
PPP:

A GATE-LEVEL POWER SIMULATOR

A WORLD WIDE WEB APPLICATION

Alessandro Bogliolo

Luca Benini
Giovanni De Micheli

Bruno Ricc�o

Technical Report: CSL-TR-96-691

March 1996

This work was partially supported by NSF (under contract MIP-9421129)

and by AEI (under grant De Castro)

i

PPP: A Gate-Level Power Simulator

A World Wide Web Application

Alessandro Bogliolo Luca Benini Giovanni De Micheli Bruno Ricc�o1

Technical Report: CSL-TR-96-691

March 1996

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, CA 94305-9040

Abstract

Power consumption is an increasingly important constraint for complex ICs. Accurate and

e�cient power estimations are required at any level of abstraction to steer the design process.

PPP is a Web-based integrated environment for synthesis and simulation of low-power CMOS

circuits. We describe the simulation engine of PPP and we propose a new paradigm for tool

integration.

The simulation engine of PPP is a gate-level simulator that achieves accuracy comparable

with electrical simulation, while keeping performance competitive with traditional gate-level

techniques. This is done by using advanced symbolic models of the basic library cells, that

exploit the understanding of the main phenomena involved in power consumption. In order

to maintain full compatibility with gate-level design tools, we use VERILOG-XL as simulation

platform. The accuracy obtained on benchmark circuits is always within 6% from SPICE also

for single-gate/single-pattern power analysis, thus providing the local information needed to

optimize the design.

Interface and tool integration issues have been addressed using a Web-based approach. The

graphical interface of PPP is a dynamically generated tree of interactive HTML pages that allow

the user to access and execute the tool through the Internet by using his/her own Web-browser.

No software installation is required and all the details of data transfer and tool communication

are hidden to the user.

Key Words and Phrases: Power consumption, Symbolic gate model, Gate-level simulation,

CAD tool integration, Web-based application

1With the DEIS, University of Bologna, viale Risorgimento 2, 40135 Bologna, Italy.

Copyright c1996

Alessandro Bogliolo, Luca Benini, Giovanni De Micheli and Bruno Ricc�o

iii

Contents

1 Introduction 1

2 Gate-Level Power Simulation 2

2.1 Cell-Based Power Simulation : 3

3 A New Approach 5

3.1 Basic Idea : 5

3.2 Advanced Gate Models : 6

3.3 Evaluating Ec : 6

3.4 Evaluating Ew : 8

3.5 Multiple Transitions : 8

3.6 Timing Information : 10

3.7 Sequential Elements : 11

3.7.1 Static Sequential Elements : 11

3.7.2 Dynamic Elements : 12

3.8 Implementation : 13

4 Web-Based Tool Development 13

4.1 Motivations and Background : 13

4.2 The PPP Paradigm : 14

5 Tool Architecture 16

5.1 Application Layer : 16

5.2 Communication Layer : 17

5.3 Interface Layer : 18

5.4 Bandwidth management : 18

5.5 Implementation Details : 19

6 PPP User Session 20

6.1 Circuit Speci�cation and Mapping : 21

6.2 Simulation Setup : 22

6.3 Power Simulation : 24

7 Experimental Results 25

8 Conclusions and Future Work 27

9 Acknowledgements 28

Introduction 1

1 Introduction

Power dissipation in VLSI systems has recently become a critical metric for design evaluation.

A large number of power estimation techniques have been recently proposed [1, 2, 3, 4], based on

models at di�erent levels of abstraction, ranging from electrical level to architectural level [5, 6,

7]. Electrical-level simulators produce the most accurate results, but are often very demanding

in terms of computational resources. Moreover, the large number of simulations needed to reach

a reliable estimate of average power dissipation further restricts the class of circuits that can be

analyzed with electrical simulators in a reasonable time.

At a higher level of abstraction, logic-level simulation allows power estimation for very large

blocks, often enabling full-chip simulation. As a consequence, for CMOS digital circuits, logic-

level simulation is usually the preferred tool for validation and debugging, and the large majority

of designers is highly familiar with logic simulation tools. Mainly for these reasons, many

attempts have been made to provide power estimation at the logic level. In the simplest model,

power is estimated observing the switching activity at the output of the basic logic blocks of

the circuit (weighted by the load capacitance). The advantage of this model is that it enables

the application of pattern independent techniques, which provide an estimate of the average

switching activity without actually simulating the circuit with a large number of test patterns

[2].

Power estimation based on switching activity has however limited accuracy, mainly because it

does not consider phenomena such as non-instantaneous signal transitions, spurious transitions

(glitches) and gate internal capacitances, that may have a sizable impact on the total power

dissipation. In order to overcome these di�culties, advanced logic simulation techniques have

been proposed that allow increased accuracy, while maintaining the abstraction at the logic level

[8, 9, 10]. In these approaches, lookup tables are obtained by electrical simulation of the basic

building blocks, and the collected data are then used during gate-level simulation.

Although these techniques reported promising results, they have two main limitations. First,

they do not assume any model for the internal structure of the basic building blocks (gates).

Second, they do not deal with multiple input transitions that are not perfectly aligned in time,

with misalignments smaller than the propagation delay of the gate. In this work we propose a

more accurate model based on the structure of the gate (and on the physical understanding of

the electrical phenomena involved in power dissipation) that overcomes the limitations above

mentioned, while keeping computational e�ciency competitive with traditional gate-level power

simulation.

Our technique exploits a BDD-based symbolic model for describing the charge and discharge

of parasitic (and load) capacitances and the ow of short circuit current. Lookup tables are

used only for modeling the timing behavior of the circuit (as it is commonly done in full-delay

simulation), therefore power simulation only marginally increases the memory usage. Our model

is exible and can be used to accurately estimate power dissipation for gates in a large range of

2 CSL-TR-96-691

load and input conditions. As a result, our method is highly accurate also for single gate (local)

power estimate, allowing the individuation of critical gates during design optimization.

We have implemented our algorithms using VERILOG-XL as simulation platform, therefore

maintaining full compatibility with design environments based on VERILOG HDL. For our test

library the accuracy on local power estimation is within 6% from SPICE under a wide range

of fan-in and fan-out conditions, while the accuracy on the average power dissipation for large

benchmarks is even higher. The speed penalty with respect to unit-delay VERILOG simulation

is within a factor of 6, while the speedup with respect to fast SPICE simulation ranges from two

to three orders of magnitude.

We have used our simulator as the starting point for the development of a CAD tool that we

called PPP. PPP has been conceived as an integrated environment for simulation and synthesis

of low-power CMOS circuits. Its main features are modularity, machine independence, resource

distribution and remote execution. All these features are implemented by following a new tool

integration and interfacing paradigm based on the World Wide Web. The graphical interface

of PPP is a net of interactive HTML pages that can be accessed through the Internet using

traditional Web-browsers.

In the next section we discuss the main issues involved in gate-level power simulation. In

section 3 we introduce our model of power consumption in CMOS gates and we describe how to

use it in an event-driven simulation context. In section 4 we introduce the PPP-paradigm for

Web-based tool integration and interfacing. The architecture of PPP is then described in section

5 and a typical user session is exempli�ed in section 6. In section 7 we report the experimental

results obtained on a large set of benchmark circuits and in section 8 we draw conclusions.

2 Gate-Level Power Simulation

Traditional gate-level power estimates are based on the simplifying assumption that the supply

current required by a CMOS circuit is essentially spent on charging load capacitances at the

outputs of the switching gates. Because of this assumption, the inner structure of the gates is

neglected and the average power consumption is evaluated simply by looking at the switching

activity (toggle count) and the capacitive load at the gate outputs.

In this way, however, the actual power consumption can be heavily underestimated since

several parasitic phenomena (such as short-circuit currents, charging and discharging of internal

capacitances and charge sharing) that may have a sizable impact on the global power, cannot

be captured.

