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Abstract

Parallel architecture becomes more and more attractive as the demand for per-

formance increases. One of the most important classes of parallel machines is that

of shared memory architectures, which are perceived as easier to program than other

parallel architectures. In a shared memory multiprocessor architecture, a memory

model describes the behavior of the memory system as observed at the user-level. A

cache coherence protocol aims to conform to a memory model by maintaining con-

sistency among the multiple copies of cached data and the data in main memory.

Memory models and cache coherence protocols can be quite complex and subtle, cre-

ating a real possibility of misunderstandings and actual design errors. In this thesis,

we will present solutions to the problems of specifying memory models and verifying

the correctness of cache coherence protocols.

Weaker memory models for multiprocessor systems allow higher-performance im-

plementation techniques for memory systems. However, weak memory models are

also very subtle. Hence, it is vital to specify memory models precisely and to verify

that the programs running under a memorymodel satisfy desired properties. Our ap-

proach to these problems is to write an executable speci�cation of the memory model
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using a high-level description language for concurrent systems. This executable de-

scription provides a precise speci�cation of the machine architecture for implementors

and programmers. Moreover, the availability of automatic veri�cation tools allows

users to experiment with the e�ects of the memorymodel on small assembly-language

routines. Running the veri�er can be very e�ective at clarifying the subtle details of

the models and synchronization routines.

Cache coherence protocols, like other protocols for distributed systems, simulate

atomic transactions in environments where atomic implementations are impossible.

Based on this observation, we propose a veri�cation method which compares a state

graph of the implementation with a speci�cation which is also a state graph repre-

senting the desired abstract behavior. The comparison is done through an aggregation

function, which maps the sequence of implementation steps for each transaction to

the corresponding transaction step in the speci�cation. An aggregation function sup-

plied by the user is formally proved in full detail to have certain properties using a

computer-assisted theorem prover.

The aggregation approach is applied to veri�cation of the cache coherence proto-

col in the FLASH multiprocessor system. The protocol, consisting of more than a

hundred implementation steps, is proved to conform to a reduced description with

six kinds of atomic transactions. From the reduced behavior, it is very easy to prove

crucial properties of the protocol, including data consistency of cached copies at the

user level. The aggregation method is also used to prove that the reduced protocol

satis�es a desired memory consistency model.

Key Words and Phrease:

Multiprocessors, Memory models, Cache coherence protocols, Speci�cation, Veri�ca-

tion.
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Chapter 1

Introduction

1.1 Motivation

Parallel architectures are becoming more and more attractive as the demand for higher

performance increases. Many multiprocessors are currently being designed to meet

this demand. The scale of parallelism is increasing rapidly, and the use of parallelism

is widening as technological improvements reduce costs [57, 29].

For highly parallel architectures to achieve widespread use, they must run a variety

of applications e�ciently without imposing excessive programming di�culty. From

this view, one of the most important classes of parallel architectures is shared memory

architectures. Shared memory (also called shared address-space) architectures are

very attractive for application programmers, because they are perceived as easier to

program than other parallel architectures, at least for some applications. In fact, the

majority of parallel machines that are sold today are based on shared memory.

Complex systems, particularly those involving parallelism, are di�cult to design.

One of the major problems is how to avoid design errors resulting from unexpected

interactions among system components. Validating the correctness of a design before

implementation is essential because it is di�cult and expensive to correct errors after

a machine is built and the hardware is committed [61, 8, 68, 28].

It is widely believed by designers that system design problems are outstripping

current design debugging techniques. Random testing and trace-driven simulations
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2 Chapter 1. Introduction

are not su�cient for validation because coverage declines as design complexity in-

creases, so bugs remain undetected by simulations. Moreover, it is not unusual to

�nd bugs even in algorithms and protocols that have been proved correct by hand,

because of errors in the proofs.

The general objective of this research is to develop improved methods for de-

bugging and assuring the correctness of high-level multiprocessor designs. We have

focussed on large-scale shared-memory multiprocessors as the domain, because there

is currently a great deal of interest in designing them [39, 3, 52, 65, 32]. To expedite

the validation process and to reveal possible mistakes in human reasoning, computer

assistance is necessary.

In a shared memory multiprocessor architecture, a memory model describes the

behavior of the memory system observed at the user level. A memory model speci�es

the semantics of memory operations when multiple processors load and store shared

memory locations. The model also provides a programmer-level view of memory

transactions ordering. Given a multiprocessor program, a memory model provides

su�cient information to determine the set of possible results of the program.

Unfortunately, de�ning and reasoning about memory models can be very di�-

cult. In this dissertation, we describe methods for de�ning executable speci�cations

of memory models in a description language that is suitable for veri�cation. The

automatic veri�er can be used to enumerate all the outcomes of an example program,

or to check the correctness of simple synchronization routines.

Most shared memorymultiprocessors implement caches which keepmultiple copies

of data for a given memory location, to provide an illusion of a single shared memory

while providing rapid access to data from multiple processors. The use of caches

exploits the temporal and spatial locality of memory accesses by the multiprocessors,

improving the performance of the memory system. However, dealing with multiple

copies of a datum raises a consistency problem: a cached copy of a memory location

may not be consistent with other cached copies of the same memory location.

In such implementations, a cache coherence protocol aims to maintain consistency

among the multiple copies of cached data and the data in main memory. A cache

coherence protocol is a lower-level abstraction of a memory system which should
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conform to the memory model which is a higher-level abstraction of the memory

system.

We also present methods for formally verifying cache coherence protocols. One

of the methods is to use a �nite-state veri�er. A more general (but more di�cult)

approach is to use a general-purpose computer-assisted theorem-prover. We present

a new way to use theorem-proving to verify cache coherence protocols, which is based

on aggregating implementation steps into high-level transactions.

1.2 Background

This thesis aims to propose better approaches to reasoning about memory models

and cache coherence protocols for shared memory architectures, which are two di�er-

ent levels of abstraction of multiprocessor memory systems. This section introduces

background for the research.

1.2.1 Memory consistency models

In a shared memory multiprocessor architecture, a memory model is a user-level de-

scription of the behavior of the memory system. A memorymodel speci�es the seman-

tics of memory operations when multiple processors load and store shared memory

locations. In other words, the memory model should be a precise speci�cation of how

memory behaves with respect to read and write operations from multiple processors.

Several memorymodels for shared memorymultiprocessor architectures have been

proposed. An early model, sequential consistency [42], simply requires that multipro-

cessors simulate atomic reads and writes to a common global memory observing the

sequential order de�ned in a program. This model is relatively easy to understand

but has strong constraints which hinder high performance implementations.

Unfortunately, sequential consistency constrains the range of behaviors of the

memory system to such a degree that it cannot be implemented e�ciently in hard-

ware. Consequently, many less constraining memory models have been proposed,

which make fewer guarantees about behavior (we call these weaker memory models).



4 Chapter 1. Introduction

This allows more concurrency in memory system and processor implementations, re-

sulting in improved performance. During the past decade, a lot of e�ort has been

made to design weaker memory models, such as processor consistency [27], weak con-

sistency [20], total store ordering, partial store ordering [35], release consistency [25],

and relaxed memory order [66].

A memory model provides su�cient information to determine the results of a

program running under the memory system. In other words, given a program, we

should be able to know what results are possible and what are impossible from the

speci�ed memory model without worrying about its detailed implementation.

To illustrate why it is important to understand memory models, let us consider

an example. The following parallel program demonstrates how memory models a�ect

program behavior.

Processor P0 Processor P1

store #1! A store #1! B

load B ! %r0 load A! %r1

Processor P0 stores constant value 1 to memory address A, then it loads memory

address B to its register %r0. Processor P1 does similar instructions. We assume all

the registers and memory locations initially contain zero values.

Suppose the program is running on multiprocessors with a memory system which

implements the sequential consistency memory model. In this case, either %r0 or %r1

should obtain value 1 after the program is executed, because at least one of the two

stores must be performed before both of the loads.

However, this result may not be guaranteed if the memory system is based on

a weaker memory model which allows more freedom in executing memory instruc-

tions. One of the widely-used techniques in implementing e�cient memory systems

for single processor machines is to use write bu�ers to delay store transactions while

subsequent loads are performed. This technique does not make a visible di�erence

to the user running on a single processor machine. However, the same technique

produces di�erent program results when applied to a multiprocessor memory system.

For example, suppose each processor issues the corresponding store into its own write

bu�er. Before any of the stores are performed by the main memory, P0 loads the
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memory location B reading the initial value 0 from the main memory, and P1 also

loads the memory location A reading the initial value 0, also from the main memory.

Then, the two stores are performed to the main memory. In this case, the result of

the program is %r0 = %r1 = 0, which was not allowed by the sequential consistency

model.

As we observed from the example, di�erent memory models produce di�erent pro-

gram results. With simpler memory models, it is relatively easy to program and to

reason about results of programs, because their strong requirements allow less diverse

executions. However, the strong constraints hinder high performance implementa-

tions.

Using weaker memory models allows many e�cient implementation techniques in

hardware design by exploiting more parallelism. However, weaker memory models

are generally very subtle, because understanding the behavior of highly concurrent

systems is never easy. Thus, there is a tension between the simplicity of memory

models and performance of memory systems.

1.2.2 Cache coherence protocols

In order to improve performance of memory systems, most of multiprocessor archi-

tectures use distributed caches for each processor, which keep local copies of main

memory. Because data can be found either in memory or in the multiple caches, co-

herence problems arise when more than one processor's cache holds a copy of a datum

at a shared address [57]. Cache coherence is one of the key aspects that is di�erent

in the design of memory systems of multiprocessors from that of uniprocessors.

For instance, to build a memory system supporting the sequential consistency, we

wish to ensure that when reading a memory location the processor always sees the

latest value written to that location. This is simply achieved in uniprocessors, because

normally it is only the processor that is reading and writing memory. However, it is

not trivial to obtain coherent caches in multiprocessor systems.

Suppose the multiprocessors execute the following memory accesses in order.

1. Processor P1 loads a memory location A into its cache C1.
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2. Processor P2 loads a memory location A into its cache C2.

3. Processor P2 stores the memory location A by writing a new value into C2.

When P2 writes a new value into C2, the cached value in C1 and the datum in

main memory at location A should be invalidated or updated. Otherwise, future

reads to the memory location by a third processor may load the old value in the main

memory; and future loads by P1 may get the old value in C1.

In shared memory architectures, cache coherence protocols maintain the consis-

tency among multiple cached data and data in main memory. The protocols control a

number of readable and writable copies of each memory location for multiprocessors

in distributed caches. Modi�cation of one copy of a datum may require updating

other copies to maintain consistency among them.

1.3 Problems and Related Work

This section presents some of the problems in analyzing multiprocessor memory sys-

tems and related work by others.

1.3.1 Specifying and analyzing memory models

Weaker memorymodels for multiprocessors allow higher-performance implementation

techniques for memory systems. However, their behavior may be sometimes counter-

intuitive. Therefore, it is vital to specify a memory model precisely.

The precise details of the memory model are crucial to several parties. Obviously,

programmers must be aware of the model to write correct and e�cient shared memory

programs; for example, the model a�ects the correctness of synchronization routines.

Multiprocessor designers should understand the model because the design of the cache

coherence scheme must respect the model. Also, processor designers must ensure that

processor optimization techniques such as out-of-order issue of memory instructions

and register renaming do not violate the model model. Compiler writers may also

have to consider the memory model in some optimizations.



1.3. Problems and Related Work 7

Memory model descriptions in English can be ambiguous. Unfortunately, pre-

cisely de�ning the semantics of a memory model often leads to complex speci�cations

that are di�cult to understand for typical users such as programmers and hardware

builders of computer systems.

Many formal speci�cations of memory models are written in mathematics. Col-

lier [13] speci�es memory models using partial orders and infers the behavior of pro-

grams from a set of ordering relations. Gharachorloo [24] and Sindhu and Frailong [62]

have used methods similar to Collier's. Another way to specify memory models is

using automata. Gibbons et al. [26] use I/O automata, and Hojati et al. [33] use

L-automata to specify and reason about memory models.

However, such speci�cations require that the users infer the behavior of programs

from a set of ordering constraints or by reasoning about automata. For those not

familiar with such formal notation, it is hard to reason about programs running on

multiprocessors by manual computation|and almost impossible for large programs

even for experts.

1.3.2 Verifying cache coherence protocols

Cache coherence protocols can be quite complex and subtle, creating a real possibility

of design errors, especially for those used in large-scale multiprocessor systems. For-

mal veri�cation is desirable because the bugs can be quite subtle and hard to capture

by simulation. Several coherence protocols have been proposed but few are formally

veri�ed [4, 67, 9, 47].

One of the e�ective ways to validate protocols is using �nite-state methods (model

checking). Finite-state methods enumerate the states of the reachable state graph of

the system, searching for states that violate a speci�ed property (e.g. Mur' [15],

SMV [21], SPIN [34], COSPAN [38]).

These methods su�er from the state explosion problem: the number of states for

nontrivial numbers of processors and cache lines is very large. For example, the Mur'

veri�er can barely handle a relatively simple protocol with 3 processors and 2 memory

lines using 100 megabytes of memory in the process.

Another problem with the model checkers is that it is very di�cult to specify
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correctness conditions of the protocol using notations such as Mur' or temporal

logic. The speci�cation is the corresponding memory model of the protocol so it is

required to encode a full memory model in temporal logic.

Symbolic state models proposed by Pong and Dubois [60, 59] reduce the state ex-

plosion problem by using symbolic states which abstract away from the exact number

of con�gurations of replicated identical components by recording only whether there

are zero, one, or more than zero replicated components. However, there still remains

a speci�cation problem of the protocol as in model checking: It is not easy to �nd a

set of properties in their notation, which completely describes the correct behavior of

the protocols. Moreover, their method requires the user to write an abstract descrip-

tion of the protocol to be veri�ed, which raises another veri�cation problem that the

abstract description and the actual protocol are equivalent.

Another approach to formal veri�cation is computer-assisted theorem-proving.

Theorem-provers make available the full power of formal mathematics for proof, so

they can routinely deal with problems that cannot yet be solved by any �nite-state

methods.

However, the major problem with theorem proving is that considerable labor is

required. Consequently, previous theorem proving approaches have not been able to

verify a problem of the scale of a full multiprocessor cache coherence protocol. The

most signi�cant result to date is a manual proof of \lazy caching," a simple and

abstract cache coherence algorithm [2, 23, 40].

Overall, the �nite-state method and theorem-proving have been applied to simple

and small protocol models. However, we expect that the complexity of cache protocols

will continue to increase as faster and larger relaxed memorymodels are implemented.

Then verifying cache coherence protocols becomes a serious challenge which must be

met with appropriate and e�cient techniques.

1.4 Results and Contributions of the Thesis

This thesis will present solutions to the problems of specifying and analyzing memory

models, and verifying the correctness of cache coherence protocols.
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1.4.1 Executable description and automatic analysis of

memory models

We present a new approach for specifying a memory model for multiprocessors. We

describe the memorymodel by giving a maximally general executable description [54,

18], using a high-level description language for concurrent systems called Mur' [15].

Such a description provides a precise speci�cation of the machine architecture, both

for programmers and hardware implementors.

The major advantage of using Mur' is that it is also an automatic veri�cation

system. There is a tool that supports exhaustive checking of all the reachable states of

a description for violations of user-speci�ed properties. Using the veri�er allows users

to experiment with the e�ects of the memory model on programs being executed in

the memory system. Running the veri�er can be very e�ective at clarifying the subtle

details of the models.

The Mur' veri�er is used for several di�erent kinds of automatic analysis. First

of all, we can formally verify the synchronization routines for a memory model which

are the most frequently used and important programs of the multiprocessor mem-

ory system. Mur' also allows the printing of the state of a system at user-speci�ed

points while exploring the reachable states. This feature has been used to list all

of the possible register values that can occur when an example program terminates.

Consequently, we can obtain a complete list of possible program results for a given

multiprocessor program running in a speci�ed memory model. If we obtain an un-

expected output, the veri�er can also be used to generate an execution producing

a trace to the speci�c output. This feature helps programmers to understand the

memory behavior and to correct their programs.

We developed an executable memory model during the process of de�ning the

RMO (Relaxed Memory Order) memory model of the SPARC Architecture Ver-

sion 9 [66]. The RMO is a generalization of the previous SPARC Version 8 memory

models, TSO (Total Store Ordering) and PSO (Partial Store Ordering) [18].

Developing an executable model of RMO in Mur' greatly enhanced our under-

standing and con�dence in the design for several reasons. First, writing a precise



10 Chapter 1. Introduction

description pointed out ambiguities and inconsistencies, even without executing the

description. Second, we were able to analyze the possible outcomes of illustrative

examples and synchronization programs rapidly and automatically, when there was

a question about the implications of a change in detail of the speci�cation. Third,

we could verify the examples in the SPARC Architecture Manual Version 9, which

increased our con�dence that there were no errors in the code examples associated

with the memory models [54]. Overall, our approach has been extensively used in the

design procedure, and it was very helpful for the SPARC-V9 design team.

The executable description should be a maximally general implementation of the

axiomatic speci�cation so that it can be used as an equivalent speci�cation. We have

done a high-level formal proof of the equivalence that the executable speci�cation

generates all the possible behavior that is allowed by the axiomatic speci�cation, and

that executions generated by the executable description are allowed by the axiomatic

speci�cation.

1.4.2 Veri�cation method for cache coherence protocols

We present a new approach for using a computer-assisted theorem-prover to verify the

correctness of protocols and distributed algorithms. The method aims to overcome the

�niteness constraint of model checking and to exploit advantages of theorem-proving

in verifying cache coherence protocols.

The method compares a state graph of the implementation with a speci�cation

which is also a state graph representing the desired abstract behavior. The steps

in the speci�cation correspond to atomic transactions, which are not atomic in the

implementation.

The method relies on an aggregation function, which is a kind of an abstraction

function that aggregates the steps of each transaction in the implementation into a

single atomic transaction in the speci�cation [55]. We present an easy and systematic

way to �nd such an aggregation function. The method substantially reduces the

amount of labor required, hence signi�cantly extends capability of computer-assisted

theorem-proving for cache coherence protocols.

Owing to the generality obtained by the use of logic as a formalism, we have been
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able to validate protocols with an arbitrary number of processors. Our method has

successfully veri�ed the safety properties of the FLASH cache coherence protocol [39,

30]. For several years, we believed that proving the correctness of protocols of the

complexity of the FLASH cache coherence protocol was well beyond the capability of

a general-purpose theorem prover. The aggregation method has broken through this

barrier.

The method also solves the speci�cation problem. The aggregation renders a

reduced model of the implementation, which can serve as a speci�cation, if none

exist.

The proposed veri�cation procedure is not only for cache coherence protocols but

also has been applied to other protocols, which are simple but non-trivial: major-

ity consensus algorithm for multiple copy databases [64, 37], and a distributed list

protocol [17].

1.5 Overview of the Thesis

Chapter 2 presents techniques for writing executable memory models in a high-level

description language for concurrent systems. The techniques are applied to the Re-

laxed Memory Order of SPARC Version 9 Architecture as well as the earlier, simpler

models TSO and PSO. This chapter also demonstrates several ways to use an auto-

matic veri�cation tool for analyzing the memory model: veri�cation of synchroniza-

tion routines, generation of complete lists of possible program results, and generation

of an execution trace for a speci�c program result.

