
High-Performance CMOS System Design

Using Wave Pipelining

Kevin J. Nowka

Technical Report CSL-TR-96-693

January 1996

Partially supported by an ARPA Fellowship in High Performance Computing

administered by the Institute for Advanced Computer Studies, University of

Maryland. Additional support for this work from NSF Contract No. MIP88-

22961 using facilities provided by NASA under contract NAG2-842.

High-Performance CMOS System Design

Using Wave Pipelining

by

Kevin J. Nowka

Technical Report CSL-TR-96-693

January 1996

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, California 94305-4055

Abstract

Wave pipelining, or maximum rate pipelining, is a circuit design technique that allows digital

synchronous systems to be clocked at rates higher than can be achieved with conventional

pipelining techniques. It relies on the predictable �nite signal propagation delay through

combinational logic for virtual data storage. Wave pipelining of combinational circuits has

been shown to achieve clock rates 2 to 7-times those possible for the same circuits with

conventional pipelining.

Conventional pipelined systems allow data to propagate from a register through the com-

binational network to another register prior to initiating the subsequent data transfer.

Thus, the maximum operating frequency is determined by the maximum propagation delay

through the longest pipeline stage. Wave pipelined systems apply the subsequent data to

the network as soon as it can be guaranteed that it will not interfere with the current data

wave. The maximum operating frequency of a wave pipeline is therefore determined by the

di�erence between the maximum propagation delay and the minimum propagation delay

through the combinational logic.

By minimizing variations in delay, the performance of wave pipelining is maximized. Data

wave interference in CMOS VLSI circuits is the result of the variation in the propagation

delay due to path length di�erences, di�erences in the state of the network inputs and

intermediate nodes, and di�erence in fabrication and environmental conditions.

To maximize the performance of wave pipelined circuits, the path length variations through

the combinational logic must be minimized. A method of modifying the transistor ge-

ometries of individual static CMOS gates so as to tune their delays has been developed.

This method is used by CAD tools that minimize the path length variation. These tools are

used to equalize delays within a wave pipelined logic block and to synchronize separate wave

pipelined units which share a common reference clock. This method has been demonstrated

to limit the variation in delay of CMOS circuits to less than 20%.

Delay models have demonstrated that temperature variation, supply power variations, and

noise limit the number of concurrent waves in CMOS wave pipelined systems to three or

less.

Run-to-run process variation can have a signi�cant impact on CMOS VLSI signal prop-

agation delay. The ratio of maximum to minimum delay along the same path for seven

di�erent runs of a 0.8-micron feature size fabrication process was found to be 1.35. Unless

this variation is controlled, the speedup of wave pipelining is limited to two to three to

ensure that devices from any of these runs will operate. When aggregated with variations

due to environmental factors, the maximum speed-up of a wave pipeline is less than two.

To counteract the e�ects of process variation, an adaptive supply voltage technique has been

ii

developed. An on-chip detector circuit determines when delays are faster than the nominal

delays and the power supply is lowered accordingly. In this manner, ICs fabricated with

fast processes are run at a lower supply voltage to ensure correct operation at the design

target frequency.

To demonstrate that wave pipeline technology can be applied to VLSI system design, a

CMOS wave pipelined vector unit has been developed. Extensive use of wave pipelining

was employed to achieve high clock rates in the functional units. The VLSI processor

consists of a wave pipelined vector register �le, a wave pipelined adder, a wave pipelined

multiplier, load and store units, an instruction bu�er, a scoreboard, and control logic. The

VLSI vector unit contains approximately 47000 transistors and occupies an area of 43 sq

mm. It has been fabricated in a 0.8 micron CMOS technology. Tests indicate wave pipelined

operation at a maximum rate of 303MHz.

An equivalent vector unit design using traditional latch-based pipelining was designed and

simulated. The latch-based design occupied 2% more die area, operated with a 35% longer

clock period, and had multiply latency 8% longer and add latency 11% longer than the

wave pipelined vector unit.

This work was supported in part by an ARPA Fellowship in High Performance Computing

administered by the Institute for Advanced Computer Studies, University of Maryland.

Additional support for this work from NSF Contract No. MIP88-22961 using facilities

provided by NASA under contract NAG2-842.

Key Words and Phrases: Wave-pipelining, pipelining, propagation delay, clocking

iii

Copyright c 1996

by

Kevin J. Nowka

Contents

1 Introduction 1

1.1 Background . 1

1.1.1 Pipelining and Wave Pipelining . 1

1.1.2 Prior Wave Pipeline Research . 3

1.2 CMOS VLSI System Wave Pipelining . 4

1.3 Related Research . 5

1.4 Contributions . 6

1.5 Scope . 7

2 Performance Limits of CMOS Wave Pipelining 8

2.1 Wave Pipeline Clock Constraints . 8

2.2 CMOS Propagation Delay . 11

2.3 Causes of Variation in CMOS VLSI . 12

2.3.1 Path Length Imbalance . 13

2.3.2 Data Dependencies . 13

2.3.3 Fabrication Process . 14

2.3.4 Environmental Variation . 14

2.3.5 Variable Frequency Clocked Systems 30

2.3.6 Environmental Impact Comparison 33

2.4 Performance Limits Conclusions . 35

3 High Performance CMOS WP Design Techniques 36

3.1 Path Delay Balancing . 36

3.1.1 Modeling Circuit Delay Behavior . 36

3.1.2 CMOS Gate and Network Delay . 38

iii

3.1.3 Manipulating CMOS Delay . 39

3.1.4 Linear Program Representation . 42

3.1.5 Design Process and Simulated Results 44

3.1.6 CMOS Fine Balancing Limitations 47

3.2 Wave Pipeline Synchronization . 50

3.2.1 Monoharmonic Wave Pipelines Lacking Feedback 52

3.2.2 Polyharmonic Wave Pipelines Lacking Feedback 54

3.2.3 Monoharmonic Wave Pipelines with Feedback 56

3.2.4 Polyharmonic Wave Pipelines with Feedback 58

3.3 Process and Environmental Delay Compensation 59

3.3.1 Sorting . 60

3.3.2 Tunable Constructive Clock Skew 62

3.3.3 Biased Logic . 62

3.3.4 Driver Current Starving . 63

3.3.5 Driver Voltage Controlled Load . 64

3.3.6 Thermal Control . 65

3.3.7 Supply Voltage Control . 67

3.4 Summary . 69

4 CMOS WP System: VLSI Vector Unit IC 71

4.1 Vector Unit Architecture . 71

4.1.1 Parallel Adder . 71

4.1.2 Parallel Multiplier . 73

4.1.3 Vector Register File . 76

4.1.4 Load Unit, Store Unit, Instruction Bu�er 79

4.1.5 Scoreboard . 79

iv

4.1.6 External Control Logic . 79

4.1.7 Constant Delay Power Control Logic 80

4.1.8 Clock Generation and Distribution 80

4.2 Vector Unit Operations . 80

4.3 Balancing . 82

4.4 Vector Unit Fabrication . 82

4.5 Test Results . 82

4.5.1 Functional Tests . 84

4.5.2 Wave Pipeline Speed Tests . 85

4.6 Comparison to Traditional Design . 87

4.7 Summary . 89

5 Architecture and Circuit Enhancements 91

5.1 Architectural Enhancements . 91

5.1.1 Stalling in Wave Pipelined Circuits 91

5.1.2 Fully Latchless Feedback Circuits . 102

5.1.3 Self-Timed Wave Pipelines . 103

5.2 Circuit Enhancements for Wave Pipelining 104

5.2.1 Low Variation Circuit Designs . 104

5.3 Summary . 105

6 Summary and Conclusions 108

6.1 Summary . 108

6.2 Conclusions . 111

6.3 Future Wave Pipelining Research . 112

6.3.1 Models and Tools . 112

6.3.2 Adaptation . 112

v

6.3.3 Implementations and Architectures 113

A Symbols 114

B Delay Models for CMOS Circuits 117

C Adaptive Power Control 120

vi

List of Figures

1 Circuit Model . 2

2 Synchronizer Edge De�nitions . 9

3 Wave Pipeline Timing De�nitions . 10

4 Inverter Chain Propagation Delay vs. Fabrication Run 15

5 Relative Carrier Mobilities vs. Temperature 16

6 Inverter Chain Propagation Delay vs. Temperature 17

7 Relative Propagation Delay vs. Temperature 18

8 Vector Unit Thermal Pro�le . 19

9 Relative Charge, Discharge Delay vs. Supply Voltage 21

10 Inverter Propagation Delay vs. Supply Voltage 22

11 Relative Propagation Delay vs. Supply Voltage (5V) 23

12 Relative Propagation Delay vs. Supply Voltage (3.3V) 24

13 Externally Supplied Clocked System . 25

14 Maximum Waves vs. � . 27

15 Environmental Degradation Factor . 29

16 Internally Generated Variable Frequency Clocked System 30

17 Internally Generated Clocks . 31

18 Inverter Chain Delay and Ring-Oscillator Period vs. Temperature 33

19 Inverter Chain Delay and VCO Period vs. Temperature 34

20 Example Circuit and Graph . 37

21 Delay Tuning Circuit . 40

22 Delay Tuning Options . 41

23 Inverter Propagation Delay vs. Modi�cation Factor 42

24 Design Process . 45

vii

25 Pulse Circuit Balancing . 46

26 Unbalanced Counter Delay Histogram . 47

27 Fine Balanced Counter Delay Histogram 48

28 Carry Generation Circuit . 49

29 Example Polyharmonic Wave Pipelines . 51

30 Monoharmonic Wave Pipeline without Feedback Optimization 54

31 Polyharmonic Wave Pipeline without Feedback Optimization 56

32 Monoharmonic Wave Pipeline with Feedback Optimization 58

33 Polyharmonic Wave Pipeline with Feedback Optimization 60

34 Biased Logic Gates . 63

35 Compensation Using Current Starved Driver 64

36 Delay Tuning Range of a Current Starved Driver 65

37 Driver with Voltage Controlled Load . 66

38 Delay Tuning Range of Voltage Controlled Load Driver 66

39 Thermal Controlled Delay Compensation 67

40 Power Supply Voltage Delay Compensation 67

41 Power Supply Voltage Delay Compensation 69

42 Vector Unit Organization . 72

43 Parallel Adder Organization . 73

44 Parallel Multiplier Organization . 74

45 (4,2) Counter Implementation . 75

46 Vector Register Organization . 77

47 Vector Register Balancing . 78

48 Vector Instruction Pipeline Stages . 81

49 Vector Unit Die Photo . 83

50 Dice Ring Oscillator Variation . 84

viii

51 Vector Register Read Operation . 85

52 Constant Delay Power Bump Indications 86

53 Die Process Variation Compensation . 87

54 High Speed Wave Pipeline Testing . 88

55 Propagation of Waves in Wave Pipeline . 92

56 Stall Handling in Wave Pipeline . 93

57 Wave Pipeline with Input Register Chain 94

58 Stall in Wave Pipeline with Results Queue 94

59 Wave Pipeline with Results Queue . 95

60 Freeze Points . 96

61 Wave Pipeline with Freeze Points . 96

62 Stalling Wave Pipeline . 98

63 Relative Clock Rate (10% freeze delay) . 100

64 Relative Clock Rate (20% freeze delay) . 100

65 Relative Clock Rate (40% freeze delay) . 101

66 Wave Pipeline with Latchless Feedback . 102

67 Decoder Delay Variation . 106

68 Phase Comparator Circuit . 121

69 Power Converter Circuit . 122

70 Adaptive Power Initialization . 123

71 Adaptive Power Step Response . 124

ix

List of Tables

1 Simulated Process Corner Propagation Delays 14

2 Simulated Process Parameters . 20

3 Inverter Chain Simulated Maximum Number of Waves 28

4 Vector Unit Logic Balancing Results . 48

5 Sorting Example . 61

6 Vector Unit Balancing Results . 82

7 Vector Unit Results Comparison . 89

8 Performance of Pipelines . 101

x

1 Introduction

1.1 Background

In an e�ort to improve the throughput of digital systems, designers have long turned to

pipelining. In a pipelined system, a logic network is partitioned into pipeline stages, each

of which operates upon data computed in the previous cycle by the previous pipeline stage.

When a logic network is pipelined, synchronizing elements, either latches or registers, are

inserted to partition the network into stages. Pipelining of a circuit into N stages can result

in speedup in throughput up to a factor of N . The inserted synchronizing elements increase

the area and power consumption of the logic and add additional latency and cycle time

overhead.

Wave pipelining is an alternative synchronous circuit clocking technique that allows over-

lapped execution of multiple operations without using synchronizing elements within the

logic. Rather, knowledge of the signal propagation delay characteristics of the logic network

are used at design time to manage the signal delays so as to ensure that operations do not

interfere with their predecessor nor successor computations.

Figure 1 is a block diagram of an nonpipelined circuit, a pipelined version of the same

circuit, and a wave pipelined equivalent.

1.1.1 Pipelining and Wave Pipelining

While improving the throughput of a logic circuit, traditional pipelining of VLSI systems re-

sults in overheads in latency, cycle time, area, and power consumption. Cycle time overhead

results from the time required for signals to propagate out of the synchronizing elements,

from the time required for signals to set up to the synchronizing elements prior to their be-

ing stored in the synchronizing elements, and for the unintentional clock skew in the arrival

of the synchronizer clock signal. Latency through the traditional pipeline is de�ned as the

total elapsed time from the time of introduction of data at the input to the �rst stage of

the pipeline to the time the results of computations performed on that data arrive at the

output of the �nal stage of the pipeline. Latency overhead results from the use of pipelining

due to the synchronizer overhead of each stage of the pipeline as described in the cycle

time overhead. In addition, latency overhead results from pipeline partitioning overhead.

In traditional pipelines with a common reference clock for all synchronizers, partitioning

overhead occurs if the combinational logic cannot be divided into stages of equal maxi-

mum propagation delay. Area and power overhead results from the additional transistors

and wires used to implement the synchronizing latches or registers, and from the increased

clock bu�er area and power needed to drive the clock inputs to the synchronizers.

Wave pipelining relies on the �nite propagation delay of signals through a combinational

digital circuit to store data. Rather than allowing data to propagate from a synchroniz-

1

Combinational
Logic Network

Combin.
Logic

Combin.
Logic

waves

1234

Combinational
Logic Network

Combinational
Logic Network

NONPIPELINED

PIPELINED

WAVE
PIPELINED

RegisterRegister

RegisterRegister

5

Valid
Invalid

Logic
Blocks

Figure 1: Circuit Model

2

ing element, latch or register, through the combinational network to another synchronizing

element prior to initiating the subsequent data transfer, wave pipelined designs apply subse-

quent data to the network as soon as it can be guaranteed that it will not interfere with the

current data wave. In this manner, multiple waves of data are simultaneously propagating

through distinct regions of the logic network. Because waves of data are applied to the logic

as fast as can be guaranteed not to interfere, the throughput of wave pipelined synchronous

systems can be greater than can be achieved with conventional pipelining techniques. Wave

pipelining can approach the physical switching limit of the devices [10].

Wave pipelining can improve the throughput of a logic circuit while avoiding some of the

overheads of traditional pipelining. Wave pipelines avoid the cycle time overhead of tradi-

tional pipelines because there are no internal synchronizers. Instead, cycle time is deter-

mined by the variation in the propagation delay of the signals through the logic and the

input and output register delays. Latency through the wave pipeline avoids the traditional

pipeline overhead because the signals do not propagate through internal synchronizers.

Partitioning overhead is avoided since the pipeline is not partitioned into stages separated

by synchronizers. The area and power overheads of a traditional pipeline are avoided in

the wave pipe since there are no internal synchronizers. Manipulation of the circuitry to

maximize performance of wave pipelines can, however, introduce additional area and power

overhead.

1.1.2 Prior Wave Pipeline Research

Signi�cant research in wave pipelining has been conducted over the past thirty years in the

areas of theory, tools, and VLSI designs.

Latchless pipelining techniques were �rst used in the development of the IBM System 360/91

oating point unit in 1967 [1]. This design was able to achieve a cycle time which was one-

half the latency through the combinational logic without intermediate latches or registers.

Cotten [10] in 1969 formalized the theory of wave pipelining or maximum rate pipelining.

As higher levels of integration and better CAD tools became available, a renewed interest

in the theory of wave pipelining resulted. Ekroot [12] examined the optimizing of wave

pipelines through the inserting of delays in the logic network. Wong [53] detailed the timing

constraints for the operation of wave pipelined circuits and contrasted them to traditional

clocking methods. Additional work in determination of the minimum clock period for wave

pipelined operation has been performed by Joy and Ciesielski [27]. Lam, et. al. [33] suggested

formal methods of analysis of clocking of wave pipelines using Timed Boolean Functions

(TBFs).

Tools for wave pipelined circuit synthesis, optimization, and veri�cation are pivotal in the

success of wave pipelined design. Wong [53] developed methods of balancing delays in CML

wave pipelined circuits to optimize cycle time. Additional work in standard cell placement

and routing for the minimization of the clock period of wave pipelines has been performed

3

by Joy, et. al. [26]. Chang, et. al. [6] developed a method of removing latches from a

traditional pipeline when a lower clock period results and wave pipelined timing constraints

can be met. Kim, et. al. [28] have developed optimization tools which restructure the wave

pipeline logic to improve path length balance.

Wave pipelining has been successfully applied in several VLSI designs. Wong [54] developed

a wave pipelined bipolar population counter with a latency of 10ns and a cycle time of

4ns, thus supporting 2.5 concurrent waves. Chappell, et. al. [8] applied wave pipelining

techniques in the design of an SRAM that consisted of self-resetting logic blocks which were

operated in wave pipelined fashion. This SRAM had a latency of 3.9ns and a cycle time of

2ns, thus supporting 1.9 concurrent waves. Fan, et. al. [14] developed a CMOS adder using

wave pipelining. Simulated operation of this adder achieved 250MHz and supported greater

than �ve waves. Lien, et. al. [35] applied wave pipelining to CMOS domino logic circuits

and designed a 100MHz, 2-wave CMOS wave domino multiplier. Klass [29] developed a

CMOS multiplier which operated at 350MHz and supported four waves. Additional wave

pipelined VLSI designs include CMOS multipliers [41, 19, 55], CMOS static RAMs [40, 52],

and several simple CMOS circuits.

In general VLSI implementations of wave pipelining have demonstrated up to 2 waves of

data for memory devices and from 2 to 6 waves of data for arithmetic circuits

1.2 CMOS VLSI System Wave Pipelining

Previous research in CMOS wave pipelining has claimed and demonstrated from two to six

concurrent waves of data. These studies have relied on simulations and empirical measure-

ments to gauge the performance bene�ts of wave pipelining. One goal of this research has

been to use CMOS device delay behavior to ascertain the limits of the performance of wave

pipelining in CMOS systems. Analytical delay variation models reinforced with simulation

data were used to quantify hard limits to wave pipeline performance and to suggest where

optimization e�orts are best suited.

Previous wave pipelining research devices have been single wave pipelines. Two basic

approaches have been taken in the development of wave pipelines: Several VLSI cir-

cuits [8, 40, 54] have measured the wave pipeline behavior of the combinational logic only;

the combinational logic was not embedded in a sequential system, and thus the constraints

of the input and output synchronizers were ignored. In these designs the outputs of the

wave pipelines were not latched.

A second class of demonstration wave pipelines surround the single block of combinational

logic with input and output registers [31, 35, 14, 41]. These designs either provide the

ability to set the phase relationship between the input and output register clocks, or modify

the frequency of operation of the pipeline to insure valid wave pipelined operation.

When multiple, interconnected wave pipelines are integrated into a single system, additional

4

complexity of design and operation result. First, all pipelines in the system should operate

over a common range of clock frequency. Second, signals owing between pipelines, including

those in feedback paths, must meet the timing constraints for proper pipeline operation.

This research e�ort has developed design methods for systems with multiple, interconnected

wave pipelines.

Other CMOS wave pipelining has relied on manual optimization of wave pipelined perfor-

mance or has relied on the addition of �xed circuit elements to assist in the performance

optimization of the circuits. Automated CMOS optimization techniques for use in CMOS

wave pipelined system design have been developed as part of this research.

Unlike previous wave pipelined research, where the operating frequencies could be deter-

mined and set individually for each die, in this research it was deemed necessary to design

and operate all dice at a given target frequency. Techniques that ensure the correct opera-

tion of all dice at the target frequency were developed in this research e�ort.

Wave pipeline system design algorithmic, architectural, and circuit design issues such as

wave pipeline stalling, low data-dependent CMOS circuit design, and wave pipeline / tra-

ditional pipeline interfacing were also examined in this research.

To validate the performance limits and the design techniques and tools a demonstration

system was designed. A wave pipelined CMOS vector unit VLSI integrated circuit was

designed, fabricated, and tested. This vector unit design operates at 300MHz. It contains a

wave pipelined vector register �le, a wave pipelined adder, and a wave pipelined multiplier.

It demonstrates the use of multiple, synchronized wave pipelines with feedback. The perfor-

mance of this system is optimized through the use of the automated balancing techniques

and through process and environmental compensation techniques.

1.3 Related Research

The transistor sizing method of balancing for wave pipelining developed in this research

is related to transistor sizing for performance optimization and area minimization for tra-

ditional pipelining. Fishburn, et. al. [16], in the development of TILOS, used a greedy

algorithm to size the widths of transistors so as to minimize the critical path delay of

CMOS circuits. Marple [37] used a nonlinear program solution to size transistor widths for

minimum critical path delay. Berkelaar, et. al. [3] used a piecewise linear approximation to

the delay functions used by Marple and thus solved a linear program for the widths. Sap-

atnekar [48] used convex programming to �nd a minimum area solution to the transistor

widths which met critical path maximum constraints.

The compensation methods for changes in delay due to process and operating environment

developed in this research are related to temperature and process compensation work for

CMOS circuit testers [7], to multiple chip signal synchronization techniques [25], to power

reduction for self-timed circuits [42], and to self-clocking techniques developed for use in

5

low power circuits [23, 36].

Self-timed design techniques in which the completion detection logic is signaled with a timing

reference which is guaranteed to be longer than the critical path logic [51] is somewhat akin

to the wave pipelining with critical skew as presented in Chapter 5. Recent e�orts in self-

timed circuit design which make use of the dynamic signal propagation delay characteristics

of critical logic paths to generate \dynamic clocks" [47, 11] are also so related.

Clock distribution techniques with constructive clock skew which are applied to traditional

pipeline designs [15, 18] are speci�c cases of wave pipelining in which the intentional clock

skew results in a number of waves fractionally greater than one.

1.4 Contributions

This dissertation develops constraints for wave pipeline operation which extend previously

presented constraints [53, 33, 21] for environmental and process dependencies. Using these

constraints, and models of static CMOS gate delays, performance limits for CMOS wave

pipelines are established. A quanti�cation of the performance implications of the delay

variation for both wave pipelines and traditional pipelines is derived.

To optimize the performance of CMOS wave pipelined circuits, a method of equalizing

CMOS circuit path delays is presented. The transistor sizing mechanism was developed,

implemented, measured for balancing accuracy, and applied to the design of a vector unit

as part of this research e�ort.

Optimization methods for systems of wave pipelines which are more general than examined

by other researchers [12, 21, 27, 6] are developed. Methods of determining constructive clock

skew and intentional delay insertion for optimization of these wave pipelined are proposed.

The strict constraints placed upon CMOS wave pipelines by fabrication and environmental

variations quanti�ed in this dissertation motivated an examination of delay compensation

techniques. These techniques which have been employed for other compensation purposes,

are evaluated for suitability to wave pipelined CMOS system design. Due to the range of

compensation necessary and area and power bene�ts, a variable power supply technique

is determined to be attractive. This technique was demonstrated in the vector unit IC

developed in this research.

In this research, one impediment to the use of wave pipelines in processors, the inability of

a wave pipeline to stall is examined. Stalling wave pipelines which employ additional tran-

sistors within the pipeline to provide stall capabilities are proposed, their clock constraints

are presented, and their performance is contrasted to conventional pipelines.

While previous e�orts have demonstrated operation of wave pipelined memories and arith-

metic circuits, this research demonstrates that systems of CMOS wave pipelines, using the

6

tools and techniques developed, can be designed, optimized, fabricated, and operated at

clock rates above those achievable using conventional techniques.

1.5 Scope

The following chapters detail the performance limits of CMOS wave pipelining, wave pipelin-

ing design and optimization techniques, VLSI vector unit design and testing results, and

architectural and circuit optimizations for wave pipelining.

Chapter 2 is an analysis of the performance limits of wave pipelining in CMOS systems. It

presents the timing constraints for valid wave pipelined operation, presents an analytical

model of the delay characteristics of CMOS circuits, details the causes and performance

e�ects of delay variation in CMOS circuits, and contrasts the variation e�ects upon perfor-

mance to those exhibited by traditional pipeline designs.

Chapter 3 presents design techniques for high performance wave pipelines. It details the

path delay balancing method employed in this research and describes the procedure used

to synchronize and optimize the performance of multiple wave pipeline systems. It relates

techniques for process and environmental compensation to ensure correct operation of wave

pipelined systems over all design operation ranges.

Chapter 4 describes the organization, design procedure, test procedure, and test results of

a CMOS wave pipelined vector unit integrated circuit.

Chapter 5 is an exposition of architectural and circuit design enhancements for CMOS

wave pipeline design. It describes a methods of supporting pipeline stalls in wave pipelines,

latchless feedback, and low data dependent circuit techniques.

