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Abstract

Booth encoding is a method of reducing the number of summands required to produce the

multiplication result. This paper compares the performance/area tradeo�s for the di�erent

Booth algorithms when trees are used as the summation network. This paper shows that the

simple non-Booth algorithm is not a viable design, and that currently Booth 2 is the best

design. It also points out that in the future Booth 3 may o�er the best performance/area

ratio.
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Figure 1: (a) Parallel addition (b)Linear Addition

1 Introduction

Multiplication is one of the basic arithmetic operations that constitute programs. In fact

8.72 % of all instructions in typical scienti�c programs are multiplies [1]. Hardware designers

have recognized this and have devoted considerable silicon area to building high speed

multipliers.

Multiplication is achieved by the addition of a certain number of summands. Each

summand is a chosen multiple of one of the operands (multiplicand), based upon the value

of certain bits of the other operand (multiplier). The addition of these summands is a

relatively long latency carry propagate addition (CPA). In order to reduce the total time

required to produce the result a redundant form of addition, most commonly carry-save

addition, is used. In carry-save addition, the summands are split into columns, in which

each column's addition progresses independently from adjacent columns. Each column has

a certain number of inputs called partial products. In high speed multipliers, the addition

of the partial products is done in parallel using tree structures as shown in �gure 1(a), in

contrast to serially as in linear arrays. The number of adders needed to reduce the partial

products is the same for both trees and arrays. The only di�erence being that trees have

more complex interconnections.

The number of summand that must be added to give the multiplications' result can be

reduced by using Booth encoding [3]. In Booth encoding the number of summands is reduced

by recording the multiplier bits into groups that select multiplies of the multiplicand. Higher

order Booth encoding reduces the number of summands by a greater degree by encoding

larger groups of multiplier bits and therefore requiring a larger group of multiples to select

from and consequently a more complex selection table.

This study investigates the relationship between the topology of the partial product

interconnections and the encoding scheme used. It also studies the e�ect of these topologies

and encoding schemes on the latency and area of the multiplier, when the multiplier is part
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Figure 8: (a) 4-2 Counter Internal structure (b) 4-2 Tree

3 Topology

The di�erent encoding schemes all produce a parallelogram shaped multiplier structure as

shown in �gure 7. The rows of the parallelogram are added together to produce the �nal

result. In order to decrease the delay needed to produce the result, the redundant form of

addition, carry-save addition is used. In this form of addition, carries only propagate to

the next column. Each column in this method is treated independently. There are many

ways to connect the adder \counters" to produce the �nal result. The number of counters

does not di�er between the di�erent interconnection schemes. These di�erent methods of

interconnecting the counters, or topologies, di�er in the interconnection scheme used to

connect the adders.

These counters can be added together to form a linear array. In a linear array the

delay from each of the inputs is proportional to the location at which it is added to the

array. however, when all the inputs are available at approximately the same time, there

are better solutions. These better solutions are achieved by creating \balanced delay trees".

The balanced delay trees are topologies in which the number of stages of delay, or counters,

for each input is approximately equal to the number of stages of delay for the other inputs.

This is achieved by making the outputs of counters be inputs to non-adjacent counters.

These topologies are called tree structures. This is in contrast to linear arrays, in which

each counters output is the input for the subsequent counter. These topologies include.
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4-2 Counter

Figure 9: Balanced Delay Tree

3.1 4-2 counter tree

The 4-2 counter is constructed from two 3-2 counters as shown in �gure 8a. The 4-2 counter

is symmetric, in that it has a 2 : 1 reduction ratio, while the 3-2 counter is not symmetric.

The 4-2 counter tree [6] has a regular and symmetric structure, as shown in �gure 8b.

In the 4-2 tree, for every four inputs taken at one level, two results are produced at the

next level. This can be thought of as a redundant binary tree, since every counter reduces

two redundant numbers into one redundant number. The 4-2 tree's binary nature makes

it commonly used in pipelined, and iterative multipliers. The symmetric nature of the 4-

2 counter facilitates the addition of latches that are needed for pipelining after each 4-2

counter. Iterative and pipelined 4-2 counter trees use the same structure for each bit pitch.