Example 1 Fig. 1 represents a CMOS realization of a three inputs OR gate. Starting from the

input con�guration x = 100, consider a transition of the input signal x1 from 1 to 0 (boldfacing

is hereafter used to denote Boolean vectors: x = [x1x2x3]). The only e�ect of this transition that

can be captured at logic level is the discharging of CL, that does not cause any current from power

Gate-Level Power Simulation 3

2

CL

1
C

CL

x1 x2 x3

x1

x2

x3

x1

x3

x2

Vdd

C

C
3

out

Vdd

Vdd

outOR

1
1

2

3

n V

V2

3V

n

n n V4 4

Figure 1: CMOS realization of a three input OR gate. Parasitics are modeled by means of four constant

capacitors to ground: C1 = C2 = 11fF , C3 = 157fF and CL = 136fF .

supply. However, a sizable power is actually drawn by the gate due to the charging of internal

capacitances and to the presence of transient conductive paths from power-supply to ground. In

particular, the power consumption is of 0.22mW (according to HSPICE) for an input transition

of 0.1ns and a clock period of 20ns. This is of the same order of the supply power required for

a rising transition of the output node, even with an additional load of 50fF . 2

Moreover, spurious transitions (glitches) that may represent the 20% of the switching activity

[11], cannot be accurately accounted for, due to the use of simpli�ed cell delay models.

Example 2 At a logic level of abstraction, changing the inputs of the OR gate of Fig. 1 from

x = 100 to x = 010 does not cause any e�ect. However, a misalignment between the falling and

rising edges of input signals x1 and x2 (i.e., x2 rising 0.4ns after x1 has fallen), may give rise to

a power consumption of 0.08mW (according to HSPICE), because of two phenomena (see Fig.

1):

i) a double, spurious transition (glitch) at the output node, causing the charging/discharging

of both CL and C3, and

ii) short-circuit currents through both the CMOS stages. 2

In principle, the above mentioned limitations can be overcome by taking advantage, during

gate-level simulation, of previously collected information about the basic building blocks of the

circuit.

2.1 Cell-Based Power Simulation

Cell-based power estimation [8] improves upon simple logic-level estimation and consists of the

two steps paradigm of cell characterization and logic simulation. The characterization phase

includes a set of electrical simulations of each library-cell for all possible input transitions and

4 CSL-TR-96-691

for a wide range of fan-in and fan-out conditions. Timing and power information obtained in

this way is used to construct lookup tables for each library-cell.

Logic simulation is then performed by a back-annotated event-driven simulator. Whenever

a transition occurs at the input of a gate, both the propagation delay and the energy drawn by

the gate are read on the corresponding lookup tables. Notice that during simulation, the gate

is seen as a black-box, no information about its internal structure and status is exploited.

In principle, as long as the lookup tables have entries corresponding to the actual fan-in/fan-

out conditions of each gate of the circuit, the back-annotated gate-level simulation reaches the

accuracy of the electrical one. However, the power consumption and the propagation delay of

library cells cannot be pre-characterized for all possible transitions and for all possible values of

parameters they depend on (input slopes and skews, output loads). In practice, instead, electrical

simulations are performed only for single input transitions and for a given set of typical values

of the I/O parameters, thus reducing both the number of electrical simulations and the size of

the lookup tables. The subsequent discretization ultimately impairs the accuracy of the power

estimate. On the other hand, the results of electrical simulations are not accurately �t by any

elementary algebraic function of input patterns and I/O parameters.

Moreover, the power consumption of a CMOS cell actually depends on the charge status of

its internal capacitances, that is usually neglected in the context of gate-level simulation, giving

rise to further approximations.

Example 3 With respect to Fig. 1, consider a transition from x = 101 to x = 001. The actual

energy drawn by the OR gate corresponding to this input transition depends on the charge status

of its internal capacitances. In particular, no supply energy is required if both C1 and C2 have

already been charged at Vdd by a previously applied input vector x = 001, while otherwise 0.44pJ

(22�W with a 20ns cycle-time) are dissipated. Hence, internal voltages should also be taken into

account in order to obtain accurate power estimates. 2

Recently, more re�ned methods have been proposed that partially exploit the knowledge

of the power consuming phenomena inside the cells. In [10] it is observed that the power

dissipated by a cell is characterized by two radically di�erent behaviors depending on the ratio

between slope of the input and output transitions. If the ratio is larger than one, short circuit

current becomes important, while if it is smaller this contribution is less relevant. Based on

this observation, a model is proposed in which two di�erent �tting formulas are used depending

on the above mentioned ratio. The accuracy in this approach is limited by the simple analytic

model and the by lack of information on the internal state of the cells.

In [9] a �nite-state machine (FSM) model for the cell is proposed, in which the internal charge

status of the gate is modeled, and the power dissipated during input transitions is represented by

weights associated with the state transitions of the FSM. However, the power dissipated during a

transition depends not only on the initial and �nal charge status, but also on the capacitive load

A New Approach 5

and on the slope of input and output transitions. This dependency is not explicitly modeled,

thus requiring the use of (large) lookup tables associated with each transition.

Moreover, both techniques do not model accurately signal waveforms, multiple misaligned

input transitions and parasitic phenomena causing intermediate voltage levels (such as signal

glitches and charge sharing). In the next section, we present a new cell-based approach that

overcomes the above limitations.

3 A New Approach

As mentioned before, cell-based power estimation techniques must compromise between the size

of the lookup tables and the accuracy of the estimates. In order to obtain a better trade-o�

between e�ciency and accuracy, we use an advanced model of power consumption in CMOS

cells, based on the understanding of the electrical phenomena involved.

3.1 Basic Idea

In principle, the supply current I(t) drawn by a CMOS cell corresponding to an input transition

(namely, from xi to xf) can be viewed as consisting of two contributions:

� a charging current Ic(t), that increases the total charge of internal and load capacitors,

and

� a wasted current Iw(t), that does not a�ect the charge status of the cell.

The energy drawn by the cell during the whole transition can accordingly be partitioned into

two contributions:

Ec =
Z

t
f

ti

VddIc(t)dt; Ew =
Z

t
f

ti

VddIw(t)dt:

Apexes i and f are hereafter used to denote the beginning and the end of a given transition,

respectively.

In general, even if we run accurate electrical simulations, we cannot distinguish between the

two portions of supply current (Ic and Iw). However, we can evaluate Ec simply by looking at

the charge status of the cell. In fact, since I = dq

dt
, Ec can be expressed as

Ec = Vdd

Z
t
f

ti

Ic(t)dt = Vdd �Q; (1)

where �Q is the total charge provided by Vdd to internal and load capacitors. �Q can therefore

be computed by the following equation:

�Q =
X
j2S

�qj ; (2)

6 CSL-TR-96-691

where S is the set of connected nodes with a connection to Vdd for input vector xf , and �qi

is the charge increase at node ni: �qj = Cj(V
f

j
� V i

j
). It is worth noting that Ec does NOT

depend on the I/O parameters, and its computation ultimately requires only the knowledge of

the charge status (or voltage level) at each node of the cell.

The wasted energy (Ew = E � Ec), on the other hand, does NOT depend on the internal

charge status, and can be approximated by a (linear) function of the I/O parameters, obtained

by �tting the results of electrical simulations.

3.2 Advanced Gate Models

For each cell, we provide the layout-extracted internal capacitances and we model the parasitics

with constant capacitors to ground, as shown in Fig. 1. We denote by N the ordered set of cell

nodes (n1; n2; :::; nN), including primary outputs, and by Ci the capacitance between node ni

and ground.

In order to compute Ec, we need to know the voltage level at each node at the beginning and

at the end of any transition. Moreover, we need to dynamically determine the set (S) of nodes

connected to power supply. To solve these problems, we keep track of the Boolean conditions

enabling the connection of each node to ground (Vss), to Vdd and to each other node in the cell.

These conditions make up a connection matrix M(x), with N rows and N columns

associated with the cell nodes: entry mi;j(x) of the matrix is a Boolean function of the cell

inputs, taking value 1 for those input con�gurations for which a conductive path exists between

nodes ni and nj . Two additional columns (namely N + 1 and N + 2) are used to represent the

connectivity to power supply (d) and ground (s).

