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Abstract

Due to large remote-memory latencies, reducing the impact of cache misses is critical for
large scale shared-memory multiprocessors. This thesis quantitatively compares two
classes of software-controlled prefetch schemes for reducing the impact: consumer-ori-
ented and producer-oriented schemes. Examining the behavior of these schemes leads us
to characterize the communication behavior of parallel application programs.

Consumer-oriented prefetch has been shown to be effective for hiding large memory
latencies. Producer-oriented prefetch (called deliver), on the other hand, has not been
extensively studied. Our implementation of deliver uses a hardware mechanism that tracks
the set of potential consumers based on past sharing patterns. Qualitatively, deliver has an
advantage since the producer sends the datum as soon as, but not before, it is ready for
use. In contrast, prefetch may fetch the datum too early so that it is invalidated before use,
or may fetch it too late so that the datum is not yet available when it is needed by the con-
sumer. Our simulation results indeed show that the qualitative advantage of deliver can
yield a slight performance advantage when the cache size and the memory latency are
very large. Overall, however, deliver turns out to be less effective than prefetch for two
reasons. First, prefetch benefits from a “filtering effect,” and thus generates less traffic
than deliver. Second, deliver suffers more from cache interference than prefetch. The shar-
ing and temporal characteristics of a set of parallel applications are shown to account for
the different behavior of the two prefetch schemes. This analysis shows the inherent diffi-
culties in predicting future communication behavior of parallel applications from recent
history of the application behavior. This suggests that cache accesses involved with coher-
ency in general are much less predictable based on past behavior than other types of cache
behavior.

Key Words and Phrases: prefetching, latency hiding, data sharing, cache coherency,
shared-memory multiprocessors.
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1

Chapter 1

Introduction

Reducing the impact of memory latency is a key issue for shared-memory multiprocessor

systems. In shared-memory multiprocessors, inter-processor communication implicitly

occurs by memory accesses. Since memory modules are typically distributed among pro-

cessor nodes in large-scale systems, processors need to access remote memory to commu-

nicate with other processors. Thus, communication can stall processors for long-latency

memory accesses and offset the performance gain due to parallel processing. As the num-

ber of processors increases, moreover, the communication latency generally increases.

Several techniques to reduce the impact of memory latency have been proposed and eval-

uated. We can categorize those techniques in two types: latency reducing and latency hid-

ing. Latency reducing techniques include coherent caches and page allocation techniques,

which reduce the memory latency by storing data at a location closer to the processor that

accesses the data. Latency hiding techniques, on the other hand, include multi-threading,

prefetching, and relaxing the consistency model, which let the processor perform useful

tasks during long-latency memory accesses. Prefetching by the consumer with coherency

caches has been shown to be one of the most useful techniques [12, 27, 29]. This thesis

examines consumer-based and producer-based prefetching strategies. The producer-based

approach, which we calldeliver in this thesis, could maximally hide memory latencies

because the producer sends the shared datum to prospective consumers at the earliest pos-

sible time after the datum is produced. The consumer-based approach, which we simply

call prefetch in this thesis, on the other hand, might not hide memory latencies as effec-

tively because the consumer may fetch the datum before it is produced, or may not fetch it

early enough to hide the latency completely. Qualitative arguments can be made for both
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capabilities, and the DASH multiprocessor [39] and the KSR1 system [23] actually sup-

port both features.1

We quantitatively evaluate these two alternatives using a software-controlled mechanism

for both; the programmer or a language system explicitly inserts data transfer operations

(prefetch or deliver) in the program. The consumer-based prefetch needs to perform

prefetch operations early enough so that the prefetched datum comes to the processor by

the time the processor needs the datum. Mowry and Gupta [44] have shown that the con-

sumer-based prefetch is not very effective for applications using pointers extensively

because addresses to prefetch are often not available early enough. The producer-based

deliver, on the other hand, needs to perform a deliver operation when processors write a

shared datum for the last time before other processors read the datum. Thus, the last write

to a shared datum before a synchronization operation is a good candidate to insert the

deliver operation. It is relatively easy to find such places. Even if the program uses point-

ers, the address for deliver operations is available where these operations should be

inserted. Our implementation of a deliver uses a hardware mechanism in a cache directory

that keeps track of potential consumers based on past sharing patterns. The deliver opera-

tion sends a specified cache line to those potential consumers.

We have chosen to simulate a directory-based cache-coherent NUMA machine as the base

in which we evaluate these two schemes. Our simulation results indeed show that the

qualitative advantage of the deliver can yield a slight performance advantage when the

cache size and the memory latency are very large. For realistic architectural parameters,

however, the prefetch scheme generally outperforms the deliver scheme for two reasons.

First, the deliver scheme often sends cache lines to consumers so early that the consumers

replace the delivered cache lines before they are used. Second, the prefetch scheme can

use the local cache as a filter to eliminate most of the unnecessary cache transfers, while

the deliver scheme does not have such an effective filtering mechanism. Examining the

behavior of these schemes leads us to new insights into communication behavior in paral-

lel applications.

1. The producer-based approach is calledpoststore in KSR1.
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This chapter is organized as follows. In Section 1.1, we discuss other research work that

are related this thesis. In Section 1.2, we define the research goal. In Section 1.3, we sum-

marize the main contributions. In Section 1.4, we discuss the organization of the thesis.

1.1 Related Work
We can view the deliver and prefetch schemes as a technique for optimizing cache-coher-

ency protocols or as a technique for combining message-passing and shared-memory par-

adigms. This section discusses related work from these two perspectives.

1.1.1 Optimizing Cache Protocols

There are two traditional protocols for cache coherency: the invalidate protocol (e.g., Illi-

nois Protocol [48] and Berkeley Ownership Protocol [37]) and the update protocol (e.g.,

Firefly Protocol [56] and Dragon Protocol [4]). In the invalidate protocol, once a processor

obtains the ownership of a cache line, the processor can write to the entire cache line with-

out generating network traffic. Communication between processors occurs through cache

misses; when another processor reads any word in the line, a cache miss occurs, and the

reading processor stalls until the line is received. In the update protocol, on the other hand,

the writing processor updates all the copies on every write to any words in the cache line.

Thus, when another processor reads any word in the line, no cache miss occurs. Moreover,

no false sharing misses [19] occur in the update protocol. A major drawback of the update

protocol is that it often generates much more write traffic than the invalidate protocol. This

write traffic can increase the number of processor stalls for write operations because of

write-buffer overflows, as well as increasing the latency for read-miss operations because

of network congestion. Large-scale machines typically use an invalidate protocol because

of the traffic overhead due to the update protocol.

Other researchers have proposed to optimize the update protocol for reducing the write

traffic and to combine the two protocols for obtaining the benefit of the two. The deliver

scheme can be viewed as an optimized update protocol or as a combination of the two pro-

tocols. In this subsection, we first discuss optimization techniques for update protocols.

Second, we discuss hybrid protocols that use a back-off technique. Third, we discuss other
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techniques for optimizing cache protocols. Fourth, we discuss software-controlled primi-

tives that allow us to exploit software knowledge for cache-coherency protocols.

1.1.1.1 Coalesced Update Protocols

The deliver operation is similar to the update operation in a sense that both operations

push a produced value into a consumer’s cache based on past sharing patterns. The deliver

operation, however, sends a whole cache line to processors that were sharing the line,

while the update operation sends a word to processors that are sharing the line. Thus, the

deliver operation can be more effective than the update operation because the deliver

operation aggregates several updates for the same cache line in a single message. Figure

1-1 illustrates interactions between caches for three cache protocols using the same shar-

ing pattern. Let’s focus on the left-most (an update protocol) and the center (an invalidate

protocol with deliver operations). A producer (Proc A) and a consumer (Proc B) share the

same cache line L, which contains Word X and Word Y. In the update protocol, every

tim
e
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Figure 1-1: Optimizations for an Update Protocol.
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write updates the shared copy in the consumer’s cache even if the consumer does not use

the updated value. In the deliver scheme, on other hand, every write does not update the

shared copy; a deliver operation is inserted after the last write before the consumer uses

the produced value. The deliver operation aggregates produced values for the same cache

line and sends them to the consumer in a single message.2 Thus, the deliver scheme has

two advantages over the update protocols. First, the deliver scheme sends several updates

in a single message rather than individually. Thus, the deliver scheme can use the band-

width of the interconnection network more effectively than the update protocol, since each

send operation has an associated fixed overhead (e.g., message header). Second, when the

producer writes the same word multiple times before the consumer accesses it, the deliver

scheme sends a single updated value rather than multiple copies. Thus, the deliver scheme

generally causes less data traffic than the update protocol.

Several schemes have been proposed to aggregate update operations for update protocols.

Glasco et al. [24] have proposed a coalescing write buffer that is placed between the pro-

cessor and its first-level cache and combines write requests for the same cache line into a

single write request. The combining is limited to a sequence of write requests for the same

cache line that are not interleaved by writes for another cache line. Thus, this scheme

exploits only limited locality.

Dahlgren and Stenström [16] have studied write caches for several cache protocols. The

write cache is placed after the second-level cache in each processor node and stores write

requests that are not satisfied in the second-level cache (e.g., write and write-upgrade

misses). The write cache evicts its cache line when the write cache needs to make a room

to store another cache line or when the processor issues a release request. The right most

chart in Figure 1-1 illustrates the effect of the write cache for an update protocol. Since

write requests do not usually propagate to other processors until a release operation, the

program has to be synchronized for the correctness of the computation. Dubois et al. [20]

have studied a similar mechanism, an Invalidation Send Buffer, which delays sending

write requests for an invalidate protocol so that the number of false sharing misses is

reduced. The write cache exploits more locality than the coalescing write buffer that

2. Section 2.1 defines more details about the deliver operation.
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Glasco proposed [24] because the write cache can combine all write requests between

release operations provided the write cache size is sufficient.

The deliver scheme differs from an update protocol with the write cache in three ways.

First, the deliver scheme is software-controlled so that we can use deliver operations

selectively for those data structures or computations for which the deliver operation works

efficiently. For example, as shown in Figure 1-1, the deliver scheme can insert a deliver

operation only when consumers use produced values with high probability, while the write

cache sends produced values at every release operation. Second, application programs do

not have to be synchronized for the deliver scheme, while they must be for the write

cache. This is because, in the deliver scheme, processors obtain the ownership before writ-

ing a cache line so that write operations for the same address are serialized at the home

directory. Third, the deliver scheme may generate more false sharing misses than an

update protocol with a write cache. This is because a write cache allows multiple proces-

sors to update the same cache line at the same time without obtaining ownership. How-

ever, as we will discuss in Section 5.2, false sharing does not significantly impact the miss

rate of the deliver scheme for line sizes up to 128 bytes for most of our benchmark appli-

cations.

Hagersten [31] has proposed a update cache (Ucache), which collects update requests at

the receiver’s side. The Ucache is placed between the network interface and the local bus

to prevent update requests from congesting the local bus in the receiver of update requests.

The Ucache, however, does not reduce the network congestion due to update requests.

1.1.1.2 Hybrid Protocols with a Back-off Technique

Another class of techniques for optimizing cache protocols is a hybrid protocol that com-

bines an invalidate and an update protocol. Competitive snooping [22, 36] is a hybrid

cache protocol for bus-based multiprocessors that alternates between the two protocols by

using a competitive algorithm. Competitive snooping starts with using an update protocol.

The cache has a counter for each cache line that tracks the number of updates that the

cache has received. The cache invalidates a cache line when the cache receives a certain

number of updates for the cache line without any intervening accesses by the local proces-

sor. When all shared copies for the cache line are invalidated, the producer processor
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obtains an exclusive copy of the cache line so that the processor can write the cache line

without producing bus traffic. Eggers and Katz [22] have shown that the competitive

snooping outperforms the update protocol for applications with so-called sequential shar-

ing (i.e., applications that generate relatively long write runs).3 This is because, in such

cases, the update protocol suffers from a large number of update transactions, which com-

petitive snooping can reduce. Grahn at al. [28] have studied the implementation and the

performance of a similar protocol — competitive update — for a directory-base cache-

coherent NUMA machine.

Archibald [3] has also proposed a similar adaptive protocol. In his protocol, when a single

processor writes a cache line three times without any intervening references by any other

processor, the adaptive protocol invalidates all cached copies other than the producer’s

copy. Dahlgren [15] has shown that Archibald’s protocol produces less traffic and fewer

misses than the competitive snooping for a bus-based multiprocessor. Archibald’s adap-

tive protocol updates all shared copies of the cache line if any of the sharing processors are

actively using the cache line. Competitive snooping, on the other hand, updates a shared

copy of the cache line only if the sharing processor that has a copy is actively using the

cache line. Thus, Archibald’s protocol generally keeps shared copies valid for a longer

period than the competitive snooping. Since a single bus transaction can update any num-

ber of shared copies in a bus-based multiprocessor, Archibald’s protocol generates less

traffic and fewer cache misses than competitive snooping for the same competitive thresh-

old.

A write cache can also exploit locality to reduce the traffic in hybrid protocols. Dahlgren

has evaluated Archibald’s protocol for a snoop-cache multiprocessor in [15] and a com-

petitive-update protocol for a directory-cache multiprocessor in [16] with accompanying

write caches.

Hagersten et al. [32] proposed a hybrid protocol for a COMA (Cache-Only Memory

Architecture) machine. The hybrid protocol uses an invalidate protocol by default and

switches to an update protocol when a processor causes a coherency miss (i.e., the proces-

3. Eggers and Katz [22] defined the write run as a sequence of write operations that the same pro-
cessor generates without any intervening accesses from other processors.
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sor’s cache has an invalidated copy of the cache line). The hybrid protocol uses a back-off

technique similar to the competitive snooping; each cache has a update counter to keep

track of the number of received updates for each cache line and invalidates a cache line

when the cache receives a certain number of updates for the cache line without any inter-

vening accesses by the local processor. Competitive snooping resets the update counter

only for local processor’s accesses. The hybrid protocol, on the other hand, resets the

update counter not only for local processor’s accesses but also for data migrations (i.e.,

changes of the producer processor). Therefore, the hybrid protocol tends to eliminate

cache misses without eliminating unused update requests for migratory sharing while the

protocol tends to eliminate unused update operations without eliminating cache misses for

sequential sharing (sharing patterns with relatively long write runs).

Nilsson [47] has studied a hybrid protocol for a NUMA machine. The hybrid protocol

combines a competitive-update protocol and a migratory optimization that was studied for

an invalidate protocol by Cox and Fowler [13] and Stenström et al. [55]. The migratory

optimization is a technique to reduce the write latency and the network traffic by translat-

ing a read request to a read-exclusive request when a read cache-miss occurs for migratory

objects. This hybrid protocol is similar to the COMA protocol since both protocols

include a mechanism that handles migratory sharing. The major difference between the

two is that the Nilsson’s protocol focuses on reducing the traffic for migratory objects

while the COMA protocol focuses on reducing the miss rate for migratory objects.

The hybrid protocols that we have discussed use a back-off technique that basically

switches from an update mode to an invalidate mode when the update mode causes more

traffic overhead than a certain threshold. The back-off technique provides a trade-off

between the number of cache misses and the amount of the traffic. Hybrid protocols

reduce the number of misses while generating extra traffic when in the update mode, or

reduce the amount of the traffic while generating cache misses when in the invalidate

mode. As we will discuss in Section 4.1, we can add a back-off technique to the deliver

scheme (calledcompetitive deliver) for a similar trade-off. In the competitive deliver

scheme, each cache counts the number of received deliver messages for every cache line.

When a cache receives a certain number of deliver messages for a cache without any inter-
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vening accesses to that line by the local processor, the cache cancels the subscription of

the deliver message for that cache line.

1.1.1.3 Other Protocol Optimizations

Read snarfing (also called read broadcast) has been evaluated by Eggers and Katz [22],

Anderson and Baer [2], and Dahlgren [15] for bus-based multiprocessors. This technique

assumes an invalidate protocol with a snoop mechanism. If a cache finds a cache line

transfer for which the cache has an invalidated copy, the cache reads the cache line from

the bus and changes the invalidated copy to a valid one. Thus, when the local processor of

the cache reads the cache line, a read hit occurs. This technique reduces the number of

misses without generating extra traffic. The transfer unit of produced values is a cache

line, instead of a word. Thus, this technique exploits more locality than update protocols

without a write cache. If the cache directory keeps track of processors that have an invali-

dated copy for each cache line, a directory-based cache system can use this technique.

This read snarfing, however, is effective only if a relatively large number of processors

read a produced value. As we will discuss in Section 4.1, the number of processors that

read a produced value is relatively small for most of our benchmark applications. Thus,

the read snarfing should be less effective than the deliver scheme for most of our applica-

tions.

Veenstra and Fowler [57] studied three hybrid protocols of another class. The first one

statically assigns an invalidation protocol or an update protocol to each page. The second

one statically assigns either protocol to each cache line. The third one dynamically

chooses either protocol for each write. While competitive hybrid protocols use a simple

on-line algorithm to select the protocol, Veenstra and Fowler [57] used off-line algorithms

and found that the per-line static assignment of the protocol can obtain most of the benefit

due to the dynamic assignment of the protocol. These off-line algorithms rely on a cost

model for selecting the protocol mode. The cost model defines the cost of each cache

operation (i.e., cache hit, invalidate, update, and cache block load), which is the summa-

tion of a weighted latency cost and a weighted traffic cost of the operation. The cost of a

hybrid protocol is defined as the total cost of all operations that an application program

generates. This cost model, however, does not necessarily represent the performance of
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the protocol since the performance depends on the trade-off between the number of misses

and the amount of the traffic. In this thesis, therefore, for comparing the deliver and the

prefetch schemes, we examine a trade-off curve between the number of misses and the

amount of the traffic for each scheme so that we can obtain intuition about the perfor-

mance effect of the two schemes.

Raynaud et al. [49] have proposed an adaptive update protocol, Distance-Adaptive Update

Protocol. This work defines anupdate distance as the number of updates that a processor

receives between accesses in an update protocol with a write cache. The distance-adaptive

update protocol relies on the fact that there is a correlation between two consecutive

instances of the update distance and that the correlation is consistent for all processors and

for all data structures of the application. If the update distance changes non-deterministi-

cally or if the pattern in the update distance is dramatically different among data struc-

tures, this adaptive protocol would perform poorly. The deliver scheme should be able to

predict access patterns as accurately as this adaptive protocol does for applications with a

deterministic sharing pattern since the deliver scheme exploits software knowledge about

the sharing pattern. A quantitative comparison between this adaptive protocol and the

deliver scheme, however, requires further experiments and is beyond the scope of this the-

sis.

1.1.1.4 Software-Controlled Primitives

Hill et al. [35] proposed a programming model,Check-In / Check-Out (CICO), in con-

junction with simple hardware,Dir1SW. In the base CICO model, a check-out annotation

is inserted at the expected first use of shared data and a check-in annotation is inserted at

the expected last use of shared data, so that simpleDir1SW hardware can efficiently sup-

port the program. Similar to the deliver annotation, the CICO annotation tries to exploit

the knowledge of the expected data-access pattern. Check-in annotations are quite similar

to deliver annotations in that they are both placed after the last write to shared data. The

check-in operation, however, sends the produced data only to the home node, not to con-

sumer’s caches. This is because the major focus of the CICO model is simplifying the

hardware while the major focus of the deliver scheme is improving performance.
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The KSR1 system supports latency hiding mechanisms including prefetch and poststore

[23]. The prefetch and poststore are software-controlled and similar to our prefetch and

deliver respectively. The KSR1 is a COMA machine, while our study uses a NUMA

machine. In the COMA architecture, each node has a very large (32 Mbyte [23]) memory

cache which corresponds to the local memory in the NUMA machine. The prefetch and

poststore of the KSR1 move the datum only to the memory cache, not to the processor

cache. Therefore, the prefetch and poststore cannot hide memory latencies completely,

while our prefetch and deliver can. The poststore, however, should not suffer from the

cache interference we observed, since the memory cache is very large. The poststore,

moreover, can take advantage of the hierarchical ring network in the KSR1 that supports

broadcasting, while our deliver scheme only assumes a point-to-point communication

mechanism. The KSR1 also supports read snarfing (calledautomatic update), which is a

technique that updates invalidated copies in the memory cache by snooping the ring net-

work.

Previous studies have discussed the latency hiding mechanisms of KSR1. Rosti et al. [51]

studied the poststore, using synthetic benchmarks and analytical models. Our study uses a

set of real parallel applications that provides a more realistic evaluation environment than

synthetic benchmarks. Windheiser et al. [58] evaluated the effectiveness of prefetch and

poststore for a sparse solver application on KSR1. Our study discusses more detailed sta-

tistics than those two studies, such as the cache-size sensitivity, the efficiency of

prefetch/deliver schemes, and the intrinsic/contention latency of read operations.

1.1.2 Combining Shared-Memory and Message-Passing Paradigms

Traditionally two distinct paradigms exist for the architecture of multiprocessors: shared

memory and message passing. The program does not have to manage communication

explicitly in the shared memory, while the program has to do so in the message passing.

Thus, the shared memory is considered to be more programmable than the message pass-

ing especially for programs with irregular communication patterns. Explicit communica-

tion mechanisms in the message passing, however, allow us to optimize the

communication so that the communication and the computation are overlapped.
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Software-controlled deliver and prefetch operations provide us an ability of explicit com-

munication on the shared memory. Thus we can consider the deliver and the prefetch

schemes as a way to combine the shared memory and the message passing so that we can

obtain the benefit of the two paradigms.

Other researchers have proposed to integrate block data transfer in shared-memory multi-

processors [1, 14, 33, 61]. Block data transfer can be implemented as a memory copy

primitive (memory-to-memory transfer) on cache-coherent shared-memory systems. Byrd

[8] has discussed a block transfer scheme (called StreamLine) for cache-to-cache trans-

fers. Block data transfer is similar to deliver since both schemes provide a sender-initiated

explicit data-transfer mechanism in a shared-memory system. Both schemes can transfer

data in a pipelined fashion and overlap the communication and the computation. The two

schemes, however, are different in four points. First, deliver operations do not affect the

correctness of the program, while block data transfers usually affect the correctness of the

program. This is because deliver operations do not change the value of any memory loca-

tion while block data transfers change the value in the destination message buffer. Thus,

block data transfers need to be inserted in the program so that not only the performance is

improved but also the program works correctly. Second, the block data transfer needs

message buffers that are explicitly managed by the programmer or the language system,

while the deliver scheme does not. Third, block data transfer can be implemented as a

transfer operation to the memory or the cache of the destination processor. The deliver

scheme, on the other hand, can be implemented as a transfer operation only to the cache of

the destination processor. Fourth, block data transfer requires the programmer or the lan-

guage system to specify that the destination of the message explicitly, while our deliver

scheme requires a hardware mechanism to keep track of potential consumers for each

cache line.

1.1.3 Summary

We have discussed related work for the deliver and the prefetch schemes from two differ-

ent perspectives: optimizing cache protocols and merging the shared-memory and the

message-passing paradigms.
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The optimization techniques of cache protocols can be divided into four groups. First, we

discussed a set of techniques that delay sending update messages to exploit locality in

updating patterns. Second, we discussed a set of techniques that combine the invalidate

and the update protocols by using a back-off technique. Third, we discussed other protocol

optimization techniques that include read snarfing and distance-adaptive update protocol.

Fourth, we discussed software primitives that exploit software knowledge about sharing

patterns for simplifying the hardware or for improving the performance. The deliver and

the prefetch schemes can be categorized in the fourth group: software primitives to

improve the performance.

We also qualitatively compared the deliver scheme with block data transfer, which com-

bines the message-passing and the shared-memory paradigms. While both schemes pro-

vide explicit communication primitives on top of the shared memory paradigm, block data

transfer is closer to the message passing paradigm than the deliver scheme. In block data

transfer, the communication primitive may affect the correctness of the program and the

programmer or the language system needs to mange message buffers explicitly. In the

deliver scheme, on other hand, the communication primitive does not affect the correct-

ness of the program and the programmer or the language system does not need to manage

message buffers.

1.2 Research Goals
The goal of this thesis is to compare the characteristics of deliver and prefetch operations

by analyzing the communication behavior of parallel applications. This goal is broken-

down into two sub goals.

• Analyzing sharing patterns to identify ones that produce unnecessary
deliver or prefetch messages.

• Understanding the interaction between application characteristics and
architectural parameters to identify advantages and disadvantages of
the deliver and the prefetch schemes.

For the first goal, we focus on the communication behavior. Through the analysis of shar-

ing patterns, we examine several techniques that eliminate unnecessary messages. For the

second goal, we explore a large design space of architectural parameters and compare the
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characteristics of the deliver and the prefetch schemes. For both sub goals, we focus on

underlying application characteristics.

We use explicitly-parallelized scientific applications that represent various algorithms for

numerical computations and contain a variety of simple and complex memory-access pat-

terns. Further research is necessary for other types of applications (e.g., compiler-parallel-

ized applications and commercial applications), which may have different characteristics

from our benchmark applications. Moreover, since the focus is on the interplay between

the prefetching strategy and the application characteristics, we do not discuss detailed

design issues of hardware and language systems, which also need further research.

1.3 Contributions
The important contributions of this thesis are:

• Analyses of sharing patterns and program structures of parallel appli-
cations that explain the behavior of deliver and prefetch operations.

• A proposal and comparison of several techniques that improve the effi-
ciency of deliver operations by using various types of knowledge
about sharing patterns.

• An analysis of working-set and communication characteristics of par-
allel applications that explains the cache behavior for the deliver and
the prefetch schemes.

• A quantitative comparison of the deliver and the prefetch schemes in a
large design space of architectural parameters.

1.4 Organization of Dissertation
Chapter 2 presents hardware and software mechanisms that we assume for the deliver and

the prefetch schemes. The two schemes are software-controlled so that we use software

knowledge to insert cache transfer operations in applications. The deliver scheme uses an

extra hardware mechanism to keep track of past sharing behavior for each cache line. We

summarize research issues to improve the accuracy of past behavior as a predictor for

future behavior. Furthermore, we qualitatively compare characteristics of the two

schemes.
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Chapter 3 describes the simulation environment for this thesis. Since a large number of

parameters affect the behavior of the deliver and the prefetch schemes, we need to design

our experiments carefully to complete a wide range of simulations in a feasible time. We

discuss the simulation methodology and the benchmark applications that are used in this

thesis.

Chapter 4 analyzes simulation results to examine sharing characteristics of parallel appli-

cations and their effects on the behavior of prefetch and deliver operations. For irregular

memory access patterns, both schemes may transfer a large number of unnecessary cache

lines. For the deliver scheme, we identify sharing patterns that generate unnecessary

deliver messages, and we quantitatively examine three techniques that trade off the num-

ber of unnecessary deliver messages for the number of eliminated cache misses. For the

prefetch scheme, we show that the prefetch scheme has a significant advantage over the

deliver scheme since a simple mechanism can eliminate most of unnecessary cache trans-

fers.

Chapter 5 discusses the effect of various architectural parameters for the performance of

prefetch and deliver operations. First, we focus on the miss-rate characteristics. One of the

most important results in this chapter is that the cache size needs to be about as large as the

largest working set of the application before we can obtain most of the benefit due to

deliver operations. We examine the working-set and the communication characteristics to

understand this behavior of deliver operations. Next, we discuss the traffic characteristics:

we compare applications’ demand traffic with feasible bandwidth for major system com-

ponents. Finally, we evaluate the execution-time improvement due to deliver and prefetch

operations by simulating the contention delay in the memory system.

Finally, Chapter 6 summarizes our discussions about the behavior of deliver and prefetch

operations and the characteristics of parallel applications.
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Chapter 2

Producer-oriented and Consumer-oriented
Approaches

In this chapter, we discuss hardware and software mechanisms for the deliver and the

prefetch schemes and qualitatively compare the two schemes. Both schemes hide the

memory latency by using a software-controlled non-binding mechanism. The schemes are

software-controlled; we use software knowledge to insert a cache-line transfer operation

— deliver or prefetch — for maximum hiding of memory latencies. The schemes are non-

binding; the transfer operation does not bind the transferred value to a shared variable, so

that the transfer operation is a performance hint and does not affect the correctness of the

program. Other researchers have shown that non-binding mechanisms are necessary to

achieve good performance [44]. While both schemes need to exploit hardware and soft-

ware knowledge for maximum performance gain, the two schemes exploit different kinds

of knowledge as we will discuss in the chapter.

This chapter is organized as follows. Section 2.1 describes the concept of the deliver

scheme, which includes the strategy for inserting deliver operations, the hardware mecha-

nism, and variations on the deliver scheme. Section 2.2 describes the concept of the

prefetch scheme and qualitatively compares the prefetch and the deliver schemes.

2.1 Producer-oriented Deliver
Figure 2-1 illustrates an example of deliver and prefetch operations. The producer trans-

fers the produced value to consumer’s caches in the deliver scheme, so that the consumer

can read the value without causing a cache miss. In the prefetch scheme, on the other

hand, the consumer fetches the produced value. The producer-initiated transfer has several

advantages over the consumer-initiated transfer: (1) The producer can transfer the pro-
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duced value when it is produced, which is the earliest possible time. The consumer, on the

other hand, may transfer the value too early before it is produced or too late to use it in

time; (2) The latency of the producer-initiated transfer is a one-way latency from the pro-

ducer to the consumer, while the latency of the consumer-initiated transfer is a round-trip

latency between the consumer and the producer; (3) The producer can easily find the

address of the value to be transferred, while the consumer may not be able to find the

address early enough to obtain the value in time. For example, if the application inten-

sively uses a linked list, the consumer cannot prefetch an element in the list until the con-

sumer fetches another element that contains the address. The producer, on the other hand,

knows the address of the value when the value is produced.