The 4-2 counters do not have a constant requirement for wiring tracks. The number

of wiring tracks increases by two when the number of partial products is doubled. Their

wiring requirement is similar to that of Wallace trees [8]. In that they are both logarithmic.

However, the growth rate of wiring tracks in 4-2 trees is smaller. Also, their wiring require-

ment is more regular, since Wallace trees, which use 3-2 counters, are extremely irregular

making them notoriously di�cult to layout.

The advantage of the binary tree reduction of the 4-2 trees is not all that signi�cant for

IEEE double precision numbers since the signi�cand size is not a power of two.

3.2 ZM tree

This is the balanced delay tree proposed by Zuras and McAllister [7]. The ZM tree is based

upon the idea of balanced delay chains of counters. Trees are constructed by combining

progressively longer serial chains into serial chains below them. The connection between

7



Body (5)

root

5-3 Connector

Body (4)

Linear Array (3)

Figure 10: Overturned Staircase Tree

the two chains is made when the total delay of the upper chain is equal to the delay of

the lower chain. The connection is made when the number of counters in the critical path

of upper chain of counters is as long as the delay of the critical path of the chain of lower

counters. This method builds ZM trees of type one, which require only two tracks to feed

the output of one counter to the input of a non-adjacent counter, as shown in �gure 9.

This tree structure has a very regular layout and it requires only a few primitive cells.

This type of tree generally uses more levels of counter delay than the Wallace tree [8] gives,

for most values of partial products that must be summed. To reduce the number of levels,

higher order ZM trees are constructed, by iteratively replacing the largest chains with ZM

trees of type 1. These higher order trees require a larger number of tracks, and are less

regular. The number of tracks required by ZM trees is 2P , where P is the order of the tree,

and the number of levels is O(N
1

P+1 ).

ZM trees are not easily pipelined. The pipelining of a ZM tree requires that the outputs

of the Booth muxes that are not at the �rst level, ie. those Booth muxes whose output is

after the �rst latch, must be latched in addition to the outputs of the 3-2 counters. So the

number of latches required is greater than the number of latches in a 4-2 counter tree. ZM

trees can be built to produce the result iteratively using structure that is similar to 4-2 tree.

3.3 OS tree

This is the Overturned Staircase Tree that was proposed by Mou and Jutand [9]. It is called

an overturned staircase because the way the counters are connected resembles a staircase.

This method divides a tree into a body and a root. The root is the last 3-2 counter in

the tree. The body is constructed recursively. In that a body of height k, where k is the

8



Figure 11: Higher Order Arrays Structure

number of 3-2 counters in the critical path, is constructed from a body of height k-1 and

a linear array of height k-2. The linear array and the body are joined using a 5-3 counter.

The 5-3 counter is constructed from two 3-2 counters in series. This method build OS trees

of type one, as shown in �gure 10. This tree structure requires a few primitive cells. It

requires 3 tracks to route signals between non-adjacent counters. The OS tree uses more

wiring tracks than the ZM tree. The OS tree needs more primitive cells, and it has a less

regular structure, compared to the ZM tree.

OS tree structure can give the optimal (minimum) number of counter levels for most

numbers of partial products. However, to achieve this, one has to use higher order OS trees.

Higher order OS trees can be built by replacing the linear arrays with OS trees of type one.

The higher order trees require more wiring tracks. The number of tracks required by OS

trees are 3P , where P is the order of the tree, and the number of levels is O(N
1

P+1 ).

OS trees are not easily pipelined. The pipelining of a OS tree requires that the outputs

of the Booth muxes that are not at the �rst level, ie. those Booth muxes whose output is

added to the outputs of the �rst level counters, must be latched in addition to the outputs

of the 3-2 counters. So the number of latches required is greater than the number of latches

in a 4-2 counter tree. OS trees can be built to produce the result iteratively using structure

that is similar to ZM tree. However, OS trees are not typically used for iterative multipliers,

since 4-2 trees give a more regular topology, that uses the same number of counter levels.