Chapter 6 summarizes the results of this research and suggests further areas of wave pipelin-

ing research.

7

2 Performance Limits of CMOS Wave Pipelining

This chapter is an analysis of the limits of the performance that can be achieved through

the use of wave pipelining in CMOS circuits. The clock timing constraints which must be

met for correct circuit operation in concert with modeled delay behavior for CMOS logic

are used to derive performance limits for static CMOS wave pipelining.

2.1 Wave Pipeline Clock Constraints

The clock period of traditional pipelined synchronous circuits must meet race-through and

long-path timing constraints.

Long-path constraint requires that the results from the current cycle's inputs are valid at

the next synchronizing element prior to being latched. Thus, the propagation from the

synchronizing element, through the data network, to the next synchronizing element is less

than the time from the initiating edge of the current clock cycle to the latching edge of the

next clock cycle. Figure 2 de�nes the initiating and latching edges for both ow latch and

edge-triggered register synchronizing elements.

The race-through constraint requires that in the same clock cycle data cannot propagate

out of a synchronizing element, through the combinational network, and into the next syn-

chronizing element prior to the occurrence of the storage transition. Thus the minimum

propagation time though the synchronizing element, through the network, to the next syn-

chronizing element is less that the time from the output initiating edge to the latching edge

of the same cycle. Thus the data resulting from the current input data cannot interfere

with the previous results in the next synchronizing element.

Similar constraints for wave pipelines exist. The primary di�erences in the wave pipeline

constraints result from the fact that the data initiating edge and data storage edge may

be separated by several clock cycles. The long path constraint for wave pipelines requires

that the propagation out of the synchronizer, through the combinational logic, and into the

output synchronizer is less than the time from the initiating edge to the latching edge which

occurs N cycles later. This constraint is [53, 33, 21]:

N � Tclk + cs � Pmax +�C + Ts +
RFmax

2
+ Tsynch (1)

In Figure 3 this constraint is shown for the wave 1 data. N is the number of clock periods

between the application of the input data and the subsequent latching of the results at

the output. It is also the number of concurrent waves in the wave pipeline. cs is the

constructive skew between the clock at the input synchronizer and output synchronizer.

Pmax is the worst case maximum propagation delay through the combinational network. It

is measured from the time at which the slowest input reaches the midpoint of its switching

8

Input Synch
Clock

Output Synch
Clock

valid
Input Data

Output Data

Input
Synchronizer

Output
Synchronizer

Combinational Logic

cs

Data
Latched

Latching
Edge

Initiating
Edge

valid

Figure 2: Synchronizer Edge De�nitions

voltage to the time at which the slowest output of the logic reaches the midpoint of its

switching voltage. �C is the unintentional clock skew between input and output clocks. Ts
is the maximum setup time of the output synchronizer. RFmax is the maximum rise/fall

time of the inputs to the output synchronizer. Tsynch is the maximum time from the data

initiating edge of the clock to valid output of the input synchronizer. This inequality ensures

that the result of the slowest computation has su�cient time to propagate to the output,

all outputs rise or fall to its terminal value, and all outputs meet the minimum setup time

of the synchronizer prior to being latched.

In addition, the subsequent wave must not reach the synchronizer prior to the synchroniz-

ing clock edge. Thus the race through constraint for wave pipelines using edge-triggered

registers as synchronizing elements is:

(N � 1) � Tclk + cs � Pmin ��C � Th �
RFmin

2
+ Tsynch (2)

In Figure 3 this constraint is shown for the wave 2 data. This inequality ensures that the

result of the fastest computation is not able to propagate through the logic fast enough

9

Input Synch
Clock

Output Synch
Clock

wave 1
Input Data

Output Data

Data
Latched

Latching
Edge

Initiating
Edge

wave 1

Tsynch

Trf/2

TsPmax

NTclk + cs

wave 2

wave 2

Th

Trf/2

Pmin

Figure 3: Wave Pipeline Timing De�nitions

to change the voltage of any output in the cycle before the results will be latched. This

�gure is for the edge-triggered registers as synchronizing elements. For transparent latches

as synchronizing elements:

(N � 1) � Tclk + Ttrans + cs � Pmin ��C �
RFmin

2
+ Tsynch (3)

where Ttrans is the time over which the latch is open and transparent.

In addition to meeting the race-through and long-path constraints, wave pipelined circuits

require that waves of data do not interfere with each other at the output synchronizing

element. This constraint result in the following inequality:

Tclk � Pmax � Pmin + 2�C + Ts + Th +
RFmin +RFmax

2
(4)

In addition to the output constraint, wave pipelined circuits can not allow wave interference

at any point in the network. This can be represented by the following:

Tclk � Pmax � Pmin + �C + Tms +
RFmin +RFmax

2
(5)

where Tms is the minimum amount of time a node voltage must be stable to ensure the

subsequent level of logic operates correctly.

10

Details of the timing constraints for pipelined and wave pipelined circuits are found in [53].

To establish the performance limits of wave pipelining, constraints 1 and 2 can be combined

to �nd the maximum number of waves which can be supported by a wave pipeline:

Nmax =
Pmax � cs+ �C + Ts +

RFmax

2
+ Tsynch

Pmax � Pmin + 2�C + Ts + Th +
RFmin+RFmax

2

(6)

Nmax, the maximum number of waves in the wave pipeline, also represents the maximum

speed up of a wave pipeline over the same circuit being operated as a traditional pipeline

stage. By collecting the clock overhead factors for the long path and the race-through into

a single terms Hmax, and Hmin, respectively, constraint 6 can be reduced to:

Nmax =
Pmax � cs+Hmax

Pmax � Pmin +Hmax +Hmin

(7)

The long path condition clock overhead is:

Hmax = �C + Ts +RFmax=2 + Tsynch (8)

The race-through condition clock overhead is:

Hmin = �C + Th +RFmin=2� Tsynch (9)

2.2 CMOS Propagation Delay

To ascertain the performance limits of CMOS wave pipelining, the propagation delays in

CMOS logic and the causes of the variations in the propagation delays must be quanti�ed.

The full delay models used in this analysis are derived in Appendix B and are simply

summarized in this section.

Combinational logic network delay is modeled as the sum of individual gate delays. In

modeling the propagation delay of a gate, Tpd, the gate is treated as a single transistor, sized

so as to match the current carrying capacity of the complex gate, charging or discharging a

�xed load capacitance. This delay for long-channel transistors is found to be:

Tpd =
2ClVt

K(Vdd � Vt)2
+

Cl

(Vdd � Vt)K[ln(3Vdd�4Vt
Vdd

)]
(10)

11

where Cl is the total load capacitance, Vt is the transistor threshold, K is the transistor

transconductance, and Vdd is the power supply voltage. Short-channel results are presented

in Appendix B.

With this model of the gate delay, the maximum delay through a combinational logic

network is:

Pmax =
X

long path

Tpd (11)

and the minimum path delay through the combinational logic network is:

Pmin =
X

short path

Tpd (12)

As shown in equation 6, the speedup of wave pipelines is constrained by relative di�erences

in propagation delay rather than maximum propagation delay:

Nmax �
Pmax=Pmin

Pmax=Pmin � 1
(13)

Thus, the ratio of maximum to minimum propagation delays is necessary to ascertain the

performance potential of wave pipelining.

2.3 Causes of Variation in CMOS VLSI

The clock rate of wave pipelined circuits is constrained by the worst-case variation of prop-

agation delay through the network. The sources of variation in the network are:

1. Variations due to di�erences in propagation of signals along di�erent paths.

2. Variations due to di�erences in the state of network node voltages and gate side inputs

(data dependencies.)

3. Variations due to changes in operating temperature.

4. Variations due to supply voltage drift and noise.

5. Variations due to fabrication process variations.

6. Variations due to signal noise.

12

2.3.1 Path Length Imbalance

Each path through a circuit may have a di�erent propagation delay. For highly regular logic

structures like memories, the variation in delay between these paths may be relatively small.

In more random logic structures the propagation delay along the longest path through the

logic network may be many times the delay along the shortest path. Without optimization,

wave pipelines of random logic are thus only capable of achieving fractional improvements

in the throughput of the pipeline.

Following the theory developed by Ekroot [12], techniques have been developed to balance

the path delays of bipolar circuits [53] and CMOS circuits [32, 45] through insertion of delay

elements and through the manipulation of the delay characteristics of individual gates. Kim.

et. al. [28] has concentrated on synthesis of circuits with more path length balance than can

be achieved with traditional area and delay minimization synthesis techniques.

An automated procedure for the balancing of CMOS wave pipelined circuits is presented

in Chapter 3. This balancing procedure has been demonstrated to limit delay variation to

less than 20% of the maximum propagation delay for static CMOS circuits.

2.3.2 Data Dependencies

Data dependent delay variation results from two e�ects. First, signal propagation does not

generally occur from a single input to a given output along one path. Instead, transitions

occur along multiple, interacting paths from any number of inputs to the given output. Thus

the delay along a given input to output path depends upon the occurrence of transitions

on side inputs and their time relation to the transitions occurring along the given path.

Secondly, the rate of signal propagation of individual gates may depend upon the state

of internal node voltages. For instance the propagation delay through a two-input static

CMOS NAND gate when both inputs are rising varies depending upon the voltage at the

common node in the NMOS transistor stack. This form of data dependency results from

previous input transitions.

Klass [32] has found that by implementing functions in relatively input pattern insensitive

logic such as NAND2/INV static CMOS, delay variation can be limited to less than 10% for

a 4-bit carry lookahead adder. The balancing procedure for static CMOS circuits presented

in Chapter 3, has been found to limit the delay variation due to path imbalance and data

dependencies to less than 20%.

Because the variation in propagation delay due to di�erences in path length and data

dependencies are determined primarily by the implementation of the logic function, the

performance potential of wave pipelining is presented as a function of the degree of imbalance

in the network implementation. In Chapter 3, a method for minimizing this imbalance is

presented and its application to several representative circuits is presented.

13

2.3.3 Fabrication Process

In addition to the e�ects of path length variation and data dependencies which depend

primarily upon the implementation of the logic function, variation in the manufacture of

the VLSI integrated circuit and its operating environment inuence the delay of CMOS

wave pipelined circuits. Fabrication process variation strongly inuences the propagation

delay of a circuit.

Process parameters are characterized as nominal and corner. Nominal process is the ex-

pected process. Corner processes are the limits of acceptable process parameters.

Table 1 shows the simulated propagation delay of a chain of 50 inverters for the fabrication

corners of a 2 micron MOSIS process [49]. Over these limits, fabrication process variation

a�ects propagation delay by +16% to -19%. Thus the ratio of maximum delay to minimum

delay due to process is 1.43.

Process Propagation Delay (ns)

fast 14.6

slow 21.0

typical 18.1

Table 1: Simulated Process Corner Propagation Delays

Figure 4 is a diagram of simulated propagation delay of a chain of 50 inverters for using

SPICE model parameters derived frommeasurements of seven MOSIS 0.8 micron fabrication

runs. For these runs, the maximum propagation delay is longer than the minimum by a

factor of 1.35. When compared to the arithmetic average, the variation is +11% to -18%.

Fan, et. al. [14] performed fabrication process sensitivity analysis on a wave pipelined adder

design. By varying the SPICE model parameters, they found simulated delay to be most

sensitive to variations in channel oxide thickness, the transistor geometry parameters, and

device transconductance.

2.3.4 Environmental Variation

In addition to the implementation dependent variation and the manufacturing process varia-

tions, the environmental operating conditions have signi�cant impact on the delay of CMOS

logic circuits.

Temperature The variation in propagation delay due to temperature is primarily the

result of the variation of the channel current of the conducting MOS device. The variation

14

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|4.0

|4.5

|5.0

|5.5

|6.0

|6.5

|7.0

|7.5

|8.0

 Process - Fabrication Run Number

 C
ha

in
 P

ro
p

D
el

ay
 (

ns
)

� �

�

�

�

�

�

Figure 4: Inverter Chain Propagation Delay vs. Fabrication Run

of channel current with temperature is strongly related to the change in channel carrier

mobility. Therefore, the variations in propagation delay are modeled as a function of vari-

ations in mobility. Secondary e�ects such as threshold reduction and junction capacitance

variation are ignored for this analysis.

Empirical studies [46, 20] have shown that the temperature dependence of channel carriers

can be represented by:

�(�) = �0(�)fvfh (14)

where fv and fh represent degradation factors in the vertical and horizontal directions,

respectively.

The temperature dependence of the low-�eld mobility, �0, is;

�0(�2) = �0(�1) � (�2=�1)
�M (15)

whereM is an empirical constant between 1.5 and 2. HSPICE uses M = 1:5 for level 3 IDS

MOS device modeling [38]. �1 and �2 are absolute temperatures.

Figure 5 shows the ratio of channel carrier low-�eld mobility at 25 C to that for temperatures

from 25 C to 125 C as derived from the above mobility formula with M=1.5.

15

|
25

|
50

|
75

|
100

|
125

|1.0

|1.1

|1.2

|1.3

|1.4

|1.5

 Temperature (C)

 m
ob

ili
ty

(2
5C

)/
m

ob
ili

ty
(T

)

Figure 5: Relative Carrier Mobilities vs. Temperature

The variation of mobility results in a corresponding variation in channel current, and in

turn, propagation delay. Ignoring the secondary temperature e�ects, and concentrating on

the mobility variation, the propagation delay through a network of long-channel devices

at a given temperature to that at the nominal temperature should be the inverse of the

mobility ratio as suggested by the propagation delay equations in Section B.

Figure 5 data suggests that propagation delays of CMOS logic structures can be as much

as 50 to 60% slower at 125C than at 25C due to the di�erences in mobility.

Figure 6 shows HSPICE simulations of propagation delay of two chains of 50 CMOS inverters

over a temperature range of 25 C to 125 C. The short-channel chain consists of inverters

with 1:5�=0:8�NMOS transistors and 3:5�=0:8� PMOS transistors. The long-channel chain

consists of inverters with 9�=3� NMOS transistors and 21�=3� PMOS transistors.

Figure 7 shows the ratio of propagation delay of the inverter chains for temperatures from

25 C to 125 C to the propagation delay at 25 C. Superimposed on Figure 7 is the ratio

of mobilities as given previously. The mobility approximation to relative propagation de-

lay becomes less accurate as temperature is increased due to the assumption of constant

thresholds.

Based upon the models of CMOS device behavior and SPICE simulations, the propagation

16

 short-channel
 long-channel

|
25

|
50

|
75

|
100

|
125

|0

|10

|20

|30

|40

|50

|60

|70

 Temperature (C)

 P
ro

pa
ga

tio
n

D
el

ay
 (

ns
)

Figure 6: Inverter Chain Propagation Delay vs. Temperature

delay of a CMOS network at temperature �2 can be approximated by:

Pmax(�2) � Pmax(�1) � (
�2

�1
)1:5 (16)

Pmin(�2) � Pmin(�1) � (
�2

�1
)1:5 (17)

For short-channel devices, velocity saturation limits the channel current. Because temper-

ature a�ects the saturation voltage, the expression for relative propagation delay is more

complicated:

Pmax(�2) � Pmax(�1) � (
�2

�1
)1:5 � (

Vdmax(�1)

Vdmax(�2)
)2 (18)

Pmin(�2) � Pmin(�1) � (
�2

�1
)1:5 � (

Vdmax(�1)

Vdmax(�2)
)2 (19)

Thus, propagation along a given path for a CMOS network will be as much as 50% slower

at 125 C than at room temperature.

17

 short-channel chain
 long-channel chain
 channel mobility

|
25

|
50

|
75

|
100

|
125

|1.0

|1.1

|1.2

|1.3

|1.4

|1.5

|1.6

 Temperature (C)

 R
el

at
iv

e
P

ro
p

D
el

ay
, M

ob
ili

ty

Figure 7: Relative Propagation Delay vs. Temperature

Temperature variation is both spatial and temporal. As a transistor conducts current, heat

is conducted through the surrounding die area resulting in changes in local temperature.

As power consumption increases, the spatial average of die temperature also increases, and

thus a temporal temperature variation exists. If the consumption of power is not spatially

uniform, temperature gradients exist.

Figure 8 illustrates the spatial and temporal variation in temperature for the vector unit

IC developed as part of this research. The two thermal pro�les are shown for the locations

on the die which experience the thermal extremes. These pro�les were derived using two-

dimensional heat transfer models in which the die was represented as a mesh of thermal

cells. Each cell is represented by a thermal resistance with each of its neighbors, a thermal

resistance to the ambient, the speci�c heat of the cell, and the local power consumption.

At time t = 0 the vector unit operations which consume the greatest amount of power com-

mence. The total power consumption at this instance increases from 0.6 W to 1.9 W. The

top trace gives the temperature of the maximum temperature location. The temperature

at this location rises approximately 43 C with a time constant of approximately 350 ms.

The location of the minimum thermal extreme rises approximately 38 C. Thus, as shown in

this �gure, the maximum spatial temperature di�erence is 5 C and the maximum temporal

temperature variation is 43 C.

18

Figure 8: Vector Unit Thermal Pro�le

Voltage Variation Supply voltage variation a�ects propagation delay by altering the

channel current and signal voltage swing. Using the delay expressions from Section B for

the propagation delay of a capacitor discharging through an n-channel device and charging

through a p-channel device, a �rst-order expression for the ratio of propagation delay at a

given supply voltage to the propagation delay at the nominal supply voltage is derived.

For the simulated process, the model parameters are given in table 2.

Figure 9 shows the propagation delay of a capacitor being driven high and low through

a PMOS and NMOS device, respectively, for a range of supply voltages, relative to the

nominal 5V supply.

Since, in this model, the propagation delay through a logic network is the sum of the

individual delays, the ratio of the propagation delays for the network should lie within the

charging and discharging ratios.

19

Parameter Value

Vtn 0.71V

Vtp -0.90V

Vdd 5V

�n0 572 cm2=V s

�p0 178 cm2=V s

Cox 192 nF=cm2

vsatn 1980 cm=s

vsatp 3690 cm=s

Table 2: Simulated Process Parameters

Figure 10 shows the simulated propagation delay of a minimum-sized balanced inverter

driving an identical inverter high and low versus supply voltage. This �gure shows that

static CMOS inverter gate delay is, to �rst order, inversely proportional to the supply

voltage.

Figure 11 compares the computed relative propagation delay ratios for rising and falling

outputs versus supply voltage. Also included in this �gure is the simulated ratios for the

short-channel chain of 50 inverters. Figure 12 is a plot of simulated propagation delay versus

supply voltage for a nominal supply of 3.3V.

As a �rst-order approximation the variation in propagation delay due to supply voltage

drift is linearly related to the supply voltage. Thus:

Pmax(V2) � Pmax(V1) �
V1

V2
(20)

Pmin(V2) � Pmin(V1) �
V1

V2
(21)

The propagation delay of a network shows a variation of 5% to 10% with respect to nominal

over an operating supply voltage range of -4.5 to 5.5V. The ratio of maximum delay to

minimum delay due to supply changes is thus 1.2.

In addition to dc variations, dynamic power uctuations have an e�ect on the propagation

delay of CMOS circuits. Supply dI/dt noise due to on-chip circuitry is small; however,

driver dI/dt noise can have a signi�cant impact on the delay of the driver [2].

With separate power distribution networks, the delay variation is isolated to the driver.

Thus, the relative delay variation of a CMOS circuit path due to driver dI/dt noise can

be estimated by multiplying the relative delay factor of the driver by the fraction of the

nominal delay of the path due to the nominal driver delay.

20

 Calculated load C charge time
 Calculated load C discharge time

|
4.5

|
4.6

|
4.7

|
4.8

|
4.9

|
5.0

|
5.1

|
5.2

|
5.3

|
5.4

|
5.5

|0.90

|0.95

|1.00

|1.05

|1.10

 Supply Voltage (V)

 R
el

at
iv

e
P

ro
p

D
el

ay

Figure 9: Relative Charge, Discharge Delay vs. Supply Voltage

Coupled Noise In addition to the power supply noise described in the previous section,

noise coupled from adjacent signals to the output of a gate can have signi�cant impact on

the delay of that gate.

We model capacitively coupled noise as a change in the e�ective load capacitance as seen

by the gate. When there is no change in the voltage on the coupled line, the e�ective

capacitance as seen by the gate is the nominal capacitive load due to the output wire

capacitance and the gate capacitance of all transistors connected to the output. When the

voltage on a coupled line is moving in the same direction as the gate output, the e�ective

capacitive load is decreased by value of the coupled capacitance. When the voltage on the

coupled line is moving in the opposite direction as the gate output, the e�ective capacitance

is increased by the value of the coupled capacitance.

The resulting delay for the gate with a capacitively coupled output is:

P (�) � P (� = 0) � [Cl �
X

di � Ccoupled i)] (22)

P (�) indicates the delay under coupled noise conditions. P (� = 0) indicates the delay with

all coupled wires static. di indicates the direction of signal switch (-1 if opposite to output

and 1 if same as output). Ccoupled i is the mutual capacitance of the output and the signal

i.

21

 Output low to high
 Output high to low

|
4.50

|
4.75

|
5.00

|
5.25

|
5.50

|0

|20

|40

|60

|80

|100

|120

 Supply Voltage (V)

 P
ro

p
D

el
ay

 (
ps

)

Figure 10: Inverter Propagation Delay vs. Supply Voltage

Thus the maximum to minimum delay ratio of the gate output due to coupled capacitance

is:
P (�slow)

P (�fast)
�

(Cl +
P
Ccoupled i)

(Cl �
P
Ccoupled i)

(23)

This variation is most important for gates driving long wires. To get the e�ect of coupled

noise on the total propagation delay the gate delay variation must be scaled by the ratio

of the nominal contribution to the path delay due to the wire driver to the nominal total

delay.

Process and Environmental Performance Limits This section uses the clock con-

straints, the delay models, and the variations in process and operating environment previ-

ously discussed to establish the limits of wave pipeline performance for �xed frequency and

variable frequency CMOS systems.

Fixed Frequency Clocked Wave Pipelined Systems In an �xed frequency clocked

synchronous system, a clock with �xed period Tclk is supplied to the device. The clock

frequency is not a function of chip supply voltage, temperature, or fabrication process. Sys-

tems with external clock generation, clocks phase-locked to external �xed frequency clocks,

22

� � Simulated Inverter Chain Delay
 Calculated load C charging time
 Calculated load C discharging time

|
4.5

|
4.6

|
4.7

|
4.8

|
4.9

|
5.0

|
5.1

|
5.2

|
5.3

|
5.4

|
5.5

|0.90

|0.95

|1.00

|1.05

|1.10

 Supply Voltage (V)

 R
el

at
iv

e
P

ro
p

D
el

ay

�

�

�

�

�

�

�

�

�

Figure 11: Relative Propagation Delay vs. Supply Voltage (5V)

and systems with temperature and supply voltage compensating on-chip �xed frequency

oscillators are included in this category. Figure 13 is a block diagram of a synchronous

system with an externally supplied clock.

For a �xed frequency clocked traditional pipelined system to operate properly, the worst

case maximum propagation delay determines the clock rate:

Pmax +RFmax=2 + Ts + �C � Tclk + cs (24)

Pmax; RFmax; Ts;�C and cs are voltage, temperature, and process dependent. Tclk is volt-

age, temperature, and process independent.

For a �xed frequency clocked wave pipelined circuit to operate properly, the following two

inequalities must hold for edge-triggered registers:

Pmax +RFmax=2 + Ts + �C + Tsynch � cs

N
� Tclk (25)

Pmin �RFmin=2� Th ��C + Tsynch � cs

N � 1
� Tclk (26)

For ow latches, the following inequalities must hold:

Pmax +RFmax=2 + Ts + �C + Tsynch � cs

N
� Tclk (27)

23

|
2.9

|
3.0

|
3.1

|
3.2

|
3.3

|
3.4

|
3.5

|
3.6

|
3.7

|0.90

|0.95

|1.00

|1.05

|1.10

 Supply Voltage (V)

 R
el

at
iv

e
P

ro
p

D
el

ay

Figure 12: Relative Propagation Delay vs. Supply Voltage (3.3V)

Pmin � RFmin=2� Th ��C + Tsynch � Ttrans � cs

N � 1
� Tclk (28)

Pmax, Pmin, RF , Tsynch, Ts and Th are voltage, temperature, and process dependent. Tclk
and Ttrans are voltage, temperature, and process independent.

Deviation of process parameter on a die are relatively time invariant and relatively uniform

across the entire die [20]. Thus, once a device is fabricated, its Tox, �0, Vtn, Vtp, etc. could

be determined and the process characterized. This type of variation is termed static delay

variation. Since the particular process parameters are not known a priori, wave pipelines

must be designed to function over a range of expected processes.

In addition to the static variation, there is dynamic variation. Dynamic variation is due to

changes in the operating environment over time, and include the temperature, voltage drift

and noise, and coupled noise examined in this chapter.

For a wave pipeline to function correctly, a clock period and an integer number of waves

must be speci�ed which satisfy the above inequalities for all acceptable values of process,

supply voltage, and temperature. For the �rst inequality, the worst condition is minimum

supply voltage, maximum temperature, and slowest process. For the second inequality, the

worst condition is maximum supply voltage, minimum temperature, and fastest process.

