures is accom-

plished by mapping the posets of the domain architecture(s) into behaviors of the

range architecture and checking them for consistency with the constraints of the

range architecture.

Maps have also been established experimentally to reduce the complexity of large

simulations by mapping posets of events in a detailed low{level simulation into single

events in a higher level simulation. When a hierarchical design methodology is used

to develop a low level detailed architecture from a highly abstract speci�cation, maps

relating architectures at successive levels of abstraction can be composed transitively

to de�ne maps across several levels.

Maps support consistency checking of architectures at di�erent levels in a design

hierarchy, and automated runtime comparison of an architecture with a standard

(or reference) architecture. Comparison of architectures is accomplished by mapping

the behaviors of the domain architecture(s) into behaviors of the range architecture

and checking them for consistency with the constraints of the range architecture.

In Chapter 5, maps are used to relate a particular system to the X/Open reference

CHAPTER 3. PRINCIPLES OF FORMALIZATION 88

architecture and to check that the system satis�es the formal constraints of X/Open.

3.8 Tool Suite

There are several tools to assist programmers who are using Rapide. The tools

include a compiler, a constraint checking runtime system, a graphical poset browser,

and an animation facilities for producing, viewing, and animating posets generated

by Rapide computations.

3.8.1 Compiler (Rpdc)

The compiler4 parses Rapide source code, reports syntax and semantic errors, and

generates an executable. Executing the executable will generate a log �le that is

the event log of the computation. Other programs (most notably Pob described in

Section 3.8.3) can be used to view the poset of the computation.

3.8.2 Constraint Checking Runtime System (RTS)

Constraint checking runtime system handles the resource allocation during program

execution as well as verifying that the computation produced does not violate the

constraints of the model.

3.8.3 Partial Order Browser (Pob)

Pob is a tool for graphically browsing the partially ordered event traces generated

by Rapide computations. When it is executed, the pob will create three windows.

One window contains a menu bar and an area in which graphs will be drawn; we

call this the graph window. Another window, called the options window, contains

just toggle windows. The third window, architecture, contains the components of the

computation that generated the log �le.

4This tool is actually a translator that rewrites Rapide source into Ada.

CHAPTER 3. PRINCIPLES OF FORMALIZATION 89

3.8.4 Simulation Animator (Raptor)

Animation is the depiction of the event activity in a system on a picture of the system.

Movement of messages on a box and arrows diagram is a common animation style.

Di�erent graphical animation styles are appropriate for di�erent systems.

Animation is an aid to human understanding. It is a powerful tool in architec-

ture prototyping. Often, in our experience with Rapide, animation of a simulation

provides the easiest way for a user to assess what a system is doing. Only then is

it possible to embark on a more formal process to modify the system, express con-

straints on its behavior, and so on. Also, animation of distributed systems is aided by

causal histories, because the causal dependencies between events imply simple rules

about the order in which events should be depicted to give an accurate animation.

The current simulation Rapide animator, called Raptor, consists of an active

architecture{graphical event player that produces cartooned scenarios of a program

execution. It provides a powerful demonstration facility to illustrate and communicate

executions of the architecture. The event player depicts the architecture (currently

statically) and gives a picture of who can communicate with whom. The tool is

active in the sense that it is able to play back an execution of a program. It has been

developed with an interface to causal event histories generated from any system, not

only the Rapide simulator.

Chapter 4

DTP Domain

This chapter introduces the e�ects of introducing event dependency into the de�nition

and formal speci�cation of transaction processing system architectures, properties,

and protocols. Transactions form the basis for these de�nitions and speci�cations,

and they typically exhibit the following properties [31]:

Atomicity. A transaction's changes to state are atomic: either all happen or none

happen.

Consistency. A transaction is a correct transformation of the state. It does not

violate any of the integrity constraints associated with the state.

Isolation. Even though transactions execute concurrently, it appears to each trans-

action, T , that the others executed either before T or after T .

Durability. Once a transaction completes successfully, its changes to state will

persist despite failures.

These properties are known by their initials as the ACID properties.

This chapter examines the properties atomicity, isolation and durability, their

corresponding system architectures and protocols. Each property and corresponding

exempliary implementation is speci�ed via a Rapide reference architecture, complete

with component interfaces, connections, constraints and behaviors.

90

CHAPTER 4. DTP DOMAIN 91

Reference Architecture

Architecture, when used in this context, deals with the composition of software com-

ponents that implements the engine. Each component has an interface that de�nes

the ways the component can communicate with other components. An architec-

ture de�nition consists of a set of component interfaces and a set of connections

between those interfaces. Architecture de�nitions should be represented formally in

a machine{processable reference architecture description language.

The architecture alone is not su�cient to describe a system; the behavior of the

system is needed as well. Behavior can be described in two ways, either as a con-

straint or as executable code. Executable code is useful, because understanding what

the system is doing requires a control ow abstraction of the system. Execution of a

system can provides the control ow abstraction if tools permit the programmer to

observe what happened during the execution. Constraints can also assist the program-

mer in further understanding the system by describing properties of all conforming

executions.

Thus, these requirements can be abstracted to de�ne a reference architecture, a

clear, precise, executable, and testable speci�cation that is how a standard should

be represented. A reference architecture contains formal, machine{processable de�-

nitions of the component interfaces, their behaviors, and how the components may

be connected together into architectures, as well as formal constraints on those be-

haviors and on the communication protocols between the components. It can be

interpreted as both a goal and a yardstick. As a goal, it is clear description of the

wanted behavior. As a yardstick, it must be precise and testable.

Views

Each reference architecture presented in this chapter is a view, or level of abstraction of

distributed transaction processing system. What kinds of things exist in a good view

of a system? A good view includes three models of the system: program, situation,

and domain models.

CHAPTER 4. DTP DOMAIN 92

Program Model. When code is completely new to the programmer, Penning-

ton [78] found that the �rst mental representation that programmers build is a pro-

gram model consisting of a control ow abstraction of the program. This abstraction

reects what the program is doing, statement by statement or in a control ow man-

ner. Note that a functional understanding of the program is not yet accomplished.

The Rapide animator provides the program model. It is an architecture{based

event history player that depicts the execution's control ow as the movement of

events between the modules. An event being sent from one module to another in

the animation represents the passing of control between those modules. Concurrent

activities, i.e., two control ows, is represented in the tool suite as multiple events in

motion.

Situation Model. Programmers commonly use a situation model to understand

the behavior of programs. The situation model extends the information provided via

the program model to create a data{ow, functional abstraction. The situation model

is a way of tracing why values are generated and what the basis is for those values to

be computed.

In Rapide the poset browser, interface behaviors, and architectures may each

contribute to the creation of a situation model. The �ltering capabilities of the poset

browser enable the creation of functional abstractions. The dependencies amoung

events are based upon the control{ow and data dependencies that occurred during

the execution.

Domain Model. An additional mental representation common to programmers

is the domain model. The domain model is a top{down understanding of how one

module consisting of other modules. This model is built from understanding how

modules are composed hierarchically; one module consists of additional submodules.

This representation is directly modelled inRapide through the syntactic structure

of architectures (and modules). Architectures consists of sets of constituent modules

and connection rules.

CHAPTER 4. DTP DOMAIN 93

The three models reect mental representations of code at di�erent abstractions.

Formally, a view of code may include one, several or all of the models.

Evolutionary Prototyping

This chapter develops several reference architectures for formally specifying commit-

ment protocols, concurrency control mechanisms, and recovery strategies. It presents

a methodology to analyze these protocols and prototype them on exemplary system

architectures. Prototype models are built, because the kinds of systems being mod-

elled are not practical starting points for analysis or experimentation, usually because

they are too expensive to build, or inaccessible when built, or simply too complex.

The prototyping methodology used in this dissertation is an example of evolutionary

prototyping.

Evolutionary prototyping is the process of developing a prototype for a system

gradually, satisfying some requirements before attempting to improve its capabilities

to satisfy others. There are several reasons to do this. The most important is to

understand the requirements themselves. Information gained from the prototype

should help uncover inconsistencies, incompleteness and inaccuracies. If we simply

try to build a program to satisfy everything a once, we will be in danger of getting

one big mess. This is another reason for formalizing programs, because the programs

are too complex to reason about in their natural, uni�ed state.

4.1 Transaction Implementation and Execution

This section introduces a model of transaction processing with event dependencies.

Event dependencies allow a transaction to be de�ned as a set of subtransactions T ,

two partial orderings on those subtransactions (I { an implementation and R { an

execution), and a mapping X from T to the version state. Transactions are computer

programs, i.e., program code that may be executed. The set of subtransactions is the

collection of operations that are contained within the program code. The structuring

of that code determines the implementation ordering, and the run time behavior of

the program determines the execution ordering. The values read or written by each

CHAPTER 4. DTP DOMAIN 94

Application Program
 (AP)

Data
Objects

Figure 4.1: Simple Transaction Architecture

operation during the execution determine the version state.

4.1.1 Architecture

A minimal architecture of a transaction processing system that will be used for the

purpose of de�ning transaction implementation, execution, and version state is shown

in Figure 4.1. This architecture consists of an application program and a set of data

objects. In general, the application program executes transactions that consist of

many work requests for the data objects.

Interfaces

Without loss in generality, the work requests made by the application program and

handled by the data objects can be modelled as reads and writes. This dissertation

models read and write operations on the data objects as four asynchronous actions:

read call, read return, write call, and write return. This type of modelling, without

loss of generality, further assumes each data object has a single value. A read call

event causes a data object to generate a read return event parameterized with the

value of the data object. Similarly, a write call event is parameterized with the next

value for the data object.

CHAPTER 4. DTP DOMAIN 95

type Data Object(type Data; init : ref(Data) is nil(Data)) is

interface

service

AP : Data Object Service(Data);

end interface Data Object;

Figure 4.2: Data Object Interface Type Constructor

type Application Program(type Data; NumObjs : Integer) is

interface

service

DOs(1 . . NumObjs) : dual Data Object(Data);

end interface Application Program;

Figure 4.3: Application Program Interface Type Constructor

The interface type constructor for data objects may be found in Fig. 4.2, and

the interface type constructor for the application program is given in Fig. 4.3. Both

interfaces are based upon the Data Object Service interface type constructor given

in Fig. 4.4. The Data Object interface type constructor declares one such service,

labeled AP, and the Application Program interface type constructor declares a (dual)

service set of them, labeled DOs.

Constraints on the interfaces derived from these type constructors will be pre-

sented later in this dissertation. Several of these constraints will be faciliated by the

private read and write actions of the Data Object Service interface type constructor.

Connections

The Rapide architecture for this view is given in Fig. 4.5. The architecture declares

an application program AP and an array of data objects D. The application program

and data objects are connected through their data object services via a connection

generator. Note: Only AP and D components with dual services can be connected

together by this connection generator. Thus, both interface types must be derived

from the same data type, which in this case is the type Integer.

CHAPTER 4. DTP DOMAIN 96

type Data Object Service(type Data) is

interface

action

in Read call();

out Read retn(value : Data);

in Write call(value : Data);

out Write retn();

private

action

Read(value : Data; version : Integer);

Write(value : Data; version : Integer; init : Boolean);

end interface Data Object Service;

Figure 4.4: Data Object Service Interface Type Constructor

architecture AP DO Only Architecture() is

NumDOs : Integer;

AP : Application Program(Integer, NumDOs);

D : array[Integer] of Data Object(Integer);

connect

for i : Integer in 1 . . NumDOs generate

AP.DOs(i) to D[i].AP;

end generate;

end architecture AP DO Only Architecture;

Figure 4.5: AP{Data Object View

CHAPTER 4. DTP DOMAIN 97

architecture AP DO Only Architecture() is

NumDOs : Integer is 2;

AP : Application Program(Integer, NumDOs);

D : array[Integer] of Data Object(Integer)

is (1 . . NumDOs, default is Single Version Object(Integer, ref to(Integer,0)));

connect

for i : Integer in 1 . . NumDOs generate

AP.DOs(i) to D[i].AP;

end generate;

end architecture AP DO Only Architecture;

Figure 4.6: Fully Instantiated Architecture

4.1.2 Behaviors

The architecture of Fig. 4.5 can become executable if its components are associated

with modules. A fully instantiated architecture is given in Fig. 4.6. This architecture

declares and connects up two data objects to the application program. Each data

object is created from the Single Version Object module generator given in Fig. 4.7.

This module generator connects private AP.Read and AP.Write events to (respectively)

out AP.Read retn and AP.Write retn events. Therefore, whenever a module created

from this module generator generates a AP.Read (or AP.Write) event, a corresponding

AP.Read retn (or AP.Write retn) event will also be generated. The module will also

react to a AP.Read call event by generating a Read event with the current value val

of the integer object and the current version number ver. AP.Write call events will

generate AP.Write events and update the current value of the integer object and

version number.

A default module for the application program is generated from its interface type's

behavior. An exemplary application program behavior is given in Figure 4.8. This

behavior starts by generating AP.Read call events for all of the data objects. For

each AP.Read retn the application program receives from a data object, it makes a

AP.Write call to the next data object with the value read as the parameter.

CHAPTER 4. DTP DOMAIN 98

module Single Version Integer() return Data Object(Integer, ref to(Integer,0))

is

val : ref(Integer);

ver : ref(Integer) is ref to(Integer,0);

connect

(?va in Integer)(?ve in Integer)

AP.Read(?va, ?ve) to AP.Read retn(?va);

(?va in Integer)(?ve in Integer)

AP.Write(?va, ?ve, False) to AP.Write retn();

parallel

when AP.Read call do AP.Read($val, $ver); end when;

jj

when (?va in Integer) AP.Read retn^(� �) � AP.Write call(?va) do

AP.Write(?va, $ver+1, False);

val := ?va;

ver := $ver + 1;

end when;

end module Single Version Integer;

Figure 4.7: Single Version Integer Object Implementation

begin

Start

=>

(!i in 1 . . NumObjs jj) DOs(!i).Read call();;

(?i in Integer)(?v in Integer) DOs(?i).Read retn(?v)

=>

DOs(?i mod NumObjs + 1).Write call(?v);;

Figure 4.8: Application Program's Behavior

CHAPTER 4. DTP DOMAIN 99

Architecture::Start

D1::Start AP::Start D2::Start

D1.pvrt_Write_retn(0,0,true)

D1.Write_call(1)

D1.Read_call

AP.DOs(1).Read_call AP.DOs(2).Read_call D2.pvrt_Write_retn(0,0,true)

D2.Read_call

D2.Write_call(1)

AP.DOs(1).Read_retn(0)

AP.DOs(1).Write_call(1)

AP.DOs(2).Read_retn(0)

AP.DOs(2).Write_call(1)

D1.prvt_Read_retn(0,0)

D1.Write_retn()

D2.prvt_Read_retn(0,0)

D2.Write_retn()

D1.Read_retn(0)

AP.DOs(1).Write_retn()

D2.Read_retn(0)

AP.DOs(2).Write_retn()

D2.pvrt_Write_retn(1,1,false)D1.pvrt_Write_retn(1,1,false)

Figure 4.9: An Execution

4.1.3 Execution

An example execution of the architecture instantiated with two data objects is de-

picted in Figure 4.9. Notice the execution poset is consistent with the implementation,

i.e., only new dependencies have been added.

The implementation reects the relationships intended by the programmer. The

partial order is therefore potential causality and refers to the structure of the trans-

action implementation. This relation, R, reects the potential causal ordering of the

subtransactions that occurred in the execution. These orderings may vary depending

upon the architecture of the TP system upon which the transaction was executed.

A single{processor, single{process, single{threaded system will have a much di�erent

ordering than a multi{processor, multi{process, or multi{threaded system.

Note: in the standard model there is no distinction between a read call and its

CHAPTER 4. DTP DOMAIN 100

associated read return, just a single read action. This is possible since the events

are totally ordered and they must occur in call/return pairs, simple function call

semantics.

From a single data object's perspective during an execution, it may receive read

and write calls with arbitrary orderings from its environment. The data object reacts

to these calls by generating return events. The relationships and parameters of these

events is constrained as per the associated semantic model. There are two primary

semantic models, single{version and multi{version. We consider only the single{

version semantics in this discussion for brevity.

Single{Version Semantics

In the execution of Figure 4.9, each object goes through a sequence of versions as it

is written and read by these pairs of events. Reads do not change the object version,

but each time an object is written it gets a new version. Constraints on data objects

under a single{version semantics are as follows:

� Returns are generated because of call events.

match (Read call ! Read retn)^(� �)

match ((?d in Data Type) Write call(?d) ! Write retn(?d))^(� �)

� Read calls may only return values that were written by the latest write (return).

match ((?d in Data Type) Write retn(?d) j> Read retn(?d))^(� �)

� Object go through sequences of versions.

match (Write retn ! Read retn^(� �))^(! �)

These dependencies are imposed by the data objects, and additional dependencies

may be imposed by the environment.

CHAPTER 4. DTP DOMAIN 101

Application Program
 (AP)

Resource
Managers

Figure 4.10: Atomicity View Architecture

4.2 Atomicity

Transactions are not guaranteed to execute to completion, but instead are assured to

satisfy a weaker but still su�cient property. Transactions are performed entirely or

not at all; they cannot be only partially done at termination. The execution of an

atomic transaction will leave the system in either the state derived from all of the

instructions or the initial state.

4.2.1 Architecture

The architecture (see Figure 4.10) for this view includes application program and

resource managers. The application program makes the requests that implements the

transaction. The architecture encapsulates data objects in resource managers that

perform the work requests of the application program. The resource managers are

more than data objects; their interfaces must include constituents to allow the work

to be committed or aborted.

CHAPTER 4. DTP DOMAIN 102

type AP RM Work Request Service(type Xid) is

interface

action

out Work Request (x : Xid; p : Parameters);

in Work Results (x : Xid; r : Results);

requires

Work Request : function(x : Xid; p : Parameters) return Results;

end interface;

Figure 4.11: AP an RM Work Request Service

Interfaces

Transaction Identi�er. How is the work performed by di�erent resource managers

(called branches) tied together into a single transaction? The answer is through an

identi�er, called the transaction identi�er or xid. The work requests made by the

application program to the resource managers are parameterized with an xid. All the

work associated with a particular transaction is requested to the resource managers

with the same xid.

Work Request Service. A service that exempli�es what the signature such work

requests should have is shown in Fig. 4.11. The application program and resource

managers will have dual work request services. Both interfaces will have to share a

common Xid type.

Transaction Commitment Service. When the work is �nished, the application

program is required to explicitly request the transaction to be committed or rolled

back by the resource managers, depending on the work results received or user abor-

tion.

Application Program Interface. The application program's interface type con-

tains both the work request and atomicity services. It is dependent upon the xid type

and the number of resources it will communicate with.

CHAPTER 4. DTP DOMAIN 103

type Transaction Commitment Service(type Xid) is

interface

action

in Commit call (x : Xid);

out Commit retn (x : Xid; committed : Boolean);

in Rollback call (x : Xid);

out Rollback retn (x : Xid; rolledback : Boolean);

end interface Transaction Commitment Service;

Figure 4.12: Transaction Commitment Service

type Application Program(type Xid; NumRMs : Integer) is

interface

service

A(1 . . NumRMs) : AP RM Work Request Service(Xid);

B(1 . . NumRMs) : Transaction Commitment Service(Xid);

private

New Xid : function() return Xid;

end interface Application Program;

Figure 4.13: Application Program Interface

CHAPTER 4. DTP DOMAIN 104

type Resource Manager(type Xid) is

interface

service

A : dual AP RM Work Request Service(Xid);

B : dual Atomicity Service(Xid);

end interface Resource Manager;

Figure 4.14: Resource Manager

architecture AP RMs Only(NumRMs : Integer) is

type Xid is : : :

AP : Application Program(Xid,NumRMs);

RMs : array[Integer] of Resource Manager(Xid);

connect

for i : Integer in 1 . . NumRMs generate

AP.A(i) to RMs(i).A;

AP.B(i) to RMs(i).B;

end generate;

end architecture;

Figure 4.15: System Architecture

Resource Manager Interface. The resource manager interface is similar to the

interface of the application program, except the services are dual.

Connections

The architecture of Figure 4.15 simply connects the dual services of the resource

managers and the application program together.

Behavior

The structure of transactions is modi�ed such that a transaction always generates

a new xid before it requests any work from the resource managers. For now, let's

assume the application program is able to generate these xids. The only requirement

is that each transaction is associated with exactly one xid, and each xid is associated

with exactly one transaction; xids are unique and used for just one transaction. This

CHAPTER 4. DTP DOMAIN 105

never (?x in Xid; ?i, ?j in Integer)

(RMs(?i).B.Commit retn(?x,True) � RMs(?j).B.Rollback retn(?x,True));

Figure 4.16: Atomicity Constraint

unique xid is used in all subsequent work requests to associate them with this trans-

action. Upon making requests and perhaps receiving responses to those requests, the

transaction is completed with an explicit Commit retn or Rollback retn event.

4.2.2 Atomicity Constraint

A transaction identi�er should never be the argument of a committed event and an

aborted event. As a consequence, any transaction is either committed by all the

resource managers or none. The atomicity constraint1 is written in Figure 4.16.

4.2.3 Two{Phase Commit Protocol

The most common approach to achieving atomicity is the two{phase commit proto-

col [32, 57]. It is so called, because the commitment protocol is divided into two

phases. Commitment refers to whether the transaction can end successfully, i.e., can

do what it was requested to do.

In Phase 1, the polling phase, the manager for each resource is asked whether it can

commit its part of the transaction, if it is requested to do so. If a resource manager

can commit its work, it replies a�rmatively. This positive response is a promise,

guaranteeing that if asked to commit, it will. A negative reply reports failure for any

reason. Thus, the poll asks whether the resource can commit its transaction branch,

and if so, prepare the branch for commitment.

When all the resource managers have responded, the decision phase, Phase 2, is

entered. If all resource managers responded a�rmatively, then all of the resource

1This constraint, as written, is outside the current Rapide 1.0 compiler subset for an obscure

reasons. Speci�cally, the placeholder ?i and ?j must be bound by a parameter of the basic patterns.

For such a constraint to be checked, the signatures of the commit return and rollback actions must

be modi�ed to include the a parameter referring to which resource manager generated the event.

CHAPTER 4. DTP DOMAIN 106

type Transaction Commitment Service for 2PC(type Xid) is

interface

action

in Prepare call (x : Xid);

out Prepare retn (x : Xid, promised : Boolean);

in Commit call (x : Xid);

out Commit retn (x : Xid; committed : Boolean);

in Rollback call (x : Xid);

out Rollback retn (x : Xid; rolledback : Boolean);

end interface Transaction Commitment Service for 2PC;

Figure 4.17: Transaction Commitment Service for the Two{Phase Commit Protocol

managers are requested to commit (otherwise they are all requested to undo) their

parts of the transaction thereby restoring the database to a consistent state. Thus,

the entire transaction is ensured of being either atomically committed or undone.

Assuming the application program is chosen to generate the poll and collect the

responses from the RM's, the interface shared by the application program and resource

managers is extended to include the prepare request and reply. Thus, the protocol

uses two actions in addition to the atomicity service: Prepare call and Prepare retn

(see Fig. 4.17).