Example 4 For the OR gate of Fig. 1, the elements of the �rst row of the connection matrix

are: m1;1(x) = 1, m1;2(x) = x0
2
, m1;3(x) = x0

2
x0
3
, m1;4(x) = 0, m1;d(x) = x0

1
, and m1;s(x) =

x1(x2 + x3). The output node is denoted by n4. 2

The e�cient handling of the connection matrix is obtained by using Reduced Ordered Binary

Decision Diagrams (BDDs) to represent Boolean functions [12]. To this purpose notice that the

square sub-matrix consisting of the �rstN columns ofM(x) is symmetrical, and the BDD-based

representation allows a consistent amount of sharing among its entries.

It is also worth noting thatM(x) is constructed only once for all, during the characterization

phase. At run-time, for each input pattern x the connection status is then obtained fromM(x)

in linear time, by simple BDD evaluations.

3.3 Evaluating Ec

During logic simulation, the connection matrix is used both to compute Ec and to update the

charge status. In particular, the total charge provided by power supply to the internal and load

A New Approach 7

capacitors can be easily evaluated using the column of M associated with Vdd. For a generic

cell with N nodes (including primary output nodes), Equation (2) can be rewritten as:

�Q =
NX
i=1

mi;d(x
f)Ci(V

f

i
� V i

i
): (3)

Example 5 With respect to Fig. 1, the Boolean conditions enabling the connection of each

node of the OR gate to power supply are: m1;d(x) = x0
1
, m2;d(x) = x0

1
x0
2
, m3;d(x) = x0

1
x0
2
x0
3
,

m4;d(x) = x1 + x2 + x3. For instance, the charge provided by Vdd when the cell inputs switch to

xf = 011 is then expressed by:

�Q = C1(V
f

1 � V i

1
) + C4(V

f

4 � V i

4
);

where C4 corresponds to the output load CL. 2

Equation (3) requires the complete knowledge of node voltages at the beginning and at the

end of the transition. Node voltages are updated by exploiting the connection matrix:

V
f

i
= mi;d(x

f)Vdd +mi;s(x
f)Vss +mi;float(x

f)

P
N

j=0mi;j(x
f)CjV

i

jP
N

j=0
mi;j(xf)Cj

; (4)

where mi;float(x
f) takes value 1 whenever node ni is oating: mi;float = m0

i;d
m0

i;s
. In practice,

mi;d(x), mi;s(x) and mi;float(xf) work as mutually exclusive selection functions:

� if ni is connected to power supply (mi;d = 1), the new value of Vi is Vdd;

� if ni is connected to ground (mi;s = 1), the new value of Vi is Vss;

� if ni is oating (mi;float = 1), the new value of Vi is computed by taking into account the

charge sharing with other channel-connected nodes.

Example 6 Consider a transition to xf = 101 at the inputs to the OR gate of Fig. 1. At the

end of the transition, node n1 is oating and connected only to n2. So, the new value of V1 is

given by the charge sharing between n1 and n2:

V
f

1 =
C1V

i

1 + C2V
i

2

C1 + C2

:

2

Notice that Equation (4) also allows us to take implicitly into account the e�ect of threshold

drop on the voltage levels of internal nodes connected to Vdd (Vss) through n-channel (p-channel)

transistors [13]. For a generic node (say, ni) this is done simply by replacing the nominal values

of Vdd and Vss, with values obtained from electrical simulations (namely, Vddi and Vssi) taking

into account transistor threshold drops.

The main source of error in our estimation of Ec is then the constant capacitor to ground

model (oating capacitors are modeled as capacitors to ground). The e�ect of nonlinear time-

varying junction capacitances and feedthrough parasitic capacitances are approximatively ac-

counted for in the Ew component of energy dissipation.

8 CSL-TR-96-691

3.4 Evaluating Ew

The main contribution to Ew is due to the presence of short circuit currents from power supply to

ground. The connection matrix can be used to detect conditions for which there is a transient

open path between Vdd and Vss. In practice, a wasted current is drawn from power supply

whenever a node that was connected to Vdd for input vector xi is connected to Vss for input

vector xf , or viceversa. For a generic cell with N nodes, this condition is expressed by

fw(x
i;xf) =

NX
i=1

[mi;d(x
i)mi;s(x

f) +mi;s(x
i)mi;d(x

f)]: (5)

If fw = 0, then Ew = 0; if fw = 1, instead, Ew depends on fan-in and fan-out conditions,

represented by the input slopes S1; :::; Sn and by the output load CL. Corresponding to any

transition, however, short circuit currents are not inuenced by those input (output) parameters

associated with input (output) signals that don't change.

Since there are no simple closed-form models for the wasted contribution to power consump-

tion, we approximate Ew with a �rst-order function of the I/O parameters:

Ew = fw(c1S1 + :::+ cnSn + cn+1foutCL); (6)

where fout is a Boolean ag taking value 1 corresponding to output transitions (fout = out(xf)�

out(xi)), and the input slopes are set to 0 if the corresponding inputs do not change (xf
i
=

xi
i
=) Si = 0). Pattern dependency is thus implicitly accounted for.

Coe�cients c1; :::; cn+1 are computed with min-square �tting of values obtained by circuit

simulation. It is important to notice that the computation of Ew requires a number of �tting

coe�cients that is linear in the number of inputs and outputs of the cell.

3.5 Multiple Transitions

Although the model described above is accurate for perfectly aligned multiple input transitions,

this assumption is often violated in practice. In the majority of cases, multiple input transitions

are slightly misaligned, possibly by short times (compared to the transition time of the gate).

In this case a model that computes the power dissipation observing single input transitions

may produce large errors, because it will consider a slightly misaligned multiple transition as a

sequence of full transitions.

Assume that a two input transition from input pattern xi to xf is not perfectly aligned.

The misalignment causes an intermediate pattern (say, xm) to appear at the input of the gate

for a short period of time. Assume � to be the delay between the misaligned input transitions

(i.e., the input skew). We call transient time the time Ti!m needed to reach 90% of the total

charge transfer from Vdd to capacitances in the gate (caused by the transition xi ! xm). There

are two limit situations:

A New Approach 9

0e+00 2e-09 4e-09
Input Skew (sec)

0e+00

4e-12

8e-12

E
ne

rg
y

(J
)

HSPICE
Our method

Figure 2: E�ect of the input skew on the energy drawn by a three inputs OR gate corresponding to an input

transition from x
i = 100 to x

f = 011.

� If � << Ti!m, pattern xm does not appear at the inputs and the energy dissipated is

E = Ei!f .

� On the other hand, if � > Ti!m, we have two complete transitions and the total energy

dissipation is E = Ei!m +Em!f .

We approximate the intermediate cases using a linear interpolation between the two limits,

as shown in Fig. 2. Namely:

E = (Ei!m + Em!f)
�

Ti!m

+Ei!f(1�
�

Ti!m

): (7)

Clearly this formula holds if � < Ti!m, while if this is not true we have E = Ei!m + Em!f .

Example 7 Consider the OR gate of Fig. 1, and assume that a multiple input transition occurs

from xi = 100 to xf = 011, with a misalignment (�) of 1ns between the falling edge of x1 and

the rising edges of x2 and x3. As shown in Fig. 3.a, the input misalignment gives rise to an

intermediate input pattern xm = 000. By electrical simulation, the total energy drawn by the

cell is of 4:15pJ.

