
MEASURING THE COMPLEXITY

OF SRT TABLES

Stuart F. Oberman and Michael J. Flynn

Technical Report: CSL-TR-95-679

November 1995

This work was supported by NSF under contract MIP93-13701.



MEASURING THE COMPLEXITY

OF SRT TABLES

by

Stuart F. Oberman and Michael J. Flynn

Technical Report: CSL-TR-95-679

November 1995

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, California 94305-4055

pubs@shasta.stanford.edu

Abstract

This paper presents an analysis of the complexity of quotient-digit selection tables in
SRT division implementations. SRT dividers use a �xed number of partial remainder and
divisor bits to consult a table to select the next quotient-digit in each iteration. The
complexity of these tables is a function of the radix, the redundancy, and the number
of bits in the estimates of the divisor and partial remainder. This analysis derives the
allowable divisor and partial remainder truncations for radix 2 through radix 32, and it
quanti�es the relationship between table parameters and the number of product terms in
the logic equations de�ning the tables. By mapping the tables to a library of standard-cells,
delay and area values were measured and are presented for table con�gurations through
radix 32. The results show that: 1) Gray-coding of the quotient-digits allows for the
automatic minimization of the quotient-digit selection logic equations. 2) Using a short
carry-assimilating adder with a few more input bits than output bits can reduce table
complexity. 3) Reducing the number of bits in the partial remainder estimate and increasing
the length of the divisor estimate increases the size and delay of the table, o�setting any
performance gain due to the shorter external adder. 4) While delay increases nearly linearly
with radix, area increases quadratically, limiting practical table implementations to radix 2
and radix 4.

Key Words and Phrases: Computer arithmetic, oating point, performance tradeo�s,
quotient-digit selection, SRT division, table complexity



Copyright c 1995

by

Stuart F. Oberman and Michael J. Flynn



Contents

1 Introduction 1

2 Theory of SRT Division 1

2.1 Recurrence : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2
2.2 Choice of Radix : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3
2.3 Choice of Quotient Digit Set : : : : : : : : : : : : : : : : : : : : : : : : : : 3

3 Implementing SRT Tables 4

3.1 Divisor and Partial Remainder Estimates : : : : : : : : : : : : : : : : : : : 4
3.2 Uncertainty Regions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7
3.3 Reducing Table Complexity : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

4 Experimental Methodology 11

4.1 TableGen : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11
4.2 Table Synthesis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

5 Results 13

5.1 Same Radix Tradeo�s : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13
5.2 Higher Radix : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

6 Conclusion 18

iii



List of Figures

1 P-D diagram for radix 4 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5
2 Uncertainty regions due to divisor and partial remainder estimates : : : : : 8
3 Components of an SRT divider : : : : : : : : : : : : : : : : : : : : : : : : : 10
4 Design ow : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

iv



List of Tables

1 Gray encoding for maximally redundant radix 4 : : : : : : : : : : : : : : : : 12
2 Radix 4 Tradeo�s : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13
3 Radix 2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14
4 Radix 8 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15
5 Radix 16 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16
6 Radix 32 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

v



1 Introduction

In recent years computer applications have increased in their computational complexity.
High speed oating-point hardware is a requirement to meet these increasing demands. An
important component of the oating point unit is the divider. There are many methods for
designing division hardware, including quadratically converging algorithms, such as Newton-
Raphson, and linear converging algorithms, the most common of which is SRT [14]. SRT
division computes a quotient one digit at a time, with an iteration time independent of the
operand length.

The theory of SRT division is discussed thoroughly in Atkins [1], Ercegovac [7], Robert-
son [16], and Tan [19]. Several SRT implementations have been reported, including radix
2 dividers by Knowles [10], Kuninobu [11], Vandemeulebroecke [21], and Zuras [22], radix
4 by Birman [3] and Fandrianto [8], radix 8 by Fandrianto [9] and Prabhu [15], and radix
16 by Carter [5] and Taylor [20]. SRT dividers with simpli�ed quotient-digit selection us-
ing operand range restriction have been presented in Ercegovac [6], Montuschi [13], and
Srinivas [17].

There are many performance and area tradeo�s when designing an SRT divider. One
metric for comparison of di�erent designs is the minimum required truncations of the divisor
and partial remainder for quotient-digit selection. Atkins [1] and Robertson [16] provide
such analyses of the divisor and partial remainder precisions required for quotient-digit
selection. Burgess and Williams [4] present in more detail allowable truncations for divi-
sors and both carry-save and borrow-save partial remainders. However, a more detailed
comparison of quotient-digit selection complexity between di�erent designs requires more
information than input precision. This paper analyzes in detail the e�ects of algorithm
radix, redundancy, divisor and partial remainder precision, and truncation error on the
complexity of the resulting table. Complexity is measured by the number of product terms
in the �nal logic equations, and the delay and area of standard-cell implementations of
the tables. These metrics are obtained by an automated design ow using the speci�ca-
tions for the quotient-digit selection table as input, a Gray-coded PLA as an intermediate
representation, and an LSI Logic 500K standard-cell implementation as the output. This
paper also examines the e�ects of additional techniques such as table-folding and longer
external carry-assimilating adders on table complexity. Using the methodology presented,
it is possible to automatically generate optimized high radix quotient-digit selection tables.