If the behavior of the application program is extended with the state transition

rules found in Fig. 4.18, an execution may be obtained. The execution, of which

Fig. 4.19 is a subset, was obtained by instantiating the AP RMs Only architecture

with the number of resource managers equal to two. The application program be-

gins by generating a new transaction identi�er, xid1. This identi�er is used by the

application program as a parameter of two work requestion; one request to each re-

source manager. Upon receiving the favorable results from the resource managers,

the application decides to attempt to commit this transaction. At this point, it starts

executing the two{phase commit protocol. The application polls the two resource

managers with the prepare to commit request. The two replies from the prepare re-

quests are both promises, and the decision is made by the application to commit the

transaction. At this point the application issues the two commit calls to the resource

managers. They both commit their transaction branches, and �nally the application

CHAPTER 4. DTP DOMAIN 107

(?x : Xid) AP.commit call(?x)

=>

(!i : Integer in 1 . . NumRMs �) RM(!i).prepare call(?x);;

(?x : Xid)((!i : Integer in 1 . . NumRMs �) RM(!i).prepare retn(?x,True))

=>

(!i : Integer in 1 . . NumRMs �) RM(!i).commit call(?x);;

(?x : Xid)((prepare ret(?x)^(� �) � prepare retn(?x, False))

� ((!i : Integer in 1 . . NumRMs �) RM(!i).prepare retn(?x)))

=>

(!i : Integer in 1 . . NumRMs �) RM(!i).rollback call(?x);;

(?x : Xid)((!i : Integer in 1 . . NumRMs �) RM(!i).commit retn(?x, True))

=>

AP.commit retn(?xid, committed);;

(?xid : Xid) ((!i : Integer in 1 . . NumRMs �) RM(i).rollback retn(?xid, rollback))

=>

AP.commit retn(?xid, rolledback);;

Figure 4.18: Two{Phase Commit Behavior

acknoledges the commitment of the transaction.

The independent, and possibly concurrent execution of the two resource managers

is explicitly visible by the two sides of the poset. Width in a poset expresses indepen-

dence. Dependencies between the two sides indicate synchronization or coordination

between the components occurred. The executions of the resource managers was syn-

chronized two times in the execution. First, when the application decided to attempt

to commit the transaction. This decision was based upon the good results of both

resource managers. Presumably, if either of the transaction branches' work was not

favorable, the decision would have been made to abort the transaction.

The second time the execution of the resouce managers was synchronized occurred

when the application program made the decision to actually commit the transaction.

This is easily visible in the poset where the dependencies criss{cross near the bottom

of the poset. This criss{crossing is quite typical of the two{phase commit protocol,

and is an indication of a complex coordination between the resource managers.

CHAPTER 4. DTP DOMAIN 108

AP::Begin

AP::New_Xid’call

AP::New_Xid’return(xid1)

AP.RMs(1).Work_Request(xid1) AP.RMs(2).Work_Request(xid2)

AP.RMs(1).Work_Results(xid1,good) AP.RMs(2).Work_Results(xid2,good)

AP.Commit
attempting to commit

AP.RMs(1).prepare_call(xid1) AP.RMs(2).prepare_call(xid1)

AP.RMs(1).prepare_retn(xid,true) AP.RMs(2).prepare_retn(xid,true)

AP.RMs(1).commit_call(xid1) AP.RMs(2).commit_call(xid1)

AP.RMs(1).commit_retn(xid1,true) AP.RMs(2).commit_retn(xid1,true)

AP.Committed

Figure 4.19: Example Execution of Two{Phase Commit Protocol

CHAPTER 4. DTP DOMAIN 109

Coordination

Atomicity when implemented via a two{phase commit protocol implies the following

coordination constraint:

Any request to commit a transaction branch must depend upon all of the resource

manager's responses to the prepare poll.

It is an important property that the decision to commit must be based upon all

of the responses to the prepare poll. The decision to commit cannot be based upon

only a few of the responses.

This constraint does not apply to the decision to abort the transaction. The

abort decision can be reached after only the �rst negative response. (In fact, it can

be reached even before the polling phase, phase 1, is reached, if the application does

not like the results of the work requests.) Thus, the coordination constraint is a

constraint on just the decision to commit the transaction and the responses to the

prepare poll.

The coordination constraint is expressed in our Rapide model with the never

constraint of Fig. 4.20. This constraint expresses that the execution can never have

a Prepare retn event independent from a Commit call event where both are parame-

terized with the same transaction identi�er, ?x.

never (?x : Xid)(Prepare retn(?x) jj Commit call(?x));

Figure 4.20: Coordination Property

4.3 Isolation

Isolation answers the question, \How do we de�ne the correct execution of concurrent

transactions?" Since it is always possible that transactions will execute one at a

time (serially), it is reasonable to assume that the normal, or intended, result of

CHAPTER 4. DTP DOMAIN 110

a transaction is the result obtained when it is executed with no other transactions

executing concurrently. Thus, the concurrent execution of several transactions2 is

assumed to be correct if and only if its e�ect is the same as that obtained by running

the same transactions serially in some order.

Alternatively this principle can be viewed as a property of transactions. That is, a

transaction shall not make updates to the database which a�ect any other transactions

happening at the same time. This de�nes isolation; transactions are isolated when

they do not overlap other transactions, where overlap is with respect to time or

database state.

4.3.1 Architecture

The architecture encapsulates data objects by resource managers. The resource man-

ager accepts work requests. In doing the work request, each resource manager may

interact with one or more data objects. The reads and writes made on the data

objects are associated with the transaction identi�er.

Application Program
 (AP)

Resource
Managers

Figure 4.21: Isolation View Architecture

2This section only refers to committed transactions.

CHAPTER 4. DTP DOMAIN 111

type Resource Manager(type Xid; type Data) is

interface

action

in Work Request(x : Xid; p : Parameters);

out Work Results(x : Xid; r : Results);

private

action

in Read(x : Xid; o : Data Object);

in Write(x : Xid; o : Data Object);

end interface Resource Manager;

Figure 4.22: Isolation View of Resource Manager Interface

architecture Example Resource Manager(type Xid; type Data)

for Resource Manager(type Xid; type Data)

is

DOs : array[Integer] of Data Object(Data);

connect

(?x in Xid; ?p in Parameters) Work Request(?x, ?p) where f(?x,?p)

to DOs[g(?p)].Read call();

: : :

end interface Example Resource Manager;

Figure 4.23: An Example Resource Manager Implementation

CHAPTER 4. DTP DOMAIN 112

4.3.2 Isolation Constraints

Serial Executions

An execution is serial if each transaction runs to completion before the next one starts.

Speci�cally, no beginning event of a transaction can be found temporally within any

other transaction's begin and end events in the execution. This is the opposite of

concurrent execution, where the transactions overlap in time; when the execution of

any transaction's events overlaps with another transaction's events. Thus, a serial

execution is one in which all of the transactions do not overlap in time.

The during predicate of Rapide events is used to de�ne a temporal overlap. The

pattern, denoted by A during(t1; t2), binds the minimal timestamp of the events

contained in A to t1 and the maximal timestamp of the events contained in A to t2. 3

Thus, two events, A and B, overlap in time if At1 � Bt1 � At2 or At1 � Bt2 � At2 or

vice versa.

However, timestamps are not necessarily comparable. They are de�nitely com-

parable if they are associated with the same clock, i.e., if all events share the same

clock, then all of the timestamps are totally ordered (comparable). But there may be

more than one clock in a Rapide model. If there are more than one clock and those

clocks are mutually independent, their timestamps will not be directly comparable to

each other.

In some cases, a temporal ordering can be inferred between two events, even when

they come from independent clocks. A temporal ordering can sometimes be inferred,

because causal and temporal properties are related via a consistency property: if

event A is in the causal history of event B, then event A must temporally precede

B. This property de�nes �, the precedence relation between events, and using this

relation we can de�ne a serial execution.

Theorem 4.3.2.1 A property of serial executions, which is a requirement for trans-

action processing applications, is that each transaction executes upon a consistent

3t1 is always less than or equal to t2.

CHAPTER 4. DTP DOMAIN 113

{ { � is a user de�ned pattern macro. It determines the precedence relation-

{ { ships either directly from the temporal relationships or infers them from the

{ { causal relationships and transitivity.

pattern �(pattern a, b) is

((?t1,?t2,?t3,?t4 : Time)

a during(?t1,?t2) and b during(?t3,?t4) where ?t2<?t3)

or (a ! b)

or ((?c : Event) a � ?c and ?c � b);

{ { A serial execution orders all of the transaction executions.

match ((?t in Xid) Trans Exc(?t))^(prec �);

Figure 4.24: Serial Execution Constraint

database state. This property holds assuming i) the initial database state c0 is con-

sistent, ii) if a transaction is executed in isolation, it will preserve the database con-

sistency, and iii) the system won't allow arbitrary states to be created after or before

the executions of transactions.

Proof: A consistent database state cn will be obtained from the initial, consistent

database state c0 if the transactions are executed serially, since there will be an

ordering of the transactions, T1; T2; : : : ; Tn; such that T1 sees the initial state c0, for

each i > 1 transaction Ti sees the consistent state, ci, that will be produced by running

T1; T2; : : : ; Ti�1 sequentially to completion, and cn is the state produced by Tn.

Serializable Executions

Forcing the primitive transactions to obey a serial execution will lead to poor per-

formance, because serial executions do not take advantage of possible concurrency.

To permit greater concurrency while preserving consistency, a transaction system's

execution of a transaction may be serializable. An execution is serializable (SR) if it

is \equivalent" to some serial execution of those same transactions. In other words

it must be possible to order the actions of the transactions T1; T2; : : : ; Tn such that

T1 \sees" the initial database, and T2 \sees" the database that would have been pro-

duced if T1 had run to completion, etc. The execution produced by this sequential

CHAPTER 4. DTP DOMAIN 114

view of the transactions' executions is called a serialization or linearization of the

transactions.

Since serializability is based on equivalence to a serial execution, the question

of de�ning serializability transforms into de�ning this equivalence. Three common

de�nitions of equivalence can be found in the literature [77]. These are �nal-state

equivalence, view equivalence and conict equivalence. Each of these de�nitions de-

scribe progressively smaller classes of correct executions, but each smaller class has

advantages which o�set the reduction in potential concurrency.

Final{state Equivalence. An execution is �nal{state equivalent to a serial execu-

tion if it leaves the database in a state which could be reached by a serial execution.

Intuitively, two histories are �nal{state equivalent if they produce the same �nal state

of the database for all interpretations of transactions and all initial database states.

The problem with this equivalence is the database states generated during the

execution are unimportant, in that a transaction could execute on an inconsistent

database state. Since it is important that each transaction executes upon a con-

sistent database state and �nal{state serializability allows executions which violate

this property, �nal{state serializability is not suitable for validating executions of the

programs used in transaction processing.

View Equivalence. View equivalence is a subset of �nal{state equivalence, thus an

execution which is view serializable ends in a state which could be reached by a serial

execution. An execution is view equivalent to a serial execution if every transaction

executes upon a database state that could be generated by a serial execution of the

same transactions. Thus, every transaction executes on a consistent database since

every transaction in a serial execution must execute upon a consistent database.

In order for an execution to be view serializable, their must exist a serial execution

in which every read in both executions returns the value written by the same write

action (same version). A major problem with VSR is that it is an NP{complete

problem to determine if an execution is view serializable [77].

CHAPTER 4. DTP DOMAIN 115

Conict Equivalence. Conict equivalence is a proper subset of view equialence,

thus an execution which is conict equivalent ensures all transactions to view con-

sistent databases. Conict equivalence constrains that every pair of conicting op-

erations between transactions should be ordered the same as in a serial execution.

Conict refers to the ability of transaction's e�ect on the objects to adversely a�ect

another transaction's e�ect on the objects. If such interference is possible, we say

those transactions are in conict. This de�nition is used commonly used as \the"

de�nition of serializability, since it can be recognized in polynomial time, and there

exist e�cient algorithms to ensure that an execution is conict serializable.

A transaction's e�ect on the objects can be restricted by limiting the number

of objects accessible to it. For this reason, every transaction is associated with a

set of objects, called its view set. The view set contains all the objects and their

values in the database potentially accessible to the transaction. If two transactions

have view sets which have an empty intersection then they do not overlap, and they

cannot conict. This reects overlap with respect to database state. However, we can

do better than that! Just because two the view sets of two concurrent transactions

intersect, that does not mean the transactions will adversely a�ect one another.

Of course, the atomicity property implies the e�ects of a transaction on the objects

are conditional upon the outcome of the transaction. When an object in the view set

of a transaction is accessed by the transaction, the object and its value becomes a

member of the transaction's access set. Each write action overwrites its value in the

access set. Upon abortion, the object in a transaction's access set is restored back to

the view set. Upon commitment, the access set is written to both the view set and

the persistent database. Using the objects the transactions actually access is much

more accurate then the objects in the view set. But the intersection of two access

sets is still too restrictive to use for de�ning database state overlap.

The access set is really the union of two simpler sets, the read set and the write

set. The read set of a transaction is the set of objects the transaction reads, and the

write set is the set of objects the transaction writes. Thus, two transactions conict if

the read set or write set of one intersects the write set of the other. If two transactions

have one or more conicts, all of the conicts must be ordered the same as in a serial

CHAPTER 4. DTP DOMAIN 116

execution.

Two read actions by two di�erent transactions to the same object cannot violate

consistency, because reads do not change the object state. Thus, only write actions

may create violations. Two write actions to an object by the same transaction do not

violate consistency because we assume that the transaction knows what it is doing to

its data; we assume that if a transaction runs in isolation, it will correctly transform

the system state. Consequently, only write{related interactions between two concur-

rent transactions can create inconsistency or violate isolation. (See Figure 4.25.)

{{ Two events conict if they are from two di�erent transactions and at least

{{ one of them is a write.

pattern Conict(pattern ?e1, ?e2) is

(?o : Data Object; ?x1, ?x2 : Xid)

((?e1@Write(?x1,?o) � ?e2(?x2,?o))

or (?e2@Write(?x1,?o) � ?e1(?x2,?o))) where ?x1/=?x2;

{{ Observe pairs of conicting events from two transactions. Note: The two

{{ pairs must di�er.

observe ((?x1,?x2 in Xid; ?e1,?e2,?e3,?e4 in action(x : Xid; d : Data Object))

((?e1(?x1) and ?e2(?x2) and ?e3(?x1) and ?e4(?x2))

where ?x1/=?x2 and (?e1/=?e3 or ?e2/=?e4))
<�> (Conict(?e1,?e2) and Conict(?e3,?e4)))

{ { These pairs must be expressible / mappable into conicting pairs where the

{{ conicts must be ordered the same.

match (?x1,?x2 in Xid; ?e1,?e2,?e3,?e4 in action(x : Xid; d : Data Object))

((?e1(?x1) ! ?e2(?x2) and ?e3(?x1) ! ?e4(?x2))

<�> (Conict(?e1,?e2) and Conict(?e3,?e4)));

Figure 4.25: Isolation { Conict Serializability Constraint

Theorem 4.3.2.2 An execution is a conict serializable execution, denoted CSR{

execution, i� �� is an acyclic relation, where the relation �� is de�ned for an execu-

tion E as follows: i) if Write(?i,?o) � A(?j,?o) where ?i /= ?j occurs in E then

(ti; tj) 2��, and ii) if A(?i,?o) � Write(?j,?o) where ?i /= ?j occurs in E then

(ti; tj) 2�
�.

This is fairly intuitive: if the relation has no cycles, then the transactions can be

topologically sorted to make an equivalent execution history in which each transaction

CHAPTER 4. DTP DOMAIN 117

ran serially, one completing before the next began. If there is a cycle, such a sort is

impossible, because there are at least two transaction, such that T1 ran before T2,

and that T2 ran before T1.

Theorem 4.3.2.3 An execution E of transactions T is a CSR{execution i� there

exists a serial execution S of T such that every conicting pair of events in E is

ordered the same as that same pair in S.

Proof: Part 1: A CSR{execution is conict equivalent to a serial execution.

Assume that E is a CSR{execution with a corresponding ��. Select a serial

execution S and corresponding � such that ����. Since in E all conicts are ordered

the same, the executions of T may be topologically sorted, and such a S and � must

exist.

Without loss in generality, assume that Write(?i,?o) ! Read(?j,?o) is in S, but

Read(?j,?o) ! Write(?i,?o) is in E. By de�nition of a CSR{execution tj � ti. How-

ever, tj 6� ti, since ti � tj is already assumed and that would make � contain a cycle.

This violates the hypothesis that ����. Therefore, Write(?i,?o) ! Read(?j,?o) must

be in E.

The other �ve cases are identical.

Therefore, there exists a serial execution which satis�es the conditions for E.

Part 2: If an execution E is conict equivalent to a serial execution then that execution

is a CSR{execution.

Given transactions T and an execution E on T. Assume there exists a serial

schedule S on T such that the conict properties hold. We must show that E is a

CSR{execution.

Assume E contains a cycle of the form, ti; tj; tk; : : : ; tm; ti: By de�nition, there

exist relationships in E of the form A(?i,?o) ! A(?j,?o), where A(?i,?o) conicts with

A(?j,?o), A(?j,?o) ! A(?k,?o), where A(?j,?o) conicts with A(?k,?o) and so on all

the way through A(?m,?o) ! A(?i,?o), where A(?m,?o) conicts with A(?i,?o). Note

that the ?o in the A(?x,?o) only have to be the same object in each pair of conicting

steps, but di�erent pairs may conict on di�erent objects.

CHAPTER 4. DTP DOMAIN 118

By the hypothesis, these relationships must be in S. Therefore, by the de�nition

of a serial execution, � contains the same cycle as ��. However this contradicts the

hypothesis which states that S is a serial execution. Therefore, E has a �� which is

acyclic. Therefore, E is a CSR{execution.

The various ways isolation can be violated are characterized by the cycles in ��.

Cycles take one of only three generic forms [31]. Each form of cycle has a special

name: lost update, dirty read, or unrepeatable read.

Lost Update. Transaction t1's write is ignored by transaction t2, which writes the

object based on the original value.

never (Read(?t2,?o) ! Write(?t1,?o) ! Write(?t2,?o)) where ?t1/=?t2;

never (Write(?t2,?o) ! Write(?t1,?o) ! Write(?t2,?o)) where ?t1/=?t2;

Dirty Read. Transaction t1 reads an object previously written by transaction t2,

then t2 makes further changes to the object. The version read by t1 may be

inconsistent, because it is not the �nal (committed) value of o produced by t2.

never (Write(?t2,?o) ! Read(?t1,?o) ! Write(?t2,?o)) where ?t1/=?t2;

Unrepeatable Read. Transaction t1 reads an object twice, once before transaction

t2 updates it and once after committed transaction t2 has updated it. The two

read operations return di�erent values for the object.

never (Read(?t1,?o) ! Write(?t2,?o) ! Read(?t1,?o)) where ?t1/=?t2;

CHAPTER 4. DTP DOMAIN 119

4.3.3 Two{Phase Locking Protocol

The role of the transaction system can be viewed as determining when an object can

be promoted from a transaction's view set to its access set. It is not the case that enti-

tles can always be promoted. A concurrency control is used to control this promotion

and guarantee the correctness of the responses to the concurrent requests. The con-

currency control is that portion of the system that is concerned with deciding which

operations should be taken in response to requests by the individual transactions to

read and write into the database. Every transaction system that allows queries and

updates to be executed concurrently must restrict the interleaving of the read and

write transactions of di�erent users, if these users are always to see the database that

they share in a consistent state.

A useful tool for restricting execution to only easily recognizable serializable exe-

cutions is to use one or more protocols, which all transactions must follow. A protocol,

in its most general sense, is simply a restriction on the sequences of actions that a

transaction system may perform.

There are two types of protocols (or concurrency control approaches) for ensuring

correctness of concurrent transactions: optimistic and pessimistic protocols. In the

optimistic protocol, transactions are permitted to execute in a private bu�er at will.

All updates are tentative. At commit time, correctness checks are made.

Pessimistic protocols assume a transaction depends on only a small portion of the

database state. Therefore, conict can be avoided by partitioning the objects into

disjoint classes. Transactions depending on a common portion of the state must still

be serially executed. Unfortunately, it is usually impossible to examine a transaction

and decide exactly what portion of the state it will use. For this reason pessimistic

protocol are generally restricted to a more exible scheme, which requires that the

transaction acquire locks for objects it will be using. The transaction then operates

on the actual database. When a transaction aborts or fails, the system must restore

the state for all the objects the transaction has modi�ed. Let's examine pessimistic

protocols in more detail.

CHAPTER 4. DTP DOMAIN 120

Application Program
 (AP)

Resource
Managers

 Lock
Manager

Figure 4.26: Lock{based Pessimistic Protocol Architecture

Locks

Pessimistic protocols based upon locks can ensure that if every transaction adopts the

protocol, then every transaction is assured to never access data that is temporarily

inconsistent. Locks are a synchronization method by which shared resources can be

partitioned between transactions. A lock is an access privilege associated with a single

data object that can be granted or denied for a transaction.

The architecture, sketched in Fig. 4.26, for lock{based pessimistic protocols adds

to the isolation architecture a special kind of resource manager, called a lock manager,

that the other resource managers must call to dynamically reserve the shared data

objects.

The lock manager accepts two types of requests, a lock and an unlock request.

Each request contains the name of the data object being locked and the identi�er

CHAPTER 4. DTP DOMAIN 121

type Lock Service is

interface

action

in lock call(x : Xid; o : Data Object);

out lock retn(x : Xid; o : Data Object);

in unlock call(x : Xid; o : Data Object);

out unlock retn(x : Xid; o : Data Object);

end interface Lock Service;

type Lock Manager(NumRMs : Integer) is

interface

service

Rs(1 . . NumRMs) : Lock Service;

constraint

match (?o in Data Object) ((?x in Xid; ?i, ?j in Integer)

Rs(?i).lock retn(?x,?o) ! Rs(?j).unlock retn(?x,?o)^(! �))^(� �);

end interface Lock Manager;

Figure 4.27: Lock Manager Interface

of the transaction making the request. The lock manager generates a corresponding

reply when the request is ful�lled. These requests can be viewed as functions or pairs

of actions, and an example of the pairs of actions interface is presented in Fig. 4.27.

If transaction x holds a lock on object o, then certain guarantees are made to x with

respect to o; x will be guaranteed that no concurrent transaction will be able to

acquire a lock on o until x releases its lock. This type of lock is commonly called, the

exclusive lock.

A module generator that produces exclusive lock managers is given in Fig. 4.28.

It uses a process generator to generate a separate process for each data object o

being protected. Each process in turn accepts lock call event for a particular xid

?x, generates a lock retn event granting a lock for that transaction, waits for an

unlock call event by the same transaction, generates an unlock retn event, and waits

for another lock call event.

CHAPTER 4. DTP DOMAIN 122

module Locker gen(NumRMs, NumObjs : Integer) return Lock Manager(NumRMs) is

parallel

for o : Integer in 1 . . NumObjs generate

when (?i in Integer; ?x in Xid) Rsrcs(?i).Lock call(?x, o) do

Rsrcs(?i).Lock retn(?x, o);

await (?j in Integer) Rsrcs(?j).Unlock call(?x, o);

Rsrcs(?j).Unlock retn(?x, o);

end when;

end generate;

end module Locker gen;

Figure 4.28: Lock Manager can be implemented with a process generator.

Well{formed Transactions

Consider programs that interact with the database not only by reading and writing

objects but also by locking and unlocking them. Lock{based pessimistic concurrency

control protocols require the transactions to dynamically reserve data before reading

or writing them, and that the operation of locking acts as a synchronization primitive.

These protocols further require that each transaction will unlock any object it locks,

eventually; if a transaction aborts without releasing the locks, the system itself must

release the locks held by the aborted transaction. This de�nes well{formed transac-

tions. A transaction is well{formed (see Fig. 4.29) if the read sets and the write set of

each of its access statements are contained in the collection of parts of the database

locked (and not yet unlocked) by the transaction.