While the deliver operation is similar to a send operation in the message passing architec-

ture, the deliver operation is a performance hint. That is, the program works correctly, if

no deliver operations are inserted, or even if deliver operations are inserted arbitrarily. In

the absence of deliver operations, the cache protocol performs exactly as an invalidate

protocol. Conversely, if every write is followed by a deliver operation, the cache protocol

performs in a way similar to an update protocol.

Figure 2-1: An Example of Deliver and Prefetch Operations
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A key issue for the producer-initiated transfer is how to predict the consumer that will use

the produced value. Our deliver scheme uses hardware knowledge for finding potential

consumers. We use a hardware mechanism that keeps track of past sharing patterns. The

deliver operation sends a cache line to processors that were sharing the line in a similar

manner that the update operation does in the update protocol. The deliver scheme, how-

ever, differs from the update protocol in two ways. First, the update protocol does not send

update information to processors once their cache replaces the cache line that are being

updated. The deliver scheme, on the other hand, can send a cache line to processors even

if their cache does not have a copy of the cache line. Second, more importantly, the deliver

scheme is much more efficient than the update protocol. The deliver operation aggregates

updates for the same cache lines into a single message. The deliver scheme, moreover,

uses software knowledge to reduce the amount of the traffic. The programmer or language

systems use software knowledge about the program structure to insert deliver operations

only where communication is likely to occur.

2.1.1 Strategy for Inserting Deliver Operations

A deliver operation for a shared variable should ideally be inserted where processor-to-

processor communication occurs through the variable. For compiler-parallelized code, the

compiler should be able to insert deliver operations in such places since the compiler

knows where communication occurs in the code. For explicitly-parallelized code, on the

other hand, it is not obvious to find where communication occurs in the code unless the

computation is regular.

Our strategy is to use synchronization operations as a hint to find the timing of communi-

cation. We insert a deliver operation after the last write of a shared variable before a syn-

chronization operation, so that the written value is sent to prospective readers before they

start reading the variable. For synchronized programs, it should be relatively straightfor-

ward to find such places for deliver operations. For non-synchronized programs, the ideal

location is where a processor finishes a series of writes for shared variables and other pro-

cessors are likely to read the variables. For the non-synchronized programs that we stud-

ied, it was straightforward to find such places.1

1. MP3D and LocusRoute. See Section 3.2.
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Because the unit of communication is a cache line, we actually insert the deliver operation

after the last write for a cache line containing shared variables instead of the last write for

each shared variable. For some applications, this requires transformations to the program

if the deliver is to obtain the best performance. Figure 2-2 shows two typical cases. In the

first case, the loop is unrolled so that the same line is delivered only once. In the second

case, the test statement checks if two writes are to the same line. These modifications

increase the probability that a single deliver operation updates all the modified words in

the same line, thus reducing the number of deliver messages. These sorts of optimizations

are direct analogies to transformations that a compiler or programmer might perform to

improve the performance of invalidate protocols by increasing the spatial clustering of

shared data in multi-word lines.

In spite of these annotation techniques, the deliver scheme generates some unnecessary

deliver messages for applications with irregular computations because communication

does not occur after every synchronization operation and because not all of the deliver

destinations use the delivered cache line. We use more software knowledge to improve the

efficiency of the deliver scheme. Since the performance gain due to the deliver scheme

depends on the trade-off between the cache-miss reduction and the traffic overhead, we

should insert the deliver operation where the ratio between the number of eliminated

cache-misses and the number of deliver-messages is relatively high. We call this technique

Selective Deliver. Our simulator obtains the ratio for all locations where a deliver opera-

tion is potentially inserted. We will examine the simulation results in Section 4.1 to inves-

tigate the effect of program structures for the efficiency of deliver operations.

*ptr1 =  ...
*ptr2 =  ...

*ptr1 =  ...
*ptr2 =  ...
deliver(ptr1)
if (ptr1 and ptr2 are not in the same block)

deliver(ptr2)
conditional
deliver

for loop of i {
sharedArray[i] = ...

}

for loop of i {
sharedArray[i] = ...

}

sharedArray[i+1] = ...
deliver(sharedArray + i)loop

unrolling

Figure 2-2: Deliver Annotation Techniques.
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2.1.2 Hardware Mechanisms for the Deliver Operation

We assume a directory-based cache-coherent NUMA machine (e.g. Alewife [10] and

DASH [40]), as illustrated in Figure 2-3. The main memory is distributed among proces-

sor nodes. Each node has a directory that keeps track of which nodes are caching each

memory block of the node. We assume that each processor cache is kept coherent using an

invalidate protocol.2 When a processor writes a shared variable, the processor sends a

write request to the home node, which corresponds to the memory address of the variable.

Then, the home node looks up the processors sharing the address in the directory and

sends an invalidation request to the sharing processors (except the node of the original

writer). Those nodes return an acknowledgment message to the home node, which collects

all acknowledgment messages and notifies the original writer of the completion of the

invalidation.

We assume each entry of the cache directory has two bit-vectors as shown in Figure 2-4.

One bit-vector, the sharing vector, holds the identity of processors that may be currently

sharing the copy of the cache line. The second one, the deliver vector, holds the identity of

processors that the deliver operation sends the cache line to. The directory controller man-

ages the sharing vector just as in a conventional cache directory with replacement hints.

Each bit of the sharing vector is set when a copy of the line is sent to the corresponding

processor, and cleared when the processor’s copy is invalidated or replaced. The deliver

2. We will discuss more details about the cache protocol in Subsection 5.3.1.
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Figure 2-3: NUMA Model.
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vector, on the other hand, is managed in a different way from the sharing vector. Each bit

of the deliver vector is set when a copy of the line is sent to the corresponding processor,

but not cleared when the processor’s copy is invalidated. If the deliver vector is never

cleared, the deliver vector holds the identity of all processors that have touched the line, so

that deliver operations probably send a cache line to processors that will not access the

line anymore. In the next subsection, we will discuss techniques (e.g., the use of replace-

ment hints) to manage the deliver vector so that it holds only the identity of processors that

will probably use the line.

Figure 2-5 illustrates an example of how this cache directory operates for the deliver oper-

ation. In this example, three processors (Proc A, Proc B, and Proc C) share the same cache

line. A producer (Proc A) writes the cache line, which is read by two consumers (Proc B

and Proc C). First, the three processors read the cache line. As the cache directory receives

a read request from a processor, the directory turns on the corresponding bit in the sharing

deliver vector
(n bits)

sharing vector
(n bits)

state bits

Figure 2-4: Cache Directory Entry for Each Cache Line (n processors).
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Figure 2-5: An Example of Cache Directory Operations.
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and the deliver vectors. Second, Proc A writes the cache line. When the cache directory

receives the write request, the directory sends an invalidate request to Proc B and Proc C

and turns off the bit for the two processors in the sharing vector. The cache directory does

not change the deliver vector, which keeps track of past sharing processors. On receiving

the invalidate request, the two processors send back an acknowledgment to the directory.

Third, Proc A delivers the cache line to the cache directory. The directory updates the

main memory for the cache line, looks up the deliver vector, and forwards the cache line to

Proc B and Proc C. On receiving the cache line, the two processors send back an acknowl-

edgment to the directory. Thus, the consumers obtain the new copy of the cache line with-

out causing a cache miss.

Conventional invalidate and update protocols need only one vector, the sharing vector, per

cache line. Our protocol assumes two vectors per cache line; the sharing vector is used to

identify the processors to which an invalidate request is sent, while the deliver vector is

used to identify the processors to which a deliver message is sent. This additional deliver

vector allows us to reduce the number of unnecessary deliver messages. We discuss the

benefit of the deliver vector by examining a sharing pattern example shown in Figure 2-6.

The four processors share the same cache line; Proc A is a producer and the rest of the pro-

Proc A

read

write

Proc B

read

Proc C

read

tim
e

Proc D

read

read

write
read

write

read read read

write
read

Figure 2-6: An Example of Sharing Patterns. Proc A is a producer and the rest of the pro-
cessors are a consumer.
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cessors are a consumer. First, the four processors read the cache line, so that the sharing

vector holds the identify of those processors. Then, Proc A writes the cache line four

times. Only one consumer does read the produced value for the first three writes, while all

consumers read the produced value for the fourth write. Since the deliver vector remem-

bers past sharing information regardless the current sharing status, we can use deliver

operations only when the past sharing pattern is a good predictor of the future access pat-

tern. For the example shown in Figure 2-6, the producer-consumer relation for the first

three writes is not ideal for the deliver scheme; only one of the consumers use the pro-

duced value. If we insert deliver operations after those writes, we generate unnecessary

messages. The producer-consumer relation for the fourth write, on the other hand, is ideal

for the deliver scheme; all the consumers use the produced value. Since the deliver vector

remembers the past sharing pattern, a deliver operation sends the cache line to all the con-

sumers if we insert a deliver operation immediately after the fourth write. If we do not

have the deliver vector, however, the cache directory remembers only the last consumer

(Proc D), so that the deliver operation sends the cache line only to Proc D.

Furthermore, the deliver vector allows consumers to reduce the number of unnecessary

messages. That is, a consumer can enable or disable the subscription of deliver messages,

whether the cache has a copy of the cache line or not. If a consumer knows that it will not

access a cache line for a long time, the consumer can cancel the subscription of deliver

messages for the cache line by sending a special message to the directory, which turns off

the corresponding bit in the deliver vector. We will discuss more details about techniques

that manage the subscription of deliver messages in Subsection 2.1.3.

We can reduce the directory space by using several techniques including limited pointer

schemes [1]. If the cache directory is controlled by software on a special processor, further

reduction is possible. Optimizing the cache-directory space, however, is beyond our

scope, and we do not discuss the issue in this thesis.

2.1.3 Variations on the Deliver Operation

In this subsection, we qualitatively discuss variations on the deliver operation for maxi-

mizing the performance benefit, which will be quantitative examined by using simulation

results in Chapter 4 and Chapter 5. As discussed previously, our deliver mechanism relies
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on the past sharing behavior that is stored in the deliver vector. In reality, the past sharing

behavior does not always accurately predict the future behavior. Thus, a deliver operation

may send an unnecessary message that the destination processor will not use, hence

deliver operations may waste some network bandwidth and some space in the cache mem-

ory of the deliver destination. The difficulty of predicting future sharing patterns raises

two important issues. First, how can we trade off the number of unnecessary deliver mes-

sages versus the number of eliminated cache misses? Second, how can we design a

replacement policy to minimize the number of evictions of necessary cache lines due to

unnecessary deliver messages?

In Section 4.1, we will evaluate three techniques, shown in Table 2-1, to trade off the num-

ber of unnecessary deliver messages versus the number of eliminated cache misses. The

three techniques are divided into two types: producer-initiated and consumer-initiated.

Selective Deliver has been discussed in the preceding subsection. This technique is pro-

ducer-initiated because the producer controls the timing of deliver operations. This tech-

nique is also software-controlled because it relies on a software system that analyzes the

sharing pattern and controls the insertion of deliver operations. In this study, we select the

insertion place for the deliver operation by using a profiling system that counts the number

of sent messages per eliminated miss for each candidate of the insertion place.

The other two techniques are consumer-initiated; a consumer manages the deliver vector

in the cache directory to trade off the number of unnecessary deliver messages versus the

number of eliminated cache misses.Subscription Control is software-controlled; it relies

on a software system that controls the insertion of a special operation that removes the

Trade-off Technique Initiator Mechanism Information for Trade-off

Selective Deliver Producer Software
The number of sent messages per
eliminated miss.

Competitive Back-off Consumer Hardware
The number of received messages
per eliminated miss.

Subscription Control Consumer Software
The number of received messages
per eliminated miss.

Table 2-1: Three Trade-offs between the Number of Deliver Messages and the Number of
Eliminated Misses.
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identify of the consumer from the deliver vector so that the consumer will no longer

receive deliver messages for the cache line. We select the insertion place for the subscrip-

tion control operation by using a profiling system that counts the number of received mes-

sages per eliminated miss for each candidate of the insertion place.Competitive Back-off

is hardware-controlled and based on the idea of the competitive snooping that alternates

the invalidate and update protocols [22, 36]. In our back-off technique, each line in the

cache has a counter that tracks the number of deliver messages received. The counter is

cleared when the local processor accesses the associated line. When the counter exceeds a

certain threshold, we assume the processor is no longer using the line. When an invalidate

request comes to the cache (due to a write by another processor), the cache controller

invalidates the local copy of the line. At that time, if the counter of the line is equal to the

threshold, the invalidate acknowledgment message piggybacks a command that clears the

corresponding bit on the deliver vector at the home directory, so that the cache will no

longer receive deliver messages for the line. Note that we do not need extra messages for

this back-off technique because of piggybacking.

Another important issue for the deliver scheme is the replacement policy for delivered

cache lines. For on-demand memory fetching, the processor will use the fetched line so

that it is reasonable to evict another cache line to store the fetched line. For producer-ori-

ented delivers, on the other hand, the processor does not necessarily use the delivered line.

If the processor evicts a necessary cache line to store an unnecessary delivered line, the

deliver operation increases the number of cache misses. We will examine the effect of

replacement policies for various cache sizes in Section 5.1. One of the replacement poli-

cies that we examine is called the pessimistic policy; a consumer receives a deliver mes-

sage only if the delivered line does not conflict with other lines. This can be implemented

by using replacement hints torefresh the deliver vector. Each cache sends a replacement

hint to the home directory when the cache replaces a valid or invalid copy of a cache line,

so that the cache will no longer receive a deliver message for the line. Delivered lines

never conflict with other lines since the cache receives a deliver message only if the cache

has an invalidated copy of that line. Our simulation results show that the replacement pol-

icy that minimizes the miss rate depends on the cache size.
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2.2 Consumer-oriented Prefetch
Since consumer-based prefetching has been discussed extensively [9, 44, 46], this section

simply clarifies our approach briefly. We assume the same NUMA machine as the one

shown in Figure 2-3. The cache directory is the same as the generic one with a full-bit vec-

tor; the directory entry needs only one vector (sharing vector) for each cache line. We

assume that the processor cache is lock-up free so that the cache can have multiple out-

standing memory requests.

We use two types of prefetch operations: prefetch and prefetch-exclusive. The prefetch

operation brings a copy of the cache line into the processor cache, while the prefetch-

exclusive operation brings an exclusive copy of the cache line into the processor cache.

The cache protocol for prefetch and prefetch-exclusive operations is the same as the one

for read and write operations of the invalidate protocol, respectively. If a processor writes

a shared variable after reading it, the prefetch-exclusive operation can not only hide the

memory latency for the read but also reduce the number of network transactions by com-

bining the read and the write requests. For the deliver scheme, we do not consider an oper-

ation that corresponds to the prefetch-exclusive; the deliver operation transfers a copy of

the cache line but not the ownership of the line. This is because a deliver operation gener-

ally sends a cache line to multiple processors that are specified by the deliver vector.3

Unlike the deliver scheme, the prefetch scheme does not need a hardware mechanism that

keeps track of consumers’ access patterns. The prefetch scheme relies on software knowl-

edge about consumers’ future access patterns. As simulation results will show in Section

4.2, consumers can predict their access patterns accurately enough to avoid prefetching

cache lines that will not be used. Consumers, however, do not always know the sharing

behavior of producers; consumers do not know whether or not some producer has updated

the cache line that is being prefetched. Thus, consumers may prefetch cache lines that are

still valid in the cache. We can prevent such prefetch operations from generating network

traffic by simply checking the local processor cache before sending the prefetch request to

the home directory. That is, the processor cache can filter out unnecessary prefetch opera-

3. It is possible to implement a deliver scheme that transfers an exclusive copy of the cache line to
a processor. For a deliver scheme in which the producer explicitly specifies the destination, it is
reasonable to have two types of deliver operations; deliver and deliver-exclusive.
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tions. As we will discuss in Section 4.2, this hardware mechanism is very important for

the prefetch scheme to reduce the number of unnecessary prefetch requests significantly.

We moreover use a profiling system to trade off the number of unused prefetch operations

versus the number of eliminated cache misses.
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Chapter 3

Experimental Environment

In this chapter, we discuss the experimental environment for analyzing the characteristics

of application programs and the behavior of prefetch and deliver operations. We use an

execution-driven simulator to gather various statistics about the memory access behavior

of parallel applications. We use ten parallel applications to investigate the effect of various

application algorithms and structures for the prefetch and the deliver schemes. This chap-

ter is organized in two sections; the first section discusses our simulation methodology,

and the second section discusses the application programs that we use in this study.

3.1 Simulation Methodology
An advantage of simulation-based experiments is flexibility; we can easily obtain detailed

statistics about the memory access behavior when various architectural parameters

change. A disadvantage, on the other hand, is slowdown; simulators are much slower than

real machines, so that we can examine only a small part of the entire parameter space to

finish our experiments within a feasible time. Therefore, it is necessary to design the sim-

ulator as well as the experiment to obtain enough insights.

In this section, we discuss our simulation methodology; in Subsection 3.1.1, we discuss

the methodology for simulating multiprocessor systems, and in Subsection 3.1.2, we dis-

cuss the methodology for designing experiments.

3.1.1 Execution-Driven Simulation

Our execution-driven simulator models a multiprocessor system on a uniprocessor by

mapping each process of a parallel application to a thread in the simulation environment.

The simulator consists of two tightly-coupled components: a TangoLite reference genera-
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tor [26] and a memory-system simulator. The TangoLite reference generator takes a paral-

lel application and manages the execution of the threads of the application so that memory

accesses are interleaved correctly in a uniprocessor environment. TangoLite passes each

shared memory reference to the memory system simulator and suspends the execution of

the application thread for the memory stall time that the memory system simulator calcu-

lates.

The memory system simulator maintains the state of various components in the memory

system (e.g., the cache tag memory and the cache directory) and gathers various statistics

on memory activities. We model only shared memory references for two reasons. First,

our focus is on the behavior of shared memory references. Second, we can speed up our

experiments without simulating the rest of memory references (e.g., instruction and stack-

frame references), which are assumed to take one clock and are not counted in our statis-

tics. Moreover, we speed up our experiments by optimizing the execution path of the

memory system simulator when the simulated memory reference causes a cache hit.

The simulator uses a similar mechanism to MemSpy [41] to collect detailed memory-

access information for each variable type. Our simulator, moreover, keeps track of various

statistics for each source-code line that contains a memory operation for shared data. We

use those statistics to identify the place to insert deliver or prefetch operations. To identify

the place for deliver operations, for example, we use a version of the simulator that auto-

matically inserts a deliver operation after each write operation for shared data and counts

the number of sent messages by the deliver operation, the number of reduced read misses

by the deliver operation, and the number of remaining read misses. Thus, we can find

places at which deliver operations can eliminate read misses without generating a large

number of unnecessary deliver messages.

Our simulation model has two limitations; we do not model the I/O system or the operat-

ing system. While the effect of the I/O system and the operating system is believed small

for numerically intensive applications, the evaluation of the effect is beyond the scope of

this thesis.
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3.1.2 Designing Experiments

We need to consider three major issues for designing experiments: the architectural

parameter space to be explored, the accuracy of the simulation model, and the scaling of

the problem size. Let’s focus on the first two issues.

Since there is a number of architectural parameters that affect the behavior of memory

accesses, it is not practical to explore the entire parameter space by using simulation tech-

niques. Therefore, we need to select a subspace carefully from the entire parameter space

for our experiments. Another issue is the degree of the accuracy for our simulations. An

accurate model is necessary to evaluate the performance of the deliver and the prefetch

schemes but it is not necessary to examine the application-intrinsic characteristics. More-

over, the more accurate the simulation model is, generally, the slower the simulator is [26].

Thus, an accurate model cannot be used for exploring a large parameter space.

Because of these conflicting issues, we use two machine models: a unit-delay model and a

more realistic model. In the unit-delay model, all memory accesses are assumed to take

one clock cycle even if the access does not hit in the cache. Thus, the simulator generates

the same memory access pattern for different cache configurations even if the application

is non-deterministic. This makes it easy for us to compare the simulation results for differ-

ent cache configurations. The unit-delay model, moreover, is so simple that we can mini-

mize the simulation time. Therefore, using this model, we explore a relatively large

parameter space to investigate the interplay between application characteristics and archi-

tectural parameters in the deliver and the prefetch schemes. A drawback of the unit-delay

model is that we cannot accurately evaluate the performance effect of deliver and prefetch

operations. For evaluating the performance effect, we use a more complex and realistic

model than the unit-delay model.

In Chapter 4, we use a unit-delay model with an infinite cache per processor to examine

sharing patterns (e.g., producer-consumer relations) and the effects for deliver and

prefetch operations. We also examine the effectiveness of deliver and prefetch operations

when we vary the number of deliver and prefetch operations that are inserted in the appli-

cation.
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In Section 5.1 through 5.3, we use a unit-delay model with various cache configurations.

We vary the cache size, the associativity, the line size, and the number of processors to

examine the effect of those parameters on the benefits of the deliver and the prefetch oper-

ations. For this examination, we use a reasonable deliver/prefetch annotation that we base

on the preceding analyses in Chapter 4.

In Section 5.4, we use a more realistic model than the unit-delay model to examine the

performance effect due to deliver and prefetch operations. We assume a realistic latency

for each of major system components (e.g., the main memory, the cache memory, and the

network switch) and we model delays due to contention for each of the components. Since

this simulation model is slower than the unit-delay model, we use a few interesting points

in the parameter space that we pick up through the preceding analyses in Section 5.1

through 5.3.

Since the simulation requires a larger amount of memory for collecting detailed statistics,

we assume that the number of processors is 16 for most of the analyses and we vary the

number of processors where necessary.

Another major issue for our experiment design is how to scale the problem size. Because

the simulator has considerably slower speed and smaller memory than real machines, we

typically need to scale down the problem size. To simulate realistic memory-access behav-

ior, we need to scale down the machine size, particularly the cache size, as well. For exam-

ple, if we scale down the problem size without changing the cache size, the miss rate may

become unrealistically small. An earlier study [59] proposed a method to choose a cache

size for a scaled problem. The proposed method uses characteristics of an important work-

ing set; fitting or not fitting an important working set significantly changes the miss rate.

Thus, if the important working set is expected to fit in the cache in realistic problems and

machines, one should choose a cache size that is larger than the corresponding working set

for a scaled problem. If the important working set is not expected to fit in the cache, on the

other hand, one should choose a cache size that is smaller than the corresponding working

set for a scaled problem. This method is useful if the miss rate behavior for a variation of

the cache size is about the same between architectural techniques that we compare.
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Deliver and prefetch operations, however, significantly change the miss-rate behavior for

a variation of the cache size. Therefore, we chose to simulate various cache sizes.

3.2 Benchmark Programs
Table 3-1 summarizes our ten benchmark applications and their inputs. These programs

represent various algorithms and program/data structures in numerical-intensive applica-

tions. FFT, LU, and Ocean are from SPLASH-2 parallel application suite [59]. Barnes-

Hut, LocusRoute, MP3D, Pthor, and Water are from the SPLASH-1 parallel application

suite [54]. The applications from SPLASH-2 are more architecturally aware than those

from SPLASH. For example, the three applications from SPLASH-2 optimize data alloca-

tion among processor nodes to reduce the number of remote memory accesses, while the

applications from SPLASH-1 do not. Maxflow and Mincut have fewer than 1000 lines in

Application Description Input

Barnes-Hut (Barnes)
Hierarchical N-body gravitation
simulation

8192 bodies
6 steps

FFT Blocked 1-D FFT 65536 complex numbers

LocusRoute (Locus) VLSI wire routing
Primary2

(25.8K cells, 3817 wires)

LU Blocked LU decomposition 256× 256 matrix

Maxflow
Maximum flow determination in a
directed graph

full75
(a fully connected 75-

node graph)

Mincut
Graph partitioning using simulated
annealing

 Graph500
(a 500-node graph)

MP3D
Rarefied hypersonic flow simula-
tion

3000 molecules
6 steps

Ocean
Eddy current simulation in an
ocean basin

130× 130 grid

Pthor Gate-level logic circuit simulation
RISC (5060 elements)

100 clocks (20000 ticks)

Water Water molecule simulation
288 molecules

6 steps

Table 3-1: Benchmark Applications.
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the source code and are much simpler programs than the rest of our applications. While

these two applications do not represent realistic work loads, we use them to evaluate the

effect of various application structures for the deliver and the prefetch schemes. In the rest

of this subsection, we briefly discuss the algorithm and the data structure of each applica-

tion. We will discuss more details about the memory access behavior in Subsection 4.1.4

and 4.2.3.

Barnes-Hut (Barnes for short) calculates gravitational attraction of galaxies, an N-body

problem using the  Barnes-Hut algorithm [53]. The main data structure is a

tree representing hierarchically decomposed galaxies (bodies). Each leaf node represents a

body, and each internal node represents a physical cell containing all child cells and bod-

ies. Processors traverse the tree and calculate the gravitational potential of each body. If a

processor finds the body is far enough away from a cell, the processor approximates the

gravity of bodies in the cell by their center of mass and does not go down the tree further.

In this way, the algorithm reduces the computation to For each time-step, pro-

cessors build the tree, partition bodies, and calculate the gravity of each assigned body. We

simulate 8192 bodies and use about 4000 cells. The memory size for bodies and cells is

about 1.1 Mbytes. We collected statistics from the last 5 time-steps out of a 6 time-step

simulation.

FFT uses a complex 1-D version of the radix  six-step FFT algorithm described in [5].

The main data structure is about 3 Mbytes, which includes three 256× 256 complex matri-

ces. Transpose operations generate communication between processors and are blocked to

exploit the spatial locality. The matrices are statically partitioned and assigned to each pro-

cessor. The partition for each processor is allocated in the local memory of the processor

to minimize the number of remote memory accesses. We collected statistics after the ini-

tialization of all data structures.

LocusRoute (Locus for short) is a VLSI standard-cell router [50]. The main data structure

is CostArray, each element of which maintains the number of wires passing through the

corresponding cell and represents the cost when a new wire runs through the cell. Locus

chooses the route with the minimum cost for each wire. Our benchmark circuit,

Primary2.grin has 1290 routing cells in each of 20 routing channels (about 200 Kbytes in

O n nlog( )

O n nlog( ).

n
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total). Another actively-shared data structure is DensityArray (about 100 Kbytes), which

keeps track of the wire density for each routing cell. Locus is a non-synchronized pro-

gram; processors update elements of the CostArray and the DensityArray without locking

them. The program iterates the main loop twice to reduce the overall wiring cost. We col-

lected statistics from both of the two iterations and used a geographical partitioning

method [54] to improve the locality.

LU performs a blocked LU decomposition for a 256× 256 matrix. The main data structure

is the 256× 256 matrix (512 Kbytes), which is blocked into 16× 16 submatrices. A set of

submatrices are assigned to processors by using a 2-D scatter decomposition [61]. Subma-

trices are allocated in the local memory of the assigned processor to minimize the number

of remote memory accesses. Most of the communication occurs due to first accesses of

submatrices that another processor has updated. Since the deliver operation does not send

a cache line to processors that have never accessed it, the deliver operation does not elim-

inate cache misses due to communication. Thus, we add simple code so that each proces-

sor subscribes submatrices for which communication will occur. Since the computation is

regular in LU, it is easy for a compiler to add such subscribing code automatically. We

collected statistics only for the main computation, not for the initialization and the sub-

scription of submatrices.

Maxflow finds the maximum flow in a directed graph with a single source and a single

sink node [25]. The main data structure is a fully-connected 75-node graph, which consists

of about 220 Kbytes of node and edge records. The computation is divided into relatively

small-grain tasks, which are dynamically distributed to processors. We collected statistics

after the initialization of all data structures.

Mincut tries to split a graph into two partitions with a minimum number of cuts by using a

simulated annealing algorithm. The main data structure is a 500-node graph (82 Kbytes).

This program does not attempt to divide computations for reducing the communication-to-

computation ratio or to allocate data records for reducing the number of remote memory

accesses. We collected statistics from the last 22 iterations out of 31 iterations.

MP3D is a rarefied hypersonic flow simulator that uses a Monte Carlo method for model-

ing particle collisions [43]. The main data structures are two arrays: one for particles and
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one for cells. Each record of the particle and the cell arrays represents properties of each

particle (molecule) and each cell (unit-sized physical space), respectively. Particle records

are statically partitioned and assigned to each processor. Cell records, on the other hand,

are actively accesses by multiple processors, so that most of the sharing misses occur for

the cell records. MP3D is a non-synchronized program; processors update cell records

without locking them. Our simulation uses 3000 molecules (about 105 Kbytes) and 2352

cells (about 92 Kbytes). We collected statistics from the last 5 time-steps out of a 6 time-

step simulation.

Ocean simulates eddy currents in an ocean basin [60]. The main data structure is a set of

grids (about 4 Mbytes) that represent several physical values for a 130× 130 grid. The rest

of input parameters are the same as the default. Each grid is divided into a set of square

subgrids and assigned to each processor for minimizing the communication-to-computa-

tion ratio. Subgrids are allocated in the local memory of the assigned processor for reduc-

ing the number of remote memory accesses. We collected statistics after the first step of

the iterations.

Pthor is a parallel logic simulator that uses a variant of the Chandy-Misra [11] distributed-

time algorithm. The main data structures include element and node structures that corre-

spond to logic circuit elements and wires respectively. Each node has an event list that

keeps track of value changes at that node. Our input circuit is a small RISC processor that

consists of 5060 elements. The data-set size for this input is about 1.5 Mbytes. We simu-

lated the circuit for 100 clocks (20,000 ticks) and collected statistics after all elements and

nodes are initialized.

Water is adapted from the Perfect Club Benchmarks [7] and simulates water-molecule sys-

tem in a liquid state by using an  N-body algorithm with a spherical cut-off radius,

which eliminates computations for unimportant molecule interactions. The main data

structure is an array of water-molecule records, which are statically allocated to proces-

sors. Our simulations use 288 molecules (187 Kbytes), and we collected statistics from the

last 5 steps out of 6 step.

