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Abstract

An algorithm that builds a multiplier under the constraint of a limited number of wiring

tracks is designed. The algorithm has been implemented. The program is then used to

compare several designs of an IEEE 
oating point multiplier using several delay models.
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1 Introduction

The speed of the multiplier is a critical issue in determining the performance of microproces-

sors. It has become common for modern microprocessor to have f loating point multipliers

implemented fully in hardware, in contrast to in software as in the previous generations. In

fact the very latest processors also implement integer multiplication in hardware to speed

up address translation, array indexing, and other integer operations.

Multiplication is the process of adding a number of partial products. The di�erent mul-

tiplication algorithms di�er in how they generate the partial products and how the partial

products are added together to produce the �nal result. The �rst methods developed where

iterative schemes, which are the hardware realization of a simple shift and add algorithm.

One of the �rst departures from the iterative array schemes occured when Wallace [1] in-

troduced the concept of adding the partial products in a carry-free manner using carry

save adders, also known as full adders and as (3,2) counters. Wallace showed how to re-

duce the partial products by connecting the (3,2) counters in parallel in what is known as

tree structures. A single carry propagate addition is needed in the �nal step. Dadda [2]

then introduced the term \parallel (n,m) counter". These counters are combinational cir-

cuits that encode the number of ones that are present in the n input bits using m output

bits. Dadda also showed how to minimize the number of counters used in the reduction of

the parallel products. The concept of the counter was then extended by Stenzel [3], who

showed that the Wallace tree and the Dadda schemes are all special cases of the generalized

(nr�1; nr�2; ::; n1; n0; m) counter. The generalized counter is a counter that encodes several

successively weighted input columns and produces their weighted sum.

The tree structures that are described by Wallace and Dadda su�er from irregular

interconnections. These irregular connections occur because the counter connections are

unique for each partial product weight. There have been several di�erent tree structures

that have been proposed by Zuras et al. [4] and Mou et al. [5], that reduce the partial

products using more regular interconnections with a slight increase in the number of counter

levels over those used by Wallace trees.

A further advance occurred when Weinberger [6] introduced the 4-2 compressor in 1981.

The 4-2 compressor is a circuit that compresses 4 inputs of the same arithmetic weight

into 2 outputs. In addition there are an internal input and an internal output line. This

compressor then was used by Takagi et al. [7] and by Santoro [8] in building binary trees.

The binary tree has a more regular structure compared toWallace trees. The 4-2 compressor

was then built upon by Song and De Micheli [9] in the development of the 9-2 compressor

family.

The di�culty with the use of the various trees is that not all inputs for the counters

have the same delay. Therefore, it is di�cult to design a multiplier which takes into account

the di�erent delays. The use of the larger counter, such as the 9-2 compressor family, is an

attempt to decompose the problem of balancing the di�erent path delays. The use of these

larger counters is not without problems because the use of a large counter causes there to

be some wasted area.

The best possible solution would be the design of the multiplier using carry-save counters

directly with the assistance of software that balances the di�erent paths. This is a global
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approach that minimizes the total delay for all the possible paths under some speci�ed

constraints.

The counter schemes are orthogonal with the use of Booth encoding [10], which is used

to reduce the number of partial products. In Booth encoding the number of summands is

reduced by recoding the multiplier bits into groups that select multiples of the multiplicand.

Higher order Booth encoding reduces the number of summands by a greater degree by using

a more complex selection table.

2 Previous Work

The design of a multiplier is a complex operation. It is di�cult to interconnect the counters

to build a design that minimizes the total delay, due to the large number of possible paths

and the di�erent path delays from each input. Another complication is that the wire delay

is a major contribution to the total delay and that the placement of a counter has an e�ect

on the delay of the outputs of the other counters. The solution to this problem is to have

a layout tool that accounts for the di�erent path and wire delays. There have been several

algorithms that have been developed to aid the designer. Bewick [11] developed a tool

that lays out a multiplier in ECL. It compensates for the extra delays that are caused by

the wires by increasing the current to selected gates. This �ne tuning is not feasible for

CMOS designs because the current drive in CMOS is related to the transistor widths, and

varying the transistor widths e�ects the previous stages, unlike ECL. Another algorithm

was developed by Oklobdzija et al, [12] where the design is based upon the carry save

counter. This algorithm takes into account the di�erent delays for the paths, in addition

to the di�erent input-output delays. However, it ignores the incremental wiring delay that

is caused by the placement of the counters. A problem is that these tools connect the

counters assuming routing channels with a virtually unlimited number of wiring tracks. In

an actual processor design, the counters must be connected using wires that are routed on

top of the cells. Therefore, the number of wiring tracks is limited. Therefore, these tools

might connect the counters by building trees that require more wires than are available,

and therefore the designs obtained can not be implemented.