The longest path in the network is some factor greater than the shortest path in the network

24

Off-Chip
Clock Generation
period Tclk

On-Chip Clock Distribution

Figure 13: Externally Supplied Clocked System

for a given temperature, voltage, and process. This factor, represented by �, is due to path

length di�erences and data dependent delay variations in the network.

Pmax(V; �; �) = � � Pmin(V; �; �); �� 1 (29)

Because the relative variation in propagation delay due to temperature and voltage variation

is to �rst order independent of absolute propagation delay, � is a good approximation of

the relative path length di�erence in the network for any temperature and voltage.

The worst-case wave pipeline timing constraints become:

�P slow
min + RF slow

max =2 + T slow
s + �Cslow + T slow

synch � csslow

N
� Tclk (30)

P
fast
min �RF

fast
min =2� T

fast
h ��Cfast + T

fast
synch � csfast

N � 1
� Tclk (31)

where slow signi�es operating conditions (Vmin; �max; �slow) and fast signi�es operating

conditions (Vmax; �min; �fast).

The propagation delay at worst case operating temperature, supply voltage, and process

will be some factor larger than the best case propagation delay. If � is de�ned as:

� =
Pmin(Vmin; �max; �slow)

Pmin(Vmax; �min; �fast)
(32)

From Section 2.3.4 data:

� � (
�2

�1
)1:5 �

Vmax

Vmin

� �proc (33)

25

where �proc is the variation in delay due to process. If it is assumed that setup, hold, rise

and fall, synchronizer delay, and skew times scale as propagation delay with temperature

and voltage, the worst case timing inequalities become:

��P
fast
min + �RF fast

max =2 + �T fast
s + ��Cfast � �csfast + �T

fast
synch

N
� Tclk (34)

P
fast
min �RF

fast
min =2� T

fast
h ��Cfast � csfast + T

fast
synch

N � 1
� Tclk (35)

Combining the constraints to solve for N, the number of waves in the wave pipelined circuit:

N �
��P

fast
min +Hslow

max � �csfast

(�� � 1)P
fast
min +Hslow

max +H
fast
min � (� � 1)csfast

(36)

where,

Hslow
max = �RF fast

max =2 + �T fast
s + ��Cfast + �T

fast
synch (37)

H
fast
min = RF

fast
min =2 + T

fast
h + �Cfast � T

fast
synch (38)

If P
fast
min >> RF; Ts; Th;�C; Tsynch and the clocks are not intentionally skewed, cs = 0, then:

N �
��

�� � 1
(39)

In a perfectly balanced network � = 1, thus:

N �
�

� � 1
(40)

Figure 14 gives the maximum number of waves through a wave pipelined network versus

the process and environmental delay variation factor, �, for several practical values of the

path length variation factor, �.

Table 3 gives the simulated results for the maximum number of waves achievable for the

chain of 50 inverters for a range of temperatures and voltages. It is assumed that the process

parameters are nominal.

There are two important implications from constraint 39. First, based upon data from

Section 2.3.4 and Section 2.3.4 values of � for temperature ranges of 25-125 C and voltage

ranges of 4.5-5.5 V for CMOS circuits will be 1.4 to 1.7. Therefore, the number of waves

in a static CMOS wave pipelined logic network, independent of its absolute propagation

26

 alpha=1
 alpha=1.1
 alpha=1.2
 alpha=1.5

|
1.0

|
1.1

|
1.2

|
1.3

|
1.4

|
1.5

|
1.6

|
1.7

|
1.8

|
1.9

|
2.0

|1

|2

|3

|4

|5

|6

|7

|8

|9

|10

|11

|12

 Environ & Process Variation (Beta)

 M
ax

 W
av

es Path Length Imbalance

Figure 14: Maximum Waves vs. �

delay, is three or less. Process variation further reduces the number of waves which can

be supported. Aggregating the above environmental variation with a process variation of

�proc = 1:35 the number of waves is limited to 1.6. Second, because operating environment

changes result in signi�cant changes in propagation delay, extremely accurate path-length

balancing may not be necessary to achieve the maximum number of waves. For instance,

if temperature and supply changes results in a relative propagation delay variation of 60%,

i.e. � = 1:6, the path lengths through the network can di�er by as much as 25% for two

concurrent waves.

Environmental Impact Comparison In this section, the e�ects of environmental and

process variation are contrasted for traditional pipelines and wave pipelines with �xed fre-

quency clocking.

For a traditional pipeline, the minimum clock period over all acceptable temperatures and

voltages is determined by the maximum propagation delay through the network. Thus the

minimum clock period, Tmin
clk , for a traditional pipeline which must operate over all possible

expected supply voltages, temperatures, and process parameters is some factor, larger

27

Temp Range Voltage Range � � Max Waves

25C 5V 1 1 6

25C 4.5-5.5V 1 1.2 4

25-125C 5V 1 1.4 2

25-125C 4.5-5.5V 1 1.7 2

Table 3: Inverter Chain Simulated Maximum Number of Waves

than the clock period which could be achieved if it were expected to operate at the nominal

supply, temperature, and process:

Tmin
clk (8V; 8�; 8�) = Tclk(V0; �0; �0) (41)

where,

 =
Pmax(Vmin; �max; �slow)

Pmax(V0; �0; �0)
(42)

and,

1 � � � (43)

In these equations, the nominal voltage, temperature, and process are V0, �0, and �0,

respectively and all possible ranges of operation are represented by 8V ,8� , and 8�.

Tmin
clk (8V; 8�; 8�)

Tclk(V0; �0; �0)
= (44)

This factor represents the maximum throughput lost by environmental and process varia-

tion.

For a wave pipeline,

Tmin
clk (V0; �0; �0) = Pmax(V0; �0; �0)� Pmin(V0; �0; �0) (45)

Tmin
clk (8V; 8�; 8�) = ��Pmin(Vmax; �min; �fast)� Pmin(Vmax; �min; �fast) (46)

assuming,

Pmax; Pmin >> �C; Ts; Th; RFmin; RFmax (47)

28

Thus,

Tmin
clk (8V; 8�; 8P)

Tmin
clk (V0; �0; �0)

=
�� � 1

�� � �
(48)

Figure 15 plots the degradation factors for both traditional and wave pipelines versus . It

is assumed that for this �gure any propagation delay through the network at the nominal

environment is approximately equal to the propagation delay at maximum voltage and

minimum temperature (i.e. � �.) Figure 15 is evidence of the need for minimization of

environmental uctuations for wave pipelined design.

 Trad Pipe
 alpha=1.1
 alpha=1.25
 alpha=1.5

|
1.0

|
1.1

|
1.2

|
1.3

|
1.4

|
1.5

|
1.6

|
1.7

|
1.8

|
1.9

|
2.0

|1

|2

|3

|4

|5

|6

|7
|8

|9

|10

|11

|12

 Gamma

 C
LK

 D
eg

ra
da

tio
n

F
ac

to
r

Figure 15: Environmental Degradation Factor

A strategy for maximizing the performance of externally-clocked wave pipelined circuits is

tightly controlling the drift of the external power supply and minimizing Vdd and GND noise

with numerous supply pins, �lter capacitors on the die, and current-limiting I/O drivers.

Temperature variation can be minimized by lowering the maximum junction temperature

with low thermal resistivity packaging. Analysis of heat generation and ow could be

used in the design process to provide tighter bounds on the expected temporal and spatial

propagation delay variation. Lee [34] has suggested integrating thermal analysis in a design

29

environment for improved reliability and performance. Temporal variation can be decreased

by raising the minimum operating temperature with \warm-up" cycles.

Without tight controls on temperature and voltage, wave pipelined �xed-clock circuits are

limited to 2-3 waves per stage.

For designs in which full commercial operation is required and tight environmental and

process control are not practical, it is unreasonable to expect greater than two waves per

wave pipelined logic block. A useful strategy in this case is to partition the logic into the

smallest number of pipeline stages, k, such that constraint 2.3.4 with N = 2 is satis�ed for

each section. In this manner, each pipeline stage will be the minimum delay which holds

two simultaneous waves. Therefore, the maximum speed-up over a nonpipelined circuit

becomes 2 � k and the increase in latency will be minimized. Klass [30] analyzes pipelines

in which each pipeline stage is in-turn wave pipelined.

2.3.5 Variable Frequency Clocked Systems

In an variable frequency clocked synchronous system, the clock period, Tclk, varies so as

to match the propagation delay of the logic network.

The clock can be produced by a ring oscillator, voltage controlled ring oscillator, or external

clock whose frequency is determined by on-chip delays. The clock frequency is a function of

supply voltage, temperature, or fabrication process. VCOs which compensate for variations

in supply voltage and temperature were analyzed with �xed frequency clocked systems.

Figure 16 is a block diagram of a synchronous system with an internally generated, variable

frequency clock.

On-Chip
Clock Generation
period Tclk(V,T,P)

On-Chip Clock Distribution

External Clock Tclk(V,T,P)

Figure 16: Internally Generated Variable Frequency Clocked System

30

A ring oscillator design and a voltage-controlled ring oscillator design are shown in Figure 17.

Clock

Voltage Controlled Oscillator

NMOS
Bias

PMOS
Bias

Clock

Odd Number of Stages

Odd Number of Stages

Clock

Odd Number of Inversions

Differential Ring

Single Ring

Figure 17: Internally Generated Clocks

For a variable frequency clocked traditional pipelined system to operate properly, the worst

case maximum propagation delay determines the clock rate:

Pmax +RFmax + Ts +�C � Tclk (49)

Pmax; RFmax; Ts, and �C are voltage, temperature, and process dependent. Tclk is also

voltage, temperature, and process dependent.

For a variable frequency clocked wave pipelined circuit to operate properly, the following

two inequalities must hold for edge-triggered registers:

31

Pmax +RFmax=2 + Ts + �C + Tsynch � cs

N
� Tclk (50)

Pmin �RFmin=2� Th ��C + Tsynch � cs

N � 1
� Tclk (51)

For ow latches, the following inequalities must hold:

Pmax +RFmax=2 + Ts + �C + Tsynch � cs

N
� Tclk (52)

Pmin � RFmin=2� Th ��C + Tsynch � Ttrans � cs

N � 1
� Tclk (53)

Pmax, Pmin, RF , Tsynch, Ts and Th are voltage, temperature, and process dependent. Tclk
and Ttrans are also voltage, temperature, and process dependent.

The period of oscillation of a ring oscillator is determined by the propagation delay through

the ring. Thus if the temperature, voltage, and process were constant across the device,

Tclk will vary as the combinational network propagation delay. According to Glasser [20]

process parameters can be approximated as constant across a die. Surface temperature

pro�les of a die tend to be a superposition of a baseline temperature due to average die

power dissipation and ambient temperature and hot-spots due to localized device power

dissipation [22]. Thus, there is a spatially independent component and a spatially dependent

component of temperature variation.

Power supply low frequency voltage variation is also time dependent due to supply drift

and spatially dependent due to IR drops across the power distribution network.

Figure 18 compares the variation in propagation delay of a chain of inverters with the

variation in clock period for a clock generated by an on-chip ring oscillator. This �gure

shows that inverter chain propagation delay and the ring oscillator period track if the

temperature is spatially uniform.

Figure 19 compares the variation in propagation delay of the inverter chain with variation

in period of an on-chip voltage-controlled ring-oscillator for spatially uniform temperature.

Spatial temperature variation depends upon power consumption, device placement, switch-

ing behavior, and package design. In the absence of heat ow analysis, worst case spatial

temperature variation should be assumed.

With internally generated clocks, the clock frequency is a function of temperature and

voltage, and is therefore not time invariant. This may present problems in interfacing a

device to other devices in a system.

An additional problem for on-chip ring-oscillators is frequency jitter due to noise. Because

the clocks used in wave pipelined circuits are constrained to a range of valid frequencies

which becomes increasingly narrow as the number of waves through the logic increases [21],

32

 Rel Prop Del
 Rel Clk Period

|
25

|
50

|
75

|
100

|
125

|1.0

|1.1

|1.2

|1.3

|1.4

|1.5

 Temperature (C)

 R
el

at
iv

e
P

ro
p

D
el

ay
, P

er
io

d

Figure 18: Inverter Chain Delay and Ring-Oscillator Period vs. Temperature

a high degree of clock frequency stability is necessary. This jitter must be included in

the �C factor in the constraint computations. Low-jitter voltage and current-controlled

oscillators minimize jitter through precise capacitance, current, and noise control. Jitter of

less than 160 ppm is achievable for on-chip precision CMOS oscillator circuits [17]. They

are, however, subject to frequency variation due to supply voltage and temperature changes.

Further analysis of the impact of low jitter on-chip oscillators on wave pipelined designs is

warranted.

2.3.6 Environmental Impact Comparison

In this section, the e�ects of environmental and process variation are contrasted for tradi-

tional pipelines and wave pipelines with variable frequency clocking.

For a traditional pipeline, the minimum clock period over all acceptable temperatures and

voltages is determined by the worst-cast maximum propagation delay through the network.

Thus:

Tmin
clk (8V; 8�; 8�) = Tclk(V0; �0; �0) (54)

33

 Rel Prop Del
 Rel Tclk Bias=0V
 Rel Tclk Bias=1V
 Rel Tclk Bias=2V

|
25

|
50

|
75

|
100

|
125

|1.0

|1.1

|1.2

|1.3

|1.4

|1.5

 Temperature (C)

 R
el

at
iv

e
P

ro
p

D
el

ay
, P

er
io

d

Figure 19: Inverter Chain Delay and VCO Period vs. Temperature

where,

 =
Pmax(Vmin; �max; �slow)

Pmax(V0; �0; �0)
(55)

and,

1 � � � (56)

or,

Tmin
clk (8V; 8�; 8�)

Tmin
clk (V0; �0; �0)

= (57)

This factor represents the maximum throughput lost by environmental and process varia-

tion.

For a wave pipeline,

Tmin
clk (V0; �0; �0) = Pmax(V0; �0; �0)� Pmin(V0; �0; �0) (58)

Tmin
clk (8V; 8�; 8P) = ��Pmin(Vmax; �min; �fast)� �Pmin(Vmax; �min; �fast) (59)

assuming,

Pmax; Pmin >> �C; Ts; Th; RFmin; RFmax (60)

34

Thus,
Tmin
clk (8V; 8�; 8�)

Tmin
clk

(V0; �0; �0)
= (61)

For variable frequency clocking with a uniform surface distribution of supply voltage and

temperature, the impact of environmental and process variation a�ect traditional and wave

pipelines equally. For these circuits, speed-ups such as those reported in [31, 14, 41, 35] of

2-7 are achievable.

For non-uniform surface temperature and supply voltage, wave pipelined circuits with

variable-frequency on-chip clocks are subject to the performance constraints of Section 2.3.4

where � is due to the worst-case spatial variation of environmental conditions.

2.4 Performance Limits Conclusions

The e�ects of logic network path delay imbalance, changes in operating environment, and

fabrication process variation on the performance of wave pipelines have been ascertained us-

ing CMOS delay models and the clock constraints which must be satis�ed by wave pipelines.

Variations of propagation delays of di�erent dice from common fabrication line are shown to

have ratios of worst case delay to best case delays of 1.35 to 1.5. This variation, independent

of other factors, limits the speed-up of wave pipelining to at most three to four. Changes

in operating temperature may degrade delays by a factor of up to 1.4, thereby limiting

the speed-up to 3.5. Supply drops and drift, supply noise, and coupled noise can result in

further propagation delay variation.

Wave pipeline performance has been shown to be up to 6-times more sensitive to the e�ects

of variation due to path imbalance, process, and environment than conventional pipelines.

This sensitivity motivates the design and optimization techniques for high performance wave

pipeline design presented in the following chapter.

35

3 High Performance CMOS WP Design Techniques

E�cient wave pipelined system design requires tools for delay analysis and synthesis and

optimization for delay balancing. As shown in chapter 2 to maximize the performance of

a wave pipelined circuit, the delay variation in the combinational logic must be minimized.

This variation is due to path length di�erences, data dependencies, and fabrication and

environmental variations. In this chapter, CMOS circuit balancing and environmental delay

variation compensation techniques are described.

3.1 Path Delay Balancing

Previous automated wave pipelined circuit balancing tools include technology independent

cycle time optimization by delay insertion [12], balancing methods for bipolar CML cir-

cuits [53], CMOS cell placement [26], and logic restructuring [28].

A method of balancing static CMOS wave pipelined circuits through transistor sizing has

been developed in this research. This method is an extension of the Wong method for

balancing CML logic networks [53].

This tool uses a DAG representation of the delay of a CMOS combinational logic and

formulates the balancing problem as a linear program. A piecewise linear gate delay function

is found for each gate type via HSPICE simulations. This allows for exible and accurate

determination of gate delays.

The following sections detail the CMOS circuit delay model, the delay behavior of CMOS

gates and networks, CMOS gate delay manipulation techniques, the linear program repre-

sentation, simulated results, and technique limitations.

3.1.1 Modeling Circuit Delay Behavior

Circuit delay is represented by a polar weighted directed acyclic graph. Each node of the

graph corresponds to a gate output in the CMOS logic network. A directed arc from node

i to node j exists when the gate whose output is j has node i as an input. Each arc is

labeled with a tuple (rising gate delay, falling gate delay, unateness). The unateness

�eld indicates which of rising gate delay or falling gate delay will be used for gate delay

from input i to output j for a rising or falling transition at the input i. A source node is

introduced into the DAG which connects to all primary inputs with zero delay, and a sink

node is introduced which is connected to all circuit output nodes with zero delay arcs. An

example circuit and graph are shown in Figure 20.

The delay of any path from the source node to the sink node is represented by a pair of

delays (rising sink delay, falling sink delay). Each of these delays is computed by summing

36

E

A

B

C

D
F G

A

C

D

E

F G
B

Del A->D

0
N

Figure 20: Example Circuit and Graph

the contributions of the individual gates along the path. The contribution from each gate is

the tuple entry which results in the appropriate transition at the sink node. For positively

unate gates, the input nodes inherit the output node transition direction. Negatively unate

gates inherit the opposite transition direction.

DAGs with nonunate arcs cannot be represented with unique (rising sink delay, falling sink

delay) pairs because the output of a nonunate gate can transition in a given direction as a

result of a rising or falling of an input. Thus, for a given output transition direction, multiple

path delays are possible. Path delays of circuits with nonunate gates are represented by

the minimum and maximum bounds on the delays, (min rising delay, max rising delay,

min falling delay, max falling delay). The bounds at the output of a nonunate gate are

computed recursively. For example the max rising delay to the output of nonunate gate i

along a path is de�ned:

max rising delayi = max(max rising delayi�1 + rising gate delayi;

max falling delayi�1 + rising gate delayi) (62)

The other bounds are similarly determined recursively, with the appropriate delay terms

being substituted.

37

3.1.2 CMOS Gate and Network Delay

The determination of the delays associated with the circuit DAG is considered in this

section. Static CMOS gate propagation delay behavior is a function of the capacitive load

on the gate, the interconnection of the individual transistors in the gate, the voltage at the

other inputs of the gate, the voltage at nodes internal to the gate, the rate of transition at

the input, as well as the temperature, supply voltage, and signal noise at the gate.

A simple model of the propagation delay of a gate as the time required to charge or dis-

charge a capacitance through a MOS transistor results in the following expression for gate

delay [50]:

Tpd =
k � Cl � Vdd
Idsmax

(63)

where Cl is the total load capacitance, Vdd is the supply voltage, Idsmax is the maximum

MOS transistor source-drain current, and k is a factor to account for the di�erence between

the maximum and average current over the switching period. The maximum current is:

Idsmax =
K

2
�
W

L
� (Vdd � Vt)

2 (64)

where K is the transconductance per unity channel width to length ratio, Vt is the device

threshold, W is the e�ective transistor width, and L is the e�ective transistor length.

Thus, the delay can be approximated by:

Tpd =
const � Vdd � Cl � L

K � (Vdd � Vt)2 �W
(65)

The load capacitance is the sum of the wiring capacitance, Cint, and the gate capacitance

of each transistor driven by the output:

Cl = Cint +
X
i

Cgatei (66)

The �rst-order gate capacitance of each transistor is related to the per unit area oxide

capacitance and the transistor geometry length and width:

Cgate i = Cox �Wi � Li (67)

Equation 65 can be rewritten so as to represent the driving device as an equivalent resistor:

38

Tpd � Cl �Req (68)

Circuit path delays are the computed as the sum of the propagation delays of the gates

along the path as detailed in the previous section.

3.1.3 Manipulating CMOS Delay

In equation 65 the transistor width and length and the load capacitance can be used to

manipulate the delay of CMOS gates. In addition, the e�ective resistance of the gate (from

equation 68) can be increased by introducing an additional resistor or transistor in series

with the conducting device. The supply voltage and device threshold are assumed to be

constant for all devices.

To e�ciently balance CMOS wave pipelined circuits, it is desirable to have the manipulation

of the delay of a given gate a�ect only that gate, not its successors or predecessors. One

method of increasing the delay of a short path gates while isolating their predecessors is by

increasing the load capacitance of the output nodes by adding discrete capacitors or source-

drain shorted transistors [14]. This requires signi�cant additional area to accomplish the

balancing. The e�ective resistance of the gate can also be increased by the series addition

of a poly resistor [26]. Like the added capacitance, this may result in a signi�cant area

increase if long poly wires must be introduced.

Independent manipulation of either the length or the width of the transistors does not have

the desired e�ect. Increasing the length of a slow path transistor also increases the load

capacitance of the gate which drives this gate. Decreasing the width of the device generally

is not a viable option since as the width is decreased, the capacitive load on the previous

stage is decreased. Thus, by increasing the delay of a given stage, the delay of its predecessor

stage is decreased.

By manipulating the width and length of the devices together so as to maintain a constant

gate capacitance, the delay of the gate can be adjusted without impact to the previous

stage. During the delay tuning procedure, the length of the transistor is increased from L0

to L0 �Ml and the width is decreased from decreased from W0 toW0 �Mw (Mw � 1). From

equation 67, load capacitance before delay tuning and after delay tuning is constant when:

W0 �L0 = W0 �Mw � L0 �Ml (69)

This occurs when

Mw = 1=Ml (70)

whereMw is the width modi�cation factor andMl is the length modi�cation factor. Apply-

ing this result to the gate delay, equation 65, the transistor geometry manipulation results

39

in a change in the delay of:

Tpd(Mw;Ml) = Tpd(Mw = 1;Ml = 1)
Ml

Mw

= Tpd(Mw = 1)
1

M2
w

(71)

The delay of a gate then becomes a monotonically decreasing, convex function of the mod-

i�cation factor.

The following delay tuning example compares the constant capacitance tuning method to

the width-only and length-only tuning strategies. The delay tuning modes are applied to

the simple circuit shown in Figure 21.

Tuned Gate

Critical Path

Short Path

Figure 21: Delay Tuning Circuit

For this circuit, the delay through the critical path and the delay through the short path

are shown in Figure 22 for the three tuning modes: length-only scaling, width-only scaling,

and constant capacitance width/length scaling. The paths are balanced when the critical

path line and the short path line intersect.

With length-only tuning, represented by the dashed lines, the lengths of the transistors in

the tuned gate are increased from their nominal value of unity length modi�cation factor

(Ml = 1) to twice their nominal length (Ml = 2). The transistor widths are held constant.

At approximately Ml = 1:6, the critical path delay and short path delay are balanced.

However, the delay through the critical path has been increased by about 5%.

With width-only tuning, represented by the dotted lines, the widths of the transistors in

the tuned gate are decreased from their nominal width (Mw = 1) to 2/3 of their nominal

width (Mw = 0:67). With this range of width modi�cation the critical and short path lines

do not intersect and thus the circuit can not be balanced. In this example, this method

decreases the delay of the critical path. In general, this is not desirable. The goal of delay

tuning is to modify all paths to have delay equal to the critical path delay. By decreasing

the delay of some paths, this method may result in additional variation between paths.

With constant capacitance tuning, represented by the solid lines, the widths of the tran-

sistors in the tuned gate are decreased from their nominal width (Mw = 1) to 2/3 of their

nominal width (Mw = 0:67). Over this range, the lengths are increased so as to maintain a

40

constant capacitance. At about Mw = 0:7 the critical path delay and short path delay are

balanced. When balanced, the delay through the critical path has decreased by about 1%.

Length-only tuning, while providing su�cient delay tuning range, alters the critical path

delay. Width-only tuning does not provide su�cient delay tuning range and alters the

critical path delay. Constant capacitance scaling provides su�cient delay tuning range with

minimum impact to critical path delay.

 Constant Cap
 Width Scaling
 Length Scaling

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|275

|300

|325

|350
|375

|400

|425

|450

|475

 P
ro

p
D

el
ay

 (
ps

)

 critical path

 tuned short path

2.0 1.67 1.43 1.25 1.11 1.0
Mw
Ml

Figure 22: Delay Tuning Options

The balancing environment uses HSPICE simulations of each gate type, rather than the

simple analytic models of gate delay, to accurately determine the constant capacitance

transistor length to transistor width relationship. HSPICE simulations are used to ascertain

gate propagation delay versus capacitive load versus transistor width modi�cation factor.

These simulations are used to build macromodels used by the balancing linear program

solver.

Figure 23 shows the relationship between the propagation delay of an inverter driving a

fanout of four inverters as a function of channel width modi�cation.