O n
2

 
 



37

Chapter 4

Sharing Characteristics of Parallel Applications

As we discussed in Chapter 2, deliver operations can significantly decrease the number of

sharing misses but can significantly increase the amount of the traffic. Our simulation

results show that both the deliver and the prefetch schemes can generate a large number of

unnecessary data transfers for applications with irregular computations. In this chapter, we

discuss the sharing characteristics and the application structures that determine the behav-

ior of deliver and prefetch operations, and we compare the efficiency of the deliver and the

prefetch schemes. We show that the prefetch scheme has a significant advantage in reduc-

ing the number of unnecessary data transfers due to irregular computations.

Since our focus is on the true sharing characteristics of application programs, we assume

that each processor has an infinite cache with 16-byte lines. The infinite cache eliminates

memory accesses due to finite cache capacity, and the 16-byte line size sufficiently

reduces the effect of false sharing. As we discussed our simulation strategy in Section 3.1,

we use a unit-delay memory model in this chapter since our focus is on application charac-

teristics instead of the performance.

In this chapter, we begin with examining the effect of the sharing characteristics for the

deliver scheme in Section 4.1. We identify the sharing patterns that cause unnecessary

data transfers in the deliver scheme. Detailed discussions of sharing characteristics pre-

sented in the section will enable us not only to understand the behavior of the deliver oper-

ation, but also to examine techniques that improve the efficiency of the deliver operation.

In Section 4.2, we examine the effect of the sharing characteristics for the prefetch

scheme. Finally, we summarize our discussions about the sharing characteristics of appli-

cations and their impact for the deliver and the prefetch operations.
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4.1 Producer-oriented Deliver
By using the deliver operation only where it works efficiently, we can decrease the number

of cache misses with a minimum increase in the amount of the traffic. We examine several

techniques that trade off the number of misses versus the amount of the traffic. While the

deliver scheme is a producer-oriented approach, the memory-access behavior of both pro-

ducers and consumers affects the efficiency of the deliver operation; producers directly

initiate the data transfer operation, and consumers control the destination of the data trans-

fer operation. We examine the sharing pattern from both the producer and the consumer

perspectives to understand the application characteristics that affect the behavior of

deliver operations and to evaluate trade-off techniques that use sharing information from

different perspectives.

In this section, we first discuss our assumptions and define several terms to be used in this

chapter. Second, we discuss the sharing characteristics from the consumer’s perspective.

Third, we discuss the sharing characteristics from the producer’s perspective. Fourth, we

discuss details about application algorithms and data structures to understand the differ-

ence in the effectiveness of trade-off techniques that improve the efficiency of deliver

operations.

4.1.1 Background

Our deliver scheme assumes that programmers or language systems explicitly insert

deliver operations into the application. In this chapter, however, we use a simulator that

automatically inserts deliver operations for all shared variables to examine sharing pat-

terns thoroughly and to avoid limitations of existing language systems. At each synchroni-

zation operation, the simulator inserts a deliver operation so that the processor delivers all

cache lines that the processor has recently written. The deliver message is sent to all pro-

cessors on the deliver vector of the cache line.

For non-synchronized programs (i.e., Locus and MP3D), I manually insert pseudo-syn-

chronization operations where deliver operations should be executed after a series of

shared data updates.1 The pseudo-synchronization operation does not cause actual syn-

chronization but only specifies the place where deliver operations should be inserted. The
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pseudo-synchronization operation does not, therefore, affect the memory access pattern or

the execution path of application programs. Adding pseudo-synchronization operations

does not change a non-synchronized program to a synchronized one.

Our simulation model assumes that deliver operations have no instruction overhead and

that deliver messages are sent without any delay. We simply measure the benefit of the

deliver operation by the decrease of the number of read misses. This metric is valid

because we assume aggressive write buffering techniques that can hide write access laten-

cies; hence read misses have a primary effect on the performance. We measure the over-

head of the deliver operation by the increase of the number of deliver messages. These

simplifications allow us to focus only on the interplay between the sharing characteristics

of applications and the behavior of deliver operations. We use a more realistic machine

model to evaluate the effect of deliver operations for the execution time in Section 5.4.

Since we assume an infinite cache, deliver operations can eliminate most of the read

misses but not all of them. We classify read misses to identify those that deliver operations

can eliminate.

Cold miss: A cache miss due to an initial read for the cache line. Since deliver messages

are not sent to processors that have never accessed the cache line, deliver opera-

tions do not eliminate these read misses.

Sharing miss: A cache miss due to an invalidation for a write operation of another proces-

sor. These misses are divided into two types by the timing of the write and the fol-

lowing read operations:

Synchronous sharing miss: A sharing miss that occurs after the last writer exe-

cutes a synchronization or a pseudo-synchronization operation. For syn-

chronized programs, communication occurs only through this type of miss.

For non-synchronized programs, communication may occur through

another type of miss, namely, asynchronous sharing misses. Deliver opera-

1. For Locus, a pseudo-synchronization operation is inserted immediately after each loop that
updatesCostArray elements. For MP3D, a pseudo-synchronization operation is inserted at the
end ofmove_single(), which updates one particle.
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tions can completely eliminate synchronous read misses because we

assume no delay in sending deliver messages.

Asynchronous sharing miss: A sharing miss that occurs before the last writer

executes a synchronization or a pseudo-synchronization operation. In real

machines, deliver operations may or may not reduce these read misses. In

our memory model, however, deliver operations cannot reduce these read

misses since we assume the last writer performs a deliver operation at the

synchronization point following the write operation.

Figure 4-1 shows the ratio of the number of read misses for each miss type when no

deliver operations are used. We assume an infinite cache with 16-byte lines. Figure 4-1

shows that the number of read misses is dominated by synchronous sharing misses, which

deliver operations can eliminate. The ratio of asynchronous read misses is small (< 7.2%)

for synchronized applications and also small (< 11%) for non-synchronized applications.

This is because the cache line size is so small (16 bytes) that false sharing does not have a

significant effect on the number of cache misses and also because pseudo-synchronization

operations are properly inserted in non-synchronized applications so that processors do

not frequently read shared data before the previous writer executes a pseudo-synchroniza-

tion operation. The ratio of cold misses is relatively large for Locus (25%), Barnes (21%),

and Maxflow (22%) particularly because of limited data reuse. For example, Maxflow is
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Figure 4-1: Ratio of Read Miss Types. No deliver operations are used.
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not an iterative program, and Locus is iterative but does not require a large number of iter-

ations; hence data reuse is limited. Barnes, on the other hand, is an iterative program, and

each processor generally reuses the same data record in the logical data structure. The

same logical data record, however, is not always allocated in the same physical memory

location because of dynamic data allocations. Thus, Barnes generates a relatively large

number of cold misses. Pthor also has a relatively large ratio of cold misses (22%). This

results from the artifact of our simulation that takes statistics from a relatively short simu-

lation. The ratio should be smaller in actual uses.

The benefit of the deliver operation appears as some reduction of synchronous sharing

misses, which is defined as acovered ratio:

 EQ 4-1

The covered ratio varies as the threshold of the competitive back-off technique or the

number of inserted deliver operations varies. If competitive back-off is not used, for

example, the covered ratio is zero when no deliver operations are executed, and the cov-

ered ratio is one when a deliver operation is executed at all synchronous or pseudo-syn-

chronous operations for all written shared data.

We measure the overhead of the deliver operation as the number of deliver messages rela-

tive to the number of synchronous sharing misses without deliver operations, which is

defined as adeliver message overhead:

 EQ 4-2

In this chapter, we count only deliver messages that are sent to processors and do not

count acknowledgment messages or messages between processors and directories. This

allows us to ignore implementation details of the deliver mechanism. Since we need at

least one deliver message to eliminate one miss, the deliver message overhead cannot be

smaller than the covered ratio. If no deliver message is wasted, the deliver message over-

head is the same as the covered ratio.

covered ratio 1 the number of synchronous sharing misses with delivers
the number of synchronous sharing misses without delivers
----------------------------------------------------------------------------------------------------------------------------------------------–=

deliver message overhead the number of deliver messages sent
the number of synchronous shring misses without delivers
-------------------------------------------------------------------------------------------------------------------------------------------=
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4.1.2 Sharing Characteristics from the Consumer’s Perspective

It would be ideal if a processor used every received deliver message. In reality, as shown

in Figure 4-2, a processor may use only one message out of multiple deliver messages that

the processor receives between two consecutive accesses for the same cache line. As illus-

trated in Figure 4-2, we define adeliver-run as a sequence of received deliver messages

for the same cache line without any intervening accesses by the local processor. The

length of the deliver-run, measured by the number of deliver messages received, shows

how long it has been since the processor has not used the cache line. We can see the

deliver-run as a consumer’s access pattern for deliver operations.

The deliver-run is similar to the write-run that was proposed by Eggers and Katz [21]. The

write-run is defined as the number of writes that a producer performs for the same address

without intervening accesses by any other processors. Thus, the write-run is an architec-

ture-independent metric of applications and useful to determine whether the write-invali-

date or the write-update policy produces less coherency traffic for snoop cache systems

with one-word lines. The deliver-run is different from the write-run in two ways. First, the

deliver-run takes into account the fact that a deliver operation aggregates all updates that

the producer made for the same cache line. Thus, the deliver-run length depends on the

line size, while the write-run length does not. Second, the deliver-run length corresponds

to the number of messages due to deliver operations in a point-to-point interconnection

network, while the write-run length corresponds to the number of bus transactions due to

update operations in a bus-based interconnection network.

a sequence of
received deliver
messages between
two accesses

deliver run

Processor A

deliver

deliver

deliver

Processor B Processor C

access

access

Figure 4-2: Deliver-run.
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In this section, we analyze characteristics of deliver-runs to discuss consumer’s access

patterns as well as consumer-oriented techniques that reduce the deliver message over-

head. First, we categorize deliver-runs to identify ones that eliminate a cache miss. Sec-

ond, we examine the distribution of the length of deliver-runs to understand consumer’s

access behavior. Finally, we discuss two techniques in which consumers control the sub-

scription of deliver messages by using information about deliver-runs; in one technique,

consumers dynamically control the subscription at run-time, and in the other technique,

consumers statically control the subscription at compile-time.

4.1.2.1 Classification of Deliver-runs

Not all deliver-runs eliminate a cache miss. As shown in Table 4-1, we classify deliver-

runs into four types by the operation type that the consumer performs at the end of the

deliver-run. A cache miss can be eliminated only for sync-read deliver-runs: deliver-runs

that are followed by a consumer’s synchronous read operation. Figure 4-3 shows the ratio

of the number of deliver messages for each deliver-run type. The ratio of async-read

deliver-runs is small (< 4.7%) for all applications, and the ratio of write deliver-runs is

also small (< 5.5%), except Pthor (21%). Most of the write deliver-runs occur when the

program overwrites data structures without reading them. In Pthor, about 70% of write

deliver-runs occur at overwriting operations when the program appends or deletes an ele-

ment of linked lists or when the program sets a flag associated with each task queue.

The ratio of open deliver-runs is relatively large in Barnes and Locus because of dynamic

data assignment to processors. As the data assignment changes, deliver vectors begin to

hold processors that are not using the cache line anymore. Thus, deliver messages to those

processors cause open deliver-runs. The ratio of open deliver-runs is particularly large in

Barnes. Barnes reconstructs the main data structure (a Barnes-Hut tree) for each iteration

deliver-run type consumer’s operation that ends the deliver-run

sync-read deliver-run synchronous read operation

async-read deliver-run asynchronous read operation

write deliver-run write operation

open deliver-run no operation (the end of the program)

Table 4-1: Deliver-run Types.
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by dynamically allocating non-leaf nodes, so between iterations the same logical node of

the tree might be mapped to different physical memory addresses. Thus, although the

same logical node is used by the same or a similar set of processors between iterations, the

deliver vector for non-leaf nodes does not represent the algorithmic access pattern. In Bar-

nes, therefore, the dynamic memory allocation causes the large ratio of open deliver-runs.

4.1.2.2 Distribution of Deliver-runs

Now, we discuss the distribution of the length of deliver-runs. Figure 4-4 shows a cumula-

tive distribution of the length of sync-read deliver-runs for our applications. The length of

a sync-read deliver-run indicates the efficiency of deliver messages that the deliver-run

generates; if a deliver-run length isl, one deliver message is used and  deliver mes-

sages are not used. FFT, Mincut, and Ocean have an advantageous characteristic for the

deliver scheme. The length of all sync-read deliver-runs is one for FFT, and the length of

more than 90% of sync-read deliver-runs is one or two for Mincut and Ocean. Thus, these

applications use most of the transmitted deliver messages. For the rest of applications,

however, more than 50% of the deliver-runs are longer than two. That is, processors

receive more than two deliver messages for more than half of the synchronous read opera-

tions. In particular, Water and Pthor have a large ratio of long deliver-runs: more than 20%

of their deliver-runs are longer than ten.
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A simple sharing pattern between producers and consumers causes short deliver-runs in

FFT. Each processor performs transpose operations between two statically-partitioned

matrices, and each processor writes the results to other processor’s partitions. Synchro-

nous sharing misses occur when a processor reads a part of its partition that was written by

other processors. Because processors write shared data in other processor’s partitions only

once, the length of sync-read deliver-runs is always one.

Migratory sharing patterns cause long deliver-runs in Pthor and Water although the two

applications have a very different structure. In Pthor, each processor picks up a circuit ele-

ment from a task queue that contains circuit elements to be evaluated and updated, and if

the task queue becomes empty, the processor moves to another queue. Each task queue is

associated with a different set of circuit elements. Thus, as the program proceeds, the own-

ership of cache lines for each circuit-element record migrates among processors, and the

deliver vector of cache lines for each circuit element holds the identity of all processors

that have ever evaluated the element. Deliver operations, therefore, keep sending mes-

sages even to those processors that are no longer accessing the circuit element for a long

period. Thus, the length of sync-read deliver-runs tends to become long in Pthor.

Figure 4-4: Cumulative Distribution of Sync-read Deliver-runs.
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Water, on the other hand, is very different from Pthor in both program and data structures.

Water does not use task queues. The main data structure, a set of molecules, is statically

partitioned and assigned to each processor. While each processor most often updates mol-

ecules that are assigned to the processor, each processor sometimes updates other mole-

cules that are assigned to another processor. As a result, the ownership of cache lines for

each molecule record migrates among processors, and the deliver vector of those cache

lines holds the identity of all processors that have updated the molecule. When a processor

updates local molecules, therefore, a deliver operation sends a message to processors that

access those molecules only infrequently. Although Pthor’s and Water’s methods of parti-

tioning differ completely, migratory sharing patterns generate a large number of unused

deliver messages in both applications.

4.1.2.3 Consumer Control of Deliver Operations

The distribution of the length of deliver-runs indicates the efficiency of deliver operations

as well as the degree of potential improvements of deliver operations. While the deliver

operation is producer-oriented, consumers determine the destination of deliver operations;

consumers subscribe to a cache line for future deliver operations by accessing the cache

line. If the consumer knows that a deliver-run will become long, the consumer can notify

the cache directory to cancel the subscription.2 This subscription control can be done by

using run-time or compile-time information as illustrated in Figure 4-5.

Thecompetitive back-off technique (the left hand side in Figure 4-5) uses run-time infor-

mation about deliver-runs. The consumer counts the length of the deliver-run for each

cache line and cancels the subscription of the line when the length exceeds a certain

threshold. Thesubscription control technique (the right hand side in Figure 4-5), on the

other hand, uses compile-time information about deliver-runs. This technique assumes

that the language system (e.g., compiler and profiler) knows the average length of deliver-

runs that follow each source-code line with a memory access. The language system inserts

2. Read and write operations automatically subscribe the accessed cache line in our deliver scheme.
If an application does not need to subscribe lines normally, we can choose not to subscribe
cache lines automatically and to insert subscribing operations explicitly in the application.
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a special operation, an unsubscribe operation, after a source code line if the average length

of deliver-runs that follow the source code line is longer than a certain threshold.3

Both techniques have an advantage and a disadvantage. While competitive back-off

wastes received deliver messages up to the back-off threshold if the deliver-run is longer

than the threshold, subscription control does not waste such deliver messages since the

subscription can be canceled at the beginning of the deliver-run. The subscription control

technique, however, is not adaptable to changing sharing patterns at run-time because this

technique applies the same subscription policy to all memory accesses for the same source

code line. Thus, if the length of deliver-runs for the same source-code line changes signif-

icantly during run-time, the subscription control technique does not effectively improve

the efficiency of deliver operations. Competitive back-off, on the other hand, can selec-

tively unsubscribe deliver messages only for the long deliver-runs.

Analyses of deliver-run characteristics can tell us which of the two techniques discussed

above is more effective than the other. The cumulative distribution of sync-read deliver-

3. Our subscription control technique performs a subscribe or unsubscribe operation only at the
beginning of a deliver run (i.e., immediately after the use of the cache line). A more general
technique can perform such an operation at any arbitrary places in the source code. If the sub-
scribe operation is performed near the end of a deliver-run, the operation becomes similar to a
prefetch operation.
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Figure 4-5: Consumer Control of Deliver Operations.
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runs (Figure 4-4) shows the covered ratio for the competitive back-off technique. When

the threshold of the back-off isth, and if a sync-read deliver-run is equal to or shorter than

th, the following synchronous read becomes a read hit. Consequently,

 EQ 4-3

where  is the number of sync-read deliver-runs whose length isl. The deliver

message overhead is also obtained from the distribution of deliver-runs. When a deliver-

run is equal to or shorter than the thresholdth, the processor receives all deliver messages

for the deliver-run. When a deliver-run is longer thanth, on the other hand, the processor

receives deliver messages only up toth. Thus, the deliver message overhead is

 EQ 4-4

where  is the number of any deliver-runs whose length isl.

The above two equations give us the trade-off between the covered ratio and the deliver

message overhead when the back-off threshold varies. Similar equations show the covered

ratio and the deliver message overhead for the subscription control technique. We define

an effective deliver-run length (leff) for each source-code line with a memory operation;

leff is the total of the length of deliver-runs following the line divided by the number of

sync-read deliver-runs following the line. Note thatleff indicates the number of received

deliver messages per synchronous read. An unsubscribing operation is inserted after a

source-code line if theleff is larger than a threshold,th. Therefore,

covered ratio threshold th=( )

Dsync l( )
l 1=

th

∑

Dsync l( )
l 1=

∞

∑
--------------------------------=

Dsync l( )

deliver message overhead thresholdth=( )

l Dany l( )×
l 1=
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∑ th Dany l( )×
l th 1+=

∞
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Dsync l( )
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∞

∑
-------------------------------------------------------------------------------------------------=
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 EQ 4-5

where  and  are the number of sync-read deliver-runs and any deliver-

runs following source-code lines whoseleff is l. Note that the subscription control tech-

nique does not generate deliver messages ifleff is larger thanth, while competitive back-

off generatesth deliver messages if the deliver-run length is larger thanth.

We will discuss detailed characteristics of the competitive back-off and the subscription

control techniques along with a producer-oriented technique in Section 4.1.4. For now, we

discuss only some general characteristics of the two consumer-oriented techniques by

comparing two examples. Figure 4-6 shows the trade-off between the deliver message

overhead versus the covered ratio for Barnes and Locus. For Barnes, subscription control

performs significantly better than competitive back-off. The computation of each iteration

in Barnes consists of several phases, and the memory access pattern is significantly differ-

ent among those phases. Thus, subscription control can utilize such knowledge about

covered ratio threshold th=( )
D̂sync l( )

l th≤
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l ∞≤
∑
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deliver message overhead thresholdth=( )
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Figure 4-6: Deliver Message Overhead versus Covered Ratio (Consumer-initiated Trade-
offs).
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access patterns and apply deliver operations only to some of those phases in which deliver

operations work efficiently. Competitive back-off, however, cannot utilize such knowl-

edge. Thus, subscription control performs better than competitive back-off. Locus, on the

other hand, has an opposite characteristic. Locus accesses the main data structure,CostAr-

ray, primarily at a few locations in the source code so that the same source-code line is fol-

lowed by deliver-runs that have a dramatically different length. Thus, subscription control

cannot selectively apply deliver operations only for short deliver-runs, while competitive

back-off can. The program structure, therefore, strongly affects the effectiveness of these

subscription techniques.

4.1.3 Sharing Characteristics from the Producer’s Perspective

In the previous subsection, we discussed the consumer’s access patterns by examining the

distribution of the length of sync-read deliver-runs, which shows the number of received

deliver messages per used deliver message. In this subsection, we discuss similar statistics

from the producer’s perspective. Namely, we analyze the distribution of the number of

delivered and used messages as shown in Figure 4-7 and Figure 4-8. As we did for con-

sumer’s sharing characteristics, we first examine characteristics of the distribution to

understand producer’s access behavior. Then, we discuss a technique to improve the effi-

ciency of deliver operations by using the producer’s sharing characteristics.

4.1.3.1 Delivered Messages versus Used Messages

Figure 4-7 and Figure 4-8 show three-dimensional histograms of the number of delivered

and used messages; each bar shows the ratio of deliver operations that cause the corre-

sponding number of delivered and used messages. Note that several applications have a

large ratio of deliver operations that do not actually generate deliver messages (23% for

Barnes, 34% for Locus, 42% for MP3D, 88% for Ocean, and 50% for Pthor). This type of

deliver operation occurs when data records are allocated in shared memory but used

exclusively by a single processor. Examples include non-boundary grid elements in

Ocean, most of the particle records in MP3D, and local body and cell tables for each pro-

cessor (mybodytab and mycelltab) in Barnes. Deliver operations occur for these data

records since our simulator automatically inserts deliver operations for all data records in
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Figure 4-7: Delivered Messages versus Used Messages.
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shared memory. Language systems or programmers can easily identify those data records

and eliminate deliver operations for them.

Another common pattern in these histograms is that the number of delivered messages is

often much larger than that of used messages. For some applications, a large ratio of

deliver operations (56% for Barnes, 82% for LU, and 46% for Water) are completely use-

less; no delivered messages are used. We call such deliver operationsuseless deliver oper-

ations. The useless deliver operation occurs when no processors or only the same

processor uses the delivered cache line. In particular, when only the same processor uses

the delivered cache line, we call the access patternsingle-processor reuse. Single-proces-

sor reuse occurs when one processor frequently uses a datum exclusively but other proces-

sors sometimes access it. In Barnes, for example, single-processor reuse occurs during the

Figure 4-8: Delivered Messages versus Used Messages. (Continued.)
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tree construction phase. Bodies (leaf nodes) are partitioned for each processor so that each

processor’s portion of the tree has a minimum overlap with another processor’s portion.

Thus, during the tree construction phase, most of the internal tree nodes (cells) are

accessed by the same processor. During the tree traverse phase, however, multiple proces-

sors read most of the cells, so that the deliver vector holds those processors. Thus, during

the next tree construction phase, deliver messages are sent to all processors that read the

cell during the last tree traverse phase even if only one processor is frequently using the

cell. Therefore, useless deliver operations occur in Barnes because of the single-processor

reuse of cell records. In Water, single-processor reuse occurs during the inter-molecule-

force calculation phase. As discussed in Subsection 4.1.2, each molecule is most often

accessed by the processor to which the molecule is assigned. Each molecule, however, is

also accessed from about half of the processors at some point (from seven to nine proces-

sors in our case). Therefore, when a molecule is updated, deliver messages are sent to all

of those processors, although the molecule is most frequently accessed by the same pro-

cessor to which the molecule is assigned. Hence, useless deliver operations occur in Water

because of the single-processor reuse of molecule records.

Even if a deliver operation is not completely useless (i.e., not a useless deliver operation),

the number of used deliver messages is often small. As shown in Figure 4-7 and Figure 4-

8, the number of used messages is often exactly one for deliver operations that generate at

least one used message. Table 4-2 shows the average of the number of used and delivered

messages for deliver operations that generate at least one used message. The average of

the number of used messages is between one and three for nine applications (i.e., all appli-

cations except Mincut). The average of the number of delivered messages is, however,

much larger than one for six out of the nine applications (i.e., Barnes, Locus, Maxflow,

MP3D, Pthor, and Water). Thus, these six applications use only a small portion of deliv-

ered messages (< 30%) as shown in Table 4-2. This behavior occurs because between two

writes to a cache line, it is read by only a subset of the processors that ever use the cache

line. We call this access patternreader migration. A special case of reader migration is

calledstale deliver vector where some of reader processors migrate and never again use

the cache line. A stale deliver vector occurs because the deliver vector holds all readers

that have ever touched the cache line unless readers clear the subscription of the deliver
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message. A stale deliver vector causes open deliver-runs. Barnes and Locus have a rela-

tively large ratio of open deliver-runs (see Figure 4-3). Another special case of reader

migration is calledmigratory access, in which only one processor uses the data record at a

time and updates the record at the end of the use.4 Since the update invalidates previous

deliver messages that are sent to other processors, only one deliver message is used for

each deliver operation, while each deliver operation sends a deliver message to all proces-

sors that have used the record. Migratory access thus generates a large number of unused

deliver messages.

Four applications — FFT, LU, Mincut, and Ocean — use a large portion of the delivered

messages (> 70%) as shown in Table 4-2. In FFT, LU, and Ocean, a static producer-con-

sumer relation makes deliver operations very efficient. FFT and Ocean have a static one-

to-one producer-consumer relation for most of the shared memory accesses, so the pro-

ducer generates a single deliver message to the consumer. LU, on the other hand, causes

useless deliver operations because the producer updates a data structure several times

before the consumer reads the data structure. Since our simulator automatically inserts a

4. Gupta and Weber [30] called data objects that cause migratory accessesmigratory data objects.

a. The number of used and delivered messages are an average in deliver operations
that generate at least one used message.

Application
used messages

(average)
delivered messages

(average)

Barnes 2.39 9.00 26.6%

FFT 1.00 1.00 100.0%

Locus 1.83 10.45 17.5%

LU 2.97 3.12 95.2%

Maxflow 2.95 13.07 22.6%

Mincut 10.37 14.76 70.3%

MP3D 1.01 6.44 15.7%

Ocean 1.06 1.13 93.8%

Pthor 1.87 12.44 15.0%

Water 1.09 7.84 13.9%

Table 4-2: Deliver Messages Statistics.a

used messages
delivered messages
----------------------------------------------
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deliver operation for each updated structure at each synchronization operation, the pro-

ducer generates useless deliver operations. We can, however, eliminate such deliver oper-

ations simply by inserting deliver operations only after the last update. Mincut has a

completely different sharing pattern. As indicated by the large number of delivered mes-

sages per deliver operation in Table 4-2, each deliver operation sends a deliver message to

virtually all processors. This is because the communication pattern is usually one-to-all

(broadcasting) so that these deliver messages are often needed. As a result, Mincut uses a

large ratio of delivered messages, even though the producer-consumer relation is dynami-

cally determined.

4.1.3.2 Producer Control of Deliver Operations

If a language system knows the ratio of the number of delivered messages over the num-

ber of used messages for each candidate of the deliver annotation, the language system

can selectively insert deliver operations only where the ratio is sufficiently small. Just as

we examined trade-off techniques between the covered ratio and the deliver message

overhead from the consumer’s perspective, we shall next examine a similar trade-off tech-

nique from the producer’s perspective, which is calledselective deliver.

For each source-code line with a write operation (we call thiswrite-code), we assume that

a deliver operation is inserted immediately before the synchronization (or pseudo-syn-

chronization) operation that follows the write. We definedeliver ratio (dw) for each write-

codew as

 EQ 4-6

We consider only write-codes where the number of used messages is not zero. Note that

the deliver ratio corresponds to the effective deliver-run length (leff) in the subscription

control technique. The selective deliver technique inserts a deliver operation only if the

deliver ratio is equal to or smaller than a threshold,th. Thus, the covered ratio and deliver

message overhead for threshold (th) are

Dw the number of delivered messages generated for the write-codew=

Uw the number of used messages withinDw=

dw

Dw

Uw
-------- Uw 0>( )=
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 EQ 4-7

The above two equations demonstrate the trade-off between the covered ratio and the

deliver message overhead when the deliver-ratio threshold varies.

Selective deliver is similar to subscription control (cf. EQ 4-5) since both techniques are a

software-based solution that utilizes characteristics of sharing patterns. Both techniques,

moreover, use a similar threshold — the number of deliver messages per eliminated cache

miss — to improve the efficiency of deliver operations. The two techniques, however,

exploit characteristics of sharing patterns from different perspectives. In subscription con-

trol, when a consumer is expected to receive more than a certain number of deliver mes-

sages until the next use of the cache line, the consumer cancels the subscription. This

technique is effective, for example, in the following scenario; if a processor is migrating

from one task queue to another, in the near future the processor will not reuse the data

records that are associated with the previous task queue. Subscription control can reduce

the number of unnecessary deliver messages by canceling the subscription for those data

records. In selective deliver, on the other hand, when a producer is expected to send more

than a certain number of deliver messages per eliminated miss, the producer cancels the

deliver operation. This is technique is effective, for example, in the following scenario; if

a processor is updating a set of data records that are assigned to the processor, other pro-

cessors may not use the updated records every time when the producer performs a release

operation. Selective deliver can reduce the number of unnecessary deliver messages by

avoiding inserting deliver operations where communication does not occur frequently.

The effectiveness of these two techniques, therefore, truly depends on the program struc-

ture. For some applications, the best technique is different for different data structures in

the same program. We will quantitatively compare these software-based techniques along

covered ratio threshold th=( )

Uw
dw th≤
∑

Uw
dw ∞≤
∑

----------------------=

delivered message overhead thresholdth=( )

Dw
dw th≤
∑

Uw
dw ∞≤
∑

----------------------

dw Uw×
dw th≤
∑

Uw
dw ∞≤
∑

------------------------------------= =
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with hardware-based technique (competitive back-off) by examining simulation results in

next subsection.