Chapter 3 explains the aggregation method for veri�cation of cache coherence pro-

tocols and similar distributed algorithms using a computer-assisted theorem prover.

The method is illustrated on the examples, a distributed list protocol and a majority

consensus algorithm for multiple copy databases.

Chapter 4 presents veri�cation of the FLASH cache coherence protocol. The

protocol is brie
y described, and a �nite-state method is used to verify some properties

of the protocol. Next, the aggregation method presented in Chapter 3 is applied to

verify the protocol with arbitrary numbers of processors.
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Finally, Chapter 5 summarizes the thesis and discusses possibilities for future

research.



Chapter 2

Reasoning About Memory Models

In this chapter, the Mur' description language and veri�cation system for �nite-state

concurrent systems is applied to the problem of specifying a family of multiproces-

sor memory models in the SPARC Architecture Manual Version 9. This chapter

describes the memory models and their encoding in the Mur' description language,

and presents several techniques using its automatic veri�er for analysis of programs

running under the speci�ed memory models.

The description language allows for a straightforward executable description of the

memory model which can be used as a speci�cation for programmers and machine

architects. The automatic veri�er can be used to generate all possible outcomes

of small assembly-language multiprocessor programs in a speci�ed memory model,

which is very helpful for understanding the subtleties of the model. The veri�er can

also check the correctness of assembly language programs including synchronization

routines.

Section 2.1 discusses general problems of specifying abstract memory models for

multiprocessors. Section 2.2 explains the intuition behind memorymodels of SPARC-

V9 architecture. Section 2.3 presents the logical speci�cation of Relaxed Memory Or-

der of SPARC-V9. Section 2.4 demonstrates how to write an executable speci�cation

using the description language. Section 2.5 presents techniques to verify synchroniza-

tion routines and to analyze �nite state programs using the automatic veri�er. We

13
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also present some interesting �ndings from the veri�cation and the analysis. Sec-

tion 2.6 contains a formal proof that the executable speci�cation is equivalent to the

logical speci�cation.

2.1 Executable Speci�cation of Multiprocessor

Memory Models

In a shared memorymultiprocessor architecture, amemory model speci�es the seman-

tics of memory operations when multiple processors load and store shared memory

locations. The precise details of this model are crucial to several parties: program-

mers, multiprocessor system designers, processor designers, compilers, and hardware

implementors.

Several memory models for shared memory multiprocessor architecture have been

proposed. Weaker memory models are attractive because they allow better more

concurrency in memory system and processor implementations, resulting in improved

performance. However, weaker memory models are generally very subtle. Even se-

quential consistency can be counter-intuitive at times. Hence, it is vital to specify a

memory model precisely.

Our approach to these problems is to describe the memorymodel by giving a max-

imally general executable description [54], using a high-level description language for

concurrent systems called Mur' [15]. Such a description provides a precise speci�-

cation of the machine architecture, both for implementors and programmers. The

major advantage of using Mur' is that it is also an automatic formal veri�cation sys-

tem. There is a tool that supports exhaustive checking of all the reachable states of a

description for violations of user-speci�ed properties. Mur' also allows the printing

of the state of a system at user-speci�ed points while exploring the reachable states;

this feature can be used, for example, to list all of the possible register values that

can occur when an example program terminates.

The approach here is di�erent from that used by Collier [13], who infers the

behavior of programs from a set of ordering relations, which are not necessarily easy
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to convert into an executable form. Gharachorloo [24] and Sindhu and Frailong [62]

have used methods similar to Collier's. Our method more closely resembles that of

Gibbons, et al. [26], who give I/O automata speci�cations of memory models. The

primary di�erences here are the description languages, and more importantly, our

emphasis on support for automatic analysis, while veri�cation with I/O automata is

generally by hand.

It is important to note that the executable description is a maximally general

implementation [33] which could be regarded as a formal speci�cation. In other

words, all the execution traces generated by the executable model are legal under the

logical speci�cation and all the legal execution traces are generated by the executable

model. To ascertain this, we present formal proofs, which have been con�rmed by

automatic theorem provers, that our executable speci�cation in Mur' is equivalent

to the logical speci�cation.

We developed an executable memory model during the process of de�ning the Re-

laxed MemoryOrder (RMO) model of the SPARC ArchitectureManual Version 9 [66].

RMO is a generalization of the previous SPARC Version 8 memorymodels, TSO (To-

tal Store Ordering) and PSO (Partial Store Ordering). Intuitively, TSO liberalizes

sequential ordering by allowing the performance of stores to be delayed relative to

subsequent loads; PSO additionally allows stores to be delayed relative to other stores;

and RMO further allows loads to be delayed relative to subsequent loads and stores.

In [18], we developed an executable model for TSO and PSO; however, the executable

model of RMO is not a simple generalization of the earlier description.

Developing an executable model of the protocol in Mur' greatly enhanced our

understanding and con�dence in the design for several reasons. First, writing a pre-

cise description points out ambiguities and inconsistencies, even if the description is

not executed. Second, we were able to analyze the possible outcomes of illustrative

examples and synchronization programs rapidly and automatically, when there was

a question about the implication of a change in detail of the speci�cation. Third, we

could verify the examples in the architecture manual, which increased our con�dence

that there were no errors in the code examples associated with the memory models.
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2.2 SPARC Memory Models

This section explains the intuition behind the SPARC-V9 memory models. It is not

intended to be exhaustive or to be a tutorial on the models. For more information,

see the SPARC Architecture Manual Version 9 [66].

Figure 2.1 illustrates the intuition behind the memory models. Note that this is

a �ctitious description that bears no relation to a reasonable implementation of a

memory model|it is only intended to capture a programmer-level view of the pos-

sible behaviors of memory operations. There is a set of processors, P1; P2; : : : ; Pn,

each of which has its own cache, and an abstract reorder box. Each processor exe-

cutes instructions in the natural order speci�ed in the program, called program order.

Instructions may appear to occur in some order other than program order, due to

various implementation techniques, such as local caching or out-of-order instruction

execution in the processor implementation. This reordering is modeled in Figure 2.1

by attaching a reorder box to each processor.

Each reorder box is also connected to a common global memory. The memory

arbitrarily chooses one of the reorder boxes, chooses an instruction from the reorder

box subject to ordering constraints that are speci�ed as part of the particular memory

model. It then executes actions which depend on the instruction, such as updating

memory locations or processor registers. The actions for each instruction are executed

atomically|other actions in the system cannot interfere with them. An instruction

is said to be performed when it is executed by the memory.

It bears repeating that this is not intended to resemble any implementation of

a memory system. It is merely a �ction that explains the functional behaviors of

programs|without regard to performance. Indeed, the \memory" is doing almost

all of the work of executing instructions, including modifying processor registers and

even doing arithmetic|in early models, the memory performed much more memory-

like functions, which is why we use the term. The lack of a clear separation between

processor and memory models is a little awkward, but it seems that ordering con-

straints from the processor inherently a�ect the memory model, especially in liberal

models such as RMO, so we have found it necessary to generalize the memory in this
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Figure 2.1: An abstract memory model for multiprocessors
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way.

All SPARC implementations must support the standard memory model, called

Total Store Ordering (TSO) which is also the most restrictive model. In TSO, store

operations from a processor Pi must be performed by the memory in program order.

However, a load issued by Pi may return a value recently stored by Pi before the

store is performed by the global memory. Hence, a processor Pj may load an old

value after Pi has loaded a new value. This last scenario would not be allowed under

sequential consistency; TSO is weaker than sequential consistency. Equivalently, any

synchronization code that is guaranteed to work properly in TSO will also work

properly in a sequentially consistent model, but not the reverse.

The SPARC architecture de�nes a weaker model called Partial Store Ordering

(PSO). PSO is similar to TSO except that it allows stores from a processor to be

performed without regard to the program order unless they are to the same address.

TSO and PSO were the memory models of the SPARC Version 8 architecture.

In order to allow more latitude in multiprocessor implementations, a new model

called Relaxed Memory Order (RMO) was de�ned in the SPARC Version 9 architec-

ture. In the TSO and PSO models, a load operation must be performed before any

stores that follow it in program order. However, in many cases, RMO allows a store

to be performed before a load even if the load occurred �rst in program order.

2.3 Logical Speci�cation of Relaxed Memory

Order

This section is a condensed description1 of the logical speci�cation of the memory

model in the SPARC Architecture Manual Version 9. The logical speci�cation is not

executable. In essence, given an instruction trace from each processor consisting of

the sequence of instructions and the results of interactions with the memory system, it

determines whether the instruction trace is compatible with the memory model. This

1The change we made from the SPARC manual is that we do not di�erentiate memory trans-
actions from instructions. We believe that such a distinction is not necessary at this level of
speci�cation.
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is the style of speci�cation used by Collier, Gharachorloo, and Sindhu and Frailong [13,

24, 62].

In the remainder of this chapter, X;Y; and Z refer to memory instructions. Xn
A

denotes a memory instruction X on processor n that reads or writes memory address

A. The processor index and memory address are speci�ed only if needed. Predicates

L(X) and S(X) are true if X is a load or a store instruction, respectively. L(Y ) and

S(Y ) can be true simultaneously, when Y is an atomic load/store.

A program order is a partial order of instructions that is an interleaving of to-

tal orders, one for each processor: instructions associated with the same processor

are always program-ordered, while instructions from di�erent processors are never

program-ordered. Program order represents the sequence of instructions as issued

by each processor. We write A <p B when instruction A precedes instruction B in

program order.

A memory order is a total order of all the memory instructions from the pro-

cessors. Each memory model de�nes a set of ordering rules which constrain legal

memory orders. Many memory orders may be consistent with a given program order.

This multiplicity of orders re
ects nondeterminism in the memory model, and yields

nondeterministic results when multiprocessor programs are executed. The choice of

a particular global memory order determines the values returned by loads. We write

A <m B when instruction A precedes instruction B in a particular memory order;

also, in this case, we say \A is performed before B."

The SPARC-V9 architecture has a special memory barrier instruction (membar).

It explicitly enforces additional constraints on the memory order of certain types of

memory instructions preceding and following the membar. For instance, membarfL<Sg

requires that all the loads preceding the membar in program order precede the stores

following it. The predicate M(X;Y ) holds when X <p Y and X and Y are ordered

by a membar of the corresponding type. For example, in the instruction sequence of

L <p S <p membarfL<L,S<Sg <p L
0 <p S

0, M(L;L0) and M(S; S0) hold. Therefore,

S <m S0 <m L <m L0 is a legal memory ordering|if there are no other constraints,

but S0 <m S <m L <m L0 is not.
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A program in a weak memory model can be made to behave like the same pro-

gram in a stronger model by inserting membars between appropriate instructions.

To simulate PSO under RMO, we may insert membarfL<L,L<Sg immediately following

every load, disabling the freedom of RMO to delay the execution of loads until after

the following memory instructions.

2.3.1 Ordering rules

There are some times when ordering constraints from a processor must necessarily

constrain the memory order. For example, an instruction loading a register cannot be

performed after an instruction storing the resulting register value back to memory;

a store cannot be performed before a preceding branch is resolved. The SPARC-V9

memory model de�nes a dependence order (denoted by <d) which captures the data

dependence and control dependence relations among instructions, as one step in the

speci�cation of the constraints on memory order. Dependence order is determined

from program order as follows.

A <d B, if A <p B and at least one of the following is true.

(d1) A and B are control dependent and S(B)

(d2) A writes a register read by B

(d3) A stores a memory location loaded by B

Precise rules can be de�ned so that each dependence can be determined between

every pair of instructions in a sequence by inspecting the sequence. Rule (d1) requires

a branch instruction to a following store. Rule (d2) orders two instructions, if the

preceding writes a register which is read by the following. Note that some branch

instructions read a special register CCR (condition code register) to decide branch-

ing, so a test instruction that write a CCR is dependence ordered to such a branch

instruction that read the CCR. Rule (d3) orders a store to a following load which

reads the memory location written by the store.

Caution is required in the de�nition of dependence order, because it constrains

memory order. If dependence order is too strict, it may unnecessarily constrain the
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range of legal processor implementations. There are two speci�cation issues that

should be mentioned. First, the de�nition (d2) does not de�ne a dependence when

two instructions write the same register, or when an instruction reads a register then

another writes it, in order to allow register renaming in the processor implementation.

Second, rule (d1) is de�ned so that there is a control dependence when an instruction

a�ects a branch which is followed by a store, but not when the following instruction is

a load. This ensures that the processor is allowed to do speculative execution of loads

after a branch, before the branch has been decided. Both of these decisions a�ect

the executable description, which must include register renaming and speculative

execution of loads if it is to be maximally general.

A particular memory total order <m is legal if XA <m YB whenever one or more

of the following conditions holds.

(m1) XA <d YB and L(XA)

(m2) M(XA; YB)

(m3) A = B and XA <p YB and S(YB)

Rule (m1) says that if two instructions are data dependent (<d) and the �rst is a

load, then they should be performed in order (<m). Preceding stores may be delayed

even if there is a data dependence between them and following instructions. Therefore,

rule (m1) allows the implementation to use store bu�ers. Rule (m2) describes the

ordering constraint explicitly imposed by membars. Rule (m3) requires that stores to

the same address be performed in program order. The rule also orders a load and a

following store to the same address, a constraint that is not captured by dependence

order. This constraint is necessary to ensure that a single processor behaves as though

instructions were performed in program order.

2.3.2 Value axiom

While the ordering rules constrain the performance order of memory instructions, the

following axiom de�nes the value returned by a load:
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Value (LA) = Value ( Maximum SA under <m from the set of

f SA <m LA g [ f SA <p LA g ).

Given a particular memory order, it implies that the value returned by a load is

that of the latest store with respect to the memory order that is performed by the

shared memory before the load (fSA <m LAg), or that precedes the load in program

order (fSA <p LAg). Note that the store in the latter case should be the one issued

by the same processor which issued the load, since <p does not order instructions

from di�erent processors.

2.4 Executable Speci�cation of Relaxed Memory

Order

The executable speci�cation is intended to be maximally general|not only should

it conform to the logical speci�cation, it should generate every possible result that

is allowed under the speci�cation. Hence, it is more di�cult in some ways to write

the executable speci�cation than to describe a particular multiprocessor, because a

multiprocessor does not have to take advantage of every degree of freedom allowed

by the logical speci�cation. On the other hand, the executable model does not have

to represent an e�cient or practical solution, so it is much easier to design in that

sense.

2.4.1 Mur' description language and veri�er system

Mur' is a high-level description language for modeling �nite-state asynchronous con-

current systems. There is an automatic veri�er for Mur' which generates all of the

reachable states of the system while checking for deadlock and other error conditions.

Mur' can also check liveness and fairness properties (e.g. progress). The syntax of

Mur' is derived from various standard programming languages, especially Pascal and

C.

Mur' allows the declaration of familiar data types, including subranges of integers,

arrays, records, and user-de�ned enumerations. Additionally, procedures, functions,
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and global variables can be declared. The operational part of the language is based

on iterated guarded commands|which was inspired by Misra and Chandy's Unity

language [10]. A state of the described concurrent system is an assignment to each

global variable with a value in the range of the declared type. A Mur' program

consists of a collection of rules. Each rule has a condition, which is Boolean expression

referring to the global variables, and an action, which is a statement that modi�es

the values of the variables, yielding a new state.

Execution of a Mur' program begins with one of a set of initial states speci�ed

by the user. Then the following loop is executed forever: some rule whose condition

is satis�ed by the current state is chosen and its action evaluated, yielding a new

current state. If there are no rules whose conditions are true, the execution halts.

Although the action may be a compound statement consisting of a sequence of smaller

statements, conditionals, and loops, it is executed atomically|no other rule can be

executed before the action completes.

When several rule conditions are true at the same time, a choice is made arbitrarily,

resulting in several possible executions. The Mur' veri�er tries them exhaustively by

depth-�rst or breadth-�rst search.

One essential construct in Mur' is the ruleset, which is used to describe a collection

of rules that vary over a parameter. A ruleset can be thought of as nondeterministi-

cally selecting a value for the parameter from a set.

Several types of errors can be detected in a Mur' description. There is an error

statement that can appear in an action. Invariant Boolean expressions may also

be speci�ed; if the invariant is false in any reachable state, an error is reported.

The system can detect deadlock states, which are states that have no other states as

successors. Finally, Mur' can check many common liveness and fairness properties

using a subset of linear-time temporal logic.

If a problem of any type is detected, the veri�er prints out a diagnostic trace,

which is a sequence of states that leads to a state exhibiting the problem. In addition

to the error traces, it is possible to print out the values of speci�ed variables using put

commands. This capability is used to obtain all the possible results of test programs.
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2.4.2 RMO description in Mur'

The executable speci�cation follows the intuition of Figure 2.1. It describes reordering

boxes, global memory with a nondeterministic switch, and necessary part of proces-

sors. There are shared variables for all of the state of the system, including the

processor registers, the memory, and the contents of the reorder boxes. Here, we

provide excerpts from the description.

State of the model

In the �rst part of Figure 2.2, constants are declared for the number of processors, size

of memory, number of registers, size of reorder boxes, and so on. These constants are

the only declarations needed to be changed to have a larger or smaller-sized system,

since the description is scalable. For veri�cation, these constants should be kept very

small in order to bound the size of the state space that must be explored by the

veri�er. Constants such as A, B, r1, etc. are used to represent memory addresses and

registers in the program symbolically.

Types are declared using those constants. For example, Processor is declared to

be a subrange of integers, which are used as identi�ers for processors. Instruction is

an enumeration, which may include all kinds of instructions used in the program

being modeled. IssueIndex is a pointer to an instruction in a reorder box and

ReorderBoxType is a record representing a reorder box of each processor. It con-

sists of a counter and an array of instruction records. The counter holds the number

of instruction records in the reorder box. Each instruction record contains all the in-

formation of an instruction: the instruction type, memory address operand, register

operand, constant operand, and so on.

Global states of the executable model are represented by a set of state variables

shown in Figure 2.3. The �rst variable, Memory, models the global memory by an

array of Value indexed by Address type. The control state in a processor is modeled

using global variables: program counter PC and nPC (next PC), and condition code

register CCR. The use of the program counters will be explained in the next section.