The widths of all transistors in a gate are modi�ed by this factor simultaneously in order to

41

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|0

|200

|400

|600

|800

|1000

|1200

 Modification Factor

 P
ro

pa
ga

tio
n

D
el

ay
 (

ps
)

Figure 23: Inverter Propagation Delay vs. Modi�cation Factor

modify the propagation delay of the gate. Although separate modi�cation factors for rising

gate output and falling gate output could be employed to separately modify the rising and

falling delay, a single modi�cation factor for the entire gate is employed so as to maintain

equal rise and fall delays of the gates.

The automated CMOS wave pipeline balancing process consists of development of a circuit

netlist and parameterizable gate library. It is assumed that the critical paths of the unbal-

anced netlist have been minimized. Therefore, delay balancing increases the delay along

the short paths through the logic network. The unbalanced netlist is �rst rough balanced

by the Wong rough balancing algorithm [53] which inserts bu�ers into paths which have

local delay imbalances greater than a bu�er delay.

The rough balanced netlist is converted to a linear program representation which is solved

using the Simplex method [39]. The solution to the linear program is a vector of width

modi�cation factors from which the individual transistor geometries can be determined.

3.1.4 Linear Program Representation

The solution to the Fine Tuning Problem minimizes the cycle time of the wave pipelined

circuit [53]. The Fine Tuning Problem is: Given a weighted acyclic DAG representation of

42

a combinational circuit, �nd a vector of modi�cation factors, M , such that all paths from

the source to sink have delays which do not exceed a speci�ed maximum propagation delay,

Dmax, and the delay of the shortest path is maximal.

The cycle time of a wave pipelined circuit is minimized when the di�erence between the

longest and shortest path, �D, is zero. Gates whose delay functions are not equal for rising

and falling output may result in a nonzero �D since the rising sink delay for a given path

may di�er from the falling sink delay along that same path. The relative sizes of the

NMOS transistors and PMOS transistors in the gates are chosen to minimize the rising and

falling delay di�erences. Stacked transistors and parallel conduction paths in CMOS gates

limit the degree to which these delay functions can be equalized.

The Symmetric Fine Tuning Problem [53] is a restricted case of the Fine Tuning Problem

in which the rising delay function of each gate equals its falling delay function. The solution

to this problem is also a solution to the Fine Tuning Problem with a bounded �D.

A related problem, whose solution is also a solution to the Symmetric Fine Tuning Problem

is solved by the delay balancing tools. The Width Minimization Problem is: Given a

weighted acyclic DAG representation of a combinational circuit, �nd a vector of modi�cation

factors, M , such that all paths from the source to sink have delays which do not exceed

Dmax and the total transistor width is minimized. The Width Minimization Problem is:

Minimize W =
X
i

M [i] �W [i]; Such that : (72)

Wmin[i] �M [i] �W [i] � Wmax[i]

D[0; 0] = D[0; 1] = 0

D[N; 0] � Dmax

D[N; 1] � Dmax

If gate corresponding to arc (i,j) is positive unate:

D[i; 1] + flin[i; j; 1](M [x]; Cl[j]) � D[j; 1]

D[i; 0] + flin[i; j; 0](M [x]; Cl[j]) � D[j; 0]

If gate corresponding to arc (i,j) is negative unate:

D[i; 1] + flin[i; j; 0](M [x]; Cl[j]) � D[j; 0]

D[i; 0] + flin[i; j; 1](M [x]; Cl[j]) � D[j; 1]

43

If gate corresponding to arc (i,j) is nonunate:

D[i; 1] + flin[i; j; 1](M [x]; Cl[j]) � D[j; 1]

D[i; 1] + flin[i; j; 0](M [x]; Cl[j]) � D[j; 0]

D[i; 0] + flin[i; j; 0](M [x]; Cl[j]) � D[j; 0]

D[i; 0] + flin[i; j; 1](M [x]; Cl[j]) � D[j; 1]

where flin is a piecewise linear approximation to the monotonically decreasing, convex delay

function f , D[i; 0] is the delay from the source node to node i falling, D[i; 1] is the delay

from the source node to node i rising, Cl[j] is the capacitive load on node j, M [i] is the

width modi�cation factor of transistor i, W [i] is the nominal width of transistor i, Wmin[i]

and Wmax[i] are �xed limits on the width of a transistor, node 0 is the source node, and

node N is the sink node .

The optimal solution to the Width Minimization Problem, M , in which all of the delay

inequality constraints in the problem description are active, i.e. the constraints are at their

limit and are thus equalities, is also a solution to the Symmetric Fine Tuning Problem in

which all paths have a delay of Dmax and �D = 0.

The solution to the Width Minimization Problem with active constraints represents an

accurately balanced circuit. In a design system using parameterizable library cells whose

cell height is �xed and whose cell width is a linear function of the transistor widths the

solution is area e�cient.

3.1.5 Design Process and Simulated Results

The typical design process involves generation of an unbalanced netlist �le with no wiring

capacitances. The unbalanced netlist is �rst rough balanced by the Wong rough balancing

algorithm [53] which inserts bu�ers into paths which have local delay imbalances greater

than a bu�er delay.

The rough balanced netlist is converted to a linear program representation which is solved

using the Simplex method. The solution to the linear program is a vector of width modi�-

cation factors. The solution to the linear program is then slack tested. This test identi�es

all gates which do not have any active delay constraints. These gates are at the upper limit

of the delay that can be achieved through transistor sizing and, for full balance, additional

delay is necessary. More tunable gate modules are substituted for these gates and the �ne

tuning procedure is repeated. The solution to the slack tested linear program is used by the

module generators to produce layout cells. Once layout is completed, a netlist �le which

includes the parasitic capacitances is generated. This netlist is �ne tuned for additional

balance accuracy and the layout speci�c information is generated. Optionally, the circuit

may be iteratively reextracted and �ne tuned to accommodate di�erences in layout.

44

The wave pipelined balancing tool is incorporated into a design environment based on

the Mentor Graphics GDT design tools. The design process for cell generation, design

optimization, layout, and routing is shown in Figure 24.

Fine Balance

Flatten

No Solution
Increase Dmax

Hierarchical Netlist
Gate Delay Models HSPICE Sims

Cell HSPICE netlists

Flat Netlist

Flat Netlist with
Width Factors

Add Loads

Slack Test

Layout

Module Gen

L cellsBalanced Netlist

RouteExtract Cap

Gate Cap Loads

pad output or module
replace all gates with
min width factor &
positive slack for all
inputs to output

L file
L file

Figure 24: Design Process

To test the capabilities of the balancing tool, several demonstration circuits have been

balanced and simulated with HSPICE: a pulse generator, an unbalanced carry generation

circuit, a (4,2) counter circuit, a 16-bit parallel adder, and an 8-bit x 8-bit multiplier.

HSPICE simulations of the circuits were for typical fabrication parameters for a 0.8-micron,

3-level metal CMOS process operating at 25 C.

The counter, adder, and multiplier circuits are typical of arithmetic designs. The carry tree

is an unbalanced NAND and inverter logic structure. The pulse generator is a simple circuit

which relies on di�erences in propagation delay in order to produce a pulse.

45

For these example circuits a static CMOS parameterizable gate library consisting of four

sizes of inverters and three two-input NANDs was used. Balancing results for these circuits

were consistent with a study by Klass [32] which showed that despite a large data-dependent

delay of individual static CMOS gates, circuits designed with static CMOS inverters and

2-input NAND gates exhibit small data-dependent delay variation. These gates were also

easily macromodeled.

Figure 25 is a diagram of the pulse generator circuit prior to rough tuning, following rough

tuning, and after �ne tuning. When this circuit is perfectly balanced by the tool, no pulse is

output. Rough-tuning allows the inputs to the NAND gate to cross the Vdd/2 volt threshold

within 122ps of each other, thereby inducing only a small perturbation of the NAND gate

output. Fine-tuning results in 17ps di�erence in arrival time with no perturbation in the

NAND output.

Original Circuit

Rough Tuned

Fine Tuned

Figure 25: Pulse Circuit Balancing

A (4,2) counter circuit was rough balanced, �ne balanced, and simulated with HSPICE.

Figure 26 is a histogram of the delay of the carry output for all possible pairs of input vectors

which cause a change in the carry output of the unbalanced circuit. The unbalanced circuit

had a maximum delay of 1.64 ns and a delay variation of 970 ps. Figure 27 is a histogram of

the delay of the �ne balanced circuit. The maximum delay through the balanced circuit is

1.73 ns and the maximum delay variation is 370 ps. Because these counters are cascaded, the

fast carry-out output was connected to the carry-in input for the balancing procedure. In the

balancing procedure, the critical path delay of this circuit was increased by approximately

90ps. This increase is due to the simple delay model used by the balancing tool. The

limitations of this method of �ne balancing are discussed in Section 3.1.6.

46

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|
1.2

|
1.3

|
1.4

|
1.5

|
1.6

|
1.7

|
1.8

|0

|8

|16

|24

|32

|40

|48

|56

|64

 Propagation Delay (ns)

 N
um

be
r

of
 V

ec
to

rs

Figure 26: Unbalanced Counter Delay Histogram

The carry generation circuit is shown in Figure 28. This circuit was balanced and simu-

lated with HSPICE. For heuristically chosen critical vectors, the original circuit exhibited

a maximum delay of 1.74 ns and a delay variation of 955 ps. The �ne-tuned circuit had a

maximum delay of 1.74 ns and a delay variation of 250 ps.

The 8x8 multiplier and 16-bit adder used in the wave pipelined vector unit were balanced

with this tool. Balancing included input and output bus capacitive loading. The balancing

details are given in table 4.

3.1.6 CMOS Fine Balancing Limitations

The accuracy of the �ne balancing procedure is limited by several factors: 1) use of the

symmetric �ne tuning problem as an approximation to the �ne tuning problem; 2) the

piecewise approximation of the delay function; 3) the changes in gate delay due to tuning

induced changes in input slew rate; 4) the variation in the delay of a gate due to the state

of other inputs and internal capacitances; and 5) the false path problem.

The false path problem results from the use of logic network topology in the determination

of path delays. Topological delays, which are simply the sum the delays of interconnected

gates, may include \false" paths, i.e. the function realized by the gates or the arrival time

47

|
0.5

|
0.6

|
0.7

|
0.8

|
0.9

|
1.0

|
1.1

|
1.2

|
1.3

|
1.4

|
1.5

|
1.6

|
1.7

|
1.8

|0

|8

|16

|24

|32

|40

|48

|56

|64

 Propagation Delay (ns)

 N
um

be
r

of
 V

ec
to

rs

Figure 27: Fine Balanced Counter Delay Histogram

Multiplier Adder

Max Delay 10.84ns 5.52ns

Delay Variation 1.37ns 0.58ns

Unbalanced No. Trans. 5526 1322

Balanced No. Trans. 6466 1730

Unbalanced Area 1.95sqmm 0.398sqmm

Balanced Area 2.17sqmm 0.451sqmm

Balancing Time 10.94hr 0.62hr

Table 4: Vector Unit Logic Balancing Results

48

a0

a1

a2

a3

b0

b1

b2

b3

ci

co

Figure 28: Carry Generation Circuit

49

of other inputs prevent data from propagating along the speci�ed path. Thus, false paths

tend to result in a pessimistic estimate of critical path delay.

Despite these limitations, this method provides balancing variation of 10% to 20% of max-

imum delay. This accuracy is consistent with the limits of manual balancing methods by

Klass [31]. Higher accuracy in balancing provides diminishing returns, as the wave pipeline

cycle time becomes dominated by other factors [43].

3.2 Wave Pipeline Synchronization

In this section, the synchronization of wave pipelines is examined. To make use of the

performance potential made possible by the minimization of delay variation, the timing

relation between input and output synchronizers must be established. The input and output

clocks for each wave pipeline in a system must meet the constraints 1 and 2. The clock

period and the phase relation between skewed clocks must be speci�ed to ensure the interface

and synchronization of wave pipelines and other synchronous logic in the system.

A dichotomy of wave pipelines is introduced to specify synchronization methods for each

classi�cation of wave pipelined system. Wave pipeline synchronization requires that each

wave pipeline in the system is optimized such that it meets the two sided clock constraints

for a clock with a period determined by the maximum delay variation of all pipelines in

the system. The optimization performed to synchronize the wave pipelines is di�erent from

the optimization performed during balancing. In synchronizing, all paths through the wave

pipeline are adjusted in common or the timing relation between the input and output clocks

are adjusted such that all pipelines operate with the smallest valid system clock period.

The following terminology is used to characterize wave pipelines:

A synchronizing element is a pipeline register or latch.

A synchronizer is a set of one or more synchronizing elements which share a common clock

signal; i.e. there is no constructive skew between synchronizing elements in a synchronizer.

A wave pipeline consists of a combinational logic network and two sets of synchronizers,

input synchronizers and output synchronizers. The combinational logic network is a set of

all paths between adjacent synchronizers. The input synchronizers are those which provide

input data to the combinational logic. The output synchronizers are those which store the

output of the combinational logic.

A monoharmonic wave pipeline is a wave pipeline in which all paths through wave pipeline

i can support up to Ni waves of data. All inputs share a common reference clock and all

outputs share a common reference clock. Previous research [12, 21, 27, 6] has concentrated

on this classi�cation of wave pipelines.

A polyharmonic wave pipeline is a wave pipeline in which the paths through wave pipeline

50

i can be divided into j sets of paths each of which can support up to N
j
i waves of data.

Figure 29 illustrates three important examples of polyharmonic wave pipelines: parallel

wave pipelines, forward receiving wave pipelines, and forward generating pipelines.

Parallel wave pipelines result when common input and output synchronizers are used to

source data to and store data from separate combinational logic paths. For instance, in

the vector unit described in chapter 4 the multiplier and adder share common input and

output synchronizers. The propagation delays through the multiplier is approximately

twice that of the adder, and thus the number of waves supported by the multiplier paths

are approximately twice that of the adder paths.

The forward generating and receiving wave pipelines occur in interfacing of wave pipelines to

other wave pipelines or traditional synchronous circuits. These polyharmonic wave pipeline

results when inputs and/or outputs have more than one reference clock. In the forward

generating case, intermediate results are output from of the combinational logic such that

the number of waves in the paths to the intermediate results di�ers from the number of

waves in the paths to the primary outputs. In the forward receiving case data is input

into the wave pipeline such that the paths from the forward inputs to the primary outputs

support fewer waves of data than the paths from primary inputs to primary outputs.

(b) Forward Generating(a) Parallel Pipes (c) Forward Receiving

Figure 29: Example Polyharmonic Wave Pipelines

A wave pipeline with feedback is a wave pipeline in which there exists a path from the output

of the wave pipeline through any number of synchronizers to the input of the wave pipeline.

Ekroot [12] developed a method of ensuring correct wave pipeline operation at a minimum

clock period for monoharmonic wave pipelines and multistage systems of monoharmonic

51

wave pipelines with feedback. With this method, solutions to linear program represen-

tations of the circuit optimizations specify the amount of intentional delay inserted into

the combinational logic and the amount of constructive clock skew for each register which

achieves the minimum clock period. This method restricts wave pipelines to using edge

triggered registers and to common input registers for all inputs and outputs.

Extending the work of Fishburn [15] on clock skew optimization, Joy and Ciesielski [27] have

formulated the optimization of constructive clock skew so as to minimize the clock period of

register-based wave pipelined systems as a linear program. This method does not constrain

the wave pipeline to a common input clock. Gray, et. al. [21] using similar formulations for

skew optimization include feedback for register-based multistage wave pipelined systems.

These clock optimizations to not employ intentional delay insertion.

Synchronization methods for wave pipelines of increasing complexity will be examined in

the following sections. Edge triggered synchronizers are considered in this analysis.

3.2.1 Monoharmonic Wave Pipelines Lacking Feedback

For wave pipelined systems in which each wave pipeline support only one number of con-

current waves and none of the wave pipelines have feedback, two methods of optimization

for wave pipeline synchronization can be used: constructive clock skew and path delay

insertion.

The two sided limit on the clock period of a wave pipeline must be satis�ed for each wave

pipeline i in a wave pipelined system design:

P i
max + �P i

max +H i
max � csi

Ni

� Tclk �
P i
min + �P i

min �H i
min � csi

Ni � 1
(73)

H i
max is the worst case maximum synchronizer overhead:

H i
max = �C + T i

s +
RF i

max

2
+ T i

synch (74)

H i
min is the worst case minimum synchronizer overhead:

H i
min = �C + T i

h +
RF i

min

2
� T i

synch (75)

i spans the range of all wave pipelines in the system. csi is the amount of constructive

clock skew between the input and output synchronizers. The magnitude of the clock skew

is less than the clock period, and the sign of csi is positive if the output clock lags the

input clock and negative otherwise. �P i
max is the amount of intentional path delay added to

each path between input and output synchronizers under worst case operating conditions.

�P i
min is the same intentional path delay under best case operating conditions. The latter

two quantities are always positive.

52

Without constructive clock skew and intentional path delay, the minimum clock period

which satis�es the constraints may not be limited by the maximum propagation delay

variation. The valid clock intervals are not continuous for wave pipelines in which there is

delay variation in the combinational logic and/or clock overhead.

Optimization of the wave pipeline circuits, via constructive clock skew and combinational

logic delay modi�cation, can be used to achieve the minimum clock period. The minimum

clock period, that which is determined by the delay variation is:

T
opt
clk = max(P i

max +H i
max � P i

min +H i
min) (76)

This clock period can be achieved through constructive clock skew and intentional delay

insertion when the skew and added delay have no variation.

Insertion of additional path delay into each path can be used to ensure that the output

register timing constraints are met. The bounds on the additional intentional path delay,

�P i
max and �P i

min, for each wave pipeline i can be determined:

�P i
min � (Ni � 1)T

opt

clk � (P i
min �H i

min) (77)

�P i
max � NiT

opt
clk � (P i

max +H i
max) (78)

The number of waves, Ni, is:

Ni = d
P i
max +H i

max

T
opt
clk

e (79)

For wave pipelines without feedback, constructive clock skew can also be used to ensure

that the output register timing constraints are met. The constructive clock skew, csi, can

be determined:

csi � (P i
min �H i

min)� (Ni � 1)T
opt
clk (80)

csi � (P i
max +H i

max)�NiT
opt
clk (81)

The number of waves, Ni, is:

Ni = b
P i
max +H i

max

T
opt

clk

c (82)

Figure 30(a) is an example of a system of monoharmonic wave pipelines with no feedback.

Without optimization, the minimum clock period ignoring clock overhead is 3.25ns which

is greater than the optimal clock period of 3ns. Figure 30(b) shows the same system which

53

has been optimized through intentional delay insertion. This solution achieves a cycle time

of 3ns at the cost of 3ns of additional latency. Figure 30(c) shows the same system which

has been optimized through constructive clock skew. This solution achieves a cycle time of

3ns. The cost of this solution is a reduction of 2ns the allowable delay of any circuit which

uses the output of the �nal synchronizer.

(a) unoptimized

11ns min
13ns max

10ns min
13ns max

11ns min
13ns max

10ns min
13ns max

(b) delay insertion

delay=1

delay=2

(c) clock skew

11ns min
13ns max

10ns min
13ns maxcs=1

cs=1

Figure 30: Monoharmonic Wave Pipeline without Feedback Optimization

For monoharmonic wave pipelines without feedback, the constructive clock skew solutions

found by the linear program methods of Grey, et. al. [21] and Joy and Ciesielski [27] will

satisfy the clock skew limits 81 and 80. The intentional path delay found by the linear

program method of Ekroot [12] will satisfy the limits 77 and 78.

While the constructive clock skew method does not increase wave pipeline latency, it does

increase the complexity of clock distribution and wave pipeline interface. The intentional

path delay method increases wave pipeline latency but does not add complexity to clock

generation and distribution or interface.

3.2.2 Polyharmonic Wave Pipelines Lacking Feedback

In a polyharmonic wave pipeline, separate paths between an input and output synchronizer

may support di�erent numbers of waves. The clock interval constraints must be satis�ed

for all paths. A polyharmonic wave pipeline can be synchronized using intentional path

delay or a combination of intentional path delay and constructive clock skew.

54

To optimize the performance of a polyharmonic wave pipeline which does not have feed-

back, the following procedure is used. The maximum propagation delay from the input

synchronizer to output synchronizer, denoted by Pmax
max , is determined. If P

max
max is in the set

of paths which can support N i waves, in the constraint analysis, a delay term, XijT
opt
clk , is

determined for all paths which support fewer than N i waves. This term represents the max-

imum integer number of clock periods by which the maximum propagation delay through

the wave pipeline exceeds the path under consideration. The di�erence in the number of

harmonics between paths i and j, Xij , is an integer bounded by:

P i
max � P j

max +H i
max �Hj

max � �P j
max

T
opt

clk

� 1 � Xij (83)

and,

Xij �
P i
max � P j

max +H i
max �Hj

max � �P j
max

T
opt
clk

(84)

Once the di�erence in the number of waves supported by the path under consideration and

the maximum delay path is determined, the intentional delay added to each path, �P j
max,

is found. Thus, for each path the bounds on the intentional delay introduced which ensures

synchronization is:

P j
max + �P j

max +Hj
max � cs

N i �Xij

� T
opt
clk �

P
j
min + �P

j
min �H

j
min � cs

N i � 1�Xij

(85)

Thus, for each path the bounds on the intentional delay introduced which ensures synchro-

nization is:

�P
j
min � (N i �Xij � 1)T

opt
clk � (P

j
min �H

j
min) (86)

�P j
max � (N i �Xij)T

opt

clk � (P j
max +Hj

max) (87)

Intentional clock skew can be used to reduce the amount of intentional path delay in cases

where all paths in a polyharmonic wave pipeline share a common input and output syn-

chronizer and have nonzero intentional path delay.

Figure 31 is a polyharmonic wave pipeline: two combinational logic blocks share input and

output registers. The delays through these units are signi�cantly di�erent and it is advan-

tageous to have a di�erent number of concurrent waves in each block. Since they share

clocks, the clock period constraints 73 must be satis�ed for both pipelines. In Figure 31(a)

55

assuming no clock skew nor register overhead, the minimum clock period is 5ns. By length-

ening the delay through the long pipe so as to be a multiple of the minimum clock period

of the longer pipe, as shown in 31(b), the optimal clock period of 3ns can be achieved. Fig-

ure 31(c) demonstrates the use of both intentional delay insertion and constructive clock

skew to optimize performance.

(a) unoptimized

10ns min
13ns max

3ns min
5ns max

(b) delay insertion

10ns min
13ns max

3ns min
5ns max

delay=2

(c) delay insertion, clock skew

10ns min
13ns max

3ns min
5ns max

delay=1

cs=1

Figure 31: Polyharmonic Wave Pipeline without Feedback Optimization

The balancing method presented in Section 3.1 allows for the insertion of intentional delay

for synchronization. Delay bu�ers are inserted and device geometries are adjusted such that

all path delays are increased by the necessary delay. Since the adjusted pipelines may have

a delay variation which violates the minimum clock period constraint, the delay variation

of each pipe must be reveri�ed. A polyharmonic wave pipeline exists in the vector unit:

The vector register output is supplied to either the adder or multiplier, operated upon, and

returned to the vector register �le. The register read and write for both types of operations

are performed with reference to a common clock. The delay through the multiplier is

approximately double that through the adder. This optimization technique was employed

to tune the delay of the demonstration vector unit's adder output bu�ers to ensure proper

wave pipeline synchronization.

3.2.3 Monoharmonic Wave Pipelines with Feedback

Feedback in a monoharmonic wave pipeline does not a�ect optimization based upon inten-

tional path delay insertion. It does, however, complicate optimization using constructive

clock skew. Skew introduced between the input and output synchronizer of any sequential

circuit changes the timing relation between the input synchronizer and output synchro-

nizer and also changes the relation between the output synchronizer and the subsequent

synchronizer along any path.

For monoharmonic wave pipelines with feedback, the clock period due to delay variation is:

56

T
opt
clk = max(P i

max +H i
max � P i

min +H i
min) (88)

For wave pipelines with feedback, constructive clock skew with intentional delay insertion

can be used to ensure that the output register timing constraints are met. The constructive

clock skew, csi, can be determined:

csi � (P i
min �H i

min)� (Ni � 1)T
opt

clk
(89)

csi � (P i
max +H i

max)�NiT
opt
clk (90)

The number of waves, Ni, is:

Ni = b
P i
max +H i

max

T
opt

clk

c (91)

To ensure the synchronization of the feedback signals, intentional path length delay may be

required. The amount of intentional delay is found by the following procedure. Construct

a directed graph G with jV j vertices and jEj edges. Where each vertex vi corresponds

to synchronizer i, and each edge eij corresponds to the existence of a combinational logic

connection without a intervening synchronizer from synchronizer i to synchronizer j. A

weight wij = csi is attached to each arc. The amount of delay necessary at each feedback

point of wave pipeline i is found by determining the amount of additional weight added to

the feedback arc of the graph to make the sum of the weights around the closed path which

includes that feedback path equal to zero and computing the residue of that quantity with

respect to the clock period.

�P i
max = (�1 �

X
loop

wab) mod T
opt
clk (92)

Figure 32 demonstrates optimization of an example monoharmonic wave pipeline with feed-

back. In Figure 32(a), the unoptimized circuit the minimum clock period is 7ns, signi�cantly

greater than the optimal value of 3ns. Figure 32(b) shows the skew graph constructed for

this circuit. Figure 32(c) shows the optimized circuit which through intentional delay in-

sertion and constructive clock skew is able to achieve the optimal clock period of 3ns.