4.1.4 Application Algorithms and Deliver Operation Behavior

In Section 4.1, we have discussed general characteristics of consumers’ and producers’

access patterns and introduced three trade-offs between the covered ratio and the deliver

message overhead: competitive back-off, subscription control, and selective deliver. In

this subsection, we will examine algorithms and data structures of each application to

understand the effectiveness of these three techniques.

The three techniques use a similar threshold — the number of deliver messages per elimi-

nated miss — to control the efficiency of deliver operations. The threshold is the deliver-

run length for competitive back-off (EQ 4-3), the effective deliver-run length for subscrip-

tion control (EQ 4-5), and the deliver ratio for selective deliver (EQ 4-7). As we increase

the threshold, the covered ratio increases. Figure 4-9 and Figure 4-10 show the covered

ratio as a function of the threshold for the three techniques. Each of the three covered-ratio

curves exhibits a cumulative distribution of a certain property in the sharing pattern. The

covered-ratio curve of competitive back-off illustrates the cumulative distribution of the

sync-read deliver-run length (the same as the one shown in Figure 4-4). The covered-ratio

curve of subscription control illustrates the cumulative distribution of the effective sync-

read deliver-run length, which is the number of deliver messages that a processor receives

to eliminate one read miss. The covered-ratio curve of selective deliver illustrates the

cumulative distribution of the deliver ratio, which is the number of deliver messages that a

processor sends to eliminate one read miss. From these distribution statistics, we can cal-

culate the deliver message overhead of the three techniques by using equations from EQ

4-3 to EQ 4-7.5 Figure 4-11 and Figure 4-12 show the three trade-offs between the deliver

message overhead and the covered ratio. As the threshold parameter (th) increases, the

covered ratio and the deliver message overhead increase. The slope of the trade-off curve

represents the ratio of the number of deliver messages that are generated to eliminate one

read miss.

5. For calculating the deliver message overhead of competitive back-off and subscription control,
we also need the statistics about non-sync-read deliver-runs. (See EQ 4-4 and EQ 4-5.)
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Figure 4-9: Covered Ratio versus Threshold.
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For most of the applications, as shown in Figure 4-11 and Figure 4-12, selective deliver

generates the lowest (or roughly equal) deliver message overhead among the three tech-

niques for a wide range of the covered ratio. Only Locus is exceptional; competitive back-

off performs significantly better than selective deliver for a wide range of the covered

ratio. This is because the memory-access behavior changes significantly for the same

memory operation at run-time in Locus, so that an adaptive technique — competitive

back-off — performs better than other non-adaptive techniques. The performance differ-

ence among the techniques depends on how consumers and producers change their mem-

ory-access patterns in the program. For example, if producers display single-processor

reuse only in a part of the program, selective deliver can reduce the deliver message over-

head by avoiding deliver operations in that part of the program. However, if producers dis-

play single-processor reuse with the same frequency in all places where the producer
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Figure 4-10: Covered Ratio versus Threshold. (Continued.)
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Figure 4-11: Deliver Message Overhead versus Covered Ratio.
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updates a shared variable, perhaps another trade-off technique is more effective than

selective deliver. Thus, to determine the best trade-off technique, we need to understand

details of the memory-access behavior of each application.

4.1.4.1 Barnes

The main data structure is a Barnes-Hut tree that represents a three-dimensional space.

The computation of each time step consists of four phases: tree construction, tree partition,

tree traverse, and body update. For each time step, the program partitions the physical

space into subspaces. The program assigns each processor to a similar subspace to which

the processor was assigned in the previous time step, so that the processor exploits the

memory locality for accessing body records. Cell records, however, are dynamically allo-

cated when processors construct a tree from scratch for each time step, and the same cell

record may not be used for the tree node that represents the same physical space. There-
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Figure 4-12: Deliver Message Overhead versus Covered Ratio. (Continued.)
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fore, even if a processor accesses the same physical space that the processor had accessed

in the previous time step, the processor may access a different cell record. Thus, the

deliver vector of the cell record does not represent the future access pattern.

Another characteristic of Barnes is that the access pattern of body and cell records varies

significantly among those four phases. First, the tree construction updates cell records to

generate single-processor reuse accesses. At the end of the tree construction phase, how-

ever, processors update the center of mass for each cell, and the update will be read by

other processors in later phases. Second, the tree partition phase reads cell and body

records but does not write them. Third, the tree traverse phase updates a part of the body

records (e.g., acceleration and gravity potential) but does not update cell records. Fourth,

the body update phase updates a part of the body records (e.g., position). Therefore, com-

petitive back-off causes some overhead when the scheme dynamically adapts to the

changing access pattern. Our software-controlled techniques (selective deliver and sub-

scription control), on the other hand, do not cause such overhead because these techniques

statically choose the places to use deliver operations by using the knowledge of the access

pattern. As shown in Figure 4-11, both trade-off curves of the two software-controlled

techniques have a knee when the covered ratio is about 90%. The right hand side of the

knee exhibits the behavior of the deliver operation due to single-processor reuse for the

tree construction. We can insert deliver or subscription control operations so that the

deliver message overhead is in the left hand side of the knee. That is, for either software-

controlled technique, we can avoid deliver operations during the tree construction phase.

Competitive back-off, on the other hand, cannot statically avoid using deliver operations

for the phase, so that competitive back-off generates more deliver message overhead than

the other two techniques for the same covered ratio, as shown in Figure 4-11.

Figure 4-11 also shows that selective deliver and subscription control cause slightly differ-

ent trade-off curves. Actually, selective deliver is better for cell records than subscription

control, but subscription control is better than selective deliver for body records. For the

cell record, single-processor reuse frequently occurs for some write instructions that

update cell records (e.g., cell initialization and tree construction), and selective deliver can

reduce unused deliver messages for these writes more efficiently than subscription control.
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For the body record, on the other hand, subscription control performs better than selective

deliver because of false sharing. Since each element in the body record has a different

sharing pattern, the deliver operation and the deliver vector should ideally be defined for

each element. In selective deliver, the producer sends a deliver message to all processors

that have used any part of the cache line since the unit of the deliver vector is a cache line.

Subscription control, however, allows the consumer to unsubscribe a cache line when the

consumer accesses a particular record element. Thus, subscription control can effectively

use deliver operations only for record elements for which deliver operations work effi-

ciently. By applying selective deliver to the cell record and subscription control to the

body record, we can generate less deliver message overhead than either scheme. (At a

70% covered rate, the deliver message overhead is 2.7 for the combined technique, 3.1 for

selective deliver, and 3.6 for subscription control).

4.1.4.2 FFT

In FFT, communication occurs during a transpose of a  complex matrix to another

matrix. This program uses a six-step FFT algorithm, and three steps out of six perform a

transpose between two matrices. As shown in Figure 4-9, the length of all sync-read

deliver-runs is one since the producer-consumer relationship is static and one-to-one

except for the last transpose. Out of the three transpose operations, the first two transpose

operations cause sync-read deliver-runs but the last transpose causes open deliver-runs

because the final result of FFT obtained at the last transpose is not used. This is why the

deliver message overhead becomes 1.5 when the covered rate is 1.0, as shown in Figure 4-

11. Selective deliver can eliminate those open deliver-runs by avoiding deliver operations

immediately before the last transpose. Thus, selective deliver can achieve the optimal

result; the deliver message overhead is 1.0 when the covered rate is 1.0.

Subscription control, on the other hand, does not achieve the optimal result as shown in

Figure 4-11. This is because all transpose steps use the same code so that this technique

cannot unsubscribe deliver operations selectively during the last transpose. Simple source-

code modifications (e.g., subroutine expansion), however, can eliminate this problem.

Competitive back-off cannot eliminate open deliver-runs that occur in the last transpose

since the length of those deliver-runs is one and the same as other deliver-runs.

n n×
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4.1.4.3 Locus

For Locus, most of the deliver messages occur because of updates of CostArray elements.

Each processor picks up a wire from one of the task queues and removes the evidence of

the wire from CostArray if the wire was routed previously. The processor then scans Cos-

tArray for all candidate routes for the wire and updates CostArray for the chosen route.

After that, the processor tries to pick up another wire from the same task queue, but if the

queue is empty, the processor moves to another task queue. We use a geographical parti-

tioning so that each task queue only contains wires that start from the same geographical

partition. Thus, if a processor moves from one task queue to another, the processor will

probably not access the CostArray elements for wires in the previous queue soon.

As shown in Figure 4-11, competitive back-off reduces the number of deliver messages

more than the other two techniques. Figure 4-9 explains this behavior. The distribution of

the sync-read deliver-run length indicates that the ratio of short deliver runs is relatively

large (the length of about 50% of deliver runs is only one) and that the length of deliver

runs dynamically changes for a wide range (from one to more than 50). Thus, competitive

deliver can exploit only short deliver runs and cancel the subscription of deliver messages

for long deliver runs. The distribution of the effective deliver-run length, on the other

hand, indicates that the effective deliver-run length does not differ dramatically among

read instructions. That is, short and long deliver runs occur at the same static instruction,

and thus, the static technique cannot exploit only short deliver runs. The distribution of the

deliver ratio in Figure 4-9 also indicates that the deliver ratio does not differ dramatically

among write instructions. Thus, selective deliver is less effective than competitive back-

off for Locus.

In selective deliver, unless the program is substantially modified, the producer does not

know if other processors have moved out from the queue that the producer is working on.

Selective deliver thus generates more deliver messages than the other two techniques. In

subscription control, similarly, the consumer does not know which CostArray elements

the consumer will be unlikely to access soon. Thus, the consumer cannot effectively

unsubscribe those elements, and subscription control generates about the same number of

deliver messages that selective deliver generates. There is, however, a small chance that a
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processor moves out from a task queue every time after the processor finishes routing a

wire. Thus, if a processor unsubscribes those CostArray elements, the processor can avoid

receiving deliver messages for those elements when the processor moves out from the cur-

rent queue. This is why subscription control generates slightly less deliver message over-

head than selective deliver. The number of reduced deliver messages due to subscription

control, however, is limited because the processor does not unsubscribe all of the unneces-

sary CostArray elements.

4.1.4.4 LU

For LU, communication occurs in two cases for the factorization of a blocked dense

matrix,  First, after a diagonal block  is factorized, perimeter blocks

in the subsequent row and column,  and  are updated by using the

diagonal block . Second, after those perimeter blocks are updated, interior blocks

 are updated by using those perimeter blocks. Thus, we can insert deliver

operations for the following three computations that update a matrix block: the diagonal

block factorization, the perimeter block update, and the interior block update. During the

first two computations, the producer-consumer relation is static, and consumers use all

deliver messages. That is, the deliver ratio is one. During the last computation, however,

the producer becomes the next consumer (i.e., single-processor reuse), and none of deliv-

ered messages are used. That is why the deliver message overhead is large in LU (6.0

when the covered rate is 1.0) if deliver messages are used for all computations that update

a matrix block.

Selective deliver can reduce the number of deliver messages substantially by avoiding

deliver operations for the interior block update where single-processor reuse occurs. The

interior block update, however, shares some subroutines with the other two computations

(i.e., the diagonal block factorization and the perimeter block update). If selective deliver

avoids deliver operations in such shared subroutines, both the deliver message overhead

and the covered ratio decrease (0.47 deliver message overhead at 0.47 covered ratio). I

modified the source code so that the interior block update does not share subroutines with

the other two computations. As a result, selective deliver can eliminate most of the misses
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with very small overhead; the deliver message overhead is 1.0 when the covered ratio is

0.97.

Subscription control, on the other hand, reduces the number of deliver messages less suc-

cessfully than selective deliver. Because all deliver-runs start at the same place in the ini-

tialization code, subscription control cannot unsubscribe only deliver messages with long

deliver-runs. To allow subscription control to unsubscribe long deliver-runs, we need to

add code that selects long deliver-runs during the initialization. We assume that subscrip-

tion control performs the subscribe and unsubscribe operations immediately after an

access to the cache line. If we use a more general subscription control technique that can

perform such operations at arbitrary places, the technique could reduce the deliver mes-

sage overhead more effectively. Competitive back-off does not reduce the number of

deliver messages as effectively as selective deliver because deliver-runs are moderately

long (6.0 in the average) as shown in Figure 4-9.

4.1.4.5 Maxflow

Maxflow traverses the input graph three times to find the maximum flow in the graph. The

first step labels each node with the minimum distance from the source node. The second

step pushes flow excesses towards the sink node. The third step pushes remaining flow

excesses backwards towards the source node. There is one task queue for each processor

and one global task queue. Each task queue contains graph nodes to be computed. Each

processor picks up a node from its local queue, unless the queue is empty, and updates the

node and its neighbor nodes. Then, the processor enqueues uncompleted neighbor nodes

either to its local queue, if no other processor is idle, or to the global queue. Unlike Bar-

nes, graph nodes do not have affinity to processors and are accessed by a different set of

processors for each of the three graph traversals in the program. Thus, the past access pat-

tern stored in the deliver vector does not represent the future access pattern, and the

deliver message overhead is large (6.4 when the covered rate is 1.0).

In Maxflow, selective deliver generates less deliver message overhead than the other two

techniques for the entire range of the covered rate as shown in Figure 4-11. This is because

selective deliver can utilize an access pattern that causes efficient deliver operations.

When a node pushes out all flow excesses to neighbor nodes, the node becomes an inac-
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tive node that is read but not updated until a neighbor node pushes back some flow. Thus,

inactive nodes are only read, while active nodes that have flow excesses are read and writ-

ten. Therefore, the last deliver messages for inactive nodes are more likely to be used than

the deliver messages for active nodes. Because the producer determines the node state that

affects the behavior of deliver messages, the producer can control the deliver traffic more

efficiently than the consumer.

4.1.4.6 Mincut

In Mincut, communication occurs through two global variables and through graph node

records. As discussed previously, each deliver message is sent to most of the rest of the

processors (14.9 processors in average), and most of those processors use the message

(10.4 processors in average). That is, processors use about 70% of received messages.

This access pattern occurs because the communication pattern is broadcasting. With this

access pattern, it is unlikely that Mincut can ever scale to significant number of proces-

sors. This access pattern does not occur in the other applications that we have examined.

Figure 4-11 shows that the trade-off curves for the three techniques have almost the same

slope and are almost linear. This result indicates several characteristics in the access pat-

tern: (1) All candidate places for deliver or unsubscribe operations have about the same

deliver ratio or effective deliver-run length, respectively (Figure 4-9). Thus, the trade-off

curve is linear for selective deliver and subscription control; (2) competitive back-off has,

in general, an advantage in that it can cut long deliver-runs at the threshold; however,

competitive back-off has a disadvantage in that it generates unused deliver messages up to

the threshold for long deliver-runs. Nevertheless, the advantage and disadvantage are

insignificant in Mincut because most of the deliver-runs are very short; (3) neither the pro-

ducer nor the consumer has more opportunities for selecting places for deliver or unsub-

scribe operations than the other. Because processors pick a graph node randomly, neither

the consumer nor the producer can predict future access patterns; the consumer does not

know if the consumer will access the node soon or not, and the producer does not know if

the access to the node will be likely to cause single-processor reuse or not. Therefore, both

selective deliver and subscription control result in about the same trade-off curve.
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4.1.4.7 MP3D

For MP3D, most of the coherency traffic occurs for updates of cell records. When a pro-

cessor calculates a movement of a particle, the processor updates the cell record that con-

tains the particle. The access pattern to the cell record is typically a migratory access.

Thus, while each deliver operation sends a deliver message to all processors that have

touched the record, only one of them usually uses the deliver message. This is why the

deliver message overhead is large in MP3D (7.4 when the covered ratio is 1.0). The trade-

off curve for selective deliver is almost linear. This is because most of the deliver opera-

tions generate about the same number of messages (about seven) to eliminate one read

miss, as shown in Figure 4-10. Subscription control, on the other hand, generates slightly

less deliver message overhead than selective deliver for a wide range of the covered ratio

as shown in Figure 4-12. This is because each processor usually has a single particle in a

cell. If the particle moves out from the cell, the processor is unlikely to access the cell

record again soon. Thus, long deliver-runs occur for such cells. Because subscription con-

trol can unsubscribe those cells, subscription control performs slightly better than selec-

tive deliver.

4.1.4.8 Ocean

Ocean uses several grids that represent a physical value on a two-dimensional plane. Each

grid is partitioned into square subgrids and allocated to a processor. Communication

occurs when processors access another processor’s subgrid to perform nearest-neighbor

operations (i.e., Laplacian, Jacobian, and Multigrid Solver). Although the communication

pattern is regular in Ocean, simple deliver annotations produce some unused deliver mes-

sages (1.8 delivered messages per used message). Most of the unused deliver messages

occur because the access pattern of nearest-neighbor grid elements differs among compu-

tations in the multigrid solver. For example, processors usually access nearest neighbors to

calculate each grid element ( , , , and  for the computation of

). Processors, however, access some of surrounding elements of those nearest neigh-

bors when processors calculate grid elements at a coarser level to sweep another hierarchy

of grids. When this access occurs, the consumer automatically subscribes those surround-

ing elements for subsequent deliver operations and receives deliver messages when a pro-
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ducer updates those elements. The consumer, however, does not use those grid elements

during other computations (e.g., relaxation operation). Therefore, unused deliver mes-

sages occur in the multigrid solver.

Selective deliver can reduce the number of unused deliver messages by avoiding deliver

annotations at source-code lines where single-processor reuse may occur. Those source-

code lines, however, also generate used deliver messages. Thus, removing deliver annota-

tions from those lines also reduces the covered ratio. Because computations in Ocean are

regular, however, it is relatively easy to modify the source code so that deliver operations

are applied only to nearest-neighbor elements that cause communication. Such modifica-

tions improve the efficiency of deliver operations over the simple selective deliver tech-

nique.

Figure 4-12 shows that the trade-off curve of subscription control is about the same as that

of selective deliver. This indicates that neither the producer nor the consumer has an

advantage in controlling unused deliver messages. Competitive back-off, on the other

hand, is less effective than the other two techniques. This is because the communication

pattern for each computation does not change significantly at run-time. Thus, the static

information that selective deliver and subscription control use is more useful for reducing

the number of unused deliver messages than the dynamic information that competitive

back-off uses.

4.1.4.9 Pthor

The main computation in Pthor involves picking a circuit-element record from one of dis-

tributed task queues and evaluating that element. If the new output of the element affects

the input of other elements connected to the element, those elements are inserted in a task

queue. When all task queues become empty, a deadlock occurs. The program resolves the

deadlock and the simulation proceeds again. As discussed previously, processors move

among task queues to find a circuit-element record to be evaluated. As processors move

from one task queue to another, processors generate migratory accesses that cause a large

number of unused deliver messages. Namely, about 50% of read misses occur for task

queue records that are usually accessed in a migratory way. When a task queue is empty,
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however, the access pattern is not migratory. This is because processors read but do not

write the task queue until another processor enqueues an element record to the queue.

Selective deliver performs slightly better than subscription control as shown in Figure 4-

12. This is because selective deliver can avoid deliver operations on the task queue

records when the access pattern is migratory (i.e., when the task queue is not empty).

Competitive back-off, on the other hand, generates about the same mount of deliver mes-

sage overhead as subscription control since competitive back-off has both an advantage

and a disadvantage over subscription control. Similar to Locus, the access pattern for data

records associated with each queue changes dynamically as processors move among task

queues. Such a changing access pattern is an advantage for competitive back-off since

competitive back-off is adaptable to such a pattern. Unlike Locus, however, the bulk of

deliver-runs are very long in Pthor because migratory accesses occur more often in Pthor

than Locus. Such distribution of deliver-runs is a disadvantage for competitive back-off

because the back-off threshold has to be long enough for a significant reduction of read

misses and competitive back-off generates unused deliver messages up to the threshold for

deliver-runs longer than the threshold.6 As a result, competitive back-off and subscription

control have about the same level of the efficiency.

4.1.4.10 Water

For Water, molecules are statically partitioned and assigned to each processor, as dis-

cussed previously. We call a molecule that is assigned to the local processor alocal mole-

cule and a molecule that is assigned to another processor aremote molecule. Most of the

deliver operations occur during a inter-molecule force calculation, which computes the

inter-molecule force for all pairs ofN molecules. For each local molecule, a processor

computes the inter-molecule force with aboutN/2 molecules. This computation ends up

with a deliver vector of each molecule that holds the identity of 7 to 9 processors. Thus, a

deliver operation sends a molecule record to those 7 to 9 processors. However, usually

only one of them uses the delivered record. This access pattern causes a sharp knee in the

distribution curve of the deliver ratio when the threshold is about 8, as shown in Figure 4-

10.

6. Refer EQ 4-4 on page 48 and EQ 4-5 on page 49.
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The inter-molecule force computation is partitioned so that each molecule is accessed by

the local processor much more often than by any other processors. Therefore, the access

pattern for local molecules is likely single-processor reuse, and deliver operations for local

molecules generate deliver messages that no destination processor uses. In fact, our simu-

lation results show that the deliver ratio — the number of delivered messages per used

message — is 147 for local molecules and 8 for remote molecules! The access pattern for

remote molecules, on the other hand, is very likely a migratory access since the next user

of a remote molecule usually differs from the current user. Consequently, selective deliver

can significantly reduce deliver message overhead without significantly reducing the cov-

ered ratio by using deliver operations only for remote molecules. The effectiveness of

selective deliver appears as a sharp knee of the slope of the trade-off curve when the cov-

ered ratio is about 96% in Figure 4-12. The right hand side of the knee represents the

behavior of deliver operations due to single-processor reuse for local molecules.

Subscription control, on the other hand, reduces the deliver message overhead less suc-

cessfully than selective deliver. Since processors do not access remote molecules often,

accesses to remote molecules often cause long deliver-runs. The distribution of the effec-

tive deliver-run length in Figure 4-10 exhibits a sharp knee when the length is about 15.

This indicates that processors receive about 15 deliver messages in average between two

consecutive accesses for a remote molecule. Remote molecules cause most of sharing

misses (86%). Thus, if consumers unsubscribe deliver messages for remote molecules,

subscription control significantly reduces the deliver message overhead as well as the cov-

ered ratio. Therefore, subscription control generates more deliver messages than selective

deliver for the same covered ratio. The distribution of the sync-read deliver-run length for

remote molecules, however, has a large deviation, as shown in Figure 4-10. While sub-

scription control cannot dynamically unsubscribe only deliver messages with long deliver-

runs, competitive back-off can. Therefore, as shown in Figure 4-12, competitive back-off

can reduce the deliver message overhead as effectively as the selective deliver scheme for

a wide range of covered ratio.
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4.1.5 Summary

In Section 4.1, we have discussed the behavior of deliver operations from the consumer

and the producer perspectives by analyzing the simulation results of ten parallel applica-

tions. While the statistics of deliver-runs indicate the sharing pattern from the consumer

perspective, the statistics of delivered and used messages indicate the sharing pattern from

the producer perspective. We identified two common access patterns — single-processor

reuse and reader migration — that generate unused deliver messages.

The detailed statistics about sharing patterns allow us to evaluate techniques that trade off

the deliver message overhead for the covered ratio. We discussed three techniques: com-

petitive back-off (consumer-initiated hardware-controlled), subscription control (con-

sumer-initiated software-controlled), and selective deliver (producer-initiated software-

controlled). For nine out of the ten applications that we examined, selective deliver per-

forms best or nearly best. Only for Locus does competitive back-off significantly outper-

form the other two techniques. We discussed how the access pattern and the program

structure affects the performance of these techniques in Section 4.1.4. Table 4-3 summa-

rizes the effect of the trade-off techniques. The table shows the number of delivered mes-

sages per used message (deliver ratio) for two covered ratios (50% and 100%) for the best

technique among the three techniques. For the 100% covered ratio, all the three techniques

generate the same deliver ratio for most of our applications because the threshold for the

trade-off is basically infinite for either technique. For the 50% covered ratio, the best tech-

nique is shown in table. When the covered ratio is 100%, the deliver operation generates

more than six deliver messages to eliminate one cache miss for seven applications. When

the covered ratio is 50%, on the other hand, the trade-off technique significantly reduces

the ratio between the number of delivered messages and the number of used messages —

more than a factor of two for those seven applications with the exception of MP3D. The

ratio, however, is smaller than two only for four applications: LU, FFT, Ocean, and Min-

cut. These applications have a static communication pattern except for Mincut, which has

a dynamic broadcasting pattern. For the rest of the applications, although our trade-off

techniques can significantly reduce the number of unused deliver messages, deliver opera-

tions still generate substantial traffic overhead.
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4.2 Consumer-oriented Prefetch
This section discusses the behavior of prefetch operations and compares the prefetch and

the deliver schemes. Our simulation results indicate that the prefetch scheme can signifi-

cantly reduce the number of read misses while it can generate a large number of unneces-

sary prefetch operations. We will show, however, that it is simple for the prefetch scheme

to prevent most of the unnecessary operations from generating traffic while it is difficult

for the deliver scheme to do so.

In Section 4.1, we assumed that processors perform deliver operations at synchronization

or pseudo-synchronization operations, so the simulator automatically inserts deliver oper-

ations in application programs. This is a reasonable assumption for the analysis of the

deliver scheme, because communication typically occurs across synchronization points

and because the producer generally can identify the addresses to deliver at synchroniza-

a. The trade-off technique that produces the lowest deliver message
overhead is shown in the table.

application
at 100%

covered ratio
at 50%

covered ratioa

Barnes 8.7 4.2 selective deliver

FFT 1.0 1.0 selective deliver and
subscription control

Locus 8.8 2.6 competitive backoff

LU 6.0 1.0 selective deliver

Maxflow 6.3 3.0 selective deliver

Mincut 1.4 1.4 selective deliver and
subscription control

MP3D 7.4 6.0 subscription control

Ocean 1.8 1.2 selective deliver and
subscription control

Pthor 14.4 4.3 selective deliver

Water 13.9 6.5 selective deliver

Table 4-3: The Number of Delivered Messages per Used Message.

delivered messages
used messages

----------------------------------------------
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tion points. For prefetch operations, however, synchronization or pseudo-synchronization

operations are not a practical place to insert prefetch operations. This is because at syn-

chronization (e.g., acquire) points, the consumer generally cannot identify the addresses to

prefetch without causing significant instruction overhead. The places where we should

insert prefetch operations depend significantly on the data and the program structures of

the application. Therefore, for evaluating prefetch operations, we use a version of applica-

tion programs in which prefetch operations are inserted manually.

I used several techniques that Mowry [45] has proposed and evaluated for automated

insertion of prefetch operations. The techniques include software pipelining and loop

splitting. Software pipelining allows us to schedule prefetch operations for a future itera-

tion of a loop in the current iteration. Loop splitting is used to eliminate predicate state-

ments that select loop iterations that should perform prefetch operations. When the

Mowry’s algorithm is not applicable, I simply extend the algorithm to insert prefetch oper-

ations by hand. For example, I used subroutine inlining to eliminate some predicate state-

ments that select computations that should perform prefetch operations. I used a profiling

system that identifies the number of cache misses for each source-code line. We will dis-

cuss details about our prefetching strategy for each application in Subsection 4.2.3.

For comparing the simulation results of the deliver and the prefetch schemes, we use the

same memory model as the one used for the deliver scheme (an infinite cache with 16-byte

lines and a unit-delay memory). Because of this model, we ignore the effect of the timing

of prefetch operations which will be discussed in Subsection 5.1.2.

In the following subsections, we first discuss the covered ratio and the efficiency of

prefetch operations and identify important differences between the prefetch and the

deliver schemes. Second, we discuss a technique similar to selective deliver for improving

the efficiency of prefetch operations, and we compare the efficiency of deliver and

prefetch operations. Third, we discuss our strategy for inserting prefetch operations in the

source code and detailed characteristics of our applications that affect the behavior of

prefetch operations. Last, we summarize our discussions about the prefetch scheme.
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4.2.1 Coverage and Efficiency of Prefetch Operations

While I manually inserted prefetch operations to eliminate the bulk of read misses, some

read misses still remain. Figure 4-13 shows the ratio of eliminated and remaining read

misses normalized by the number of read misses without prefetch operations. Thecovered

fraction indicates the ratio of read misses that are eliminated by hand-inserted prefetch

operations. The remaining read misses are divided into two types: invalidated and not-

prefetched. Theinvalidated fraction indicates the ratio of remaining read misses for cache

lines that are prefetched but invalidated before they are used.7 These types of misses occur

because processors conflict each other for accessing the same shared line. Thenot-

prefetched fraction indicates the ratio of remaining read misses for cache lines for which

prefetch operations are not inserted.

I inserted prefetch operations by using a profiling system so that the ratio of covered

misses (we simply call it covered ratio) is approximately 80% or larger for most of the

applications. For LU and FFT, Figure 4-13 shows that the covered ratio is 100%. This is

because the memory access pattern is regular in the two applications so that it is easy to

insert prefetch operations to eliminate virtually all misses. In real machines, however, the

covered ratio may be smaller than the ratio shown in Figure 4-13 for some applications.

This is because, for some applications, prefetch operations do not bring cache lines early

7. Theinvalidated type includes cache misses for cache lines that were valid when the processor
performed a prefetch operation but have been invalidated before they are used.
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Figure 4-13: Coverage of Prefetch Operations.
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enough to eliminate a read miss when memory latencies are very large. We will examine

the effect of large memory latencies in Section 5.4. The ratio of the invalidated misses is

generally small, except for Mincut. In Mincut, the shared data structures are not well par-

titioned so that conflicting accesses interfere with prefetch operations.