2.4. Executable Specification of Relaxed Memory Order 25

Const

ProcessorNum : 3;

AddressNum : 3;

RegisterNum : 3;

TempNum : 6;

ValueNum : 5;

MaxPC : 10;

ReorderBoxSize : 6;

A : 1;

B : 1;

r1: 1; -- other constants are omitted

Type

Processor : 0 .. ProcessorNum - 1 ;

Address : 0 .. AddressNum - 1 ;

TempIndex : 0 .. TempNum - 1; -- for register renaming

Value : 0 .. ValueNum - 1; -- range of data

Instruction: Enum{Iload, Istore, Ildstore, Iswap, Imov, Icmp, Itst, Imembar,

IbeY, IbeN, IbneY, IbneN }; -- other instructions are omitted

Label : 0 .. MaxPC ;

IssueIndex : 0 .. ReorderBoxSize - 1 ;

ReorderBoxType : Record

Count : 0 .. ReorderBoxSize; -- number of instructions in the box

Ar : Array[IssueIndex] of

Record Instr : Instruction;

Addr : Address;

Temp : TempIndex; -- and so on

MemBit: Array [Enum{ b0, b1, b2, b3 }] of Boolean;

-- used for membar instructions

End;

End;

-- other types are omitted

Figure 2.2: Constant and type declarations for the executable memorymodel in Mur'
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Var

Memory : Array [Address] of Value;

PC : Array [Processor] of Label;

nPC : Array [Processor] of Label; -- for anulled branch

CCR : Array [Processor] of Boolean; -- condition code register

Registers : Array [Processor] of Array [Register] of TempIndex;

Temps : Array [Processor] of Array [TempIndex] of Value;

ReorderBox: Array [Processor] of ReorderBoxType;

-- for speculation branch

memPC : Array [Processor] of Label;

memnPC : Array [Processor] of Label;

memReg : Array [Processor] of Array[Register] of TempIndex;

Figure 2.3: State variable declarations for the executable memory model in Mur'

This description is based on a register renaming scheme, so registers are a per-

processor array of temporary indices, which are pointers to temporaries in a register

pool, and Temps are real locations where the values for registers are kept.

The reorder boxes are represented as an array ReorderBox of ReorderBoxType in-

dexed by Processor. A reorder box queues up every instruction from its processor in

program order.

The description also implements speculation on branches. The states of PCs and

registers are saved in memPC and memReg at the time of issue of a speculative branch;

these are used to restore the PCs and registers in case the speculation turns out to

be incorrect.

Procedures

There are individual processes for the processors in Figure 2.1 and for the memory.

Only one process may execute at a time. The processes modeling the processors issue

individual instructions by inserting them at the tail of a reorder box queue, so that

instructions in a reorder box are always in program order.

For each class of instruction, there is a procedure in the Mur' description that

issues the instruction by inserting it in the reorder box. For example, Load init()

in Figure 2.4 inserts a load instruction with its operands after all previously-issued
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Procedure Load_init(p:Processor; a:Address; r:Register);

Begin

PutInBox(p, Iload, a, GetTemp(p,r));

PC[p] := nPC[p]; nPC[p] := nPC[p] + 1;

End;

Procedure Store_init(p:Processor; r:Register; a:Address);

Begin

PutInBox(p, Istore, a, Registers[p][r]);

PC[p] := nPC[p]; nPC[p] := nPC[p] + 1;

End;

Figure 2.4: Procedure `Load init' and `Store init'

instructions in the reorder box. This issuing procedure also handles register renaming,

so that the instructions in the reorder box refer to temporary registers, not to register

names. The function GetTemp(p,r) returns a new temporary location for register r in

processor p. Procedure PutInBox() puts the instruction into a reorder box by copying

it at the tail of instruction queue of the reorder box. Finally, the next PC value is

copied to the current PC, then incremented.

Procedures for other instructions simply copy the instruction into reorder boxes.

When a store instruction is issued, the procedure Store init() puts its arguments into

the corresponding reorder box. When a branch instruction is issued, it is performed

immediately if the CCR is already set by a test. Otherwise, a nondeterministic

prediction of the branch direction is made. The branch is then issued based on

this prediction. There are two issuing procedures for each branch instruction: e.g.,

BeY init() and BeN init() for be instruction (\branch on equal").

There is also a procedure to perform each class of instruction type. These proce-

dures are executed by the global memory, and do all of the work of the instructions.

For instance, the procedure Store perf() in Figure 2.5 performs a store instruction by

writing the contents of the register (assigned temporary) into the memory location.

Performing a load is more involved because the value axiom should be satis�ed

determining the value to be loaded. The procedure Load perf() shown in Figure 2.5

is executed when a load is performed to read the speci�ed memory address.
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Procedure Store_perf(p:Processor; t: TempIndex; a:Address);

Begin Memory[a] := Temps[p][t]; End;

Procedure Load_perf(p:Processor; i:IssueIndex; a:Address; t:TempIndex);

-- Read the most recent value of address A from the view of processor[p].

Begin

Temps[p][t] := Memory[a];

For j:IssueIndex Do

Alias J:ReorderBox[p].Ar[j] do

If ( j<i & J.Addr = a ) Then

-- if there is a store preceding in program order but not performed,

-- then get the value being stored.

If ( J.Instr = Istore | J.Instr = Iswap )

Then Temps[p][t] := Temps[p][J.Temp];

Elsif ( J.Instr=Ildstore ) Then Temps[p][t] := 1; End; --If

End; --If

End; --Alias

End; --For

End;

Figure 2.5: Procedure `Load perf' and `Store perf'

If the prediction on a branch turns out to be incorrect when the branch instruction

is performed, the state of the registers and program counter is restored to what it

was when the branch was issued, and the speculative instructions are canceled. Since

the logical speci�cation allows speculative execution and ignores anti-dependences

from register usage, it is necessary to include speculative execution to ensure that the

executable speci�cation generates every legal program result.

Functions

The description attempts to provide the most direct possible translation from the

ordering rules given in the logical description. We write functions for the low-level

predicates that it uses. Functions Is load(p,i) and Is store(p,i) check whether

the instruction at position i in the reorder box for processor p is a load or a store

instruction. Similarly, Is branch and Is CCR check whether the instruction is a branch

or a test that writes a CCR.
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The function Membared(p,i,j) is shown in Figure 2.6. It returns a Boolean formula

which is true if and only if the two memory instructions at entry i and j are ordered

through a membar. Each or'ed expression checks if there is a memory barrier of the

corresponding type in between the two instructions. The Alias command is used to

de�ne an abbreviation.

Function Membared(p:Processor; i,j:IssueIndex):Boolean;

Begin

Alias R:ReorderBox[p] do

Return

(Is_load(p,i) & Is_load(p,j) &

Exists k:IssueIndex do -- bit:b0 corresponds to the type of {L<L}

i<k & k<j & R.Ar[k].Instr = Imembar & R.Ar[k].MemBit[b0] end)

|

(Is_store(p,i) & Is_load(p,j) &

Exists k:IssueIndex do -- bit:b1 corresponds to the type of {S<L}

i<k & k<j & R.Ar[k].Instr = Imembar & R.Ar[k].MemBit[b1] end)

|

(Is_load(p,i) & Is_store(p,j) &

Exists k:IssueIndex do -- bit:b2 corresponds to the type of {L<S}

i<k & k<j & R.Ar[k].Instr = Imembar & R.Ar[k].MemBit[b2] end)

|

(Is_store(p,i) & Is_store(p,j) &

Exists k:IssueIndex do -- bit:b3 corresponds to the type of {S<S}

i<k & k<j & R.Ar[k].Instr = Imembar & R.Ar[k].MemBit[b3] end);

End;

End;

Figure 2.6: Function `Membared'

In order to de�ne function Depend(), we �rst de�ne function Direct Depend() in

Figure 2.7. This function checks whether two instructions are dependence ordered,

as de�ne in Section 2.3. At �rst, it ensures the instruction at i precedes the one at j

in program order (X <p Y ). The rest of the Boolean expressions correspond to the

rules (d1) through (d3). The �rst or'ed expression translates the rule (d1). The next

expression for the rule (d2) calls Reg Depend(), which returns true if the preceding

instruction is writing the same register that is read by the following instruction|

strictly speaking, the same temporary location in the register renaming scheme. The

dependence through the condition code register is checked separately. The last part
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of the Boolean expression directly translates the rule (d3).

Function Direct_Depend (p:Processor; i,j:IssueIndex):Boolean;

Begin

Return ( i < j ) &

(

( Is_branch(p,i) & Is_store(p,j) )

| ( Reg_Depend(p,i,j) | ( Is_CCR(p,i) & Is_branch(p,j) ) )

| ( Is_store(p,i) & Is_load(p,j) & mAddress(p,i) = mAddress(p,j) ) );

End;

Function Reg_Depend ( p:Processor; i,j:IssueIndex):Boolean;

-- Return true if instruction at `i' writes a register read by the one at `j'.

Function Depend (p:Processor; i,j:IssueIndex):Boolean;

-- Instructions at `i' and `j' are dependent through transitivity?

Begin

If ( i >= j ) Then Return false;

Elsif Direct_Depend(p,i,j) Then Return true;

Elsif

Exists k:IssueIndex Do

( i < k ) & ( k < j ) & Depend(p,i,k) & Depend(p,k,j)

End --Exists

Then Return true;

Else Return false;

End; --If

End;

Figure 2.7: Function `Direct Depend' and `Depend'

Dependence order is the transitive closure of Direct Depend(). The function

Depend(p,i,j) in Figure 2.7 computes this using the function Direct Depend() and

calling itself recursively. It returns true if and only if the instructions at i and j

in reorder box p are dependence ordered, by checking if there exists an instruction

in-between i and j through which the dependence order is transitive.

Rules

There are two collections of Mur' rules which implement the diagram in Figure 2.1.

The �rst collection of rules describes the behavior of the model that issues instructions
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into reorder boxes. The other collection of rules performs the instruction in the reorder

boxes. We will postpone the explanation of the �rst kind of rules to the next section.

Here, we show the latter kind of Mur' rules implementing the memory order.

The global memory process nondeterministically selects a processor and an in-

struction in the processor, which is executed if it is legal to do so. The ordering rules

are enforced by the conditions of Mur' rules that decide whether an instruction is

legal to perform. An instruction is legal to perform if and only if the ordering rules

allow the existence of a memory order in which the instruction can be the minimum

under a memory order of all the instructions currently in the reorder box. Each or-

dering rule from the logical description is translated as directly as possible to a Mur'

function, which checks whether the ordering rule is satis�ed.

When an instruction can legally be performed, the memory performs it. This

involves doing all of the computation associated with the instruction, including ALU

operations and updating registers and/or memory. Then it is removed from the

reorder box.

In essence, a particular memory order is gradually constructed as the speci�ca-

tion executes. The instructions that have been performed are memory ordered and

those remaining in the reorder boxes have not yet been ordered. The constraints on

nondeterministic choices involved in selecting the next instruction ensure that every

legal memory order can be generated.

The rule for the memory order constraints is in Figure 2.8. This rule can also

be thought of as implementing the behavior of the memory. The rule is embedded

in parameterized rulesets that nondeterministically choose a reorder box and an in-

struction index. It performs the instruction at that reorder box index only if that

instruction is allowed to appear �rst among all the instructions in the reorder box,

according to the memory ordering rules.

The condition of the rule is a conjunction of several Boolean expressions. The

�rst and'ed expression ensures that the chosen index i of the reorder box p is not an

empty slot. The second expression requires every membar instruction to remain in

the reorder box until all the previous instructions are executed and removed from the

box.
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Ruleset p:Processor Do

Ruleset i:IssueIndex Do

-- For all instructions, ReorderBox[p].Ar[i], check this.

Alias R : ReorderBox[p];

op : R.Ar[i].Instr Do

Rule "Execute one of the instructions in minimal set"

( i < R.Count ) -- instruction at i is valid one

& ( op=Imembar -> i=0 ) -- the membar no longer needs to be here

& -- Rule (m1)

( Forall j:IssueIndex Do

j<i -> ! ( Depend(p,j,i) & Is_wr_reg(p,j) )

EndForall )

& -- Rule (m2)

( Forall j:IssueIndex Do

j<i -> ! Membared(p,j,i)

EndForall )

& -- Rule (m3)

( Is_store(p,i) -> Forall j:IssueIndex Do

! ( j<i & ( Is_store(p,j) | Is_load(p,j) )

& mAddress(p,j) = mAddress(p,i) )

EndForall )

==>

Begin

-- The chosen instruction ReorderBox[p].Ar[i] is allowed to be performed.

Switch op

Case Iload : Load_perf(p, i, R.Ar[i].Addr, R.Ar[i].Temp);

Case Ildstore: Ldstore_perf(p, i, R.Ar[i].Addr, R.Ar[i].Temp);

Case Istore : Store_perf(p, R.Ar[i].Temp, R.Ar[i].Addr);

-- Others are omitted.

-- Do appropriate action for each class of instruction type.

End; -- switch

ArrangeBox(p,i); -- Dequeue the performed instruction.

End; --Rule

End; --Alias

End; --Ruleset on IssueIndex

End; --Ruleset on Processor

Figure 2.8: RMO ordering constraints in Mur'
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The rest of the three Boolean expressions correspond to the ordering rules (m1),

(m2), and (m3), respectively. The conditions are not direct translation of the rules,

but they ensure that there is no preceding memory instruction at index j which is

memory ordered (<m) to the one at i. The predicate L(X) in rule (m1) is replaced

by the function checking if the instruction is writing to a register, because reorder

boxes deal with all kinds of instructions including non-memory instructions, while

the axioms in the previous section aim to enforce orders among memory instructions

only. The next expression corresponding to (m2) asserts that there is no preceding

instruction at entry j which is ordered through a membar to the one at i. The

expression corresponding to (m3) asserts that the rule is satis�ed.

If the condition of the rule is true, the chosen instruction is performed by exe-

cuting the corresponding procedure according to the instruction type. For example,

Store perf() is executed for a store and Load perf() is executed for a load. Proce-

dure ArrangeBox() is called to remove the instruction record from the reorder box.

This procedure also shifts the remaining instruction records in the reorder box to

make it compact and accommodate more instructions which are not issued yet.

As explained in Section 2.3, TSO and PSO models can be easily de�ned from

RMO with additional constraints. The executable description can be extended to

accommodate TSO and PSO models with the conditions in Figure 2.9 appended to

the condition of the Mur' rule for RMO model in Figure 2.8. The constants TSOmodel

or PSOmodel are set initially to simulate the TSO or PSO model.

One subtle point is the avoidance of starvation: the logical description requires

that the memory order include every instruction. This implies that the memory must

eventually perform every memory instruction in every reorder box. Not only is this

necessary to conform to the logical speci�cation, it is essential to avoid starvation in

synchronization routines. This requirement is handled in Mur' by requiring, in an

in�nite computation, that the oldest instruction at index 0 in every reorder box be

performed in�nitely often (instructions not satisfying this requirement can be per-

formed an arbitrary �nite number of times between oldest instructions). Since the

oldest instruction is always legal to perform, according to the ordering rules, this en-

sures that every instruction is eventually performed. Mur' descriptions have a facility
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-- Additional constraint of TSO and PSO: { L < L } and { L < S }

(

( TSOmodel | PSOmodel ) & ( Is_load(p,i) | Is_store(p,i) )

->

Forall j:IssueIndex Do

(j<i) -> ! Is_load(p,j)

End --Forall

)

&

-- Additional constraint of TSO: { S < S }

(

TSOmodel & Is_store(p,i)

->

Forall j:IssueIndex Do

(j<i) -> ! Is_store(p,j)

End --Forall

)

Figure 2.9: Additional constraints for TSO and PSO

for specifying fairness assumptions which is used to implement this requirement.

Since Mur' can only deal with �nite-state processes, various memory structures

must be bounded. Furthermore, the number of states grows exponentially with many

parameters, so even quantities that are bounded in all implementations, such as the

number of registers in a processor, are bounded much more sharply in the Mur'

description. Bounded quantities include: the number processors, memory values,

memory locations, registers, and reorder boxes.

If the Mur' program is considered without the bounds, it is equivalent to the

logical speci�cation. The executable speci�cation in Mur' not only conforms to the

logical speci�cation but also generates all the possible behaviors allowed under the

speci�cation. We have proved this equivalence using a theorem prover, and the outline

of the proof is shown in Section 2.6. With the bounds, however, the executions of the

Mur' program may be a subset of the executions allowed by the logical speci�cation.

For some programs, however, it is easy to see that small bounds on all parameters

allow su�cient resources to enumerate all of the possibilities. For larger descriptions,

we must trade generality for the ability to verify automatically a bounded description.
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2.5 Automatic Analysis and Veri�cation

Using the Mur' veri�er allows several kinds of automatic analysis and veri�cation of

programs executing in the speci�ed memory models. This section shows techniques

to generate complete lists of program results, to generate a speci�c execution trace

for a questioned output, and to verify synchronization routines.

2.5.1 Analyzing test programs with an automatic veri�er

When developing the RMO model, it was very helpful to be able to �nd all of the

possible results of small example multiprocessor programs. The automatic veri�er

Mur' �nds all of the reachable states of the system, so it can list complete list of

the possible outputs very easily. When ordering rules are changed, it is simple to

change the executable speci�cation|since the translation is so direct|and run the

test programs through the veri�er to �nd out the consequences.

To make the description fully executable, we need to model programs running

on the processors in addition to the memory system. This can be accomplished by

adding rules for the processor description which specify which instruction to issue,

as a function of the current PC value [18, 54]. This translation is easy but could

be tedious. So we have implemented a simple program that translates assembly-

language programs into the appropriate Mur' rules, which are then combined with

the executable speci�cation to yield a Mur' description of that particular program

running in the memory model.

Suppose we test the program at the top of Figure 2.10. This program can be

automatically translated to the rules in Figure 2.11. The �rst rule corresponds to the

�rst load of P0 (Processor 0) and the next rule to the last store of P1. For readability,

we have given symbolic names to memory locations and registers by de�ning them as

constants. The register V3 1 of P1 contains a constant value 3.

In order to obtain a list of outcomes of a test program, we have added another rule

shown in Figure 2.11 which prints out the state of the registers and shared memory

when the program terminates after executing all the instructions. Since Mur' does
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Processor 0 Processor 1

ld A, %r1 ld C, %rx

st #1, B membar #LoadLoad #LoadStore

st #2, C ld B, %ry

membar #LoadStore

st #3, A

--TSO-----------------------------------------------

A:3 B:1 C:2 r1(0):3 rx(1):0 ry(1):0

A:3 B:1 C:2 r1(0):0 rx(1):0 ry(1):0

A:3 B:1 C:2 r1(0):0 rx(1):0 ry(1):1

A:3 B:1 C:2 r1(0):0 rx(1):2 ry(1):1

--PSO-----------------------------------------------

A:3 B:1 C:2 r1(0):3 rx(1):0 ry(1):0

A:3 B:1 C:2 r1(0):0 rx(1):0 ry(1):0

A:3 B:1 C:2 r1(0):0 rx(1):0 ry(1):1

A:3 B:1 C:2 r1(0):0 rx(1):2 ry(1):0

A:3 B:1 C:2 r1(0):0 rx(1):2 ry(1):1

--RMO-----------------------------------------------

A:3 B:1 C:2 r1(0):3 rx(1):0 ry(1):0

A:3 B:1 C:2 r1(0):0 rx(1):0 ry(1):0

A:3 B:1 C:2 r1(0):3 rx(1):0 ry(1):1

A:3 B:1 C:2 r1(0):0 rx(1):0 ry(1):1

A:3 B:1 C:2 r1(0):3 rx(1):2 ry(1):0

A:3 B:1 C:2 r1(0):0 rx(1):2 ry(1):0

A:3 B:1 C:2 r1(0):3 rx(1):2 ry(1):1

A:3 B:1 C:2 r1(0):0 rx(1):2 ry(1):1

----------------------------------------------------

Figure 2.10: An example test program and the corresponding set of possible results
generated by the automatic veri�er
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Rule -- a rule corresponding to the load of processor 0

PC[0]=0 & ReorderBox[0].Count < ReorderBoxSize

==> begin Load_init(0, A, r1_0); end;

Rule -- a rule corresponding to the store of processor 1

PC[1]=4 & ReorderBox[1].Count < ReorderBoxSize

==> begin Store_init(1, V3_1, A); end;

Rule "Print out the states when the program terminates"

PC[0]=3 & PC[1]=5 &

Forall p:Processor Do ReorderBox[p].Count = 0 End

==>

Begin

Put " A:"; Put Memory[A]; -- prints the value

Put " B:"; Put Memory[B];

Put " ry(1):"; Put Temps[1][Registers[1][ry_1]];

-- others are omitted

End;

Figure 2.11: Mur' rules for assembly language programs

exhaustive searching, each result through every possible interleaved performance or-

dering is caught by the printing rule and printed out. Indeed, each possible result is

printed many times because it occurs in many di�erent executions, but the results

are then post-processed to eliminate duplicates.