Since the transient time (Ti!m = 1:7ns) is greater than the input skew (� = 1ns), to evaluate

E at logic level we refer to the two limit situations of simultaneous and disjoint input transitions

(Figg. 3.b and 3.c), providing:

Ei!f = 0:41pJ,

Ei!m = 4:42pJ, Em!f = 3:37pJ,

10 CSL-TR-96-691

x2x3

x1

τ

t

V
x2x3

x1

x2x3

x1

i mT

1
0
0

0
0

0 0
1
1

1
0
0

1
0
0

1
0
0

0
0

00
1
1

0
1
1

0
0

0

i mTτ

V1

V2

V3

V1

V2 V3

V1V2

V3 V3

V2

V1

i mTτ ttt t

VVVV

a) b) c) d)

0
1
1

t

V

t

V τ

t

V

x1

x2x3

Figure 3: a) Symbolic representation of the e�ects of a misaligned multiple transition on the internal voltages

of the OR gate of Fig. 1. At logic level, we can handle only the two limit situations of b) perfectly aligned input

edges, and c) sequences of completely disjoint transitions. However, good estimates of the internal voltages can

be obtained in any other case (d) by means of linear interpolation.

respectively. The actual energy estimate is then provided by the following linear interpolation:

E = 0:41(1�
1

1:7
) + (4:42 + 3:37)

1

1:7
pJ = 4:58pJ;

with an error of 4:8% from SPICE. 2

The same approach is used to approximate the charge status of the cell at the end of slightly

misaligned multiple transitions, as shown in Fig. 3.d.

The linear approximation is obviously exact at the boundaries, but its accuracy depends on

the de�nition of Ti!m. In general, Ti!m is strongly pattern dependent and it is not equal to the

delay used for event propagation. This is shown in the next section.

3.6 Timing Information

As mentioned in previous sections, the power drawn by a cell depends not only on the input

patterns applied, but also on signal waveforms and arrival times. At the logic level, however,

signal slopes are neither represented nor propagated, and simple delay models (such as unit

delay) are used for scheduling the events. These approximations have a critical impact on the

accuracy of power estimates.

To solve this problem, we provide accurate models of the three main parameters representing

the time behavior of each library-cell:

� the propagation delay D (used by the simulator for the event scheduling),

� the output slope Sout (used for power estimation of the driven gates),

� the transient time T (used to handle misaligned multiple transitions).

A New Approach 11

0

1
0

1

x 2

x 1

LATCH1

LATCH2

D

CLK

Q

Figure 4: Static implementation of an edge triggered D register composed of two level sensitive latches.

We approximate these parameters with pattern-dependent functions of both the output load

(CL) and the average input slope (Savg):

D = c0d(x) + c1d(x)Savg + c2d(x)CL;

Sout = c0s(x) + c1s(x)Savg + c2s(x)CL; (8)

T = c0t(x) + c1t(x)Savg + c2t(x)CL:

The pattern dependent coe�cients c are determined by means of electrical simulations during

the library characterization phase: for each �nal input con�guration xf a set of min-square �tting

coe�cients is obtained.

In principle, we obtain 2n di�erent values for each coe�cient. In practice, however, the

majority of them do not change within large sets of input con�gurations. Hence, the number

of possible assignements of the �tting coe�cients is usually small and their pattern dependence

can be e�ciently modeled by means of ADDs [14].

3.7 Sequential Elements

In order to describe the model of power consumption in CMOS gates, we have always referred to

a static combinational cell (namely, a CMOS implementation of a three input OR gate). In this

section we remove this restriction by extending the approach to static and dynamic sequential

elements.

3.7.1 Static Sequential Elements

The gate-level representation of a static sequential circuit is always characterized by the presence

of feedback signals. Consider the edge triggered register of Fig. 4. At gate level, it can be

represented either as a net of six interconnected combinational elements (four inverters and two

multiplexers) with two external feedbacks (x1 and x2), or as a sequence of two latches (LATCH1

and LATCH2) with internal feedback.

In the �rst case no change is required. Our gate model is directly applied to each component,

while feedback signals are explicitly handled by the event scheduling mechanism provided by

12 CSL-TR-96-691

n2n

n

n 3

4

5

6 7nnn 1

CLK

D
Q

Figure 5: Dynamic CMOS implementation of an edge triggered D register.

the simulation platform (needless to say, the initial state of the sequential elements has to be

speci�ed in order to obtain signi�cant simulation results).

In the second case, the whole latches need to be modeled as basic building blocks. We refer

to the negative level-sensitive latch of Fig. 4 (namely, LATCH1) with inputs D and CLK and

output x1. Because of the internal feedback, neither the functionality nor the connectivity of the

cell (i.e., the values of the connection matrix entries) can be inferred from the knowledge of the

current input pattern. Nevertheless, we want to express the connection matrix as a combinational

function of Boolean variables. To this purpose, the last value of the feedback signal (x1) is to

be considered as an additional control variable for the connection matrix: M(D;CLK; x1).

Notice that x1 is also the primary output of the cell, and there is a row of the connection

matrix associated with it. During simulation, the new value of x1 is then provided by the model

itself. The use of the same signal both as independent and as dependent variable is the implicit

representation of the internal feedback.

In general, the connection matrix of a sequential element will be a combinational function

of both primary inputs and feedback variables. This is the only extension required to deal with

sequential components.

3.7.2 Dynamic Elements

Dynamic CMOS logics exploit the memory e�ects associated with the charge retention at the

internal (oating) nodes of a cell. On the other hand, in section 2.1 we remarked that the charge

status at the internal nodes of a CMOS cell may have a sizable impact on power consumption.

We then constructed a state-dependent symbolic model that takes into account charge retentions

at internal nodes. As a consequence, our cell model is inherently able to capture dynamic e�ects

associated with internal parasitic capacitances.

From a structural point of view, the only di�erence between static and dynamic CMOS logics

is that in dynamic logic oating nodes may be used to drive CMOS stages.

Example 8 Consider for instance the dynamic edge triggered register shown in Fig. 5. The

second CMOS stage is driven by internal node n2, that is oating when D = 0 and CLK = 1. In

Web-Based Tool Development 13

this case, neither the logic value of n2 nor the connectivity of the subsequent stage can be inferred

from the current values of D and CLK. Nevertheless, the charge status at n2 is provided by our

cell model, and the connectivity of the second CMOS stage can be expressed as a combinational

function of CLK and n2. 2

In general, to deal with dynamic cells we do not require additional information, but we

need to partition the connection matrix and change the sequence of steps involved in model

evaluation. In particular, the submatrices associated with cascaded stages must be evaluated in

sequence, in order to use partial results to drive the subsequent evaluations.

Example 9 For instance, the connection matrix of the �rst stage of the register shown in Fig.

5, is

m1;1 = 1 m1;2 = CLK0 m1;d = D0 m1;g = CLK 0D

m2;1 = CLK0 m2;2 = 1 m2;d = CLK0D0 m2;g = D

Whenever an input event occurs, the matrix is evaluated to obtain Vn2 from Eq. (4). Then, the

connection matrix of the second stage can be evaluated using n2 as input variable.

m3;4 = 1 m3;4 = n2 m3;d = n2CLK
0 m3;g = CLK

m4;3 = n2 m4;4 = 1 m4;d = CLK0 m4;g = n2CLK
2

In summary, the entries of the connection matrix associated with a generic (combinational

or sequential) CMOS cell may be functions of primary inputs, internal variables, and previous

values of feedback signals.

3.8 Implementation

Routines for both the construction of the connection matrix and the min-square �tting of elec-

trical simulations have been implemented in C using standard packages for BDD and matrix

manipulations. VERILOG-XL has been used as simulation platform. The pre-characterized

symbolic models of library cells have been written as C functions and made available from logic

simulation using the Programming Language Interface (PLI) of VERILOG-XL.

Our simulator has been used as the starting point for the development of PPP, a fully

integrated synthesis and simulation environment with short learning curve and architecture-

independent Web-based interface. The innovative aspects of the implementation of PPP are

described in the next section.

4 Web-Based Tool Development

4.1 Motivations and Background

The number of tools needed to implement complex systems is ever increasing, and such tools are

generally provided by a myriad of suppliers. Integration of EDA tools into uni�ed frameworks

14 CSL-TR-96-691

prompts for an increasing e�ort in the creation of standard interfaces [15, 16]. The de�nition

of standard formats for design descriptions such as VHDL and EDIF has been an important

milestone in this direction. However, the user interfaces provided by di�erent EDA vendors still

lack in uniformity and compatibility.