This method achieves the delay variation limited clock period at the expense of additional

latency in the feedback paths.

57

(a) unoptimized

4ns min
7ns max

10ns min
13ns max

A

B

1 1

(b) skew graph (c) optimized

4ns min
7ns max

10ns min
13ns maxcs=1

delay=1

B

A A

B

Figure 32: Monoharmonic Wave Pipeline with Feedback Optimization

3.2.4 Polyharmonic Wave Pipelines with Feedback

Feedback in a polyharmonic wave pipeline does not a�ect optimization based upon inten-

tional path delay insertion. It does, however, complicate optimization using constructive

clock skew. Like the monoharmonic case, this is because a skew introduced between the

input and output synchronizer of any sequential circuit changes the timing relation between

the input synchronizer and output synchronizer and also changes the relation between the

output synchronizer and the subsequent synchronizer along any path.

For optimization using intentional propagation delay and constructive clock skew the follow-

ing procedure is used for polyharmonic wave pipelines with feedback. First, the variation

constrained clock period is determined:

T
opt

clk = max(P i
max +H i

max � P i
min +H i

min) (93)

Next, the intentional path delay necessary to balance the maximum e�ective propagation

delay of each path is found. If maximum propagation delay from the input synchronizer to

output synchronizer, denoted by Pmax
max , is in the set of paths which can support N i waves,

a delay of XijT
opt
clk + �P j

max is introduced in the constraint inequalities for each path with

number of waves N j, j 6= i. As in the polyharmonic wave pipeline without feedback, the

58

term XijT
opt
clk is the maximum integral number of clock periods by which the longest path

through the wave pipeline exceeds the path under examination.

The di�erence in the number of harmonics between paths i and j,Xij , is an integer bounded

by:

P i
max � P j

max +H i
max �Hj

max � �P j
max

T
opt
clk

� 1 � Xij (94)

and,

Xij �
P i
max � P j

max +H i
max �Hj

max � �P j
max

T
opt
clk

(95)

The intentional delay added to each path, �P j , is such that the maximum e�ective delay of

each path is equal.

P i
max +H i

max = P j
max +Hj

max +XijT
opt
clk + �P j (96)

At this point, all paths through the polyharmonic wave pipeline have the same e�ective

maximum delay, and the procedure for optimizing monoharmonic wave pipelined systems

can be used to determine the constructive clock skew and intentional path delay necessary

to achieve the optimal clock period.

Figure 33 demonstrates optimization of an example polyharmonic wave pipeline with feed-

back. In Figure 33(a), the unoptimized circuit the minimum clock period is 7ns, signi�cantly

greater than the optimal value of 3ns. Figure 33(b) shows the delay insertion step to equal-

ize the polyharmonic wave pipeline. Figure 33(c) shows the optimized circuit which through

intentional delay insertion and constructive clock skew is able to achieve the optimal clock

period of 3ns.

As in the previous case, this method may increase latency to improve the system clock rate.

In synchronizing the wave pipelines any variation in the intentional delays added to the

wave pipelines and any variation in the constructive clock skew methods will impact the

cycle time of the system. Thus, the achievable clock period is increased by these variations.

3.3 Process and Environmental Delay Compensation

As shown in Sections 2.3.3 and 2.3.4 run-to-run process variation can result in a maximum to

minimum delay of 1.35x, temperature variation can result in a maximum to minimum delay

of 1.3x, and supply variation 1.2x. Coupled noise can result in a maximum to minimum of

59

(c) delay insertion, clock skew(a) unoptimized

10ns min
13ns max

3ns min
5ns max

6ns min
7ns max

(b) equalizing delay insertion

10ns min
13ns max

3ns min
5ns max

delay=2 Xij=2

.

.

.

10ns min
13ns max

3ns min
5ns max

delay=2

cs=1

6ns min
7ns max delay=1

Figure 33: Polyharmonic Wave Pipeline with Feedback Optimization

as high as 1.13x if the output bu�er delay is 25% of the path delay, the bu�er interconnect

capacitance equals the bu�er load gate capacitance, and the mutual capacitance between

wires is 50% of the interconnection capacitance.

Unless these variations are controlled or their e�ects compensated the maximum number

of waves, or speedup, for a perfectly balanced wave pipeline is 1.7. This section describes

methods by which the delay variations can be controlled or their e�ects compensated.

3.3.1 Sorting

One method of compensating for the variation in delay due to process variation is sorting.

Unlike traditional synchronous circuit sorting where a bin sorted IC will run at any clock

frequency below the bin upper limit, subject to the limits of any dynamic logic in the design,

wave pipeline sorting is range sorting. Due to the two-sided limit on the valid clock period

of a wave pipeline, sorting for wave pipelines involves determination of the valid range of

clock periods given the particular device fabrication process of each VLSI device. By range

sorting, the e�ects of process variation between dice can be minimized. Cross die spatial

variations in process parameters, however, must be accounted for in the determination of

the clock period.

Due to the relatively narrow range of valid clock periods for aggressive wave pipelines, range

sorting is not a desirable method of accounting for delay variation due to manufacturing

60

process.

Table 5 demonstrates the di�culties in sorting for wave pipelines. For three wave pipelines

operated up to their maximum clock period the valid range of clock period for the fastest and

slowest expected processes are given. The pipelines are assumed to have the maximum delay

through the pipeline is much greater than the clock overheads Hmax and Hmin. Inclusion

of the clock overheads narrows the valid ranges even more. The three wave pipelines have

(a) no path length variation, (b) maximum path/minimum path = 1.1, and (c) maximum

path/minimum path = 1.2. All pipelines are assumed to have environmental variation due to

spatial variation in process parameters, temperature variation, voltage variation, and noise

such that the process and environment variation factor, �, is 1.3. The minimum propagation

delay of the wave pipeline is 20ns. In addition, on the slowest die the propagation delays

of each path are 1.3-times as slow as on the fastest die, i.e. �proc = 1:3. This table shows

the valid operating ranges of the fastest and slowest expected dice o� the line.

valid clk interval as fastest die slowest die

� Waves % of avg clk period oper range oper range

1 2 42.4% 50 to 76.9 MHz 38.5 to 59.2 MHz

3 14.3% 100 to 115.4 MHz 76.9 to 88.8 MHz

4 2.5% 150 to 153.8 MHz 115.4 to 118.3 MHz

1.1 2 33.2% 50 to 69.9 MHz 38.5 to 53.8 MHz

3 4.8% 100 to 104.9 MHz 76.9 to 80.7 MHz

1.2 2 24.7% 50 to 64.1 MHz 38.5 to 49.3 MHz

Table 5: Sorting Example

For each wave pipeline, as the number of waves supported is increased, the valid operating

range of the pipeline is diminished. In turn, the number of divisions into which the dice

must be sorted increases. For instance, if the �rst wave pipeline supports two waves, the

operating frequency range of 50-59.2MHz is valid for all dice and no sort is necessary. If

this pipeline is operated with 3 waves, the operating ranges for the fastest and slowest

dice do not overlap. For this example, sorting into at least three frequency ranges would

be necessary to capture the operating ranges of all dice. If this pipeline is operated with

4 waves, sorting into at least seven frequency ranges would be necessary to capture the

operating ranges of all dice.

The minimum number of ranges into which wave pipelined dice must be sorted is approxi-

mately:

Bins �

N
��Pmin

� N�1
�procPmin

2 � (N
���procPmin

� N�1
�procPmin

)� CLKinterv

(97)

61

The term �proc is the process degradation factor for the slowest fabricated die. The term

CLKinterv is the width of operating clock period of each bin. This width cannot exceed

the minimum valid clock frequency range of the wave pipeline. For example, if the above

pipeline is operated with 4 waves, the minimum valid clock frequency range is 2.9 MHz;

thus, each bin can have at most a 2.9MHz width. Assuming that each bin must have a

width of 2MHz, the center frequency of the ten bins are: 117.3, 121.1, 124.9, 128.7, 132.5,

136.3, 140.1, 143.9, 147.7, and 151.5MHz.

The narrowing of the valid clock interval as wave pipeline performance is increased and the

resulting increase in the number of sorting ranges makes frequency sorting impractical for

high performance wave pipeline ICs.

3.3.2 Tunable Constructive Clock Skew

A second method of compensating for static delay variation in wave pipelined circuits is

through the use of tunable clock skew between the input and output synchronizer clocks

of wave pipeline. Fan, et. al. [14] used a laboratory tunable skew between the input and

output clocks of their wave pipelined adder to counteract static process induced variation.

The constructive skew necessary to account for the static variation in delay due to process

variation for wave pipeline i is:

csi = (�proc � 1)P i
max (98)

where �proc is the ratio of the delay of the critical path on a particular die to the delay of

the same path fabricated with the fastest expected process.

This method, while appropriate for laboratory experiments is not practical for systems

with several wave pipelines, as the clock skew mechanism for each wave pipeline must be

externally accessible and controllable. In addition, wave pipelines with feedback present

additional problems due to the interrelation of clocks.

3.3.3 Biased Logic

A method for compensation of static delay variation employed by Fan, et. al. [14] is biased

logic. In this compensation method, pseudo-NMOS gates are used for all logic in the wave

pipeline. The gate of the PMOS load transistor is driven by a bias voltage which is set so

as to counteract the variation in delay due to process variations. As a result of the biased

PMOS transistor, this method has the circuit problems associated with NMOS circuits:

the need to ratio the sizes of the NMOS and PMOS transistors so as to be able to drive

the output of the gate su�ciently low, a reduction in noise margins, and static power

consumption. In addition, the routing of the bias voltage may increase VLSI area.

62

An alternative to the biased pseudo-NMOS logic is biased CMOS logic in which series

transistors are added to the pull-up and pull-down transistor networks for each gate. The

gates of the series transistors in the pull-up network and pull-down network are driven by

separate bias voltages. The bias voltages are set so as to compensate for the static delay

variations due to process. This method does not su�er from the ratioing, noise margin,

and power consumption problems of the biased pseudo-NMOS method, but the additional

transistors signi�cantly increase the area of the logic gates and degrade the nominal speed

of the gates.

Biased pseudo-NMOS and biased CMOS NAND gates are shown in Figure 34.

In A

In B

Bias

Out

(a) Biased Pseudo-NMOS (b) Biased CMOS

In A

In B

PMOS Bias

Out

NMOS Bias

In A In B

Figure 34: Biased Logic Gates

3.3.4 Driver Current Starving

A method related to the biased logic methods is driver current starving. This method

relies on the tuning of the delay of a subset of the logic in the wave pipeline to counteract

the process induced variation in the logic. A bias voltage is applied to current starving

transistors in the output drivers of the wave pipeline. One of many examples of the use of

current starving is the phase-locked clock generator circuit of Jeong, et. al. [24].

Figure 35 illustrates the use of current starved drivers.

Chapter 2 results indicate that the ratio of propagation delay between the slowest and

fastest process can be at least 1.4. Because the current starving is used on a subset of

the gates in the combinational logic, in order to compensate for this process-dependent

63

(a) WP with current starved driver (b) Current starved driver

Out

Bias

In

Current Starved
Drivers

Combinational
Logic

Bias

Figure 35: Compensation Using Current Starved Driver

delay variation, the current starved bu�ers must have a wide delay tuning range. Figure 36

illustrates a tuning range of 200ps to 1600ps. If a current starved bu�er has a tuning range

of Pbuf to r � Pbuf in the fastest expected process, it can compensate for process variations

for all circuits with a maximum propagation delay with the fastest expected process of:

Pmax �
r � �proc

�proc � 1
Pbuf (99)

The bu�er shown in Figure 36 with �proc = 1:4 can compensate for process variation for

wave pipelines with maximum propagation delay up to 3.3ns. For longer wave pipelines,

current starved bu�ers can be cascaded.

Use of current starved bu�ers for compensation require the routing of a bias voltage signal

and may increase critical path delay, particularly if multiple levels of bu�ers are required.

The steep slope of the delay curve in Figure 36 indicates that this method is sensitive to

noise on the bias voltage line.

3.3.5 Driver Voltage Controlled Load

A voltage controlled load can be used much as in current starving. This method changes

the e�ective load capacitance through shunting transistors. The e�ective load is determined

by the bias voltage applied to the gates of the shunt transistors. Like the current starving

method, the range of delay modi�cation is limited. Johnson and Hudson [25] used this

method in a delay line phase-locked loop for synchronization of a cpu and coprocessor.

64

|
1.00

|
1.50

|
2.00

|
2.50

|
3.00

|
3.50

|
4.00

|
4.50

|
5.00

|0

|200

|400

|600

|800

|1000

|1200

|1400

|1600

 Bias Voltage (V)

 P
ro

p
D

el
ay

 (
ps

)

Figure 36: Delay Tuning Range of a Current Starved Driver

Figure 37 illustrates the use of a driver with a voltage controlled load. Figure 38 shows a

tuning range of approximately 300 to 2000ps of a single stage of a driver with a voltage

controlled load. Applying equation 99, a single level of bu�ers with a voltage controlled

load can compensate for process for wave pipelines with a critical path of up to 4 ns.

As in the case of the current starved bu�er, multiple bu�ers with a voltage controlled load

can be cascaded. The voltage controlled load method requires the routing of a bias voltage,

requires additional die area for the load transistors, is susceptible to bias noise, and may

increase critical path delay.

3.3.6 Thermal Control

Intentional control over transistor temperature can be used to compensate for both static

and dynamic delay variation. In this method, resistive elements are used to modify the die

temperature so as to regulate the delay of the logic. Branson, et. al. [4] used this method

of delay compensation in the timing vernier circuit for a CMOS circuit tester.

Figure 39 illustrates the use of a thermal control for delay compensation.

As shown in Section 2.3.4, elevating the temperature from 25 C to 100 C results in an

65

(a) WP with voltage controlled load (b) Voltage controlled load driver

Out

Bias

In

VC Load
Drivers

Combinational
Logic

Bias

Figure 37: Driver with Voltage Controlled Load

|
1.00

|
1.50

|
2.00

|
2.50

|
3.00

|
3.50

|
4.00

|
4.50

|
5.00

|0

|200

|400

|600

|800

|1000

|1200

|1400

|1600

|1800

|2000

 Bias Voltage (V)

 P
ro

p
D

el
ay

 (
ps

)

Figure 38: Delay Tuning Range of Voltage Controlled Load Driver

66

Combinational
Logic Thermal

Control

Figure 39: Thermal Controlled Delay Compensation

increase in propagation delays by a factor of 1.3. Thus, while this method can maintain a

constant die temperature and thereby eliminate the variation in delay due to the tempera-

ture increases which would result from device switching, there is insu�cient range of tuning

to compensate for the variation in process parameters.

3.3.7 Supply Voltage Control

An attractive alternative to counteract the e�ects of process variation and temporal tem-

perature variation is the adaptive supply voltage method. Figure 40 illustrates the use of

power supply voltage control for delay compensation.

Combinational
Logic

Supply
Voltage
Control

DC/DC
converter

Chip Vdd

Figure 40: Power Supply Voltage Delay Compensation

To compensate for the propagation delay variation, the supply voltage is adjusted to a level

which maintains the target delays. By applying equation 20, the power supply is set to:

V �
V0

�
(100)

Since � can be approximately two, the voltage supply may need to be set as low as half of

67

the nominal supply level.

This method can be used to compensate for dynamic changes in delay, by adaptively ad-

justing the voltage supply of the wave pipelined logic so as to maintain circuit delays at

their design targets. This adaptive method is capable of compensating for delay a�ecting

changes for which the variation occurs with time constants greater than the closed-loop

bandwidth of the adaptive circuit.

The adaptive circuit consists of a delay error detector and a supply voltage converter. Delay

error detection is performed by phase comparing a signal with a voltage-controlled delayed

version of the same signal. A �xed frequency source is applied to the input of an inverter

chain whose delay has been set to half the source period when the chain is fabricated with

the slowest anticipated fabrication. The chain input and output are phase compared. In

the open loop control, if the phase di�erence exceeds a threshold, an external indication is

toggled to indicate the device is running too fast and the power supply is lowered.

In a closed loop adaptive supply circuit, the phase error is used to charge or discharge a

charge pump capacitor. In each adaptation cycle, a �xed amount of charge is added to or

removed from the charge pump depending on whether the delay chain is longer or shorter

than the design target.

The supply voltage converter consists of two parts, the delay chain supply, and the chip

supply. A unity gain ampli�er drives the charge pump voltage to the Vdd supply rail

of the inverter chain. The supply rail thus is modi�ed until the delay matches the design

target. For small wave pipelined circuits, all circuitry can be driven by an on chip converter.

For larger circuits the output of the error detector circuit is used to drive an o�-chip dc-

to-dc converter. Appendix C shows simulations for a closed-loop adaptive supply for the

demonstration chip. Figure 41 details the e�ectiveness of the power control method for

compensation of process variation. For each process run from Section 2.3.3, the simulated

delays are shown with the supply at Vdd=5V and at the voltage determined by the constant

delay circuit. Without compensation the maximum to minimum delay variation is 1.35x.

With the compensation that ratio is 1.04x.

Because of the area and power e�ciency of this method and its range of delay variation

compensation, this method was employed in the wave pipelined vector unit system developed

in this research. It is further described in Section 4.1.7.

Several di�culties exist in the use of an adaptive supply. Logic which is designed to switch

at set voltages or which rely on voltage references and logic in which transistor threshold

drops are allowed may not operate properly with a lowered power supply level. In addition,

adaptive modi�cation of power supply levels may increase the probability of CMOS latch-up

and may result in static power consumption at interfaces with circuitry driven with nominal

voltage power supplies.

68

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|4.0

|4.5

|5.0

|5.5

|6.0

|6.5

|7.0

 Process - Fabrication Run

 C
ha

in
 P

ro
p

D
el

ay
 (

ns
)

4.8V 4.8V 4.5V 4.0V 4.8V 3.7V 5.0V

�
�

�

�

�

�

�
� �

�
�

�

�

Figure 41: Power Supply Voltage Delay Compensation

3.4 Summary

This chapter detailed design techniques for the optimization of the performance of wave

pipelines. A method of minimizing the path imbalance in the design of CMOS wave

pipelined circuits based upon transistor sizing was developed. This method is an exten-

sion of the Wong method for balancing CML logic networks [53]. The optimization uses a

topological model of the circuit and macromodels of gate delay based upon HSPICE sim-

ulations to generate a linear program representation of the transistor sizing problem. For

several representative circuits this method of delay balancing has optimized the circuits

such that the path delay and data dependent delay variation are limited to the 0% to 20%

range. Klass [29] has shown that for similar circuits, the best manual balancing methods

exhibit path delay and data dependent delay variation of up to 15% to 20%.

Further performance potential may be lost in wave pipelining due to the di�culty of operat-

ing all wave pipelines in a system at a common clock frequency. Circuit optimizations which

use intentional delay insertion and/or constructive clock skew can be used to minimize the

performance impact of synchronization of wave pipelines within a system.

The variations in delay due to process and operating environment impose severe limits on

the performance of CMOS wave pipelined circuits. Several means of minimizing the varia-

tions or the performance e�ects of these variations were presented in this chapter. Frequency

69

sorting was shown to be signi�cantly more constrained for wave pipelines than for conven-

tional pipelined circuits. For high performance wave pipelines sorting was demonstrated

to be impractical. Delay compensation methods were evaluated. The tunable clock skew

compensation method is impractical for a VLSI system in which multiple wave pipelines

which are part of a synchronous system with feedback because of the need to individually

skew each clock and because of the interrelation of clocks in a system with feedback. The

biased logic methods su�er from area penalties and/or power consumption and noise margin

problems. Methods based upon tunable delay bu�ers or thermal compensation su�er from

limited range of delay adjustment. The adaptive power method provides su�cient range

of delay adjustment, does not increase logic area, and can lower power consumption while

compensating for fabrication process and temperature dependent delay variations.

The techniques for the optimization of the performance of wave pipelines allow systems of

CMOS wave pipelines to be implemented in VLSI ICs. The following chapter describes the

demonstration processor developed in this research.

70

4 CMOS WP System: VLSI Vector Unit IC

To demonstrate the techniques and tools developed as part of this research a CMOS wave

pipelined VLSI integrated circuit was designed. The system implemented is a wave pipelined

vector processor unit. This device demonstrates that wave pipelined CMOS VLSI systems

can be designed to perform within the performance limits described in Chapter 2. This

system integrates and synchronizes multiple heterogeneous wave pipelines. It includes both

wave pipelined functional units and memories. It was designed with the assistance of auto-

mated CAD balancing tools. It contains adaptive power supply support for the maintenance

of wave pipelined operation over a range of operating conditions and fabrication tolerances.

4.1 Vector Unit Architecture

The VLSI vector unit consists of a wave pipelined 8-bit x 8-bit unsigned multiplier, a wave

pipelined 16-bit parallel adder, a wave pipelined vector register �le, a scoreboard to ensure

proper operation, a store bu�er to interface with an external memory bus, instruction and

input data bu�ers, and decode and issue logic. Test and power supply control support logic

are also included. Figure 42 shows the organization of the VLSI vector unit. Wave pipelined

logic is shaded in this �gure.

4.1.1 Parallel Adder

The adder is a modi�ed version of a Brent and Kung parallel adder [5, 14]. It operates

on 16-bit unsigned operands and produces a 16-bit unsigned result. Figure 43 is a block

diagram of the adder circuit. In this �gure, the shaded blocks, the GenerateDelay and

Propagate=GenerateDelay, are necessary to balance delays through the adder. The open

blocks, the Propagate and Propagate=Generate, are the Brent and Kung adder computa-

tional logic blocks.

Module selection and balancing for the adder were done using the wave pipelining design

tools. Wave pipelining of the adder resulted in a 15% increase in the area of the adder. The

GenerateDelay and Propagate=GenerateDelay gates added an additional 12% to the area

of the adder. Delay balancing through CMOS transistor sizing resulted in an additional 3%

area penalty.

The maximum propagation delay through the adder is 5.5ns. The path length variation is

0.6ns.

71

16+16b
Adder 8bx8b

Multiplier

16 word
Load
Unit

16 word
Store
Unit

Vector Register File

16 x 16b

Data Out
Bus (16b)

Data In
Bus (16b)

Vector
Instr.
Buffer
(8 instr)

Decode,
Control,
and
Scoreboard

Figure 42: Vector Unit Organization

72

bf af b1 a1 b0 a0

GPGPGPGPGPGPGPGPGP GPGPGPGPGP GP GP

GPGPGPGPGPGPGPGP

GP GP GP GP GP GP GP GP

GPGPGPGPGPGPGPGP

GP GP GP GP GP GP GP GP

Sum Sum

Sf S1 S0

Sum

P[i,j]=P[i-1,j]*
P[i-1,j-j mod 2^n -1]

G[i,j]=G[i-1,j] +
P[i-1,j]*
G[i-1,j-j mod 2^n -1]

S[j]=G[n,j-1] xor P[j]

P[j]=a[j] xor b[j]
G[j]=a[j] * b[j]

Delay
P[j]

G Delay

PG Delay

Figure 43: Parallel Adder Organization

4.1.2 Parallel Multiplier

The parallel multiplier circuit operates on 8-bit unsigned operands and produces a 16-bit

unsigned product. The parallel multiplier consists of three logic blocks: the partial product

generators, the partial product reduction logic, and a �nal parallel adder. Figure 44 details

the organization of the partial product generation and reduction logic. The �nal parallel

adder is equivalent to the parallel adder circuit used in the add functional unit. The

organization of the �nal parallel adder is shown in Figure 43.

Each partial product is formed through the logical ANDing of a multiplier bit and a multi-

plicand bit. Eight rows of eight partial product generators are shown in Figure 43. Booth

recoding of the partial products is not employed in this multiplier.

The partial product reduction logic transforms the array of partial product bits into a re-

dundant binary form of the product. The redundant binary form of the product is converted

to the simple binary result by the �nal parallel adder. The partial product reduction logic

consists of two levels of (4,2) counters. In the �rst level, one set of eleven counters com-

presses from one to four bits of partial product in each of the eleven columns of binary

precedence formed by the multiplication of multiplicand by the least signi�cant four bits of

the multiplier while another set of eleven counters reduce the partial product bits formed

by the multiplication of the multiplicand by the most signi�cant four bits of the multiplier.

73

The outputs of the two sets of counters are reduced in the second level of the reduction

logic by a set of sixteen counters.

Carry Lookahead Adder

(4,2) Counters

Carryout
Delay

Partial Prod
Generation

Ai Bj

PPij

a0a1a2a3a4a5a6a7

b0

b1

b2

b3

b4

b5

b6

b7

Figure 44: Parallel Multiplier Organization

Figure 45 is a schematic of the (4,2) counter used in this design. This circuit counts the

number of the inputs A, B, C, D, and Cin which are asserted. This count is output in a

redundant binary form in the sum output, which gives the count in the same precedence

column as the input bits, and two carry outputs, which represent the portion of the count

in the next higher precedence column.

The shaded inverters in Figure 45 are delay elements inserted by the rough-tuning pass of

the delay balancing tool.

74

A
B

C
D

Ci

SumCarry

Co

Figure 45: (4,2) Counter Implementation

75

Delay balancing of the multiplier for wave pipelining resulted in a 10% increase in the area

of the multiplier. The delay bu�ers within the counter circuits and the �nal carry out delay

shown in Figure 44 accounted for an 8% increase in area. The �ne balancing transistor

sizing accounted for 2% of the additional area.