Figure 2.10 shows the results obtained by running the veri�er on the example

program under the various SPARC memory models|this is actual program output.

We assume an initial value of zero in every memory location and register. Each

line lists the contents of the relevant memory locations and registers for a di�erent

terminating state of the program. Since all the memory operations of P1 are ordered

by membar instructions, they should be performed in the program order. However,

the memory operations in P0 can be reordered as long as they satisfy the ordering

constraints of each memory model. Indeed, all of the 6 permutations are possible

in RMO, because there are no dependences among the 3 instructions. The result

shows that RMO allows more behaviors than PSO, which allows more than TSO, as

expected.
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The previous example is constructed arti�cially in order to show di�erent be-

haviors of the three memory models. Here is another example which shows subtle

behavior of RMO memory model. Again we assume every memory location and

register has an initial value of zero when the program starts.

Processor 0 Processor 1

1. ld [A], %r1 5. ld [B], %r0

2. st #1 , [A] membar #LoadStore

3. ld [A], %r2 6. st #2 , [A]

4. st %r2, [B]

One of the results reported by the Mur' veri�er is %r1 = 2 in P0 and %r0 = 1

in P1. The output may be unexpected because the �rst load of P0 in the program

returns a more recent value of the memory at address A (%r1 = 2) than the second

load of the address (%r2 = 1). However, the result can be obtained when the memory

instructions are performed in the memory order 3 <m 4 <m 5 <m 6 <m 1 <m 2. This

memory order is legal because there is no ordering constraint between 2 and 3, nor

between 1 and 3, since anti-dependence is not considered in rule (d2) above.

If a user obtains an unexpected outcome of a test program, a trace can be gen-

erated which shows how the outcome can occur, using a simple trick. An invariant

is added which asserts that the unexpected state does not occur. When the veri�er

�nds the state, a counter-example trace will be generated automatically that gives

the sequence of rules and intermediate states leading from an initial state to the state

in question.

2.5.2 Verifying synchronization routines

In many large-scale concurrent programs, the low-level synchronization code|which

may even be generated by a compiler|is the only part that depends on the details of

the memory model; this code can be carefully crafted to work in a particular memory

model, then used elsewhere by programmers who need not be deeply familiar with its

internals.
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The SPARC Architecture Manual gives several assembly language routines for

standard synchronization paradigms, including spin locks in two versions: one using

the load-store instruction and one using swap, produce-consumer with a bounded

bu�er, and Dekker's algorithm. There are di�erent versions for each algorithm for

each memory model. Figure 2.12 shows the assembly language code for a spin lock

using a load-store instruction. This is taken verbatim from the manual, except that

two instructions have been inserted at the label crit, to improve error detection.

---------------------------------------------------------------

retry: ldstub [lock], %l0 -- load-store

tst %l0 -- branch if 0

be out

nop

loop: ldub [lock], %l0 -- load

tst %l0 -- branch if non-0

bne loop

nop

ba,a retry -- jump

out: membar #LoadLoad #LoadStore

---------------------------------------------------------------

crit: stub #1, [CM(i)] -- store to a special

stub #0, [CM(i)] -- location of each processor

---------------------------------------------------------------

unlock: membar #StoreStore -- RMO, PSO only

membar #LoadStore -- RMO only

stub %g0, [lock] -- store value zero

---------------------------------------------------------------

Figure 2.12: Assembly language program for spin lock synchronization

In the synchronization code, the \lock held" condition is kept in a speci�c memory

location lock. A nonzero value of the lock represents that the lock is held by some

process, while a zero value means that the lock is free. An instruction ldstub loads

a speci�ed memory location and stores a nonzero value to the memory, atomically.

The conditional branch be is taken if the special register CCR set by tst is zero. The

following instruction (in this case, nop) is executed even if the branch is taken because,

the SPARC has delayed branching. Note that the membars enforce ordering between

memory instructions in the critical section and others in the synchronization routine.
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As shown in the spin lock code, we added two store instructions in critical region;

one stores a constant value 1 to a critical memory location and the other also stores

0 in the location. The invariant below is used to check the mutual exclusion property

of the spin lock when there are two processors.

Invariant "Mutual Exclusion of Memory Access in Critical location"

! (Memory[CM0] = 1 & Memory[CM1] = 1);

Extending this to more processors is straightforward. The invariant also ensures that

a lock is not released too early, before the writes to the lock-protected location are

completed. The veri�er also checks for deadlocks.

The spin lock example described was computationally the most di�cult of all the

examples we tried in SPARC Architecture Manual Version 9, although all examples

required the same order-of-magnitude time and space. When the spin lock example

was modeled with 2 processors and a reorder box size of 6, the veri�er explored 37,736

states in less than 10 minutes. The time is not proportional to the number of states

because a state may be visited several times|depending on the number of incoming

edges in the state graph|and because the amount of time for each rule varies with

the complexity of the rules.

This spin lock is subject to starvation. It is possible for P0 to be denied the lock

forever even when P1 releases the lock in�nitely often, because P1 happens to be

holding the lock whenever P0 tests it. For this reason, Mur' reports a violation of

the property,

Liveness Eventually Memory[CM0] = 1 ;

even though each process is assumed in the description to release its lock in�nitely

often. However, Mur' �nds no violation of the weaker property that \at least one

process gets the lock in�nitely often,"

Liveness Eventually ( Memory[CM0]=1 | Memory[CM1]=1 ) ; .

Ultimately, no unexpected behavior was found in the synchronization routines

when combined with the appropriate models. Also, as expected, the TSO routine

failed when combined with the PSO and RMO memory models.
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The state explosion problem, which is a central problem in �nite-state veri�cation,

has not been an issue in this e�ort, because of the small size of the assembly language

routines. However, it would become a problem for veri�cation of larger programs.

2.6 Formal Proof of Equivalence

In this section, we prove that the executable description in Mur', described in Sec-

tion 2.4, is equivalent to the logical speci�cation in Section 2.3 which is a slightly

modi�ed version of the one in the SPARC-V9 Architecture Manual, if the number of

processors and the size of reorder boxes in the Mur' program are unbounded. The

proof has been checked with PVS theorem prover which is developed by Computer

Science Laboratory at SRI International [53]. The proof here follows the PVS proof,

but has been rewritten for human-readability.

The proof consists of two parts: 1) The set of legal memory orders allowed under

the logical speci�cation is equivalent to the set of memory orders generated by the

executable description (Theorem 1 and Theorem 2 in this section); 2) the value axiom

in the logical speci�cation is correctly implemented in the executable description

(Theorem 3 in this section).

We represent a memory order (as de�ned in the logical speci�cation of RMO) as

a �nite sequence of memory instructions, m = hmii, indexed by natural numbers.

A memory instruction mi is issued by processor proc(mi), and it accesses memory

location addr(mi). As de�ned in Section 2.3, x <p y is true if x precedes y in program

order, and x <d y is true if x precedes y in dependence order. The predicate M(x; y)

is used to represent that x <p y and x and y are ordered by a memory barrier.

The predicate S(x) is true if x is a store instruction, and L(x) is true if x is a load

instruction.

The Mur' model of RMO generates a set of executions, which are sequences of

states. Each state is mapped to the next in the sequence by a Mur' rule from the

description. There are two sets of Mur' rules in the executable description.

� Issue rules issue an instruction by inserting it at the tail of instruction queue

of a reorder box, as shown in Figure 2.11
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� Performance rules perform an instruction in a reorder box if it is legal, as shown

in Figure 2.8

The event of a rule issuing instruction mi is written by Issue(mi); the event of

performing mi is written by Perform(mi). The memory order of an execution is

de�ned to be the order in which the Perform(mi) events appear in the execution.

It is convenient to refer to the time at which a rule �res in an execution. Formally,

the time of Perform(mi) is always i; the time of Issue(mi) is de�ned to be the time

of the next Perform(mj) (in other words, j) in the execution. The time of a state

is similarly the time of the next instruction performance. We de�ne itime(mi) to be

the time when mi is issued by Issue(mi). So, in the sequence,

s0
Issue(m1)
�! s1

Issue(m0)
�! s2

Perform(m0)
�! s3

Issue(m2)
�! s4

Perform(m1)
�! : : : ;

itime(m0) and itime(m1) are both 0, and itime(m2) is 1.

A memory instruction is performed only after being inserted in a reorder box, and

all instructions in reorder boxes must eventually be performed. So, itime(mi) � i.

We de�ne rk(mi) to be the index of mi in the reorder box (of proc(mi)) at time k.

Note that rk(mi) is de�ned (denoted as def (mi)) for k when itime(mi) � k � i, and

unde�ned otherwise.

The following properties always hold on an execution of the Mur' program.

Property 1 A memory order m in the Mur' program satis�es the following proper-

ties.

8 i; j : mi <p mj ) itime(mi) � itime(mj) (2.1)

8 i; k : itime(mi) � k � i , def (rk(mi)) (2.2)

8 i; j; k : mi <p mj ^ def (rk(mi)) ^ def (rk(mj))

, rk(mi) < rk(mj) ^ proc(mi) = proc(mj) (2.3)
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2.6.1 The set of legal memory orders is equivalent to the

set of generated memory orders

For a formal proof, we de�ne memory orders in two di�erent views: legal memory

orders and generated memory orders. The �rst part of the equivalence proof is to

show that the set of legal memory orders allowed under the logical speci�cation is

equivalent to the set of memory orders generated by the executable description. To

prove this, we consider two implications: 1) if a memory order is generated then it is

legal; 2) if a memory order is legal then it is generated.

The next de�nition is a straightforward translation of the speci�cation of Sec-

tion 2.3 into logic.

De�nition 1 A memory order m (a sequence of memory instructions) is legal if and

only if

8 i; j : ( mi <d mj ^ L(mi) )

_ M(mi;mj)

_ ( addr(mi) = addr(mj) ^ mi <p mj ^ S(mj) )

) i < j:

De�nition 2 in the following captures a property of every execution of the Mur'

description.

De�nition 2 A memory order m (a sequence of memory instructions) is generated

by the executable description if and only if

8 i : def (ri(mi))

^ 8n such that proc(mn) = proc(mi) ^ ri(mn) < ri(mi) :

:( mn <d mi ^ L(mn) )

^ :M(mn;mi)

^ ( S(mi)) addr(mn) 6= addr(mi) ):



44 Chapter 2. Reasoning About Memory Models

Now, we prove that if a memory order is generated then it is legal.

Theorem 1 (Necessary) If a memory order m is generated by the executable de-

scription, then it is legal under the logical speci�cation.

Proof: The proof is by contradiction. Assume that the generated memory order m

is not legal. Then there exist i and j which violate De�nition 1, that is,

9 i; j such that i � j : ( mi <d mj ^ L(mi) )

_ M(mi;mj)

_ ( addr(mi) = addr(mj) ^ mi <p mj ^ S(mj) ):

Let us consider each of the disjuncts separately. For the �rst, suppose

9 i; j : i � j ^ mi <d mj ^ L(mi):

By the de�nition of dependence order in Section 2.3, mi <d mj impliesmi <p mj. By

(2.1), itime(mi) � itime(mj). De�nition 2 implies that def (ri(mi)) and def (rj(mj)),

so, by (2.2), we obtain

itime(mi) � itime(mj) � j � i:

Using (2.2) again, we also know def (rj(mi)). By (2.3), this implies proc(mi) =

proc(mj) and rj(mi) < rj(mj). Instantiating i = j and n = i in De�nition 2 yields

:( mi <d mj ^ L(mi) );

which contradicts the assumption. The other two cases are similar. Therefore, if m

is generated by the executable model, it is legal under the logical speci�cation. 2
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Next, we prove the implication on the reverse direction.

Theorem 2 (Su�cient) If a memory orderm is legal under the logical speci�cation,

then it is possibly generated by the executable description.

Proof: The theorem requires that m satisfy De�nition 2. The �rst condition of the

de�nition, def (ri(mi)), can be satis�ed from (2.2) if all the instructions are issued by

Issue(mi) at time 0, i.e., 8i : itime(mi) = 0.

The latter condition should hold for any mi and mn in a same reorder box such

that ri(mn) < ri(mi). Any mn residing in a reorder box at time i will be performed

later than time i, therefore, i < n. If we instantiate De�nition 1 with i = n and j = i,

the contraposition implies the theorem.2

2.6.2 The value axiom of the logical speci�cation is cor-

rectly implemented in the executable description

In addition to de�ning legal memory orders, RMO speci�es what value should be

returned when a memory location is read by a load operation. From the view of

loading processor, the value axiom �nds the most recent store to a speci�ed memory

location at the time of performance of the load. The following lemma formalizes the

relation between a load and the corresponding store speci�ed in the value axiom.

Axiom 1 (Value Axiom) For a load ml in memory order m, ms is the correspond-

ing store de�ned by the value axiom if and only if ms 2 S and 8mj 2 S : j � s,

where S � f mj j S(mj) ^ addr(mj) = addr(ml) ^ (j < l _ mj <p ml) g:

In the executable description, this axiom is implemented in the procedure

Load perf as shown in Figure 2.5, which is executed atomically at the time of per-

formance of a load instruction. Load perf is written using a for-loop in the Mur'

program to search for relevant stores in a reorder box; for the proof, the linear search

is rewritten in recursive form so that automatic theorem provers can handle it.
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Load perf (a : address; p : processor; n : index ) =

if n > 0

then let mr be an instruction such that proc(mr) = p ^ rl(mr) = n � 1

/* instruction at index n� 1 of reorder box p */

if S(mr) ^ addr(mr) = a

then mr

else Load perf (a; p; n� 1)

else SM [a] /* the store whose value is in the global memory */

Let ml be a load instruction performed at time l. The procedure

Load perf (addr(ml); proc(ml); rl(ml)) is called to compute the value used to update

the loaded register. We need to prove that the Load perf returns the store speci�ed

in the value axiom.

We infer a property of global memory in the executable description. The ex-

ecutable model performs store instructions in memory order. Therefore, the store

whose value is in memory location M [a] at time l is the most recent store to A

preceding ml.

Axiom 2 (Global Memory) At the time of performance of ml, the global memory

at address a, M [a], contains the value of the store ms such that ms 2 SM and

8mj 2 SM : j � s, where SM � f mj j S(mj) ^ addr(mj) = a ^ j < l g:

To deal with the recursion in Load perf , we prove an invariant. The following

lemma says that Load perf (a; p; n) executed at time l returns the store ms to memory

location a which is either the store performed most recently in memory order, or the

store issued most recently before the instruction at index n by processor p (the same

processor that issued the load), whichever is performed latest. In the lemma, Sn is

the set of all stores to a that have been performed before l, or that are issued before

the instruction mn0 of index n.

Lemma 1 If ms is a store returned by Load perf (a; p; n) at time l, then ms 2 Sn and

8mj 2 Sn : j � s, where Sn � f mj j S(mj) ^ addr(mj) = a ^ (j < l _ mj <p mn0) g

for 8mn0 such that proc(mn0) = p ^ r(mn0) = n.
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Proof: The proof is by induction on n. When n = 0, the procedure returns SM [a], the

store whose value is in the global memory location at time l. From Property 1, it can

be proved that every instruction preceding mn0 in program order has been performed

by time l, that is, mj <p mn0 ) j < l. This implies Sn = SM , so Lemma 1 holds

when n = 0 from Axiom 2.

As an induction step for n > 0, assume that Lemma 1 holds for n� 1. There are

two cases depending on whether the if-condition in the procedure is true or false. If

the instruction ms at index n� 1 is a store to address a, then the procedure returns

ms; otherwise, it returns Load perf (a; p; n� 1).

When the if-condition is true, S(ms) ^ addr(ms) = a must be true. Furthermore,

rl(ms) = n� 1 < rl(mn0) = n, so by (2.3) we have ms <p mn0 . Hence, ms 2 Sn.

Next, we show that 8mj 2 Sn : j � s. Let mj be an arbitrary store in Sn. If

j � l, (2.2) implies l � s, so j � s. If j > l, by the de�nition of Sn, we know that

mj <p mn0 . So, by (2.3), r(mj) < r(mn0) = n. If r(mj) = n � 1, then mj = ms. If

r(mj) < n� 1, we can see that j < s by the following reasoning. By Theorem 1,

8 j; s : S(mj) ^ S(ms) ^ addr(mj) = addr(ms) ^ mj <p ms ) j < s: (2:4)

By (2.3) and (2.4), we obtain j < s, completing the case where the if-condition is

true.

When the if-condition is false, the condition : (S(mr) ^ addr(mr) = a) implies

Sn = Sn�1. From the induction hypothesis, the store ms returned by

Load perf (a; p; n� 1) satis�es that ms 2 Sn�1 and 8mj 2 Sn�1 : j � ms.

Therefore, Lemma 1 holds.2

Theorem 3 The procedure Load perf (addr(ml); proc(ml); rl(ml)) returns the correct

store for load ml as de�ned in the value axiom.

Proof: Substitute ml for mn0 in Lemma 1.2
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Chapter 3

Reduction By Aggregating

Distributed Transactions

This chapter presents a new approach to verify the correctness of protocols and dis-

tributed algorithms. The method compares a state graph of the implementation with

a speci�cation which is a state graph representing the desired abstract behavior. The

steps in the speci�cation correspond to atomic transactions, which are not atomic in

the implementation.

The method relies on an aggregation function, which is a type of abstraction

function that aggregates the steps of each transaction in the implementation into a

single atomic transaction in the speci�cation. The key idea in de�ning the aggregation

function is that it must complete atomic transactions which have committed but are

not �nished.

This chapter illustrates the method on simple but nontrivial examples: a dis-

tributed list protocol and a majority consensus algorithm for multiple copy databases.

Section 3.1 introduces the idea of aggregation and related work by others. Section 3.2

presents the veri�cation method. Section 3.3 illustrates the method on a distributed

list protocol, which is a fragment of distributed cache coherence protocols. Section 3.4

applies the method to another example, a majority consensus algorithm for multiple

copy databases.

49
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3.1 The Basic Idea

Protocols for distributed systems often simulate atomic transactions in environments

where atomic implementations are impossible. This observation can be exploited to

make formal veri�cation of protocols and distributed algorithms using a computer-

assisted theorem-prover much easier than it would otherwise be [55]. Indeed, the

techniques described below have been used to verify safety properties of signi�cant

examples: the cache coherence protocol for the FLASH multiprocessor which is cur-

rently being designed at Stanford [30, 39], a majority consensus algorithm for multiple

copy databases [64, 37], and a distributed list protocol [17].