Moreover, as computer networking becomes pervasive, design teams will be geographically

dispersed, and the need for reliable and straightforward communication paradigms will steadily

grow. Computationally demanding tasks (optimization and/or simulation of large circuits) could

be performed on high-performance servers remotely connected to the designers by Internet links.

Again, a uniform user interface should be provided in this concurrent and distributed engineering

environment.

The opportunities for commercial EDA vendors are promising as well. New tool usage

paradigms may emerge: users could temporarily connect to a tool provider, perform a speci�c

task and be billed on a usage-time basis. Similarly, demos can be performed across the network, a

much more e�ective form of advertisement, because it gives the perspective user direct hands-on

experience. Necessary conditions for such new paradigms to be successful is again the existence

of a general and friendly user interface for remote connections and execution control.

The explosive di�usion of an user-friendly and powerful interface such as the World Wide

Web [17] (WWW) has prompted several attempts directed to exploit its features in the CAD-

EDA area. Virtually every computer user is familiar with the WWW, and Web browsers provide

an uniform interface to a number of di�erent communication protocols. A Web-based interface

to CAD tools is an important step toward standardization and distributed tool integration.

Preliminary results in this direction have been reported in [18] and [19]. In both this works

the designer's need for geographically disperse and heterogeneous information is addressed and

simple protocols for remote batch execution are described: the user can request services to remote

tools, that will perform the required tasks and return the results. The interaction between users

and tools is sparse and loose.

E�ective execution of remote tools requires a much higher level of interaction: the user

should be allowed to change the setting of a parameterized tool run, preview partial result,

access visual information like waveforms and network schematics, modify networks and update

design databases.

4.2 The PPP Paradigm

PPP has been conceived as a modular system composed of interacting tools that may run on

di�erent machines and be (possibly) provided by di�erent vendors or contributors. The main

target of PPP is the synthesis and the simulation of low-power CMOS circuits, but its modularity

allows us to interface with general-purpose commercial and academic tools.

The user accesses PPP using his/her own Web browser, with no additional requirements on

hardware or software installation. The tools can reside on remote servers or on the local machine.

Web-Based Tool Development 15

PPP
Browser

Database

Tool

WWW

CLIENT SERVER

Kernel

Figure 6: User interaction with PPP

This is fully transparent to the user. The graphical user interface (GUI) of PPP is exactly the

same used for Web navigation and no additional e�ort needs to be spent in familiarizing with a

new GUI when the user �rst accesses the system.

In the design of PPP, we focused on two key ideas: plug-and-play modularity and architecture-

independent interactive remote execution. Plug-and-play modularity allows new tools to be

integrated in PPP with little e�ort and no modi�cations. The impact on other tools already

embedded in the environment is negligible. Remote execution can be seen as an advanced

caching strategy. Upon invocation, a resource in PPP can maintain its state throughout a se-

quence of interactions. The state information is not necessary saved on �les to avoid the penalty

of iterated disk accesses (or, worse, of sending data across the Internet), but it is kept in memory

because the resource does not terminate its execution after every interaction with the user.

From the user's point of view, PPP appears as a remote HTTP server and each user can

access it by simply inserting a pointer to the PPP URL in his/her bookmark �le. This is

the only setup operation required. Figure 6 represents the user interaction with PPP. The

rectangles denote di�erent machines connected to the Internet. PPP is the core of a distributed

architecture. It manages two di�erent kinds of interface: connection to the client and connection

to the resources (tools and databases). The arrows represent Internet protocols (FTP, HTTP,

mail, etc).

Multiple users are allowed to concurrently access PPP, similarly to a traditional WWW

server. Figure 6 depicts a centralized structure. The PPP kernel manages all interactions

between the users and the tools. In the next section we will describe the organization of the

PPP kernel and the overall architecture.

16 CSL-TR-96-691

USERS

APPLICATION

COMMUNICATION

INTERFACE
High Bandwidth
 (images)

Low Bandwidth
 (menu choices)

Security

Load
 Control

Format
 Conversion

R
es

ou
rc

e
1

R
es

ou
rc

e
2

R
es

ou
rc

e
3

R
es

ou
rc

e
4

R
es

ou
rc

e
5

R
es

ou
rc

e
6

Figure 7: The layered architecture of PPP. Resources represented with shaded rectangles require an high degree

of interactivity.

5 Tool Architecture

PPP is build upon a layered architecture, following a well-known software engineering paradigm.

The three layers are: application, communication and interface. The organization of PPP is

shown in Figure 7. The top two layers are embedded in the kernel, while the application layer

is distributed. Application is at the bottom of the hierarchy and manages the interaction with

the tools and the information sources.

5.1 Application Layer

The synthesis and simulation tools embedded in PPP represent the bulk of the application

layer and are called resources. No constraint is posed on the target architecture and on the

programming language used for the implementation of the resources. The resources may run

on di�erent machines. Two levels of interaction between resources and the above layers are

possible. The simplest interaction is stateless connection: the tool performs some manipulation

on the input data, produces an output and terminates the execution. Stateless connection is

not truly stateless, because the information about previous invocations may be stored in �les.

Nevertheless, retrieving the state from �les imposes heavy performance penalties when highly

interactive operation is required (for example, during an user-controlled optimization session).

Stateless connection resembles the batch execution features described in [18, 19].

For applications where higher interactivity is required, we provide a novel paradigm called

interactive remote execution. Once started, the resource does not terminate its execution after

every command, but it simply waits for another command to be issued. The resource becomes

a server that awaits for service requests from the client (the user) keeping complete information

Tool Architecture 17

about past requests and their results. Resources that provide interactive remote execution must

satisfy some requirements on their external interface. In particular, it must be possible to

interactively receive data from another process without terminating the execution. Interactive

remote execution is required for running optimization and validation tools that perform user-

assisted tasks.

Example 10 An application requiring interactive remote execution is logic optimization, where

the user can decide among di�erent optimization strategies by observing the quality of interme-

diate results. In contrast, a long simulation is a typical example of batch execution. After setting

up the simulation parameters, the user dispatches the run and does not need to interact with the

tool until the run terminates.

5.2 Communication Layer

The communication layer represents the core of the PPP architecture. Its purposes are the

following.

� Process users' requests and translate them in a format that is accepted by the resources.

� Collect the results produced by the resources and provide them to the users in a read-

able/downloadable format.

� Manage data �les provided by the users and/or created by the resources and store them

where retrieval will be faster.

� Provide security. Di�erent users work on private space and should not be allowed to

interact unless they explicitly require to work on a shared design. Access identi�cation

should be enforced.

� Manage server's resources. If PPP runs on multiple machines, the communication layer

can direct the requests of the users toward unloaded machines.

All functionalities listed above are in some degree implemented in PPP. Each user works

in a separate space, where input �les and results are stored. User access authentication is

enforced by a password mechanism. All format conversions are performed transparently. Since

the resources run on di�erent machines, the communication layer must be implemented as a

distributed multiprocess application. In the current implementation, scheduling of resources,

conicts and mutual exclusion are managed using simple message �les on a shared �le system.

While this solution is simple and e�ective, it requires that all machines running resources share

a common �le system. This requirement may become a limitation and will likely be removed in

future versions.

18 CSL-TR-96-691

Example 11 Format conversion is a typical function performed in the communication layer.

For instance, in PPP part of the synthesis process is performed by SIS [20]. The output format

provided by SIS is BLIF. The simulation tool encased in PPP (our customized version of Verilog-

XL) accepts �les in Verilog HDL. The conversion between BLIF and Verilog is performed by a

process in the communication layer. The conversion is completely transparent to the user.