Now, we examine the efficiency of prefetch operations. As shown in Figure 4-14, we

divide prefetch operations into three types: used, not-used, and not-issued. Theused cate-

gory indicates the ratio of prefetch operations that transfer a cache line that the processor

actually uses. Thenot-used category indicates the ratio of prefetch operations that transfer

a cache line that the processor does not use. This type of prefetch operation occurs, for

example, if another processor invalidates the prefetched line because of a conflicting

access, or if a processor speculatively prefetches an unnecessary line. Thenot-issued cate-

gory indicates the ratio of prefetch operations that are not issued to the network because

the cache line state is valid (or owned for prefetch-exclusive operations) in the processor

cache when the processor performs the prefetch operation.

Not-used prefetches cause network traffic overhead as well as instruction overhead, but

the ratio of not-used prefetches is relatively small (< 22%) for all applications that we

examined. Not-issued prefetches, on the other hand, cause only instruction overhead but

no network traffic overhead. Figure 4-14 shows that most of the unused prefetch opera-

tions are not-issued prefetches. This indicates that the processor cache can filter out most

of the unused prefetch operations by checking the processor cache. This is themost signif-
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Figure 4-14: Efficiency of Prefetch Operations.
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icant advantage of the prefetch scheme over the deliver scheme. For example, in Section

4.1.3, we have discussed that single-processor reuse generates useless deliver messages to

the network. In our prefetch scheme, single-processor reuse does not generate unnecessary

prefetch requests to the network. Since the same processor is using the same data, the

cache line for the data is valid in the processor cache so that the processor cache prevents

prefetch operations from sending prefetch requests to the network. It is therefore very

important for prefetch schemes to implement a filtering function that eliminates unneces-

sary prefetch requests for valid cache lines.

The ratio of not-issued prefetch operations is generally large, more than 50%, except for

LU, FFT, and Ocean, which perform regular computations.8 This indicates that prefetch

operations are often unnecessary because the prefetch target line is valid in the processor

cache. Based on my experience of inserting prefetch operations, I have found that it is

challenging to identify such unnecessary prefetch operations statically unless the memory

access pattern is regular. Most of our applications, in fact, use irregular data structures

(such as linked lists) or access regular data structures in a irregular way, so that a large

number of unnecessary prefetch operations occur. Not-issued prefetch operations, how-

ever, can be filtered out by using the processor cache.

4.2.2 Efficiency Comparison between Prefetch and Deliver Operations

In Subsection 4.1.3, we discussed a selective deliver technique which uses profiling infor-

mation for a trade-off between the number of misses and the number of deliver messages.

In this subsection, we consider a similar technique for prefetch operations and compare

the efficiency of prefetch and deliver operations.

We use a simulator that counts the number of executions and the number of eliminated

misses for each prefetch operation in the source code. This information leads us to a trade-

8. The ratio of unused prefetch operations is generally higher than the one that Mowry has shown in
[45] because of two reasons. First, we assume an infinite cache while Mowry assumed a finite
cache. When the cache is finite, a memory-access instruction that causes sharing misses for an
infinite cache may also cause capacity misses. Thus, the ratio of unused prefetch operations for
an infinite cache is higher than one for finite caches. Second, we inserted more prefetch opera-
tions than Mowry [45] did, and the ratio of unused prefetch operations is relatively high for
some prefetch operations in our annotation. We discuss a trade-off between the covered ratio
and the efficiency of prefetch operations in the next subsection.
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off technique,selective prefetch, which is similar to selective deliver. For each prefetch

operation in the source code, we define aprefetch ratio, which is the ratio between the

number of executions of the prefetch operation and the number of eliminated misses due

to the prefetch operation. The prefetch ratio corresponds to the deliver ratio, which is

defined at EQ 4-6 on page 55. Selective prefetch uses a prefetch operation only if the

prefetch ratio is equal to or smaller than a certain threshold. As the threshold increases, the

number of misses decreases while the number of prefetch operations per eliminated miss

increases. Thus, this technique allows us to trade off the number of unnecessary prefetch

operations for the number of eliminated misses.

Figure 4-15 and Figure 4-16 show the trade-off curve of selective prefetch and selective

deliver. The solid lines indicate the trade-off between the number of prefetch operations

and the number of eliminated misses for selective prefetch, and the dotted lines indicate

the trade-off between the number of deliver messages and the number of eliminated

misses for selective deliver.9 Both X and Y axes are normalized by the number of read

misses for the invalidate-only protocol.

For applications with a regular communication pattern (i.e., FFT, LU, and Ocean), both

prefetch and deliver schemes can eliminate most of the read misses with either no or small

overhead, as shown in Figure 4-15 and Figure 4-16. For the prefetch scheme, one prefetch

operation generally eliminates one read miss in these applications, so that the normalized

number of prefetch operations is about one when the normalized number of eliminated

misses is about one. For the deliver scheme, as we discussed in Subsection 4.1.4, selective

deliver can eliminate most of the deliver operations that generate unnecessary deliver

messages so that selective deliver can reduce the miss rate without significant traffic over-

head. The efficiency of prefetch and deliver operations is high for these applications

because the communication pattern is generally predictable for consumers and producers.

Thus, we can insert prefetch or deliver operations only where communication frequently

occurs.

For applications with an irregular communication pattern, on the other hand, the efficiency

is generally very different between the prefetch and the deliver schemes, as shown in Fig-

9. These graphs are similar to ones in Figure 4-11 and Figure 4-12 but use a different scale.
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Figure 4-15: Efficiency of Selective Prefetch and Selective Deliver.
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ure 4-15 and Figure 4-16. For Barnes, Locus, and Mincut, the number of prefetch opera-

tions is usually much larger than the number of deliver messages when the two schemes

eliminate the same number of misses. This is because it is difficult to identify memory

accesses for cache lines that are already fetched, so that processors frequently perform

prefetch operations for cache lines that exist in the cache. For these applications, although

it is relatively easy to statically identify memory access instructions that are responsible

for most the cache misses in the code, those instructions also cause a large number of

cache hits at run-time. Because of the irregular access pattern, it is difficult to separate the

instances of those memory accesses that cause a cache miss from those that cause a cache

hit. Thus, selective prefetch does not significantly improve the efficiency of prefetch oper-

ations for these applications. When the cache is smaller than the data-set size, the effi-
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Figure 4-16: Efficiency of Selective Prefetch and Selective Deliver. (Continued.)
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ciency of prefetch operations increases because prefetch operations eliminate capacity

misses that do not occur for an infinite cache.

For Maxflow, MP3D, Pthor, and Water, the deliver scheme usually generates more over-

head than the prefetch scheme. For these applications, it is relatively easy to statically

identify memory access instructions that are responsible for most of the cache misses in

the code, and those instructions do not frequently cause a cache hit. Since selective

prefetch can insert prefetch operations only for those memory accesses, the efficiency of

prefetch operations is relatively high. For MP3D and Water, the curve for selective

prefetch has a sharp knee as shown in Figure 4-15. The knee indicates that the efficiency

differs significantly among different prefetch operations, and thus, selective prefetch can

avoid inserting prefetch operations that do not significantly increase the hit rate. For the

deliver scheme, selective deliver does not significantly improve the efficiency of deliver

operations because of reader migrations, as we discussed in Subsection 4.1.4.

4.2.3 Application Algorithms and Prefetch Operation Behavior

The behavior of prefetch operations depends significantly on two factors: the prefetch

insertion strategy and the program structure. In this subsection, we examine details about

the two factors for each application to understand the efficiency of prefetch operations.

4.2.3.1 Barnes

I inserted prefetch operations for four computations: gravity-potential calculation, body

partition, center-of-mass calculation, and body insertion.10 In the gravity-potential calcu-

lation and the body partition, each processor traverses the Barnes-Hut tree in a depth-first

manner. When a processor reaches a tree node, the processor prefetches all immediate

subnodes. In the center-of-mass calculation, on the other hand, each processor sequen-

tially accesses an array of pointers to cell records that are allocated to the processor. Each

processor sequentially computes the center-of-mass of cells in the array. Each processor

prefetches a cell record one iteration ahead in the loop for the center-of-mass calculation.

In the body insertion, processors go down the tree from the root node to find an appropri-

10. The prefetching strategy for the gravity-potential calculation is similar to the hand-inserted
prefetching strategy described in [44]. In this study, more prefetch operations are added for the
other three computations.
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ate place to insert a body. When a processor reaches a tree node, the processor prefetches a

cell record that the processor visits in the next iteration.

In Barnes, 99% of the prefetch operations are performed to a valid cache line and not

issued to the network. This ratio is largest among our ten applications. Since each proces-

sor traverses the tree multiple times in the gravity-potential calculation and always

prefetches the subnodes of visited nodes, processors usually prefetch the same nodes mul-

tiple times. It turns out that those nodes are often valid in the processor cache because of

its infinite capacity and that the prefetches for those nodes cause most of the not-issued

prefetches in Barnes. As the cache size decreases, the ratio of not-issued prefetch opera-

tions should decrease because capacity misses occur for node accesses in the gravity-

potential calculation.

4.2.3.2 FFT

I inserted prefetch operations for a transpose operation, which causes most of the sharing

misses in FFT. Since the computation is regular, we can eliminate unnecessary prefetches

by carefully inserting prefetch operations. The simulation results, in fact, show that the

ratio of covered misses and used prefetch operations are 100%. Loop splitting and soft-

ware pipelining techniques maximize the efficiency of prefetch operations. Because of the

infinite cache assumption, prefetch operations are inserted only for sharing misses. For

finite cache cases, more prefetch operations should be inserted where capacity misses

occur.

4.2.3.3 Locus

I inserted prefetch operations for CostArray accesses that cause the bulk of sharing misses

in Locus. The access pattern to the elements of CostArray depends on the input and is not

statically predictable. Therefore, it is difficult to identify CostArray elements that need

prefetching (ones that have not been accessed or have been invalidated). Thus, I inserted

prefetch operations at all loops that use CostArray, and I unrolled those loops to avoid

multiple prefetches of the same cache line in the same loop. It turns out that most of the

prefetch operations (95%) are unnecessary because the prefetch target line is usually valid
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in the cache. I also inserted prefetch operations for DensityArray accesses, which have a

pattern similar to CostArray accesses.

4.2.3.4 LU

I inserted prefetch operations in three loops that access matrix blocks that another proces-

sor updates. Since the computation is regular in LU, we can insert prefetch operations only

for memory accesses that cause misses. The simulation results, in fact, show that prefetch

operations cover 100% of read misses and that 100% of prefetch operations prefetch a

cache line that is actually used. I used loop splitting and software pipelining techniques to

avoid unnecessary prefetches. I assumed an infinite cache to insert prefetch operations for

this simulation. For finite cache cases, more prefetch operations should be inserted for

capacity misses.

4.2.3.5 Maxflow

Most of the sharing misses occur for edge and node records of the input graph. I inserted

prefetch operations for two while-loops that cause a large number of sharing misses.

Those loops perform several computations for one graph node. For each iteration, a pro-

cessor accesses one edge and two nodes that are directly connected by the edge. We use a

software pipelining technique to prefetch these edge and node records. In one loop, for

example, a processor prefetches an edge record two iterations ahead. The edge record con-

tains the node address that the processor needs to access. During the next iteration after

the edge record is prefetched, the node address becomes available, and the processor

prefetches the node. Although this application extensively uses linked lists, the access pat-

tern is structured. Inserting prefetch operations is thus a relatively simple task, and the

covered ratio is relatively large (81%).

Maxflow, however, dynamically allocates graph nodes to processors, and processors

sometimes conflict with each other for accessing the same data record. It is therefore hard

to avoid unnecessary (not-issued and not-used) prefetches. Because of the dynamic alloca-

tion and the conflicting access, when a processor accesses a data record that the processor

prefetched for another computation, the prefetched data record may or may not have been

invalidated by another processor. Hence, processors conservatively prefetch edge and
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node records for each access to them. This conservative prefetching increases the number

of unnecessary prefetches. As a result, the ratio of used prefetch operations is 15% for

Maxflow.

4.2.3.6 Mincut

I inserted prefetch operations for graph nodes and some other global variables. Each pro-

cessor randomly picks a graph node and examines other nodes that are directly connected

to the node. Each processor prefetches those connected nodes as soon as the processor

picks the first node. Since graph nodes are not well divided and distributed to processors

in the program, processors cause conflicting accesses that invalidate prefetched graph

nodes in other processor caches. Because of the conflicting access, I chose a conservative

strategy that always prefetches graph nodes even though they were prefetched previously.

The conservative prefetching causes a large number of not-issued prefetches. Although

the time distance between the prefetch operation and the subsequent use is usually small,

conflicting accesses still sometimes invalidate a cache line between the prefetch operation

and the subsequent use. In fact, for 25% of read misses that occur without prefetch opera-

tions, the cache line is valid when the prefetch operation is performed but invalid when the

line is accessed. As a result, prefetch operations cover only 67% of read misses.

4.2.3.7 MP3D

I inserted prefetch operations for a particle movement computation and some other com-

putations.11 During the particle movement computation, processors prefetch particle and

cell records by using a software pipelining technique. Since particle records hold the

pointer to a cell record, a processor prefetches a particle record two iterations ahead. In the

next iteration, the address of the cell record becomes available, and the processor

prefetches the cell record. I used prefetch-exclusive operations, instead of normal prefetch

operations, since processors modify prefetched particle and cell records during the particle

movement computation.

Most of the prefetch operations for particle records are not actually issued to the network

since the corresponding cache lines are often valid when a processor performs prefetch

11. The prefetching strategy is similar to the hand-inserted prefetching strategy described in [44].
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operations. This is because particles do not frequently collide with each other and particle

records are not frequently updated by other processors. Thus, by simply avoiding prefetch

operations for particle records, we can significantly decrease the number of unnecessary

prefetch operations with a small increase of the number of cache misses. As the cache size

decreases, however, the number of capacity misses increases for particle records, so that

the ratio of unnecessary prefetches for particle records decreases.

Not-used prefetches occur because of conflicting accesses for cell records. Although a cell

record is prefetched only one iteration ahead, another processor invalidates the prefetched

line before it is used. For 15% of prefetch operations, prefetched cache lines are wasted

because of such conflicting accesses.

4.2.3.8 Ocean

Most of the sharing misses occur when processors access grid elements that are allocated

to another processor for nearest-neighbor operations. I inserted prefetch operations in all

loops that access such grid elements. Each processor prefetches a grid element two itera-

tions ahead, so that a pipelining effect reduces the average of memory latencies even when

the cache-miss time is large. Moreover, I unrolled some loops to avoid applying multiple

prefetch operations to the same cache line within the same loop. Although false sharing

causes conflicting accesses that invalidate prefetched cache lines, the number of false

sharing misses is very small. Because of regular access patterns, the covered ratio and the

efficiency of prefetch operations are very large in Ocean.

4.2.3.9 Pthor

Unlike other applications in our study, memory accesses that cause read misses are wide-

spread in the source program. I inserted prefetch operations at several places in each of

three subroutines.12 First, processors prefetch task-queue entries and a circuit-element

record in a subroutine that dequeues a circuit element to be evaluated. Second, processors

prefetch input and output records of the circuit element and some other data structures in a

subroutine that evaluates the circuit element. Last, processors prefetch a task-queue entry

and an enqueued circuit-element record in a subroutine that enqueues a circuit element.

12. The prefetching approach is similar to the hand-inserted prefetching approach described in [44].
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The simulation results show that these prefetch operations cover 74% of read misses that

occur without prefetch operations.

Conflicting and irregular access patterns make it difficult to use prefetch operations effi-

ciently in Pthor. Although there are multiple task queues, processors sometimes compete

by accessing the same task queue and invalidate prefetched cache lines in other processor

caches before those lines are used. Prefetch operations for circuit-element records, more-

over, are not always useful. Each circuit-element is always enqueued to the same task

queue and each processor is assigned to the same task queue unless the queue is empty.

Thus, a processor often evaluates a circuit-element that the processor has evaluated. As a

result, a processor performs prefetch operations for circuit-element records that are valid

in the cache. The simulation results show that only 26% of prefetch operations transfer

cache lines that are actually used.

4.2.3.10 Water

I inserted prefetch operations for molecule records during the inter-molecule-force com-

putation. Each iteration of the inner-most loop computes one pair of molecules and

updates the record of both molecules. Processors prefetch both molecules one iteration

ahead. Since multiple processors update the same molecule, processors may conflict with

each other for accessing the same molecule record and invalidate a prefetched molecule

record in other processor caches. Thus, I have chosen a conservative strategy; a processor

prefetches each pair of molecules even though the processor prefetched those molecules

beforehand. When the cache size is infinite, however, the processor cache typically has a

valid copy of cache lines for molecules that are allocated to the local processor. Thus,

most of the prefetch operations for those molecules are unnecessary. If we avoid prefetch

operations for those molecules, we can eliminate about 50% of prefetch operations with a

very small increase of the number of cache misses. About 44% of the remaining prefetch

operations are still useless because conflicting accesses invalidate prefetched lines before

they are used.
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4.2.4 Summary

We have discussed application characteristics and their effects on the behavior of prefetch

operations. Our simulation results show that hand-inserted prefetch operations cover a suf-

ficiently large ratio of the read misses that occur without prefetch operations. Our simula-

tion results also show that the ratio of used prefetch operations is very large (> 95%) for

applications with regular computations such as LU, FFT, and Ocean, while the ratio is

very small (1 to 28%) for applications with irregular computations. Most of unused

prefetches occur because the prefetch target line is valid in the cache. The prefetch scheme

can prevent such unused prefetches from generating network traffic because the processor

cache can filter out unused prefetch traffic. The deliver scheme, however, cannot prevent

unused deliver traffic in a manner as simple as that the prefetch can do. The filtering func-

tion of the processor cache has a significant advantage for the prefetch scheme.

4.3 Chapter Summary
In this chapter, we have examined the sharing characteristics of parallel applications that

affect the behavior of deliver and prefetch operations. Our simulation results show that

applications with a static producer-consumer relation generate no or little traffic overhead

for the deliver scheme while applications with a dynamic producer-consumer relation usu-

ally generate substantial traffic overhead. We identified two common access patterns that

cause unnecessary deliver messages: single-processor reuse and reader migration.

We examined three techniques for a trade-off between the covered ratio and the deliver

message overhead: competitive back-off, subscription control, and selective deliver. In

competitive back-off and subscription control, the consumer cancels the subscription of

deliver messages if they are likely to be unnecessary. In selective deliver, the producer

omits deliver operations if they are likely to generate substantial traffic overhead. Compet-

itive back-off takes advantage of dynamically changing behavior of the application, while

subscription control and selective deliver take advantage of static software knowledge of

the application. Our simulation results show that selective deliver performs best or nearly

best for most of our applications.
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The prefetch scheme also generates a large number of unnecessary prefetch operations for

applications with a dynamic producer-consumer relation while the prefetch scheme gener-

ates a small number of unnecessary prefetch operations for applications with a static pro-

ducer-consumer relation. Since most of the unnecessary prefetch operations occur for

cache lines that are already in the cache, the prefetch scheme can eliminate most of the

network traffic due to unnecessary prefetch operations by simply checking the processor

cache before issuing a prefetch request to the network. This is the most important advan-

tage of the prefetch scheme over the deliver scheme; the cache system works as a filter to

eliminate unnecessary traffic for prefetches but not for delivers.
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Chapter 5

Real Architectural Effects

The discussion in the previous chapter assumes an ideal machine model that has an infinite

cache, a short cache-line, and a unit memory latency. Although this model is useful for

discussions about intrinsic sharing characteristics of parallel applications, the results do

not reflect the impact of architectural parameters, such as cache configurations and mem-

ory bandwidth, which can significantly affect the performance of parallel programs. In this

chapter, we discuss the effect of important architectural parameters on the performance of

deliver and prefetch operations. We also analyze application characteristics that interact

with those parameters, such as temporal and spatial locality of memory access behavior.

We begin with examining the effect of three important cache parameters — cache size,

associativity, and line size — in Section 5.1 and Section 5.2. In Section 5.1, we also exam-

ine temporal characteristics of deliver and prefetch operations and working-set character-

istics of application programs to understand the effect of cache size and associativity on

the performance of deliver and prefetch operations. In Section 5.2, we examine spatial and

false-sharing characteristics of application programs to understand the effect of line size.

In Section 5.3 and Section 5.4, we discuss the effect of memory latency and bandwidth.

Finally, we summarize our discussions about the effect of architectural parameters and

application characteristics on the performance of deliver and prefetch operations.

5.1 Cache Size
Unlike an infinite cache in our ideal machine model, real caches can store only a certain

number of cache lines. A cache conflict occurs when a cache needs to evict a valid cache

line to accommodate a new line in the cache. This conflict causes a cache miss if the local

processor accesses the evicted cache line later. Any data transfer that brings in a cache line
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(e.g., cache-misses and deliver/prefetch operations) may cause a cache conflict. Generally,

the smaller the cache, the more cache conflicts occur.

In this section, we first classify cache conflicts due to deliver/prefetch operations and qual-

itatively discuss important factors that affect the impact of cache conflicts; namely tempo-

ral characteristics and replacement policies of deliver and prefetch operations. Second, we

quantitatively examine temporal characteristics of deliver and prefetch operations. Third,

we discuss replacement polices that we use for our simulation study. Fourth, we classify

cache misses and analyze the lower-bound miss rate that deliver operations could achieve.

Finally, we quantitatively discuss the impact of cache size and associativity for deliver and

prefetch operations by analyzing working-sets of application programs.

5.1.1 Cache Conflicts

Figure 5-1 illustrates two types of cache conflicts that deliver and prefetch may suffer

from. The first type (TYPE I) occurs when a transfer operation — deliver or prefetch —

evicts any valid cache line. If the processor uses the evicted cache line and does not use

the transferred line, the number of cache misses increases. The second type (TYPE II)

occurs when an on-demand memory operation — read or write — evicts a line transferred

by a deliver or prefetch before the local processor uses the line. If this type of conflict

occurs, the transfer operation does not decrease the number of cache misses. The number

of cache misses due to the first conflict depends on the replacement policy for the transfer

operation, while the number of cache misses due to the second conflict depends on tempo-

ral characteristics of the transfer operation.

A replacement policy determines a cache line to be evicted — a victim line — when a

cache conflict occurs. If a replacement policy could choose a line that the local processor

would not use in future, a cache conflict would not cause a cache miss. This is not always

possible since information about future access patterns is generally unavailable. Thus,

replacement policies generally use information about past access patterns to predict a

cache line that will be used with lower probability.

Unlike on-demand memory operations, deliver and prefetch operations may transfer a

cache line that the consumer does not use before the line is replaced or invalidated. Thus,
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the delivered or prefetched line itself can become a victim. As we discussed in Section

4.1, in fact, deliver operations transfer many cache lines that the receiver does not need for

some applications. Thus, a replacement policy for deliver operations may need to consider

a delivered line as a victim to minimize the number of cache misses due to cache conflicts.

Prefetch operations, on the other hand, mostly transfer cache lines that the receiver needs,

so that the replacement policy probably does not need to consider a prefetched line as a

victim.

Temporal characteristics of the cache-line transfer also affect the number of cache con-

flicts. If the cache-line is transferred too early, the cache line is probably evicted before the

local processor uses it, so that the cache-line transfer does not eliminate a cache miss that

the transfer is supposed to eliminate. The earlier the cache-line is transferred, generally,

the more likely the cache-line is evicted before the local processor uses it. We should note

that if the cache-line is transferred too late, however, it does not arrive at the local proces-

sor before the cache-line is needed, and thus the transfer does not completely hide the

memory latency. As we will discuss in the next subsection, deliver operations usually

transfer cache lines much earlier than prefetch operations, so that deliver operations suffer

Figure 5-1: Two Types of Cache Conflicts due to Prefetch and Deliver.
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more from cache conflicts than prefetch operations, while potentially hiding larger laten-

cies.

5.1.2 Temporal Characteristics

As we discussed in the previous subsection, temporal characteristics of deliver and

prefetch operations are important for latency hiding. In this subsection, we examine the

statistics of the time between a cache-line transfer due to a prefetch or deliver operation

and the subsequent use of the transferred line. Our simulation results show that prefetch

operations generally transfer cache lines much later than deliver operations but still early

enough to hide typical memory latencies. If the memory latency becomes much larger

than what is currently typical, however, it becomes more difficult to insert prefetch opera-

tions to hide the memory latency completely.

As illustrated in Figure 5-2, aprefetch distance is defined as the number of clock cycles

between a prefetch operation and the subsequent use of the prefetched line. Similarly, a

deliver distance is defined as the number of clock cycles between a deliver operation and

the subsequent use of the delivered line. Figure 5-3 and Figure 5-4 show a histogram of

deliver and prefetch distances for each application. The X axis shows the number of pro-

cessor-clock cycles on a log scale. The Y axis shows the ratio of the number of the cache-

Figure 5-2: Prefetch and Deliver Distances.
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Figure 5-3: Histograms of Deliver and Prefetch Distances.
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line transfer events for the corresponding clock range. We assume 16-byte cache lines and

a unit-latency memory model for these simulations. The histograms clearly show that

deliver operations occur much earlier than prefetch operations except for Mincut. These

results indicate that, generally, delivered lines have a lower probability of staying in the

cache until they are used compared to prefetched lines. The results also indicate that, for

most of our applications, the prefetch distance is usually at least as long as 102 clocks, as

the prefetch annotation intended. Thus, prefetch operations can usually hide typical

remote memory latencies (roughly 102 clocks) that we find in current shared-memory

multiprocessors.
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Figure 5-4: Histograms of Deliver and Prefetch Distances. (Continued.)
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The temporal characteristics we see depend on the places where we insert deliver and

prefetch operations in the application program.1 Prefetch operations are typically inserted

in a loop so as to prefetch a variable that becomes necessary in a future iteration of the

loop. Mowry [45] showed that prefetch operations should be scheduled  iteration

ahead in the loop, where  is an expected memory latency and  is the length of the short-

est path of the loop body. Mowry also showed that it is generally straightforward to sched-

ule prefetch operations early enough to hide memory latencies if the target variable is

indexed by a loop induction variable (or more generally an affine function of the loop

induction variable). The temporal characteristics of prefetch operations, in fact, confirm

that this prefetch annotation strategy can sufficiently hide memory latencies we assume.

If memory latency significantly increases, however, it is difficult to hide enough memory

latency for applications that have conflicting or irregular memory accesses (e.g., intensive

uses of pointers). When an application has a conflicting access pattern, another processor

may overwrite prefetched variables before they are used. If this happens, the prefetch

operation does not hide memory latencies at all; the prefetching processor causes a cache

miss to fetch the data from the main memory. Therefore, even if we schedule a prefetch

operation early to try to hide large memory latencies, conflicting accesses may reduce the

benefit of the prefetch operation. Mincut, MP3D, and Water have this type of access pat-

tern. Moreover, if we need to insert prefetch operations for irregular memory accesses, it

may be difficult to calculate the address to be prefetched early enough to hide large mem-

ory latencies. Mowry [45] showed that irregular access patterns with an intensive use of

pointers in Pthor prevent prefetch operations from significantly hiding memory latencies.

For such applications, as the memory latency increases, prefetch operations become even

less effective for performance improvement unless the program is significantly modified.

Furthermore, as the memory latency increases, we may need to apply software pipelining

to an outer loop to hide memory latencies sufficiently. Thus, even if an inner loop includes

only regular accesses and is easy for prefetch insertion, if the outer loop includes irregular

accesses, prefetch insertion may become a complicated task. Therefore, if the memory

latency is much larger than that we assume, deliver operations are potentially more advan-

1. For details of deliver and prefetch annotations, refer Subsection 4.1.4 and 4.2.3.

l s⁄

l s
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tageous than prefetch operations for applications that generate conflicting or irregular

access patterns.

Deliver operations, on the other hand, have very different temporal characteristics from

prefetch operations. The deliver distance is much longer, typically 104 to 107 clocks,

except for Maxflow, Mincut, and Pthor. This is basically because most of our applications

partition the computations and the shared data so that the production of the shared data is

far away from the use of the data. Figure 5-5 illustrates two common structures of parallel

programs. The diagram is slightly different from actual programs but close enough to

explain the temporal characteristics of deliver and prefetch operations.2 The first diagram

in Figure 5-5 has two loops, producer and consumer loops, inside the outermost loop. The

producer loop writes some shared data, and the consumer loop reads the shared data that

other processors write in the producer loop. Both producer and consumer loops are gener-

ally nested. While we insert deliver operations in the producer loop for the deliver scheme,

we insert prefetch operations in the consumer loop for the prefetch scheme. This program

structure represents Barnes, FFT, LU, and Ocean. For these programs, the producer and

consumer loops are relatively large: each loop usually accesses a significant portion of the

shared data, so that cache systems can exploit the locality of memory accesses. Therefore,

the deliver distance is very long for these programs. The deliver distance of Ocean is rela-

tively short (peak at 104 clocks) among the applications with the same type of the struc-

ture. This is because of the multigrid computation, which consists of nearest-neighbor

operations on hierarchical grids. The higher the grid level becomes, the fewer points the

grid has, so the smaller the consumer and producer loops become. Thus, the deliver dis-

tance is relatively short for higher level grids. The prefetch distance, on the other hand, is

relatively short for all applications because prefetch operations are inserted in the con-

sumer loop, often in the innermost loop of the consumer loop.