The method proves that an implementation state graph is consistent with a speci-

�cation state graph that captures the abstract behavior of the protocol, in which each

transaction appears to be atomic. The method involves constructing an abstraction

function which maps the distributed steps of each transaction to the atomic transac-

tion in the speci�cation. We call this aggregation, because the abstraction function

reassembles the distributed transactions into atomic transactions.

This method addresses the primary di�culty with using theorem proving for ver-

i�cation of real systems, which is the amount of human e�ort required to complete

a proof, by making it easier to create appropriate abstraction functions. Although

our work is based on using the PVS theorem-prover from SRI International [53], the

method is useful with other computer-assisted theorem-provers, or manual proofs.

Although �nite-state methods (e.g. [51, 15, 34, 38]) can solve many of the same

problems with even less e�ort, they are basically limited to �nite-state protocols.

Finite-state methods have been applied to non-�nite-state systems in various ways,

but these techniques typically require substantial pencil-and-paper reasoning to jus-

tify. Moreover, it is not obvious how to apply these extension to the examples of this

chapter. Theorem-provers make sure that such manual reasoning is indeed correct,

in addition to making available the full power of formal mathematics for proof, so

they can routinely deal with problems that cannot yet be solved by any �nite-state

methods.

For our method to be applicable, the description must have an identi�able set
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of transactions. Each transaction must have a unique commit point [31], at which a

state change �rst becomes visible to the speci�cation. The most important idea in the

method is that the aggregation function can be de�ned by completing transactions

that have committed but not yet completed. In general, the steps to complete sep-

arate transactions are independent, which simpli�es the de�nition of this function.

In our experience, this guideline greatly simpli�es the de�nition of an appropriate

aggregation function.

The same idea of aggregating transactions can be applied to reverse-engineer a

speci�cation where none exists, because the speci�cation with atomic transactions

is usually consistent with the intuition of the system designer. We extract a speci-

�cation model which performs transactions atomically at their commit steps in the

implementation, and does nothing at other steps. The extracted speci�cation pro-

vides an illusion that the transactions take e�ect instantaneously at the commit steps

in the implementation.

If the extracted speci�cation is not considered as a complete speci�cation, or is

not obviously correct, it can instead be regarded as a model of the protocol having an

enormously reduced number of states. The amount of reduction is much more than

other reduction methods used in model checking, such as partial order reduction,

mainly because the reduced system is based on the only state variables relevant to

the speci�cation, without variables such as local states and communications bu�ers.

3.1.1 Related work

The idea of using abstraction functions to relate implementation and speci�cation

state graphs is very widely used, especially when manual or automatic theorem-

proving is used [49, 41] (indeed, whole volumes have been written on the subject [14].)

The idea has also been used with �nite-state techniques [38, 16].

Ladkin, et al. [40] have used a re�nement mapping [1] to verify a simple caching

algorithm. Their re�nement mapping hides some implementation variables, which

may have the e�ect of aggregating steps if the speci�cation-visible variables do not

change. Our aggregation functions generalize on this idea by merging steps even when

speci�cation-visible variables change more than once.
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A more limited notion of aggregation than ours is found in [43, 44], where a state

function undoes or completes an un�nished process. The method only aggregates

sequential steps within a local process, while our method aggregates steps across

distributed components. The idea of an aggregated transaction has been used to

prove a protocol for data base systems [58], where aggregation is obtained in a local

process by showing the commutativity of actions from simple syntactic analysis.

In program veri�cation, proofs can be simpli�ed by pretending that a statement

is atomic if its execution contains at most one access of a shared variable. This

is the so-called \single-action rule" [48, 19, 45]. The single-action rule is generalized

in [46]. This method classi�es program statements as \left-movers" or \right-movers"

depending on their commutativity properties. Using these properties, the statements

are permuted to obtain a coarser-grained version of the program, for which safety

properties can be checked.

We claim several advances over this earlier work. First, the problem is cast in the

form of �nding an abstraction function (the aggregation function) from an implemen-

tation state graph to a speci�cation state graph. Abstraction functions have several

advantages: for example, the functional composition of two abstraction functions is

also an abstraction function. Second, our aggregation functions can hide some im-

plementation variables, so the speci�cation description can have fewer state variables

than the implementation. This simpli�es the proof, since many of the changes made

by implementation steps are invisible to the speci�cation. Finally, our method allows

the use of an invariant on the implementation state space. Some implementation

steps may only be commutative for states satisfying the invariant, so this increases

the power of the veri�cation method.

Cohen used an idea similar to aggregation to prove global progress properties by

combining progress properties of local processes [12]. The idea of how to construct

our aggregation function was inspired by a method of Burch and Dill for de�ning

abstraction functions when verifying microprocessors [7].
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3.2 The Veri�cation Method

The veri�cation method begins with a description in higher-order logic of the state

graph of the implementation of a distributed computation, and a logical description

of the state graph of the speci�cation. The implementation description contains a set

of state variables, which are partitioned into speci�cation variables and implementa-

tion variables. The set Q of states of the implementation is the set of assignments

of values to state variables. The description of the implementation also includes a

logical formula de�ning the relation between a state and its possible successors. The

relation is represented by a set of functions, F : 2Q!Q, each of which maps a given

implementation state to its next state. The implementation is nondeterministic if

this set has more than one function.

The description of the speci�cation state graph is similar. A speci�cation state

is an assignment of values to the speci�cation variables of the implementation (im-

plementation variables do not appear in the speci�cation). Also, every state in the

speci�cation has a transition to itself. We call these idle transitions. The idle transi-

tions are necessary for following implementation steps that do not change speci�cation

variables. We adopt the convention that components of the speci�cation are primed,

so the set of states of the speci�cation is Q0, the set of functions is F 0, etc.

The veri�cation method is based on the usual notion of an abstraction function.

The function, which we call aggr , maps implementation states to speci�cation states

and must satisfy a commutativity property

8q 2 Q 8N 2 F 9N 0 2 F 0 : aggr(N(q)) = N 0(aggr (q)): (3:1)

The most interesting part of the method is how the aggregation idea is used to de�ne

this function.

The method relies on the notion that there is a set of transactions which the

computation is supposed to implement, which are atomic at the speci�cation level|

meaning that a transaction occurs during a single state transition in the speci�cation,

but non-atomic at the implementation level. Indeed, the transactions in the imple-

mentation may involve many steps that are executed in several di�erent components
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of the implementation.

The method requires that each transaction in the implementation have an identi-

�able commit step. Intuitively, when tracing through the steps of a transaction, the

commit step is the implementation step that �rst causes a change in the speci�ca-

tion variables. Implementation states that occur before the transaction or during the

transaction but before the commit step are called pre-commit states for that transac-

tion. The transaction is complete when the last speci�cation variable change occurs

as part of the transaction. The states after the commit step but before the completion

of the transaction are called post-commit states for the transaction. A state where

every committed transaction has completed is called a clean state.

Formally, all of the above concepts can be derived once the post-commit states are

known for each transaction. The pre-commit states for the transaction are the states

that are not post-commit; the commit step for an transaction is the transition from

a pre-commit state to a post-commit state for that transaction; and the completion

step is the transition from a post-commit state to a pre-commit state. A state is clean

if it is a pre-commit state for every transaction.

An aggregation function consists of two parts: a completion function which changes

the state as though the transaction had completed, and a projection which hides the

implementation variables, leaving only the speci�cation variables.

Once a purported aggregation function has been de�ned, the user must prove

that it meets the commutativity requirement (3.1). The proof consists of a sequence

of standard steps, many of which are or could be automated.1 The initial 8q and

8N can be eliminated automatically by Skolemization,2 which is substituting a new

symbolic constant for q throughout (when we Skolemize in this presentation, we will

not change the name of the quanti�ed variable). This yields a subgoal of the form

(N 2 F)) 9N 0 2 F 0 : aggr (N(q)) = N 0(aggr(q)): (3:2)

The set of implementation steps F will often be de�ned with a logical formula of

1We base this comment on our use of the PVS theorem prover, but we believe the same basic
method would be used with others.

2named after a logician, Thoralf Skolem.
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Implementation Steps (Protocol)

Specification Steps (Atomic Transactions)

aggr aggr aggr

Nj Nk

Nj
’
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. . .

. . .. . .

. . .

Figure 3.1: Step simulation using an aggregation function

the general form 9p : N = N1(p)_N = N2(p)_ : : :, where p is a tuple of parameters

(perhaps ranging over an unknown number of components), and each Nj is a di�erent

kind of implementation step. Since the 9p is in the antecedent of an implication, it

can be Skolemized automatically, and the resulting disjunction can be proved by

proving a collection of subgoals

(N = Nj(p))) 9N 0

2 F
0 : aggr(N(q)) = N 0(aggr (q)): (3:3)

The existential quanti�er 9N 0 can be eliminated by the user by manually substituting

the de�nition of the appropriate function for N 0. Given j and p, the user must supply

proper instantiations j0 and p0 such that the resulting subgoals

aggr(Nj(p)(q)) = N 0

j0(p
0)(aggr (q)) (3:4)

are provable. Figure 3.1 shows the step simulation using the aggregation function.

The number of subgoals is equal to the number of transition functions in the

implementation. In most cases, the required speci�cation step N 0

j0(p
0) is the idle

transition; indeed, the only non-idle step is that which corresponds to the commit

step in the implementation. We have no global strategy for proving these theorems,

although most are very simple.

The above discussion omits an important point, which is that not all states are

worthy of consideration. Theorem (3.1) will generally not hold for some absurd states
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that cannot actually occur during a computation. Hence, it is usually necessary to

provide an invariant predicate, which characterizes a superset of all the reachable

states. If the invariant is Inv , Theorem (3.1) can then be weakened to

8q 2 Q 8N 2 F 9N 0

2 F
0 : Inv (q)) aggr (N(q)) = N 0(aggr(q)): (3:5)

In other words, aggr only needs to commute when q satis�es the Inv .

Use of an invariant incurs some additional proof obligations. First, we must prove

that the initial states of the protocol satisfy Inv , and second, that the implementation

transition functions all preserve Inv .

For a proof by aggregation to be meaningful, the user must appropriately identify

the transactions, and must associate commit points in the implementation with the

proper transactions. For example, an aggregation function that maps all implemen-

tation states to a single speci�cation state, and all implementation steps to the idle

speci�cation step could be easily conducted, but would not be meaningful [22]. A

less likely way to get meaningless results would be to map commit steps to the wrong

transactions.

3.3 The Distributed List Protocol

We illustrate the concepts of the previous section on a small but somewhat nontriv-

ial example, which we call the \distributed list protocol" [17]. The protocol is an

abstraction of part of a multiprocessor cache coherence protocol, which maintains a

singly-linked list of processors which share a cache line.

The �nite-state techniques we have applied do not scale especially well for this

protocol. We have tried explicit state methods (speci�cally our Mur' veri�er) with

techniques such as symmetry reduction, reversible rule reduction [36], and special

veri�cation methods for parameterized families of protocols, as well as BDD-based

techniques [6]. None of these methods has allowed us to verify systems with more than

about 5 list cells, because we do not have a good way of compressing or abstracting

states containing linked lists. However, using the method described here, we have
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veri�ed the protocol for arbitrary or even in�nite numbers of list cells.

3.3.1 The transactions of the protocol

The protocol maintains a circular, singly-linked list of list cell processes, called cells.

There is a special process called head cell which is always in the list. Cells not in

the list may request to be added to the list, and cells in the list may request to be

removed. The cells communicate by sending messages over a network that is reliable,

but does not preserve the sending order of messages.

The network is modeled as a state variable which is a set of messages. Every

message used in the protocol has a �eld src that contains the index of the sending cell,

and a �eld dst that contains the address of the cell to which it was sent. Additional

�elds, old and new, are used in some message types to hold the indices of other cells.

Every cell has state variables for its control state, state, and the index of the next

cell in the list next. When a cell is not in the list, its next variable contains the index

of the cell itself. The next variable of each cell is a speci�cation variable, because the

list structure is important for the correctness of the protocol. The variable state is

an implementation variable. There are also variables associated with the cells to hold

messages that are in transmission.

A cell, other than the head cell, can perform two types of transactions: add and

delete. There is an add i transaction and a delete i transaction for each cell i in the

protocol (i.e., if there are n cells, there are 2n transactions, not 2 transactions). In

the following, let i be the index of the cell initiating the transaction.

An add i transaction can occur when cell i is not in the list, and when the state

of cell i is normal. The cell i will be added at the head of the list. The transaction

consists of three steps:

1. Cell i sends an add message to the head cell; and cell i changes its state to

w head (\wait for head message").

2. The head cell sends a head message containing the next value of the head cell

to cell i. Then the head cell stores i in its next variable.
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3. When cell i receives the head message, it stores the value in the message into

its next variable. Cell i then changes its state back to normal.

The speci�cation state variables consist of the collection of next pointers of the

cells. The add i transaction in the speci�cation inserts cell i at the front of the list,

updating the next variables of the head cell and cell i in a single atomic step.

The commit step for the add i transaction occurs in step 2, which is the �rst

point where a speci�cation variable is modi�ed (next of the head cell). Step 1 only

modi�es implementation variables state and network, so it begins and ends in pre-

commit states for add i. The state between step 2 and 3 is a post-commit state. Step 3

completes the transaction; it is the point where a speci�cation variable changes for the

last time in the transaction. Hence, the state following step 3 is again a pre-commit

state for add i.

A delete i transaction can occur when a cell's next points to a cell other than i

(meaning i is in the list) and its state is normal. The problem with deleting in a

distributed singly-linked list is that there is no easy way for cell i to determine its

predecessor in the list, which is unfortunate since next of the predecessor must be

changed to point to the next of cell i.

The solution to this problem is to have another message pred which circulates

around the list at all times3. When cell i receives the pred message, it can determine

its predecessor by examining the src �eld of the message. So, the steps of the delete i

transaction are:

1. Cell i changes its state to w pred (\wait for pred message").

2. When cell i receives a pred message, it sends a chnext message (\change next")

to the source of the pred message, which is usually the predecessor of i in the

list. The chnext message has i in its old �eld and the next of cell i in its new

�eld. Cell i changes state to w delack (\wait for delete-acknowledgment").

3. When a cell j receives the chnext message there are several possible cases. The

subtleties of these rules handle di�cult scenarios, such that new cells are added

3There is another version of distributed list protocol, in which pred message is generated only
when necessary.
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between cell i and the predecessor, after cell i's receipt of the pred message and

before the receipt of the chnext message.

(a) If the state of cell j is not normal or w pred, the chnext message remains in

the network (progress occurs when some other message arrives at cell j).

(b) Otherwise, if the old �eld of the message matches the next variable of cell

j, the cell changes its next to be the new of the chnext message (next of i).

Then cell j sends a delack message to cell i (src of the chnext message).

Cell j then sends a pred message to its next cell.

(c) Otherwise, cell j forwards the chnext message to its next cell. In this case,

the cell receiving the chnext message is the head cell and one or more new

cells were inserted at the head of the list while cell i was being deleted,

so the predecessor of cell i is now somewhere further down the list. The

true predecessor will eventually receive the chnext, causing the case (b) to

occur.

4. When cell i receives a delack, it changes its next variable to i, and changes state

to normal.

The commit step of the delete i transaction is in case (b) of step 3 above. Step 3

may be repeated several times because of case (c) before a commit occurs, so a

state immediately following step 3(c) is a pre-commit state. Step 4 completes the

transaction.

The speci�cation handles the delete transaction atomically by removing cell i from

the list in the obvious way: it sets the next of the predecessor of i to the next of i,

then sets next of i to i.

The pred message circulates around the list constantly except when it temporarily

disappears during processing of a chnext during a delete transaction, so each cell

has rules for propagating it. However, processing a pred message never a�ects a

speci�cation variable, so there are no transactions associated with it. It is necessary to

reason about the processing of pred messages during the proof of invariants (discussed

below), and also for liveness properties (which are not discussed in this thesis).
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Step Condition Action

Initiate Add i6=headptr ^ next[i]=i Send addhsrc=ii to headptr

^ state[i]=normal state[i] := w head

Process add add sent to headptr Send headhnew=next[headptr]i
to add.src

next[headptr] := add.src

Process head head sent to i next[i] := head.new

state[i] := normal

Initiate Delete i6=headptr ^ next[i]6=i state[i] := w pred

^ state[i]=normal

Process pred pred sent to i if state[i]=normal:

Send predhsrc=ii to next[i]

if state[i]=w pred:

state[i] := w delack,

Send chnexthold=i, new=next[i]i
to pred.src

Process chnext chnext sent to i Send chnext to next[i]

^ chnext.old6=next[i]
^ state[i]2fnormal,w predg

Process chnext chnext sent to i next[i] := chnext.new

^ chnext.old=next[i] Send delack to chnext.old

^ state[i]2fnormal,w predg Send predhsrc=ii to chnext.new

Process delack delack sent to i next[i] := i, state[i] := normal

Table 3.1: Formal description of Distributed List Protocol
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The above description of the protocol traces through individual transactions. It is

easier to make sure that a description is complete if the behavior is described for each

component, not each transaction (and, indeed, the above description is not complete).

Table 3.1 gives the rules of cell behavior in pseudo-code on a per-cell basis.

In the table, the action of a step is executed if its condition holds. Each process

consumes the message that triggers it. A message consists of a record with �elds src,

new, old. When a message is created, we use mhf=a0i to denote that message m has

value a0 for its record �eld f. We use m.f to refer to the value of �eld f in message

m. State variables for cells are kept in the arrays, state and next.

3.3.2 The aggregation function

Here, we de�ne the aggregation function aggr for the distributed list example. The

key question is how to complete all committed transactions in the current state,

especially since the number of cells, and hence the number of committed transactions,

is unknown. The general strategy, which has worked for our larger examples as well,

is to de�ne a per-component completion function, which is then generalized to a

completion function for all of the cells in the system. This is possible because the

post-commit steps of di�erent nodes are generally independent.

It is quite simple to complete a committed transaction for a particular cell. If a

head message destined for cell i exists, an add i transaction must be completed by

simulating the e�ect of cell i processing the head message it receives at the end of

the transaction. This processing changes next to point to the value of the new �eld

in the message. Changes to implementation variables, such as removing messages

from the network, can be omitted from the completion function as they do not a�ect

the corresponding speci�cation state. All of this computation is done solely in cell i,

without the involvement or interference of other cells. If there is a delack message for

cell i, a delete i transaction must be completed by setting next to i. Otherwise, the

completion function does nothing. Figure 3.1 shows completion of an add transaction.

It is easy to generalize the completion function for one cell to a completion function

for all of the cells because the completions do not interact. The global implementation

state is an array of cell state records, indexed by the cell indices. Let cc(q[i]) be a
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completion function for cell i, which modi�es the state variables for i in the record

q[i], and returns a new record of the state variables as modi�ed by the completion of

the transaction.

If cc(q[i]) completes committed transactions on node i, the completion function

for all nodes is �q:�i:cc(q[i]). When this function is supplied a state q, it returns

�i:cc(q[i]),4 which is an array of the completed node states, i.e., the desired clean

global state. The aggregation function is simply the completion function, followed by

a projection which eliminates all implementation variables.