5.3 Interface Layer

Interface is the uppermost layer, with which the user interacts. The largest part of the interface

layer is directly supported by the WEB browser. If the interaction is limited to simple menu-

based communication, the form feature provided by HTML [21] is su�cient. The same holds

for small images and graphs. This is however not su�cient. In many cases, the users wants to

specify the input or examine the output in more complex ways.

We call high-bandwidth the kind of interaction for which the WEB browser does not provide

satisfying performance. Examples of high-bandwidth interactions are transfers of large input �les

(i.e. the networks that the user wants to simulate/optimize) and interactive graphical output

(such as waveform or network browsing). In these cases alternate mechanisms for interaction

must be provided. For user-originated communication such as the transfer of input �les, we

currently use the FTP protocol.

For resource-originated communication, such as waveform display, more advanced mecha-

nisms are needed. The resource generates output data �les, the communication layer then takes

care of transforming the data in a graphical output that is sent to the user. The user can

view the graphical output using helper programs or directly through the limited image display

capability of the WEB browser.

Example 12 After simulation, the users speci�es the signals he/she wants to view. This in-

formation is communicated to PPP (this is a typical low-bandwidth interaction) using a form.

From the simulation output �les, the relevant signal transitions are extracted and a waveform

image is generated to be sent back to the user. This is a high bandwidth interaction.

5.4 Bandwidth management

A fundamental issue in the design of all layers of PPP is bandwidth management. Although

local area networks (LAN) can usually provide the bandwidth required for most data transfers,

PPP is not limited to run on LANs. When some of the connections are supported by a wide

area network (WAN), the bandwidth of the data transfer has to be reduced as much as possible.

In the current implementation, the only critical connection is between the PPP kernel and the

client. On this connection, bandwidth-critical applications are those involving massive data

transfer and a high degree of interactivity. In this case, the level of interaction with the resource

is so high that we may want to transfer the resource itself on the client's side.

Tool Architecture 19

An example of critical application is waveform display. In the current implementation of

PPP, we try to minimize the bandwidth required by sending to the client compressed images of

the waveforms. This solution is satisfying only if the user does not need to dynamically update

the waveform view very frequently. The advantage of this approach is that the user does not

need any dedicated support for waveform display. More aggressive bandwidth reduction can

be achieved without requiring the user to install dedicated programs. To this purpose, it is

necessary to enable the transmission of executable code across the network. Languages such as

JAVA [22] and TCL [23] allow this kind of interaction.

5.5 Implementation Details

During a typical user session, PPP appears as a tree of HTML forms that can be navigated by

the user. In reality, the HTML pages are dynamically created by PERL scripts controlled by the

user's commands. The set of PERL scripts that generates the HTML forms for the user is the

interface layer of PPP. Although the interaction allowed by HTML forms is limited and not very

exible, the GUI is straightforward and familiar to any user. As a consequence, a completely

inexperienced user can obtain results after a single PPP session.

The communication layer is composed by another set of PERL scripts. The user does not

directly access the communication layer, but its commands are parsed by the scripts in the inter-

face layer, translated, and sent to the communication layer. The scripts in the communication

layers perform mainly translation and setup tasks to prepare the environment needed for tool

execution. Another important function performed in the communication layer is the choice of

the machine on which the requested tool will run.

Finally, the environment is ready for the execution of the tools. Tool execution is managed

by the application layer. If basic batch runs are requested, the tool is simply executed with

the input information provided by the communication layer. Tools that execute in batch mode

can be incorporated in PPP with minimal e�ort: the interface and communication layers are

modi�ed to allow the user to access the tool and to provide the �les needed for the batch run.

When interactive remote execution is required, the process of linking the tool to PPP is less

straightforward. The standard input and output channels must be re-directed to a script that

manages the interaction with the interface layer. The script is run when the user speci�es a

command, it translates the input format and it sends the command to the tool. The script then

waits for the results of the command to be sent back by the tool. The results are saved on �les

or sent directly to the user after being translated to HTML. Finally the script terminates the

execution, closing the contact with the tool and the interface layer. Notice that the tool does

not terminate the execution, thus the state of the program remains in the main memory until

the user explicitly asks to terminate the session. Whenever a new command is issued by the

user, the interaction with the tool is managed by a new run of the communication script.

Setting a tool for interactive remote execution requires i) the ability of redirecting the stan-

20 CSL-TR-96-691

Script Script Script Script

SIS

read OK read OK map circ_stats OK quit doneread_blif read_lib

Communication

Application

Interface

Figure 8: An example of interactive remote execution: SIS session

dard input and output of the tool, ii) the implementation of the communication script with

the characteristics described above. In the current implementation of PPP, interactive remote

execution is available for SIS.

Example 13 In Figure 8 we show a diagram representing multiple commands during a SIS

session performed with the interactive remote execution paradigm. Time proceeds from left to

right. Arrows represent the duration of processes. Dots represent their start and termination

points.

When the user issues a command a process in the interface layer is started to translate the

command in the format required by SIS (the duration of this process is very short, therefore it

is represented as a single dot). In the communication layer a process is started (with the label

Script) to manage the interaction between SIS and the user. The command is then passed to SIS.

When SIS returns the result the script will pass it to the interface layer that will translate it to

HTML and serve it to the users. Then the communication process terminates, but the execution

of SIS does not terminate until the user issues the quit command.

6 PPP User Session

To give a more concrete understanding of the features provided by PPP, we describe a simulation

session.

User identi�cation is enforced to access PPP. The access point is an HTML form asking for

user's name, password and e-mail address. When the form is applied, the main menu of PPP

appears and two directories are created on the server �le-system to allow the user to work in

PPP User Session 21

a private space: an I/O directory that can be accessed from the client for explicit �le transfers

based on FTP, and a (hidden) work directory used by the system to store intermediate results.

Three sets of interacting tools can be accessed from the main page of PPP: circuit opti-

mization and mapping, test sequence speci�cation and power simulation. All these tools are

embedded into a uni�ed framework that hides to the user the details of their interaction. A

typical user session consists of visiting all the three environments, possibly iteratively, directly

from the Web-browser. Partial results are always available and visible from any tool. The (par-

tial) result of a synthesis session is taken as the default circuit for simulation, and its inputs are

the default signals handled by the pattern generation tools. In the following we describe step

by step a simulation session.

6.1 Circuit Speci�cation and Mapping

Since the simulation engine of PPP is a cell-based gate-level simulator, the circuit to be simulated

is �rst mapped onto a pre-characterized cell library. This is done using the circuit speci�cation

form, that is directly accessible from the main page. Three �elds need to be speci�ed: i) the

name of the �le containing the circuit description (slif, blif and verilog are supported), ii) the

name of a pre-characterized cell library, and iii) the optimization options that will be used

during the mapping. The circuit is read from the user I/O directory, where the user can put

his/her own circuits using a standard �le transfer protocol. Notice that the user I/O directory

will not be removed at the end of the simulation session. The user can retrieve his/her own �les

whenever he/she accesses PPP. To avoid excessive disk usage on the server, a hard limit is put

on the amount of space available to each user. Moreover, unused I/O directories are deleted

after a few days.

The cell library has to be selected by the user. At the moment only one library has been

characterized, but future releases will allow the user to automatically characterize his/her own

library according to the cell model described in section 3. Optimization options can also be

speci�ed for the mapping, and a batch run of logic optimization and library binding is run. A

form-based menu is available to select the optimization options. When applying the form, SIS

[20] is remotely run to map the circuit onto the library. The mapped circuit is then stored into

a new �le in the user's I/O directory and it is taken as default circuit for simulation. Since

PPP uses Verilog-XL as simulation platform, a Verilog description of the mapped circuit is also

created and stored in the work directory. Circuit statistics are available at any time in terms of

input, output and gate counts, number of state variables and library cells used.