The maximum propagation delay through the multiplier is 10.8ns and the path length

variation is 1.37 ns.

4.1.3 Vector Register File

The vector register �le contains �ve vector registers. Each vector register consists of six-

teen 16-bit elements. Registers have one read port and one write port. Element address

generation is done locally. Delayed clock signals are used for bitline equalization, bitline

pullup, and sense enabling. Only stride-one addressing is supported. The register cells are

cross-coupled inverters with pairs of read and write NMOS pass transistors. Clocked bitline

equalization and pull-up are employed. A cross-coupled NMOS sense amp design was used.

Figure 46 is a diagram of the a vector register, 46(a) shows the address generation logic,

46(b) shows the cell structure, 46(c) shows the sense amp.

Because the registers are not static CMOS structures, balancing of the registers was man-

ually performed. A method for minimizing delay variation across the memory array was

developed [44] and employed in the design of the register �le.

The read access times of register cells which drive bitlines which are physically distant from

the wordline drivers are longer than for cells which drive bitlines which are close to the

wordline drivers. This is due to the RC delay of the wordline wire separating the cells.

Similarly, the read access times of register cells which are enabled by the wordlines which

are physically distant from the sense ampli�ers are longer than for cells which are addressed

by wordlines which are close to the sense ampli�ers due to di�erences in bitline RC delays.

Within each register, the wordline bu�ers were sized so as to counteract the variation due

to the wordline proximity to the sense ampli�ers. The read data bu�ers were also sized so

as to counteract the variation due to the bitline proximity to the wordline driver. This is

illustrated in Figure 47. Between vector registers, delay variation of access is minimized

through clock skew minimization, since read access of the registers is relative to the same

clock. The balancing of the vector registers increased their area by less that 2%.

The maximum read access time of the vector registers is 3.7ns. The minimum simulated

cycle time of the vector registers is 2.0ns.

76

Read
Word
Line

Write
Word
Line

Rbit

Wbit Wbitb

Rbitb

Rbit Rbitb

Prech Prech

SAE

Doutb

PrechPrech
Prechb

Read Data

Read
Enable

Write
Enable

Write Data

Cell

Samp

Drv

Drv

WLtch

RLtch

Addr
Counter

Addr
Counter

Enable
WL0

WL1

Qual

(a)
(b)

(c)

Figure 46: Vector Register Organization

77

Slower Buffers -- Compensate for
Proximity to Wordline Drivers

Slower Buffers --
Compensate for
Proximity to
Sense Amps

Wordline
Driver

Register
Cell

Sense
 Amp

Data Read
Buffer

Figure 47: Vector Register Balancing

78

4.1.4 Load Unit, Store Unit, Instruction Bu�er

The Load Unit consists of a 16 element deep �fo and �fo control logic. Each element is 16

bits wide. Entries are loaded into the �fo from the input data bus under external control

at a reduced rate. The �fo is emptied through the execution of a vector load instruction.

The Store Unit contains a 16 element deep �fo and �fo control logic. Each �fo entry is 16

bits wide. Entries are loaded into the �fo through the execution of a vector store instruction.

The �fo is emptied under external control at a reduced rate. The store �fo output data is

placed on the output data bus.

The Instruction Bu�er consists of an eight-deep queue of vector instructions. Instructions

are loaded in to the bu�er via the input data bus under external control at low speed.

Instructions are removed from the queue by the fetch/decode logic and executed at chip

core frequency.

4.1.5 Scoreboard

The vector unit scoreboard consists of timers for each functional unit, timers for each

vector register for vector reads, and timers for each vector register for vector writes, and a

scoreboard update state machine.

4.1.6 External Control Logic

External control of the instruction bu�er, load and store units, and test circuitry was

provided. External functions include:

Ibu�er Load Low speed load of an instruction from

the input data bus to the instruction bu�er,

Load Unit Fifo Load Low speed load of data from the input data bus

to the load unit �fo,

Store Unit Fifo Empty Low speed store of data from the store unit �fo

to the output data bus,

Test Mode Tristates register �le data busses, enables test

input and test output bus direct access to the

functional units,

Run Enables instruction fetch and execution.

External operation signals were synchronized and executed at the chip core frequency.

79

4.1.7 Constant Delay Power Control Logic

The constant delay adaptive power logic provides external power supply modi�cation indica-

tions which are used to compensate for process and temporal thermal variation as described

in Chapter 3. The constant delay logic consists of a delay chain of inverters which were

balanced at design time to be 16.6ns at the expected slowest process operating under worst

case environmental conditions. This delay chain is driven from a chip input. The input

and output of the delay chain are phase compared. The phase comparator output drives

a D-latch whose outputs are used to drive the power bump indications. The D-latch was

designed so as to have an intentional race which acts as a threshold of phase di�erence

which results in an external power bump indication.

4.1.8 Clock Generation and Distribution

A two phase clocking strategy is used for the vector unit. The system clock is driven from

a terminated input pin. This clock signal is used to generate complimentary clock signals

which are distributed to the vector unit logic which is not wave pipelined via an H-tree

distribution network.

4.2 Vector Unit Operations

The instruction set of the vector unit consists of Vector Load, Vector Store, Vector Add, and

Vector Multiply. Arithmetic operations occur between vector registers exclusively. Load

and Store operations transfer vectors from the load unit �fo to a vector register and from

a vector register to the store unit �fo, respectively. The pipeline stages for each instruction

and the time spent in each functional block are shown in Figure 48.

For the vector add and vector multiply, arbitrary source and destination registers are al-

lowed: Both sources may be the same register. The destination register can be a source

register. Separate read and write ports on the registers and full connectivity between the

register �le and the ports on the functional units allow this exibility.

Vector instructions are issued as soon as the element in the vector register is valid and

the port in the register �le is free. This allows the vector unit to chain operations between

functional units with a single cycle between generation of a vector element and its subsequent

use. This exibility necessitated more complexity in the scoreboard, but provides greater

throughput.

80

D ExA-0 ExB-0 ExC-0 ExD-0 W-0RF-0

Multiply

ltch
RF read WP Multiply RF write

3.7ns 10.8ns

Store

D ExA-0RF-0

RF read Buffer write
3.7ns

D ExA-0 ExB-0 W-0RF-0

Add

RF read WP Add RF write

ltch3.7ns 5.5ns

Load

D W-0ExA-0

Buffer
 read

RF write
ltch

Figure 48: Vector Instruction Pipeline Stages

81

4.3 Balancing

This section summarizes the balancing results of the wave pipelined logic used the vector

unit. Table 6 details the wave pipelined overhead in number of transistors, and functional

unit area for the adder and multiplier circuits. The execution time of the balancing proce-

dure on a Sun SPARCstation 10 are also given.

Multiplier Adder

Maximum Delay 10.84ns 5.52ns

Delay Variation 1.37ns 0.58ns

Unbalanced Transistors 5526 1322

Balanced Transistors 6466 1730

Unbalanced Area 1.95 sq mm 0.40 sq mm

Balanced Area 2.17 sq mm 0.45 sq mm

Balancing Exec. Time 10.94 hr 0.62 hr

(Sun SS10)

Table 6: Vector Unit Balancing Results

4.4 Vector Unit Fabrication

The vector unit was fabricated using the Hewlett-Packard HP CMOS26b 0.8 micron CMOS

process through the MOSIS service. The process provides three levels of metal and a single

poly layer. Two metal levels were used for signal distribution, and M3 was used exclusively

for power and ground distribution bars. The feature resolution of this process is 0.1 micron

which allows a �ne delay resolution for the transistor sizing delay balancing procedure. The

VLSI vector unit design contains approximately 47000 transistors and occupies an area of

43 sq mm. It is packaged in a 132-pin PGA.

A die photo of the VLSI vector unit is shown in Figure 49.

4.5 Test Results

Testing of the vector unit IC consisted of several low speed functional tests and several high

speed tests.

82

Figure 49: Vector Unit Die Photo

83

4.5.1 Functional Tests

Low speed functional testing consisted of tests of the on-chip ring oscillator, the test vector

register, and a low-speed multiplier test.

Of thirteen vector unit ICs tested, all thirteen of the ring oscillators operated. The ring

oscillator test was performed primarily as a basis for determining process variation between

the dice. The oscillation frequencies ranged from 116 to 123 MHz with an arithmetic average

of 119MHz at 5V power supply. The variation in ring oscillator frequency at 5V supply is

indicated in Figure 50. Spice simulations predicted an oscillation frequency of 112.2 MHz

for the design target process and 109 MHz for the models based upon MOSIS measurements

from the run.

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|
11

|
12

|
13

|100

|103
|106

|109

|112

|115

|118

|121

|124

 Die

 R
in

g
F

re
q

�

�

�
�

�
�

�

�

�

�

�

�

�

Figure 50: Dice Ring Oscillator Variation

Eleven of thirteen passed write and read verify tests of 100 random vectors at 50MHz. Vector

register reads and writes at speeds up to 200MHz were performed on a single IC. A trace of

a 200MHz read verify operation is shown in Figure 51. Since this test was performed from

the pins, higher frequency testing exceeded the switching speed of the output pad driver

design for the load imposed by the test equipment.

The functional multiplier test consisted of the application of multiplier input vectors to test

inputs and product checking at product testing output pins. Ten thousand pseudorandom

vectors were applied and results checked at a 10MHz rate. Eleven of the 13 ICs passed this

84

Figure 51: Vector Register Read Operation

test.

4.5.2 Wave Pipeline Speed Tests

To enable proper high-speed wave pipelined operation of each die, the constant delay power

supply was adjusted so as to track the design target operating frequency. When an power

bump indication was received from the die being tested, the power supply was adjusted by

0.1V. Figure 52 shows the output of the power bump down indication from the die # 13 at

Vdd=5.0V in the top traces and at the constant delay supply of Vdd=4.8V in the bottom

traces.

To indicate the e�ectiveness of the constant delay power method, the design target frequency

of the ring oscillator was compared to the measured oscillator frequency of each die with the

power supply voltage set to the value determined by the constant delay circuit. At design

time, simulations were used to determine the target ring oscillation frequency of 112MHz.

Figure 53 shows the supply voltages speci�ed by the constant delay indications for each die.

For each die, the oscillator frequency at Vdd=5V is indicated with a solid diamond. These

points show the delay variation of the ring oscillator circuit across the dice. The frequencies

at a �ve volt supply were as high as 18% higher than the target frequency.

When the supply voltage for each die was set to the value indicated by the constant delay

circuit, the frequencies speci�ed by the open diamonds were measured. With the adaptive

85

Figure 52: Constant Delay Power Bump Indications

86

power method the frequencies were measured at 0% to +5% faster than the target frequency.

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|
11

|
12

|
13

|100

|103

|106

|109

|112

|115

|118

|121

|124

 Die

 R
in

g
F

re
q

4.7 4.7 4.7 4.8 4.7 4.8 4.5 4.7 4.7 4.6 4.5 4.7 4.9

Constant Delay Voltage

Design Target Frequency

Vdd=5

Vdd=Constant Delay Voltage

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

Figure 53: Die Process Variation Compensation

Once the lock voltage was determined, wave pipelined speed testing was performed by

loading data and instructions into the instruction bu�er and load unit �fos at low speed,

performing the vector instructions at high-speed, and �nally emptying store unit �fos at

low speed and verifying the results. This procedure is shown in detail in Figure 54.

Using this procedure the eleven functional ICs were tested. Three of the eleven correctly

performed a 16000 vector add test and a 16000 vector multiply test at 303MHz.

Eight of the eleven correctly performed the 16000 vector add test and a 16000 vector multiply

test at 222MHz. At this speed, the multiply latency was decreased to four as fewer waves

were held within the multiply wave pipeline.

4.6 Comparison to Traditional Design

With the performance detailed in the previous section, the wave pipelines demonstrated

approximately 1.1 waves of data in the vector register �le, 1.9 waves of data in the adder,

and 3.7 waves of data in the multiplier.

To quantitatively determine the performance bene�ts of wave pipelining in this design, a

vector unit was designed using traditional pipelining and the simulated performance was

87

Operand A
FIFO Load

Load Operand A
Store Operand A

Store FIFO
Empty

C Behavioral
Model Operand

Load
Files

Operand
Verify
Files

Result
Verify
Files

Comp

Operand A

Operand A
FIFO Load

Load Oper A
Store Oper A

Store FIFO
Empty

Operand B

IBuffer

Register -
Register
Arithmetic
Operations

Test
Command
File

IBuffer

Store Result

Store FIFO
Empty

Result
Store
File

Comp

Step 1: Load and Verify Operands
Step 2: Perform Operations

Step 3: Store and Verify Results

IBuffer

High Speed
DAS Test

Slow Speed
DAS Operation

Up to
8 VInstr

Figure 54: High Speed Wave Pipeline Testing

88

compared.

The traditional pipeline used two phase clocking and dynamic ow latches to achieve high

performance. The adder and multiplier were redesigned using the latches. The multiplier

and adder were implemented using the same cell library as the wave pipelined implemen-

tation, but delay padding elements and delay balancing transistor sizing were not used.

The vector register �le was operated as a single stage in the pipeline and thus was not

partitioned into multiple pipeline stages.

Table 7 details simulated results for the wave pipelined vector unit and for a complete layout

using latch-based pipelined units and a single cycle register access.

Wave Pipe Latch Pipe

Die Area 43.19 sq mm 44.09 sq mm

Min Clock Period 2.8ns 3.8ns

Mult Unit Latency 10.84ns 11.7ns

Add Unit Latency 5.5ns 6.1ns

Table 7: Vector Unit Results Comparison

The traditional pipeline, because of its higher cycle time, had a three cycle multiply exe-

cution rather than the four cycle execution in the wave pipelined design. The clock to the

output latch of both the adder and multiplier were skewed in the traditional pipeline design.

Without the use of this clock skew, the latencies would be 7.6ns and 15.2ns, respectively.

Because of the ability of the wave pipelined design to have more than a single register read

operation occurring concurrently, the wave pipeline had a 35% faster cycle time. Because

of the lack of intermediate latch delay and partitioning overhead, the wave pipeline had

operation latencies up to 10% less than for the traditional pipeline design.

When compared to traditional pipelines designed with less aggressive clocking technologies,

such as static latch or register-based pipelines, the wave pipeline performance would be

even better.

4.7 Summary

This chapter has described the wave pipelined vector unit developed for the demonstration

of the techniques and tools presented in this dissertation. This vector unit integrates and

synchronizes multiple heterogeneous wave pipelines: Wave pipelining was employed in the

design of the vector register �le, the add functional unit, and the multiply functional unit.

This unit was fabricated in a 0.8 micron process and was tested at operating frequencies

89

up to 303MHz. At 300MHz, the vector register �le supported 1.1 concurrent waves of data,

the adder supported 1.9 waves of data, and the multiplier supported 3.7 waves of data with

no intervening latches.

An equivalent conventional pipelined design using aggressive two phase clocking and dy-

namic latches was developed and contrasted to the wave pipeline design. The vector unit

design which used conventional pipeline clocking was approximately 2% larger. The simu-

lated latencies through the multiplier and adder functional units using conventional pipelin-

ing were 8% and 11% longer, respectively. The maximum simulated clock rate achieved by

using wave pipelining was 35% faster than that which could be achieved using conventional

two phase clocking and dynamic latches.

90

5 Architecture and Circuit Enhancements

5.1 Architectural Enhancements

Enhancements to wave pipelines to support stalling, wave pipelining of synchronous circuits

with latchless feedback, and use of self-timing techniques for wave pipelining are examined

in this section.

5.1.1 Stalling in Wave Pipelined Circuits

A signi�cant barrier to the use of the wave pipelining design technique has been the di�culty

in stalling a wave pipeline. Once a wave has been launched, it precedes unimpeded through

the combinational network. In the event of a stall condition, all waves in the wave pipeline

propagate to the end of the pipeline, thereby overwriting previous waves. First mechanisms

to ensure consistency of wave pipelined data following a stall are presented. Subsequently,

a method of dynamically stalling a wave pipeline is detailed.

Wave Pipeline Circuit Model To improve throughput, a logic network can be par-

titioned into pipeline stages, each of which operates upon data computed in the previous

cycle by the previous pipeline stage. When a logic network is pipelined, synchronizing ele-

ments, either latches or registers, are inserted to partition the network into stages. These

synchronizing elements increase the network area, power, and latency.

Wave pipelining is a design style which allows overlapped execution of multiple operations

without using synchronizing elements. Rather, a knowledge of the signal propagation delay

through the network is used to ensure that operations do not interfere with their predecessor

nor successor data values.

The e�ects of stalling in a wave pipeline are now examined. Figure 55 shows the propagation

of waves down a wave pipeline with no stall. In Figure 56, a stall condition occurs at time

2, while wave 3 is in stage 2. Until the stall is released, no new inputs are applied to the

pipeline. However, the waves already in the pipe continue to propagate. Once the stall is

released, the pipeline must be restored to the condition prior to the stall.

In a traditional pipeline, the data at each stage is not allowed to propagate to the next stage

during the stall. Thus, when the stall is released the data in the pipeline which succeed the

stall inducing stage have not progressed.

To accomplish this in a wave pipeline the pipeline can be re�lled so as to restore the

placement of the waves in the wave pipeline. This restoration occurs in times k to k+3

in the �gure. Wave pipeline restoration requires that enough input values are queued at

the input of the pipeline to ensure that the pipeline can be restored. For an N stage wave

91

pipeline, up to N-1 previous inputs must be reentered into the pipeline after a stall before

additional computation can occur.

Input
Register

Output
Register

Stage 1 Stage 2 Stage 3 Stage 4

wave 1

wave 2 wave 1

wave 3 wave 2 wave 1

wave 4 wave 3 wave 2 wave 1

wave 5 wave 4 wave 3 wave 2

wave 6 wave 5 wave 4 wave 3

time

Stage

Figure 55: Propagation of Waves in Wave Pipeline

Figure 57 is a block diagram of a wave pipeline with an input register chain at the head of

the pipeline. This approach requires additional area for the input register chain, sequencing

logic, and input multiplexing. The cycle time of the wave pipeline may be increased by the

addition of a multiplexor delay and the capacitive load of the input register chain gates.

The re�lling of the wave pipeline requires a number of penalty cycles which can be up to

the number of stages in the wave pipeline. For long wave pipelines, the re�ll cycles can

become prohibitively expensive.

An alternative to holding the inputs to the wave pipeline is holding the output of the

pipeline. This works only if the stall condition does not alter the values produced by the

wave pipeline. Figure 58 shows this condition. The results of waves 1, 2, and 3 are queued

up at the output register. After the stall has been released, these results are multiplexed to

the wave pipeline output. Additional logic is required to count the stall cycles and control

the selection of the multiplexors on the release of the stall.

Figure 59 is a block diagram of a wave pipeline with a results queue at the tail of the

pipeline. This approach requires additional area for the results queue, sequencing logic,

and output multiplexing. The cycle time of the wave pipeline may be increased by the

multiplexor delay and the capacitive load of the results queue gates. No penalty cycles to

re�ll the wave pipeline are required.

Hybrid approaches can used when the wave pipeline results are inuenced by the stall.

92

Input
Register

Output
Register

Stage 1 Stage 2 Stage 3 Stage 4

0 wave 1

1 wave 2 wave 1

2 wave 3 wave 2 wave 1

3 wave 4 wave 3 wave 2 wave 1

4 wave 4 wave 4 wave 3 wave 2

5 wave 4 wave 4 wave 4 wave 3

6 wave 4 wave 4 wave 4 wave 4
 .
 .
 .
 stall released

k wave 1 wave 4 wave 4 wave 4

k+1 wave 2 wave 1 wave 4 wave 4

k+2 wave 3 wave 2 wave 1 wave 4

k+3 wave 4 wave 3 wave 2 wave 1

time

Figure 56: Stall Handling in Wave Pipeline

93

Input
Register

Output
Register

Input Register Chain

Mux

Wave Pipeline

Figure 57: Wave Pipeline with Input Register Chain

Input
Register

Output
Register

Stage 1 Stage 2 Stage 3 Stage 4

0 wave 1

1 wave 2 wave 1

2 wave 3 wave 2 wave 1

3 wave 4 wave 3 wave 2 wave 1

4 wave 4 wave 4 wave 3 wave 2

5 wave 4 wave 4 wave 4 wave 3

6 wave 4 wave 4 wave 4 wave 4
 .
 .
 .
 stall released

k wave 4 wave 4 wave 4 wave 4

k+1 wave 5 wave 4 wave 4 wave 4

k+2 wave 6 wave 5 wave 4 wave 4

k+3 wave 7 wave 6 wave 5 wave 4

time

wave 1

wave 2, wave 1

wave 3, wave 2, wave 1

wave 3, wave 2, wave 1

wave 3, wave 2

wave 3

Queued Results

Figure 58: Stall in Wave Pipeline with Results Queue

94

Input
Register

Output
Register

Results Queue

Mux

Wave Pipeline

Figure 59: Wave Pipeline with Results Queue

Results of waves which precede the �rst stalling wave can be queued up at the output of

the wave pipeline, while the stalling wave and its successors must be restarted at the head

of the wave pipeline.

Dynamic Stalling of Wave Pipelines Note that the wave pipeline re�lling and results

queuing presented in the previous section would not be necessary if the wave pipeline could

be \frozen" in time until the stall condition was resolved. Traditional pipelines \freeze"

the pipeline by stalling. When a pipeline is stalled, data is not allowed to proceed to the

next pipeline stage until the stall is released. Latches or registers act as barriers to the

propagation of data through the pipeline. In this way, a stall condition can be resolved

while the remainder of the system waits. This eliminates the need to queue results and

re�ll pipelines.

In wave pipelining, it has not been possible to stall the pipeline since there are no latches

or registers within the wave pipeline to act as barriers to signal propagation. In this section

a method which allows some degree of stalling within a wave pipelined is presented.

To allow stalling of a wave pipeline, barriers to signal propagation are introduced at strategic

positions within the wave pipeline. Transistors are used during the stall period to disconnect

selected gate output nodes from the supply rails, thereby prohibiting changes in node states

during the stall period. These transistors make the outputs of the selected gates dynamically

latched.

Figure 60 is a diagram NAND gate which can be frozen during a stall. When Stall is

inactive, the transistors driven by the Stall and !Stall signals act as closed switches. When

Stall is active, these transistors act as open switches. Thus the output, Out, is unable to

transition.

In a wave pipeline which supports N waves, such transistors are placed at N \freeze points"

within the pipeline. These freeze points are positioned such that the maximum propagation

delay between the freeze points is less than the wave pipeline clock period. At the freeze

95

In1

In2

Stall

!Stall

In1

Out

In2

Figure 60: Freeze Points

point, the tristate transistors are disabled by stall signals which are active throughout the

stall period. Figure 61 is a block diagram of a wave pipeline with freeze points to allow

stalling.

Input
Register

Output
Register

Zone 1 Zone 2 Zone 3 Zone 4

Freeze Points

Freeze Points

Figure 61: Wave Pipeline with Freeze Points

If activation of the stall signal is coincident with the enabling edge of the pipeline clock, the

�rst freeze point is positioned less than one clock period from the input register or latch.

This ensures that when a node is frozen, it is at its terminal voltage, not at an intermediate

voltage.

The period for which the stall signals are held, Tstall is:

Tstall = Nstall � Tclk + (Tfreeze point mod Tclk) (101)

where Nstall is the number of required stall cycles, Tclk is the wave pipeline clock period,

and Tfreeze point is the propagation delay from the input of the wave pipeline to the freeze

96

point.

Figure 62 shows HSPICE simulated waveforms for a wave pipeline with freeze points. The

wave pipeline consists of a chain of 50 CMOS inverters. This wave pipeline is has a maximum

simulated propagation delay of 6.7ns. The circuit is clocked such that �ve simultaneous

waves propagate through the inverter chain. To allow stalling, the 5th, 15th, 25th, 35th,

and 45th inverters are freeze points. The top trace show a one-period pulse propagating

down the pipeline at the 10th, 20th, 30th, 40th, and 50th inverters with no stalling. In the

bottom trace the pipeline is stalled for two cycles. The waveforms at the same inverters are

shown. Note that the stall has the e�ect of delaying by two cycles the edges which occur

after the stall is initiated. The relative spacing of the edges is the same for the poststall

edges as the prestall edges.

It must be noted that this technique uses dynamic holding of node voltages. The period for

which the stall can be held is therefore limited.

The freeze points, while logically latching gates, are not pipeline latches; they remain trans-

parent except during a stall. The following section compares the a wave pipeline with freeze

points to a traditional pipeline of the same pipeline depth.

Comparison of Traditional Pipelines with Stalling Wave Pipelines In this section,

implementations of a logic block for wave pipelining, wave pipelining with stalling, and

traditional pipelines with dynamic and static latching are compared. A single phase clocking

strategy is assumed for the traditional pipelines.