The second diagram in Figure 5-5 shows another common structure, a merged pro-

ducer/consumer loop inside the outermost loop. The merged loop reads shared data pro-

duced by other processors and writes shared data read by other processors. This program

2. For some programs, the number of loop nests is different from the diagram, some loops are a
while-loop instead of a for-loop, and some data structures are not an array (e.g., a tree or a
graph).
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Chapter 5. Real Architectural Effects

98

structure represents Locus, Maxflow, Mincut, MP3D, Pthor, and Water.3 For these pro-

grams, the deliver distance depends on the data partitioning technique, the input data, and

sometimes small details in the program structure. If the application is well-written, the

deliver distance is generally long. Locus, for example, uses geographical partitioning;

each processor mostly accesses shared data of one partition at a time, and after finishing

tasks for the partition, the processor moves to another partition. Thus, other processors do

not use most of the produced data in a partition until they move to the partition. Therefore,

the deliver distance is long for Locus. For MP3D, the deliver distance is moderately long

(roughly 104 clocks), as shown in Figure 5-4. If we increase the number of particles, how-

ever, particles collide frequently, so that the deliver distance decreases. The deliver dis-

tance of Pthor is relatively short because false sharing causes frequent communication.

The deliver distance of Maxflow and Mincut is also relatively short because a lack of

effective data partitioning technique causes frequent communication.

Because the deliver distance is generally much longer than the prefetch distance, deliver

operations potentially tolerate larger memory latencies than prefetch operations, but deliv-

ered data are more probably evicted from the cache before they are used than prefetched

data. This raises an interesting question; can we delay the timing of deliver operations so

that the deliver distance is short enough to minimize the impact of cache conflicts but still

long enough to hide memory latencies? We qualitatively discuss this question.

We could probably use a software pipelining technique similar to one that we used for

scheduling prefetch operations. In general, however, it is more difficult to delay deliver

operations for reducing cache conflict effects than to schedule prefetch operations for hid-

ing sufficient memory latencies for several reasons. First, to identify how long we need to

delay deliver operations, we need to identify when consumers use the shared data to be

delivered. It is not a simple task for producers to predict the consumer’s access pattern

unless the access pattern is regular. For most of our applications, the access pattern

dynamically changes. For example, Locus, Maxflow, and Pthor use distributed task

queues. Since the access pattern dynamically changes for load balancing in these pro-

3. Although MP3D and Water have a combined structure of these two common structures, the
merged consumer/producer loop represents the majority of the communication in the program.
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grams, it is difficult, or at least expensive, for producers to determine when they should

perform deliver operations. For Locus, for example, Figure 5-3 shows that the distribution

of deliver distances is widespread. Since this distribution mainly exhibits the characteris-

tics of only one data structure (CostArray), this distribution implies that, for Locus, the

consumer’s access pattern of the data structure changes dramatically and is hard to predict.

Moreover, each consumer generally uses the delivered data in a different timing. To mini-

mize the cache conflict effect, therefore, producers need to keep track of each consumer’s

access pattern and to send the shared data to each consumer with a different timing. Even

if this is possible, the extra code for delaying deliver operations is probably complex and

may cause significant overhead unless the computation is regular.

5.1.3 Replacement Policies

When a cache conflict occurs, a replacement policy determines a victim line to be dis-

carded. The choice of a replacement policy is especially important for deliver operations

because deliver operations suffer significantly from cache conflicts as we discussed in

Subsection 5.1.2. In this subsection, we describe replacement policies that we use for our

simulation study and discuss the motivation for the choice of the replacement policies.

An optimal, if impractical, replacement policy is known for uniprocessors [6, 42]: when a

cache needs to replace a cache line, the chosen line is the one whose next reference is far-

thest in future. We can extend this optimal policy for multiprocessors with deliver and

prefetch operations by adding two rules. First, if another processor invalidates a cache line

before the local processor references it next time, we consider that the cache line is no

longer used and that the cache line is a candidate for replacement. Second, when a deliver

or prefetch operation transfers a cache line to a cache, the cache line itself can become a

victim for replacement if the local processor will not access the cache line for a longer

period than any other cache lines.

While the optimal policy for multiprocessors is of interest for theoretical studies, the pol-

icy is not implementable since it requires knowledge about future memory accesses.

Among implementable policies, we use two variations of a LRU policy for our simulation

study. The first variation handles delivered (or prefetched) cache lines as if a cache miss

brought them into the cache. That is, if a cache conflict occurs, the replacement policy
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evicts the least-recently-used line and considers the new line as the most-recently-used

line. We call this policy anoptimistic policy since this policy assumes that the local pro-

cessor will use the transferred line very soon. This replacement policy should be reason-

able for prefetched cache lines because the local processor usually uses prefetched cache

lines soon after they are prefetched as we discussed in Subsection 5.1.2. For delivered

cache lines, however, this replacement policy may increase the impact of cache conflicts,

especially for small caches. When a cache conflict occurs, we want to evict a cache line

that will not be used for the longest time. Since the deliver distance is generally very large,

delivered cache lines may not be used sooner than any other cache lines if the cache is

small. Thus, we consider another variation of a LRU policy for deliver operations, a pessi-

mistic policy.

The pessimistic policy assumes that the local processor will use the delivered cache line

only if the cache has an invalidated copy of the cache line. When a cache recycles an

invalidated line to store another line, the cache uses the least-recently invalidated line. The

pessimistic policy, therefore, stores a delivered line only if the local processor used the

line so recently that the cache has a valid copy of the line when another processor writes

the line and if the invalidation was so recent that the cache still has the invalidated copy.4

The pessimistic policy also assumes that the local processor will not use the delivered line

sooner than any valid lines in the cache. Thus, the cache stores the delivered line as if the

local processor accessed the line least recently. In other words, when the cache needs to

replace a valid line, the cache replaces unused delivered lines before any lines that the

local processor has used. Therefore, deliver operations will never interfere with cache

lines that the local processor used, so that the miss rate will never be larger than that of the

invalidate-only protocol even if the cache size is very small.

For simplicity, we call the deliver operation with the optimistic replacement policyopti-

mistic deliver, and we call the deliver operation with the pessimistic replacement policy

pessimistic deliver. If the cache is infinite, the optimistic and pessimistic deliver opera-

tions should generate the same miss rate since the cache always has an invalidated copy

4. Deliver with the pessimistic policy is similar to an update protocol with a write cache in a sense
that both protocols transfer cache lines to consumers only if the consumer’s cache has a copy
(valid or invalidated) of the cache line.
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for delivered lines. If the cache is very small, the optimistic deliver probably generates a

larger miss rate than the invalidate-only protocol since delivered lines evict necessary

cache lines, while the pessimistic deliver probably generates the same miss rate as the

invalidate-only protocol. In Section 5.1.5, we will discuss how the cache size and the

replacement policy affect the miss rate by examining our simulation results.

For some cache and application configurations, there may be better implementable

replacement policies than the two replacement policies that we have discussed. Our goal,

however, is not to find the best replacement policy for some configurations but to obtain

an intuition about the interplay between replacement policies and deliver/prefetch opera-

tions. Our analyses of these two replacement policies provides this insight.

5.1.4 Classification of Cache Misses

In this subsection, we classify cache misses to understand the lower bound of the miss rate

due to deliver operations. Cache misses are generally divided into three types: cold, capac-

ity, and sharing misses.5 A cold miss occurs because of the first access for the memory

block. A capacity miss occurs because of a replacement of the line due to finite cache

capacity. A sharing miss occurs because of an invalidation of the line due to an invalida-

tion-based coherency protocol. This simple classification, however, is not helpful to

understand the number of cache misses that deliver operations can eliminate. This is

because a deliver operation may not eliminate some sharing misses and may eliminate

some capacity misses. A pessimistic deliver operation, for example, cannot eliminate a

sharing miss if the local processor replaces the cache line after some processor wrote it.

An optimistic deliver operation, on the other hand, may eliminate a capacity miss if some

processor writes the cache line after the local processor replaced it.

To understand the number of cache misses that deliver operations can reduce, we further

divide the above three miss-types as illustrated in Figure 5-6. We divide capacity misses

into two types: if someone writes the cache line after the local processor replaced it, we

call the miss asharing capacity miss. If no one writes the cache line, we call the miss a

pure capacity miss. We also divide sharing misses into two types: if the local processor

5. The sharing miss is also called the coherency miss.
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retains the invalidated line until the local processor accesses it, we call the miss apure

sharing miss. If the local processor does not retain the invalidated line, we call the miss a

capacity sharing miss. Deliver operations do not eliminate cold misses since deliver oper-

ations do not send a cache line to caches that have never held it, likewise deliver opera-

tions do not eliminate pure capacity misses since deliver operations follow a write

operation and no write operation occurs between the replacement and the pure capacity

miss. Therefore, the number of cold and pure capacity misses gives us the lower bound of

the miss rate for the deliver scheme. Deliver operations may eliminate the rest of the cache

misses (sharing capacity, pure sharing, and capacity sharing misses) if we insert a deliver

operation after every write operation that is followed by a consumer’s read operation.

Deliver operations, however, can generally eliminate only a part of these misses because

of cache conflicts.

Figure 5-7 shows the cache miss breakdown with our classification for Locus and FFT as

an example. We assume fully-associative caches with 16-byte lines. We can obtain a rough

idea about the miss rate due to deliver operations from this cache miss breakdown without

simulating deliver-annotated applications. For both applications, when the cache is 16KB,
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Figure 5-6: A Classification of Cache Misses.
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the number of pure sharing misses is very small and capacity-related misses (pure-capac-

ity, sharing-capacity, and capacity-sharing) dominate the overall cache misses. As the

cache size increases, the number of these misses decreases. When the cache is 1MB, virtu-

ally no capacity-related misses occur. The arrow in each graph indicates the largest work-

ing set for the application, which represents the whole data partition for a single processor.

As we discussed previously, the number of cold and pure capacity misses indicates the

lower-bound miss rate due to deliver operations. Figure 5-7 shows that the lower-bound

reaches about a half of the total miss rate when the cache is a quarter of the data partition

(32KB for Locus and 128KB for FFT). Deliver operations, therefore, cannot significantly

reduce the number of cache misses if the cache size is smaller than a quarter of the data

partition for both applications. Figure 5-7 also shows that no pure capacity misses occur

when the cache is larger than the data partition. Thus, the lower-bound is as low as that of

an infinite cache when the cache is larger than the data partition. For Locus, capacity shar-

ing misses still occur when the cache is as large as the data partition. This indicates that

deliver operations may suffer from cache conflicts even if the whole data partition fits in

the cache.

5.1.5 Cache Miss Rate versus Cache Size

In this subsection, we quantitatively evaluate the impact of the cache size and the replace-

ment policy by using deliver-annotated and prefetch-annotated applications. Our simula-

Figure 5-7: Breakdown of Miss Rate versus Cache Size. No deliver or prefetch operations
are used.
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tor simulates the optimistic and pessimistic replacement policies that we discussed in

Subsection 5.1.3. Figure 5-8 and Figure 5-9 show the results of our simulation. The X axis

shows the cache size and the Y axis shows the miss rate. We assume a unit-delay model

and fully associative caches with 16-byte lines. Four solid miss-rate curves in each graph

correspond to the invalidate-only protocol (invalidate only), the deliver protocol with the

pessimistic replacement policy (pessimistic deliver), the deliver protocol with the optimis-

tic replacement policy (optimistic deliver), and the prefetch protocol with the optimistic

replacement policy (optimistic prefetch). The arrow in each graph shows a working set

knee in the miss-rate curve. Two dotted curves in each graph show a hypothetical miss-

rate curve: lower-bound deliver shows the lower-bound miss rate due to deliver operations

that we discussed in Subsection 5.1.4, that is the sum of the pure capacity miss rate and the

cold miss rate of the invalidate-only protocol. No-conflict deliver shows the miss rate that

we would observe if delivered messages did not conflict with any other cache lines.6 The

no-conflict deliver represents the lower-bound miss rate for a given deliver annotation.

Lower-bound deliver, on the other hand, represents the lower-bound miss rate if a deliver

operation follows all write operations immediately before a cache miss. The difference

between these two is noticeable only for Locus, Maxflow, and MP3D.

The miss-rate curves in Figure 5-8 and Figure 5-9 show that the cache size affects the miss

rate of the optimistic prefetch scheme less than the optimistic and pessimistic deliver

schemes. This happens because of two reasons. First, prefetch can eliminate pure capacity

and cold misses, while deliver cannot eliminate these misses. Since the number of pure

capacity misses increases as the cache size decreases, prefetch has more opportunities to

reduce the miss rate than deliver for small caches. Second, as we discussed in Subsection

5.1.2, the deliver operation generally occurs much earlier than the prefetch operation so

that delivered cache lines need to stay in the cache longer to eliminate a cache miss than

prefetched cache lines. Deliver operation, therefore, suffers more from cache conflicts

than prefetch for small caches.

6. Our simulator simulates the no-conflict deliver by using an infinite buffer to store received
deliver messages for each cache. The cache does not store received messages in the cache until
the local processor accesses them. Thus, until the local processor uses deliver messages, the
deliver messages conflicts with neither other unused delivered lines nor other cache lines that
the local processor has used.



Section 5.1. Cache Size

105

Figure 5-8: Miss Rate versus Cache Size.
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Let’s compare the miss rate of the optimistic and pessimistic policies for deliver. If the

cache is large, it is essentially infinite, so that no cache conflicts occur. Thus, the optimis-

tic and pessimistic policies generate the same miss rate as a deliver with no conflict. The

largest cache size in each graph represents a cache size that is effectively equivalent to an

infinite cache. As the cache size decreases, the miss rate of these two behaves differently.

Generally, if the cache size is relatively large, optimistic deliver generates a smaller miss

rate than pessimistic deliver. If the cache size is relatively small, however, pessimistic

deliver generates a smaller miss rate than optimistic deliver. In FFT, for example, optimis-

tic deliver is better for cache sizes between 32KB and 512KB, and pessimistic deliver is

better for cache sizes smaller than 32KB. We can intuitively explain this behavior in the

following way. Optimistic replacement policy assumes that the local processor will use

delivered lines before other lines in the cache, while pessimistic replacement policy

assumes that the local processor will not use delivered lines before other lines in the

cache. Which replacement policy performs better depends on which assumption is more

accurate. As we discussed previously, if the cache is sufficiently large, the two replace-

ment policies generate the same miss rate. As the cache size decreases, optimistic deliver

performs better than pessimistic deliver because the cache is still large enough to hold the

cache lines that the local processor will not use sooner than delivered lines. That is, the

Figure 5-9: Miss Rate versus Cache Size. (Continued.)
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assumption of the optimistic policy is more accurate than that of the pessimistic policy.

When the cache size reaches a certain point, however, the cache can hold only the cache

lines that the local processor will use relatively soon, so that the assumption of the pessi-

mistic policy becomes more accurate than that of the optimistic policy. Thus, pessimistic

deliver performs better than optimistic deliver for cache sizes smaller than that point.

When the cache size decreases even further, optimistic deliver generates a larger miss rate

than the invalidate-only protocol because of severe cache conflicts. The miss-rate behavior

of deliver operations is similar for most of our applications, although these applications

are very different in the sharing pattern and the program structure.

5.1.6 Working-Set Characteristics

An important question is how large the cache needs to be for the deliver operation to elim-

inate a significant number of cache misses. Figure 5-8 and Figure 5-9 indicate that, for

most of our applications, the cache needs to be as large as the largest working-set so that

the deliver operation can reduce the miss rate to about one half of the miss rate of the

invalidate-only protocol. In Subsection 5.1.2, we discussed that deliver operations may

transfer cache lines too early to reduce the miss rate significantly unless the cache is very

large. In this subsection, we examine working-set characteristics to understand how large

the cache needs to be to capture delivered cache lines.

First, we discuss equations to derive the working-set size and the cache miss rate from the

inter-reference distance distribution for cache-coherent multiprocessors. Then, we com-

pare the distribution of inter-reference distances with that of deliver distances to under-

stand why the cache needs to be as large as the largest working-set to exploit deliver

operations.

5.1.6.1 Inter-reference Distance Distribution and Working Set

Denning [17, 18] has shown a set of simple equations to estimate a program’s average

working set and the miss rate by using an inter-reference distance distribution. We extend

the equations for multiprocessor caches with a coherency protocol.

First, we consider the invalidate-only protocol. Later, we add the effect of deliver opera-

tions. Let S(R) be the average of the number of distinct cache lines that a processor
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accessed during the lastR references and have not been invalidated by another processor.

That is,S(R) indicates the average size of a working set in terms of the number of cache

lines when the working-set window isR references.7 The following equations hold.

 EQ 5-1

 EQ 5-2

Where m(R) is the probability of references for cache lines that are not included inS(R),

and i(R) is the probability of invalidations for cache lines whose last reference occurred

within the lastR references. These two probabilities are per memory reference.F(R) is the

cumulative distribution of inter-reference distances, which indicates the number of refer-

ences for cache lines that are referenced within the lastR references and have not been

invalidated by another processor.F(R) is normalized by the number of all memory refer-

ences. Thus, for example,i(∞) is the ratio between the number of received invalidation

requests and the number of memory references, and  is the ratio of references

for cache lines that have never been accessed (i.e., cold misses) or have been invalidated

since the last reference (i.e., sharing misses).

In EQ 5-1,i(R) represents the effect of cache coherency that we add to an equivalent equa-

tion for uniprocessors that Denning has shown [18]. We assume that a fully-associative

LRU cache recycles invalidated lines to store new cache lines before it recycles any valid

lines. We usei(R) to take into account this effect. With this assumption of the replacement

policy, S(R) corresponds to the number of cache lines in a fully-associative LRU cache

that captures pastR references, andm(R) corresponds to the miss rate of the cache. We

obtainF(R) andi(R) by simulations and calculateS(R) andm(R) by using EQ 5-1 and EQ

5-2. The calculatedS(R) andm(R)are very close to the miss rate curve shown in Figure 5-

8 and Figure 5-9.

Now, we consider the effect of deliver operations for the working set. We assume the opti-

mistic deliver scheme, in which the cache stores a delivered line as if the local processor

7. While Denning used the number of clocks to measure the interval between references, we use the number
of references to directly obtain the miss ratio — the number of cache misses per memory reference —
instead of the instantaneous miss rate — the number of cache misses per clock cycle.

S R 1+( ) S R( )– m R( ) i R( )–=

m R( ) 1 F R( )–=

1 F ∞( )–
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references the line most recently. We add another term to EQ 5-1 and EQ 5-2 to take into

account the effect of deliver operations, as shown below.

 EQ 5-3

 EQ 5-4

We slightly change the definition of the working set so that the working set includes a set

of cache lines that are delivered to the processor. In EQ 5-3,d is the number of delivered

cache lines per reference, andi(R) is the probability of invalidations for cache lines that

are referenced or delivered within the lastR references.S(R) is now the average of the

number of cache lines that are referenced or delivered in the cache within the lastR refer-

ences and have not invalidated by another processor.D(R) is the ratio of references for

cache lines that are delivered to the processor within the lastR references and have not

been invalidated by another processor.D(R) represents the decrease of the miss rate

because of deliver operations. Thus,m(R) corresponds to the miss rate for the optimistic

deliver scheme.

For a cache withS(R) lines, EQ 5-3 and EQ 5-4 indicate that the cache does not hold cache

lines that were delivered outside the lastR reference window. In other words, for a cache

with S(R) lines, a deliver operation does not eliminate a cache miss if the distance between

the deliver and the following reference is larger thanR references.

5.1.6.2 Hierarchical Working Sets

Parallel applications typically have hierarchical working sets. Each working set corre-

sponds to a knee in the miss rate curve for the application [52, 59], as illustrated in Figure

5-10. From EQ 5-1 and EQ 5-2, we derive the following equations;

 EQ 5-5

S R 1+( ) S R( )– m R( ) i R( )– d+=

m R( ) 1 F R( )– D R( )–=

S∆
R∆

------- S R 1+( ) S R( )– 1 F R( )– i R( )–= =
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 EQ 5-6

 EQ 5-7

EQ 5-7 indicates that the working-set knee in the miss rate curve corresponds to a knee in

the distribution curve of the inter-reference distance.

Figure 5-11 shows the cumulative distribution of inter-reference distances and deliver dis-

tances. The X axis shows the distance in the number of memory references, and the Y axis

shows the normalized ratio (F(R)/F(∞) for the inter-reference distance, andD(R)/D(∞) for

the deliver distance). We assume that the number of processors is 16 and that the line size

is 16 bytes. Arrows in Figure 5-11 indicate the reference interval that corresponds to the

largest working set (WS2) and the second largest working set (WS1).

Figure 5-11 indicates that, for most of the applications, the cumulative distribution of

deliver distances reaches 100% when the deliver distance is about the same as the refer-

ence interval for WS2. Thus, the cache needs to be as large as WS2 to capture most of the

delivered lines until they are used. This directly explains the miss-rate behavior of the
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A smaller Working Set
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Figure 5-10: Miss Rate Curve and Hierarchical Working Sets.

m∆
R∆
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deliver scheme that we discussed in Subsection 5.1.5; the cache needs to be as large as the

largest working-set to obtain most of the benefit due to deliver operations for most of our

applications. Mincut exhibits a different distribution pattern from the rest of the applica-

tions. For Mincut, the cumulative distribution of deliver distances reaches 100% for a dis-

tance that is much shorter than the reference interval for WS2. This explains the miss rate

curve of Mincut in Figure 5-8; for Mincut, deliver operations can eliminate bulk of shar-

ing misses even when the cache size is much smaller than the largest working-set.

Now, we intuitively discuss why the deliver distance is typically much longer than the ref-

erence interval for WS1. The largest working-set (WS2) generally corresponds to the data

set that the processor accesses in the outermost loop, and the second largest working-set

(WS1) generally corresponds to the data set that the processor accesses in a second-outer-

most loop. Thus, the reference interval for each working-set roughly represents the num-

ber of memory references in the corresponding loop. In Subsection 5.1.2, we have

discussed typical loop structures that explain the temporal characteristics of deliver opera-

tions (see Figure 5-5). We have discussed that the consumer processor generally does not

use a produced value during the same instance of the second outermost loop in which

another processor produced the value. Therefore, the deliver distance generally becomes

much longer than the reference interval for WS1.

5.1.7 Cache Associativity

So far we have assumed fully associative caches to exclude the artifacts due to small asso-

ciativity from our discussions. In this subsection, we examine the effect of small associa-

tivity that we observe in real machines. Small associativity causes mapping conflicts, so

that the miss rate of set-associative caches is generally higher than that of fully associative

caches. The deliver scheme especially suffers from mapping conflicts because deliver

operations transfer cache lines very early before the receiver uses them so that delivered

lines are likely replaced due to mapping conflicts. In this subsection, first, we pick FFT as

an example and examine the impact of small associativity for several protocols. Second,

we analyze the optimistic deliver protocol and discuss whether small associativity affects

the cache size that the deliver operation needs to reduce a significant number of cache

misses.
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Figure 5-12 shows the miss rate of FFT for four protocols — invalidate-only, optimistic

deliver, pessimistic deliver, and optimistic prefetch — when the line size is 16 bytes. The

knee of the miss-rate curve for the invalidate-only protocol moves toward right as the

associativity decreases. This indicates that the cache needs to be larger to hold the working

set as the associativity decreases. This is because mapping conflicts due to small associa-

tivity prevent caches from utilizing the cache memory efficiently. Figure 5-12 also shows

that the optimistic prefetch scheme suffers much less from small associativity than the

deliver scheme with either replacement policies because prefetch operations transfer

cache lines much later than deliver operations. If the associativity is four or larger, how-

Figure 5-12: Miss Rate of Four Protocols versus Cache Size for Various Associativities.
The application is FFT.
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ever, the impact of mapping conflicts on the deliver scheme with either replacement poli-

cies is so small that the miss rate is almost the same as that of fully associative caches.

In Subsection 5.1.5, we showed why the deliver operation needs a large cache — roughly

as large as the largest working set — to reduce the miss rate significantly. An interesting

question is whether the deliver operation needs even a larger cache to reduce the miss rate

significantly as the associativity decreases. Figure 5-13 answers this question. Figure 5-13

shows the normalized miss rate of the optimistic deliver scheme for 16-byte lines; that is

the miss rate of the optimistic deliver scheme divided by that of the invalidate-only proto-

col. The normalized miss rate usually increases as the associativity decreases, so that we

need a larger cache to reduce the same ratio of cache misses of the invalidate-only proto-

col as the associativity decreases. This is again because deliver operations transfer cache

lines very early before the local processor uses, so that the delivered lines suffer more

from mapping conflicts than the cache lines that the local processor fetches. When the

cache size is about the same as the largest working-set size, the impact of small associativ-

ity is especially large. This is because caches with small associativity do not use cache

memory efficiently, hence associativity is critical for caches to hold the working set when

the cache size is about the same as the size of the working set. If the cache size is much

smaller or larger than the size of the working set, the impact of small associativity is gen-

erally small.

5.2 Line Size
In Section 5.1, we assumed a very small line size, 16 bytes, to simplify our discussions. In

this section, we analyze the effect of large line sizes for deliver and prefetch operations.

We can consider large cache lines as a hardware mechanism that provides simple prefetch-

ing. As the line size increases, the miss rate usually decreases because a single miss can

“prefetch” additional data that the processor may use later. Ideally, when the line size is

doubled, the miss rate is halved. The miss rate, however, may not be halved because the

processor does not necessarily use the prefetched data before they are replaced. When the

line size increases, moreover, false sharing may invalidate cache lines before they are

used. Similarly, when the line size increases, false sharing may invalidate delivered or

prefetched lines. For some applications, because of false sharing, the miss rate of the
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Figure 5-13: Miss Rate of Optimistic Deliver versus Cache Size for Various Associativi-
ties. The miss rate is normalized by that of the invalidate-only protocol.
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prefetch or the deliver scheme does not decrease proportionally as the miss rate of the

invalidate-only mechanism decreases. In this section, we discuss sharing patterns that

interfere with deliver or prefetch operations.

Since cache misses are a result of interactions among the spatial locality, the temporal

locality, and the sharing activity, the effect of large line sizes for the miss rate depends on

the cache size. In this section, therefore, we first discuss the effect of large line sizes for a

large cache size to isolate the effect of small cache sizes. Then, we discuss additional

effects of large line sizes when the cache size varies.

5.2.1 Effect of Large Lines for Large Caches

Figure 5-14 shows the miss rate for our benchmark applications when we vary the line

size from 16 to 128 bytes. We assume fully-associative caches. The bar graph shows the

miss rate of the invalidate-only protocol. The line graph shows the normalized miss-rate

— the miss rate divided by that of the invalidate-only protocol — for optimistic deliver

and optimistic prefetch. The cache size is so large that we can ignore cache conflict

effects. Thus, the miss rate of optimistic deliver should be about the same as the that of

pessimistic deliver.

The miss-rate graph of the invalidate-only protocol (the bar graph in Figure 5-14) indi-

cates the degree of the spatial locality of the application; the application has good spatial

locality if doubling the line size nearly halves the miss rate of the invalidate-only protocol.

In our applications, FFT, LU, to some extent, Locus, and Water have good spatial locality.

The normalized miss-rate graph of the deliver and prefetch protocols (the line graph in

Figure 5-14) on the other hand, indicates the degree of the interference for delivered and

prefetched lines due to false sharing; the normalized miss-rate curve is flat if false sharing

does not invalidate delivered or prefetched lines before they are used. In our applications,

FFT, LU, to some extent, Maxflow, Mincut, and Water do not suffer from the interference

for both deliver and prefetch schemes.

Note that the behavior of the invalidate-only protocol does not give us good insight into

the behavior of the deliver and prefetch schemes. For example, the miss-rate graph of the

invalidate-only protocol indicates that Locus has better spatial locality than Maxflow and
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Figure 5-14: Miss Rate versus Line Size for a Large Cache. The bar graph shows the miss
rate of the invalidate-only protocol. The line graph shows the normalized miss-rate (the
miss rate divided by that of the invalidate-only protocol) for the deliver and prefetch pro-
tocols. The optimistic replacement policy is used for both protocols. The cache size is
shown at the top of each graph and is large enough to eliminate capacity misses.
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Mincut. The normalized miss-rate graph of the deliver and prefetch protocols, however,

indicates that Locus suffers more from the interference due to false sharing than Maxflow

and Mincut. This is because deliver and prefetch operations cannot always take advantage

of the spatial locality of the application. For the rest of this subsection, we discuss sharing

patterns that interfere with delivered or prefetched lines.

First, we focus on the deliver scheme. Figure 5-15 illustrates three sharing patterns that we

consider. Proc A is a producer of the two records (Rj and Rk) and the other three proces-

sors are a consumer. Because producer-consumer communication occurs through Xj and

Xk, we insert a deliver operation before consumers access them. We do not, however,

insert a deliver operation for Yj because only the producer uses it (i.e., single-processor

reuse).

Figure 5-15: False Sharing with Deliver Operations. Proc B does not cause a miss because
the deliver operation for Xj also sends Xk to Proc B. Proc C causes a miss because Proc A
invalidates the delivered Xk. Proc A does not deliver Yj because of a single-processor
reuse of Yj, so that Proc D causes a miss when Proc D reads Xk.
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If the line size is small enough, the three consumers do not cause a cache miss for reading

Xk since Proc A delivers Xk to them. If the line size is large enough to hold Xj, Yj, and Xk

as shown in Figure 5-15, however, Proc C and Proc D cause a cache miss for reading Xk

since Proc A invalidates the delivered line because of false sharing. Proc B still does not

cause a cache miss for reading Xk since the deliver operation for Xj sends Xk to Proc B.

This is because our deliver mechanism relies on a cache directory so that a cache line is

sent to processors that have accessed the cache line because of false sharing. This access

pattern occurs in Mincut and Maxflow. Thus, although false sharing occurs, the normal-

ized miss-rate curve of the deliver scheme is almost flat as shown in Figure 5-14 for the

two applications.