Alternatively, the user can start an interactive optimization session. If this option is selected,

a command prompt is displayed. The user issues optimization commands at the prompt, the

synthesis tool executes them and reports to the user. Notice that the interactive optimization

session is an example of a tighter interaction level than that allowed by batch run. Between

two consecutive optimization commands, the synthesis tool does not terminate execution, thus

22 CSL-TR-96-691

Figure 9: User interaction with PPP: simulation setup

the structure of the network is kept in the memory of the machine running the tool. For

large networks, this kind of interaction is paramount to obtain acceptable latency between two

successive user commands.

After optimization and mapping, the circuit is ready to be simulated with a default test

sequence of 100 random test vectors applied with a 20ns time period. To specify a di�er-

ent simulation setup, test-synthesis tools are provided. They can be accessed by choosing the

simulation-setup entry of the main menu.

6.2 Simulation Setup

The simulation setup can be either read from a �le in the user's I/O directory or speci�ed using

the interactive interface of PPP. In this case, three main HTML forms are available to specify:

i) global parameters, ii) constant and clock signals and iii) generic inputs. Global parameters

include the simulation style (either random or deterministic), the test size and the time step

between input patterns.

PPP User Session 23

Figure 10: User interaction with PPP: waveform display

The constant and clock signals speci�cation form (Fig. 9) allows the user to specify some

signals (selected among the list of current circuit inputs) to behave either as a periodic waveform

or as a constant. In the �rst case clock period, duty cycle and skew can be arbitrarily set. In

the second case a logic value is to be speci�ed. Speci�cations are applied to the selected signals

whenever the form is submitted.

Similar forms are available to specify input signals that will not have a square or constant

behavior. In deterministic simulation, these signals will be set to 0 by default, but an arbitrary

test sequence can be either read from a �le or interactively speci�ed. In random simulation,

50% signal and transition probabilities are used by default to generate random test sequences,

but di�erent values can be assigned. At any time, the current simulation setup can be analyzed,

modi�ed, or saved in a �le for later re-use.

24 CSL-TR-96-691

0

2

4

6

8

10

12

14

16

18

0 100 200 300 400 500

Our Method
SPICE

Experiments

E
n

e
rg

y
(p

J)

Figure 11: Accuracy from SPICE of our model of a three input OR gate. Results refer to a set of 540 experiments

obtained by applying to the cell all possible input pairs, and by varying fanin and fanout conditions in a wide

range of realistic values.

6.3 Power Simulation

The PPP simulator is accessed by choosing the power simulation option of the main menu. From

the �rst page of the simulation interface the user is allowed to: i) look at the circuit statistics, ii)

look at the current simulation setup, iii) run the simulator by applying the current simulation

setup to the current circuit, and iv) analyze the results of the last simulation run.

A simulation run consists of a remote execution of our simulator and causes the updating of

simulation results. CPU and memory consumptions are reported at the end of each simulation

run.

There are two sets of simulation results: time-domain waveforms and statistical analysis.

The Web-based waveform display is shown in Fig. 10. It consists of a HTML form that allows

the user to select the signals to be displayed among the list of all available data. Both Boolean

signals (inputs, outputs, clocks and state variables) and analog waveforms (supply energy and

power) can be displayed. A signal is selected by specifying its scale factor (i.e., its vertical

magni�cation) to be di�erent than 0 (that is the default value). The time range can also be

speci�ed. When the form is applied, data are processed, the waveform plot is saved in a GIF

�le and a hyperlink is created to access the GIF �le from the Web-browser. Fig. 10 shows the

result of two subsequent applications of the interface form on the same set of data (namely the

results of a PPP simulation of sequential benchmark S208). Two Boolean signals (clock CK

and input C4) and two analog waveforms (the partial estimate for the average power and the

supply energy drawn by the circuit for each input pattern) are displayed together for di�erent

time ranges.

Experimental Results 25

benchmark test HSPICE PPP error

name gates length P(mW) CPU(s) RAM P(mW) CPU(s) RAM %

C17 6 100 0.435 62.4 0.2M 0.432 0.5 0.2M 0.7

C432 215 100 11.510 3120.0 3.0M 10.954 13.0 1.5M 4.8

C499 496 100 21.926 7276.2 6.2M 22.884 32.7 3.2M 4.1

C880 342 60 16.262 2881.7 4.8M 16.405 13.9 2.3M 0.9

C1355 584 50 23.689 4076.6 7.1M 24.101 18.4 3.8M 1.7

C1908 602 50 33.018 5841.5 8.2M 33.920 22.4 3.9M 2.7

C3540 1165 50 { { { 71.250 59.2 7.7M {

C5315 1877 100 { { { 130.413 165.3 12.4M {

C7552 2892 100 { { { 222.823 272.7 18.3M {

cmb 50 100 1.305 444.9 0.8M 1.329 2.7 0.4M 1.8

decod 54 100 1.385 412.7 0.7M 1.400 2.7 0.4M 1.1

parity 75 100 2.381 591.4 1.0M 2.302 3.6 0.6M 3.4

pcler8 80 100 2.959 742.5 1.3M 3.028 3.3 0.6M 2.3

count 113 100 4.985 1290.9 1.9M 5.081 5.9 0.9M 1.9

comp 163 100 6.700 1698.6 2.1M 6.832 9.6 1.1M 1.9

b9 121 100 4.822 1206.9 1.8M 4.755 6.6 0.9M 1.4

frg1 124 100 4.934 1316.6 1.8M 4.957 7.5 0.9M 0.5

x1 345 100 13.660 4439.7 4.8M 13.336 20.5 2.4M 2.4

x4 487 100 26.698 4445.2 6.7M 25.549 26.0 3.3M 4.3

alu2 359 50 17.881 3362.6 5.5M 18.550 12.4 2.4M 3.6

alu4 716 50 31.565 14765.9 12.2M 32.878 22.9 4.7M 4.0

frg2 1253 50 { { { 57.746 35.0 8.5M {

k2 1943 100 { { { 51.742 73.9 13.4M {

Table 1: Experimental results on combinational benchmark circuits. Data refer to sequences of random generated

test-vectors with 20ns clock periods (missing results mean that the corresponding simulation exceeded 10 hours

of CPU and/or 20 Mbytes of RAM.

A similar interface is available for statistical results. In particular, statistical data are col-

lected about the local average power consumption (i.e., the power consumption of each cell) and

the total energy drawn by the circuit corresponding to each input transition. Statistical results

are shown in terms of standard deviation and minimum, maximum and mean values. Moreover,

plots of the probability distributions are remotely generated and made accessible to the user by

means of hyperlinks.

7 Experimental Results

We have tested PPP using a low-power CMOS [24] library (including complex gates, two-level

26 CSL-TR-96-691

benchmark test HSPICE PPP error

name gates FFs length P(mW) CPU(s) RAM P(mW) CPU(s) RAM %

S27 12 3 100 0.600 316.0 0.4M 0.601 3.5 0.2M 0.2

S208 72 8 100 2.097 3692.8 1.5M 2.100 8.2 0.6M 0.1

S953 342 29 100 8.768 27083.6 7.6M 8.310 36.2 2.6M 5.2

S1196 466 18 50 15.918 18534.6 7.6M 15.775 33.6 3.4M 0.9

S1238 522 18 100 { { { 17.953 74.8 3.8M {

S5378 1346 163 100 { { { 35.934 157.8 10.5M {

Table 2: Experimental results on sequential benchmark circuits. Data refer to sequences of random generated

test-vectors with 20ns clock periods (missing results mean that the corresponding simulation exceeded 10 hours

of CPU and/or 20 Mbytes of RAM.

cells and dynamic elements). Each library cell has been characterized as described in Section 2,

using HSPICE [25] to perform electrical simulations.

To verify the single-pattern accuracy of models provided by the characterization process, we

have tested each library cell for all possible test-pairs and for a wide range of fanin and fanout

conditions. In the worst case, the average absolute error from HSPICE has been of 4% of the

average estimated power, with a standard deviation of 0.2%. Fig. 11 reports the results of the

whole set of experiments run to verify the model of a three input OR gate.

The same accuracy has been obtained by applying to each cell a sequence of 100 randomly

generated test vectors with 50% of misaligned multiple input transitions.