3 Algorithm

The algorithm developed for this paper is based upon Oklobdzija et al, but this algorithm

takes into account the input and output delays for the counters and the placement of the

counters and their e�ect on the delay. In contrast Oklobdzija's algorithm places the cells

by iteration using information about the wire delays from the previous iteration as a guide.

Another major di�erence between the algorithms is that the presented algorithm takes

into account the limited number of wiring tracks available. Therefore, if there are a large

number of wiring tracks available our algorithm produces results that are comparable to

those presented by Oklobdzija. On the other hand, if the number of wiring tracks is limited

our algorithm still provides an implementable design.
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3.1 The General Idea

The algorithm connects the fastest possible inputs using a counter. This counter has the

e�ect of removing these fast inputs and replacing them with a slower output and thereby

equalizing the delays of the paths in the column and thereby simplifying the choice of which

inputs to next connect. The process of connecting the counters is a directed graph problem

with each node representing a partial product or a counter and the arc representing the

input-output delay for the counters. The problem is thus how to connect the nodes, while

minimizing the maximum of the total sum for each possible path.

The algorithm reduces the partial product columns starting with the columns that have

the minimum arithmetic weight. The information that is needed to connect the partial

products using carry save counters is contained in two lists per column. The �rst list is

the delay list Di; this is a list of all the unconnected nodes in the column. This list is used

to select the nodes that will be connected and to decide when has the column been fully

interconnected. The second list is the placement list Pi; this is a list of that gives the order

in which the nodes are placed and their interconnections. It is also used for the wiring

calculations and to update the delay of the nodes, based upon the incremental delays that

are caused by the placement of the nodes.

3.2 The Algorithm

The presented method �rst creates two lists Di; Pi for each column of the multiplier. Each

element in the delay list Di is a partial products name, which uniquely identi�es the element

as a partial product with its column and row location. The other component of each element

in Di is the element's delay. Initially all the partial products are assumed to be available at

the same time, and thus this time is set to zero. Each element in the placement list Pi is a

partial product that has exactly the same name as those in the delay list and the number

of wires that pass over it and its interconnections. Initially the placement lists are sorted

so that for each column the partial products for the �rst rows occur �rst.

The algorithm then starts with the lists that have the least arithmetic signi�cance, then

column i in the partial product array is reduced as follows:

1. If the number of elements in Di is even and greater than two then a half adder is

needed. The half adder is needed because each carry save counter reduces three

inputs of weight i and produces a single output of the same weight. That is each

counter reduces the number of elements in Di by two. Therefore to produce a single

output sum si at the end of this process, the number of nodes initially has to be odd.

Therefore, a half adder is required if the number of elements in the list is even, so

that the number of elements becomes odd. Note that the carry output of the counters

has been ignored in this discussion because they are reduced by the column of weight

i+1.

2. The half adder is connected to the �rst two elements in Di and the two new nodes

hi1 and ci1 are created. the delays for the two new nodes are

hi1 = MAX(da�h; db�h; ) (1)
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ci1 = MAX(da�c; db�c; ) (2)

For the placement lists the inputs are marked as connected and there names are stored

in hi1.

3. hi1 is inserted in Di and Pi, and ci1 is inserted in Di+1 and Pi+1.

4. The two inputs to the half adder are removed from the Di.

5. A counter is selected and connected based upon the following algorithm, as long as

the number of elements in Di is greater than three.

(a) Sort the elements in Di in ascending order by the values of the delays then by

the names contained in the elements of the list.

(b) Virtually connect the three inputs with the smallest latency. That is connect the

�rst three elements in the list.

(c) Based upon the above connection, has the maximum number of wiring tracks

been exceeded. This is obtained by calculating the wire track usage up to the

place of the last input of the counter in the placement list.

(d) If the maximum number of wiring tracks has been exceeded then do the following:

i. If there are more than three unconnected sum and carry outputs that are

above the nodes that were virtually connected, connect the fastest three if

they have comparable delays.