3.3.3 Extracting speci�cation

Reverse engineering of a speci�cation can be illustrated on the distributed list proto-

col. Indeed, we had to do this because there exists no formal speci�cation. Given only

an implementation description, the �rst step is to identify the speci�cation variables.

In the distributed list protocol, we decided that they were the next variables for the

cells. The next step is to trace through a transaction: 1) concatenating the imple-

mentation steps, 2) simplifying by substituting values forward through intermediate

assignments, 3) eliminating statements that only change implementation variables.

For an add i transaction in the protocol, the sequence of steps is \initiate add,"

\process add," and \process head." The result obtained by the procedure is

Atomic Add(i): if i 6= headptr ^ next[i] = i then

next[i] := next[headptr]; next[headptr] := i.

Similarly, a delete i transaction corresponds to the sequence of steps, \initiate delete,"

\process pred," \process chnext," and \process delack." The atomic transaction ob-

tained by aggregation is

Atomic Delete(c; i): if i 6= headptr ^ next[i] 6= i ^ next[c] = i then

next[c] := next[i]; next[i] := i.

4The notation may be a bit confusing. �i:cc(q[i]) is a function, which when applied to a particular
value of i, say i0, returns cc(q[i0]), which is the completed state for node i0. This is e�ectively the
same as indexing into an array of completed node states.
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Implementation step at node i Speci�cation step

Initiate Add(i) "

Process add(i, add) Atomic Add(add.src)

Process head(i, head) "

Initiate Delete(i) "

Process pred(i, pred) "

Process chnext forward(i, chnext) "

Process chnext commit(i, chnext) Atomic Delete(i, chnext.old)

Process delack(i, delack) "

Table 3.2: Correspondence of speci�cation steps with implementation steps in the
distributed list protocol

With the two atomic transactions and idle steps in the speci�cation, we instantiate

the subgoals, Equation (3.4), for each implementation steps. The proper instantiation

for the proof is shown in Table 3.2.

3.3.4 The invariant

The proofs of the subgoals (3.4) corresponding to each row in Table 3.2 are simple.

PVS can handle them almost automatically. Among the eight subgoals, four have been

proved automatically for any state q. The remaining four subgoals cannot be proved

without �rst proving an invariant. Our invariant includes the following properties.

� The head cell is always in normal state.

� If a cell is in normal or w pred state, there is no add message from the cell,

delack message to the cell, or chnext message with old �eld equal to the cell.

� If there is an add message from or head message to a cell i, then the next of

the cell is i.

� In a chnext message, the next of the cell contained in the old �eld of the message

must be the same as the new �eld of the message.

� There is at most one message in the network for each transaction currently in

progress, and there must be no more than one pred message in the network.
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For example, the second subgoal from Table 3.2 can be proved only if the last assertion

is true.

The only manual step occurs when proving subgoals of the form (8j : Inv (j)))

Q(i), where i is a cell index, which requires eliminating the 8j by substituting i for j

to obtain Inv (i)) Q(i); the proof can be completed automatically.

Part of the reason that the proof is simple is that we have chosen to represent the

network in a non-obvious way. We observe that there is at most one message per-

taining to any particular transaction at any time. So the network can be represented

with one variable per cell (sometimes associated with the source, sometimes with the

destination), plus a single variable for the pred message. Hence, instead of proving

that there is only one message of a certain type in the network for cell i at any time,

we register an error whenever a message in a variable for the network is about to be

overwritten, and verify that no error occurs. The description can read a message by

accessing the variable instead of choosing a message from a set of messages, which is

a bit more di�cult to deal with in PVS.

3.4 Majority Consensus Algorithm for

Distributed Multiple Copy Databases

In this section, we apply the veri�cation method to another example, a majority

consensus algorithm for distributed multiple copy databases [64]. This algorithm

is based on a commit-point while updating distributed database so our aggregation

method is suitable for the veri�cation. This algorithm has also been proved in [37].

3.4.1 The algorithm

The algorithm intends to query and update a distributed database while ensuring

consistency. The data in the database is replicated so that each site contains a copy

of each data element in the database. The database copy at each site is accessible only

through a database managing process (DBMP) which resides at that site. Application

processes (APs) submit requests to query the current value of a data element or to
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update a data element. Each access to the database is completed by a DBMP acting

on behalf of the initiating AP.

A problem is to ensure that the database is consistent. The consistency maintained

by the algorithm requires that di�erent copies of data elements contain the same value

except for possible delays in the propagation of changes, and preserve some relations

among data elements within a database. Since several con
icting requests for updates

to a data element can be issued by di�erent APs, the algorithm must choose which

request to grant in consistent ways.

For instance, consider a simple database duplicated at sites A and B that includes

data elements x, y, and z, which all initially have the value 1 in both copies. Further

assume that the relation, x+y+z = 3, must be preserved for the database. Consider

two updates u1 and u2:

u1: x := 0; y := 2

u2: y := 0; z := 2,

each of which preserves the relation based on the initial database state. If u1 and u2

are both applied, regardless of the order of application, the relation of the database

will be violated. Hence one of the requests must be rejected in order to preserve

the relation of the database. In other words, the update request that gets rejected

must be refused because it is based on information made obsolete by the request that

gets accepted. The other requirement of consistency will be destroyed if update u1

is accepted in site A and update u2 is accepted in site B. Therefore, all sites should

make the same decision for concurrently initiated con
icting updates.

The algorithm uses a voting scheme to decide which update request to grant. The

main idea of the algorithm is to pass each update request around among the DBMPs.

Each DBMP votes whether to accept the request or not. An update request is granted

only if a majority of the DBMPs accept it; otherwise it is rejected. Intuitively, this

procedure ensures consistency because for any two consecutive update requests that

are granted, there should be at least one DBMP that accepts both of them in some

order, ensuring that they do not con
ict.

The database consists of a collection of named elements. Each named element has
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a value and a timestamp associated with it. The timestamp of an element represents

the time that the element received its current value. Timestamps are used in two ways:

1) during updates synchronization to ensure the preservation of internal exclusion

locks, and 2) in the procedure followed by a DBMP when it applies an update to its

database copy.

To query the database, an AP sends a query request to a DBMP. The DBMP acts

upon the request by querying its copy of the database and returning the results to

the requesting AP.

Performing updates is somewhat more involved. In general, an AP initiates an

update by �rst performing a computation to generate new values for certain database

elements using database values obtained by one or more queries, and then submitting

an update request to a DBMP which cooperates with the other DBMPs to perform

the update. The update procedure can be decomposed into the following sequence of

steps.

1. Query Database: The AP queries the database to obtain data element values

to use in its update computation. The DBMP responding to the query supplies

the value stored in its copy of the database as well as the timestamp of the

value.

2. Submit Update Request: The AP computes and constructs an update request,

then submits the request to a DBMP.

3. Synchronize Update: The DBMP set cooperates to decide to accept or reject

the request. Each DBMP participating in the decision executes the same voting

procedure, which is explained below in detail. If the request is accepted, the

decision is sent to all sites so that it can be re
ected to all the replicated copies.

4. Apply Update: When a DBMP receives an accepted decision, it updates its copy

if the update is not already obsolete.

5. Notify AP: A DBMP informs the AP how the request was resolved.

The consensus algorithm consists of a voting rule and a resolution rule, which

constrain DBMP behavior in step 3 so that no two con
icting concurrent update
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requests can be accepted. They insure that mutual exclusion is achieved for possibly

con
icting concurrent updates.

The following voting rule is the basis for concurrency control.

3a. Compare the timestamps for the old data in the request with the corresponding

timestamps in the local database copy.

3b. Vote \reject" if the data in the request is obsolete.

3c. Vote \okay" and mark the request as pending if the data is current and there

is no other pending request.

3d. Vote \pass" if the data is current but the request has lower priority than the

pending one. (Update with more recent timestamp of the old value has higher

priority; if the timestamps of the old values are same, update with more recent

timestamp of the new value has higher priority.)

3e. Otherwise, defer voting.

After voting, a DBMP uses the following request resolution rule to check whether

its vote resolved the request. The basic idea is that the request should be accepted if

a majority of the DBMPs have voted okay.

3f. If a vote is \okay" and majority consensus exists, accept the request and notify

all DBMPs and the AP that the request is accepted.

3g. If a vote is \reject," reject the request and notify all DBMPs and the AP that

the request is rejected.

3h. If a vote is \pass" and majority consensus is no longer possible, reject the

request and notify all DBMPs and the AP that the request is rejected.

3i. Otherwise, forward the request with accumulated voting results to other DBMPs

which have not voted.
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3.4.2 Finding an aggregation function

The algorithm implements a single kind of transaction update. However, there can be

a number of such transactions being processed in the system, initiated by each AP.

The speci�cation model may query and update multiple copies of the database

atomically satisfying mutual consistency. Therefore, the speci�cation consists of an

atomic transaction Query & Update and idle steps. A natural choice is to consider

the speci�cation variables to be the local copies of the distributed database.

The transaction is implemented in a number of steps as described above. The

commit step of the transaction is the step which resolves the request as accepted.

Our aggregation function should �nish all the committed transactions in the sys-

tem. For this algorithm, �nishing the committed transactions corresponds to the

steps which process the accepted decisions of requests by updating the local copies.

In terms of a speci�c database site i, the aggregation function simulates processing

all the accepted decisions sent to DBMP i. Although there are possibly a number

of accepted decisions pending to be processed, the aggregation function is simply

equivalent to updating the local database of i to the value with the most recent

timestamp, because processing an accepted decision in step 4 updates the copy, only

if the decision is more recent than the local copy.

3.4.3 Assignments of speci�cation steps

The atomic transaction Query & Update corresponds to the commit step \Decide

Accept" in the implementation. Simply, idle steps correspond to all the other imple-

mentation steps. Table 3.3 shows the correspondences between the implementation

and speci�cation steps, each of which represents a subgoal in the proof.

Rejected requests do not modify any copy of the database. Therefore, a rejected

update maps to idle step in the speci�cation.
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Implementation Step Speci�cation Step

Query "

Submit Update "

Vote Okay "

Vote Reject "

Vote Pass "

Decide Accept Query & Update

Decide Reject "

Process Decision "

Table 3.3: Correspondence of speci�cation steps with implementation steps in the

majority consensus algorithm

3.4.4 Proof

The eight correspondences except for the steps \Decide Accept" and \Process Deci-

sion," are proved without any invariant because the steps do not change the speci�ca-

tion variables. The remaining two correspondences can be proved with the following

properties in the invariant. Let max (i) be the value with the maximum timestamp

of all accepted decisions sent to DBMP i and the local copy in DBMP i.

� For every site i, max (i) should be the same.

� When an update request is accepted, the old value in the update is same as

max (i).

Using the invariants, the algorithm is proved to conform to the speci�cation con-

sisting of the atomic transaction and idle steps.

3.5 Summary

To make it easy to apply the veri�cation procedure, we list typical sequences of

implementation steps in Table 3.4. The three types of sequences which modify dis-

tributed data are commonly observed in protocols. For each type of concrete trans-

action, correspondence of atomic transactions are shown as well as its aggregation
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Transaction Implementation step Speci�cation step In aggr

Type-i I1 Send Request "

I�2 Process Request; Send Reply Atomic Transaction I�3
I�3 Process Reply "

Type-ii I1 Send Request "

I2 Forward Request "

I�3 Process Request; Send Reply Atomic Transaction I�4
I�4 Process Reply "

Type-iii I�1 Update; Send Request Atomic Transaction I�2
I�2 Process Request "

Table 3.4: Applying the aggregation method to typical transactions in distributed
protocols

function aggr . Protocol actions which modify speci�cation variables are marked with

stars.



Chapter 4

Reasoning About Cache

Coherence Protocols

This chapter presents veri�cation of a directory-based cache coherence protocol de-

veloped for the Stanford FLASH multiprocessors. The protocol is brie
y described,

and a �nite-state method is used to verify some properties of the protocol.

Next, the aggregation method presented in Chapter 3 is applied to verify the

protocol with arbitrary numbers of processors. The coherence protocol consisting of

more than a hundred di�erent kinds of implementation steps has been reduced to a

speci�cation with six kinds of atomic transactions. Based on the reduced behavior,

it is very easy to prove crucial properties of the protocol including data consistency

of cached copies at the user level. Moreover, the reduced model allows us to write

a simple executable memory model of the protocol. The aggregation method is also

used to prove that the reduced protocol satis�es a desired memory consistency model.

Section 4.1 discusses various methods applied to the veri�cation of cache coherence

protocols. Section 4.2 describes the FLASH cache coherence protocol in two ways: in

terms of transactions, and per-node based steps. Section 4.3 presents veri�cation of

the protocol using the Mur' �nite-state veri�er. Section 4.4 applies our aggregation

method to the same problem. Using the reduced model, section 4.5 proves that a

speci�c mode supported by the protocol implements sequential consistency memory

model. Finally, section 4.6 presents a simple executable memorymodel for each mode

71
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in the protocol to help the users to analyze their programs running in the FLASH

multiprocessors.

4.1 Veri�cation of Cache Coherence Protocols

In shared-memory multiprocessor architectures, cache coherence protocols maintain

consistency of multiple copies of cached data. The protocols control a number of read-

able and writable copies of each memory line for multiprocessors. Modi�cation of one

copy of a datum may require updating of other copies to maintain consistency among

them. Several coherence protocols have been proposed for distributed multiprocessor

architectures but few are formally veri�ed [4, 5, 67, 9, 47].

Formal veri�cation is very important because there could be subtle design er-

rors as the complexity of protocols increases, especially for large-scale multiproces-

sor systems. Finite-state methods (e.g. [15, 21, 34, 38]) have been used to validate

some cache coherence protocols, including Gigamax [50], IEEE Futurebus+ [11], and

SCI cache coherence protocol [63]. Finite-state methods can solve many veri�cation

problems with little e�ort. However, they are basically limited to �nite-state pro-

tocols. The �nite-state techniques we have applied do not scale especially well for

the implementation-detailed cache coherence protocols. For example, Mur' veri�er

can barely handle the protocols with 3 processors and 2 memory lines, using 100

megabytes of memory in the process.

Symbolic state models proposed by Pong and Dubois [60, 59] use symbolic states

which abstract away from exact number of con�gurations of replicated identical com-

ponents by recording only whether there are zero, one, or more than zero replicated

components. However, Pong & Dubois' method is still limited to �nite size systems

for protocols involving linked lists or data forwarding, and there remains a speci�-

cation problem of the protocol as in model checking: It is not easy to �nd a set of

properties, say in temporal logic or in their notation, which completely describes the

correct behavior of the protocols. Moreover, Pong & Dubois' method requires the

user to write an abstract description of the protocol to be veri�ed, which raises an-

other veri�cation problem: Are the abstract description and the actual protocol are
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equivalent?

Theorem-proving can avoid the above problems owing to the generality obtained

by the use of logic as a formalism. It supports veri�cation of non-�nite systems as

well as hierarchical veri�cation. However, the major problem with theorem proving

is that considerable amount of human e�ort is required. Consequently, previous

theorem proving approaches have not been able to verify a problem of the scale of a

full multiprocessor cache coherence protocol [40]. However, the aggregation functions

introduced in Chapter 3 reduce the required e�ort to a much more reasonable level.

4.2 FLASH Cache Coherence Protocol

This section informally describes the cache coherence protocol used in the Stanford

FLASH multiprocessor [39, 30]. The cache coherence protocol is directory-based so

that it can support a large number of distributed processing nodes. Each cache line-

sized block in memory is associated with directory header which keeps information

about the line. For a memory line, the node on which that piece of memory is physi-

cally located is called home; the other nodes are called remote. The home maintains

all the information about memory lines in its main memory in the corresponding

directory headers.

The system consists of a set of nodes, each of which contains a processor, caches,

and a portion of global memory of the system. The distributed nodes communicate

using asynchronous messages through a point-to-point network. The state of a cached

copy is in either invalid, shared (readable), or exclusive (readable and writable).

4.2.1 Informal description of the protocol

If a read miss occurs in a processor, the corresponding node sends out a get request

to the home (this step is not necessary if the requesting processor is in the home).

Receiving the get request, the home consults the directory corresponding to the

memory line to decide what action the home should take. If the line is pending,

meaning that another request is already being processed, the home sends a nak
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(negative acknowledgment) to the requesting node. If the directory indicates there is

a dirty copy in a remote, then the home forwards the get to that node. Otherwise,

the home grants the request by sending a put to the requesting node and updates

the directory properly. When the requesting node receives a put reply, which returns

the requested memory line, the processor sets its cache state to shared and proceeds

to read.

For a write miss, the corresponding node sends out a getx request to the home.

Receiving the getx request, the home consults the directory. If the line is pending,

the home sends a nak to the requesting node. If the directory indicates there is a

dirty copy in a third node, then the home forwards the getx to that node. If the

directory indicates there are shared copies of the memory line in other nodes, the

home sends invs (invalidations) to those nodes. At this point, the protocol depends

on which of two modes the multiprocessor is running in: Eager or Delayed. In

Eagermode, the home grants the request by sending a putx to the requesting node;

In Delayed mode, this grant is deferred until all the invalidation acknowledgments

are received by the home. If there are no shared copies, the home sends a putx to

the requesting node and updates the directory properly. When the requesting node

receives a putx reply which returns an exclusive copy of the requested memory line,

the processor sets its cache state to exclusive and proceeds to write.

During the read miss transaction, an operation called sharing write-back is neces-

sary in the following \three hop" case. This occurs when a remote processor in node

R1 needs a shared copy of a memory line an exclusive copy of which is in another

remote node R2. When the get request from R1 arrives at the home H, the home

consults the directory to �nd that the line is dirty in R2. Then H forwards the get

to R2 with the source of the message faked as R1 instead of H. When R2 receives the

forwarded get, the processor sets its copy to shared state and issues a put to R1.

Unfortunately, the directory in H does not have R1 on its sharer list yet and the main

memory does not have an updated copy when the cached line is in the shared state.

The solution is for R2 to issue a swb (sharing write-back) conveying the dirty data

to H with the source faked as R1. When H receives this message, it writes the data

back to main memory and puts R1 on the sharer list. Figure 4.1 shows the processing
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Figure 4.1: Processing a read miss (get request) in the FLASH protocol
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a read miss in the protocol.

When a remote receives an inv, it invalidates its copy and then sends an acknowl-

edgment to the home. There is a subtle case with an invalidation. A processor which

is waiting for a put reply may get an inv before it gets the shared copy of the mem-

ory line, which is to be invalidated if the put reply is delayed. In such a case, the

requested line is marked as invalidated, and the put reply is ignored when it arrives.

A valid cache line may be replaced to accommodate other memory lines. A shared

copy is replaced by issuing a replacement hint to the home, which removes the remote

from its sharers list. An exclusive copy is written back to main memory by a wb

(write-back) request to the home. Receiving the wb, the home updates the line in

main memory and the directory properly.

The above description of the protocol traces through individual transactions. How-

ever, the formal description of the protocol is written for each component, not each

transaction, to make sure that the description is complete. Appendix A presents an

English version of the formal description of the FLASH protocol in Eager mode.