When dynamic latches are placed at the freeze points, the delay of each gate at a freeze

point is increased due to the additional transistor between the gate output and the supply

rail. The additional delay of a gate at the freeze point is Tdlatch. Thus, when N dynamic

latches are placed within the combinational logic they increase the maximum propagation

delay through the wave pipeline by N � Tdlatch. Thus the lower bound on the clock period

becomes:

N � Tclk + cs � Pmax +Hmax +N � Tdlatch (102)

or

Tclk + cs=N � Pmax=N +Hmax=N + Tdlatch (103)

where Tdlatch is the increase in propagation delay of a freezing gate due to the dynamic

latching transistors at the freeze points and Hmax is the long path clock overhead:

Hmax = �C + Ts +RFmax=2 + Tsynch (104)

Hmin = �C + Th +RFmin=2� Tsynch (105)

Note that the di�erence between this constraint and constraint 1 is simply the additional

delay through the freeze point dynamic latches. The upper bound on the wave pipeline

97

Figure 62: Stalling Wave Pipeline

98

clock period must also be met:

(N � 1) � Tclk + cs � Pmin �Hmin +N � Tdlatch (106)

where Hmin is the race through clock overhead:

Hmin = �C + Th +RFmin=2� Tsynch (107)

If the same block of logic is pipelined with traditional techniques, Pmax is divided into N

stages separated by synchronizing elements. The clock rate limit for the traditional pipeline

is:

Tclk � Pmax=N +Hmax (108)

With the traditional pipeline, it is assumed that the combinational logic can be equally

partitioned into N stages. For cases where this approximation is not valid, the term Pmax=N

should be replaced with the delay of the longest stage.

Note that the stalling wave pipeline amortizes the clocking overhead over the number of

waves in the wave pipeline. While the clock rate of the wave pipeline is decreased due to

the freeze latches, it still outperforms the traditional pipeline of equal degree of pipelining.

Figures 63, 64, and 65 show the factor by which the maximum clock rate of a stalling wave

pipeline exceeds the maximum clock rate of a traditional pipeline over a range of number

of pipeline stages.

In these �gures, the freeze point propagation delay, Tdlatch, are 10%, 20%, and 40% of the

clock overhead, Hmax, respectively. For instance, if the clock overhead, Hmax, is 1ns, results

are presented for the additional delay due to each freeze point latching gate being 100ps,

200ps, and 400ps.

In each �gure, plots are given for four di�erent maximum propagation delays. The plots

vary from short to long pipelines. For instance, if the clock overhead, Hmax, is 1ns, results

are presented for pipelines whose maximum propagation delay are 2ns, 4ns, 8ns, and 16ns.

In all instances, the stalling wave pipelines are able to achieve greater performance than

traditional pipelines. Clock rates up to seventy percent higher can be achieved with stalling

wave pipelines. As the freeze point delays are increased, the bene�ts of the stalling wave

pipeline diminish.

HSPICE simulations of a pipeline illustrate the performance e�ects of the freeze latches.

The pipeline consists of �fty identical CMOS inverters. Each inverter was sized to have equal

delay for rising and falling output. Since they are balanced the e�ects of delay imbalance

are ignored. Thus the impact of the clocking and stalling mechanisms are determined.

99

 Pmax=16H
 Pmax=8H
 Pmax=4H
 Pmax=2H

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|
11

|
12

|
13

|
14

|
15

|
16

|1.0

|1.1

|1.2

|1.3

|1.4

|1.5

|1.6

|1.7

|1.8

 Tdlatch=0.1H

 Number of Stages (N)

 T
cl

k
T

P
 /

T
cl

k
S

W
P

Figure 63: Relative Clock Rate (10% freeze delay)

 Pmax=16H
 Pmax=8H
 Pmax=4H
 Pmax=2H

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|
11

|
12

|
13

|
14

|
15

|
16

|1.0

|1.1

|1.2

|1.3

|1.4

|1.5

|1.6

|1.7

 Tdlatch=0.2H

 Number of Stages (N)

 T
cl

k
T

P
 /

T
cl

k
S

W
P

Figure 64: Relative Clock Rate (20% freeze delay)

100

 Pmax=16H
 Pmax=8H
 Pmax=4H
 Pmax=2H

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|
11

|
12

|
13

|
14

|
15

|
16

|1.0

|1.1

|1.2

|1.3

|1.4

 Tdlatch=0.4H

 Number of Stages (N)

 T
cl

k
T

P
 /

T
cl

k
S

W
P

Figure 65: Relative Clock Rate (40% freeze delay)

Design Number of Stages Latency Cycle Time

Wave pipeline 8 6.90 0.80

WP with stall 8 7.55 0.87

TP with dynamic latch 8 8.39 1.0

TP with static latch 8 10.09 1.2

Table 8: Performance of Pipelines

For the simulated pipelines, the clock to the output latch was skewed to ensure that a

integral number of waves were held. In the traditional pipeline, this allowed the number of

inverters in the �nal stage to be 8 as opposed to 6 in the previous stages. For this example

Pmax � 13Hmax and Tdlatch � 0:2Hmax.

Additional performance may be realized for the stalling wave pipeline due to the decreased

load on the clock driver.

The stalling wave pipeline has an increased area over the wave pipeline due to the freeze

latches and additional signal routing. This area penalty is approximately the same as a

traditional pipeline with dynamic latches as synchronizing elements. It is smaller than the

penalty for a traditional pipeline with static latches or registers for synchronizing elements.

It has been shown that wave pipelines can be designed to ease the di�culty in stall handling.

101

Methods have been detailed which allow wave pipelines to be restarted with input register

chains or to have results queued and sequenced out following a stall.

A method has been demonstrated by which a wave pipeline can be designed to dynami-

cally stall. Despite the additional logic required to support stalling, a wave pipeline can

outperform a traditional pipeline of equal depth.

5.1.2 Fully Latchless Feedback Circuits

The wave pipelines with feedback examined in Chapter 3 all contained at least one synchro-

nizer in the feedback path. In this section, feedback without any intervening synchronizers

are examined. Figure 66 is a wave pipeline with a feedback path without intervening syn-

chronizers.

Pmin/Pmax Pmin/Pmax
f

Primary
Inputs

Feedback
Inputs

f

Figure 66: Wave Pipeline with Latchless Feedback

Waves interfere at the output of a wave pipeline if the time of the earliest application of

the (i+ 1)st inputs can propagate through the combinational logic so as to arrive prior to

the latest possible arrival time of the data generated by the ith application of inputs. Thus

the general wave interference constraint for a wave pipeline is:

T late
i + Pmax � T

early
i+1 + Pmin (109)

102

Where T late
i is the latest time at which input data wave i is applied to the combinational

logic and T
early
i+1 is the earliest time at which data input wave i + 1 is be applied. Notice

that clock distribution and synchronizer overhead are being ignored for simplicity.

For a register-based wave pipeline with latchless feedback, the time at which the primary

inputs for data wave i are applied to the combinational network is i � Tclk. The feedback

inputs for data wave i arrive at the inputs to the logic no earlier than:

j � Tclk + k � Pmin + k � P f
min

and no later than:

j � Tclk + k � Pmax + k � P f
max:

where j � Tclk is the time in the past (j < i) at which a change in the primary inputs

resulted in the current change in the feedback. The number of cycles through the pipeline

and feedback from the change in the primary inputs to the current feedback input change is

k. Thus, at time j �Tclk an input vector is applied to the logic network and after k iterations

around the closed pipeline/feedback path a change in the feedback inputs occurs.

If the closed path has a maximum delay which is an integral number of clock periods,

Pmax + P f
max = N � Tclk, the interference constraint becomes:

jTclk+kNTclk+Pmax � (j+1)Tclk+kNTclk�k�(Pmax+P
f
max�Pmin�P

f
min)+Pmin (110)

or,

Tclk � (k + 1) � (Pmax � Pmin) + k � (P f
max � P

f
min) (111)

The clock constraint 111 implies that for latchless feedback, the minimum period of wave

separation, T
opt
clk , is a linear function of the number of iterations, k, through the feedback loop

which resulted in the current feedback inputs. Thus, in the general case, the minimum wave

pipelined clock period for a wave pipeline with latchless feedback is unbounded, and thus,

wave pipelines with latchless feedback will not function. There are, however, special cases

for which latchless feedback will operate correctly. The �rst case is if there is no variation

in delay through all closed feedback paths. The second case is if the delay variation of the k

iterations through the feedback loop is independent of k. An example would be a feedback

loop whose delay alternates between P0 and P1. The �nal case where a latchless feedback

wave pipeline can operate is when the feedback inputs are periodically synchronized to the

primary inputs or the primary input clock. This limits k in constraint 111 to some kmax.

This synchronization may be through explicit qualifying, or logical ANDing, of the feedback

signals with a clock signal or a primary input, or implicitly as a result of the function being

performed by the logic.

5.1.3 Self-Timed Wave Pipelines

In self-timed circuit designs, data storage and synchronization is performed through the

dynamic operation of the circuitry. The synchronizers time reference is provided either

103

through use of methods of data encoding which can be used to distinguish when valid data

has arrived at the output or through the use of a separate timing reference path through the

logic which tracks the data propagation through the logic in a dynamic manner. Self-timed

circuits, being asynchronous, use handshake protocols based upon completion and ready

indications to ensure that operations do not interfere.

Several techniques which are used in self timing can be employed in wave pipelined systems

to provide additional performance.

As shown in Chapter 3, the necessity of wave pipeline output synchronization can lead to

cycle times which are greater than those imposed by the propagation variation constraints.

In Chapter 3 intentional delay padding and intentional clock skew were shown to achieve

the variation imposed optimal clock rate. Two alternative output synchronization methods

based on self-timed techniques are possible: output encoding, and critical path delayed

clock skew.

If data encoding techniques in which valid data and invalid data could be distinguished

were employed in the wave pipeline, the output synchronizer could be clocked based upon

the change in the output from invalid data to valid data. Unlike self-timed systems, this

change from invalid to valid would not be used to initiate a subsequent data transfer at the

wave pipeline input. This is because for a wave pipeline to have more than a single wave

in the pipeline, new data must be input to the pipeline prior to the arrival at the output.

The input synchronizer would be clocked by the system clock, whose period is constrained

by the propagation delay variation through the pipeline.

In the critical path delayed clock skew method, the propagation delay of the critical path

is replicated and placed in a path from the clock of the input synchronizer to the output

synchronizer. In this manner, the interval between the input clock pulse which drives input

data into the wave pipeline and the output clock which latches the results from that data

tracks variations in the dynamic operation of the wave pipeline. Thus, the clock period of

the wave pipeline can be guaranteed to be limited by just the propagation variation.

These techniques, while easing the synchronization of the wave pipeline output, result in

signi�cant logic overhead for CMOS wave pipelines.

5.2 Circuit Enhancements for Wave Pipelining

5.2.1 Low Variation Circuit Designs

Data dependent delay variation in static CMOS gates is primarily due to parallel conduction

paths. Depending upon the number of paths from a gate output to the supply rail which

are conducting at a given time, the gate delay can vary signi�cantly. When all possible

paths to the opposite rail are opened, the switching occurs much more quickly than when

only a single path is opened.

104

The variation due to the parallel paths can be minimized by minimizing the capacitance

driven by a gate with parallel supply paths. Figure 67 shows how a CMOS decoder driving

a large capacitance can designed to minimize delay variation. In this �gure, a wordline with

a capacitance 256-times the input capacitance of a minimum-sized inverter is driven by a

wordline driver which is 32-times minimum-size. In the �rst case, the wordline driver is

driven by a NOR2NAND3 decoder. The NOR2 stage is minimum sized and the NAND3

stage is 4-times minimum size. During disable, the NOR2 can have equivalent channel

impedance of R or R/2 depending upon if one or both paths are activated. The NAND3 can

have an equivalent impedance of R, R/2, or R/3. Using an RC delay model the maximum

delay would be:

R � 4C + R=4 � 32C + R=32 � 256C = 20RC (112)

The minimum delay would be:

R=2 � 4C + R=(4 � 3) � 32C + R=32 � 256C = 12:67RC (113)

Thus, the maximum delay is 1.58-times greater than the minimum delay. By minimizing

the capacitance of the nets which have parallel paths to the supply, this variation can be

reduced. In Figure 67 the NOR2 and NAND3 gates are minimum size. The decoder output

is driven through a chain of scaled inverters. The maximum delay is:

R � C + R � C + R � 4C + R=4 � 32C + R=32 � 256C = 22RC (114)

The minimum delay would be:

R=2 �C + R=3 � C +R � 4C +R=4 � 32C +R=32 � 256C = 20:83RC (115)

Hence, the maximum delay is 1.056-times the minimum delay.

As illustrated in this example, to minimize delay variation due to data dependencies of

CMOS gates with parallel conduction paths, all nodes driven by gates with parallel paths

to the supply rails should have minimum capacitive load. Large capacitive loads should be

driven by inverters with balanced pullup and pulldown times.

The intertransistor parasitic capacitance e�ect becomes important when the magnitude

of small capacitive loads driven by gates with parallel paths approach the intertransistor

parasitic capacitances. rails. This tends to limit the minimum delay variation which can

be achieved by the above technique.

5.3 Summary

This chapter has exposed architectural and circuit enhancements for wave pipeline design.

Methods of providing external support for stalls through operand or output stall �fos are

examined. In addition, a technique for providing stalling capabilities within wave pipelines

105

NOR

NAND
INV Wordline

PARALLEL PATHS - PULL DOWN PATH

R,R/2

M=1

M=256

256C

R,R/2

M=1

M=256

256C

M=4 M=32

R/4, R/8, R/12 R/32

32C4C

M=1 M=1

R, R/2, R/3 R

CC

M=4

R/4

4C

M=32

R/32

32C

Figure 67: Decoder Delay Variation

106

has been developed. Stalling wave pipelines make use of dynamically latching gates within

the combinational logic to impede the ow of data through the logic network during a

stall condition. By not incurring the clock overhead incurred by conventional pipelines, the

performance of a stalling wave pipeline in which the delay variation is su�ciently small

exceeds the performance of a conventional pipeline of equal depth.

Wave pipelines with fully latchless feedback have been shown to be impractical for most

circuits.

Design techniques to ease the wave pipeline constraints on the output register clocks have

been explored; use of data encoding which distinguish when valid data has arrived at the

output or through the use of a separate timing reference path through the logic which tracks

the data propagation through the logic in a dynamic manner are suggested.

Optimizations to CMOS wave pipeline circuit designs to minimize the delay variation due

to parallel conduction paths have been presented in this chapter. By minimizing the ca-

pacitance driven by gates with parallel conduction paths and driving the large capacitances

with balanced drivers, this delay variation can be minimized.

107

6 Summary and Conclusions

6.1 Summary

Wave pipelining is a circuit design technique that allows digital synchronous systems to be

clocked at rates higher than can be achieved with conventional pipelining. Rather than

partitioning the combinational logic into pipeline stages separated by latches or registers,

wave pipelines rely on the predictable, �nite propagation delay through the logic gates to

store the data. In a conventional pipeline the data synchronization function is performed

by the registers or latches; in a wave pipeline, knowledge of the signal propagation delays

is used at design time to ensure that synchronization failures cannot occur.

Conventional pipelined systems allow data to propagate from a register through the com-

binational network to another register prior to initiating the subsequent data transfer.

Thus, the maximum operating frequency is determined by the maximum propagation delay

through the longest pipeline stage. Wave pipelined systems apply the subsequent data to

the network as soon as it can be guaranteed that it will not interfere with the current data

wave. The maximum operating frequency of a wave pipeline is therefore determined by the

di�erence between the maximum propagation delay and the minimum propagation delay

through the combinational logic. Wave pipelining of combinational circuits have been shown

to achieve clock rates 2 to 7-times those possible for the same circuits with conventional

pipelining.

Wave pipelining concepts were introduced, wave pipelines were compared to conventional

pipelines, and previous wave pipelining research and related research were presented in

Chapter 1.

While previous research e�orts have demonstrated performance bene�ts through the use

of wave pipelining of CMOS circuits, quantitative determination of the potential of wave

pipelining in CMOS has been primarily empirical. Models for the performance potential

of CMOS wave pipelined circuits based upon CMOS delay equations and simulations were

developed in this research. These models, when variations due to process and operation

environment are ignored, produce performance limits with the 6 to 7-times from previous

simulated results. When the variations due to process and operation environment are

included, the modelled results correspond closely to measured results.

The e�ects of logic network path delay imbalance, changes in operating environment, and

fabrication process variation on the performance of wave pipelines have been ascertained.

Path length imbalance and changes in the rate of signal propagation due to dependencies

upon the values of the input data have been found to result in propagation delay variations

of 10 to 20% when variation minimization techniques presented in Chapters 3 and 5 are

employed. This variation limits the speed-up of wave pipelined circuits to at most 11 and

6, respectively. Variations of propagation delays of di�erent dice from common fabrication

line are shown to have ratios of worst case delay to best case delays of 1.35 to 1.5. This

108

variation, independent of other factors, limits the speed-up of wave pipelining to at most

three to four. Changes in operating temperature may degrade delays by a factor of up to

1.4, thereby limiting the speed-up to 3.5. Supply drops and drift, supply noise, and coupled

noise can result in further propagation delay variation. For representative CMOS circuits

the aggregation of the variation causes result in worst-case delays along critical circuit

paths which are 2.7-times slower than best-case delay along the fast paths. Variations of

this magnitude limit the clock frequency of wave pipelines to 1.6-times the rate which can

be achieved without pipelining.

The seminal clocking constraints for wave pipelining which were extended in this research

to include variations due to process and environment, a model for CMOS propagation

delay, the causes of delay variation in CMOS circuits, the e�ects of these variations on the

performance of CMOS wave pipelines, and a comparison of the impact of these factors on

conventional pipelines and wave pipelines were presented in Chapter 2.

Chapter 3 presented design techniques for the optimization of the performance of wave

pipelines. A method of minimizing the path imbalance in the design of CMOS wave

pipelined circuits based upon transistor sizing was developed. This method is an exten-

sion of the Wong method for balancing CML logic networks [53]. The optimization uses a

topological model of the circuit and macromodels of gate delay based upon HSPICE sim-

ulations to generate a linear program representation of the transistor sizing problem. The

solution to the linear program is used to set the lengths and widths of the CMOS transistors

so as to minimize the path length variations in the logic network. This optimization method

has been integrated into a wave pipelining circuit design environment.

For several representative circuits this method of delay balancing has optimized the circuits

such that the path delay and data dependent delay variation are limited to the 0% to 20%

range. These results are consistent with the best manual balancing methods which show

variation of up to 15% to 20% [29]. Balance in this range is su�cient for high performance

wave pipelines.

Further performance potential may be lost in wave pipelining due to the di�culty of operat-

ing all wave pipelines in a system at a common clock frequency. Circuit optimizations which

use intentional delay insertion and/or constructive clock skew can be used to minimize the

performance impact of synchronization of wave pipelines within a system.

The variations in delay due to process and operating environment impose severe limits on the

performance of CMOS wave pipelined circuits. Several means of minimizing the variations

or the performance e�ects of these variations are evaluated in Chapter 3. Frequency sorting

was shown to be signi�cantly more constrained for wave pipelines than for conventional

pipelined circuits. For high performance wave pipelines sorting was demonstrated to be

impractical. Methods to compensate for process and environmental delay variation so as

to avoid the di�cult frequency sorting procedure as well as to gain additional performance

were examined. Tunable constructive clock skew, use of biased logic, use of tunable delay

bu�ers, delay compensation through thermal control, and an adaptive power supply voltage

109

method of minimizing delay variation were presented in Chapter 3. The tunable clock skew

method is impractical for a VLSI system in which multiple wave pipelines which are part

of a synchronous system with feedback because of the need to individually skew each clock

and because of the interrelation of clocks in a system with feedback. The biased logic

methods su�er from severe area penalties and/or power consumption and noise margin

problems. Methods based upon tunable delay bu�ers or thermal compensation su�er from

limited range of delay adjustment. The adaptive power method provides su�cient range

of delay adjustment, does not increase logic area, and can lower power consumption while

compensating for fabrication process and temperature dependent delay variations. This

method was used in the design of the wave pipelined CMOS VLSI vector unit presented in

Chapter 4.

To demonstrate the techniques and tools developed as part of this research a CMOS wave

pipelined VLSI vector unit. This integrated circuit demonstrates that wave pipelined CMOS

VLSI systems can be designed to perform within the performance limits described in Chap-

ter 2. This system integrates and synchronizes multiple heterogeneous wave pipelines: Wave

pipelining was employed in the design of the vector register �le, the add functional unit,

and the multiply functional unit. It was designed with the assistance of automated CAD

balancing tools which employ the transistor sizing method presented in Chapter 3. It con-

tains adaptive power supply support for the maintenance of wave pipelined operation over

a range of operating conditions and fabrication tolerances. This unit was fabricated in a

0.8 micron process and was tested at operating frequencies up to 303MHz. At 300MHz, the

vector register �le supported 1.1 concurrent waves of data, the adder supported 1.9 waves

of data, and the multiplier supported 3.7 waves of data with no intervening latches.

To allow a comparison of performance and costs between wave pipelining and conventional

pipelining, an equivalent vector unit was designed using an aggressive traditional clocking

technique. The vector unit design which used conventional pipeline clocking was approx-

imately 2% larger due to the latches which had to be inserted into the functional units.

The simulated latencies through the multiplier and adder functional units using conven-

tional pipelining were 8% and 11% longer, respectively. The maximum simulated clock

rate achieved by using wave pipelining was 35% faster than that which could be achieved

using conventional two phase clocking and dynamic latches. Details of the organization,

operation, balancing, and testing of the vector unit are given in Chapter 4.

Architectural and circuit enhancements for wave pipelining were detailed in Chapter 5. A

signi�cant barrier to the use of the wave pipelining design technique has been the di�culty in

stalling a wave pipeline. Once a wave has been launched, it precedes unimpeded through the

combinational network. Methods of providing external support for stalls through operand

or output stall �fos are examined. In addition, a technique for providing stalling capabilities

within wave pipelines has been developed. Stalling wave pipelines make use of dynamically

latching gates within the combinational logic to impede the ow of data through the logic

network during a stall condition. During normal, nonstall operation, the dynamically latch-

ing gates are not switched and thus only marginally increase the propagation delay through

110

the logic. By not incurring the clock overhead incurred by conventional pipelines, the per-

formance of a stalling wave pipeline in which the delay variation is su�ciently small exceeds

the performance of a conventional pipeline of equal depth.

Because the need for synchronizers within the combinational logic of a wave pipeline is

obviated, the latencies, clock frequencies, and die areas of wave pipelined implementations

can be superior to conventional pipelines. Wave pipelines with fully latchless feedback

have closed loop feedbacks of pipeline outputs to inputs. The lack of synchronizers in the

feedback loop make this organization impractical for most circuits.

The constraints on the timing of the output clock of wave pipelines can be eased through

the use of self-timing techniques. In self-timed circuit designs, data storage and synchro-

nization is performed through the dynamic operation of the circuitry. The synchronizers

time reference is provided either through the use of methods of data encoding which dis-

tinguish when valid data has arrived at the output or through the use of a separate timing

reference path through the logic which tracks the data propagation through the logic in a

dynamic manner. These same techniques can be used in wave pipeline designs to generate

the output clock for the wave pipeline. The self-timed output clock eliminates the need for

the intentional delay insertion or clock skewing methods presented in Chapter 3.

Optimizations to CMOS wave pipeline circuit designs to minimize the delay variation due

to data dependent delays are presented in Chapter 5. The delay variation e�ects due to

parallel conduction paths of outputs driving large capacitances are examined. By minimiz-

ing the capacitance driven by gates with parallel conduction paths and driving the large

capacitances with balanced drivers, this delay variation can be minimized.

6.2 Conclusions

As a result of this research e�ort the following conclusions may be drawn:

Wave pipelining of CMOS VLSI systems can result in 1 to 2-times increase in the rate at

which the combinational logic can be clocked when the system is required to operate over

reasonable environmental conditions and with typical process variation without compensa-

tion for the changes in propagation delay.

With adaptive compensation techniques presented, the clock rates of CMOS wave pipelined

systems can be 2 to 6-times those which could be achieved without pipelining.

Delay balancing based upon transistor sizing can limit the variation in path delay to less

than 20% for practical circuits. This degree of accuracy is consistent with manual balancing

methods.

Additional performance can be gained in CMOS wave pipelined circuits through synchro-

nization of pipeline clocks and minimizing the capacitive loads of gates with parallel con-

duction paths.

111

Stalls can be supported in wave pipelined systems through �fos external to the wave pipeline

or through the use of dynamic stalling gates. If the variation in delay of a wave pipeline

is su�ciently low, a stalling wave pipeline has higher performance than a conventional

pipeline.

Relatively large CMOS wave pipelined systems can be designed, tested, and operated. The

vector unit developed as part of this research e�ort contained wave pipelined multiply and

add functional units and a wave pipelined vector register �le, all of which were synchronized

to each other and remaining conventional synchronous system. Most circuit optimizations

were automated. This design performed at up to 303MHz. The vector register �le supports

1.1 concurrent waves of data, the adder supports 1.9 waves of data, and the multiplier

supports 3.7 waves of data with no intervening latches. This design by using wave pipelining

achieved a clock rate 35% faster than could be achieved using conventional two phase

clocking and dynamic latches.

6.3 Future Wave Pipelining Research

Although this research e�ort contributed to the practical application of wave pipelining in

CMOS VLSI system design, several areas of further wave pipelining research are evident.

They are broadly classi�ed as device models and tools, adaptation, and implementations

and architectures.

6.3.1 Models and Tools

The as discussed in Section 3.1.6, the accuracy of the CMOS �ne balancing tool was limited

due to the simple model of delay employed. More accuracy and, thus, potentially higher

performance wave pipelines could be realized with better models of gate and network delay.