The remainder of this paper is organized as follows: Section 2 presents the theory of
SRT division. Section 3 discusses the implementation of SRT tables. Section 4 presents our
methodology for implementing the quotient-digit selection tables. Section 5 presents the
results. Section 6 is the conclusion.

2 Theory of SRT Division

SRT division belongs to the digit recurrence class of division algorithms. Digit recurrence
algorithms use subtractive methods to calculate quotients one digit per iteration. Digit
recurrence algorithms can be divided into restoring and nonrestoring division. Restoring

1



division is similar to the familiar paper and pencil division. When dividing two n-digit
numbers, the division can require up to 2n additions or subtractions. Nonrestoring division
algorithms eliminate the restoration cycles, and thus only require up to n additions. This
can be accomplished by allowing negative values of the quotient as well as positive values.
In this way, small errors in one iteration can be corrected in subsequent iterations.

2.1 Recurrence

In SRT division, the quotient can be computed as follows:

q =
dividend

divisor

This expression can be rewritten as:

dividend = q � divisor+ remainder

such that

jremainderj < jdivisorj � ulp and sign(remainder) = sign(dividend)

where the input operands are given by dividend and divisor, and the results are q and re-

mainder. The precision of the quotient is de�ned by the unit in the last position (ulp),
where for an integer quotient ulp = 1, and for a fractional quotient using a binary repre-
sentation ulp = 2�n, assuming an n digit quotient. The radix r of the algorithm, typically
chosen to be a power of 2, determines how many quotient bits b are retired in each iteration,
such that r = 2b. Accordingly, a radix r algorithm requires dn=be iterations to compute an
n digit quotient.

The following recurrence is used at every iteration:

rP0 = dividend (1)

Pj+1 = rPj � qj+1divisor (2)

where Pj is the partial remainder, or residual, at iteration j.
In each iteration, one digit of the quotient is determined by the quotient-digit selection

function:

qj+1 = SEL(rPj; divisor) (3)

In order for the next partial remainder Pj+1 to be bounded, the value of the quotient-digit
is chosen such that

jPj+1j < divisor (4)

The �nal quotient is the weighted sum of all of the quotient-digits selected throughout the
iterations, such that:

Qfinal =
n=bX
j=1

qj � r�j (5)

As can be noted from equations 1 and 2, each iteration of the recurrence comprises the
following steps:

2



� Determine next quotient-digit qj+1 by the quotient-digit selection function

� Generate the product qj+1 � divisor

� Subtract qj+1 � divisor from r � Pj to form the next partial remainder

Each of these components can contribute to the overall cost and performance of the
algorithm. To reduce the time for partial remainder computation, intermediate partial
remainders are often stored in a redundant representation, either carry-save or signed digit
form. Then, the partial remainder computation requires only a full adder delay, rather
than a full width carry-propagate addition. The rest of this paper is concerned with the
quotient-digit selection component.

2.2 Choice of Radix

The fundamental method of decreasing the overall latency (in machine cycles) of the SRT
algorithm is to increase the radix r of the algorithm. By choosing the radix to be a power of
2, the product of the radix and the partial remainder can be formed by shifting. Accordingly,
throughout this study, only power of 2 radices are considered. Assuming the same quotient
precision, the number of iterations of the algorithm required to compute the quotient is
reduced by a factor k when the radix is increased from r to rk. For example, a radix 4
algorithm retires 2 bits of quotient in every iteration. Increasing to a radix 16 algorithm
will allow for retiring 4 bits in every iteration, for a 2X reduction in latency. This reduction
does not come for free. As the radix increases, the quotient-digit selection becomes more
complex. Since the quotient-digit selection is typically on the critical path of the algorithm,
even though the number of cycles may have been reduced due to the increased radix, the
time per cycle may have increased. As a result, the total time required to compute an n

bit quotient may not be reduced by the factor k. Accordingly, the radix r is a fundamental
parameter in determining the complexity of the quotient-digit selection table.