4.2.2 Detailed description of the protocol

Each cache line-sized block in main memory is associated with a directory header

which keeps information about the line. The directory header consists of several

boolean 
ags: Local, Dirty, Pending, Head Valid, and List; and two pointers to other

nodes: Head Pointer and Sharer List; and a number of sharers in Real Pointers. The

Local bit indicates if the local processor contains a cached copy of the line in either

shared or exclusive state. The Dirty bit is set if the home thinks that there is a

dirty copy of the line in the system. The Pending bit is set if the current request for

the memory line is being processed by a third node. The Head Valid bit indicates

whether the Head Pointer contains a valid pointer to a node. The Head Pointer entry

is simply a cache pointer that is stored in the directory header as an optimization.

It keeps a pointer to a remote cache with a dirty copy if there is one, or one of the

nodes with a shared copy. The List bit indicates whether Sharer List contains one or
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more pointers. Sharer List is represented abstractly as a set1 of pointers to the nodes

that have a shared copy of the memory line. Real Pointers contains the count of the

number of sharers in the Sharer List. This count excludes the Head Pointer and is

mainly used to count invalidation acknowledgments.

The FLASH protocol consists of a set of rules which are called handlers. Each

handler is pre�xed with NI (Network Interface) or PI (Processor Interface) to indicate

where the requests are generated from. PI handlers are initiated by a requesting

processor and NI handlers are initiated by a message from the network. The additional

notation `Local' or `Remote' indicates whether the processing node is the home of the

requested memory address or not. In the following, some handlers of the protocol for

processing a read miss are listed; the rest of the handlers are shown in Section 4.7.

� PI.Local.Get: this handler describes actions of the home when the local pro-

cessor needs a shared copy of a memory line. If Pending2, the local processor is

naked. Otherwise, if Dirty, the home sends a get request to Head Pointer and

Pending is set. Otherwise, the data in main memory is copied into the local

cache (in shared state) and Local is set.

� NI.Remote.Get: this handler describes actions of a remote receiving a get

request. If the cached data is in the exclusive state, it is changed to shared and

the node sends a put reply to the source (and also swb to the home if the

source is not the home). Otherwise, the node sends a nak to the source and a

nakc to the home.

� NI.Remote.Put: The shared copy is put into the cache.

� NI.SharingWriteback: this handler describes actions of the home receiving a

swb. Dirty and Pending are reset, List is set, Real Pointers is incremented, the

source is added to Sharer List, and the data is written back into main memory.

1The FLASH protocol uses a linked list for sharers (within the home) by dynamic pointer
allocation.

2I.e., the Pending bit is set in the directory.
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4.3 Veri�cation Using A Finite State Method

Most present veri�cation of cache coherence protocols uses �nite-state methods. The

methods model a cache coherence protocol as a �nite state machine and check the

correctness of the protocol by exploring the state space. This section presents the ap-

plication of the Mur' system to veri�cation of the FLASH protocol. The description

language Mur' was explained in Section 2.4.

4.3.1 Data structure and global state

Some of the state variables and the corresponding types used in the description of the

FLASH protocol are shown in Figure 4.2. Type Header is a record consisting of all

the information in directory headers. A processor state ProcState consists of state

variables representing caches, and main memory and their directory headers in the

node. The messages are represented by two types: Request and Reply.

The global state of the system consists of a state variable Procs which is an array

of processor states for each node, and state variables for the network. The point-to-

point network is modeled as an array of incoming message queues, one for each node;

each queue is again an array of messages. The protocol maintains requests and replies

in separate queues, so QNet and PNet models them respectively. The state variable

QNet is an array of queues for request messages, and PNet is an array of queues for

replies.

4.3.2 Transition relations in rulesets

Each handler of the protocol in Section 4.2.2 is written as a Mur' rule, which is

embedded in a ruleset. Each ruleset is parameterized to describe the action for

arbitrary processors. To have a complete description of the system, we must also

describe the behavior of processors which initiate a request when a cache miss occurs.

Such actions are included in PI handlers.

For instance, the ruleset corresponding to PI.Local.Get is shown in Figure 4.3.

The ruleset is a direct translation of the handler. The condition Qspaces of the
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Type

Header : Record

Pending : Boolean; -- is an operation pending on this line ?

Local : Boolean; -- is the line locally cached ?

Dirty : Boolean; -- is the data held dirty ?

Head : Boolean; -- is the head pointer used ?

List : Boolean; -- is the head link used ?

HPtr : Proc; -- head pointer : processor id

Real : 0..NumProcessor; -- number of linked pointers

End;

ProcState: Record

Cache : Array[Proc] of Array[Address] of

Record

Wait : Boolean; -- waiting for cc_put(x)

Invalid : Boolean; -- outstanding request is invalidated

State : CacheState;

Value : Value;

End;

Memory: Array[Address] of Value; -- main memory for each processor

DH : Array[Address] of Header; -- directory header

-- Record for the shared link is omitted.

End;

Request: Record

src : Proc; -- real src of request

Mtype: RequestType;

SRC : Proc; -- src of request (may be faked)

Node: Proc; -- node id of memory address

Addr: Address;

Data: Value;

End;

-- Record `Reply' is similar.

Var -- State Variables

Procs: Array[Proc] of ProcState;

QNet : Array[Proc] of Record Count : 0..QueueSize;

Message: Array[Queue] of Request; End;

PNet : Array[Proc] of Record Count : 0..QueueSize;

Message: Array[Queue] of Reply; End;

Figure 4.2: Global variables and type declarations for FLASH protocol
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Ruleset src : Proc Do -- for any home

Ruleset addr : Address Do -- for any address

Alias Cache : Procs[src].Cache[src][addr] do -- src is the home

Alias Dir : Procs[src].DH[addr] Do -- directory of the line

Rule "PI Local Get"

Cache.State = Invalid & !Cache.Wait -- read miss occurred

& !Dir.Pending -- if pending, NAK to processor in the home

& Qspaces -- there is enough space in the queue

==>

Begin

Assert !Dir.Local "PI Local Get: L = A0";

If Dir.Dirty Then

Assert Dir.Head & ! Dir.List & Dir.Real=0 "PI Local Get: case D=1";

Dir.Pending := true;

Cache.Wait := true;

Send_Request(src, Dir.HPtr, Get, src, src, addr, void);

Else

Dir.Local := true;

Cache.Value := Procs[src].Memory[addr]; -- send CC_Put

Cache.State := Shared;

End;

End;

End; End; End; End;

Figure 4.3: The ruleset corresponding to PI.Local.Get
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rule requires the rule be enabled only when there is enough space in the network.

This is because the description is for a �nite state system, where the size of the

incoming bu�er should be �nite. The procedure Send Request() sends a message to

the destination by putting it in the incoming bu�er of the destined node.

4.3.3 Speci�cation of the protocol

The following properties are speci�ed and checked by the Mur' veri�er.

S1. For any memory line, there is at most one exclusive cached copy.

S2. If a shared cached copy contains a value di�erent from that in main memory,

there should be a message, inv, swb, or put for the memory line waiting to be

processed.

S3. If a processor owns an exclusive cached copy of a memory line, then there is no

outstanding request for the line from the processor.

S4. There is no message with destination and source for a same node.

S5. For any directory header, if List is false and Real Pointers > 0, then Pending is

true.

S6. For any directory header, if Head is false, then List is false.

S7. For any directory header, if List is true, then Real Pointers > 0.

L1. For any directory header, if Pending is set, then it should be reset eventually.

L2. For any cache line in a processor, if the processor is waiting for a reply, then it

should get it eventually.

Safety properties S1 to S3 are for the consistency of cached copies. The property

S4 is a simple assertion on the messages in the network. The properties S5 to S7

are assertions on the state in the directory headers, which are also speci�ed in the

protocol documentation. A couple of liveness properties are shown in L1 and L2.
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# of # of Data Size of # of Time Memory
proc's addr's included queue states consumption consumption

2 1 No 3 476 2 sec 5.7 Kbyte

2 1 Yes 3 2.6 K 13 sec 36 Kbyte

3 1 No 3 53 K 7 min 1.1 Mbyte

3 1 Yes 3 549 K 1.5 hr 13 Mbyte

3 1 Yes 4 715 K 2.5 hr 21 Mbyte

3 1 Yes 5 800 K 3.7 hr 30 Mbyte

4 1 No 3 � 2.8 M � 11 hr � 100 Mbyte

3 2 No 3 � 2.7 M � 5.3 hr � 100 Mbyte

Table 4.1: Time and memory space required for the state exploration using Mur'

As mentioned before, it is not easy to �nd complete correctness conditions for

cache coherence protocols, because it requires encoding a full memory model in a

given speci�cation language. The above properties might be a subset of complete

speci�cation. This problem will disappear when we apply the aggregation method in

the next section.

4.3.4 State explosion problem

The safety and liveness properties above are checked by the Mur' veri�er. Running

the automatic veri�er has been very useful and e�ective to capture errors rapidly.

Many description errors were found and �xed by verifying with Mur'.

However, due to the �niteness constraint of the state exploration method, the

system that can be completely explored turned out to be quite small|no more than

3 processors. Table 4.1 shows time and space consumed for the veri�cation of �nite-

sized models of the protocol in Eager mode. The numbers are obtained running

the veri�er on SPARC Station 20 with symmetry reduction features. As shown in

the table, the state space increases exponentially as the number of components of the

system increases. Therefore, the method is limited to small models of the protocol,

with partial speci�cations.

Two common simpli�cations are used. First, the description includes only a small

number of processors and memory addresses. Unfortunately, this could be a serious
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limitation because errors can go undetected in such small-scale models. Since the ac-

tions in the protocol do not interact between di�erent memory addresses, simplifying

the model with a single memory address would be reasonable. However, the small

number of processors may hide a number of possible bugs. The simpli�ed model with

2 processors are not so meaningful because some of transactions such as three hop

cases involve at least three processors. The model with 3 processors still may not be

enough, because a fourth processor whose request is rejected could stimulate behavior

that is not seen with 3 processors.

The small size of the incoming message queues is another limitation. Because some

of actions generate two messages to a node, a message queue size of 3 may restrict

consecutive actions to a speci�c node, potentially resulting in overlooked errors.

The other simpli�cations are that the values of cached copies are not tracked and

the property of data consistency is formulated on the states of caches only. Either

of these simpli�cations could lead to inaccurate veri�cation results. To avoid such

�niteness constraints and prove the protocol with unlimited number of sources, we

apply the aggregation method in the next section.

4.4 Veri�cation By Aggregating Distributed

Transactions

Although Mur' is useful for debugging protocols, the previous section has revealed

some de�ciencies: state explosion problem and speci�cation problem. These problems

are solved by using the aggregation method of Chapter 3.

Using the aggregation method, we have formally veri�ed the protocol at the level of

its formal description [56]. The protocol consisting of more than a hundred di�erent

implementation steps has been reduced to a model with only six kinds of atomic

transactions. Based on the reduced atomic behavior, it is very easy to reason about

the protocol, checking safety properties and data consistency of cached copies.

In the following, we illustrate how the protocol is reduced to an atomic model by

an aggregation function. The detailed proofs are con�rmed by a theorem prover and
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some techniques to simplify the proof are presented.

4.4.1 Extracting reduced model of the protocol

Veri�cation requires two descriptions of same behavior: an implementation and a

speci�cation. Sometimes, there is an a priori speci�cation as in the memory model

veri�cation in the next section. However, in most practical instances, there is only an

implementation. In such cases, we extract a reduced model of the implementation us-

ing aggregation. The reduced model captures concise behavior of the implementation

and serves as a speci�cation.

Recall from Chapter 3 that to use the aggregation method, we �rst decide which

state variables should be considered speci�cation variables. In cache coherence pro-

tocols, the consistency of multiple copies of a memory line is a function of the values

and states of cached copies, and the corresponding value in main memory. Therefore,

the speci�cation variables should be the state variables representing the data and

states of cached copies and the data in main memory.

We construct a reduced model of the protocol, which we use for a speci�cation.

The reduced model is a much simpler version of the protocol which reads and writes

only the speci�cation variables. The speci�cation steps update the values and states

of cached copies in multiple nodes atomically.

The reduced model of the protocol is shown in Table 4.2. Atom-WB invalidates

an exclusive copy and writes back the data to main memory atomically. Atom-INV

simply invalidates a shared copy. There are two kinds of transactions for a read miss:

Atom-Get-1 corresponds to the transaction that the home grants a shared copy to the

requester when there is no dirty copy of the memory line; Atom-Get-2 corresponds

to the transaction that a node with an exclusive copy grants a shared copy. For the

transaction for a write miss, Atom-GetX-1 sends an exclusive copy of a memory line

from the home if there are no other copies in remotes; Atom-GetX-2 transfers an

exclusive ownership from a dirty node to the requester.
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Condition Atomic Action

Atom-WB cache[p][a].state=exclusive cache[p][a].state := invalid

(p; a) memory[a] := cache[p][a].data

Atom-INV cache[p][a].state=invalid cache[p][a].state := invalid

(p; a) _ cache[p][a].state=shared

Atom-Get-1 :9i : cache[i][a].state=exclusive cache[p2][a].state := shared

(p2; a) cache[p2][a].data := memory[a]

Atom-Get-2 cache[p1][a].state=exclusive memory[a] := cache[p1][a].data

(p1; p2; a) ^ p1 6=p2 cache[p1][a].state := shared

cache[p2][a].state := shared

cache[p2][a].data := cache[p1][a].data

Atom-GetX-1 :9i : cache[i][a].state=exclusive cache[p2][a].state := exclusive

(p2; a) ^ (:9i : cache[i][a].state=shared cache[p2][a].data := memory[a]

^ i6=p2)�

Atom-GetX-2 cache[p1][a].state=exclusive cache[p1][a].state := invalid

(p1; p2; a) ^ p1 6=p2 cache[p2][a].state := exclusive

cache[p2][a].data := cache[p1][a].data

* additional constraint for Delayed mode.

Table 4.2: Reduced model of the FLASH protocol obtained by aggregation of dis-
tributed transactions

4.4.2 Commit steps

To de�ne the aggregation function aggr , we should �rst identify the commit steps of

each transaction in the protocol. The transaction for a read miss begins with sending

a get request to the home. Depending on the directory state of the memory line, the

request may be forwarded to a remote which contains a dirty copy of the line. These

steps do not modify the speci�cation variables, so they are pre-commit steps of the

transactions. The transaction for a write miss is similar.

The commit step occurs when the home, or a remote with an exclusive copy, sends

a put or putx reply, granting the request. In each case, the state of the cache line or

main memory in the granting node is modi�ed. Any future request for the memory

line is processed as if the committed reply had been processed by the requesting node,

even if that has not actually happened. For instance, if a getx request arrives at

the home from R1 right after a grant of an exclusive ownership to R2, the home

forwards the getx to R2 regardless of whether the putx sent to R2 has arrived there



86 Chapter 4. Reasoning About Cache Coherence Protocols

or not. If a request is naked, then there is no change in speci�cation variables by the

transaction, so, in e�ect, no action occurs.

The write-back transaction begins with invalidating an exclusive copy and sending

a wb request to the home. This is the commit step of the transaction because the

state of cached data, a part of the speci�cation variables, is already updated at this

moment and the write-back request can not be denied by the home. The invalidation

transaction is similar to this case.

4.4.3 Aggregation function

Once a transaction is committed, the aggregation function aggr simulates the post-

commit steps of the transaction to complete it. The post-commit steps in the protocol

are the steps that process a put and swb for a read miss, and that process a putx

for a write miss, and that process a wb for a write-back. Therefore, to complete all

the committed transactions, the aggr should process all the messages of types put,

putx, wb, and swb.

The key question is how to complete all committed transactions in the current

state, especially since the number of distributed nodes, and hence the number of

committed transactions, is unknown. The same strategy as in the distributed list

protocol in Chapter 3 works for the FLASH as well. We �rst de�ne a per-node

completion function for a node indexed by variable i; the per-node function is then

generalized to de�ne a completion function for all of the nodes in the system.

It is quite simple to complete a committed transaction for a particular node. If

a put message destined for node i exists, the transaction for a read miss in node

i must be completed by simulating the e�ect of node i processing the put message

it receives at the end of the transaction: putting the data in the message into its

cache and setting the state to shared. The transaction for a write miss is similarly

completed by processing a putx to node i. If node i is the home, there are two more

kinds of messages possibly generated at commit steps: swb and wb. Note that there

exists at most one message of the four types destined to a particular node at any

time.

This processing changes values and states of cached copies, and values in main
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Implementation (Protocol) Steps

Specification Steps

Request Get Process Get (Grant) Process Put

Idle Action Idle ActionAtomic Copy

Process
Put, PutX,
WB, ShWB

Impl(i) Impl(j)

Spec(i’) Spec(j’)

Process
Put, PutX,
WB, ShWB

Process
Put, PutX,
WB, ShWB

Process
Put, PutX,
WB, ShWB

Process
Put, PutX,
WB, ShWB

Figure 4.4: Step simulation for processing a get request in the FLASH protocol

memory. Changes to implementation variables, such as removing messages from the

network, and resetting the waiting 
ag in the processor can be omitted from the

completion function, as they do not a�ect the corresponding speci�cation state. All

of this computation is done solely in node i, without the involvement or interference

of other nodes.

As shown in Chapter 3, it is easy to generalize the per-node completion function

to a completion function for all of the nodes because the completions do not interact.

The completion functions are simply performed in parallel.

4.4.4 Speci�cation steps

The speci�cation steps corresponding to implementation steps are simply idle tran-

sitions for pre-commit steps and post-commit steps. The only non-idle actions are

those which correspond to the commit steps of actions. Figure 4.4 shows the step

simulation for processing a get request. The steps in boldface correspond to the

transaction and they may be interleaved with the steps for other transactions.

A complete assignment of atomic actions of the reduced model to the implemen-

tation steps of the protocol is shown in Table 4.3. Each pair corresponds to a subgoal

(3.4) in Section 3.2. The condition of an atomic action should be true at the corre-

sponding commit step in the implementation, which is included in the invariant of

the system.
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Protocol Step at Node p Atomic Transaction (Speci�cation)

PI.Local.Get.else "

PI.Local.Get.put Atom-Get-1(home)

PI.Remote.Get (at node p) "

PI.Local.GetX.else "

PI.Local.GetX.putx Atom-GetX-1(home)

PI.Remote.GetX (at node p) "

PI.Local.PutX Atom-WB(home)

PI.Remote.PutX (at node p) Atom-WB(p)

PI.Local.Replace Atom-INV(home)

PI.Remote.Replace (at node p) Atom-INV(p)

NI.NAK "

NI.NAK.Clear "

NI.Local.Get.else "

NI.Local.Get.put Atom-Get-1(get.src)

NI.Local.Get.put.ex1 Atom-Get-2(home, get.src)

NI.Local.Get.put.inv2 Atom-Get-1(get.src);

Atom-INV(get.src)

NI.Local.Get.put.ex.inv Atom-Get-2(home, get.src);

Atom-INV(get.src)

NI.Remote.Get.else (at node p) "

NI.Remote.Get.put (at node p) Atom-Get-2(p, get.src)

NI.Remote.Get.put.inv2 (at node p) Atom-Get-2(p, get.src);

Atom-INV(get.src)

NI.Local.GetX.else "

NI.Local.GetX.putx Atom-GetX-1(getx.src)

NI.Local.GetX.putx.ex1 Atom-GetX-2(home, getx.src)

NI.Remote.GetX.else (at node p) "

NI.Remote.GetX.putx (at node p) Atom-GetX-2(p, getx.src)

NI.Local.Put "

NI.Remote.Put "

NI.Local.PutXAcksDone "

NI.Remote.PutX "

NI.Inv (at node p) Atom-INV(p)

NI.InvAck "

NI.WB "

NI.FAck "

NI.ShWB "

NI.Replace "

Table 4.3: Correspondence of protocol steps with atomic transactions (Eager mode)
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In the FLASH protocol, some handlers perform commit steps in some cases and not

in others. In order to establish the necessary correspondence between implementation

steps and speci�cation steps in a proof of property (3.4), we need to split these

handlers into multiple transition functions, each of which either always commit or

never commit. For example, the PI.Local.Get handler simplynaks the local processor

if the requested line is pending (pre-commit step), or sends a request to a remote if

there is a dirty copy (pre-commit step), otherwise, it updates the state and data of

the local cache which are speci�cation variables (commit step). In the �rst two cases,

the reduced model should take idle transitions, but in the last case, an Atom-Get

transaction should be taken.