{{ Well-formed Transactions lock before and unlock after accessing an object.

match (?x in Xid) ((?o in Object)

lock(?x,?o) � (Read(?x,?o) or Write(?x,?o))^(� �) � unlock(?x,?o))^(� �);

Figure 4.29: Well{formed Transaction Constraint

The Two Phases

A less obvious fact is that consistency requires that a transaction be divided into

a growing and a shrinking phase. In the growing phase a transaction only acquires

CHAPTER 4. DTP DOMAIN 123

(does not release) new locks, and in the shrink phase the action only releases (does not

acquire) locks. Two{phase locking works because it insures that the order in which

any two transactions access the same object is that same as the order in which those

actions access any other object. The underlying assumption is that if two executions

result in the same order of access at each object then the executions are conict

equivalent. Given the conict equivalence relation on executions, it has been proven

that if the two{phase locking protocol is used then any actual execution is equivalent

to at least one serial execution [23]. That is, two{phase locking insures serializability.

{{ Growing and Shrinking Phases.

match (?x in Xid) lock(?x)^(� �) � unlock(?x)^(� �);

Figure 4.30: Two{Phase Locking Constraint

4.4 Durability

It is not enough to set the system to just any consistent database state whenever a

transaction is stopped. The system should not erase e�ects that have been guaranteed

to be permanent for other transactions. If a transaction is durable, then its changes

will persist. However, durability in this ideal form is impossible to implement because

of processor failure, transmission failure, disk crash or even catastrophic failures like

natural disasters. In each of these cases, information concerning the database is lost.

Once such a loss is detected, the system restores the lost database state to the

state that existed prior to the occurrence of the failure. Detecting the loss is not

very di�cult, and the primary concern of the database designers is the restoration.

Performing this restoration is usually accomplished through the initiation of various

backup and crash recovery procedures depending on the type of storage that failed.

4.4.1 Architecture

Storage is traditionally viewed as a hierarchy. The lowest level of storage is volatile

storage, like main and cache memory. This data is transient and easily lost due

CHAPTER 4. DTP DOMAIN 124

to system crash or power failure. Information residing in nonvolatile storage usually

survives system crashes but may be lost. Typical nonvolatile storage devices are disks

and magnetic tapes, which have failures like media failures or head crashes. Stable

storage is the highest level of the storage hierarchy, and information residing in it is

\never" lost. Theoretically, this cannot be guaranteed, because stable storage media

are still susceptible to catastrophic failures like �res, earthquakes, oods, wars or acts

of God. The design of such media involves using many nonvolatile storage devices

distributed (perhaps geographically) in many locations so that the data is as durable

as the real world.

Several strategies have been used to handle the many di�erent types of failure on

the above types of storage:

Failures without loss of information: In this case, all information in storage

is still available. These failures include discovering a software error condition,

like an arithmetic overow, a division by zero or deadlock. Deadlock is when a

partially executed transaction may not be able to continue, because it requires

resources held by other waiting transactions. This would present a situation

where they will remain waiting forever. The traditional solution for handling

deadlock is to fail one of the transactions, undo its e�ects, and then release

its resources. Ensuring atomicity of transactions in the presence of transaction

failures without loss of information is called fault tolerance.

Failures with loss of volatile storage: The most common tool for protecting

against loss of data stored in volatile storage in the face of power or other system

failures is to maintain a copy in nonvolatile storage. The di�culty in handling

this approach is to optimize the performance bene�ts of storing data in volatile

storage with the durability bene�ts of nonvolatile storage. Ensuring atomicity

of transactions in the presence of system crashes is called crash recovery.

Failures with the loss of nonvolatile storage: Ensuring atomicity of trans-

actions in the presence of media failures or head crashes involves periodically

dumping or archiving the entire contents of the database to stable storage. This

assumes the duplicate copy of the data will have an independent failures from

CHAPTER 4. DTP DOMAIN 125

type Durability Service() is

interface

type Storage Level is enum Volatile, Nonvolatile, Stable end enum;

provides

level : Storage Level;

type Failure Type is

enum

Without Loss of Information,

With Loss of Volatile Storage,

With Loss of Nonvolatile storage

end enum;

action

out Failure (t : Failure Type);

end interface Durability Service;

Figure 4.31: Durability Service

the primary copy on stable storage. To implement an approximation of stable

storage media, the information must be distributed (perhaps geographically in

many locations) among many nonvolatile storage devices with independent fail-

ure modes. Ensuring atomicity of transactions in the presence of nonvolatile

(and stable) storage failures involves maintaining (perhaps several) redundant

backups.

All of the designs for the recovery strategies and algorithms are based upon redun-

dancy with independent failure modes.

Durability Service. The durability service shown in Fig. 4.31 is an extension to

the interface of the resources. Each resource will have a speci�c storage level and

have various failures.

4.4.2 Durability Constraint

The durability of transactions is assured using the various storage devices via recovery

strategies and protocols. The di�culty in designing them is in the methodology

of optimally using the storage hierarchies such that modi�cations to the database

persist only if the associated transaction commits. All of the designs for the recovery

CHAPTER 4. DTP DOMAIN 126

strategies and algorithms are based upon redundancy with independent failure modes.

The durability constraint is written in Fig. 4.32.

{ { Values are written multiple times on medium with di�erent levels of protection.

match (?rm, ?rm2, ?rm3 in Resource Manager; ?o in Data Object; ?x in Xid)

(?rm.Write(?x,?o) where ?rm.level = Volatile �

?rm2.Write(?x,?o) where ?rm2.level = Nonvolatile �

?rm3.Write(?x,?o) where ?rm3.level = Stable)

Figure 4.32: Durability Constraint

4.4.3 Write{Ahead Logging protocol

Recovery protocols control the redundant copies of the database's resources to ensure

durability.

Log{based Recovery

Database systems usually maintain a history of the transactions' executions, and

this history is called a log. Logs generally reside on at least nonvolatile storage devices,

preferably stable storage devices.

A log is often viewed as a table or sequence of log records. The transaction and

other resource managers use the log to record all of the changes that are made to the

database as well as status information about the transactions. The log provides read

and write access on the log table to the transaction and resource managers.

Begin, write, commit and abort events are appending to the end of the log where

their associated events happen. The connections of such an architecture are:

Begin(?t)'return => Log.Append(Begin,?t);

Write(?t,?o,?new value,?old value)'return =>

Log.Append(Write,?t,?o,?new value,?old value);

Commit(?t)'return => Log.Append(Commit,?t);

Abort(?t)'return => Log.Append(Abort,?t);

CHAPTER 4. DTP DOMAIN 127

Application Program
 (AP)

Resource
Managers

 Log
Manager

Figure 4.33: Log{based Protocol Architecture

Write{Ahead Constraint

We will discuss one log{based recovery protocol, called write{ahead logging. The

write{ahead logging protocol requires the changes to the database be recorded in the

log prior to updating the database state. This constraint is written in Fig. 4.34.

{{ Changes to the database must be recorded in the log (a nonvolatile storage

{{ device) prior to updating the database state.

match (?rm, ?rm2 in Resource Manager; ?o in Data Object; ?x in Xid)

(?rm.Write(?x,?o) where ?rm.level = Nonvolatile �

?rm2.Write(?x,?o) where ?rm2.level = Volatile);

Figure 4.34: Write{Ahead Constraint

CHAPTER 4. DTP DOMAIN 128

Write{Ahead Behavior

The fundamental concept for write{ahead logging is to record enough information in

the log such that upon failure the transactions can be executed in reverse, thereby

restoring the database state. This is like leaving a trail of breadcrumbs such that our

steps can be reversed (undone) and we can return to our original starting point.

Note: we only want to restore the failed transactions. The committed transactions'

a�ects must still persist. Thus, the write{ahead logging protocol also requires the

status of the transactions to be recorded into the log. Using this status information,

speci�cally whether a transaction has been completed or is still executing, the protocol

can recover the persistent database state.

Undo protocol. Transactions that are executing when a failure occurs are gen-

erally aborted. Transaction abortion is performed by undoing or rolling back the

actions of the transaction. The transaction manager performs rollback by reading

the transaction's log backwards (most{recent{�rst order). Each log record carries the

name of the resource manager that wrote it. Thus, the transaction manager calls the

\undo" function of that resource manager and passes to that function the log record.

Upon calling a resource manager's undo function with the log record, the resource

manager will undo the action that wrote the log record, returning the data object to

its old state. If this is repeated for each action

This rollback algorithm is a palindrome. It's behavior can be speci�ed in Rapide

using the following pattern macro:

pattern Rollback(?x : Xid) is

(?d in Data) Action(?x,?d) � Rollback(?x) � Undo(Action(?x,?d))

or

Failure;

end Rollback;

Chapter 5

X/Open Reference Architecture:

Case Studies

5.1 Introduction

Software developers have begun to recognize the importance of studying the design

of the structure of large and complex systems. As the size of software systems in-

creases, the design problem goes beyond the algorithms and data structures of the

computation. Software architecture is concerned with the design of the gross overall

system structure.

Concentrating on this area of software engineering is important, because an ar-

chitecture improves at least four aspects of software systems development:

Understanding: Software architecture facilitates our ability to comprehend large

systems by presenting them at a higher level of abstraction. Architecture is not

concerned with the details of how communication occurs, but rather concen-

trates on e�ectively describing the structure of communication | the kinds and

numbers of components and protocols through which they communicate.

Interoperability: Software architecture can be an e�ective means of establishing

a common framework (or standard) across various domain{related products.

129

CHAPTER 5. X/OPEN REFERENCE ARCHITECTURE: CASE STUDIES 130

Standard architectures specify systems that can be built by composing individ-

ual components, similarly to computer chips on a printed circuit board. Such

architectures are especially useful where each software component may be coded

in a di�erent programming language.

Analysis: Open systems whose interchangeable components must share a com-

mon software architecture are highly dependent that architecture, where subtle

changes can greatly inuence system response{time, throughput and data{ow

bottlenecks. Architectural descriptions provide new opportunities for analysis of

system properties, including advanced forms of system correctness, consistency

and conformance checking, as well as improved performance prediction.

Evolution: Architectural descriptions separate concerns of the functionality of a

component from the ways in which that component communicates with other

components. This allows one to e�ciently evolve a system's design by reusing

most, if not all, of the system's components, and only redesigning the commu-

nication paths or by reusing the paths and replacing the components.

Much of architectural description in practice is largely an ad hoc \boxology":

drawings in which boxes represent components, and arrows represent unspeci�ed in-

teractions among those components. Architectures are often nested where a compo-

nent in one architecture is described by a hierarchy of (sub)components or architec-

tures. Practicing engineers interpret the drawings with respect to common families

of architectures or architectural styles, e.g., pipe{and{�lter, blackboard, and client{

server. Consequentially, such architectural designs are: i) handcrafted, imprecise,

unmaintainable, and only vaguely understood by developers, ii) not analyzable for

consistency or completeness, iii) not enforced as a system evolves allowing multiple

and perhaps unintended interpretation, and iv) supported by virtually no tools to

help the architect.

The recent trend toward standardization, e.g., Microsoft's OLE [8, 13], OSF's

DCE [34, 76], KQML [75], X/Open and OMG's CORBA [33], has produced a growing

recognition for the importance of software architecture and has lead to much more

explicit use of architectural design. Such standards attempt to specify a framework

CHAPTER 5. X/OPEN REFERENCE ARCHITECTURE: CASE STUDIES 131

for building \open" software systems. Open in the sense that the software system's

architecture is su�ciently speci�ed by the standard's documentation so that multiple

vendors can produce interoperable components. This obviously requires considerable

precision and completeness in the architectural description. However, it is common

for such standards to be speci�ed entirely in English. Occansionally, the English

descriptions are augmented with state tables. While state tables are a step in the right

direction, they are not enough, and researchers have developed other technologies to

go further.

Architecture description languages (ADLs) are an improvement over current prac-

tice in describing software architectures. Generally, they are expressive notations for

representing architectural designs. An architecture should precisely and explicitly

describe the number of components, their interfaces, and how those components are

connected together (communicate) into larger systems. The architecture should also

describe the features required of the target system, as well as the features not allowed

to appear in the target system.

For example, one type of architectural feature is inter{components communica-

tion. In particular, an architecture often constrains the components a particular com-

ponent can communicate with. This concept is called communication integrity [68].

A precise architecture description will describe for each component (or component

type) speci�cally what components it can and can't communicate with.

ADLs are able to capture various features of software architecture that have been

hereto only vaguely understood by developers. They provide an opportunity to go

beyond architectural description and into architectural analysis. This opportunity is

maximized if the ADL has formal, mathematical foundation. A formalization gives

us semantic precision and a common basis for formal analysis. The basic requirement

for a formal ADL is its ability to formally capture design requirements, e.g., modular-

ization and system composition, characterizations of system properties, and theories

of inter{component communication.

Rapide [9, 67, 83, 84, 85, 86, 87, 88, 89] is an example of a formal ADL. It is

an event{based, concurrent, object{oriented language with formal constraints specif-

ically designed for prototyping system architectures. A standard is represented in

CHAPTER 5. X/OPEN REFERENCE ARCHITECTURE: CASE STUDIES 132

Rapide by a reference architecture. Rapide reference architectures facilitate accu-

rate description and modeling of an architecture standard.

Reference architectures contain the architectural constraints of the software stan-

dard. These constraints are of the following two kinds: i) never constraint that

constrain the execution to never produce a pattern of behavior, or ii) protocol con-

straint that constrain the execution to be a repeating pattern of behavior. While

expressing a speci�c constraint in Rapide is not di�cult, uncovering all of the con-

straints about a system often is. The �rst formalization of a constraint is commonly

not quite right, often because the designer's understanding of the system is inaccu-

rate or incomplete. Rapide uses simulation techniques to prototype and animate the

behavior of reference architectures.

Prototyping and animation assists in teaching the designer about the system, and

helps uncover and test the correctness of the constraints. They promote creeping for-

malization, a process of incrementally introducing formalization into a model. This

methodological strength lies in not requiring a complete formalization at and below

each step in the design process. Constraints can be added at any time in the stan-

dardization process. As test scenarios are developed, they can be executed by the

reference architecture whose behavior can be animated and run{time checked with

the constraints. A reference architecture also suitable for successive re�nement into

the actual system, and at each point, the system can be executed, animated, and au-

tomatically run{time checked for conformance to the architecture's constraints. This

has great appeal for industrial customers, since they prefer methodologies that can

be done by \mortals" (not just experienced software architects).

We sought to our claims through the application of Rapide to specify and test

conformance to a distributed transaction processing industry standard, the X/Open

DTP reference model [101]. We conducted four case studies. The �rst case study

was conducted to capture the architectural and high{level transaction constraints

found in the X/Open industry standard. The second case study was conducted to

add typical behaviors to the components of the architecture, and to check that the

behaviors satis�ed the system constraints. The third case study was conducted to

use the speci�cations of the second case study as a reference architecture and test

CHAPTER 5. X/OPEN REFERENCE ARCHITECTURE: CASE STUDIES 133

the conformance of a exemplary system, thereby using the reference architecture as

a standard. The fourth case study was conducted to extend the reference architec-

ture with several additional constraints and prototypical behaviors to see how well a

Rapide architecture evolves.

5.2 Background

Many organizations are developing standard protocols that allow transaction process-

ing systems to interoperate [38, 40, 43, 45]. These standards capture the core algo-

rithms implemented by most transaction processing systems. One emerging standard

that is the focus of this chapter is from X/Open, an independent, open systems con-

sortium | the X/Open standard for distributed transaction processing [101]. This

chapter investigates the inuences of the atomicity, isolation, consistency and dura-

biilty properties on the X/Open standard, and uses Rapide, a new prototyping

language, that allows the de�nition, speci�cation, execution, and analysis, especially

the architectural aspects, of such systems.

Distributed transaction processing (DTP) provides mechanisms to combine mul-

tiple software components into a cooperating unit that can maintain shared data.

This enables construction of applications that manipulate data consistently using

multiple products and that scale by adding additional hardware and software com-

ponents. This construction is facilitated by the development of portable application

program interfaces and system{level interfaces that enable the portability of applica-

tion program source code and the interchangeability and interoperability of system

components from various vendors.

The X/Open DTP standard is a framework for building systems that implement

the atomicity, isolation, consistency and durability properties. It describes protocols,

integrity constraints, and state transition diagrams that constrain the legal sequences

of routines that may be executed. The standard is still evolving and currently only

de�nes a commitment protocol for ensuring atomicity, and even in this de�nition no

guarantees are made in the presence of failures. In the case of isolation, only very

brief descriptions are given that relate to only the most basic forms, even though

CHAPTER 5. X/OPEN REFERENCE ARCHITECTURE: CASE STUDIES 134

more relaxed forms of isolation are viewed as a signi�cant advance over SQL2 [44].

5.2.1 Open Architecture Systems

A basic premise of the X/Open Company Limited is that compliant systems can be

built with composable parts frommore than one software vendor at relatively low cost

by \instantiating" an \open" shared design. The X/Open DTP shared design is a

software architecture| that is less concerned with the algorithms and data structures

used within components than with the overall system structure. Structural issues in-

clude: gross organization and global control structure; assignment of functionality to

system components; protocols for communication and synchronization; scaling and

performance; and selection amoung design alternatives. The X/Open DTP architec-

ture de�nes constraints on the structure of compliant system instances [79, 2] and is

therefore a standard. A standard in the sense that it is a constraint on compliant

systems.

Codi�cation of such architectural standards can be critically important in assur-

ing that the various components of a system are integrated correctly. Architectural

requirements and behavioral protocols are typically expressed by X/Open in scenario

form. That is, required behaviors of the software were speci�ed by sequences of events

in structured English. While this language of events is shared by large groups of de-

velopers, it is an informal language. We speculated that signi�cant bene�ts could

accrue from formalization of the scenarios.

5.2.2 Branding

The added complexity and design options for distributed systems have resulted in

greater demand for various kinds of systems development assistance. Prototyping

provides assistance to ensure that the system architecture is viable before embarking

on the costly task of implementation. However, once a viable prototype's software

architecture has been developed, the role of the prototype changes. It becomes a

standard (or a reference architecture) to which the actual implementations must ad-

here, since the implementations will not necessarily share the same architecture as the

CHAPTER 5. X/OPEN REFERENCE ARCHITECTURE: CASE STUDIES 135

prototype. Thus, another kind of assistance that is desirable for complex distributed

systems is automated testing that an implementation conforms to the software archi-

tecture and constraints of the reference architecture.

The importance of conformance testing is well recognized and practiced by organi-

zations that develope standards. One function X/Open Ltd. performs is the branding

of compliant components. X/Open has introduced a trademark to identify products

that conform to its speci�cations. Branding promises the user that the product works

as outlined by the standard. When branding works (and X/Open hasn't yet got it

working across the board), it ensures that information systems buyers can choose

platform vendor, or even application vendor, without fear of interoperability prob-

lems.

At present, X/Open endorses 750 products that carry the X/Open brand. To

obtain an X/Open branding certi�cate, the software vendors must follow the speci-

�cations of X/Open. This assures that the vendors use the relevant X/Open spec-

i�cation, national or international standards. Next, the software vendor performs a

veri�able test and applies to X/Open with the results of the test.

There is no direct relationship between the branding process' test suites and the

speci�cations. It would be preferable if the tests were derived directly (even automat-

ically) from the speci�cation. Testing can be done from proving code correct (highly

unlikely) or from verifying via testing conformance of executions.

X/Open's test suites are end{to{end tests that provide inputs to and examine re-

sults of a system's execution. This type of testing only treats the system as a \black

box" with inputs and outputs. However, it is impossible to determine using such a

method if a system conforms to a standard that requires a particular protocol for

a system's execution (like the X/Open DTP requirement of the two{phase commit

protocol). This is because the execution is internal to the black box and is unobserv-

able (and therefore uncheckable) from outside the box. X/Open's branding process

would be improved if it broke through the black box paradigm and was able to test

the internal execution of the system. Again, these internal tests only apply when the

architecture standard codi�es the protocols used within the components.

CHAPTER 5. X/OPEN REFERENCE ARCHITECTURE: CASE STUDIES 136

5.2.3 Implementation

It is advantageous if the codi�cation of an architecture standard does not restrict

the system to be implemented in only one programming language but rather allows

many programming languages to be used to implement the system. In fact, one

of the X/Open DTP documents [100] describes a portion of the standard in both

C [41, 53] and COBOL [97]. Unfortunately, the rest of the X/Open DTP docu-

ments [102, 99, 101, 98] are quite C speci�c. For example, since C does not have ex-

plicit constructs to model asynchronous communication,1 the standard uses \quick"

returning function calls to model issuing an event. Similiarly, the reactive nature

of receiving events is performed by repeated polling the senders. These and other

C{speci�c techniques limit the languages that could be used to implement systems

compliant to the standard.

While it is advantageous to have speci�cations that can be implemented in and

does not favor any programming language or style of programming, it is still impor-

tant, as a �rst step, to accurately respecify exactly the same standard as described

in the X/Open DTP documents. Such a respeci�cation seeks to minize resistance to

adoption of this form of representation of their standard. Thus, we have adopted a

strategy of speci�cation that would require as little change in the behaviorial model

as necessary. This means that any system that conforms to our reference architecture

would also conform to the speci�cation described in the X/Open DTP documents.

Ideally, future versions of the standard would be more general and allow implemen-

tations in di�erent programming languages.

5.2.4 Why Rapide?

The following case studies were an experiment to test the Rapide language and tool

suite. Rapide was designed to specify concurrent, time{sensitive protocols, and we

1By asynchronous communication we mean the issuing of an event by one process to another

process. It is an important semantic property that the issuance does not stop either process (like

an Ada [94] rendevous). The sending process sends, and at some later time, the receiving process

receives the event.

CHAPTER 5. X/OPEN REFERENCE ARCHITECTURE: CASE STUDIES 137

wanted to test its ability to model transaction processing protocols, especially dis-

tributed transaction processing (DTP) protocols. Rapide speci�cations have precise

semantics that can represent synchronous and asynchronous communication | both

event and functions call semantics. Rapide models explicitly encodes concurrent

behavior, and thus can accurately model distributed behavior.

Since many DTP protocols are di�cult to understand, they can bene�t from

Rapide's prototyping and animation capabilities. The Rapide team had recently

developed a compiler and a set of analysis tools. We felt that execution or analysis of

the X/Open speci�cations (a reference architecture) would be valuable approach to

understand the standard. In particular, it was initially di�cult for us to understand

the X/Open documents' single thread of control constraints, and we felt there would

be a great bene�t in representing and animating these constraints.

More generally, we wanted to test Rapide's ability to encode constraints for the

varied transaction processing properties. Di�erent styles may be used in writing

Rapide prototypes. Of particular interest to us was the constraint{oriented style

that allows one to write several independent constraints that may be easily composed

to constrain the complete system. Of course, once these constraints were written, we

immediately wanted to test the feasibility of automatically checking them.

Finally, we wanted to develop a methodology for using the Rapide technology. A

Rapide prototype can be developed through stepwise re�nement. An architecture{

oriented style might be adopted �rst, encoding the gross overall structure of the

system without the speci�cs of the algorithms or data structures. A constraint{

oriented style might be adopted next, to express the requirements as constraints

without biasing the implementation. The reference architecture may then be re�ned

and elaborated, perhaps transforming the style of speci�cation into a state{oriented

style. Once re�ned and elaborated, the reference architecture can be executed, ani-

mated, and tested to satisfy its constraints. This process facilitates experimentation

of the e�ects of various changes to the reference architecture.