The access pattern similar to the Proc C’s read occurs in Locus. In Locus, when a proces-

sor updates CostArray elements, we delay sending a deliver message to aggregate all

updates for the same cache line into a single deliver message. As the line size increases,

the delay increases. This increases the chance that another processor accesses the cache

line before the producer sends the deliver message. The access pattern similar to the Proc

D’s read occurs in Barnes. Proc D causes a cache miss for reading Xk, because Proc A

invalidates the delivered copy of Xk when Proc A writes Yj. While the access pattern of Yj

is single-processor reuse, the access pattern of the cache line is not single-processor reuse

because of false sharing, so that Proc A needs to deliver the cache line to Proc D after

writing Yj to prevent the cache miss at Proc D. For Barnes, because of this type of sharing

pattern, the normalized miss-rate of the deliver scheme increases as the line size increases.

For both sharing patterns of Proc C and Proc D, if cache-line-level sharing information is

available, we can add deliver operations at appropriate places — immediately after “write

Xj” and “write Yj” in Figure 5-15 — to eliminate the cache misses due to false sharing.

Now, we examine the effect of large lines for the prefetch scheme. False sharing also

reduces the benefit of prefetch operations as illustrated in Figure 5-16. A false sharing

miss occurs when Proc B reads a prefetched word Xk because Proc A writes another word

in the same cache line. This type of misses occurs for Barnes, Locus, and MP3D. We

schedule prefetch operations early enough to hide memory latencies. As we discussed in

Subsection 5.1.2, the prefetch distance is typically 102 to 103 clocks. If another processor
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writes a value in the same cache line during this period, the prefetch operation becomes

useless. If processors use exclusive-mode prefetching, the impact of this access pattern

increases since the probability of the invalidation due to false sharing increases. As the

memory latency or the line size increases, moreover, we encounter a dilemma: whether to

schedule prefetch operations early to hide the latency or late to reduce the false sharing

effect. If we schedule prefetch operations early, we potentially hide the memory latency

completely but may increase the false sharing effect. Note that adding deliver operations

can reduce the number of false sharing misses at the expense of additional deliver traffic.

Although the miss rate of the prefetch scheme is smaller than that of the deliver scheme

except for a few applications as shown in Figure 5-14, it will become more difficult for the

prefetch operation to reduce the false sharing effect than the deliver operation when the

line size and the memory latency become very large.

5.2.2 Interactions Between Line-Size and Cache-Size Effects

We have discussed cache parameter effects in one-dimensional spaces: cache size effects

for a small line size (Subsection 5.1.5) and line size effects for a large cache size (Subsec-

Figure 5-16: False Sharing with Prefetch Operations. Proc B causes a cache miss because
Proc A invalidates the prefetched Xk.
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tion 5.2.1). In this subsection, we extend our scope to a two-dimensional space of cache

and line sizes. Figure 5-17 and Figure 5-18 show the normalized miss-rate of optimistic

deliver and optimistic prefetch for four line sizes from 16 bytes to 128 bytes. The X axis

shows the cache size, and the Y axis shows the normalized miss-rate (normalized by the

miss rate of the invalidate-only protocol with the same cache size and the same line size).

We assume fully-associative caches.

In the previous subsection, we discussed that increasing the line size causes false sharing

that interferes with delivered or prefetched lines for some applications. Varying the cache

size adds two effects for the exploitation of the spatial locality in the deliver scheme. First,

as the cache size decreases, the number of capacity misses increases for the deliver

scheme. For some applications, capacity and sharing misses occur for memory accesses

with different spatial locality (e.g., different data sets or the same data sets with different

access patterns). For those applications, the effect of large cache lines varies as the cache

size varies. Second, as the line size increases, the utilization of cache lines generally

decreases. As we discussed in Subsection 5.1.5, the cache needs to be roughly large

enough to capture the largest working set so that deliver scheme can eliminate most of the

cache misses. If the utilization of cache lines decreases, the cache size needs to increase to

capture the working set.

For FFT and LU, the normalized miss-rate of the deliver scheme does not change notice-

ably when the line size increases at all cache sizes that we examine, as shown in Figure 5-

17. This is because the two above-mentioned effects due to cache size variations do not

occur; memory access patterns that cause cache misses have good spatial locality for all

cache sizes that we examine, and the utilization of cache lines does not decrease as the line

size increases. For the two applications, the normalized miss-rate of the prefetch scheme

does not change as the line size increases since the prefetch scheme eliminates virtually all

cache misses.

For Locus and MP3D, as we discussed in Subsection 5.2.1, the normalized miss-rate of

prefetch increases more significantly than that of deliver when the line size increases

because exclusive-mode prefetching enlarges the impact of false sharing. This is true for

all cache sizes that are shown in Figure 5-17 and Figure 5-18. As long as the cache size is
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Figure 5-17: Miss Rate of Optimistic Deliver and Optimistic Prefetch for Cache and Line
Size Variations. The miss rate is normalized by that of the invalidate-only protocol with
the same cache size and the same line size.
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smaller than the largest working set, however, the prefetch scheme still generates a smaller

miss rate than the deliver scheme since the deliver scheme cannot eliminate capacity

misses.

For Mincut, the normalized miss-rate curves show interesting characteristics. When the

cache size is larger than the largest working set (128 Kbytes), the normalized miss-rate of

the prefetch and deliver protocols does not change as the line size increases. When the

cache size is smaller than the working set, on the other hand, as the line size increases, the

normalized miss-rate of the deliver protocol decreases while that of the prefetch protocol

increases. This is because the spatial locality of memory accesses that cause remaining

misses differs between the deliver and prefetch schemes. In the deliver scheme, most of

the remaining misses are capacity misses for data records that exhibit good spatial locality.

In the prefetch scheme, by contrast, most of the remaining misses are sharing misses for

data records that exhibit poor spatial locality. Therefore, when the cache size is smaller

than the largest working set, the exploitation of the spatial locality differs between the

deliver and prefetch schemes for Mincut.

Figure 5-18: Miss Rate of Optimistic Deliver and Optimistic Prefetch for Cache and Line
Size Variations. (Continued.) The miss rate is normalized by that of the invalidate-only
protocol with the same cache size and the same line size.
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For Barnes, the normalized miss-rate curve of the deliver scheme in Figure 5-17 indicates

that the effect of large cache lines depends on the cache size. When the cache size is larger

than the largest working set (256 Kbytes), the normalized miss-rate increases when the

line size increases. This is because, as discussed in Subsection 5.2.1, increasing the line

size causes false sharing that interferes with delivered lines. When the cache size is

smaller than the working set, on the other hand, the normalized miss-rate decreases when

the line size increases for the deliver scheme. This is because, similar to the deliver

scheme in Mincut, most of the cache misses are capacity misses for data records that have

relatively good spatial locality.

For Water, the normalized miss-rate curve of the deliver scheme exhibits a very different

pattern from the rest of the applications. As shown in Figure 5-18, the curve has a sharp

peak when the cache size is slightly smaller than the largest working set. At this cache

size, the cache almost captures the working set when we use the invalidate-only protocol,

so that the miss rate is significantly smaller than that for a slightly smaller cache. When we

use deliver operations, however, the cache cannot capture the working set. This is because

processors do not use about 87% of delivered lines so that the useful space in the cache is

much smaller than the actual size. Thus, the normalized miss-rate of the deliver scheme

becomes significantly large when the cache size is slightly smaller than the working set.

Furthermore, the cache size that produces a sharp peak increases when the line size

increases as shown in Figure 5-18. This is because the utilization of cache lines decreases

so that the cache size needs to increase to capture the same working set. The decrease of

the cache-line utilization also occurs for Maxflow. As shown in Figure 5-17, a knee of the

normalized miss-rate curve for the deliver scheme moves from 128 Kbytes to 256 Kbytes

when the line size increases from 16 bytes to 32 bytes because of the decrease of the

cache-line utilization.

5.3 Memory/Network Bandwidth
In this section, we analyze the characteristics of the memory and network traffic for our

applications by examining the simulation results of a unit-delay memory model, and we

compare the demand traffic with an upper-bound bandwidth of a feasible memory system.
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We vary three architectural parameters — cache size, line size, and the number of proces-

sors — to analyze their effects for the traffic behavior.

As discussed in Chapter 4, the deliver scheme usually generates much more traffic than

the invalidate-only and prefetch protocols for applications with dynamic producer-con-

sumer patterns. The simulation results, however, show that the demand traffic with the

deliver protocol is within the upper-bound bandwidth for most of our applications when

the number of processors is 16. As the number of processors increases, the ratio between

the traffic and the bandwidth increases dramatically for applications with dynamic pro-

ducer-consumer patterns. As the line size increase up to 128 bytes, the ratio increases only

slightly or decreases for most of our applications.

The simulation results also show that the pessimistic deliver protocol produces signifi-

cantly less traffic than the optimistic deliver protocol unless the cache size is much larger

than the largest working set of the application. If the cache size is much smaller than the

largest working set, however, the pessimistic deliver protocol does not significantly reduce

the miss rate, as we discussed in Subsection 5.1.5. Thus, the pessimistic deliver protocol

may be an attractive solution only when the cache is about the same as the largest working

set.

In the following subsections, we first discuss our assumptions for the processor-node and

the cache protocol. Second, we examine the traffic characteristics for major system com-

ponents in the processor node when the cache size varies, and we compare the traffic with

a feasible bandwidth for each component. We discuss the producer-consumer relation to

understand the traffic behavior. Third, we examine the traffic characteristics when the line

size varies. Fourth, we discuss the traffic characteristics when the number of processors

varies. Finally, we summarize our discussions about the traffic characteristics of our appli-

cations.

5.3.1 Architectural Model

The multiprocessor system consists of a set of network-connected processor nodes. Figure

5-19 shows the processor node structure that we assume. Each processor node consists of

six major components: a processor, a cache, a directory controller, a directory memory, a
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main memory, and a network router. Each data path between processor-node components

has a finite bandwidth and becomes a bottleneck if the demand traffic for the data path

exceeds its bandwidth. We focus on the four data paths between the directory controller

and another component, as illustrated in Figure 5-19, since the traffic of these data paths is

directly relating to the sharing pattern of applications as well as the behavior of deliver

and prefetch operations.

We assume that each processor cache is kept coherent using a directory-based Illinois pro-

tocol [48]; each cache line is in one of invalid, shared, dirty, or valid-exclusive state. A

cache-directory maintains the state of each memory block and keeps track of processors

that have a copy of the block. The memory block is in one of clean, dirty, or valid-exclu-

sive state. If a cache line in a processor-cache is in dirty or valid-exclusive state, the corre-

sponding memory block in the directory is in dirty or valid-exclusive state, respectively.

Otherwise, the memory block is in clean state.

Our directory-based Illinois protocol has three assumptions that are not included in bus-

based Illinois protocols. First, we assume that processor caches send a replacement hint to

the directory when they replace a clean cache line so that the directory does not need to

send invalidation requests to processor caches that no longer have the copy. Second, the

router

directory
controller
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processor

main memory

dir memory

directory
memory
data path

main
memory
data path

cache
data path
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Figure 5-19: Processor Node Model.
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directory collects acknowledge messages of write and deliver operations to determine the

completion of the operation. Third, processors can write a valid-exclusive cache line with-

out accessing the directory only if the home node of the cache line is the local node. In

other words, when processor caches have a valid-exclusive line, we assume that the cache

has an ownership of the line only if the home of the cache line is the same as the node of

the processor.

Table 5-1 shows the number of transactions that our cache protocol generates at each pro-

cessor-node component for different type of memory accesses. For main and cache mem-

ory transactions, the table shows the number of transferred cache lines per memory

operation. For main memory transactions, Table 5-1 shows two different numbers for

some conditions. The numbers that are not enclosed in a parenthesis indicate the number

of memory transactions if the directory controller sequentially accesses the directory and

the main memory. In this case, the directory controller accesses the main memory only if

the main memory has a latest value of the cache line. The numbers that are enclosed in

parentheses, on the other hand, indicate the number of extra memory transactions if the

directory controller speculatively accesses the main memory before the controller finds

that the main memory has a latest value. The speculative access makes the memory access

time shorter but increases the main memory traffic. For directory transactions, the table

shows the number of directory transactions per memory operation. We assume that each

acknowledge message for write and deliver operations causes one directory transaction.

For network transactions, the table shows the number of transferred cache lines and head-

ers per memory operation. Headers include those for data packets and those for control

(header-only) packets. The numbers of network transactions correspond to the traffic for a

single direction (incoming or outgoing) of the data path between the directory controller

and the network router. We calculate the network traffic in bytes per instruction for differ-

ent line sizes, assuming that the header size is 8 bytes. Prefetch and prefetch-exclusive

operations generate the same number of transactions as read and write operations, respec-

tively.

Figure 5-20 shows our data transfer model for the cache and main memory. Each access to

the cache and main memory includes a fixed occupancy time and data transfer cycles. The
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a. The numbers in the parenthesis indicate the number of extra memory operations when the directory con-
troller speculatively accesses the main memory.
b. S denotes the number of sharing processors except for the requester, and S’ denotes the number of sharing
processors except for the requester and the home node. For optimistic deliver operations, sharing processors
mean processors that have shared the cache line. For pessimistic deliver operations, sharing processors mean
processors that have an invalidated copy of the cache line.

memory
state

home/owner
location

access
type

main
memorya

directory
 memory

cache
memory

network

cache line header

clean

home = requester

read 1 1 1 0 0

write 1 1 + S 1 0 2 S’

upgrade 0 1 + S 0 0 2 S’

home  requester

read 1 1 1 1 2

write 1 1 + S 1 1 2 S’ + 3

upgrade 0 1 + S 0 0 2 S’+ 3

dirty

home = requester
owner  home

read 1 (1) 2 2 1 2

write 0 (1) 2 2 1 2

home  requester
owner = home

read 1 (1) 2 2 1 2

write 0 (1) 2 2 1 2

home  requester
owner  home

read 1 (1) 2 2 2 4

write 0 (1) 2 2 2 4

valid
exclu-
sive

home = requester
owner  home

read 1 1 1 0 0

write 1 1 + S 1 0 2 S’

home  requester
owner = home

read 0 (1) 2 2 1 2

write 0 (1) 2 2 1 2

home  requester
owner  home

read 1 1 1 1 2

write 1 1 + S 1 1 2 S’ + 3

cache
state

home/owner
location

access
type

main
memory

directory
 memory

cache
memory

network

cache line header

shared
home = requester replace 0 1 0 0 0

home  requester replace 0 1 0 0 1

dirty
home = requester replace 1 1 1 0 0

home  requester replace 1 1 1 1 1

—
home = requester deliver 1 1 + S 1 + S S’ 2 S’

home  requester deliver 1 1 + S 1 + S 1 + S’ 2 S’ + 1

Table 5-1: Traffic Table for read, write, upgrade, replace, and deliver operations.b
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occupancy time represents the bandwidth of the memory, and the data transfer cycles rep-

resent the bandwidth of the data path for the memory.8 We assume that the data path is 8

bytes and each transfer takes 10ns. (i.e., the maximum bandwidth is 800 Mbytes/sec.)

Memory accesses are pipelined so that the memory can process the next access during the

data transfer. Thus, the bandwidth is the line size divided by the occupancy time, if the

data transfer time is shorter than the occupancy time. The bandwidth increases up to the

maximum bandwidth as the line size increases until a certain size for which the transfer

time becomes equal to the occupancy time. The directory bandwidth, on the other hand, is

determined only by the occupancy time of the directory memory since a directory access

transfers a fixed amount of information. Figure 5-21 illustrates the bandwidth of the cache

and main memory and the directory when the access latency varies. The X axis shows the

occupancy time of one transaction, and the Y axis shows the bandwidth. For the cache and

main memory traffic, we count the traffic in the number of bytes per instruction. For the

directory traffic, we count the traffic in the number of transactions per instruction. We

assume that processors execute 200 million instructions per second.

The occupancy time strongly depends on the technology of the implementation. For the

main memory, it is probably feasible to have 100ns occupancy time with a DRAM tech-

nology. For the cache memory, it is probably feasible to have 40ns occupancy time with a

SRAM technology. Thus, the main memory bandwidth reaches the maximum bandwidth

(800 Mbytes/sec = 4 bytes/instruction) when the line size is 128 bytes, and the cache

memory bandwidth reaches the maximum bandwidth when the line size is 32 bytes. For

8. In this section, we discuss only the bandwidth, not the latency. We will discuss the latency in
Section 5.4.

10nsOccupancy Time

access #1

access #2

time

Figure 5-20: Data Transfer Model for Cache and Main Memory.

Transfer Cycle: 8 bytes/10ns
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simplicity, we assume that the cache memory is dual-ported so that cache accesses from

the local processor do not affect the bandwidth for cache accesses from the directory con-

troller.9 For the directory, we assume an aggressive design (e.g., FLASH Architecture [34,

38]) in which the directory information is cached in a SRAM. We assume that the direc-

tory occupancy time is 60ns. This occupancy time provides 0.08 transactions/instruction

bandwidth. The directory bandwidth would be smaller in a traditional implementation that

uses only a DRAM technology to store directory information. (If the occupancy time of

the DRAM is 100ns, the bandwidth is 0.05 transactions/instruction.) For the network, we

assume that the data path between the directory controller and the network route is bidi-

rectional and the network data path transfers 4 bytes per 10ns (400 Mbytes/sec = 2

bytes/instruction) for each direction.

The bandwidth of these four system components provides a reasonable upper-bound band-

width of a feasible memory system, which is fairly independent from the implementation

of the directory controller. For real implementations, the actual memory bandwidth may

be smaller than the one that we assume since some data or control paths inside the direc-

tory controller may become a bottleneck. Detailed design issues of the directory controller

are, however, beyond the scope of this thesis. We compare the demand traffic of our appli-

9. Other components (e.g., main memory and directory) can be also multi-ported (or multi-banked)
to provide large bandwidth. For simplicity, however, we assume that other components serve
one transaction at a time.
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cations with the bandwidth for each system component to examine the feasibility of the

deliver and prefetch schemes.

5.3.2 Traffic versus Cache Size

In this subsection, first, we focus on the traffic characteristics for FFT and Locus, which

have distinct producer-consumer patterns. Later, we extend our discussions to other appli-

cations. Figure 5-22 shows the traffic at the four system components — the directory, the

main memory, the cache memory, and the network — for FFT and Locus. The cache is

fully associative, and the line size is 16 bytes. In Figure 5-22, the main memory traffic

does not include extra transactions due to speculative memory accesses. The X axis shows

the cache size, and the Y axis shows the traffic in the number of transactions per instruc-

tion for the directory traffic and in the number of bytes per instruction for the rest. Four

lines of each graph in Figure 5-22 correspond to four protocols (i.e., invalidate-only, opti-

mistic prefetch, optimistic deliver, and pessimistic deliver). FFT represents applications

that have a static consumer-producer pattern. Locus, on the other hand, represents applica-

tions that have a dynamically changing consumer-producer pattern.

For FFT and Locus, the optimistic prefetch and invalidate-only protocols produce about

the same amount of traffic for the four system components, as shown in Figure 5-22. This

is because processors use virtually all of the prefetched lines so that prefetch operations do

not generate unnecessary traffic. For Locus, the optimistic prefetch protocol actually pro-

duces slightly less traffic than the invalidate-only protocol except for the cache memory

traffic. This is because Locus uses exclusive-mode prefetching. As discussed in [45],

exclusive-mode prefetching reduces the number of directory lookups and the number of

network packets by combining read-miss and write-upgrade operations. Exclusive-mode

prefetching also reduces the number of write-backs at the main memory because exclu-

sive-mode prefetch operations do not write dirty lines back to the main memory while

read-miss operations do.

5.3.2.1 Traffic Characteristics of FFT — a static producer-consumer pattern

Let’s examine the traffic characteristics of the optimistic and pessimistic deliver protocols.

First, we focus on the traffic behavior of FFT. Since FFT has a static one-to-one producer-
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Figure 5-22: Directory, Main Memory, Cache Memory, and Network Traffic of versus
Cache Size for FFT and Locus.
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consumer pattern, a producer sends cache lines only to a consumer that uses the cache

lines. As long as the consumer’s cache is large enough to keep the received cache lines

until they are used, the optimistic and pessimistic deliver protocols do not produce extra

traffic over the invalidate-only protocol.

In the optimistic deliver protocol, a deliver operation always sends a cache line to the con-

sumer that has used the line. If the cache size is smaller than the largest working set, how-

ever, the consumer does not keep all of the delivered cache lines in the cache until they are

used and fetches some of the delivered lines when the consumer needs them. Thus,

although the communication pattern is regular, the optimistic deliver protocol produces

extra traffic for the directory, the cache memory, and the network when the cache size is

smaller than the largest working set, as shown in Figure 5-22. For the main memory traf-

fic, on the other hand, the optimistic deliver protocol produces only a small amount of

extra traffic. This is because both the optimistic deliver and the invalidate-only protocols

usually generate two memory operations for each cache transfer between processors when

the cache size is smaller than the largest working set. For the deliver protocol, a deliver

operation writes the produced value back to the main memory and a consumer reads the

value from the main memory. For the invalidate-only protocol, on the other hand, the pro-

duced value is replaced from the producer’s cache and written back to the main memory,

and the consumer reads the value from the main memory. Thus, as shown in Figure 5-22,

the optimistic deliver and invalidate-only protocols produce about the same amount of the

main memory traffic.

In the pessimistic deliver protocol, a deliver operation sends a cache line to a consumer

only when the consumer has an invalidated copy of the line. For FFT, when a producer

performs a deliver operation, the consumer does not have an invalidated copy in the cache

if the cache is smaller than the largest working set. Thus, the deliver operation writes the

line back to the main memory but does not send the line to the consumer. This is why the

pessimistic deliver and invalidate-only protocols generate the same amount of the traffic

for the main memory, the cache memory, and the network, as shown in Figure 5-22. For

the directory, the pessimistic deliver protocol generates slightly more traffic than the inval-

idate-only protocol since a write-back and a replacement are done by a single transaction
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in the invalidate-only case but by two transactions (a deliver and a replacement-hint) in

the pessimistic deliver protocol.

Applications with static producer-consumer patterns show similar deliver traffic character-

istics versus the cache size; the deliver scheme does not produce a significant traffic over-

head as long as the cache is large enough to capture most of the delivered messages.

5.3.2.2 Traffic Characteristics of Locus — a dynamic producer-consumer pattern

Unlike FFT, Locus has a dynamically changing producer-consumer pattern, which causes

a very different traffic behavior. As discussed in Section 4.1, the producer-consumer pat-

tern of Locus produces reader migration and single-processor reuse. In the optimistic

deliver protocol, producers send unnecessary cache lines to consumers. Thus, as shown in

Figure 5-22, the optimistic deliver protocol causes much larger traffic than the invalidate-

only protocol for the directory, the cache memory, and the network since each unused

deliver message generates unnecessary traffic at these components. The traffic overhead

for the main memory, on the other hand, is not as large as that for other system compo-

nents in the optimistic deliver protocol. This is because each deliver operation performs

only one memory operation (a write back) so that deliver operations do not generate extra

traffic if at least one of the deliver destinations uses the delivered line. If several destina-

tions use the delivered line, the deliver operation reduces the amount of the main memory

traffic by eliminating memory operations that each destination processor would cause for

a cache miss in the invalidate-only protocol. In fact, as shown in Figure 5-22, the optimis-

tic deliver protocol generates slightly less main-memory traffic than the invalidate-only

protocol when the cache is larger than the largest working set. When the cache is smaller

than the largest working set, however, deliver operations evict necessary cache lines in

receiver’s caches, so that cache conflicts due to deliver operations cause extra traffic at the

main memory.

The pessimistic deliver protocol behaves very differently from the optimistic deliver pro-

tocol for Locus. As shown in Figure 5-22, when the cache size is much smaller than the

largest working-set, the pessimistic deliver generates about the same amount of the traffic

as the invalidate-only protocol at all of the four system components. This is because the

cache is not large enough to keep invalidated cache lines until the producers sends them so
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that the pessimistic deliver protocol does not send cache lines to consumers. Thus, deliver

operations do not significantly increase the amount of the traffic but do not significantly

decrease the miss rate. When the cache size is much larger than the largest working set, on

the other hand, the pessimistic deliver protocol generates the same amount of traffic as the

optimistic deliver at the four system components because consumers do not replace cache

lines.10 The larger the cache size becomes, the more traffic overhead the pessimistic

deliver protocol generates, but the more cache misses the pessimistic deliver protocol

eliminates. For the pessimistic deliver protocol, therefore, if the four system components

have a certain bandwidth, we may have a sweet spot in the cache size; for the cache size,

the traffic overhead is not large enough to produce a significant contention delay but the

cache miss rate is small enough to reduce memory latencies. The pessimistic deliver pro-

tocol exhibits similar traffic characteristics as other applications with a dynamic producer-

consumer relation.

5.3.2.3 Traffic Characteristics of Other Applications and Feasible Bandwidth

Now, that we have discussed detailed traffic characteristics versus cache size for two very

different applications, we pick two cache sizes to examine the traffic characteristics for all

the applications. Then, we compare the amount of the traffic with the feasible bandwidth

that we discussed in Section 5.3.1.

Figure 5-23 and Figure 5-24 show the traffic of the directory, the main memory, the cache

memory, and the network for two different cache sizes. Figure 5-23 shows the traffic for a

cache size larger than the largest working set of the application. This cache size is essen-

tially infinite and does not cause cache conflicts. For this cache size, write-back traffic is

negligible, and the pessimistic and optimistic deliver protocols exhibit almost the same

behavior. Figure 5-24, on the other hand, shows the traffic for a cache size of about a quar-

ter of the largest working set. This cache size is roughly the smallest size for which deliver

operations can reduce the miss rate, and thus, is the smallest interesting cache size for the

deliver scheme. For both cache sizes, we assume a fully-associative cache with 16-byte

10. This behavior is known as a dead-line effect for update protocols; as the cache size increases,
the traffic of update protocols increases because the number of dead lines (cache lines that pro-
cessors no longer use) increases.
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Figure 5-23: Breakdown of Directory, Main Memory, Cache Memory, and Network Traf-
fic for a Large Cache.
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Figure 5-24: Breakdown of Directory, Main Memory, Cache Memory, and Network Traf-
fic for a Small Cache.
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lines. We use a different scale for Maxflow and MP3D since these two applications gener-

ate much more traffic than the rest of the applications.

Each bar graph in Figure 5-23 and Figure 5-24 divides the traffic into four to five compo-

nents. The first four from the bottom indicate the amount of the traffic generated by a dif-

ferent type of memory accesses: read/write (read, write, and write-upgrade) misses,

prefetch operations, deliver operations, and replace operations (writebacks and replace-

ment hints). The fifth component shows a part of the traffic that we want to examine sepa-

rately for each system component. For the directory traffic, the fifth component shows the

invalidate acknowledgment due to write and write-upgrade misses and due to exclusive-

mode prefetch operations. For the main memory traffic, the fifth component shows the

traffic due to speculative accesses. For the network traffic, the fifth component shows the

header traffic due to the header part in data and control packets.11

Some traffic characteristics of FFT and Locus that we discussed previously can be seen in

the other applications. As shown in Figure 5-23 and Figure 5-24, the optimistic and pessi-

mistic deliver protocols generate small or no traffic overhead for applications with static

producer-consumer patterns (FFT and LU) but relatively large traffic overhead for appli-

cations with dynamic producer-consumer patterns (the rest of our applications). As dis-

cussed for Locus, when the cache size is sufficiently large, deliver operations reduce the

amount of the main memory traffic for applications in which the producer-consumer rela-

tion is one-to-many (several consumers use a produced value). In fact, Figure 5-23 shows

that the optimistic and pessimistic deliver protocols produce less traffic than the invali-

date-only protocol at the main memory for Locus, LU, Mincut, and Maxflow when the

cache is larger than the largest working set.

Moreover, as discussed for FFT and Locus, the prefetch protocol generates about the same

amount of the traffic as the invalidate-only protocol for other applications except Maxflow

and MP3D. For Maxflow, we prefetch the entire record of node and edge structures that

the processor will use in future because it is difficult to determine which elements of the

record will be used when the processor prefetches the record. This strategy generates more

traffic than the invalidate-only case since the processor uses only a part of the prefetched

11. Control packets (i.e., request and acknowledge) consist only of a header.
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record. For MP3D, the prefetch protocol produces much less traffic at the main memory

than the invalidate-only protocol for the large cache case. This is because exclusive-mode

prefetch operations transfer produced values (dirty cache lines) from cache to cache so

that processors do not access the main memory to fetch produced values.

Let’s compare the traffic of the deliver scheme with the feasible bandwidth that we dis-

cussed in Subsection 5.3.1. We first consider the large cache data of the six applications

excepting Maxflow and MP3D. As shown in Figure 5-23, the optimistic and pessimistic

deliver protocols generally produce more traffic than the invalidate-only protocol. The

traffic of the deliver protocols is, however, still much smaller than the feasible bandwidth

at each of the four system components for the six applications. For the main memory traf-

fic, the deliver protocols generate less traffic than the prefetch and invalidate-only proto-

cols. This is because the invalidate-only and prefetch protocols generate extra traffic for

speculative memory accesses, which occur when processors access dirty cache lines.

Speculative accesses do not occur often for the deliver scheme because deliver operations

write dirty lines back to the main memory. The deliver operations, moreover, reduce the

main memory traffic for one-to-many producer-consumer patterns, as discussed previ-

ously.

For the other three system components, the deliver scheme generates more traffic than the

invalidate-only and prefetch protocols unless the application has a static producer-con-

sumer pattern. As shown in Figure 5-23, Locus generates the largest amount of traffic

among the six applications because of reader migration and single-processor reuse. For the

directory and network traffic, the deliver scheme consumes bandwidth not only because of

unused deliver messages but also because of acknowledge and invalidate messages for

them, since producers need to invalidate unused cache lines that a previous deliver opera-

tion sends. This means that the header traffic creates significant overhead for the net-

work.12 For the large cache case, however, the traffic of the four system components is

still less than a half of the bandwidth that we assume. Thus, the contention delay will not

significantly affect the performance of the optimistic and pessimistic deliver protocols for

12. The header traffic component of the network traffic decreases, as the line size increases. We will
discuss the traffic characteristics for various line sizes in the next subsection.
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these six applications unless burst transfers or hot spots in the memory system cause sig-

nificant contention delays.