Signi�cant research has been conducted in the area of delay modeling and and delay fault

testing which could be leveraged to provide higher accuracy wave pipeline optimization

tools. In the area of tools for wave pipelining, e�ciencies could be gained in the balancing

of wave pipelined circuits if more e�cient solution methods for solving the linear programs

were employed.

6.3.2 Adaptation

This research has shown that CMOS wave pipelines will not approach their performance

potential in system applications without the ability to compensate for variations in delay

due to process and operating environment. Additional research on constant propagation

delay, closed loop compensation techniques and their e�ect on circuit performance and

reliability is warranted. Additional work on variable propagation delay, self-timed output

112

wave pipelines could further serve to increase the acceptance of wave pipelines in the design

of VLSI systems.

6.3.3 Implementations and Architectures

Wave pipelining has been applied to bipolar, static CMOS, domino CMOS, and pass-logic

CMOS circuits. Additional analysis of the application of wave pipelining techniques to

other technologies such as BiCMOS and GaAs. Where as driving of large capacitances in

CMOS leads to slow rise/fall times and large data dependent variations, selective use of

bipolar drivers for these nodes within BiCMOS systems could improve the performance of

wave pipelined designs. Analysis of the applicability of wave pipelining to additional logic

families such as families such as dual pass transistor and CVSL are warranted.

Low power wave pipelined circuits is an area which is largely unexplored. A thorough

examination of the performance bene�ts of wave pipelining with stringent power constraints

would prove valuable for the advancement of wave pipelining.

The e�ects of wave pipelining on pipeline architectures presents another opportunity for

future research. The impact of the wave pipeline clocking techniques on processor pipeline

architectures, instruction set architectures, and exception handling could prove to be im-

portant.

113

A Symbols

Cl The total load capacitance.

Ccoupled i The mutual capacitance of the output and the signal i.

Cgate The capacitance of the gate of a transistor.

Cint The capacitance of the wires connected to a gate output.

Cox The per area oxide capacitance.

cs The constructive skew between the clock at the input

csisys The time by which the clock to the output latch of wave

pipeline i lags the system reference clock.

synchronizer and output synchronizer.

D[i; 0] The propagation delay from the source node to node i

with falling output.

D[i; 1] The propagation delay from the source node to node i

with rising output.

di The direction of coupled signal switch (-1 if opposite

to output and 1 if same as output).

fast The operating conditions (Vmax; �min; �fast).

f [from; to; direct](Mw; Cl) The propagation delay function of the gate connecting

from to to under the given conditions.

fh The horizontal mobility degradation factor.

flin The linear approximation to the delay function f .

fv The vertical mobility degradation factor.

H The clock overhead including rise/fall time, clock skew,

setup or hold time, and synchronizer output time.

H i
max The worst case maximum synchronizer overhead.

H i
min The worst case minimum synchronizer overhead.

Ids max The maximum MOS transistor source-drain current.

k A factor to account for the di�erence between the

maximum and average current over the period

during which a transistor switches.

k The number of iterations a signal transitions makes

around the feedback loop in wave pipeline with

latchless feedback.

K Transconductance per unit ratio of channel width to

channel length.

Kn The NMOS transconductance.

Kp The PMOS transconductance.

L The channel length.

L The e�ective transistor length.

L0 The nominal e�ective transistor length prior to balancing.

M The exponential temperature dependent delay constant

between 1.5 and 2.

114

Ml The length modi�cation factor of a transistor being

balanced.

Mw The width modi�cation factor of a transistor being

balanced.

N The number of concurrent waves in the wave pipeline.

Nmax The maximum number of waves in the wave pipeline,

also represents the maximum speed up of a wave

pipeline over the same circuit being operated as

a traditional pipeline stage.

Nstall The number of required stall cycles.

P f
max The maximum delay of the feedback path in a wave

pipeline with latchless feedback.

Pmax The worst case maximum propagation delay through

the combinational network.

Pmin The best case minimum propagation delay through the

combinational network.

RFmax The maximum rise/fall time of the inputs to the output

synchronizer.

Req The equivalent resistance of a conducting transistor.

slow The operating conditions (Vmin; �max; �slow).

T
early
i+1 The earliest time at which data input wave i+ 1 is

applied to the combinational logic.

T late
i The latest time at which input data wave i is applied

to the combinational logic.

T
opt
clk The lower limit on the clock period of a wave pipeline

due to the variation in propagation delay.

Tclk The clock period.

Tdlatch The increase in propagation delay of a freezing gate due

to the dynamic latching transistors at the freeze points.

Tfreeze point The propagation delay from the input of the wave

pipeline to the freeze point.

Tms The minimum amount of time a node voltage must be

stable to ensure the subsequent level of logic operates

correctly.

Tox The device oxide thickness.

Tpd The propagation delay of combinational logic.

Tphl The propagation delay of a gate with output

transitioning from the high to the low level.

Tplh The propagation delay of a gate with output

transitioning from the low to the high level.

Tstall The period for which the stall signals are valid.

Tsynch The maximum time from the data initiating edge of the

clock to valid output of the input synchronizer.

115

Ts The maximum setup time of the output synchronizer.

Ttrans The time over which the latch is open and transparent.

V The supply voltage.

Vdd The supply voltage.

Vdmax The maximum drain to source voltage during velocity

saturation.

Vsat The drain to source saturation voltage.

vsat The saturation velocity.

Vtn NMOS threshold.

Vtp PMOS threshold.

Vt The device threshold.

W The e�ective transistor width.

W0 The nominal e�ective transistor width prior to balancing.

Wmax The maximum allowable width of a transistor.

Wmin The minimum allowable width of a transistor.

Xij The largest integer di�erence in the number of waves in

the longest and shortest paths in a polyharmonic

wave pipeline.

� The ratio of the largest propagation delay through a

logic network to the smallest propagation delay

through the network.

� The propagation delay degradation factor due to process

and environmental variations.

�C The unintentional clock skew between input and output

clocks.

�P The di�erence in propagation delay between the longest

and shortest path through a combinational network.

�P i
max The worst case delay introduced in to path i during the

intentional delay insertion process.

�P j
max The worst case delay introduced in to path j to equalize

the delays in a polyharmonic wave pipeline.

 The worst-case process and environmental degradation

factor relative to typical process and environmental

conditions.

�0 The low-�eld channel mobility.

�n The electron channel mobility.

�p The hole channel mobility.

� The fabrication process.

� The operating temperature.

116

B Delay Models for CMOS Circuits

This appendix presents the delay models used in the analysis of the performance limits of

CMOS wave pipelining presented in Chapter 2.

For simplicity, propagation delay is de�ned as the time from the controlling input reaching

50% of its terminal value to the output reaching 50% of its terminal value. The Elmore

model is used for the delay of the network [13]. In this analysis, the propagation delay along

a path in a logic network is the sum of the step-input delays of the individual gates along

the path.

The step-input propagation delay of a CMOS gate, Tpd, consists of the time it takes for a

load capacitance to be charged or discharged from its initial voltage to 50% of the terminal

voltage. Thus,

Tpd = Cl �

Z
dV

I(V; �; �)
(116)

where Cl is the total load capacitance, � represents operating temperature, and � distin-

guishes the fabrication process.

To estimate Tpd, gates are represented as a single transistor, sized so as to match the current

carrying capacity of the complex gate, charging or discharging a �xed load capacitance.

Using long-channel MOS current equations, the propagation delay equations for a high-to-

low transitioning output assuming step input are: [50]

Tphl = t1 + t2 (117)

t1 =
2ClVtn

Kn(Vdd � Vtn)2
(118)

t2 =
Cl

(Vdd � Vtn)Kn[ln(
3Vdd�4Vtn

Vdd
)]

(119)

For short-channel MOS devices, where velocity saturation limits channel current, the prop-

agation delay for low-going outputs assuming step input is:

if Vdmax > Vdd=2,

Tphl = t1 + t2 (120)

t1 =
2Cl(Vdd � Vdmax)

KnV
2
dmax

(121)

t2 =
Cl

Kn[
1

Vdd�Vtn
ln(

Vdmax(1:5Vdd�2Vtn)

Vdd(Vdd�Vtn�0:5Vdmax)
) + (2=Vsat)ln(

1:5Vdd�2Vtn
2Vdd�2Vtn�Vdmax

)]
(122)

117

else,

Tphl =
ClVdd

KnV
2
dmax

(123)

where,

Vsat =
L � vsat
�n

(124)

Vdmax = Vsat[(1 +
2(Vdd � Vtn)

Vsat
)0:5 � 1] (125)

Kn = �nCoxW=L (126)

and W is channel width, L is channel length, �n is electron channel mobility, Cox is per

area oxide capacitance, vsat is the saturation velocity, and Vtn is NMOS threshold.

Corresponding equations for the propagation from low-to-high transitioning output result

from the application of the same delay model, mutatis mutandis. Using long-channel MOS

current equations, the propagation delay equations for high-going outputs assuming step

input are:

Tplh = t1 + t2 (127)

t1 =
�2ClVtp

Kp(�Vdd � Vtp)2
(128)

t2 =
�Cl

(�Vdd � Vtp)Kp[ln(
�3Vdd�4Vtp

�Vdd
)]

(129)

For short-channel MOS devices: If Vdmax > Vdd=2,

Tplh = t1 + t2 (130)

t1 =
2Cl(�Vdd � Vdmax)

�KpV
2
dmax

(131)

t2 =
Cl

Kp[
1

�Vdd�Vtp
ln(

Vdmax(�1:5Vdd�2Vtp)

Vdd(�Vdd�Vtp�0:5Vdmax)
) + (2=Vsat)ln(

�1:5Vdd�2Vtp
�2Vdd�2Vtp�Vdmax

)]
(132)

else,

Tplh =
ClVdd

KpV
2
dmax

(133)

where,

Vsat =
L � vsat
�p

(134)

Vdmax = Vsat[(1 +
2(�Vdd � Vtp)

�Vsat
)0:5 � 1] (135)

Kp = �pCoxW=L (136)

and W is channel width, L is channel length, �p is hole channel mobility, Cox is per area

oxide capacitance, vsat is the saturation velocity, and Vtp is PMOS threshold.

118

If the gate is balanced, the propagation delays for rising and falling outputs are equal. For

cases where propagation delays are represented by a single number and the gates are not

balanced, the arithmetic average of the rising and falling delays is used. For the analysis in

Chapter 2, balanced gates are assumed. For the CMOS delay tuning via transistor sizing

presented in Chapter 3, the rising and falling delays are treated separately.

119

C Adaptive Power Control

This appendix analyzes the performance and stability of the constant delay, adaptive power

technique introduced in Chapter 3.

A closed-loop adaptive power design consists of a delay error detector circuit (phase com-

parator) and a power supply regulator. The supply regulator can be implemented as a

dissipative circuit which lowers the power supply voltage, or a pulse-width-modulation cir-

cuit which controls the performance of a switch-mode regulator.

As the constant delay adaptive power technique was used for a relatively high power design,

this analysis concentrates on the switch-mode regulation method.

A �xed frequency source is applied to an inverter chain which acts as a voltage controlled

delay. The inverter chain is designed such that for the slow corner process and the worst-

case operating temperature and noise, the delay through the chain with a nominal power

supply is equal to 1/2 the period of the �xed frequency source.

The input to the delay chain and the output are phase compared using a master/slave latch

circuit shown in Figure 68 [2]. The outputs of the comparator are exclusive. When the input

to the delay chain lags the output, the delay through the chain is too short and the supply

voltage to the chain must lowered. Under this situation, the chip supply is operating faster

than the design target and the chip supply should be lowered. The lagging input results

in the activation of the ChargeRemove signal which results in a �xed amount of charge to

be removed from the capacitor on the Vctrl node. The removed charge lowers slightly the

120

supply to the delay chain, thereby increasing the delay through the delay chain.

Delay

Pulse

Fixed Clk

Charge Add

Charge Remove

Figure 68: Phase Comparator Circuit

If the delay chain input leads the output, the supply is too low. In this case, the ChargeAdd

signal is activated, a small charge is added to the charge pump capacitor, and the reference

voltage is increased.

The value of the control capacitor and the amount of charge added to or removed from the

capacitor are chosen so as to ensure the stability and response time of the control circuit.

The control voltage �xed by the delay loop is an approximation to the voltage at which the

delay of the chain equals the design target for the realized process and the current operating

conditions. If the bandwidth of the delay loop is su�ciently high when compared to the

time constant of the environmental changes, this approximation is accurate.

To approach constant delay of all circuitry, the chip supply voltage should track the delay

detector control voltage. The control voltage is used as the reference voltage for the buck

converter in the switching power supply. The reference voltage change results in a change

in the duty cycle of the switching waveform to the switching transistor. The modeling of

the buck converter shown in Figure 69 is based upon work by Chetty [9].

Figure 70 shows the response of the delay detector and converter to the initial voltage locking

due to a process which is faster than the design process. The top graph is the ChargeAdd

indication and the middle graph is the ChargeRemove signal. The bottom graph shows two

traces: The top trace in the graph, node 6, is the chip power supply node. The bottom

trace in the graph, node PULL, is the reference voltage. This graph shows that within 50

microseconds, the chip power supply voltage reaches the value which achieves design target

propagation delays.

Figure 71 shows the response of the adaptive power circuit to a rise in die temperature

of the vector unit chip. At time t=0 the power consumption rises from a standby power

consumption of 0.5W to a power consumption of 1.9W. The �rst graph in Figure 71 gives

the thermal response at the location of the delay chain on the die. The temperature rise

has a time constant of approximately 350ms. The temperature rise is approximately 43 C.

121

Error AmpPWM Vref

Chip Vdd

Rchip

Chip Vdd

Vref

Error Amp

PWM

Buck Converter

Figure 69: Power Converter Circuit

The second graph presents the response of the control voltage, node PULL, and the chip

power supply, node 6. The power supply level is adjusted to track the temperature rise.

The maximum di�erence between the control voltage and the chip power supply during the

temperature increase is 420 microvolts for this simulation. The resulting deviation of the

propagation delay of the inverter delay chain from its design target is negligible.

Simulation results have shown that the adaptive power supply method can compensate for

process dependent delay variation and temperature dependent delay variation in CMOS

wave pipelined circuits. This method cannot, however, compensate for high frequency

delay a�ecting changes to the operating environment such as Ldi/dt noise and capacitively

coupled noise, or spatial variations in the process and operating environment. Any disparity

in the tracking of propagation delay between the inverter delay chain and the wave pipeline

combinational logic when supply voltage is changed may also introduce some variation

in circuit delay. Despite these factors, the adaptive power method is attractive for high

performance CMOS wave pipelined designs.

122

Figure 70: Adaptive Power Initialization

123

Figure 71: Adaptive Power Step Response

124

References

[1] S. Anderson, J. Earle, R. Goldschmidt, and D. Powers. The IBM system/360 model

91 oating point execution unit. IBM Journal of Research and Development, pages

34{53, January 1967.

[2] H. B. Bakoglu. Circuits, Interconnections, and Packaging for VLSI. Addison-Wesley,

1990.

[3] M. Berkelaar and J. Jess. Gate sizing in MOS digital circuits with linear programming.

In Proceedings of the 1990 European Design Automation Conference, pages 217{21,

Glasgow, March 1990.

[4] C. Branson, D. Murray, and S. Sullivan. Integrated pin electronics for a VLSI test

system. In International Test Conference 1988 Proceedings, pages 23{27, Washington,

D.C., September 1988.

[5] R. Brent and H. Kung. A regular layout for parallel adders. IEEE Transactions on

Computers, C-31:260{264, 1982.

[6] C. Chang, E. Davidson, and K. Sakallah. Using constraint geometry to determine max-

imum rate pipeline clocking. In Proceedings of 1992 IEEE/ACM International Con-

ference on Computer-Aided Design, pages 142{148, Santa Clara, California, November

1992.

[7] J. Chapman. High-performance CMOS based VLSI testers: timing control and com-

pensation. In Proceedings International Test Conference 1992, pages 59{67, Baltimore,

September 1992.

[8] T. Chappell, B. Chappell, S. Schuster, J. Allan, S. Klepner, R. Joshi, and R. Franch. A

2-ns cycle, 3.8-ns access 512-kb CMOS ECL SRAM with a fully pipelined architecture.

IEEE Journal of Solid-State Circuits, November 1991.

[9] P. R. K. Chetty. Switch-mode power supply design. Tab Professional and Reference

Books, 1986.

[10] L. Cotten. Maximum rate pipelined systems. In Proceeding AFIPS Spring Joint Com-

puter Conference, pages 581{586, 1969.

[11] M. Dean. STRiP : a self-timed RISC processor. PhD thesis, Stanford University,

Department of Electrical Engineering, 1992.

[12] B. Ekroot. Optimization of Pipelined Processors by Insertion of Combinational Logic

Delay. PhD thesis, Stanford University, Department of Electrical Engineering, Septem-

ber 1987.

[13] W. Elmore. The transient response of damped linear networks with particular regard

to wideband ampli�ers. Journal of Applied Physics, January 1948.

125

[14] D. Fan, C. Gray, W. Farlow, T. Hughes, W. Liu, and R. Cavin. A CMOS parallel

adder using wave pipelining. MIT Advanced Research in VLSI and Parallel Systems,

pages 147{164, March 1992.

[15] J. Fishburn. Clock skew optimization. IEEE Transactions on Computers, 39:945{51,

1990.

[16] J. Fishburn and A. Dunlop. Tilos, a polynomial programming approach to transistor

sizing. In Proceedings of the 1985 IEEE International Conference on Computer-Aided

Design, pages 326{8, 1985.

[17] M. P. Flynn and S. Lidholm. A 1.2-�m CMOS current-controlled oscillator. IEEE

Journal of Solid-State Circuits, July 1992.

[18] E. Friedman and J. Mulligan Jr. Clock frequency and latency in synchronous systems.

International Journal of Electronics, 70:930{4, May 1991.

[19] D. Ghosh and S. K. Nandy. a 400 MHz wave-pipelined 8x8-bit multiplier in CMOS

technology. In Proceedings of the International Conference on Computer Design, pages

189{201, 1993. A slightly more detailed presentation is given in: D. Ghosh and S. K.

Nandy. Design and realization of high-performance wave-pipelined 8x8 b multiplier in

CMOS technology. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-

tems, pages 36-48, March 1995.

[20] L. Glasser and D. Dobberpuhl. The Design and Analysis of VLSI Circuits. Addison-

Wesley, 1985.

[21] C. T. Gray, W. Liu, and R. K. Cavin III. Timing constraints for wave pipelined systems.

Technical Report NCSU-VLSI-92-06, North Carolina State University, Department of

Electrical Engineering, December 1992.

[22] K. Hijikata, T. Nagasaki, R. Kurazume, and W. Nakayama. Study on heat transfer

from small heating elements in an integrated circuit chip. In Proceedings of the 3rd

ASME/JSME Thermal Engineering Joint Conference, volume 4, 1991.

[23] M. Horowitz. Personal conversation. Dept. of Electrical Engineering, Stanford Univer-

sity, March 1993.

[24] D. Jeong, G. Borriello, D. Hodges, and R. Katz. Design of PLL-based clock generation

circuits. IEEE Journal of Solid-State Circuits, pages 255{61, April 1987.

[25] M. Johnson and E. Hudson. A variable delay line PLL for CPU-coprocessor synchro-

nization. IEEE Journal of Solid-State Circuits, pages 1218{23, October 1988.

[26] D. Joy and M. Ciesielski. Placement for clock period minimization with multiple wave

propagation. In Proceedings of the 28th Design Automation Conference, pages 640{643,

San Francisco, 1991.

126

[27] D. Joy and M. Ciesielski. Clock period minimization with wave pipelining. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, pages

461{472, April 1993.

[28] T. Kim, W. Burleson, and M. Ciesielski. Logic restructuring for wave-pipelined circuits.

In International Workshop on Logic Synthesis, 1993.

[29] E. F. Klass. Wave Pipelining: Theoretical and Practical Issues in CMOS. PhD thesis,

Delft University of Technology, Department of Electrical Engineering, September 1994.

[30] F. Klass and M. Flynn. Comparative studies of pipelined circuits. Technical Report

CSL-TR-93-579, Stanford University, Computer Systems Laboratory, Department of

Electrical Engineering, July 1993.

[31] F. Klass, M. Flynn, and A. J. van de Goor. Fast multiplication in VLSI using wave

pipelining techniques. Journal of VLSI Signal Processing, 7:233{248, 1994.

[32] F. Klass and J. Mulder. CMOS implementation of wave pipelining. Technical Report

1-68340-44(1990)02, Delft University of Technology, Department of Electrical Engi-

neering, December 1990.

[33] W. Lam, R. Brayton, and A. Sangiovanni-Vincentelli. Valid clocking in wavepipelined

circuits. In Proceedings of IEEE Conference on Integrated Circuits Computer Aided

Design, 1992.

[34] C. Lee and A. Palisoc. Real-time thermal design of integrated circuit devices. IEEE

Transactions on Components, Hybrids and Manufacturing Technology, December 1988.

[35] W. Lien and W. Burleson. Wave-domino logic: Timing analysis and applications. In

Proceedings of TAU92, 1992. A short version of this work appears in: W. Lien and

W. Burleson. Wave-Domino Logic: Timing Analysis and Applications. Proceedings of

IEEE International Symposium on Circuits and Systems, pages 2949-52, 1992.

[36] P. Macken, M. Degrauwe, M. Van Paemel, and H. Oguey. A voltage reduction technique

for digital systems. In Proceedings of the 1990 IEEE International Solid-State Circuits

Conference, pages 238{9, San Francisco, CA, February 1990.

[37] D. Marple. Performance optimization of digital VLSI circuits. PhD thesis, Stanford

University, Department of Electrical Engineering, 1987.

[38] Meta-Software. HSPICE User's Manual: Volume 2 Elements and Models. Meta-

Software, Inc., 1992.

[39] B. Murtagh and M. Saunders. Minos 5.1 user's guide. Technical Report SOL 83-20R,

Stanford University, Systems Optimization Laboratory, Dept. of Operations Research,

January 1987.

127

[40] K. Nakamura, S. Kuhara, T. Kimura, M. Takada, H. Suzuki, H. Yoshida, and T. Ya-

mazaki. A 220 MHz pipelined 16 Mb BiCMOS SRAM with PLL proportional self-

timing generator. In Proceedings of the 1994 IEEE International Solid-State Circuits

Conference, pages 258{9, San Francisco, California, February 1994.

[41] V. Nguyen, W. Liu, C. Gray, and R. Cavin. A CMOS signed multiplier using wave

pipelining. In Proceedings of IEEE 1993 Custom Integrated Circuits Conference, 1993.

[42] L. S. Nielsen, C. Niessen, J. Sparso, and K. van Berkel. Low-power operation using

self-timed circuits and adaptive scaling of the supply voltage. IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, 2:391{397, 1994.

[43] K. Nowka and M. Flynn. Environmental limits on the performance of CMOS wave-

pipelined circuits. Technical Report CSL-TR-94-600, Stanford University, Computer

Systems Laboratory, Dept. of Electrical Engineering, January 1994.

[44] K. Nowka and M. Flynn. Wave pipelining of high performance CMOS static RAM.

Technical Report CSL-TR-94-615, Stanford University, Computer Systems Laboratory,

Dept. of Electrical Engineering, January 1994.

[45] K. Nowka and M. Flynn. System design using wave-pipelining: A CMOS VLSI vec-

tor unit. In Proceedings of the 1995 IEEE International Conference on Circuits and

Systems, pages 2301{2304, 1995.

[46] A. Sabnis and J. Clemens. Characterization of electron mobility in the inverted <100>

silicon surface. IEDM Technical Digest, 1979.

[47] M. Santoro. Design and clocking of VLSI multipliers. PhD thesis, Stanford University,

Department of Electrical Engineering, 1990.

[48] S. Sapatnekar, V. Rao, and P. Vaidya. A convex optimization approach to transistor

sizing for CMOS circuits. In Proceedings of the 1991 IEEE International Conference

on Computer-Aided Design, pages 482{5, Santa Clara, CA, November 1991.

[49] The MOSIS Service. Mosis parametric test results. 1993.

[50] M. Shoji. CMOS Digital Circuit Technology. Prentice Hall, 1988.

[51] I. Sutherland. Micropipelines. Communications of the ACM, pages 720{38, June 1989.

[52] S. Tachibana, H. Higuchi, K. Takasugi, K. Sasaki, T. Yamanaka, and Y. Nakagome.

A 2.6-ns wave-pipelined CMOS SRAM with dual-sensing-latch. In Proceedings of the

1994 Symposium on VLSI Circuits, pages 117{8, Honolulu, HI, June 1994.

[53] D. Wong. Techniques for Designing High Performance Digital Circuits Using Wave

Pipelining. PhD thesis, Stanford University, Department of Electrical Engineering,

1991.

128

[54] D. Wong, G. De Micheli, and M. Flynn. A bipolar population counter using wave

pipelining to achieve 2.5x normal clock frequency. In Proceedings of IEEE International

Solid-State Circuits Conference, San Francisco, February 1992.

[55] X. Zhang and R. Sridhar. CMOS wave pipelining using transmission-gate logic. In

Proceedings of Seventh Annual IEEE International ASIC Conference and Exhibit,

Rochester, NY, September 1994.

129