Once the reference architecture is developed, it might be used as a standard to test

actual systems for conformance. In our view, designing with Rapide can be viewed

as similar in nature to programming; the author of a Rapide reference architecture

CHAPTER 5. X/OPEN REFERENCE ARCHITECTURE: CASE STUDIES 138

can get the same type of immediate feedback (and often more information) from the

simulation than the author of a program gets from compiling and early testing [63].

5.3 Description of the Case Studies

We conducted four case studies that used Rapide to specify and test conformance

to the X/Open DTP industry standard.The standard is speci�ed by X/Open with

English text, state{tables, and exampliary execution traces. We translated these

speci�cations into Rapide reference architectures. Each reference architecture was

reective of particular study of the standard.

The �rst case study was conducted to capture the architectural and high{level

transaction constraints found in the standard. This case study is described in Sec-

tion 5.3.1, while Section 5.3.2 describes the second case study that was conducted to

add typical behaviors to the components of the architecture, and to verify (or check)

that the behaviors satis�ed the system constraints. Speci�cally, the transaction ini-

tiation, and completion { via the two{phase commit protocol. The third case study

(Section 5.3.3), was conducted to use the reference architecture of the second case

study to test the conformance of a exempliary concrete system to the standard. Since

the X/Open DTP standard is constantly under revision, we examined in the last case

study the result of extending the standard with several isolation constraints and pro-

totypical behaviors. This case study, described in Section 5.3.4, adds the property of

isolation and the two{phase locking protocol into the standard.

5.3.1 Architecture Study

The �rst study emphasized the architectural aspects of the X/Open industry stan-

dard. By architecture, we mean the interfaces of the components of compliant sys-

tems, their communication paths and protocols. The standard is a software architec-

ture that allows multiple application programs to share resources provided by multiple

resource managers and allows their work to be coordinated into global transactions.

CHAPTER 5. X/OPEN REFERENCE ARCHITECTURE: CASE STUDIES 139

The components of the architecture, e.g., application programs (APs), resource man-

agers (RMs), and transaction managers (TMs), may be combined in many architec-

tures depending on which components are used and how they are connected.

A local instance of the standard is obtained by combining an AP and one or more

RMs coordinated by a TM. Another DTP architecture may consist solely of TM code

calling a set of RM libraries. Such an architecture is useful, for example, during

transaction completion and recovery.

Method

The reference architecture is intended to supply signi�cant semantic content that

informs implementors about the kinds of properties and protocols compliant systems

must have. Thus, it provides a reusable framework for a product family.

We used many features of the Rapide language. The component interfaces were

divided into services, as per the X/Open documents. Each service includes type and

function declarations. Those services include various formal constraints. Pattern

macros were used to model threads of control. These pattern macros made extensive

use of dependency relationships.

Results

The Rapide reference architecture for the X/Open DTP industry standard (see Ap-

pendix A) is about XXXX lines long. This includes many lines of formal constraints.

The Rapide technology provides an extensive pattern language, but most of the

patterns used were very simple ones.

We used the Rapide 1.0 Compiler to static{semantically check the architecture

and constraints for various properties, e.g., for preservation of communication in-

tegrity.

CHAPTER 5. X/OPEN REFERENCE ARCHITECTURE: CASE STUDIES 140

Experience

Dynamic Architectures. Instances of the reference architecture may di�er with

respect to the number and kinds of components, especially the RMs, and the con-

nections among them. This is especially true when a component can take on more

than one role in a system. This occurs when a resource manager acts like an appli-

cation program and calls another resource manager. Rapide's type system, pattern

language, and architectural features are used to specify such a dynamic architecture.

Flags. The X/Open documents use C integers to represent ags rather than the

enumeration types used in the Rapide reference architecture. Representing all of

the ags as integer values has several problems. First is type checking; one can't

static semantically distinguish between the ags used solely by one routine, and ags

used by the other routines. Also, sets of ags have to be created by adding the ags'

integer values together. This creates a limit (# of bits in a C integer) on the number

of ags. Also, they had to explicitly de�ne the constant TMNOFLAGS (0 integer

value) to denote that there is no ag set.

The Rapide reference architecture represented the ags as enumeration values.

It grouped the enumeration values into enumeration types as per their functional

grouping in the standard. The Rapide compiler's static semantic checking assures

the components that share a service must de�ne the same enumeration types and

values.

However, our reference architecture's approach does not explicitly de�ne the bit{

level data structure chosen to represent the ags. If there is an advantage to X/Open's

approach, it is that their approach strictly speci�es a bit{level data structure. They

de�ne every ag's bit length to be the size of a C integer.2

Naming Conventions. The X/Open documents commonly use naming conven-

tions to declare interfaces, functions, and constants. Examples of these conventions

include:

2De�ning an equivalent data type to X/Open's ag can be done in Rapide with an interface

type and a module generator for each constant value.

CHAPTER 5. X/OPEN REFERENCE ARCHITECTURE: CASE STUDIES 141

� Functions in the XA (service) interface that are pre�xed with ax are the rou-

tines that allow an RM to call a TM, and correspondingly, all TMs must provide

these routines. Similarly, xa pre�xed functions are supplied by RMs and called

by TMs.

� Negative values, which alway imply an error condition, returned by xa functions

all begin with XAER . Their non{negative return values all begin with XA .

� Names of ags passed to XA routines begin with TM.

The naming conventions are desirable, because they facilitate understanding and

(human) semantic checking. This is especially critical, since C does not have con-

structs that can automatically check these architectural constraints. However, the

Rapide service construct provides additional semantics. 0) Interfaces are divided

into named services and the service name is used to pre�x constituents of the ser-

vice where they are used. This is essentially equivalent to their pre�x notation. 1)

Services replaces pointers to functions improving the semantic checking that can be

performed.

Inconsistency. Our attempt to capture the standard uncovered several inconsis-

tencies or incompletenesses. One example is related to the setting the commit return

point. The X/Open documents specify that the application program can modify

when the tx commit() function returns. It can return either when the two{phase

commit protocol is completed, or when the decision to commit is logged but prior to

completing the second phase. However, logging is not described in the standard.

5.3.2 Protocol Requirements Study

In the second study we modeled prototypical behaviors for the components of the

standard. Since the standard concentrates on the coordination between the compo-

nents and the TM is primarily responsible for the coordination, we coded a realistic

implementation for the TM and toy implementations for the AP and RMs.

CHAPTER 5. X/OPEN REFERENCE ARCHITECTURE: CASE STUDIES 142

Method

We used the formal constraints of the architecture developed in the previous study

and the state{tables and English descriptions found in the X/Open documents to

build our prototypical behaviors for the AP, TM, and RM components. Since most of

the constituents for the component interfaces are speci�ed to be functions, they were

implemented as functions. Since the current Rapide compiler does not implicitly

generate the events that represent the call and return of the functions, our reference

architecture explicitly declares and generates events for those activities. These explic-

itly declared and generated events were used by the Partial Order Browser (POB) to

visualize the executions and by the constraint checker to verify the runtime behavior.

Results

The prototype implementations of the component behaviors were XXX pages. They

were coded as Rapide behaviors. Quite a bit of the code dealt with storing and

accessing the state of the component (similarly to state{tables of the X/Open docu-

ments). Also, the standard de�nes many failure conditions and a hierarchy of those

conditions. These semantics were quite lengthy to express in the Rapide, and quite

a bit of the behaviors' code handles the conversion of the failure conditions through

the hierarchy.

The TM speci�cations and consequently our implementation are centered around

the two{phase commit protocol. The two{phase commit protocol assures the trans-

action property of atomicity, an architectural constraint. The commit protocol is so

named, because it is divided into two phases. The �rst phase of the protocol the

TM polls the RMs to prepare to commit the transaction. A positive response to the

poll guarantees that the RM will commit its part of the transaction if requested. A

negative response, for any reason, indicates that part of the transaction cannot be

committed. The second phase begins by collecting all of the responses to the poll and

deciding whether to commit the transaction. If all of the RMs respond positively, the

decision will be to commit, and if any of the RMs respond negatively, the decision

will be to abort. Upon reaching the decision, the RMs are informed and they each

CHAPTER 5. X/OPEN REFERENCE ARCHITECTURE: CASE STUDIES 143

commit or abort as per the decision.

Theoretical analysis of this protocol determined that all correct executions of the

commit protocol imply not only the atomicity constraint but also a coordination

constraint. The coordination is constrained such that a commit function call must

never be causally independent from a prepare function return for the same transaction.

As a positive result of this study, this constraint was easily captured by the constraint

language and run time checked by the constraint checker. However, some of the

other X/Open DTP constraints were very computational expensive to check and

were outside the implemented subset of the Rapide 1.0 Compiler. Therefore, not

all of the constraints of the reference architecture (presented in Appendix A) were

checked during this case study.

Experience

Understandability. The X/Open documents give several exempliary execution

traces that we interpreted as constraints for the proper sequences of system calls.

The pattern language captured those constraints very well and in a manner that for

the most part was easy to understand. The Rapide tool suite was able to simulate

and animate those execution traces. The animation was very useful in validating the

accuracy of prototypes.

Debugging with the extra information provided by the poset was quite easy. The

dependency relationships found within the poset quickly answers a common question

asked during debugging like \why did this activity occur?"

Functions vs. Events. The commit protocol allows for polling and informing the

RMs to be done concurrently if the call and return of the activities is done asyn-

chronously, i.e., are not implemented as functions. However, since the activities are

implemented with functions, an ordering must be chosen, possibly nondeterministi-

cally. In either case, Rapide has constructs that can either constrain such executions

or generate them. A nondeterministic ordering was generated by collecting the indices

of the RMs as a set, and nondeterministically selecting a member of that set.

CHAPTER 5. X/OPEN REFERENCE ARCHITECTURE: CASE STUDIES 144

Scalability. The Rapide simulator was adequate for small executions but bogged

down on large ones, especially large ones with the constraint checking. The constraint

checking problems are two{fold. First, the current constraint checker was designed

and implemented very quickly using very ine�cient algorithms. The checker was

designed more to test the constraint language than to actually check constraints. It

performs exponentially worse as the program executes.

Second, the current constraint checker was designed to only check a small subset

of the constraint language. This subset was a commonly occurring type of constraint

for this study; the only implemented feature for constraint checking is the never con-

straint that constrains the execution to never have a particular pattern of behavior

within it. The usefulness of this type of constraint is quite apparent as is e�cient tech-

niques to check them. However, the other types of constraints do not lend themselves

to e�cient checking algorithms.

Input and Output. An additional subset limitation of the Rapide 1.0 Compiler

is input and output (I/O). Currently, the only run time I/O is the passing of the

command line arguments to the program. While this limitation does not theoret-

ically restrict the behaviors that can be dynamically selected at run time, it does

create a considerable burden for every reference architecture with an extensive suite

of scenarios.

It is quite time{consuming and tedious to encode every possible alternative as some

sort of command line argument. However, for small suites of scenarios, command line

arguments works quite well. We occasionally modi�ed the code directly rather than

encoding a command line argument. These modi�cations were quite simple to make,

and the compile and execution times were fairly short.

Scenario Sizes. There are not many scenarios given in the X/Open DTP docu-

ments, and the ones that are there are more like execution fragments than complete

scenarios. On the other hand, the Rapide scenarios were complete executions. As

one would expect, the X/Open fragments are only about dozen lines of text, while

CHAPTER 5. X/OPEN REFERENCE ARCHITECTURE: CASE STUDIES 145

the Rapide scenarios were fairly large execution histories. Of course, the extra in-

formation provide by the dependency relationships encoded in a Rapide execution

is the cause of this di�erence.

5.3.3 Conformance Testing Study

In the third case study we tested a system for conformance to the reference archi-

tecture developed in the second case study. The exempliary system was a bank

transaction processing system that accepts deposit, withdrawal, and transfer trans-

actions. It is a good example domain, because much of the X/Open standard centers

around the error conditions that occur during a transaction's execution, and bank-

ing transactions can exhibit many di�erent failure modes, e.g., user abort, account

overdrawal, and hardware failure.

Method

Determining whether an application conforms to a standard is a challenging undertak-

ing, and one technique for doing so is comparative validation. Comparative validation

checks the consistency between two or more di�erent systems, e.g., our banking sys-

tem and our reference architecture, by testing them with respect to each other under

a particular set of circumstances. In e�ect, by having several algorithms that imple-

ment the same problem and by giving each algorithm the same input data, we can

check whether their outputs are equivalent.

In Rapide, one or more systems (the domain) are provided with a stimulus (test

data) and their behaviors produce an execution. This execution is mapped into the

universe of the other system (the range), and the mapped execution is checked for

equivalence against the range's constraints. Determing equivalence involves detecting

di�erences between the domain executions and the range's execution model. Repeat-

ing the comparison under di�erent stimuli increases the con�dence that the systems

conform to each other.

CHAPTER 5. X/OPEN REFERENCE ARCHITECTURE: CASE STUDIES 146

Current approaches for de�ning the relationships among several systems are lim-

ited to trace{based methodologies. A trace of events does not record enough informa-

tion to detect all violations of transaction processing constraints, e.g., a violation of

the two{phase commit protocol that can't be detected with a trace of events occurs

when a TM's commit call that was made in response to the prepare{to{commit poll

is based upon only some (not all) of its inputs. HoweverRapide's execution model is

based upon partially ordered sets of events (posets), and it has an explicit construct

used to de�ning the relationships among architectures, the map. A domain system

or architecture conforms a range architecture if and only if the mapped execution

of the domain architecture satis�es all of the constraints of the range architecture.

Essentially, the poset produced by the domain architecture is interpreted via the map

as if it were produced by the range architecture.

Results

The bank transaction processing system was written in approximately XXX lines

of Rapide. We chose to implement our banking system with an architecture very

closely related to the architecture described in Gray and Andreas Reuter's book [31]

to test the complexity of writing maps. The map was XXX lines long, and its code

was surprisingly simple to write.

Experience

Interoperability. We chose to implement the banking system, in Rapide, because

any other language would require additional code to be written to generate the events.

The Rapide project has plans to develop libraries of code to assist developers in

generate the events in several languages.

De�ning Conformance. An interesting question that always occurs when one is

trying to test systems for conformance to a standard: \how is conformance with

a standard de�ned?" For example, the data values transmitted between the com-

ponents have to exactly match (in both type and value) the values de�ned in the

standard or they can be mapped into the standard's value by the map. Speci�cally,

CHAPTER 5. X/OPEN REFERENCE ARCHITECTURE: CASE STUDIES 147

the X/Open documents specify constants, return values, and ags with integer values.

The advantage of X/Open's approach is that the standard exactly speci�es the value

(data value) transmitted to other components. Another approach, which was used in

the Rapide reference architecture, is to use enumeration types (and values) to rep-

resent the constants, return values, and ags. This approach enables automated type

checking to reduce errors, but requires a mappping to translate from the enumeration

values to their corresponding integer values.

Fundamentally, a de�nition of conformance to a reference architecture can be

based upon either the architectural topology, behavior, or a combination of the two.

Behavior{based conformance involves checking that the computation produced by

executing the system is equivalent to a computation producable by the standard.

A standard maker may also want to de�ne exactly how constituents are allocated

to the components, or she may not care where they are allocated as long as they

exist. Topology{based conformance involves checking that system's components, the

constituents of the components, and how they are connected together are equivalent

to the architecture of the standard. These two metrics, topology and behavior, are

not mutually exclusive but represent a wide spectrum of architectural criteria from

which conformance can be de�ned.

Checking Conformance. Topological conformance views the standard's speci�ca-

tion as a roadmap for the system. This type of conformance ensures the functionality

of the components is preserved by the system implementation. Continuing this philos-

ophy, the topology is viewed as a bound on the possible system behavior and therefore

bounds conformance.

Theoretically a static{semantic checking tool can be used to test topological con-

formance. This tool would examine the architectures of both the standard and the

system and attempt develop a unique one{to{one mapping of the components and

connections. If such a mapping was obtainable, then the system conforms. However

if no such mapping could be found, the system would not conform.

Topological conformance can be also be checked while the system executes like

behavioral conformance. Topological and behavioral conformance can be tested by

CHAPTER 5. X/OPEN REFERENCE ARCHITECTURE: CASE STUDIES 148

extracting constraints from the standard and checking that the system's execution

satis�es those constraints. This can be done inRapide by mapping up the execution's

events into the domain of the standard's constraints or by mapping the constraints

of the standard down onto the domain of the system execution. In either case, a map

from the standard to the system must be created.

Violation Detection. A pratical question for using the tools is what happens when

a violation is detected. Speci�cally what kind of interface is provided by the tools

to allow the system architect or implementor to pinpoint why the system doesn't

conform. Rapide's constraint checker produces an event for each constraint viola-

tion that is dependent upon the mapped events participating in the violation of the

constraint. Further study is needed to determine if a facility for mapping the mapped

events in the range back to its triggering events in the domains.

5.3.4 Isolation Extension Study

Many of the X/Open standards are constantly under revision, and the DTP standard

is no exception. In the last of our case studies, we examined the e�ects of changing the

standard to include the property of isolation and prototype behaviors that satisfy the

property. Speci�cally, we extended the reference architecture with several constraints

that limit every transaction's execution to be isolated from the other concurrently

executing transactions and with prototypical behaviors that implement the two{phase

locking protocol that ensures isolation.

Method

We used never constraints to specify the three conditions that occur when isolation

is violated: lost update, dirty read and unrepeatable read. These constraints are

the three architectural constraints that limit the collective execution of the resource

managers. The constraints monitor the read and write events generated by the resouce

managers and check that the transactions don't exhibit the dependencies that are

characteristic of the three conditions (and violate isolation). Therefore, the resource

CHAPTER 5. X/OPEN REFERENCE ARCHITECTURE: CASE STUDIES 149

managers were modi�ed to generate a read (and a write) event every time a data

object is read (and written).

We also modi�ed the system architecture by adding a speci�c type of resource

manager, the lock manager, a behavior for the lock manager, and modi�ed the behav-

iors of the other resource managers to use the lock manager | the resource managers

were coded to use the two{phase locking protocol.

Tested the reference architecture by simulating the reference architecture as well

as with the banking system.

Results

Performing this study required very little additional Rapide code to be written. The

coding the constraints for isolation required only 8 lines, and only XX lines were

needed to specify and implement the lock manager. The resource managers were

only slightly modi�ed; the implementation of isolation only required a few calls to

lock and unlock the resources as per the two{phase locking protocol. Again these

modi�cations were extensions to the X/Open standard and were not present in the

X/Open documents.

Experience

Isolation Constraint. There are several ways to specify the property of isolation.

Since many of these protocol speci�cations are, in theory, very expensive to check and

are, more importantly, not implemented in the current compiler, we rewrote them into

several never constraints that when taken collectively imply isolation. That presents

an interesting question as to whether it is always possible to rewrite a constraint into

an equivalent set of never constraints and is this set �nite and countable. Also, can

it be automatically generated from the original constraint.

These are very interesting theoretical questions, but from a more practical per-

spective, we have found that all of the constraints we wrote were able to be converted

manually into a very small set of never constraints.

CHAPTER 5. X/OPEN REFERENCE ARCHITECTURE: CASE STUDIES 150

Lock Manager Behavior. The implementation of the lock manager exempli�ed

a very powerful rapid prototyping construct in Rapide, the process generator. It

creates a process for each object that can be locked. Each process repeatedly waits

for a lock call, responds with a lock return, waits for a unlock call, and responds with

an unlock return. Rapide provides convenient constructs to declare any number of

processes that execute concurrently.

Chapter 6

Conclusions

We have argued in Chapter 1 that formal methods, prototyping, and architecture

de�nition technologies can improve the state of practice in software system standard-

ization. The rest of the chapters have presented and used Rapide to verify this

hypothesis on a particular standard, the X/Open distributed transaction processing

industry standard. In this chapter, we �rst look back and summarize the Rapide

technology. We then succiently describe the original contributions found in this disser-

tation for formally specifying and developing prototypes of system standards. Finally,

we look forward into the future directions that this research has opened up.

6.1 Rapide Summary

6.1.1 Architecture De�nition Language

Rapide is an executable architecture de�nition language (ADL) and a suite of tools

based on that language. That language has many features in common with other

ADLs such as interfaces and connections. It also goes beyond current ADL's in

providing several new features. In summary, Rapide provides:

Interfaces: Component interfaces in Rapide specify both what the components

demand of their context and what they provide to it; interface features de�ne a

component's features for both synchronous and asynchronous communication,

151

CHAPTER 6. CONCLUSIONS 152

its reactive behavior to inuts, and (runtime checkable) constraints on its behav-

ior. Interfaces inRapide are types. Dynamic subtype substitution is supported

to allow exible rapid modi�cation of architectures by replacing old components

with new ones.

Connections: Architecture connections between the components; that is, rules that

describe how components interact with each other in a particular architecture.

Constraints: Formal constraints on the architecture connections, expressing, for ex-

ample, communication protocols between components. Architecture constraints

are supported by dynamic conformance checking tools.

Mappings: Event pattern mappings between architectures; a powerful capability to

de�ne relationships between (possibly widely di�ering) architectures. Mappings

are supported by runtime rules that map the behavior of one architecture (the

domain of the map) into that of another architecture (the range of the map).

Maps may be used to check conformance of the domain to the range architecture,

e.g., checking conformance to reference architectures.

Hierarchy: Recursive component hierarchy, in which component structures are

de�ned as architectures of constituent components.

Genericity: Genericity, so that architectures of product instances and product fam-

ilies can both be represented. This is key to achieve a reuse{based development

process.

Rapide does these things in an unique way. The underlying semantic base of

Rapide is the notion of an event{based model of the computation. The events

abstract subcomputations that are of little interest in the architectural view. In any

system, the events are not all independent; inRapide the event{based model includes

partial orders representing dependency among the events. Two kinds of dependency

are emphasized in Rapide: causal and temporal.

CHAPTER 6. CONCLUSIONS 153

6.1.2 Rapide Computation

Causal and temporal event histories generated by simulation of a Rapide architec-

ture provide the most detailed event{based representation of distributed/concurrent

behavior. An event history is a partially ordered set of events (or poset) and can

explicitly show which events caused which other events and which events happened

independently, during execution. Causal information, inconjunction with timing, is

critical in the analysis of distributed system behavior, in the ability to accurately

express constraints and in constructing sensible animations of a system's behavior.

The advantages of causal event histories is well documented and illustrated in this

disseration1 and in the Rapide literature (see references).

Posets are the basis of the Rapide notations and tools. The Rapide language

provides ways to specify what events a component (interface) can generate and con-

sume (using Rapide \actions"), as well as what services it provides and requires. The

language provides a way to de�ne, in executable form, the behaviors of components

by simple reactive rules that trigger on, and generate, patterns of events (including

the dependency relationships among those events). The language de�nes the inter-

connection rules for components of an architecture in terms of patterns of events that

are generated and observed by the components (using Rapide \basic" and \guarded

basic" connections). Alternate architectural models of a single system can be re-

lated (or \mapped") in the Rapide language, by maps that de�ne corresponding

computation patterns in the separate architectures.

Architectures can be exercised by executing them using a set of use{cases or

scenarios. The results of the executions are computation posets that reveal both

causal and timing/performance properties of the architecture. These posets form the

basis for causal and temporal analysis tools to determine properties of architectures.

This usage model motivates the Rapide tools. A compiler/runtime system pro-

vides the capability to simulate Rapide architectures. Runtime constraint checkers

1For example the coordination constrint as a prerequisite for correct execution of the two{phase

commit protocol for atomicity in the X/Open DTP standard.