9



Sign Bit Normalized Fraction Biased Exponent
(1) (52) (11)

Figure 12: IEEE Double Precision Format

3.4 Higher Order Arrays

This is a class of arrays in which the 3-2 counters are designed as several linear array

chains. The chains are combined in parallel when the delay of the upper chain is equal to

the delay of the lower chain. This class of arrays can in fact be thought of as a collection

of ZM trees of type one. The ZM trees have been designed for the column with the largest

number of inputs. This design is replicated for all other columns. In this design the

non-critical columns are not optimized. This design trades of the performance of the non-

critical columns for regularity, as shown in �gure 11. The regularity of the higher order tree

is proportional to the number of linear arrays that are combined. The smaller the number

of arrays the more regular the design.

Higher order trees can be classi�ed according to the lengths of the chains of partial

products before the combining occurs. For example the 6-6-8-8 array has a linear array

that combines 6 partial products which is combined with an array the combines 6 partial

products. The resulting structure is then combined with an array that combines 8 partial

products. Finally the resulting structure is combined with an array that sums 8 partial

products.

Higher order arrays are just as easily pipelined as arrays. However since their design is

proposed to reduce the latency of the multiplier using the smallest number of wiring tracks

available, pipelined iterative higher order trees are not very attractive.

Since Higher order arrays are just ZM trees of type 1 they require only two tracks and

there summing time is O(
p
N)

4 Layout Issues

The multiplier under consideration uses the IEEE oating point arithmetic standard [2].

The format for double precision numbers, as de�ned by the standard, is shown in �gure 12.

The standard de�nes numbers in a sign-magnitude, normalized format. The standard has

a normalized signi�cand, that is the most signi�cant bit of the fraction is always 1, and

therefore is not stored. The signi�cand e�ectively becomes 53 bits. To achieve the rounding

accuracy de�ned by the standard, the full 106 bit result has to be calculated, even though

almost half of it is used only for rounding.

The multiplier is part of a processors datapath which forces the width of each subcell or

bit pitch to be constant. The required structure for connecting the counters for each topology

is achieved by varying the interconnection network of the adders. The interconnection

network is routed on top of the adders themselves. For the bit pitch chosen for the study,

45�m, sixteen wiring tracks per bit pitch are available. Only twelve of these tracks are

available for routing. The other four tracks being used for the routing of the two operands,

result, power, and ground buses. The power and ground can be designed such that they
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use a single bus by mirroring1. These twelve tracks are used to route the interconnections

between the counters, in addition to the routing of the Booth muxes outputs and inputs.

Based upon the number of wiring tracks one has available and the number of tracks

required by the chosen topology, one uses either single-ended or complementary signal

circuits. Single-ended signals include both the static or pass transistor logic families [10].

While the fast complementary signal circuits include the domino [11], NORA [12], and

CVSL [13] logic families. An expanded discussion about the merits and disadvantages of

each logic family when implementing counters can be found in Song[14].

For the topologies chosen, higher order arrays were implemented in domino logic, while

all other topologies used a combination of static and pass transistor circuits.

5 Results

The circuits were simulated using HSPICE. They were simulated for an HP 0:8�m processes.

The simulations are run for typical processing conditions at 25oC. The simulation includes

the wire delays that are modeled using the Ersatzco [15] wire model. This model calculates

the wire RC delay by placing half the wires capacitance on each side of the wires resistance.

The capacitance is calculated using the parallel plate model, with fringing capacitance.

This model has the advantage of being computationally simple, while still providing accurate

results. The transistor models include an approximation of the gate and source capacitances

that is calculated automatically by HSPICE.

The delays are measured from the time the input is latched into the circuit by the system

clock in the latches to the time the result becomes available at the output of the trees before

the CPA. The speci�ed areas are only for the multipliers reduction tree.

5.1 4-2 Tree

The results for the 4-2 tree are given in �gure 13. From this �gure we can see that Non-

Booth has a larger set up time than Booth 2. This is surprising since it has very simple

selection logic. This setup delay is larger because of the extra wiring delay and capacitance

due to the large number of summands. The reduction time is also slow because the tree

needs 5 \4-2" levels to produce the result. Booth 2 is is the fastest. This is due to several

factors. The �rst is it has a small number of summands, so it does not load the drivers for

the booth muxes inputs. Secondly it does not require the generation of a hard multiple.