The PI.Local.Get handler is decomposed into two di�erent transition functions

PI.Local.Get.else and PI.Local.Get.put with disjoint enabling conditions, where the

�rst includes the pre-commit steps, and the latter corresponds to the commit step.

Other handlers are decomposed in the same manner, if necessary. In Table 4.3, the

protocol steps named with su�x `ex' (with superscript 1) correspond to the decom-

posed handlers when the home holds an exclusive copy. The protocol steps named

with su�x `inv' (with superscript 2) correspond to the decomposed handlers when

the requesting node is invalidation marked. Note that these decompositions do not

change the original protocol implementation.

Table 4.3 lists all the transition functions of the protocol in Eager mode and the

corresponding atomic transactions of the reduced model. The atomic transactions are

listed with properly instantiated parameters. The table for Delayed mode would

be the same as Table 4.3 except that ownership transfer (GetX-Atom) corresponds

to the protocol step which processes the last invalidation acknowledgment.

4.4.5 Invariant

As mentioned in Section 3.2, we need an invariant which contains several assertions

to prove the subgoals. The subgoals corresponding to pre-commit steps are simply

proved to be valid because the speci�cation variables are not modi�ed at all. PVS

can handle them automatically. However, some of the other subgoals need some

assertions about the system to satisfy the commutativity requirement. The theorem
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prover guides the user to �nd such assertions.

To check those assertions, we write an invariant which is the logical \and" of

the assertions, and prove that it is preserved by every step of the protocol. If the

invariant is not strong enough to be preserved by all the implementation steps, we

need to strengthen it. Although not intellectually di�cult, this was the most time-

consuming part of the proof.

The invariant we eventually derived includes the following assertions.

For each memory line:

� There is at most one exclusive copy.

� There is at most one message to each node of type put, putx, wb, or swb.

� If a node contains an exclusive copy, then there is no put to the home and no

putx, wb, or swb to any node.

� If there is a putx message being processed, then there is no put to the home

and no wb or swb, and no other putx to any node.

� A node is waiting for a put reply if there is a get request from the node, a

put reply to the node, or an invalidation marked.

� A node is waiting for a putx reply if there is a getx request from the node, or

a putx reply to the node.

� If Dirty in the directory header is false, there is no exclusive copy, no put to

the home, and no putx, wb, or swb to any node.

� If Pending in the directory header is false, then there is no put, putx, swb,

fwak, get, getx to the home, no forwarded get or getx, no nakc or inv

to any node.

� The cache state in the home is in invalid if Local is false, or Pending is true and

Dirty is false.
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4.4.6 Tricks for using a theorem prover

The tricks used in the distributed list protocol also work for the FLASH protocol. To

make the computer-assisted proofs fast, we have chosen to represent the network in

a non-obvious way. We observe that there is at most one request/reply message for

a memory line pertaining to any particular node at any time. So the network can be

represented with one variable per node per memory line (sometimes associated with

the source, sometimes with the destination) for relevant kinds of messages. Hence,

instead of proving that there is only one message of a certain type in the network for

node i at any time, we register an error whenever a message in a variable is about to

be overwritten, and verify that no error occurs.

4.5 Delayed Mode Conforms to Sequential Con-

sistency Memory Model

As mentioned before, the FLASH protocol supports two memory model modes: Ea-

ger and Delayed. The di�erence between the two modes lies in when the reply is

sent for a getx request of a processor trying to write. In Eager mode the reply

can be sent before all the invalidation acknowledgments have been collected, while

Delayed mode only sends the reply after invalidation acknowledgments have been

collected. Therefore, Eager mode supports a more aggressive memory model which

grants exclusive ownership when there are still old copies valid for reads. This di�er-

ence is visible to users and may a�ect the correctness of synchronization code.

In this section, we show that the Delayed mode implements the sequential con-

sistency memory model [42], if the processors execute instructions in a sequential

order one at a time, stalling at each cache miss [26]. For the proof, we use the ag-

gregation method again. This time, the reduced behavior of Delayed mode shown

in Table 4.2 is considered the implementation instead of the speci�cation as in the

proof of Section 4.4, and the speci�cation is a state graph that models a collection of

processors doing atomic loads and stores. The composition of two aggregation func-

tions is an aggregation function, so this also implies the existence of an aggregation
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Delayed Memory Model Sequential Consistency

Load Delayed Load SC

register[p][r] := memory[a]

Store Delayed Store SC

memory[a] := register[p][r]

Atomic Actions of

Delayed Mode in Table 4.2 "

Table 4.4: Delayed mode conforms to Sequential Consistency memory model

Condition Action

Load Delayed cache[p][a].state = shared _ register[p][r] := cache[p][a].data

cache[p][a].state = exclusive

Store Delayed cache[p][a].state = exclusive cache[p][a].data := register[p][r]

Atomic Actions of

Delayed Mode See Table 4.2 See Table 4.2
in Table 4.2

Table 4.5: Reduced model of the FLASH protocol in Delayed model

function from the full protocol to a sequential consistency memory model.

The sequential consistency memory model is speci�ed in the right column of Ta-

ble 4.4. The model consists of two transactions Load SC and Store SC which read

and write data between the registers and main memory, atomically. The speci�cation

variables model the main memory and registers. The caches are now implementation

variables, which are not visible to the memory model speci�cation.

In order to model registers in the implementation, we add a couple of steps

to the reduced model which load and store a cached copy respectively. The step

Load Delayed in Table 4.5 simulates a processor loading a memory location by read-

ing a cached datum into a designated register if the copy is in a shared or an exclusive

state. The step Store Delayed simulates a processor storing a memory location by

writing a datum into a cache line if it has an exclusive ownership of the memory line.

The commit step of the load transaction in the protocol is Load Delayed and that

of the store transaction is Store Delayed. The aggregation function should simulate
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a delayed update of main memory by immediately writing back an exclusive copy,

if it exists. Table 4.4 shows correspondence of speci�cation steps with each step of

the reduced model for Delayed mode. All the rest six steps correspond to idle

transitions.

The proof involves proofs of property (3.4) for eight implementation transition

functions with the following invariant of the system: if a cached line is in shared

state, then main memory has a same data as in the cache and there is no exclusive

copy; and there exists at most one exclusive copy. It is easy to see that the invariant

is true in the system which consists of the eight transitions of the reduced model for

Delayed mode.

What have we really proved? The composition of the two aggregation functions,

from FLASH to the reduced model to sequential consistency, may be extended in-

ductively to sequences of steps. If a multiprocessor program is executed on FLASH,

the execution will contain interleaved steps of various memory transactions. This

function maps a sequence of steps on FLASH to a sequence of high-level memory

transactions (and idle steps) in our model of sequential consistency. Since the ag-

gregation function preserves the speci�cation variables for the memory and processor

registers unchanged between transactions, the visible result of a terminating program

on FLASH is guaranteed to be the same as the result on the sequential consistency

model.

4.6 Executable Memory Models

We have proved that theDelayedmode implements the sequential consistency mem-

ory model. However, there does not exist a well-de�ned memory model for Eager

mode, though we know that Eager mode supports a weaker memory model than

sequential consistency. Moreover, the di�erent behavior between the memory models

is important to the users, especially to programmers, because the outputs of programs

could be di�erent depending on the modes the multiprocessor is running in.
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In Chapter 2, we have developed executable descriptions of memory models, de-

rived from axiomatic speci�cations of memory models. We can apply the same tech-

nique for this protocol using the reduced behavior of the FLASH protocol in Table 4.2.

The executable description automatically generates all the possible outcomes of test

programs so that we can analyze the programs running on the two di�erent modes of

the protocol.

We write the executable model using a high-level description language for �nite-

state concurrent systems called Mur'. The description consists of a set of rules,

each of which has an enabled condition and atomic action statements. Execution

of a Mur' program begins with one of a set of initial states speci�ed by the user.

Then the following loop is executed forever: some rule whose condition is satis�ed

by the current state is chosen and its action evaluated, yielding a new current state.

If there are no rules whose conditions are true, the execution halts. When several

rule conditions are true at the same time, a choice is made arbitrarily, resulting in

several possible executions. The Mur' veri�er tries them exhaustively by depth-�rst

or breadth-�rst search. It can print out the value of system variables at user-speci�ed

points while exploring all the reachable states of the system.

We present a simple test program which shows di�erent behavior between the two

modes of the protocol.

Proc[0] : st #1, A; ld B, %r1;

Proc[1] : st #1, B; ld A, %r2;

The following is excerpted from the Mur' description for the above test program.

Rule -- Proc[0] does < st #1, A >

pc[0] = 0 & cache[0][A].state = exclusive -- condition to store

==> begin store(0, 1, A); end; -- stores the value into memory

Rule -- Proc[0] does < ld B, %r1 >

pc[0] = 1 & cache[0][B].state != invalid -- condition to load

==> begin load(0, B, r1); end; -- loads the data in memory to the register

-- Other rules are omitted.
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Rule

`condition that pc[0], pc[1] are in final state'

==> begin `print out memory and registers'; end;

The list of all possible outcomes of the test program generated by the description

is shown below. As expected, the output of Delayed mode is equivalent to that of

the sequential consistency memory model. The output of Eager mode is a superset

of the that of Delayed mode; the �rst output of Eager mode is not possible in

Delayed mode. This con�rms that Eager mode supports a weaker memory model

than sequential consistency. The results of other test programs demonstrates that the

memory model with FLASH protocol in Eager mode is as weak as the PSO SPARC

memory model.

EAGER:: A:1 B:1 r1:0 r2:0

EAGER:: A:1 B:1 r1:0 r2:1 DELAY:: A:1 B:1 r1:0 r2:1

EAGER:: A:1 B:1 r1:1 r2:0 DELAY:: A:1 B:1 r1:1 r2:0

EAGER:: A:1 B:1 r1:1 r2:1 DELAY:: A:1 B:1 r1:1 r2:1

4.7 Detailed description of FLASH protocol

(EAGER mode)

This section contains a complete list of the handlers of the FLASH protocol in Eager

mode.

� PI.Local.GetX: this handler describes actions of the home when the local

processor needs an exclusive copy. If Pending, the processor is naked. Other-

wise, if Dirty, the home sends a getx request3 to Head Pointer and Pending

is set. Otherwise, the data in main memory is copied into the local cache (in

exclusive state) and Local and Dirty are set. In the last case, if Head Valid,

3The original protocol uses a di�erent request upgrade for an exclusive copy, rather than using
getx, when the cache has a shared copy. The reason is to enhance performance by avoiding unnec-
essary data transfer. However, the two requests are processed in the same manner except whether
the reply contains the cached data or not. We did not model the upgrade request in the veri�ed
description.
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which indicates there are shared copies in remote nodes, the home sends invs to

Head Pointer and the nodes in Sharer List, Pending is set, Head Valid is reset,

and the number of invalidations is written in Real Pointers.

� PI.Remote.Get(X): this handler describes actions of a remote node when the

processor needs a shared (or an exclusive) copy. The remote sends a get (or

getx) request to the home.

� PI.Local.PutX: this handler writes back a cached exclusive copy in the home.

Dirty is reset (and Local, if not Pending) and the cached copy to the main

memory is written back.

� PI.Remote.PutX: this handler writes back a cached exclusive copy in a re-

mote. The remote sends a wb request to the home.

� PI.Local.Replacement: this handler replaces a shared copy in the home.

Local is reset.

� PI.Remote.Replacement: this handler replaces a shared copy in a remote.

The remote sends a rpl request to the home.

� NI.NAK: this handler describes actions of a node receiving a nak reply. The

processor clears its waiting 
ag and invalidation mark.

� NI.NAKC: this handler describes actions of the home receiving a nak clear

(nakc). Pending is reset.

� NI.Local.Get: this handler describes actions of the home receiving a get

request from a remote. If Pending, the home sends a nak to the source. Oth-

erwise, if Dirty and not Local, Pending is set and the home forwards the get

to Head Pointer with source faked as the original requester. Otherwise, if Dirty

and Local, then writes back the exclusive copy in the local cache to main mem-

ory, sends a put reply to the source, and Dirty is reset, Head Valid is set, and

Head Pointer is set to the source. Otherwise, the home sends a put reply to

the source; If Head Valid, List is set, Real Pointers is incremented, the source
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is added to Sharer List. If not Head Valid, Head Valid is set, Head Pointer is

set to the source.

� NI.Local.GetX: this handler describes actions of the home receiving a getx

request from a remote. If Pending, the home sends a nak to the source. Oth-

erwise, if Dirty and not Local, then Pending is set and the home forwards the

getx to Head Pointer with source faked as the original requester. Otherwise,

if Dirty and Local, the home sends a putx reply to the source with the ex-

clusive data from the local cache, and Local is reset, Head Valid is set, and

Head Pointer is set to the source. Otherwise, the home sends a putx to the

source with the data in main memory.

In the last case, if not Dirty and Head Valid, Dirty is set, List is reset, and if

Head Pointer is not equal to the source, Pending is set, and the home sends

an inv to the Head Pointer, and Head Pointer is set to the source. If Local,

invalidates the local copy, and if List, the home send invs to all the nodes in

Sharer List and set Real Pointers to the number of invalidations. Otherwise, if

not Dirty and not Head Valid, Head Valid and Dirty are set, Local is reset, and

Head Pointer is set to the source.

� NI.Remote.GetX: this handler describes actions of a remote node receiving a

getx request. If the cached data is in exclusive state, it is invalidated and the

node sends a putx reply to the source (and a forward acknowledgment fwak

to the home if the source is not the home). Otherwise, the node sends a nak

to the source and a nakc to the home.

� NI.Local.Put: this handler processes a put reply to the home. Local is set,

Dirty and Pending are reset, and the shared copy is put into the local cache.

� NI.Local.PutX: this handler processes a put reply to the home. Local is set,

Head Valid and Pending are reset, and the exclusive copy is put into the local

cache.

� NI.Remote.PutX: The exclusive copy is put into the cache.
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� NI.Inval: Receiving a inv, the remote invalidates the cached copy and sends

an invak to the home. If the node was waiting for a put(examining its waiting


ag), it marks the line invalidated.

� NI.InvalAck: this handler describes actions of the home receiving an invak.

Real Pointers is decremented. If it reaches to zero, Pending is reset (and Local

if not Dirty).

� NI.Writeback: this handler describes actions of the home receiving a wb

request. Dirty and Head Valid are reset and the data is written back into the

main memory.

� NI.ForwardAck: this handler describes actions of the home receiving a fwak.

Pending is reset. If Dirty, Head Pointer is set to the source.

� NI.Replacement: this handler describes actions of the home receiving a rpl.

The source is removed from Sharer List if found and Real Pointers is adjusted.
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Conclusion

This chapter summarizes the thesis and proposes possible lines of future research.

5.1 Summary

5.1.1 Executable memory models

As an alternative formal speci�cation of multiprocessor memory models, we wrote an

executable model using a simple general-purpose description language for concurrent

systems. We presented some techniques for writing the executable description in

Mur' and using its automatic veri�er to analyze programs running under the speci�ed

memory model.

The description provides a precise speci�cation of the machine architecture, both

for hardware implementors and programmers. We believe that this type of executable

description strikes an appropriate balance between formality and understandability

by programmers and machine architects.

Moreover, the availability of an automatic veri�cation tool allows users to exper-

iment with the e�ects of the memory model on small assembly-language routines.

Also, as we have learned in this experiment, developing an executable description

and running the veri�er can be very e�ective at clarifying the subtle details of the

models and synchronization routines.

99
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We participated in de�ning Relaxed Memory Order of SPARC Version 9 Archi-

tecture. We wrote an executable memory model and used the proposed automatic

analysis techniques during the design procedure. Our approach to memory model

speci�cation and analysis turned out to be very helpful to the SPARC-V9 design

team.

5.1.2 Veri�cation of cache coherence protocols

We proposed a veri�cation method for cache coherence protocols and distributed

algorithm. The method provides an easy and systematic way to �nd an aggrega-

tion function used for veri�cation. The method substantially reduces the amount of

labor required, so it signi�cantly extends the capability of computer-assisted theorem-

proving for cache coherence protocols. Owing to the generality of the higher-order

logic we used as a formalism, we have been able to validate protocols with an arbitrary

number of processors.

The method has been successfully applied to the veri�cation of the FLASH directory-

based cache coherence protocol, which is too large and complicated to prove using a

�nite-state method. The protocol consisting of more than a hundred implementation

steps has been reduced to a speci�cation with six kinds of atomic transactions. Based

on the reduced behavior, it is very easy to prove crucial properties of the protocol

including data consistency of cached copies at the user level. Moreover, the reduced

model allows us to write a simple executable memory model of the protocol. The

aggregation method is also used to prove that the reduced protocol conforms to the

corresponding memory consistency model.

For several years, we had believed that proving the correctness of protocols of the

complexity of the FLASH cache coherence protocol was well beyond the capability of

a general-purpose theorem prover. The aggregation method has broken through this

barrier.

The proposed veri�cation procedure is not only for cache coherence protocols but

also has been applied to other protocols, which are simple but non-trivial: a majority

consensus algorithm for multiple copy databases, and a distributed list protocol.
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5.2 Future Research

There are many memory models besides those we have formalized. It would be useful

to try writing executable speci�cations for them, to see if the same methods used for

the SPARC models work well for them.

The aggregation method as described can be applied to many protocols, we have

only tried a few. It may need to be generalized and many generalizations are con-

ceivable: multiple commit points and reversing transactions instead of completing.

The aggregation method can be further automated to even greater advantages.

We want more automation in de�ning an aggregation function, �nding invariants of

a system, and detailed proofs. From this and many other e�orts, it has become clear

that �nding invariants is the most time consuming part of many veri�cation problems.

More computer assistance is needed, especially for large problems.

We have not considered the important problem of proving liveness properties here.

However, showing liveness using strong fairness assumption is not di�cult, because

the implementation steps for each action in the protocol are successively enabled in

a sequence. We plan to �nd more systematic ways to prove liveness properties.
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