CHAPTER 6. CONCLUSIONS 154

detect and report the occurrence of prohibited patterns of events, i.e., constraint vi-

olations, in the computation scenario. Poset browser provide sophisticated pattern{

based �ltering of the posets so that human intuition can be used to discover impor-

tant patterns in an architecture's dynamics. These discoveries can then be recorded

as constraints | derived requirements | in the architectures. Human understanding

is further enhanced by poset{driven animators that depict the architecture diagra-

matically and animate the event occurrences.

6.1.3 X/Open DTP Case Studies

The Rapide technology has matured to a point where the tools can support \real

world" case studies of architectural modelling. In particular, this dissertation is an ex-

ample of applying Rapide to the architectural modelling of an industry standard for

distributed transaction processing from X/Open Ltd. Other studies are in progress

to demonstrate the e�ectiveness of architecture simulation techniques in realistic per-

formance analysis obtained from prototypes of proposed systems.

Before conducting the case studies several questions were raised about the poten-

tial bene�ts of using Rapide:

� Is Rapide di�cult to learn and use?

� Can Rapide adequately express the X/Open DTP standard?

� What are the bene�ts of using Rapide to represent such a standard?

� What methodologies and tools support the use of Rapide?

This section will discuss some of our �ndings in attempting to answer these questions.

Learning and Using Rapide

Rapide is a complex language, and the lack of language reference manuals and ex-

amples 2 have made it di�cult to learn. Rapide requires a paradigm shift from

2The Rapide language reference manuals and a book of examples are expected to be released

for public review in early 1996.

CHAPTER 6. CONCLUSIONS 155

conventional programming languages. However, once this shift is made and uency

in using the appropriate tool is reached, Rapide becomes much easier to use.

Expressibility of Rapide

Rapide was able to express all of the transaction processing and architectural prop-

erties of interest to us. This included the individual component interfaces, their

behaviors, and constraints, as well as the global properties of atomicity and isolation.

However, many of these global properties were originally expressed as Rapide proto-

col constraints that are, in theory, very expensive to check and are, more importantly,

not implemented in the current tool suite. Surprisingly, these complex constraints

could be rewritten into several simpler constraints that are easier to check.

These rewrites were not di�cult to perform because of the large body of related

work [31] that had already discovered them. In general, enabling theRapide compiler

to automatically rewrite (or optimize) constraints is not trivial [21]. Automatic event

pattern{based constraint optimization would require proof system for the constraint

language.

Bene�ts of Using Rapide

The X/Open documents protray the standard in a very C programming language{

speci�c manner. For example, they de�ne a \resource manager switch" as a collection

of pointers to functions and pass such a switch between a RM and TM to faciliate

communication. Passing collections of pointers to functions is a very C{speci�c way

to connect components together. A Rapide speci�cation is more language indepen-

dent, and a language independent speci�cation enables the implementors the greatest

freedom in their implementation approach. Greater freedom brings X/Open closer to

their goal of specifying open systems.

Clearly, formalismmakes some types of analysis possible, where a lack of formalism

prevents it. Because of Rapide's formal computation model, we were able to show

that a coordination requirement that is a logical consequence of the speci�cations

and protocols X/Open de�ned. Also, Rapide's architectural language enables formal

syntacic and static{semantic checking of a system's architecture.

CHAPTER 6. CONCLUSIONS 156

An additional feature that faciliates design evolution is Rapide's ability to easily

combine constraints. Constraints can be incrementally added at various locations in a

reference architecture: in interfaces, architectures, modules and maps. In general, the

Rapide technology enables systematic design and evolution of systems and system

standards via reusable and composable reference architectures.

Rapide Tools

Since the Rapide computational model provides much more information than tra-

ditional programming languages, the tools to make use of this extra information are

critically important. The �rst tool is the syntax and static{semantic checker. This

tool provides an initial examination for architectural consistency and communica-

tion integrity. The code generator and run{time system are required to produce

executions, and those executions are visualized with the partial order browser and

the animator. The constraint checker is built into the code generator and run{time

system. These tools provide a comprehensive suite that supports the entire system

development process.

6.2 Original Contributions

Not all of the work described in this dissertation was performed entirely by the author.

As discussed in Chapter 1, the Rapide technology is the product of approximately 50

man{years of e�ort, and this has made it di�cult to specify individual contributions.

In general, the author has participated in this e�ort from the beginning | from the

language conceptualization, design, and an associated tool suite implementation. One

speci�c contribution made by the author was the design and implementation of the

pattern matching component of the compiler. Other speci�c contributions to which

the author is primarily responsible include:

X/Open DTP Reference Architecture: A formalization of over 200 pages of

X/Open documents into a simple 20 page Rapide reference architecture that is

executable and testable. The reference architecture formally de�nes component

CHAPTER 6. CONCLUSIONS 157

interface types, behaviors, and architectures. It also formally de�nes constraints

and protocols on the executions of the architectures. The approach formalizes

many of the documents informal ideas in terms of Rapide's computational

model | partial orders of event sets (posets).

DTP Reference Architectures: An environment for the speci�cation and anal-

ysis of DTP standards. The analysis includes execution, animation, and testing.

Several views of DTP are used to de�ne additional concepts, e.g., isolation, not

present in the X/Open DTP industry standard.

Note: This includes knowledge gained from representing DTP standards in a

formalism like Rapide, i.e., several original constraints like the coordination

constraint, as well as the inuences this example has had on the development

of Rapide.

Inuences on X/Open standard: Dependency based partial orders of events

allows the formal speci�cation of: i) the concept of \thread of control," ii) the

intended parallelism of the system execution, and iii) the property isolation,

not in X/Open documents. These results haven't been presented to X/Open,

but when they are, they are expected to have a signi�cant impact.

Inuences on Rapide: Added syntactic sugar to the constraint language, the

never constraint. This form of constraints is a very useful restriction from an

implementation perspective. This form is easier to implement and quite useful

for speci�cation.

Conformance Testing: An application of a methodology for testing applications

for conformance to reference architectures that involves taking (or mapping)

a pattern of behavior in one or more (domain) architectures and producing

another pattern of behavior in the (range) architecture. The mapped behavior

is checked against the constraints of the range architecture.

CHAPTER 6. CONCLUSIONS 158

6.3 Future Research

Many of the shortcomings described in this dissertation are currently under investi-

gation. These shortcomings serve as subjects for future work as well as additional

projects that are identi�ed in this section. The possible future work directions can

be formulated along three lines: extensions to improve the Rapide tool suite and

practical applications of formal methods. It is hoped that the experience of using the

evolving Rapide technology to develop standards will result in the design of better

standards as well as improved testing of conforming systems to those standards.

6.3.1 Rapide Improvements

Documentation and Teaching. It has been extremely di�cult for new users to

learn Rapide without access to manuals and a compiler. The Rapide language ref-

erence manuals and compiler are expected to be publically released in early 1996.

Several additional case studies, including Sparc V9 Processor [90], DMSO High Level

Architecture [60], and several security{based standards [1], are currently under in-

vestigation. From these experiences teaching methods will be better understood and

new users should have a much easier time learning and building prototypes.

Optimize Compiler and Runtime System. The current Rapide compiler and

runtime system have a lot of room for improvement. The Stanford Program Analysis

and Veri�cation Group are continuing to develop new algorithms to improve per-

formance of the Rapide simulations. Among the choices for improvement, there is

special interest in optimizing the pattern matching parts of the compiler and runtime

system [50]. Another interesting project is to distribute the runtime system's (and

therefore Rapide programs) among several processors to improve the performance of

the simulations.

Porting Rapide Tool Suite. Currently the Rapide tool suite executes only upon

Sun's Sparc 2 hardware running version 4.1 of Sun's UNIX operating system. There

CHAPTER 6. CONCLUSIONS 159

has been considerable interest in porting the tools to Intel Pentium and other hard-

ware running Linux.

Constraint Checker. The current never constraint checker is scheduled to be

rewritten by the end of 1996 to more e�ciently check never constraints as well as

other types of Rapide constraints. Note: the constraint language is currently being

re{examined to clarify and polish its syntax and semantics.

6.3.2 Practical Applications of Formal Methods

Rapide Proof System. Once the re�nement of the constraint language is �nished,

a proof system to automate the checking of a set of constraints for satis�ability would

also be a tremendous bene�t. Such a proof system would also be extremely useful for

checking the Rapide constraint checker's performance optimizations.

Architectural Re�nement. An interesting question is whether a tool can be built

to guarantee the preservation of properties throughout architecture evolution similar

to the methodology of Moriconi and Qian [73, 74].

Appendix A

X/Open DTP Reference

Architecture

This appendix presents the Rapide reference architecture for the X/Open distributed

transaction processing (DTP) industry standard. This reference architecture is a

formalization of the standard that is executable and testable. It formally de�nes the

component interfaces, behaviors, and architecture. The reference architecture also

formally de�nes constraints and protocols on the execution of the architecture.

The X/Open DTP standard is a software architecture that allows multiple applica-

tion programs to share resources provided by multiple resource managers, and allows

their work to be coordinated into global transactions. The architecture comprises

three kinds of software components:

� an application program (AP) that de�nes transaction boundaries and speci�es

the actions that constitute a transaction,

� resource managers (RMs, such as databases or �le access systems) that provide

access to shared resource, and

� a transaction manager (TM) that assigns identi�ers to transactions, monitors

their progress, and takes responsibility for transaction completion and for failure

recovery.

These terms are formally de�ned in this appendix.

160

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 161

A.1 Types

A.1.1 Global Types

These types, for portability reasons, must be common among the APs, TMs and

RMs.

Transaction Branch Identi�er

The X/Open standard uses transaction branch identi�ers (or xids) to associate indi-

vidual operations with a global transaction. An xid is a string that identi�es a global

transaction and a speci�c transaction branch that is the set of operations between

one TM and one RM for that global transaction. Each xid is generated by a TM

and given to a RM. The RM may use this information to optimize its use of shared

resources and locks.

The structure of xids is speci�ed in theRapide code below via the Xid t interface.

An xid contains a format identi�er, two length �elds and a data �eld. The data �eld

comprises at most two contiguous components: a global transaction identi�er (gtrid)

and a branch quali�er (bqual). The gtrid length �eld speci�es the number of bytes

that constitute gtrid, starting at the �rst byte of the data �eld (that is, at data[0]).

The bqual length �eld speci�es the number of bytes that constitute bqual, starting at

the �rst byte after gtrid of the data �eld (that is, at data[gtrid length]). A value of -1

in FormatID means that the xid is null.

XIDDATASIZE : Integer is 128; { { size in bytes

MAXGTRIDSIZE : Integer is 64; { { maximum size in bytes of gtrid

MAXBQUALSIZE : Integer is 64; { { maximum size in bytes of bqual

type Xid t is

record

formatID, {{ format identi�er

gtrid length,

bqual length : ref(Integer);

data : String;

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 162

axiom

{{ The value in formatID should be greater than or equal to -1.

(formatID >= �1);

{ { A value of -1 in formatID means that the XID is null.

(formatID = �1) �> (gtrid length = 0 and bqual length = 0);

{ { A value greater than -1 in formatID means that the gtrid and bqual lengths

{{ have a reasonable value .

(formatID > �1)

�> (1 <= gtrid length and gtrid length <= MAXGTRIDSIZE and

1 <= bqual length and bqual length <= MAXBQUALSIZE);

{ { The length of the data must be properly bounded.

data.Length() <= XIDDATASIZE;

data.Length() = gtrid length + bqual length;

end record; �� Xid t;

Commentary: The X/Open documents discuss the passing of pointers to xids,

since many of the functions pass them. These pointers are valid only for the duration

of the call. If the xid is needed after it is returned from the call, a local copy must

be made before returning. In the reference architecture, the passing of references to

xids has the same restriction.

Thread of Control

A thread of control (or a thread) is an important concept in the X/Open DTP stan-

dard; it is the concept that associates RM work with the global transaction.

type Tid t is integer;

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 163

type Operating System is

interface

provides

{{ returns a new thread identi�er

Create Thread : function() return Tid t;

end interface Operating System;

module Make OS() return Operating System is

Last Tid : var Tid t := 0;

function Create Thread() return Tid t is

begin

Last Tid := $Last Tid + 1;

return $Last Tid;

end Create Thread;

end module Make OS;

OS : Operating System is Make OS();

Commentary: The X/Open documents make explicit use of thread without de�n-

ing exactly what a thread is. Instead they give multiple de�nitions, including:

� the entity, with all its context, that is currently in control of a processor, and

� an operating{system process.

The assumptions X/Open makes about threads include:

� a thread identi�er is an implicit parameter of the communication between the

X/Open components,

� \coupling" techniques exist by which sets of threads can be associated together.

We have modelled the thread type, Tid t, as an integer generated by an operating

system object, OS.

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 164

Causal Chains. One property of threads is that all events generated by a thread

are causally ordered.

match ((?t in Tid t) ((?e in Event(t : Tid t)) ?e(?t))^(! �))^(� �);

Coordination Assumption. The thread concept is central to the TM's coordi-

nation of RMs. APs call RMs to request work, while TMs call RMs to delineate

transaction branches. The way the RM knows that a given work request pertains to

a given branch is that the AP and the TM both call it from the same thread. This

protocol can be expressed in Rapide as the following constraint:

match ((?t in Tid t)

(AP.TX.tx begin(?t) ! TM.XA.xa start(?t)^(! �) ! AP.AR.Request(?t)^(! �)

! (AP.TX.tx commit(?t) or AP.TX.tx rollback(?t))))^(� �);

A.2 Services

Interfaces for AP, TM and RMs are structured into services. The TX service (Fig-

ure A.1) is \shared" between the TM and the AP in the sense that their interfaces

contain respectively provided and required services of type TX, and the architecture

connects them. Similarly the AP shares an AR service with each of the RMs, and

the TM shares an XA service with each of the RMs.

A.2.1 TX (Transaction Demarcation) Service

TX is the name of the service shared by the AP and the TM. The TX functions are

provided by TMs and are called by APs. APs demarcate global transactions via the

TX interface and perform recoverable operations via RMs' native interfaces.

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 165

type TX Service is

interface

provides

{{ Begin a global transaction: Note begin is a keyword.

function tx begin(t:Tid t) return TX Return Code;

{ { Close the AP's resource managers.

function close(t:Tid t) return TX Return Code;

{ { Commit a global transaction.

function commit(t:Tid t) return TX Return Code;

{ { Obtain current transaction information.

function info(t:Tid t; info:ref(TXInfo)) return TX Return Code;

{ { Open the AP's resource managers.

function open(t:Tid t) return TX Return Code;

{ { Roll back a global transaction.

function rollback(t:Tid t) return TX Return Code;

{ { Set return point of commit.

function set commit return(t:Tid t; when return:Commit Return)

return TX Return Code;

{ { Select chaining mode.

function set transaction control(t:Tid t; control:Transaction Control)

return TX Return Code;

{ { Set transaction timeout value.

function set transaction timeout(t:Tid t; timeout:Transaction Timeout)

return TX Return Code;

end interface TX Service;

Transaction Characteristics

The state of an application thread of control includes several characteristics. The AP

speci�es these by calling tx set �() functions.

The commit return characteristic determines the stage in the commitment pro-

tocol at which the tx commit() call returns to the AP.

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 166

type Commit Return is

enum

TX COMMIT COMPLETED, { { tx commit() return when the two{phase

{ { commit procedure is completed.

TX COMMIT DECISION LOGGED {{ tx commit() returns at the point when

{ { the decision to commit is logged but prior

{ { to completing the second phase.

end enum; �� Commit Return;

The transaction control characteristic determines whether the completion of

one transaction automatically begins a new transaction (called chained mode).

type Transaction Control is

enum

TX CHAINED, { { completion begins a new transaction.

TX UNCHAINED { { completion does not begin a new transaction.

end enum; �� Transaction Control;

The transaction timeout characteristic speci�es the time period in which the

transaction must complete before becoming susceptible to transaction timeout. The

interval is expressed as a number of seconds.

type Transaction Timeout is Integer;

Transaction Information

The TXInfo record is used to return information about the thread state, including the

state of all characteristics, the thread's association, if any, to a global transaction,

and transaction state information.

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 167

type TXInfo is

record

xid : ref(Xid t);

when return : ref(Commit Return);

control : ref(Transaction Control);

timeout : ref(Transaction Timeout);

state : ref(Transaction State);

end record; �� TXInfo;

Transaction State. The AP may call tx info() to obtain information regarding the

state of the transaction it is in; that is, to determine whether the transaction is alive,

has timed{out (and been marked rollback{only), or has been marked rollback{only

(for a reason other than transaction timeout).

type Transaction State is

enum

TX ACTIVE,

TX TIMEOUT ROLLBACK ONLY,

TX ROLLBACK ONLY

end enum; �� Transaction State;

Return Codes

The values returned by the TX routines.

type TX Return Code is

enum

TX NOT SUPPORTED, {{ option not supported

TX OK, {{ normal execution

TX OUTSIDE, {{ application is in an RM local transaction

TX ROLLBACK, {{ transaction was rolled back

TX MIXED, {{ transaction was partially committed and partially

{{ rolled back

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 168

TX HAZARD, {{ transaction may have been partially committed and

{{ partially rolled back

TX PROTOCOL ERROR, {{ routine invoked in an improper context

TX ERROR, {{ transient error

TX FAIL, {{ fatal error

TX EINVAL, {{ invalid arguments were given

TX COMMITTED, {{ transaction has heuristically committed

TX NO BEGIN, {{ transaction committed plus new transaction could

{{ not be started

TX ROLLBACK NO BEGIN, {{ transaction rollback plus new transaction could not

{{ be started

TX MIXED NO BEGIN, {{ mixed plus new transaction could not be started

TX HAZARD NO BEGIN, {{ hazard plus new transaction could not be started

TX COMMITTED NO BEGIN {{ heuristically committed plus new transaction could

{{ not be started

end enum; �� TX Return Code;

Commentary: The X/Open documents de�ne these return codes as integer val-

ues, where errors are denoted by negative return values. Thus, the AP may regard

non{negative return codes as denoting success, but these return codes may convey

additional information. The Rapide code does not explicitly de�ne the denotation,

only that the AP and TM components must share the same denotation.

A.2.2 XA Service

XA is the name of the services shared by the TM and the RM. XA consists of two

subservices, ax and xa. The XA subservices are provided by RMs and are called by

TMs, while the AX subservices are provided by TMs and are called by RMs.

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 169

type XA Service is

interface

service

ax sub : dual AX Subservice;

xa sub : XA Subservice;

end interface XA Service;

XA Subservice

Each RM provides a XA Subservice that gives the TM access to the RM's xa routines.

This is called the RM Switch in the X/Open documents.

RMNAMESZ : Integer is 32;

type XA Subservice is

interface

provides

Name : String;

Flags : ref(Set(RM Flag)); { { options speci�c to the resource manager

Version : Integer;

axiom

Name.length() <= RMNAMESZ;

Version = 0; { { must be 0.

provides

{{ Terminate the AP's use of an RM.

function close(t:Tid t; xa info:Info Type; rmid:Integer; ags:Set(XA Flag))

return XA Return Code;

{ { Tell the RM to commit a transaction branch.

function commit(t:Tid t; xid:ref(Xid t); rmid:Integer; ags:Set(XA Flag))

return XA Return Code;

{ { Test an asynchronous xa operation for completion.

function complete(t:Tid t; handle, retval, rmid:Integer; ags:Set(XA Flag))

return XA Return Code;

{ { Dissociate the t from a transaction branch. Note: end is a keyword.

function xa end(t:Tid t; xid:ref(Xid t); rmid:Integer; ags:Set(XA Flag))

return XA Return Code;

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 170

{{ Permit the RM to discard its knowledge of a heuristically-completed trans-

{{ action branch.

function forget(t:Tid t; xid:ref(Xid t); rmid:Integer; ags:Set(XA Flag))

return XA Return Code;

{ { Initialise an RM for use by an AP.

function open(t:Tid t; xa info:Info Type; rmid:Integer; ags:Set(XA Flag))

return XA Return Code;

{ { Ask the RM to prepare to commit a transaction branch.

function prepare(t:Tid t; xid:ref(Xid t); rmid:Integer; ags:Set(XA Flag))

return XA Return Code;

{ { Get a list of Xids the RM has prepared or heuristically completed.

function recover(t:Tid t; xids:Set(Xid t); count, rmid:Integer; ags:Set(XA Flag))

return XA Return Code;

{ { Get a list of Xids the RM has prepared or heuristically completed.

function rollback(t:Tid t; xid:ref(Xid t); rmid:Integer; ags:Set(XA Flag))

return XA Return Code;

{ { Start or resume a transaction branch - associate an Xid with future work

{{ that the t requests of the RM. Note: Compiler bug with functions in services

{{ named start!

function xa start(t:Tid t; xid:ref(Xid t); rmid:Integer; ags:Set(XA Flag))

return XA Return Code;

end interface XA Subservice;

AX Subservice

The TM provides an AX Subservice that gives the RMs access to the TM's ax rou-

tines. All TMs must provide these routines. These routines let a RM dynamically

control its participation in a transaction branch.

type AX Subservice is

interface

provides

{{ Register an RM with a TM.

function reg(t:Tid t; rmid:Integer; xid:ref(Xid t); ags:Set(XA Flag))

return AX Return Code;

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 171

{{ Unregister an RM with a TM.

function unreg(t:Tid t; rmid:Integer; ags:Set(XA Flag))

return AX Return Code;

constraint

{{ The ags argument of reg() and unreg() is reserved for future use and must

{{ be set to TMNOFLAGS.

never(?t in Tid t, ?rmid in Integer, ?xid in ref(Xid t),

?ags in Set(XA Flag), ?ret in AX Return Code)

(reg'call(?t,?rmid,?xid,?ags) or reg'return(?t,?rmid,?xid,?ags,?ret)

or unreg'call(?t,?rmid,?ags) or unreg'return(?t,?rmid,?ags,?ret))

where ?ags.Cardinality() /= 0;

end interface AX Subservice;

Flag De�nitions

The XA Service uses the following ag de�nitions.