Finally, it requires 8 levels. Booth 3 has a smaller reduction time than Booth 2, even

though they have the same number of levels. This is due to its having a smaller number of

summands and consequently less capacitance due to wiring. However, the generation of the

3M multiple cause this con�guration to be slow. For the redundant Booth 3 con�guration

the large set up time is due to the complexity of the encoding and Booth muxes. There is

a slight advantage to the reduction time compared to Booth 2 due to the decrease in the

number of summands. In the hybrid Booth 2 / Booth 3 con�guration Booth 2 reduces 18

1
Mirroring is the circuit layout scheme,in which one places the power and ground buses at the edges of

the subcell. The subcells are then mirrored, so that one can place the power and ground lines of adjacent

cells on top of one another.
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Figure 13: 4-2 Tree Latency

summands. This requires 8 levels, the time required to reduce the 8 summands is greater

than the time required to generate the 3M multiple and it is included in the set up time.

In this con�guration the tree time is the time required to reduce the Booth 3 tree for the

con�guration.

5.2 ZM Tree

For the balanced delay tree, Non-Booth is the slowest, as can be seen from �gure 14. It

also has a larger set up time than Booth 2. This is due to the extra wiring delay and

capacitance due to the large number of summands. The reduction time is also slow because

the tree needs 11 levels to produce the result. Booth 2 is is the fastest. This is due to the

same factor as the 4-2 tree Booth 3 has a smaller reduction time than Booth 2. This is

due to its having a smaller number of summands and consequently less capacitance due to

wiring, and to its needing 7 levels compared to 8 that are needed by Booth 2. However,

the generation of the 3M multiple causes this con�guration to be slow. For the redundant

Booth 3 con�guration the large set up time is due to the complexity of the encoding and

Booth muxes. There is a slight advantage to the reduction time compared to Booth 2 due

to the decrease in the number of summands, which causes the wire capacitance to be less

even though they have the same number of levels. In the �rst hybrid Booth 2 / Booth 3

con�guration, Booth 2 reduces 12 summands then it has to wait for the 3M multiple to

be generated so that the reduction can continue using Booth 3. This fact causes it to be

slightly slower than the other Booth 2 / Booth 3 con�guration. The second hybrid Booth

2 / Booth 3 con�guration Booth 2 reduces 18 summands. This requires 7 levels. The time

required to reduce the 18 summands is still less than the time required to generate the 3M

multiple. This design is slightly faster than the other hybrid con�guration because it has

fewer summands.
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Figure 14: Balanced Delay Tree Latency
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Figure 15: Overturned Staircase Tree Latency
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Figure 16: (a) Fully Dynamic HA (b) Dynamic Tree HA

5.3 OS Tree

The same general considerations as the previous two cases apply here as can be from �g-

ure 15. However, here Non-Booth is not the slowest. This is because the optimal number of

levels is used to produce the result (9 levels). This fact overcomes the extra delay associated

with non-Booth and cause Booth 3 to be the slowest.

As an aside, when the wire lengths were zero, that is the extra delay due to the wiring

capacitance is removed the di�erence between non-Booth and Booth 2 in terms of delay

becomes 0.03ns. This is an insigni�cant number that can be ignored. So in fact their delays

become equal. That is, for Booth 2; wires contribute only 13.5 % extra delay, while for

non-Booth they contribute 32 % extra delay. Therefore the big performance advantage for

Booth 2 disappears when there is not any wiring delay. For Booth 3 the wires contributed

12 % of the delay. This contribution is relatively minor, due to the shorter wires used in the

tree and to the short wires and many levels of carry lookahead used in the 3M generator,

which is the major contributor to the large set-up time. Redundant Booth 3 showed a

smaller contribution for the wires to the delay, for they contributed 9.5 % of the delay.

Redundant Booth 3's wires contributed to the delay is insigni�cant because of the short

wires used in the ripple carry adders used to produce the redundant 3M representation. In

addition the tree reduction time is almost equal for Booth 2 and Redundant Booth 3 when

there are no wires. this is because they both use the same number of counter levels. The

smaller latency of the tree for the redundant Booth 3 was due to the smaller number of

summands and hence, shorter wires. Finally for the combined Booth 2 / Booth 3; the wires

contributed 10 % of the delay for both con�gurations. Their wires contribution to the delay

was less than Booth 2 and Booth 3 because of the parallelism between Booth 2 reduction

and Booth 3 multiple generation, which hid some of the wire delay.