If the latency di�erence between the unconnected wires is large connect the

fastest two and a partial product if there are some available otherwise connect

the fastest three.

ii. If there are two or less unconnected sum and carry outputs above the node

connect them and some partial products. This creates a linear array.

(e) Create two new nodes sij and cij . Calculate the delays for the two new nodes

based upon the equation:

sij = MAX(Da + da�s; Db + db�s; Dc + dc�s) (3)

cij = MAX(Da + da�c; Db + db�c; Dc + dc�c) (4)

where Di represents the delay for the input i and di�j represents the delay from

the input i to output j. The values for di�j are implementation speci�c. They

are obtained from running HSPICE and they depend on the circuit chosen and

the available technology.

For the placement list Pi mark the inputs as connected and place the connection

information in sij .

(f) Update the delays for the unconnected nodes that occur above the node in the

placement list. The nodes are updated to have their delay increased by either the

incremental delay that is caused by a counter or by the delay of a counter and

the number of partial products the counter has as its inputs. The carry signals
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have no delay since they have no area in reality. If an input to the counter is a

sum its delay is not added because adding its delay means that the incremental

delay is added twice.

(g) Insert the sum node sij in Di and Pi, also insert the carry node cij into Di+1

and Pi+1 at the correct locations.

(h) Remove the three nodes that have been connected only from the delay list.

The above steps are repeated until there are only three unconnected nodes.

6. When there are three unconnected nodes a counter is used to connect them and the

outputs of the counter are connected to the �nal CPA. They are not inserted in the

delay lists.

The above process is then repeated for the next column, until all columns have been pro-

cessed.

4 IEEE Multiplier

The algorithm will be used to design the mantissa part of a 
oating point multiplier. The

multiplier uses the IEEE 
oating point arithmetic standard [13]. The format for an IEEE

double precision number is given in �gure 1.

Sign Bit Normalized Fraction Biased Exponent
(1) (52) (11)

Figure 1: Floating Point Number Standard.

The standard de�nes numbers in a sign-magnitude, normalized format. The standard

has a normalized signi�cand, that is the most signi�cant bit of the fraction is always 1, and

therefore is not stored. The signi�cand e�ectively becomes 53 bits. To achieve the rounding

accuracy de�ned by the standard, the full 106 bit result has to be calculated, even though

almost half of it is used only for rounding.

We will design the multiplier using three delay models. The delay models increase in

realasm. The �rst model is the simplest model in which the number of counter levels is the

criterion used in determining the delay. The second model re�nes the delay determination

by using the number of XORs in the input-output path in the carry-save counter as the

delay model. Finally, the last model is a HSPICE simulation of a carry-save counter. The

delays used in this model are obtained from the characterization of the circuit. The delays

include all parasitic capacitances and resistances. The delays are the worst case delays for

each input output pair.

The three delay models are presented to show the advantages of using a more accurate

model for the multiplier. The more accurate models show that the minimum delay is

acheived using more tracks than what the simpler model states.
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4.1 CSA Levels

The multipliers designed in this section use the same delay model as that used by Wallace

and the subsequent re�nements. The delay model uses the same delay from each input to

the output and wire delays are ignored. This is a very simpli�ed delay model of limited

practical use.
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Figure 2: Arrival Times in CSA levels using Booth 2 encoding.

The designs that are compared in �gure 2 are all IEEE double precision Booth 2 encoded

multipliers. The algorithm gives reasonable result. The algorithm needs a minimum of 12

tracks to be able to give the minimum number of counter levels that are required by Wallace

trees as can be seen in �gure 2. However by using only half of the tracks there is an increase

of only one counter level. The theoretical minimum for the number of tracks needed is 9.

This is not achievable by the algorithm.

Figure 2 shows the arrival pro�le for the input bits for the �nal carry propagate adder.

The arrival pro�le has a triangular shape. The high order bits arrive before the bits for the

middle column. This is surprising since the high order columns depend on the the previous

columns. This pro�le occurs because the last carry from the previous column is an input to

the carry propagate adder, and therefore it does not increase the delay for this column. The

intermediate carries for the previous column are combined in later stages with the generated

sums that have the same delay without any increase in delay.
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Figure 3: Arrival Times in CSA levels without Booth encoding.

The designs that are compared in �gure 3 are IEEE non-Booth encoded multipliers.