RM Switch. The ag de�nitions for the RM switch.

type RM Flag is

enum

/� TMNOFLAGS, �/ { { no other ag being used

TMREGISTER, { { resource manager dynamically registers

TMNOMIGRATE, { { resource manager does not support association migration

TMUSEASYNC { { resource manager supports asynchronous operations

end enum; �� RM Flag

The xa and ax Routines. The ag de�nitions for xa and ax Routines.

type XA Flag is

enum

/� TMNOFLAGS, �/ {{ no other ag being used

TMASYNC, {{ perform routines asynchronously

TMONEPHASE, {{ caller is using one{phase commit optimization

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 172

TMFAIL, {{ dissociates caller and marks transaction branch rollback{only

TMNOWAIT, {{ return if blocking condition exists

TMRESUME, {{ caller is resuming association with suspended transaction branch

TMSUCCESS, {{ dissocate caller from transaction branch

TMSUSPEND, {{ caller is suspending, not ending, association

TMSTARTRSCAN, {{ start a recovery scan

TMENDRSCAN, {{ end a recovery scan

TMMULTIPLE, {{ wait for any asynchhronous operation

TMJOIN, {{ caller is joining existing transaction branch

TMMIGRATE {{ caller intends to perform migration

end enum; �� XA Flag

Return Codes

The ax Routines. The ax routines' return codes.

type AX Return Code is

enum

TM JOIN, { { caller is joining existing transaction branch

TM RESUME, { { caller is resuming association with suspended trans-

{ { action branch

TM OK, { { normal execution

TMER TMERR, { { an error occurred in the transaction manager

TMER INVAL, { { invalid arguments were given

TMER PROTO {{ routine invoked in an improper context

end enum; �� AX Return Code

The xa Routines. The xa routines' return codes.

type XA Return Code is

enum

/� XA RBBASE, �/ { { the inclusive lower bound of the rollback codes

XA RBROLLBACK, { { the rollback was caused by an unspeci�ed reason

XA RBCOMMFAIL, { { the rollback was caused by a communication failure

XA RBDEADLOCK, { { a deadlock was detected

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 173

XA RBINTEGRITY, { { a condition that violates the integrity of the resources was de-

{ { tected

XA RBOTHER, { { the resource manager rolled back the transaction branch for a

{ { reason not on this list

XA RBPROTO, { { a protocol error occurred in the resource manager

XA RBTIMEOUT, { { a transaction branch took too long

XA RBTRANSIENT, { { may retry the transaction branch

/� XA RBEND, �/ { { the inclusive upper bound of the rollback codes

XA NOMIGRATE, { { resumption must occur where suspension occurred

XA HEURHAZ, { { the transaction branch may have been heuristically completed

XA HEURCOM, { { the transaction branch has been heuristically completed

XA HEURRB, { { the transaction branch has been heuristically rolled back

XA HEURMIX, { { the transaction branch has been heuristically committed and

{ { rolled back

XA RETRY, { { routine returned with no e�ect and may be reissued

XA RDONLY, { { the transaction branch was read{only and has been committed

XA OK, { { normal execution

XAER ASYNC, { { asynchronous operation already outstanding

XAER RMERR, { { a resource manager error occurred in the transaction branch

XAER NOTA, { { the XID is not valid

XAER INVAL, { { invalid arguments were given

XAER PROTO, { { routine invoked in an improper context

XAER RMFAIL, { { resource manager unavailable

XAER DUPID, { { the XID already exists

XAER OUTSIDE { { resource manager doing work outside global transaction

end enum; �� XA Return Code

A.2.3 AR Service

The AR Service is the service shared by the AP and RMs. It gives the AP access to

shared resources.

This service is an RM{de�ned application programming interface by which an AP

operates on the RM's resource. Since each RM de�nes its own interface, there may

be many native interfaces. The RM may o�er a standard interface, such as SQL

or ISAM, in which case the AP may be portable to other RMs that use the same

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 174

interface. The RM may, on the other hand, o�er a proprietary interface speci�c to

its services.

type AR Service is

interface

function Request(t : Tid t);

end interface AR Service;

Commentary: Since this interface is not de�ned by the standard, we have used an

exempliary interface.

A.3 Interfaces

A.3.1 Application Program Interface

The interface of an AP component includes two services: a native RM service(s)

through which the AP communicates with the RMs and a TX (transaction demarca-

tion) service through which the AP communicates with a TM.

type Application Program(NumRMs : Integer) is

interface

service AR(1. .NumRMs) : dual AR Service;

TX : dual TX Service;

end interface Application Program;

A.3.2 Transaction Manager Interface

The interface of a TM component includes NumRMs XA services, one for each RM

the TM may call, and a TX service that the AP may call.

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 175

type Transaction Manager(NumRMs : Integer) is

interface

service XAs(1. .NumRMs) : dual XA Service;

TX : TX Service;

constraint

{{ When the TM calls an RM's open() routine several times, once for each RM instance, it

{{ must generate a di�erent RM identi�er for each call.

never (?i in Integer, ?t in Tid t, ?n in Info Type, ?f in Set(XA Flag),

?i2 in Integer, ?t2 in Tid t, ?n2 in Info Type, ?f2 in Set(XA Flag))

(XA Service::xa sub.open'call(?t,?n,?i,?f)

� XA Service::xa sub.open'call(?t2,?n2,?i2,?f2))

where ?i = ?i2;

{ { The Atomicity Property: A global transaction identi�er (i.e., a process identi�er) should

{{ never be the argument of a commit event for one RM and an abort event for another RM.

{{ As a consequence, any transaction is either committed by all RM's or none.

never (?x in ref(ref(Xid t)), ?i in Integer, ?t in Tid t, ?f in Set(XA Flag),

?i2 in Integer, ?t2 in Tid t, ?f2 in Set(XA Flag))

(XA Service::xa sub.commit'call(?t,?x,?i,?f)

� XA Service::xa sub.rollback'call(?t2,?x,?i2,?f2));

{ { The Coordination Constraint: All commit call events from the TM to the RMs must

{{ depend upon all the prepare returns from the RMs.

never (?x in ref(ref(Xid t)), ?i in Integer, ?t in Tid t, ?f in Set(XA Flag),

?i2 in Integer, ?t2 in Tid t, ?f2 in Set(XA Flag))

(XA Service::xa sub.prepare'return(?t,?x,?i,?f)

jj XA Service::xa sub.commit'call(?t2,?x,?i2,?f2));

end interface Transaction Manager;

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 176

A.3.3 Resource Manager Interface

The interface of a RM component includes a native service for the AP and a XA

service through which the RM communicates with a TM.

type Resource Manager is

interface

service XA : XA Service;

AR : AR Service;

constraint

{{ The calling RM must have TMREGISTER set in the ags element of its xa switch; reg()

{{ and unreg will return failure, [TMER TMERR], when issued by a RM that has not set

{{ TMREGISTER.

match (?t in Tid t, ?i in Integer, ?x in ref(Xid t), ?f in Set(XA Flag),

?r in AX Return Code)

((XA.ax sub.reg'return(?t,?i,?x,?f,?r) or XA.ax sub.unreg'return(?t,?i,?f,?r))

where (($(XA.xa sub.Flags).Is Member(TMREGISTER)) or (?r=TMER TMERR)));

end interface Resource Manager;

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 177

A.4 Behaviors

In order to make the above interfaces executable, we will give default behaviors and

modules for the AP, TM, and RM components. These implementations are not

intended to be realistic, just simple examples of the behaviors required to generate

one possible correct execution of the standard.

A.4.1 Transaction Manager Behavior

type TX State Table is

enum

S 0, { { Non{existent Transaction

S 1, { { Active

S 2, { { Idle

S 3, { { Prepared

S 4, { { Rollback Only

S 5 {{ Heuristically Completed

end enum;

TX State : array[Tid t] of ref(TX State Table)

is (1. .10, default is ref to(TX State Table,S 0));

Opened : array[Integer, Tid t] of ref(Boolean)

is (1. .10, default is (1. .10,default is ref to(Boolean,False)));

Associated : array[Integer, Tid t] of ref(Boolean)

is (1. .10, default is (1. .10,default is ref to(Boolean,False)));

T Xid : array[Tid t] of ref(Xid t)

is (1. .10, default is ref to(Xid t,new(Xid t)));

T Control : array[Tid t] of ref(Transaction Control)

is (1. .10, default is ref to(Transaction Control, TX UNCHAINED));

T Timeout : array[Tid t] of ref(Transaction Timeout)

is (1. .10, default is ref to(Transaction Timeout, 0));

T State : array[Tid t] of ref(Transaction State);

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 178

function None Opened(t:Tid t) return Boolean is

begin

for i : Integer in 1 . . NumRMs do

if ($(Opened[i,t])) then return False; end if ;

end do;

return True;

end function None Opened;

function next gtrid() return Xid t is

x : Xid t;

begin

x.formatID := 0;

x.gtrid length := 1;

x.bqual length := 1;

x.data := $next gxid;

next gxid := $next gxid + 10;

return x;

end function next gtrid;

function Xid(gtrid : Xid t; rm : Integer) return ref(Xid t) is

i : ref(Integer);

x : var Xid t := new(Xid t);

begin

xid call();

i := $(gtrid.data) + rm;

($x).formatID := 0;

($x).gtrid length := 0;

($x).bqual length := 0;

($x).data := $i;

xid return();

return x;

end function Xid;

function More Severe(X, Y : TX Return Code) return TX Return Code is

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 179

begin

case X of

TX FAIL => return X;

xor TX MIXED =>

if (Y=TX FAIL) then return Y; else return X; end if ;

xor TX HAZARD =>

if (Y=TX FAIL or Y=TX MIXED) then return Y;

else return X; end if ;

xor TX ERROR, TX OUTSIDE, TX ROLLBACK, TX COMMITTED =>

if (Y=TX FAIL or Y=TX MIXED or Y=TX HAZARD) then return Y;

else return X; end if ;

default => return TX OK;

end case;

end function More Severe;

function TX.tx begin(t:Tid t) return TX Return Code is

rc : var XA Return Code;

f : Set(XA Flag) is fg;

begin

if ($(TX State[t])=S 0 or $(TX State[t])=S 3 or $(TX State[t])=S 4) then

{{ Caller is not open or already in transaction mode.

return TX PROTOCOL ERROR;

elsif ($(TX State[t])=S 1) then

T Xid[t] := next gtrid();

for i : Integer in 1 . . NumRMs do

if ($(Opened[i,t]) and not $(XAs(i).xa sub.Flags).Is Member(TMREGISTER)) then

rc := XAs(i).xa sub.xa start(t, Xid($(T Xid[t]),i),i,f);

Associated[i,t] := True;

end if ;

end do;

if ($(TX State[t]) = S 1) then TX State[t] := S 3;

else assert($(TX State[t]) = S 2);

TX State[t] := S 4;

end if ;

return TX OK;

end if ;

end; �� function TX.tx begin;

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 180

function TX.close(t:Tid t) return TX Return Code is

f : Set(XA Flag) is fg;

rc : var XA Return Code;

info : Info Type;

begin

if ($(TX State[t])=S 0 or $(TX State[t])=S 1 or $(TX State[t])=S 2) then

{{ AP is not part of an active global transaction.

for i : Integer in 1 . . NumRMs do

if ($(Opened[i,t])) then

rc := XAs(i).xa sub.close(t,info,i,f);

Opened[i,t] := False;

end if ;

end do;

TX State[t] := S 0;

return TX OK;

else { { AP is in transaction mode.

assert($(TX State[t])=S 3 or $(TX State[t])=S 4);

return TX PROTOCOL ERROR;

end if ;

end; �� function TX.close;

function TX.commit(t:Tid t) return TX Return Code is

f : Set(XA Flag) is fg;

rc : var XA Return Code;

committable : var Boolean := True;

txrc : var TX Return Code := TX OK;

begin

if ($(TX State[t])=S 0 or $(TX State[t])=S 1 or $(TX State[t])=S 2) then

return TX PROTOCOL ERROR;

else

for i : Integer in 1 . . NumRMs do

if $(Associated[i,t]) then

rc := XAs(i).xa sub.xa end(t,Xid($(T Xid[t]),i),i,f);

rc := XAs(i).xa sub.prepare(t,Xid($(T Xid[t]),i),i,f);

case $rc of

XA OK => txrc := More Severe($txrc,TX OK);

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 181

xor XA RDONLY => txrc := More Severe($txrc,TX OK);

�� xor XA RBBASE . . XA RBEND =>

xor XA RBROLLBACK, XA RBCOMMFAIL, XA RBDEADLOCK,

XA RBINTEGRITY, XA RBOTHER, XA RBPROTO,

XA RBTIMEOUT, XA RBTRANSIENT =>

txrc := More Severe($txrc,TX ROLLBACK);

committable := False;

xor XAER NOTA =>

committable := False;

txrc := More Severe($txrc,TX ROLLBACK);

xor XAER RMERR =>

committable := False;

txrc := More Severe($txrc,TX ROLLBACK);

xor XAER RMFAIL =>

committable := False;

txrc := More Severe($txrc,TX FAIL);

xor XAER INVAL =>

committable := False;

txrc := More Severe($txrc,TX FAIL);

xor XAER PROTO =>

committable := False;

txrc := More Severe($txrc,TX ROLLBACK);

end case;

end if ;

end do;

for i : Integer in 1 . . NumRMs do

if ($committable) then

rc := XAs(i).xa sub.commit(t,Xid($(T Xid[t]),i),i,f);

case $rc of

XAER RMFAIL, XAER INVAL, XAER PROTO, XAER NOTA =>

txrc := More Severe($txrc,TX FAIL);

xor XA HEURMIX => txrc := More Severe($txrc,TX MIXED);

xor XA HEURHAZ => txrc := More Severe($txrc,TX HAZARD);

xor XA RETRY => txrc := More Severe($txrc,TX ERROR);

xor XA OK, XA HEURCOM =>

if (i /= 1 and $txrc /= TX OK) then

txrc := More Severe($txrc,TX MIXED);

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 182

else txrc := More Severe($txrc,TX OK);

end if ;

xor XA HEURRB, XAER RMERR =>

if (i /= 1 and $txrc = TX OK) then

txrc := More Severe($txrc,TX MIXED);

else txrc := More Severe($txrc,TX ROLLBACK);

end if ;

end case;

else

rc := XAs(i).xa sub.rollback(t,Xid($(T Xid[t]),i),i,f);

case $rc of

XAER RMFAIL, XAER INVAL, XAER PROTO =>

txrc := More Severe($txrc,TX FAIL);

xor XA HEURMIX => txrc := More Severe($txrc,TX MIXED);

xor XA HEURHAZ => txrc := More Severe($txrc,TX HAZARD);

xor XA RETRY => txrc := More Severe($txrc,TX ERROR);

xor XA HEURCOM =>

if (i /= 1 and $txrc /= TX COMMITTED) then

txrc := More Severe($txrc,TX MIXED);

else txrc := More Severe($txrc,TX COMMITTED);

end if ;

xor XA HEURRB, XAER RMERR =>

if (i /= 1 and $txrc = TX COMMITTED) then

txrc := More Severe($txrc,TX MIXED);

else txrc := More Severe($txrc,TX OK);

end if ;

end case;

end if ;

end do;

if ($(TX State[t]) = S 3) then

TX State[t] := S 1;

return $txrc;

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 183

else { { If the AP has selected chained mode, then begin a new global transaction.

T Xid[t] := next gtrid();

for i : Integer in 1 . . NumRMs do

if ($(Opened[i,t]) and not $(XAs(i).xa sub.Flags).Is Member(TMREGISTER)) then

rc := XAs(i).xa sub.xa start(t, Xid($(T Xid[t]),i),i,f);

Associated[i,t] := True;

end if ;

end do;

TX State[t] := S 2;

return $txrc;

end if ;

end if ;

end; �� function TX.commit;

function TX.open(t:Tid t) return TX Return Code is

f : Set(XA Flag) is fg;

rc : var XA Return Code;

some opened : var Boolean := False;

info : Info Type;

txrc : var TX Return Code := TX OK;

begin

if ($(TX State[t]) = S 0) then

for i : Integer in 1 . . NumRMs do

rc := XAs(i).xa sub.open(t,info,i,f);

{ { RMs that are not open return RM-speci�c errors.

case $rc of

XA OK =>

Opened[i,t] := True;

txrc := More Severe($txrc,TX OK);

xor XAER RMERR =>

Opened[i,t] := False;

txrc := More Severe($txrc,TX ERROR);

xor XAER INVAL =>

Opened[i,t] := False;

txrc := More Severe($txrc,TX FAIL);

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 184

xor XAER PROTO =>

Opened[i,t] := False;

txrc := More Severe($txrc,TX FAIL);

end case;

end do;

if (None Opened(t)) then

{ { All RMs are closed.

return TX ERROR;

else {{ At least one RM has been opened.

TX State[t] := S 1;

return TX OK;

end if ;

end if ;

return TX OK;

end; �� function TX.open;

function TX.rollback(t:Tid t) return TX Return Code is

f : Set(XA Flag) is fg;

rc : var XA Return Code;

begin

if ($(TX State[t])=S 0 or $(TX State[t])=S 1 or $(TX State[t])=S 2) then

return TX PROTOCOL ERROR;

elsif ($(TX State[t])=S 3) then

for i : Integer in 1 . . NumRMs do

rc := XAs(i).xa sub.xa end(t,Xid($(T Xid[t]),i),i,f);

rc := XAs(i).xa sub.rollback(t,Xid($(T Xid[t]),i),i,f);

end do;

TX State[t] := S 1;

return TX OK;

else assert($(TX State[t]) = S 4);

TX State[t] := S 4;

return TX PROTOCOL ERROR;

end if ;

end; �� function TX.rollback;

function TX.set commit return(t:Tid t; when return:Commit Return)

return TX Return Code is

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 185

begin

case when return of

TX COMMIT DECISION LOGGED => return TX NOT SUPPORTED;

xor TX COMMIT COMPLETED => return TX OK;

default => return TX EINVAL;

end case;

end; �� function TX.set commit return;

function TX.set transaction control(t:Tid t; control:Transaction Control)

return TX Return Code is

begin

if ($(TX State[t]) = S 0) then return TX PROTOCOL ERROR; end if ;

case control of

TX UNCHAINED =>

T Control[t] := control;

if ($(TX State[t])=S 1 or $(TX State[t])=S 2) then

TX State[t] := S 1;

else assert($(TX State[t])=S 3 or $(TX State[t])=S 4);

TX State[t] := S 3;

end if ;

return TX OK;

xor TX CHAINED =>

T Control[t] := control;

if ($(TX State[t])=S 1 or $(TX State[t])=S 2) then

TX State[t] := S 2;

else assert($(TX State[t])=S 3 or $(TX State[t])=S 4);

TX State[t] := S 4;

end if ;

return TX OK;

default => return TX EINVAL;

end case;

end; �� function TX.set transaction control;

function TX.set transaction timeout(t:Tid t; timeout:Transaction Timeout)

return TX Return Code is

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 186

begin

if (timeout < 0) then return TX EINVAL; end if ;

if ($(TX State[t])=S 0) then return TX PROTOCOL ERROR; end if ;

T Timeout[t] := timeout;

return TX OK;

end; �� function TX.set transaction timeout;

function TX.info(t:Tid t; info:ref(TXInfo))

return TX Return Code is

begin

if ($(TX State[t])=S 0) then return TX PROTOCOL ERROR; end if ;

if (not info.Is Nil()) then

if ($(TX State[t])=S 1 or $(TX State[t])=S 2) then

$($info.xid).formatID := �1;

else

($info).xid := $(T Xid[t]);

($info).control := $(T Control[t]);

($info).timeout := $(T Timeout[t]);

($info).state := $(T State[t]);

end if ;

end if ;

if ($(TX State[t])=S 3 or $(TX State[t])=S 4) then

{{ Caller is in transaction mode.

return TX NOT SUPPORTED;

else

{{ Caller is not in transaction mode.

return TX OK;

end if ;

end; �� function TX.info;

function reg(t:Tid t; rmid:Integer; x:ref(Xid t); ags:Set(XA Flag))

return AX Return Code is

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 187

begin

Associated[rmid,t] := True;

return TM OK;

end; �� function reg;

function unreg(t:Tid t; rmid:Integer; ags:Set(XA Flag))

return AX Return Code is

begin

Associated[rmid,t] := False;

return TM OK;

end; �� function unreg;

connect

for i : Integer in 1. .NumRMs generate

XAs(i).AX.regto reg;

XAs(i).AX.unregto unreg;

end generate;

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 188

A.4.2 Resource Manager Behavior

function XA.xa sub.open(t:Tid t; xa info:Info Type; rmid:Integer; ags:Set(XA Flag))

return XA Return Code is

begin

return XA OK;

end; �� function XA.xa sub.open;

function XA.xa sub.xa start(t:Tid t; xid:ref(ref(Xid t)); rmid:Integer; ags:Set(XA Flag))

return XA Return Code is

begin

return XA OK;

end; �� function XA.xa sub.xa start;

function XA.xa sub.xa end(t:Tid t; xid:ref(ref(Xid t)); rmid:Integer; ags:Set(XA Flag))

return XA Return Code is

begin

return XA OK;

end; �� function XA.xa sub.xa end;

function XA.xa sub.prepare(t:Tid t; xid:ref(ref(Xid t)); rmid:Integer; ags:Set(XA Flag))

return XA Return Code is

begin

return XA OK;

end; �� function XA.xa sub.prepare;

function XA.xa sub.commit(t:Tid t; xid:ref(ref(Xid t)); rmid:Integer; ags:Set(XA Flag))

return XA Return Code is

begin

return XA OK;

end; �� function XA.xa sub.commit;

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 189

function XA.xa sub.rollback(t:Tid t; xid:ref(ref(Xid t)); rmid:Integer; ags:Set(XA Flag))

return XA Return Code is

begin

return XA OK;

end; �� function XA.xa sub.rollback;

function XA.xa sub.close(t:Tid t; xa info:Info Type; rmid:Integer; ags:Set(XA Flag))

return XA Return Code is

begin

return XA OK;

end; �� function XA.xa sub.close;

function XA.xa sub.recover(t:Tid t; xids:Set(Xid t); count, rmid:Integer; ags:Set(XA Flag))

return XA Return Code is

begin

return XA OK;

end; �� function XA.xa sub.recover;

function XA.xa sub.forget(t:Tid t; xid:Xid t; rmid:Integer; ags:Set(XA Flag))

return XA Return Code is

begin

return XA OK;

end; �� function XA.xa sub.forget;

function XA.xa sub.complete(t:Tid t; handle, retval, rmid:Integer; ags:Set(XA Flag))

return XA Return Code is

begin

return XA OK;

end; �� function XA.xa sub.complete;

function AR.Request(t:Tid t) is

xid : ref(Xid t); f : Set(RM Flag) is fg;

begin

XA.ax sub.reg(t,$this rmid,xid,f);

end; �� function AR.Request;

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 190

Application Program (AP)

Transaction
 Manager
 (TM)

Resource
Managers
 (RMs)

AR

XA

TX

Figure A.1: Local Instance Architecture

A.4.3 Application Program Module Generator

module Simple Application(NumRMs : Integer)

return Application Program(NumRMs) is

thread : Tid t is OS.Create Thread();

txrc : var TX Return Code;

parallel

txrc := TX.open(thread);

txrc := TX.tx begin(thread);

for i : Integer in 1 . . NumRMs do

AR(i).Request(thread);

end do;

txrc := TX.commit(thread);

txrc := TX.close(thread);

end module Simple Application;

A.5 Architectures

A particular instance of the X/Open architecture 1 consists of one application

program (AP), one transaction manager (TM), and one or more resource managers

(RMs) connected together as shown in Figure A.1. The boxes indicate the generic

component interfaces, and the lines indicate the communication between them. The

1X/Open calls this architecture a local instance architecture.

APPENDIX A. X/OPEN DTP REFERENCE ARCHITECTURE 191

Rapide code for this architecture is:

architecture Local Instance Architecture(NumRMs : Integer)

for DTP

is

AP : Application Program(NumRMs)

is Simple Application(NumRMs);

RMs : array[Integer] of Resource Manager

is (1 . . NumRMs, default is new(Resource Manager));

��j RMs.length() = NumRMs;

TM : Transaction Manager(NumRMs);

connect

AP.TX to TM.TX;

for i : Integer in 1 . . NumRMs generate

RMs[i].XA to TM.XAs(i);

TM.XAs(i) to RMs[i].XA;

AP.AR(i) to RMs[i].AR;

end generate;

constraint

{{ Atomicity

never (?thread, ?thread2 in PID t; ?xid in ref(ref(Xid t)),

?rmid, ?rmid2 in Integer; ?f, ?f2 in Set(XA Flag))

(Resource Manager::XA.xa commit'return(?thread,?xid,?rmid,?f,xa ok)

� Resource Manager::XA.xa rollback'return(?thread2,?xid,?rmid2,?f2,xa ok));

{ { Coordination

never (?thread, ?thread2 in PID t; ?xid in ref(ref(Xid t)),

?rmid1, ?rmid2 in Integer, ?f, ?f2 in Set(XA Flag))

(Resource Manager::XA.xa prepare'return(?thread,?xid,?rmid1,?f,xa ok)

jj Resource Manager::XA.xa commit'call(?thread2,?xid,?rmid2,?f2));

end architecture Local Instance Architecture;

Appendix B

Bank System

This chapter presents an executable application system that we will test for confor-

mance with the X/Open DTP reference architecture presented in Chapter A. The

domain of this application is banking. A bank transaction processing system is a

good example, because much of the X/Open DTP standard centers around error

conditions that occur during a transaction's execution, and banking transactions can

exhibit many di�erent failure modes, e.g., user abort, account overdrawal, and hard-

ware failure.