Now, let’s examine the traffic characteristics of the six applications for the small cache

shown in Figure 5-24. Capacity misses and cache conflicts increase the traffic for the opti-

mistic deliver protocol when the cache size is smaller than the largest working set. Espe-

cially for Mincut, the traffic at all of the four system components increases for all

protocols, as shown in Figure 5-24. This is because a larger number of capacity misses

occur for read-only data records. For Mincut, with any protocol, the directory traffic

becomes more than 62% of its capacity. For Locus, with the optimistic deliver protocol,

the directory traffic also becomes 62% of its capacity. Thus, the contention delay at the

directory probably affects the performance of Mincut for any protocols and the perfor-

mance of Locus for the optimistic deliver protocol. For Locus, however, the pessimistic

deliver protocol generates much less traffic than the optimistic deliver protocol — hence,

much less than the bandwidth — for the network and the directory because the pessimistic

deliver protocol uses replacement hints. For the other four applications, the traffic of the

four system components is less than 50% of the bandwidth.

Next, we discuss the traffic characteristics of Maxflow and MP3D. These two applications

have a large communication-to-computation ratio and are not tuned for large-scale multi-

processors. Since the demand traffic for the invalidate-only protocol exceeds or nearly

exceeds the feasible bandwidth at most of the four system components, the contention

delay has a significant impact on performance. It is thus important to reduce the amount of

the traffic to improve the performance of these two applications. For Maxflow, the opti-

mistic prefetch protocol increases the amount of the traffic at all of the four system com-

ponents, and the optimistic and pessimistic deliver protocols increase the amount of the

traffic at the four system components except for the main memory. Thus, neither prefetch

nor deliver operations would significantly improve the performance for Maxflow. For

MP3D, since the optimistic and pessimistic deliver protocols increase the amount of the

traffic, neither deliver technique would improve the performance. The optimistic prefetch

protocol, on the other hand, reduces the amount of the traffic at all system components

except the cache memory, so that it would improve the performance.
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5.3.3 Traffic versus Line Size

In this subsection, we examine the traffic characteristics of the optimistic deliver protocol

when the line size varies. Figure 5-25 shows the traffic of the optimistic deliver protocol at

the four system components for line sizes from 16 bytes to 128 bytes. The eight graphs in

Figure 5-25 consists of two sets: those on the left hand side and those on the right hand

side. The two sets show the traffic for different cache sizes. The left hand side is for a

cache size which is larger than the largest working set of the application (the same as the

one used in Figure 5-23), and the right hand side is for a cache size which is about a quar-

ter of the largest working set of the application (the same as the one used in Figure 5-24).

For each graph, the right Y axis is for Maxflow and MP3D (dotted lines), and the left Y

axis is for the rest of the applications (solid lines).

The cache and main memory traffic generally increases as the line size increases because

the utilization of transferred cache lines decreases. In fact, Figure 5-25 shows that this is

true for all applications except FFT and LU, in which processors fully utilize transferred

cache lines at least up to 128 bytes. In our bandwidth model, the bandwidth is doubled as

the line size is doubled up to 64 bytes for the main memory and up to 32 bytes for the

cache memory. Thus, the ratio between the traffic and the bandwidth does not increase sig-

nificantly except for Maxflow and MP3D. Except for these two applications, the traffic of

the cache and main memory is much less than the capacity of the component for the small

cache with all line sizes from 16 bytes to 128 bytes. (The cache memory traffic is less than

36% of its capacity, and the main memory traffic is less than 45% of its capacity.) The traf-

fic for the large cache is even smaller than that for the small cache. Therefore, for most of

our applications, the traffic at the cache and main memory will not cause a significant con-

tention delay for line sizes up to 128 bytes.

The directory traffic generally decreases as the line size increases for most of the applica-

tions because the miss rate decreases. Since the directory bandwidth is independent of the

line size in our model, the ratio between the traffic and the bandwidth decreases for these

applications. Even for applications with poor spatial locality (i.e., Barnes, Mincut, and

Maxflow), the amount of the directory traffic does not increase significantly. For line sizes
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Figure 5-25: Directory, Main Memory, Cache Memory, and Network Traffic versus Line
Size for Optimistic Deliver. The right Y axis is for Maxflow and MP3D (dotted lines), and
the left Y axis is for the rest of the applications (solid lines). The graph legend shows two
cache sizes for each application: a large size for the left graphs and a small size for the
right graphs.
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from 32 bytes to 128 bytes, the directory traffic is less than a half of the bandwidth for

both cache sizes except for the two most demanding applications (Maxflow and MP3D).

For the network traffic, there are two conflicting components: data and header traffic. The

header traffic causes more than a half of the network traffic when the line size is 16 bytes

as shown in Figure 5-23 and Figure 5-24, but the amount of the header traffic generally

decreases as the line size increases since the number of packets decreases. The amount of

the data traffic, on the other hand, generally increases as the line size increases since the

utilization of cache lines decreases. Therefore, as the line size increases, the network traf-

fic generally decreases up to a certain line size and increases after the line size. For Max-

flow and MP3D, however, because of the poor spatial locality, the network traffic of the

optimistic deliver increases consistently as the line size increases. Mincut also has poor

spatial locality so that the network traffic reaches 82% of the bandwidth for the small

cache size when the line size is 128 bytes. For applications except Maxflow, Mincut, and

MP3D, the network traffic is less than roughly a half of the bandwidth for line sizes from

16 bytes to 128 bytes.

5.3.4 Traffic versus the Number of Processors

In this subsection, we discuss the traffic behavior when the number of processors varies

and the problem size is constant. As the number of processors increases, the communica-

tion-to-computation ratio generally increases so that the communication traffic increases.

The traffic overhead due to deliver operations, on the other hand, may or may not increase

as the number of processors increases. The characteristics of the deliver traffic signifi-

cantly depends on the producer-consumer pattern of the application. As the number of

processors increases, the traffic overhead due to deliver operations does not increase for

applications with a static producer-consumer relation, while the traffic overhead increases

for applications with a dynamic producer-consumer relation. Figure 5-26 shows the traffic

at the four system components when the number of processors varies from 8 to 64 for

three protocols — invalidate-only, optimistic prefetch, and optimistic deliver. The cache is

a fully-associative cache with 16-byte lines, and the cache size is large enough to capture

the largest working-set, the same as the one used in Figure 5-23. This large cache assump-
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tion allows us to focus on communication traffic. Figure 5-26 divides the traffic into four

to five components in the same manner as Figure 5-23 and Figure 5-24.

For FFT and LU, as we discussed previously, the producer-consumer relation is static so

that consumers use most of the delivered cache lines as long as the cache is large enough

to capture the delivered lines. This characteristic does not change when the number of pro-

cessors increases. Thus, deliver operations produce small or no traffic overhead for the

directory, the cache memory, and the network, even if the number of processors increases.

For the main memory, as we discussed, deliver operations reduce the amount of the traffic

for applications with a one-to-many producer-consumer pattern (e.g., LU). For LU, Figure

5-26 shows that the amount of the main memory traffic increases for the invalidate-only

and prefetch protocols as the number of processors increases, while the amount of the

main memory traffic does not increase for the deliver protocol. This is because the number

of consumers that use a produced value (submatrix) increases as the number of processors

increases. For the invalidate-only protocol, the main memory traffic occurs when a con-

sumer reads a produced value, so that the main memory traffic increases as the number of

consumers per produced value increases. For the optimistic deliver protocol, on the other

hand, the main memory traffic occurs when a producer writes a produced value, so that the

main memory traffic is constant as long as the problem size is constant.

For Locus and Water, the producer-consumer relation changes dynamically so that pro-

ducers send cache lines to processors that no longer use them. Figure 5-26 indicates that,

for both applications, the traffic of the optimistic deliver protocol increases more rapidly

than the traffic of the invalidate-only protocol when the number of processors increases.

For Water, while a producer delivers a molecule record to about a half of the processors,

only one of them usually uses the record. Thus, a producer generates more deliver mes-

sages to eliminate a one cache miss as the number of processors increases, so that the traf-

fic of the optimistic deliver increases more rapidly than the communication-to-

computation ratio. Moreover, Figure 5-26 indicates that the traffic of the optimistic deliver

protocol at the four system components is much less than the feasible bandwidth (cf. Sub-

section 5.3.1) up to 64 processors for the four applications except Locus. For Locus, the

directory and network traffic exceed the capacity of the system component when the num-
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Figure 5-26: Breakdown of Directory, Main Memory, Cache Memory, and Network Traf-
fic versus the Number of Processors for a Large Cache.
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ber of processors becomes 64. If we use a larger line size, however, the directory and net-

work traffic of Locus should become less than the capacity.

5.3.5 Summary

We have examined the traffic at the four system components — the directory, the cache

memory, the main memory, and the network — and compared the traffic with a feasible

bandwidth for each component. We vary three architectural parameters — cache size, line

size, and the number of processors — to examine interactions between those parameters

and the traffic characteristics of the deliver and prefetch schemes.

The traffic characteristics of the prefetch scheme is almost the same as those of the invali-

date-only protocol for most of our applications. The deliver scheme, on the other hand,

usually generates more traffic than the invalidate-only protocol for applications with a

dynamically changing producer-consumer pattern. For the base configuration (16 proces-

sors with 16-byte cache lines), however, the averaged traffic at each system component is

less than 50% of its capacity for the optimistic and pessimistic deliver protocols for most

of our applications when the cache is large enough to capture the largest working set. For

those applications, therefore, the deliver protocols with a sufficiently large cache will not

cause a significant contention delay unless bursty transfers or hot spots impact signifi-

cantly. As the cache size decreases, the traffic at each system component increases for the

optimistic deliver protocol because of capacity misses and cache conflicts. Pessimistic

deliver operations generate much less traffic than optimistic deliver operations when the

cache size is not much larger than the largest working set because pessimistic deliver oper-

ations send a cache line only to processors that have an invalidated copy of the cache line.

Pessimistic deliver operations, however, can be an attractive deliver technique only if the

cache size is about the same as the largest working set of the application.

As the line size increases, the traffic of the optimistic deliver protocol behaves differently

for each system component. As the line size increases, the bandwidth for the cache and

main memory increases to some extent in our architectural model. Thus, the ratio between

the traffic and the bandwidth does not increase significantly for these two system compo-

nents. The directory traffic usually decreases, as the line size increases, since the number

of cache misses decreases. The network traffic consists of two components (header and
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data) that exhibit different behavior. As the line size increases, the network traffic gener-

ally decreases up to a certain line size and increases after the line size. On the whole, as

the line size increases up to 128 bytes, the ratio between the traffic and the bandwidth

decreases or increases only slightly for most of our applications.

Finally, we have discussed the traffic characteristics when the number of processors var-

ies. We examined four applications (FFT, Locus, LU, and Water) when the cache is large

enough to capture the largest working set of the application. The characteristics of the

deliver traffic strongly depends on the producer-consumer pattern of the application. For

applications with a static producer-consumer relation (e.g., FFT and LU), the traffic over-

head due to deliver operations does not increase as the number of processors increases.

For applications with a dynamic producer-consumer pattern (e.g., Locus and Water), on

the other hand, the traffic overhead due to deliver operations increases more rapidly than

the communication-to-computation ratio as the number of processors increases.

5.4 Memory/Network Latency
In this section, we discuss the impact of more realistic traffic models on different proto-

cols. Our simulator models a machine including contention in an interconnection network

and the four components of the processor node (the directory, the cache memory, the main

memory, and the network).

Our simulation results show that, for most of our applications with dynamic producer-con-

sumer patterns, the deliver scheme suffers more from traffic overhead than the prefetch

scheme, while the prefetch scheme suffers more from instruction overhead than the

deliver scheme. Even if the average of the traffic of the deliver scheme is much less than

the capacity for each system component, non uniform communication causes contention

delays for some applications. When the memory latency is very large, as discussed in Sub-

section 5.1.2, the deliver scheme is qualitatively more advantageous than the prefetch

scheme since deliver operations transfer cache lines much earlier than prefetch operations.

Our simulation results, however, show that the prefetch scheme performs about the same

as the deliver scheme for most of our applications because multiple prefetch requests can

be overlapped.
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In the following sections, we first discuss our bandwidth and latency assumptions for our

simulations. Second, we discuss the execution time of applications for a base latency.

Third, we discuss the simulation results for longer latency to examine the impact of mem-

ory latency variations for the prefetch and deliver schemes.

5.4.1 Latency/Bandwidth Assumption

We assume the maximum bandwidth that we discussed in Section 5.3 for each of the four

system components in a processor node. Table 5-2 shows the bandwidth for caches with

64-byte lines. We assume a two-dimensional wormhole mesh-network that connects pro-

cessor nodes as illustrated in Figure 5-19. The network bandwidth between nodes is 400

Mbytes/sec for each direction, the same as the bandwidth between the network router and

the directory controller.

Table 5-3 shows unloaded read latencies for 64-byte lines when the number of network

hops is two. (The average of the number of hops for a 4× 4 mesh network is 2.6.) The

latency numbers in Table 5-3 are the number of clocks until the processor receives the

necessary word. We assume that the processor receives the necessary word first and pro-

ceeds without waiting for the whole cache line.

We assume a weak consistency model and a lockup-free single-level cache with a 8-deep

write buffer for each processor node. All write and prefetch requests are stored in the

buffer until the request completes. The write buffer merges a write (or prefetch) request

with another pending request in the write buffer when the two requests are for the same

cache line. Read requests are allowed to bypass pending requests in the write buffer if the

requested cache line is different from that of any pending requests. Our simulator models

Line Size 64 bytes

Cache Directory (transactions/sec) 16.7M

Main Memory (bytes/sec) 640M

Cache Memory (bytes/sec) 800M

Network (bytes/sec) 400M

Table 5-2: Bandwidth of Four System Components in Processor Nodes.
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processor stalls due to write-buffer overflow and due to fences at synchronization opera-

tions.

5.4.2 Execution Time for the Base Latency Model

Figure 5-27 shows the execution time of four protocols — invalidate-only, optimistic

prefetch, pessimistic deliver, and optimistic deliver — when the line size is 64 bytes. Each

execution time is normalized by the busy time of the invalidate-only protocol. The busy

time is the time during which the processor executes instructions. In addition to the busy

time, the execution time has five other components as shown in Figure 5-27: the read time,

the read contention time, the read pending time, the write-buffer stall time, and the syn-

chronization time. The first three components — the read time, the read contention time,

and the read pending time — comprise the processor stall time due to read misses. The

read time is a portion of the stall time due to read misses excluding contention delays. The

read contention time is a portion of the stall time due to contention at various system com-

ponents. The read pending time is a portion of the stall time due to pending operations to

the same cache line. This read pending time typically represents processor stalls because

of prefetch or deliver operations that are executed too late for the consumer to receive the

cache line before its use. The write-buffer stall time is the stall time due to write buffer

overflow and due to fences for synchronization. The synchronization time is the stall time

due to synchronization operations. The cache is fully associative and the cache size is

large enough to capture the largest working set of the application and the same as the

cache size used for Figure 5-23.

Latency Base Long

Local (clean, home=local) 50 50

Remote (clean, home local) 210 1234

Remote (dirty, home=owner, home local) 220 1244

Remote (dirty, home owner, home=local) 220 1244

Remote (dirty, home owner, home local) 284 1820

Table 5-3: Typical Read Latency without Contention. (The number of 200MHz
processor clocks, Two network hops per remote-node access.)
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Since the cache is large enough to capture the largest working set, the pessimistic and opti-

mistic deliver protocols cause about the same execution time. The prefetch scheme per-

forms better than the deliver scheme for Locus, Water, Maxflow, and MP3D because the

contention delay of the deliver scheme is larger than that of the prefetch scheme. Espe-

cially for Locus, Maxflow, and MP3D, the execution time of the deliver scheme is even

larger than that of the invalidate-only protocol. For Maxflow and MP3D, as illustrated in

Figure 5-25, the directory and network traffic exceeds the capacity of the component for

the deliver scheme, so that the contention delay degrades the performance for the deliver

scheme. For Locus, on the other hand, although Figure 5-25 shows that the averaged traf-

fic is much less than the bandwidth for the four system components, the contention delay

degrades the performance for the deliver scheme. This is because the traffic is not uni-

formly distributed among processor nodes so that the traffic of the directory and the net-

work at some processor nodes nearly exceeds the bandwidth. Thus, contention at those

processor nodes causes a significant delay for Locus.

For Barnes and Mincut, the execution time of the deliver scheme is smaller than that of the

prefetch scheme. This is because of instruction overhead due to prefetch operations. The

instruction overhead of prefetch operations is generally larger than that of deliver opera-

tions. If we could insert prefetch or deliver operations only where communication occurs,

the instruction overhead would be very small for both schemes. As discussed in Section

4.2, it is difficult to pinpoint read or write operations that cause communication, so that we

Figure 5-27: Execution Time of Four Protocols for Base Latency. The execution time is
normalized by the busy time of the invalidate-only protocol.
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need to insert deliver or prefetch operations conservatively for read or write operations

that might cause communication. This approach causes unnecessary deliver or prefetch

operations; processors perform deliver operations for cache lines that none of the destina-

tions use (e.g., single-processor reuse), or processors perform prefetch operations for

cache lines that are already in the cache. Prefetch operations are typically inserted before

read operations while deliver operations are typically inserted after write operations. Since

the number of read operations is much larger than that of write operations, the number of

prefetch operations is potentially much larger than that of deliver operations. The simula-

tion results show that the prefetch scheme actually produces more instruction overhead

than the deliver scheme.

As the cache size decreases, the miss rate for the deliver scheme increases more rapidly

than that for the prefetch scheme because capacity misses and cache conflicts occur for the

deliver scheme, as discussed in Section 5.1. Thus, the prefetch scheme usually performs

better than the deliver scheme for cache sizes smaller than the largest working set.

5.4.3 Execution Time for the Long Latency Model

In this section, we discuss the impact of long latency for the performance of deliver and

prefetch operations. We assume that the bandwidth is the same as that used in the previous

subsection (shown in Table 5-2) and that the latency for each communication between

processor nodes is 512 clocks longer than the base latency (shown in Table 5-3). We use

the same annotation of prefetch and deliver operations as the one we used for the base

latency. The longer the memory latency becomes, the earlier we should schedule prefetch

operations to hide the memory latency effectively. In this section, however, we leave open

the question of how much improvement is possible in prefetch if prefetch operations are

scheduled earlier.

Figure 5-28 shows the normalized execution time for the long memory latency. The cache

size is larger than the largest working set (the same as the one used in Figure 5-27). The

cache is fully associative, and the line size is 64 bytes. Hiding memory latencies becomes

more important as the memory latency increases; the benefit of prefetch and deliver oper-

ations increases. As discussed in Subsection 5.1.2, deliver operations generally transfer

cache lines much earlier than prefetch operations. Moreover, the data transfer latency of
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the deliver operation is shorter than that of the prefetch operation; the latency of the

deliver operation is a one-way latency from the producer to the consumer, while the

latency of the prefetch operation is a round-trip latency between the consumer and the pro-

ducer. Thus, the deliver scheme is qualitatively more advantageous than the prefetch

scheme when the memory latency is large.

In fact, as shown in Figure 5-28, the deliver scheme performs better than the prefetch

scheme for most of the applications when the memory latency is large. The deliver

scheme, however, performs significantly better than the prefetch scheme only for Mincut.

For the rest of the applications, the execution time for the prefetch scheme is about the

same as or only slightly larger than that for the deliver scheme. This is because the cache

is lock-up free; multiple memory accesses can be overlapped [45], even if the prefetch dis-

tance is not large enough to overlap memory accesses with computation perfectly. Thus,

the latency of a memory access can be hidden by that of another memory access. Further-

more, Figure 5-28 implies that the prefetch scheme probably performs better than the

deliver scheme if prefetch operations are scheduled earlier. The quantitative evaluation of

the sensitivity for large memory latency, however, is beyond the scope of this thesis; we

need to vary the scheduling of prefetch operations to compare the execution time of the

prefetch and deliver schemes.

Figure 5-28: Execution Time of Four Protocols for Large Latency. The execution time is
normalized by the busy time of the invalidate-only protocol.
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5.5 Chapter Summary
In this chapter, we examined the effect of various architectural parameters for the perfor-

mance of deliver and prefetch operations and analyzed application characteristics that

interact with those architectural parameters.

First, we examined the effect of two cache parameters: cache size and associativity.

Deliver operations suffer much more from cache conflicts due to small cache size and

small associativity than prefetch operations because deliver operations transfer cache lines

much earlier than prefetch operations. Our analysis of the inter-reference distance distri-

bution demonstrates that, for most of our applications, the cache needs to be as large as the

largest working set to capture most of the delivered lines until they are used. Deliver oper-

ations, moreover, cannot eliminate cold and pure capacity misses, while prefetch opera-

tions can. Therefore, the prefetch scheme generally eliminates much more cache misses

than the deliver scheme if the cache size is smaller than the largest working-set.

Second, we discussed the effect of line size for the prefetch and deliver schemes. The miss

rate of the deliver and prefetch schemes does not decrease proportionally as the miss rate

of the invalidate-only protocol decreases, because deliver and prefetch operations cause

false sharing in some access patterns. We also discussed how the effect of large line sizes

changes as the cache size changes.

Third, we discussed traffic characteristics when various architectural parameters change.

Although the optimistic deliver protocol generally generates more traffic than the optimis-

tic prefetch protocol for most of the system components, the average of the traffic for the

deliver scheme is less than 50% of the capacity of the component for most of our applica-

tions when the cache is large enough to capture the largest working-set. We can reduce the

traffic overhead due to deliver operations by using the pessimistic deliver protocol. The

use of the pessimistic deliver protocol, however, is not a general solution; it can be advan-

tageous only if the cache size is about the same as the largest working set.

The deliver scheme generates more traffic overhead for applications with dynamic pro-

ducer-consumer patterns than applications with static producer-consumer patterns. For

applications with dynamic producer-consumer patterns, the traffic overhead increases
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more rapidly than the communication-to-computation ratio, as the number of processors

increases. For those applications, our simulation results show that the traffic overhead at

the directory and the network probably produces a significant contention delay as the

number of processors increases when the line size is 16 bytes. As the line size increases,

however, the traffic at these system components generally decreases so that the contention

delay at these system components probably does not significantly impact the performance

for the deliver scheme.

Finally, we examined the effect of memory contention and latency for the performance of

the prefetch and deliver schemes. The prefetch scheme performs better than or about the

same as the deliver scheme for most of the applications because the prefetch scheme gen-

erates less traffic contention than the deliver scheme. For some applications, although the

average of the traffic of the deliver scheme is less than the bandwidth that we assume, the

traffic is not uniformly distributed so that the contention delay degrades the performance

of the deliver scheme. Our simulation results also show that the prefetch scheme generally

generates more instruction overhead than the deliver scheme. For two applications out of

eight, the prefetch scheme performs worse than the deliver scheme because of the instruc-

tion overhead due to prefetch operations. For applications with static producer-consumer

patterns, the performance of the two schemes is about the same.

When the memory latency is very large, qualitatively, the deliver scheme is more advanta-

geous than the prefetch scheme. Our simulation results, however, indicate that the prefetch

scheme performs about the same as the deliver scheme for most of our applications even if

prefetch operations are not scheduled earlier. This is because multiple memory accesses

can be overlapped so that the latency of a memory access is hidden by that of another

access.
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Chapter 6

Conclusions

Coping with the memory latency is becoming increasingly important for large-scale

shared-memory multiprocessors because communication occurs by accessing remote

memory. Prefetching is a technique to optimize the communication on the shared memory

so that the communication and the computation overlap. This thesis has quantitatively

evaluated two alternatives for software-controlled prefetching: consumer-oriented and

producer-oriented schemes.

The consumer-oriented scheme — prefetch — has been shown to be effective for reducing

the impact of large memory latencies. Qualitatively, the producer-oriented scheme —

deliver — has an advantage over the prefetch; the deliver scheme can transfer produced

values at the earliest possible timing, when the value is produced. The prefetch scheme, on

the other hand, may not fetch cache lines early enough to hide the memory latency com-

pletely. For applications with irregular access patterns, for example, the address of the

value to be prefetched may not be available early enough. By examining simulation

results of scientific parallel applications, however, this thesis has shown that the prefetch

scheme is generally more effective than the deliver scheme for NUMA machines with

realistic architectural parameters.

The deliver scheme can be viewed as an optimized update protocol. Regular update proto-

cols are known to generate substantial traffic overhead since each write operation for a

shared variable generates traffic. The deliver scheme is an optimized update protocol in a

sense that it aggregates multiple updates for the same cache line into a single message by

using synchronization operations as a hint to find the place where communication occurs.

Our analyzes of sharing patterns, however, have shown that the deliver scheme still gener-

ates high traffic overhead for applications with a dynamic producer-consumer relation
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although the deliver scheme generates little or no traffic overhead for applications with a

static producer-consumer relation. This is because the past sharing behavior that the

deliver scheme relies on is not a good predictor of future sharing behavior for applications

with a dynamic producer-consumer relation. We identified two sharing patterns — reader

migration and single-processor reuse — that cause traffic overhead for the deliver scheme.

We have evaluated three techniques — selective deliver, subscription control, and compet-

itive back-off — to trade off the number of delivered messages for the number of elimi-

nated cache misses. While the effectiveness of these techniques depends on the sharing

pattern of the application, our simulation results show that selective deliver (software-

based producer’s control) is better than or roughly equal to the other two techniques for

most of our applications. The prefetch scheme also generates a large number of unneces-

sary prefetch operations for applications with dynamic access patterns. Most of unneces-

sary prefetch operations occur when consumers try to prefetch cache lines that are already

in the cache. This happens because consumers cannot identify the data set that had been

fetched by the consumer and has not been updated by another processor. The prefetch

scheme can use the processor cache as a filter to prevent such unnecessary prefetch opera-

tions from generating network traffic. This is a significant advantage of the prefetch

scheme since the processor cache cannot work as a filter for the deliver scheme. Although

the processor cache with replacement hints could be used to filter out some unnecessary

deliver messages, it is not a general solution because the effect of replacement hints is

extremely sensitive to the cache size (or the data-set size).

We have analyzed the miss-rate and traffic characteristics for the deliver and prefetch

schemes when various architectural parameter changes, and we have examined the appli-

cation characteristics that interact with those parameters. Our simulation results show that

the deliver scheme suffers much more from cache conflicts due to small capacity and

small associativity than the prefetch scheme because the deliver scheme transfers cache

lines much earlier than the prefetch scheme. One of the most important results is that the

cache needs to be as large as the largest working-set of the application to retain most of the

received deliver messages until they are used. We analyzed the temporal characteristics of

the communication and the working-set characteristics to understand this behavior of
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deliver operations. For analyzing the traffic characteristics, we examined demand traffic

for major system components (the cache directory, the cache memory, the main memory,

and the network). Our simulation results show that, although the deliver scheme generates

high traffic overhead, the average of the traffic at each system component is less than a

half of the bandwidth for most of our applications when the cache size is large enough to

capture the largest working-set of the application. For some applications, however, non-

uniform communication patterns (hot-spots or burstiness) cause traffic congestions for the

deliver scheme. For applications with dynamic producer-consumer patterns, moreover, as

the number of processors increases, the traffic for the deliver scheme increases more rap-

idly than the communication-to-computation ratio.

Finally, we have evaluated the performance impact of deliver and prefetch operations for

realistic latency and bandwidth parameters. Even if the cache size is large enough for the

deliver scheme to eliminate most of sharing misses, the prefetch scheme performs better

than or roughly equal to the deliver scheme for most of our applications. This is because

prefetch operations are inserted early enough to hide the bulk of the memory latency for

most of the applications and because deliver operations cause contention delay due to traf-

fic congestions for some applications. Even if memory latency is very large, our simula-

tion results show that the prefetch scheme performs about the same as the deliver scheme

for most of our applications. This is because prefetch operations can pipeline memory

accesses. The deliver scheme performs better than the prefetch scheme for some applica-

tions because of the instruction overhead for the prefetch operation. As discussed previ-

ously, while the prefetch scheme can eliminate the traffic overhead due to unnecessary

prefetches, the instruction overhead still remains. For applications with irregular access

patterns, prefetch operations are conservatively inserted where a cache miss might occur.

As a result, the prefetch scheme generates more instruction overhead than the deliver

scheme.

To summarize, we have quantitatively evaluated the prefetch and deliver schemes by ana-

lyzing application-intrinsic characteristics (e.g., sharing patterns and working sets) and

interactions between application characteristics and architectural parameters (e.g., miss

rate, traffic, and execution time). This thesis has shown that the prefetch scheme is more
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effective than the deliver scheme for scientific applications on realistic NUMA machines.

The advantages for the prefetch scheme come from several non-obvious sources including

filtering by the cache, the inaccuracy of past behavior as a predictor for future behavior in

the case of coherency accesses, and the program structure that causes too early transfers of

deliver messages.

6.1 Future Work
The comparison of the producer-oriented and consumer-oriented schemes should be inter-

esting in other contexts since prefetching techniques are applicable for various applica-

tions and architectures. For example, further research is needed to evaluate prefetching

techniques for commercial applications and operating systems.

We qualitatively discussed that the deliver scheme is advantageous over the prefetch

scheme when the communication latency and the cache size is very large. This condition

may hold in other architectures (e.g., COMA with extremely high-speed processors, net-

work-connected workstations). The quantitative comparison of the latency sensitivity for

the two schemes requires further experiments.
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