The minimum number of CSA levels for non-Booth is 9. The minimum number of levels is

achieved using 20 tracks. Another point is that increasing the number of wiring tracks by

1 over the linear array to 4 wiring tracks reduces the number of carry save adders from 51

to only 18. Doubling the number of tracks to 9 only reduces the number of counter levels

from 6 to 12.

4.2 XOR Delays

This section uses the number of XOR gates in the critical path as the basis for comparison.

The delays from each input to each output are given in table 1. There are no wiring delays

associated with these circuits. These are the same delays as used by Oklobdzija.

Output

Sum (xors) Carry (xors)

HA A 1 0.5

B 1 0.5

CSA A 2 1

B 2 1

Cin 1 1

Table 1: Elements input-output delays in XORS.

The multipliers designed in �gure 4 are IEEE double precision multipliers without any

Booth encoding. The multipliers designed in this section use a more realistic model for

delay than that of the previous section.
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Figure 4: Arrival Times using XOR levels without Booth encoding.

The maximum number of XOR gates in the critical path is 13. This is compared to the

number 18 that is obtained from Wallace trees. This shows the advantage of having a delay

model that has di�erent delays for each path. The minimum number of XOR levels of 13 is

achieved using 25 tracks. Increasing the number of tracks beyond 12 give no improvement

in the number of XOR in the critical path until 25 tracks are used. The number of tracks

required to achieve the minimum number of XOR levels is larger than that for the number of

CSA levels because the nonuniform input-output delays in the carry save adder restrict the

outputs of the counters to a smaller subset of possible inputs. However, the actual delays

achieved are smaller for the XOR delay model, 14 XOR delays using 12 wiring tracks,

compared to the carry save adder delay model, 18 XOR delays using 20 wiring tracks.
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Figure 5: Maximum delay as a function of the number of wires in a channel.

The e�ect of changing the number of tracks is shown in �gure 5. Increasing the number
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of wires beyond 10 has very limited value. The biggest advantage to increasing the number

of wires is for non-Booth encoding. This is expected since non-Booth has the largest number

of partial products. Both the Booth 2 and Booth 3 achieve the minimum number of XORs

when there are 10 or more tracks. The delays for the larger number of wires are the same

because the extra delay caused by the placement of the counters is ignored.

4.3 Actual delays

This section uses delays that were obtained using HSPICE and characterizing a DPL carry-

save adder [14] that was implemented using 1:0�m technology. These circuits also included

the e�ects of long wires on the delay. The delays of each input-output pair for the half

adder and the carry save adder are given in table 2.

Output

Sum (ns) Carry (ns)

HA A 0.717 0.558

B 0.650 0.513

CSA A 1.190 0.770

B 1.185 0.780

Cin 0.779 0.472

Table 2: Actual Circuit Element Input-Output Delays.

The arrival pro�les for the three most common encoding schemes is given in �gure 6.

The �rst thing that one notices from the results is that the arrival pro�le for the bits at the

input of the �nal carry propagate adder is smooth and that it does not contain any steps

in contrast to the two previous cases.
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Figure 6: Arrival Times using realistic delays for di�erent encoding schemes.
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The pro�les in �gure 6 are obtained for the case when there are 12 tracks available.

The designs ignore the delays associated with the di�erent encoding schemes. For all three

cases the maximum delay that is obtained is less that the delay for connecting the minimum

number of counters in series using a Wallace tree. For all the cases the minimum number

of levels possible has been achieved with the smart interconnection of the counters thereby

minimizing the total delay.
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Figure 7: Maximum delay as a function of the number of wires in a channel.

The e�ect of the number of wires on the total delay for the multiplier is given in �gure 7.

Increasing the number of wires by 1 beyond that needed by an array to just 4 decreases the

total latency by more than half for all three encoding schemes. Increasing the number of

wiring tracks beyond 10 is of limited use. It is possible for a design with more wire tracks to

have a larger delay than one with less wire tracks. The designs that have more wire tracks

have longer wires because the outputs of the carry-save adders are reduced at a later step

in the algorithm. Although it should be noted that the di�erences in delays are minute.

5 Conclusion

An algorithm for building multipliers using carry-save counter has been developed. The

algorithm is able to build multipliers under the constraints of a limited number of wiring

tracks. The algorithm uses a delay model for the elements that has a unique delay for each

path through the multiplier. It uses this model to decide on the best possible interconnec-

tions for the counter. The algorithm takes into account the incremental delays that are

caused by the placement of the counters due to the increase in the wire lengths.
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