The architecture of the banking transaction processing system is very similar to

X/Open's. It has an application program, a transaction manager, and a set of resource

managers. One of the resource managers is a lock manager that the other resource

managers use to serialize their use of the resources.

B.1 Services

B.1.1 Transaction Identi�er

type Xid is Integer;

192

APPENDIX B. BANK SYSTEM 193

B.1.2 Application Program to Resource Manager Service

type AP R is

interface

action

in Request(x : Xid);

in Debit(x : Xid; i : Integer);

out Results(i : Integer; x : Xid; b : Boolean);

end interface AP R;

B.1.3 Application Program to Transaction Manager Ser-

vice

type aptm return code is enum aptm ok, aptm error end enum;

type AP TM is

interface

action

in open call();

out open retn(rc : aptm return code);

in close call();

out close retn(rc : aptm return code);

in begin call();

out begin retn(x : Xid; rc : aptm return code);

in commit call(x : Xid);

out commit retn(x : Xid; rc : aptm return code);

in rollback call(x : Xid);

out rollback retn(x : Xid; rc : aptm return code);

end interface AP TM;

APPENDIX B. BANK SYSTEM 194

B.1.4 Transaction Manager to Resource Manager Service

type tmr return code is enum tmr ok, tmr error end enum;

type TM R is

interface

action

in register call();

out register retn(rm : Integer; b : Boolean);

in reg retn(x : Xid);

out reg call(rm : Integer; x : Xid);

in open call();

out open retn(rm : Integer; rc : tmr return code);

in close call();

out close retn(rc : tmr return code);

in start call(x : Xid);

out start retn(rm : Integer; x : Xid; rc : tmr return code);

in end call(x : Xid);

out end retn(x : Xid; rc : tmr return code);

in prepare call(x : Xid);

out prepare retn(rm : Integer; x : Xid; rc : tmr return code);

in commit call(x : Xid);

out commit retn(rm : Integer; x : Xid; rc : tmr return code);

in rollback call(x : Xid);

out rollback retn(rm : Integer; x : Xid; rc : tmr return code);

end interface TM R;

B.1.5 Resource Manager to Lock Manager Service

type Lock Name is Integer;

type Lock Class is enum

LOCK INSTANT, LOCK SHORT, LOCK MEDIUM,

LOCK LONG, LOCK VERY LONG

end enum;

APPENDIX B. BANK SYSTEM 195

type Lock Reply is enum

LOCK OK, LOCK TIMEOUT, LOCK DEADLOCK, LOCK NOT LOCKED

end enum;

type Lock Mode is enum

LOCK FREE, LOCK S, LOCK X, LOCK U, LOCK IS,

LOCK IX, LOCK SIX, LOCK WAIT

end enum;

type R Lock is

interface

action

in lock call(name : Lock Name; xid : Xid; mode : Lock Mode;

class : Lock Class; timeout : Integer);

out lock retn(name : Lock Name; xid : Xid; mode : Lock Mode;

class : Lock Class; timeout : Integer;

reply : Lock Reply);

in unlock call(name : Lock Name; xid : Xid);

out unlock retn(name : Lock Name; xid : Xid; reply : Lock reply);

provides

unlock class : function(class : Lock class; all le : Boolean; rid : Integer)

return Lock reply;

requires

lockhash : function(name : Lock name) return Integer;

end interface R Lock;

APPENDIX B. BANK SYSTEM 196

B.2 Components

B.2.1 Application Program

Application Program Interface

type Application Program(NumRsrcs : Integer) is

interface

action

in Ready();

service

TMs : dual AP TM;

Rsrcs(1 . . NumRsrcs) : dual AP R;

end interface Application Program;

Application Program Module Generator

module Simple Program(NumRsrcs, NumTrans : Integer)

return Application Program(NumRsrcs)

is

action Debit(src, val : Integer);

action Executed();

trans count : var Integer := 0;

parallel

when Ready do

TMs.open call();

await TMs.open retn;

Debit(1,1);

await Executed;

end when;

APPENDIX B. BANK SYSTEM 197

jj

when Debit do

TMs.begin call();

end when;

jj

when (?src in Integer, ?val in Integer, ?x in Xid, ?rc in aptm return code)

Debit(?src, ?val) �> TMs.begin retn(?x,?rc)

do

if (?rc = aptm ok) then Rsrcs(?src).Debit(?x, ?val); end if ;

end when;

jj

when (?src in Integer, ?dst in Integer, ?val in Integer, ?x in Xid, ?rc in aptm return code)

(Debit(?src, ?val) �> TMs.begin retn(?x,?rc) �> Rsrcs(?src).results(?src,?x))

do

TMs.commit call(?x);

end when;

jj

when (?x in Xid, ?rc in aptm return code) TMs.commit retn(?x,?rc) do

Executed();

end when;

end module Simple Program;

B.2.2 Transaction Manager Interface and Behavior

type Transaction Manager tc(NumRsrcs, NumTrans : Integer) is

interface

service

AP : AP TM;

LM : dual TM R;

Rsrcs(1. .NumRsrcs) : dual TM R;

APPENDIX B. BANK SYSTEM 198

behavior

x : var Xid := 0;

last xid : var Xid := 0;

function New Xid t() return Xid is

begin

last xid := $last xid + 1;

return $last xid;

end function New Xid t;

NumStaticRsrcs : var Integer := NumRsrcs;

Dynamic Rsrc : array[Integer] of ref(Boolean)

is (1. .NumRsrcs, ref to(Boolean,False));

function NumDynamicRsrcs() return Integer is

num : var Integer := 0;

begin

for i : Integer in 1. .NumRsrcs do

if ($(Dynamic Rsrc[i])) then num := $num + 1; end if ;

end do;

return $num;

end function NumDynamicRsrcs;

Reg : discrete array(Integer, discrete array(Integer,ref(Boolean)))

is (1. .NumTrans, default is (0. .NumRsrcs,

default is ref to(Boolean, False)));

begin

AP.open call =>

LM.open call();

(!i in 1. .NumRsrcs by jj) Rsrcs(!i).open call();;

(?j in Integer) Rsrcs(?j).open retn(?j,tmr ok) =>

Rsrcs(?j).register call();;

((?j in Integer) Rsrcs(?j).register retn(?j))^(� NumRsrcs) =>

AP.open retn(aptm ok);;

APPENDIX B. BANK SYSTEM 199

(?m in Integer, ?n in Integer) (((?j in Integer,?rc in tmr return code)

Rsrcs(?j).open retn(?j,?rc) where ?rc/=tmr ok)^(� ?n)

� ((?j in Integer) Rsrcs(?j).open retn(?j,tmr ok))^(� ?m)

� ((?j in Integer) Rsrcs(?j).register retn(?j))^(� ?m))

where ?n + ?m = NumRsrcs

=>

AP.open retn(aptm ok);;

(?j in Integer, ?b in Boolean) Rsrcs(?j).register retn(?j,?b) =>

Dynamic Rsrc[?j] := ?b;;

AP.begin call =>

x := New Xid t();

for i : Integer in 1 . . NumRsrcs do

if not ($(Dynamic Rsrc[i])) then

Reg[$x,i] := true;

Rsrcs(i).start call($x);

else

Reg[$x,i] := false;

end if ;

end do;

NumStaticRsrcs := NumRsrcs � NumDynamicRsrcs();

if ($NumStaticRsrcs = 0) then AP.begin retn($x,aptm ok); end if ;;

(?x in Xid)((?j in Integer) Rsrcs(?j).start retn(?j,?x,tmr ok))^(� $NumStaticRsrcs)

where $NumStaticRsrcs > 0

=>

AP.begin retn(?x,aptm ok);;

(?j in Integer, ?x in Xid) Rsrcs(?j).Reg call(?j,?x) =>

Reg[?x,?j] := true;

Rsrcs(?j).Reg retn(?x);;

APPENDIX B. BANK SYSTEM 200

(?x in Xid) AP.Commit call(?x) =>

for i : Integer in 1 . . NumRsrcs do

Rsrcs(i).prepare call(?x);

end do;

(?x in Xid)((?j in Integer) Rsrcs(?j).prepare retn(?j,?x,tmr ok))^(� NumRsrcs) =>

for i:Integer in 1 . . NumRsrcs do

Rsrcs(i).commit call(?x);

end do;

(?x in Xid)((?j in Integer) Rsrcs(?j).prepare retn(?j,?x,tmr error) �

((?j in Integer, ?c in tmr return code)

Rsrcs(?j).prepare retn(?j,?x,?c))^(� NumRsrcs�1))

=>

for i:Integer in 1 . . NumRsrcs do

Rsrcs(i).rollback call(?x);

end do;

(?x in Xid)((?j in Integer) Rsrcs(?j).commit retn(?j,?x,tmr ok))^(� NumRsrcs) =>

AP.commit retn(?x,aptm ok);;

(?x in Xid)((?j in Integer) Rsrcs(?j).rollback retn(?j,?x,tmr ok))^(� NumRsrcs) =>

AP.commit retn(?x,aptm error);;

end interface Transaction Manager tc;

APPENDIX B. BANK SYSTEM 201

B.2.3 Resource Manager

Resource Manager Interface

type Resource is

interface

action

in Init(id : Integer; val : Integer);

out Read(x : Xid; id : Integer; val : Integer);

out Write(x : Xid; id : Integer);

service

AP : AP R;

TM : TM R;

LK : dual R Lock;

end interface Resource;

Resource Manager Module Generator

module Account(MaxNumTrans : Integer) return Resource is

tmregister : var Boolean;

inited : var Boolean;

rmid, value : var Integer;

Locked : array[Xid] of ref(Boolean)

is (1. .MaxNumTrans, default is ref to(Boolean,false));

parallel

when (?id in Integer, ?val in Integer) Init(?id,?val) do

if (?id < 3) then tmregister := false;

else tmregister := true;

end if ;

rmid := ?id;

value := ?val;

inited := True;

end when;

APPENDIX B. BANK SYSTEM 202

jj

when TM.open call where $inited do

TM.open retn($rmid, tmr ok);

end when;

jj

when (?x in Xid) TM.start call(?x) where $inited do

TM.start retn($rmid, ?x, tmr ok);

end when;

jj

when TM.register call where $inited do

TM.register retn($rmid, $tmregister);

end when;

jj

when (?x in Xid, ?val in Integer) AP.Debit(?x,?val) where $inited do

if ($tmregister) then

TM.Reg call($rmid, ?x);

await TM.Reg retn(?x);

end if ;

LK.Lock call($rmid, ?x, LOCK X, LOCK INSTANT, 0);

await LK.Lock retn($rmid, ?x);

Locked[?x] := true;

Read(?x, $rmid, $value);

Write(?x, $rmid);

value := $value�?val;

Read(?x, $rmid, $value);

AP.results($rmid,?x, $value<0);

end when;

jj

when (?x in Xid) TM.prepare call(?x) do

if ($value < 0) then TM.prepare retn($rmid, ?x, tmr error);

else TM.prepare retn($rmid, ?x, tmr ok);

end if ;

end when;

APPENDIX B. BANK SYSTEM 203

jj

when (?x in Xid) TM.Commit call(?x) do

if ($(Locked[?x])) then

LK.Unlock call($rmid, ?x);

await LK.Unlock retn($rmid, ?x);

Locked[?x] := false;

end if ;

TM.commit retn($rmid, ?x, tmr ok);

end when;

jj

when (?x in Xid) TM.rollback call(?x) do

if ($(Locked[?x])) then

LK.Unlock call($rmid, ?x);

await LK.Unlock retn($rmid, ?x);

Locked[?x] := true;

end if ;

TM.rollback retn($rmid, ?x, tmr error);

end when;

end module Account;

B.2.4 Lock Manager

Lock Manager Interface

type Lock Manager(NumObjs : Integer) is

interface

action

in Init(id : Integer; val : Integer);

out Read(x : Xid; id : Integer; val : Integer);

out Write(x : Xid; id : Integer);

APPENDIX B. BANK SYSTEM 204

service

AP : AP R;

TM : TM R;

LK : dual R Lock;

Rsrcs(1 . . NumObjs) : R Lock;

end interface Lock Manager;

Lock Manager Module Generator

module Locker gen(NumRsrcs : Integer) return Lock Manager(NumRsrcs) is

rmid : var Integer;

inited : var Boolean;

tmregister : Boolean is true;

action Animation Show(s : String; mode : Integer; color : String);

parallel

when (?id in Integer, ?val in Integer) Init(?id,?val) do

rmid := ?id;

inited := True;

end when;

jj

when TM.open call do TM.open retn($rmid,tmr ok); end when;

jj

when TM.register call do TM.register retn($rmid,tmregister); end when;

jj

when (?x in Xid, ?val in Integer) AP.Debit(?x,?val) do

assert(false);

end when;

jj

when (?x in Xid) TM.prepare call(?x) do assert(false); end when;

jj

when (?x in Xid) TM.Commit call(?x) do assert(false); end when;

jj

when (?x in Xid) TM.start call(?x) do assert(false); end when;

jj

when (?x in Xid) TM.rollback call(?x) do assert(false); end when;

APPENDIX B. BANK SYSTEM 205

jj

for i : Integer in 1 . . NumRsrcs generate

when (?x in Xid, ?m in Lock Mode, ?c in Lock Class, ?t in Integer)

Rsrcs(i).Lock call(i, ?x, ?m, ?c, ?t)

do

Animation Show("Lock Granted",1,"blue");

Rsrcs(i).Lock retn(i, ?x, ?m, ?c, ?t, LOCK OK);

await Rsrcs(i).Unlock call(i, ?x);

Animation Show("Lock Released",1,"blue");

Rsrcs(i).Unlock retn(i, ?x, LOCK NOT LOCKED);

end when;

end generate;

end module Locker gen;

B.2.5 Resources

type Resources(NumRsrcs : Integer) is

interface

service

Rsrcs(1 . . NumRsrcs) : Resource;

end interface Resources;

module Some Rsrcs(NumRsrcs, MaxNumTrans : Integer) return Resources(NumRsrcs) is

Rs : array[Integer] of Resource

is (1. .NumRsrcs, default is Account(MaxNumTrans));

connect

for i : Integer in 1. .NumRsrcs generate

Rsrcs(i).AP to Rs[i].AP;

Rsrcs(i).TM to Rs[i].TM;

Rs[i].LK to Rsrcs(i).LK;

end generate;

APPENDIX B. BANK SYSTEM 206

parallel

for i : Integer in 1. .NumRsrcs do

Rs[i].Init(i,10);

end do;

end module Some Rsrcs;

B.3 Architecture

type Bank is interface end interface Bank;

module Bank System(NumRsrcs, NumTrans : Integer) return Bank is

MaxNumTrans : Integer is 2�NumTrans;

AP : Application Program(NumRsrcs)

is Simple Program(NumRsrcs, NumTrans);

TM : Transaction Manager tc(NumRsrcs, MaxNumTrans);

LM : Lock Manager(NumRsrcs) is Locker gen(NumRsrcs);

Rs : array[Integer] of Resource

is (1. .NumRsrcs, default is Account(MaxNumTrans));

connect

AP.TMs to TM.AP;

LM.TM to TM.LM;

for i : Integer in 1. .NumRsrcs generate

TM.Rsrcs(i) to Rs[i].TM;

AP.Rsrcs(i) to Rs[i].AP;

Rs[i].LK to LM.Rsrcs(i);

end generate;

initial

LM.Init(0,0);

for i : Integer in 1. .NumRsrcs do Rs[i].Init(i,10); end do;

parallel

AP.Ready();

end module Bank System;

Appendix C

Conformance Testing Maps

C.1 Rapide Maps

C.2 Atomicity

type Atomicity Constraints is

interface

private

action

commit(xid : Integer);

promise(xid : Integer);

rollback(xid : Integer);

constraint

{{ Atomicity Constraint

never (?i in Integer) commit(?i) and rollback call(?i);

{ { Coordination Constraint

never (?i in Integer) promise(?i) jj commit call(?i);

end interface Atomicity Constraints;

207

APPENDIX C. CONFORMANCE TESTING MAPS 208

map map gen for atomicity() from S : Bank System to Atomicity Constraints is

Xid2Integer : function (x : Xid) return Integer is : : :

rule

(?i in Integer, ?x in Xid) S.Rsrcs.Rsrcs(?i).TM.prepare retn(?i,?x,xa ok)

=> promise(Xid2Integer(?x));;

(?i in Integer, ?x in Xid) S.Rsrcs.Rsrcs(?i).TM.commit call(?i,?x)

=> commit(Xid2Integer(?x));;

(?i in Integer, ?x in Xid) S.Rsrcs.Rsrcs(?i).TM.rollback call(?i,?x)

=> rollback(Xid2Integer(?x));;

end map map gen for atomicity;

C.3 Isolation

type Isolation Constraints is

interface

private

action

Read(xid, oid : Integer);

Write(xid, oid : Integer);

constraint

never (?x1, ?x2, ?o in Integer)

(Read(?x2,?o) �> Write(?x1,?o) �> Write(?x2,?o)) where ?x1 /= ?x2;

never (?x1, ?x2, ?o in Integer)

(Write(?x2,?o) �> Write(?x1,?o) �> Write(?x2,?o)) where ?x1 /= ?x2;

never (?x1, ?x2, ?o in Integer)

(Write(?x2,?o) �> Read(?x1,?o) �> Write(?x2,?o)) where ?x1 /= ?x2;

APPENDIX C. CONFORMANCE TESTING MAPS 209

never (?x1, ?x2, ?o in Integer)

(Read(?x1,?o) �> Write(?x2,?o) �> Read(?x1,?o)) where ?x1 /= ?x2;

end interface Isolation Constraints;

map map gen for isolation() from S : Bank System to Isolation Constraints is

Xid2Integer : function (x : Xid) return Integer is : : :

rule

(?id in Integer, ?x in Xid, ?v in Integer) S.Rsrcs.Rsrcs(?id).Read(?x,?id,?v)

=> Read(Xid2Integer(?x), ?id);;

(?id in Integer, ?x in Xid) S.Rsrcs.Rsrcs(?id).Write(?x,?id)

=> Write(Xid2Integer(?x), ?id);;

end map map gen for isolation;

C.4 X/Open

C.5 Bank System Execution

module Bank Test() return Root is

NumRsrcs : Integer is String To Integer(Arguments[1]);

MaxNumTrans : Integer is String To Integer(Arguments[2]);

S : Bank is Bank System(NumRsrcs, MaxNumTrans);

�� m is map map gen for atomicity(S);

�� n is map map gen for isolation(S);

end module Bank Test;

APPENDIX C. CONFORMANCE TESTING MAPS 210

C.6 Mapped Execution

C.7 Violation

Bibliography

[1] SRI Computer Science Laboratory: Software Architecture Projects Internet

Homepage. URL: http://www.csl.sri.com/ moriconi/mmprojects.html.

[2] G. Abowd, R. Allen, and D. Garlan. Using style to give meaning to software

architecture. In Proceedings of SIGSOFT'93, Software Engineering Notes, vol-

ume 18, pages 9{20. ACM Symposium on Foundations of Software Engineering,

December 1993.

[3] Rakesh Agrawal and David J. Dewitt. Integrated concurrency control and re-

covery mechanisms: Design and performance evaluation. ACM Transactions

on Database Systems, 10(4):529{564, December 1985.

[4] Robert Allen and David Garlan. Formalizing architectural connection. In Pro-

ceedings of the Sixteenth International Conference on Software Engineering,

pages 71{80. IEEE Computer Society Press, May 1994.

[5] L. M. Augustin, B. A. Gennart, Y. Huh, D. C. Luckham, and A. G. Stanculescu.

Veri�cation of VHDL designs using VAL. In Proceedings of the 25th Design

Automation Conference (DAC), pages 48{53, Anaheim, CA, June 1988. IEEE

Computer Society Press.

[6] Larry M. Augustin, David C. Luckham, Benoit A. Gennart, Youm Huh, and

Alec G. Stanculescu. Hardware Design and Simulation in VAL/VHDL. Kluwer

Academic Publishers, October 1990. 322 pages.

211

BIBLIOGRAPHY 212

[7] Gilbert Babin, Fran�cois Lustman, and Peretz Shoval. Speci�cation and design

of transactions in information systems: A formal approach. IEEE Transactions

on Software Engineering, 17(8):814{829, August 1991.

[8] Andy Barnhard. Component{based Solutions with OLE 2.0. Software Devel-

opment, 2(9):47{51, September 1994.

[9] Frank Belz and David C. Luckham. A new approach to prototyping Ada{based

hardware/software systems. In Proceedings of the ACM Tri-Ada Conference,

Baltimore, December 1990. ACM Press.

[10] Dines Bj�rner and Cli� B. Jones. Formal Speci�cation and Software Develop-

ment. Prentice/Hall International, 1982.

[11] T. Bolognesi and E. Brinksma. Introduction to the ISO speci�cation language

LOTOS. In van Eijk et al, editor, The Formal description Technique LOTOS,

pages 23{73. North-Holland, 1989.

[12] Grady Booch. Object{Oriented Analysis and Design with Applications. Ben-

jamin/Cummins, Redwood City, CA, second edition, 1994.

[13] Kraig Brockschmidt. Inside OLE 2. Microsoft Press, 1994.

[14] Doug Bryan. Rapide{0.2 Language and Tool-set Overview. Technical Note

CSL{TN{92{387, Computer Systems Lab, Stanford University, February 1992.

[15] Doug Bryan. Using Rapide to Model and Specify Inter-object Beahvior. In

OOPSLA '94 workshop on Precise behavioral speci�cations in OO information

modeling, Oct. 24, 1994.

[16] Zhou ChaoChen, C. A. R. Hoare, and Anders P. Ravn. A duration calculus for

real-time requirements in embedded software systems. ProCoS ESPRIT BRA

3104, June 1990.

BIBLIOGRAPHY 213

[17] Panayiotis K. Chrysanthis and Krithi Ramamritham. ACTA: A framework for

specifying and reasoning about transaction structure and behavior. In Proceed-

ings of the ACM SIGMOD International Conference on Management of Data,

pages 194{203, Atlantic City, NJ, May 1990.

[18] C. J. Date. An Introduction to Database Systems, volume 2 of The Systems

Programming Series. Addison-Wesley, Reading, Mass., 1985.

[19] C. J. Date. An Introduction to Database Systems, volume 1 of The Systems

Programming Series. Addison-Wesley, Reading, Mass., fourth edition, 1987.

[20] J. Dawes. The VDM-SL Reference Guide. Pitman, 1991.

[21] David Dill, August 1995. Discussion with Prof. David Dill of Stanford Uni-

veristy's Computer Science Department.

[22] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Man-

ual. Addison-Wesley, 1990.

[23] K. P. Eswaran, Jim N. Gray, R. A. Lorie, and I. L. Traiger. The notion of

consistency and predicate locks in a database system. Communications of the

ACM, 19(11):624{633, November 1976.

[24] Armen Gabrielian and Matthew K. Franklin. Multilevel speci�cation of real-

time systems. Communications of the ACM, 34(5):50{60, May 1991.