At last, we have simulated several (combinational and sequential) circuits obtained by map-

ping a large set of well known benchmark circuits on our test library. Circuits have been

simulated by applying randomly generated sequences of input patterns with a clock period of

20ns. Experimental results on combinational and sequential circuits are reported in Tables 1

and 2 respectively: for some circuits the power consumption provided by HSPICE has been

overestimated by PPP, while for some other circuits it has been underestimated. In particular,

the worst case error has been the underestimation of 4.8% of the power consumption of C432.

Fig. 12 shows the convergence of the average power estimate during a random simulation of

sequential circuit S344.

As concerns performance, the CPU times taken on a Sun SPARCstation IPX show that PPP

is up to three orders of magnitude faster than HSPICE. On the other hand, the performance

loss with respect to simple VERILOG simulations based on transition counts with unit delay

models is within a factor of 6.

For circuit C17, local power estimates are also reported in Table 3. It is worth noting that

the average power drawn by each internal gate has been estimated with a worst case accuracy

of 6% from HSPICE.

Conclusions and Future Work 27

0 500 1000 1500 2000
time (ns)

0

2000

4000

6000

po
w

er
 (

uW
)

Figure 12: Convergence of the average power estimation during a random simulation of circuit S208 with 100

test patterns. A 20ns clock period has been used.

8 Conclusions and Future Work

In this work we presented a cell characterization and logic simulation algorithm that reduces the

gap between the accuracy of electrical and logic-level power estimation for cell-based designs.

Statistical uncertainties on device characteristics or inaccuracies on wiring capacitance extraction

and modeling may lead to mismatches between circuit simulation and measured values that are

larger than the inaccuracy of our simulator. As a consequence, our simulation technique gives

the designer a level of con�dence on power dissipation estimates comparable to those attainable

with computationally expensive circuit simulation. The high local accuracy makes our tool a

valuable source of information for power optimization algorithms that operate locally within a

gate-level network.

Our technique achieves better accuracy than previously presented approaches and requires

storage of lookup tables with size similar to those required for logic simulation with accurate

delay. Important e�ects such as charge sharing, short circuit current, and misaligned multiple

input transitions are taken into account. Moreover, we use as simulation platform a well known

VERILOG simulator such as VERILOG-XL, making the interface with pre-existing design ows

and RTL simulation completely straightforward.

The customized Verilog simulator has been embedded in PPP, an integrated Web-based

environment for the simulation of low-power VLSI systems. We have described the architecture

and the implementation of PPP. We believe that PPP is an example of a new paradigm for

distributed network-based applications, where the connectivity o�ered by Internet is exploited

not only for retrieving information but also to dispatch and control execution.

On-going work is focused on integrating more advanced functionalities in PPP. New algo-

rithms for behavioral power estimation will be included in future versions of the tool. Moreover,

28 CSL-TR-96-691

Cell Power (mW) Error

HSPICE PPP (mW) (%)

0 0.032 0.031 -0.001 3

1 0.038 0.037 -0.001 3

2 0.043 0.042 -0.001 2

3 0.156 0.154 -0.002 1

4 0.032 0.030 -0.002 6

5 0.134 0.138 +0.004 3

tot 0.435 0.432 -0.003 1

Table 3: Local power consumption of a NAND-only realization of benchmark circuit C17. Data refer to a

sequence of 100 random generated test vectors, with a 20ns clock period.

we are currently developing algorithms that will allow accurate estimation of current waveforms

at the logic level. Synthesis tools for low-power will be integrated in PPP as well. In summary,

the implementation of PPP demonstrates the feasibility of one key concept: a uniform user

interface for a heterogeneous set of EDA tools based on the WWW.

9 Acknowledgements

We would like to thank Michele Favalli at DEIS, University of Bologna, for many useful sugges-

tions.

29

References

[1] C. Huang, B. Zhang, et al., \The design and implementation of Powermill," in Proc. of IEEE Symp. on Low

Power Electronics, pp. 105{110, 1995.

[2] F. Najm, \A survey of power estimation techniques in VLSI circuits," IEEE Transaction on VLSI Systems,

vol. 2, no. 4, pp. 446{455, 1994.

[3] C. Y. Tsui, M. Pedram, and A. Despain, \E�cient Estimation of Dynamic Power Dissipation under a Real

Delay Model," in Proc. of IEEE Int.l Conf. On Computer Aided Design, pp. 224{228, 1993.

[4] R. Marculescu, D. Marculescu, and M. Pedram, \Logic level power estimation considering spatiotemporal

correlations," in Proc. of IEEE Int.l Conf. On Computer Design, pp. 294{299, 1994.

[5] D. Liu and C. Svensson, \Power consumption estimation in CMOS VLSI chips," IEEE J. of Solid State

Circuit, vol. 29, no. 6, pp. 663{670, 1994.

[6] P. Landman and J. Rabaey, \Architectural power analysis, the Dual Bit Type method," IEEE Transaction

on VLSI Systems, vol. 3, no. 2, pp. 173{187, 1995.

[7] R. S. Martin and J. Knight, \Power-Pro�ler: optimizing ASICs power consumption at the behavioral level,"

in Proc. of Design Automation Conf., pp. 42{47, 1995.

[8] B. J. George et al., \Power analysis and characterization for semi-custom desing," in Proc. of Int.l Workshop

on Low Power Design, pp. 215{218, 1994.

[9] J.-Y. Lin et al., \A cell-based power estimation in CMOS combinational circuits," in Proc. of IEEE Int.l

Conf. On Computer Aided Design, pp. 304{309, 1994.

[10] H. Sarin and A. McNelly, \A power modeling and characterization method for logic simulation," in Proc. of

IEEE Custom Integrated Circuits Conference, pp. 363{366, 1995.

[11] L. Benini, M. Favalli, and B. Ricc�o, \Analysis of hazard contribution to power dissipation in CMOS IC's,"

in Proc. of Int.l Workshop on Low Power Design, pp. 27{32, 1994.

[12] R. E. Bryant, \Graph-based algorithms for boolean function manipulation," IEEE Transaction on Comput-

ers, vol. 35, no. 8, pp. 677 { 691, 1986.

[13] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design (Second Edition). Addison-Wesley, 1992.

[14] R. Bahar et al., \Algebraic decision diagrams and their applications," in Proc. of IEEE Int.l Conf. On

Computer Aided Design, pp. 188{191, 1993.

[15] T. J. Barnes et al., Electronic CAD frameworks. Kluwer Academic Publishers, 1992.

[16] A. Bededenfeld and R. Camposano, \Tool integration and construction using generated graph-based design

representation," in Proc. of Design Automation Conf., pp. 94{99, 1995.

[17] T. Berners-Lee et al., \The world-wide web," Communications of the ACM, vol. 37, no. 8, pp. 76 { 82, 1994.

[18] M. J. Silva and R. H. Katz, \The case for design using the World Wide Web," in Proc. of Design Automation

Conf., pp. 579{585, 1995.

[19] P. G. Ploger et al., \WWW Based structuring of codesigns," in Proc. of Int.l Symposium on System Synthesis,

pp. 138{143, 1995.

[20] E. Sentovich et al., \Sequential circuit design using synthesis and optimization," in Proc. of IEEE Int.l Conf.

On Computer Design, pp. 328{333, 1992.

[21] \HyperText Markup Language (HTML)," Working and background materials, http://www.w3.org/

hypertext/WWW/MarkUp/MarkUp.html.

30 CSL-TR-96-691

[22] Sun Microsystems, \The JAVA language environment: a white paper," http://java.sun.com/whitePaper/

java-whitepaper-1.html.

[23] J. K. Ousterhout, Tcl and the Tk toolkit. Addison-Wesley, 1994.

[24] T. Burd, \Current Estimation in MOS IC Logic Circuits," in M. S. Report UC Berkeley, UCB/ERLM94/89.

[25] HSPICE User's Manual. Meta-Software Inc., Campbell-CA.