5.4 Higher Order Arrays

Higher Order arrays are in reality ZM trees of type 1. This means that they are not fully

optimized trees and consequently they have a large number of levels. The fact that they

are ZM 1 trees means that they have minimal wiring tracks need. This allows the use of

dynamic circuits in contrast to the previous methods which all required single ended static

circuits. Figure 16(a) gives the latencies for the di�erent algorithms when the multiplier

is build from a fully dynamic structure. The same general considerations as the previous

three cases apply here. However, the redundant Booth 3 solution is extremely attractive
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here, as it provides almost the same performance as Booth 2 trees. This is due to the fact

that there is a high correlation between the number of summands and the number of levels

that are required to reduce them.

For the dynamic tree only part, shown in �gure 16(b), it is not possible to intermix

Booth 2 and Booth 3 because of the monotonic signal requirement for domino circuits,

which would require an extra clock. The addition of an extra clock is not practical due to

timing constraints. The same general considerations as those of the fully dynamic multiplier

also apply to the multiplier that has only a dynamic tree.

Circuit Type Length Width

(�) (�)

3-2 Counter Static 73 45

Dynamic 105 45

4-2 Counter Static 146 45

Dynamic 210 45

AND Gate Static 16 45

Dynamic 16 45

Booth 2 Encoder Static 32 213

Dynamic 40 369

Booth 3 Encoder Static 50 284

Dynamic 60 476

Booth 2 Mux Static 32 45

Dynamic 40 45

Booth 3 Mux Static 50 45

Dynamic 60 45

56 bit Adder Static 345 45

Dynamic 315 45

Table 1: Subcell Circuit Sizes

5.5 Areas

The areas for each subcell used in the design are given in table 1. Non-Booth always has the

largest area, as can be seen from �gure 17. This is because of the large number of summands

required. Booth 3 is always the smallest because it requires the fewest summands. However,

the area for Booth 2 is not that much more than redundant Booth 3. This is because of the

need for an adder in redundant Booth 3, and the fact that the Booth muxes and encoders

are larger for Booth 3. The area for Booth 2 is smaller than that for Booth2(18)/3(6)

because the reduction in the number of summands does not o�set the extra area used for

the 3M adder and the increase in size due to the Booth Muxes. The break even point where

the areas are o�set occurs at Booth2(12)/3(10).
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5.6 Area vs. Delay

Figure 18a gives the graphs for the area vs delay for the di�erent algorithms. From this

�gure we can see that non-Booth is not a viable solution, in that its points are all in the

upper right part of the graph. Booth 2 provides the best performance, while Booth 3 has

the minimum area. The other 3 algorithms fall in between these two.

Figure 18b gives the graphs for the area vs delay for the di�erent topologies. From this

�gure the absolute best performance possible is for Booth 2, fully dynamic higher order area.

The �gure also shows that the smallest area is achieved by Booth 3 overturned staircase

tree, while the best performance area is provided by Booth 2 overturned staircase tree.

6 Conclusion

Non-Booth is not a viable design. It consistently gives the largest area, and always is one of

the worst in terms of latency. Booth 2 gives the designs with the smallest latency. This is

because an additional adder is not required, and that the best possible reduction in number

of counter levels needed to sum the summands, as achieved by Booth 3, is only 1. Booth 3

produces the smallest designs because they have the least number of summands. Redundant

Booth 3 is not very attractive for tree based designs. It is more suited to standard cell based

designs, in which higher order arrays can be thought of as an extreme case, because the

number of levels is more closely correlated with the number of summands. Booth 2 / Booth

3 falls in-between Booth 2 and Booth 3 in terms of latency, even though the reduction in

area is not as extreme.

As wires continue to account for larger fractions of the total delay, due to decreasing

feature size, Booth 3 may provide the best solution. This observation was made because

for Booth 2 and Non-Booth the wire contribution to the delay is not insigni�cant. In the

future it is possible that when the wire delay will dominate the total delay, the number

of tree levels will not be the deciding factor. Rather, the number of summands, which is

directly correlated to the wire lengths, will be the determining element.
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