[25] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-

terns: Elements of Reusable Object{Oriented Software. Professional Computing

Series. Addison{Wesley, Reading, MA., 1995.

[26] David Garlan and Mary Shaw. An introduction to software architecture. In

V. Ambriola and G. Tortora, editors, Advances in Software Engineering and

Knowledge Engineering, volume 1, New York, 1993. World Scienti�c Publishing

Company.

BIBLIOGRAPHY 214

[27] B.A. Gennart. Automated Analysis of Discrete Event Simulations Using Event

Pattern Mappings. PhD thesis, Stanford University, April 1991. Also Stanford

University Computer Systems Laboratory Technical Report No. CSL{TR{91{

464.

[28] Benoit A. Gennart and David C. Luckham. Validating discrete event simu-

lations using event pattern mappings. In Proceedings of the 29th Design Au-

tomation Conference (DAC), pages 414{419, Anaheim, CA, June 1992. IEEE

Computer Society Press.

[29] Joseph A. Goguen. Lil | a library interconnect language. In Report on Pro-

gram Libraries Workshop, pages 15{51, Menlo Park, CA, October 1983. SRI

International.

[30] Mark Graham and Erik Mettala. The domain{speci�c software architecture

program. In Proceedings of DARPA Software Technology Conference, 1992,

pages 204{210, April 1992. Also published in CrossTalk, The Journal of Defense

Software Engineering, pages 19{21, 32, October 1992.

[31] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Tech-

niques. The Morgan Kaufmann Series in Data Management Systems. Morgan

Kaufmann, San Mateo, CA, 1993.

[32] JimN. Gray. Notes on Database Operating Systems. Lecture Notes in Computer

Science. Springer-Verlag, 1978.

[33] The Object Management Group. The Common Object Request Broker: Ar-

chitecture and Speci�cation. The Object Management Group, distributed by

QED{Qiley, Wellesley, MA, revision 1.1 edition, December 1991. OMG Docu-

ment 91.12.1 by OMG and X/Open.

[34] Jr. H.W. Lockhart. OSF DCE: A Guide to Developing Distributed Applications.

McGraw{Hill, 1995.

BIBLIOGRAPHY 215

[35] Paul Haggar and Jim Purtilo. Overview of QAD, an interface description lan-

guage. Technical report, University of Maryland, College Park, MD, January

1993.

[36] D. P. Helmbold and D. C. Luckham. TSL: Task sequencing language. In

Ada in Use: Proceedings of the Ada International Conference, pages 255{274.

Cambridge University Press, May 1985.

[37] C. A. R. Hoare. Communicating sequential processes. Communications of the

ACM, 21(8):666{677, August 1978.

[38] IBM, Research Triangle Park, NC. System Network Architecture (SNA) Format

and Protocol Reference Manual: Architecture Logic for Logical Unit Type 6.2,

1991. IBM Publication SC30-3269.

[39] IEEE, Inc., 345 East 47th Street, New York, NY, 10017. IEEE Standard VHDL

Language Reference Manual, March 1987. IEEE Standard 1076{1987.

[40] International Organization for Standardization. Information Processing Sys-

tems { Open Systems Interconnection { Speci�cation of Abstract Syntax Nota-

tion One (ASN.1), December 1987. International Standard 8824.

[41] International Organization for Standardization. American National Standard

for Information Systems - Programming Language C, 1992. ISO/IEC 9899:1990

(which is technically identical to ANS X3.159-1989, Programming Language C).

[42] International Standards Organization. Information Processing Systems { Open

Systems Interconnection { Basic Reference Model, 1984. International Standard

7498.

[43] International Standards Organization. Information Processing Systems { Open

Systems Interconnection { Commit, Concurrency Control, and Recovery (OSI-

CCR), 1989. ISO/IEC 9804.3:1989 (service) and 9805.3:1989 (protocol).

[44] International Standards Organization. Database Language SQL2, an ISO Stan-

dard, 1992. ISO/IEC 9075.

BIBLIOGRAPHY 216

[45] International Standards Organization. Information Processing Systems { Open

Systems Interconnection { Distributed Transaction Processing (OSI-DTP),

1992. ISO/IEC DIS 10026-1:1991 (model), 10026-2:1991 (service), and 10026-

3:1991 (protocol).

[46] Paola Inverardi and Alexander L. Wolf. Formal speci�cation and analysis of

software architectures using the chemical abstract machine model. IEEE Trans-

actions on Software Engineering, 21(4), April 1995.

[47] Val�erie Issarny and Christophe Bidan. Aster: A corba{based software intercon-

nection system supporting distributed system customization. Early draft of a

paper to be submitted for publication.

[48] Michael Jackson. ControlH Users Manual. Honeywell Systems and Research

Center, version 0.19 edition, March 1993.

[49] Dinesh Katiyar, David Luckham, and John Mitchell. A type system for pro-

totyping languages. In Proc. 21-st ACM Symp. on Principles of Programming

Languages, Portland, 1994.

[50] John J. Kenney. Pattern matching architectures. An internal PAVG document.,

July 1995.

[51] John J. Kenney and Walter Mann. Anna package speci�cation: Case studies.

Technical Report CSL{TR{91{496, Computer Systems Lab, Stanford Univer-

sity, October 1991.

[52] John J. Kenney and Haigeng Wang. Rapide 1.0 Examples. Technical report,

Computer Systems Lab, Stanford University, 1996. In preparation.

[53] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice

Hall Software Series. Prentice Hall, Englewood Cli�s, NJ, 1988.

[54] S. C. Kleene. Representation of events in nerve nets and �nite automata. Au-

tomata Studies, pages 3{42, 1956.

BIBLIOGRAPHY 217

[55] Henry F. Korth and Abraham Silberschatz. Database System Concepts. Ad-

vanced Computer Science Series. McGraw-Hill, New York, N.Y., 1978.

[56] H. T. Kung and J. T. Robinson. On optimisticmethods for concurrency control.

ACM Transactions on Database Systems, 6(2):213{226, June 1981.

[57] B. Lampson and H. Sturgis. Crash recovery in a distributed data storage system.

unpublished memorandum, 1976.

[58] D. C. Luckham, D. P. Helmbold, S. Meldal, D. L. Bryan, and M. A. Haber-

ler. Task sequencing language for specifying distributed Ada systems: TSL{1.

In Habermann and Montanari, editors, System Development and Ada, proceed-

ings of the CRAI workshop on Software Factories and Ada. Lecture Notes in

Computer Science. Number 275, pages 249{305. Springer-Verlag, May 1986.

[59] D. C. Luckham and F. W. von Henke. An overview of Anna, a speci�cation

language for Ada. IEEE Software, 2(2):9{23, March 1985.

[60] David Luckham, Francois Guimbretiere, Hai-Geng Wang, and Yung-Hsiang Lu.

Applying event-based modelling to the ads high level architecture development

process. Unpublished Technical Report.

[61] David C. Luckham. Programming with Speci�cations: An Introduction to

ANNA, A Language for Specifying Ada Programs. Texts and Monographs in

Computer Science. Springer-Verlag, October 1990.

[62] David C. Luckham, David P. Helmbold, Sigurd Meldal, Douglas L. Bryan, and

Michael A. Haberler. Task sequencing language for specifying distributed Ada

systems: TSL-1. In Proceedings of PARLE: Conference on Parallel Architec-

tures and Languages Europe. Lecture Notes in Computer Science. Number 259,

Volume II: Parallel Languages, pages 444{463, Eindhoven, The Netherlands,

15{19 June 1987. Springer-Verlag.

BIBLIOGRAPHY 218

[63] David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera, Doug

Bryan, and Walter Mann. Speci�cation and analysis of system architecture us-

ing Rapide. IEEE Transactions on Software Engineering, 21(4):336{355, April

1995. (Also Stanford University Technical Report No. CSL{TR{94{608.).

[64] David C. Luckham and James Vera. Event based concepts and language for

system architecture. In Proceedings of the Workshop on Studies of Software

Design, May 1993.

[65] David C. Luckham and James Vera. �Rapide: An Executable Architecture Def-

inition Language. An early version of \An Event-Based Architecture De�nition

Language," IEEE TSE V21 N9., April 1993.

[66] David C. Luckham and James Vera. An event-based architecture de�nition lan-

guage. IEEE Transactions on Software Engineering, 21(9):717{734, September

1995.

[67] David C. Luckham, James Vera, Doug Bryan, Larry Augustin, and Frank Belz.

Partial orderings of event sets and their application to prototyping concurrent,

timed systems. Journal of Systems and Software, 21(3):253{265, June 1993.

[68] David C. Luckham, James Vera, and Sigurd Meldal. Three concepts of system

architecture. submitted to the Communications of the ACM, July 1995.

[69] David C. Luckham, Friedrich W. von Henke, Bernd Krieg-Br�uckner, and Olaf

Owe. ANNA, A Language for Annotating Ada Programs, volume 260 of Lecture

Notes in Computer Science. Springer-Verlag, 1987.

[70] D.C. Luckham, S. Meldal, D.P. Helmbold, D.L. Bryan, and W. Mann. An

introduction to Task Sequencing Language, TSL 1.5. Technical Report 38,

Department of Informatics, University of Bergen, Bergen, Norway, August 1989.

Preliminary version.

[71] Neel Madhav. Correctness and Error Detection in a Model of Distributed Pro-

gram Executions. PhD thesis, Stanford University, Stanford, CA 94305-4055,

BIBLIOGRAPHY 219

September 1993. Also Stanford University Computer Systems Laboratory Tech-

nical Report No. CSL{TR{93{578.

[72] Robin Milner. A Calculus of Communicating Systems. Lecture Notes in Com-

puter Science 92. Springer{Verlag, 1980.

[73] Mark Moriconi and Xiaolei Qian. Correctness and composition of software ar-

chitectures. In Proceedings of SIGSOFT'94, Software Engineering Notes, pages

164{174, New Orleans, LA., December 1994. ACM Symposium on Foundations

of Software Engineering.

[74] Mark Moriconi, Xiaolei Qian, and R. A. Riemenschneider. A formal approach

to correct re�nement of software architectures. IEEE Transactions on Software

Engineering, 21(4):356{372, April 1995.

[75] R. Neches, R. Fikes, T. Finin, T. R. Gruber, R. Patil, T. Senator, and W. R.

Swartout. Enabling technology for knowledge sharing. AI Magazine, 12(3):37{

56, 1993.

[76] Open Systems Foundation. Distributed Computing Environment (DCE).

http://www.OSF.org.

[77] C. H. Papadimitriou. The Theory of Database Concurrency Control. Computer

Science Press, 1986.

[78] Nancy Pennington. Stimulus structures and mental representations in expert

comprehension of computer programs. Cognitive Psychology, 19:295{341, 1987.

[79] D.E. Perry and A.L Wolf. Foundations for the study of software architecture.

In Proceedings of SIGSOFT'92, Software Engineering Notes, volume 17, no. 4,

pages 40{52. ACM Symposium on Foundations of Software Engineering, Octo-

ber 1992.

[80] IEEE Standard for Information Technology: POSIX Systems Services Interface:

Standardization of OS Calls, 1990.

BIBLIOGRAPHY 220

[81] IEEE Standard for Information Technology: POSIX Transaction Processing. A

draft standard.

[82] V.R. Pratt. Modeling concurrency with partial orders. Int. J. of Parallel Pro-

gramming, 15(1):33{71, February 1986.

[83] RapideDesign Team. The Rapide-1 Architectures Reference Manual. Program

Analysis and Veri�cation Group, Computer Systems Lab., Stanford University,

version 1 edition, October 1994.

[84] Rapide Design Team. The Rapide-1 Executable Language Reference Manual.

Program Analysis and Veri�cation Group, Computer Systems Lab., Stanford

University, version 1 edition, October 1994.

[85] Rapide Design Team. The Rapide-1 Pattern Language Reference Manual.

Program Analysis and Veri�cation Group, Computer Systems Lab., Stanford

University, version 1 edition, October 1994.

[86] Rapide Design Team. The Rapide-1 Prede�ned Types Reference Manual. Pro-

gram Analysis and Veri�cation Group, Computer Systems Lab., Stanford Uni-

versity, version 1 edition, October 1994.

[87] RapideDesign Team. The Rapide-1 Speci�cation Language Reference Manual.

Program Analysis and Veri�cation Group, Computer Systems Lab., Stanford

University, version 1 edition, October 1994.

[88] Rapide Design Team. The Rapide-1 Types Reference Manual. Program Anal-

ysis and Veri�cation Group, Computer Systems Lab., Stanford University, ver-

sion 1 edition, October 1994.

[89] Rapide Design Team. The Rapide-1 Language Overview Reference Manual.

Program Analysis and Veri�cation Group, Computer Systems Lab., Stanford

University, version 1 edition, December 1995.

BIBLIOGRAPHY 221

[90] Alexandre Santoro, Woosang Park, and David Luckham. SPARC-V9 architec-

ture speci�cation with Rapide. Technical Report CSL{TR{95{677, Computer

Systems Laboratory, Stanford University, September 1995.

[91] Douglas C. Schmidt. Using design patterns to develop reusable object{oriented

communication software. Communications of the ACM, 38(10), October 1995.

[92] Will Tracz. Parameterized programming in LILEAnna. In Proceedings of ACM

Symposium on Applied Computing SAC'93, February 1993.

[93] Je�rey D. Ullman. Principles of Database and Knowledge Base Systems, vol-

ume 1 of Principles of Computer Science Series. Computer Science Press,

Rockville, Md., 1988.

[94] US Department of Defense, US Government Printing O�ce. The Ada Program-

ming Language Reference Manual, February 1983. ANSI/MIL-STD-1815A-

1983.

[95] Steve Vestal. Software Programmer's Manual for the Honeywell Aerospace Com-

piled Kernel (The MetaH Language Reference Manual). Honeywell Technology

Center, Minneapolis, MN, 1994.

[96] Gio Wiederhold. Database Design. McGraw-Hill, New York, N.Y., second

edition, 1983.

[97] X/Open Company Ltd., Apex Plaza, Forbury Road, Reading, Berkshire RGI

1AX, U.K. COBOL Language, December 1991. (ISBN: 1-872638-09-X C192 or

XO/CAE/91/200).

[98] X/Open Company Ltd., Apex Plaza, Forbury Road, Reading, Berkshire RGI

1AX, U.K. Distributed Transaction Processing: The XA Speci�cation, June

1991. CAE Speci�cation.

[99] X/Open Company Ltd., Apex Plaza, Forbury Road, Reading, Berkshire RGI

1AX, U.K. Distributed Transaction Processing: The Peer{to{Peer Speci�cation,

December 1992. Snapshot.

BIBLIOGRAPHY 222

[100] X/Open Company Ltd., Apex Plaza, Forbury Road, Reading, Berkshire RGI

1AX, U.K. Distributed Transaction Processing: The TX (Transaction Demar-

cation) Speci�cation, November 1992. Preliminary Speci�cation.

[101] X/Open Company Ltd., Apex Plaza, Forbury Road, Reading, Berkshire RGI

1AX, U.K. Distributed Transaction Processing: Reference Model, Version 2,

November 1993. Guide.

[102] X/Open Company Ltd., Apex Plaza, Forbury Road, Reading, Berkshire RGI

1AX, U.K. Transaction Processing { Six Volume Set, November 1995.

GLOSSARY 223

Glossary

Action. A construct that models asynchronous communication between Rapide

modules. An action is characterized by a name and a set of parameters. See

page 39.

Architecture. A distinctive style of designing software. See page 7.

Atomic. After a transaction executes, either all or none of its operations take e�ect.

See page 3.

Availability. After generation an event immediately becomes available to other be-

haviors, modules, their processes or connections. Events become unavailable to

a process after they have participated in the triggering of that process. See

page 67.

Commit. The declaration or process of making a transaction's updates public (vis-

ible to other transactions) and durable. See page 6.

Concurrency. Simultaneous execution of causally independent programs, processes,

transactions, and so on. See page 40.

Conformance Testing. A technique for detecting di�erences between an applica-

tion's execution and a standard's constraints. See page 15.

Consistency Constraint. A predicate on data that serves as a precondition, post{

condition, and transformation condition on any transaction. See page 30.

Consistency. Correct. Data should satisfy certain properties called consistency con-

straints. Transactions should preserve these properties. See page 30.

Consistent Cut. Given a set S and a partial order < on S, a consistent cut of < is

a partial order <0 on S0 such that S0 � S; <0�<; and e0 2 S0 ^ e 2 S ^ e <

e0 ! e 2 S0: See page 72.

Data Object A generic term meaning an object with a simple interface that is

limited to reading and writing values. See page 2.

GLOSSARY 224

Database State The collection of all data values in the database. See page 24.

Database. A collection of data. See page 1.

Distributed Transaction Processing (DTP). A term used by X/Open and oth-

ers to describe architectures supporting distributed transactions. These archi-

tectures de�ne the interaction among transactional applications (APs), trans-

action managers (TMs), and resource managers (RMs). See page 7.

Distributed. An adjective for designs, architectures, and organizations. It implies

no single point of control, processing, or storage. Contrast with centralized. See

page 6.

Durability. State that survives failures. Durable memory is contrasted with volatile

memory, which is reset at system restart. See page 6.

Event. An occurrence of an action. Events are characterized by the name of an

action and a list of parameter values. See page 39.

Formal Methods. Mathematically based techniques for describing system proper-

ties. See page 9.

Generation. Events are generated by a behavior or process through performing of

action, function and patterns calls. The order of event generation is consistent

with the causal and temporal orders. See page 67.

Integrity constraint. A predicate on data that serves as a precondition, post{

condition, and transformation condition on any transaction. See page 2.

Interleaving. A little bit of one, then a little of the other, then more of the �rst,

etc. See page 40.

Isolation. Transactions are isolated only when they do not overlap other transaction,

where overlap is with respect to time or database state. See page 27.

Log. A history of all changes made to the database. See page 3.

GLOSSARY 225

Observation. Events are observed by a behavior, module, or process one at a time

in some total order that is consistent with the causal and temporal orders. All

processes share a consistent observation order. See page 67.

Open System. A extensible system with standard interfaces. See page 14.

Persistent. State or memory that survives failures. Persistent memory contrast with

volatile memory, that is reset at system restart. See page 6.

Primitive Action. The simplest operation of a transaction, a read or write action.

See page 25.

Process. A single thread of control. See page 66.

Program State. The values given to the set of variables contained in the program.

See page 39.

Reference Architecture. A clear, precise, executable (behavioral), and testable

speci�cation. See page 11.

Resource. A generic term meaning some valuable object with a complex interface,

either a piece of data or a piece of hardware. See page 2.

Runtime Consistency Checking. A technique for verifying whether an execution

of a program satis�es a speci�cation at run time. See page 15.

Serial Execution. An execution is serial if each transaction runs to completion be-

fore the next one starts. See page 27.

Speci�cation. A contract, a valuable piece of documentation, and a means of com-

munication among a client, a speci�er, and an implementor. See page 10.

Standard. Models to which others must conform inorder to communicate. See

page 7.

Transaction. An ACID unit of work (atomic, consistent, isolated, and durable). See

page 1.

GLOSSARY 226

Validation. A process or methodology for determining the validity of a system with

respect to the system's integrity constraints. See page 10.

Veri�cation. Mathematical proof techniques are used to demonstrate design cor-

rectness with respect to a set of constraints. See page 10.

Virtual Database State. A database state that may not actually exist at any time.

See page 26.

X/Open Company Limited. A consortium of vendors who are de�ning portability

standards for the UNIX environment. See page 8.

X/Open Distributed Transaction Processing (DTP). A distributed transac-

tion processing architecture for a distributed two{phase commit protocol. The

architecture de�nes application programming interfaces and interactions among

transactional applications (APs), transaction managers (TMs), resource man-

agers (RMs). See page 8.

C. See page 13.

Index

C, 13

Rapide, 11

abort, 4, 31{33

access set, 115

action, 25, 26, 39

mode, 46

primitive, 25, 26

subaction, 26

active, 59

architecture, 7, 9, 10, 35, 36, 38, 58, 91

reference, 11, 91

archive, 124

atomicity, 3, 4, 8, 31, 33, 106, 124, 125

availability, 67

available, 61, 67, 72, 80

behavior, 35

causality, 41, 42

potential, 37

commit, 3, 6, 31, 33, 34, 105, 106

two{phase, 3, 8, 33, 105, 106, 109

comparative analysis, 35

component, 35

interface, 58

concurrency, 4, 5, 8, 27, 28, 30, 33, 37,

40, 41

control, 12, 93

true, 40

conict, 5, 6, 29, 114, 115

equivalence, 5, 28, 29, 114

serializable, 5

connection, 35, 38, 58, 60

agent, 61

basic, 61

basic pattern, 60

function, 61

generator, 65

pattern, 62

pipe, 61

service, 63, 64

set, 65

consistency, 2{6, 28{31, 106, 113, 122

checking

runtime, 15

constraint, 30

preserving, 4, 28, 30, 113

consistent cut, 72, 73

constraint, 2, 10, 11, 15, 91

atomicity, 105

227

INDEX 228

coordination, 109

integrity, 2, 10

data object, 2, 4

database, 1

state, 1{4, 6, 24{32, 106

consistent, see consistency

unique, 24, 25

version, see version, 93

virtual, 26

deadlock, 124

dependency, 42, 43, 58

data, 42

distributed, 6, 125

dual, 102

durability, 6, 32

equivalence

conict, 5

event, 37, 39

pattern

language, 38

mapping, 38

processing, 38

execution

concurrent, 27

serial, 4, 27{29, 31, 109, 112

serializable, 5, 28, 113

conict, 5

failure, 3, 4, 6, 32, 33, 124

fault tolerance, 124

�nal{state

equivalence, 28

�rst, 72

formal methods, 9

formal model, 35

function, 39

generation, 67

guard, 58

independence, 41

interface, 13, 36, 38

interleaving, 40, 41

isolation, 4, 27, 28, 30, 33

constraints, 112

linearization, 28

locking, 5, 33, 120

exclusive, 121

two{phase, 33, 123

two{phase, 5

log, 3, 6, 126

write{ahead, 127

module, 36, 66

observation, 67, 72, 80, 85

orderly, 67

order

partial, 41

total, 40{42

persistent, 6

phantom, 29

pool, 72

INDEX 229

poset, 37, 40

process, 66

program, 35, 39

state, 37, 39

protocol

commitment, 12

prototype, 9, 13, 93

evolutionary, 13, 93

read set, 29, 115

recovery, 6, 12, 34, 125

crash, 32, 124

resource, 2, 3, 8, 13

manager, 33, 105

serializability, 5

conict, 5

optimistic, 5

pessimistic, 5

serializable, 30

serialization, 28

service, 63

speci�cation, 10

constraint, 35, 38

executable, 35, 38

formal, 10

standard, 7

state, 39

storage

nonvolatile, 32

stable, 32

volatile, 32, 124

system

open, 14

testing

conformance, 15

thread, 13

time, 40

timestamp, 40

timing

clause, 67

trace, 39{41

transaction, 1, 25

transaction processing

distributed, 7

X/Open, see X/Open, DTP

trigger, 60, 70, 223

triggering, 42, 72

two{phase commit protocol, see com-

mit, two{phase

two{phase locking protocol, see lock-

ing, two{phase

undo, 3, 4, 6, 31, 32, 106, 124

validate, 36

validation, 10

veri�cation, 10

version, 24, 26, 27, 94, 114

multi, 24, 100

single, 24, 100

view

equivalence, 28, 29

view set, 115

INDEX 230

write set, 29, 115

X/Open, 8, 15

DTP, 8, 12

reference architecture, 13