2.3 Choice of Quotient Digit Set

A range of digits is decided upon for the allowed values of the quotient in each iteration.
The simplest case is where, for radix r, there are exactly r allowed values of the quotient.
However, it is often desirable to utilize a redundant digit set which simpli�es the quotient-
digit selection table, thereby increasing the performance of the divider. Such a digit set can
be composed of symmetric signed-digit consecutive integers, where the maximum digit is a.
In particular,

qj 2 Da = f�a;�a+ 1; : : : ;�1; 0; 1; : : : ; a� 1; ag

The redundancy of a digit set is determined by the value of the redundancy factor �, which
is de�ned as

� =
a

r � 1
; � >

1

2
(6)

3



For all partial remainders to be bounded when a redundant quotient digit set is used, the
value of the quotient-digit must be chosen such that

jPj+1j < �� divisor (7)

The calculation of the �nal quotient using a redundant quotient-digit set involves either
a full carry propagate addition to subtract the negative quotient-digits from the positive
quotient-digits at the completion of the iterations, or the use of on-the-y quotient conver-
sion techniques [7].

After the redundancy factor � is chosen, it is possible to derive the quotient-digit se-
lection function. To guarantee that the shifted partial remainder remains bounded for all
valid quotient-digits and divisor, expressions for the quotient-digit selection intervals must
be computed. A selection interval is the region in which a particular quotient-digit can be
safely chosen such that the shifted partial remainder will remain bounded. The expressions
for the selection intervals are given by

Uk = (�+ k)d Lk = (��+ k)d

where Uk (Lk) is the largest (smallest) value of rPj such that it is possible for qj+1 = k to be
chosen and still keep the next shifted partial remainder bounded. The continuity condition

requires that for all valid values of rPj , it must be possible to select at least one quotient
digit [7]. This is expressed mathematically as

Uk�1 � Lk � r�n (8)

Because rPj is represented by a maximum of n bits, the term r�n is the resolution of the
partial remainder.

The P -D diagram is a useful visual tool when designing a quotient-digit selection func-
tion. It has as axes the shifted partial remainder and the divisor. The selection interval
bounds Uk and Lk are drawn as lines starting at the origin with slope �+ k and �� + k,
respectively. A P-D diagram is shown in �gure 1 with r = 4 and a = 2. The shaded regions
are the overlap regions where more than one quotient-digit may be selected.

3 Implementing SRT Tables

3.1 Divisor and Partial Remainder Estimates

To reduce the size and complexity of the quotient-digit selection table for a given choice
of r and a, it is desirable to use as input to the table estimates of the divisor and shifted
partial remainder which have fewer bits than the true values. Assuming IEEE oating-point
compliance, the input operands are in the range 1 � D < 2. Thus, a leading integer one
can be assumed for all divisors, and the table only requires fractional divisor bits to make
a quotient-digit selection. The shifted partial remainder, though, requires both integer and
fractional bits as inputs to the table. The shifted partial remainder rPj and divisor d can

be approximated by estimates rP̂j and d̂ using the c most signi�cant bits of rPj and the

4



qj=2

qj={1,2}

qj=1

qj={0,1}

qj=0

Divisor

1

2

3

4

5

1/3D

2/3D

4/3D

5/3D

8/3D

Sh
if

te
d 

P
ar

ti
al

 R
em

ai
nd

er

1 1.5 2

Figure 1: P-D diagram for radix 4

5



� most signi�cant bits of d. The c bits in the truncated estimate rP̂j can be divided into
i integer bits and f fractional bits, such that c = i + f . The table can take as input
the partial remainder estimate directly in redundant form, or it can use the output of a
short carry-assimilating adder that converts the redundant partial remainder estimate to a
nonredundant representation. The use of an external short adder reduces the complexity
of the table implementation, as the number of partial remainder input bits are halved.
However, the delay of the quotient-digit selection function increases by the delay of the
adder.

It is not possible to determine the optimal choices of � and f analytically, as several
factors are involved in making these choices. However, it is possible to determine a lower
bound on � using the continuity condition and the fact that the next partial remainder must
remain bounded:

2�� �
2�� 1

2(a� �)
(9)

� �

�
� log2

2�� 1

2(a� �)

�
(10)

Because the divisor is IEEE normalized with a leading one, only the leading b = � � 1
fractional bits are required as input to the table. The next quotient-digit can then be
selected by using these estimates to index into a 2b+c entry lookup table, implemented
either as a PLA or random logic.

Assuming a nonredundant two's complement partial remainder, the estimates have non-
negative truncation errors �d and �p for the divisor and shifted partial remainder estimates
respectively, where

�d � 2�b � 2�n � 2�b (11)

�p � 2�f � 2�n � 2�f (12)

Thus, the maximum truncation error for both the divisor and the nonredundant shifted
partial remainder estimates is strictly less than 1 ulp.

For a redundant two's complement partial remainder, the truncation error depends
upon the representation. For a carry-save representation, the sum and carry estimates each
has nonnegative truncation error �p, assuming that both the sum and carry estimates are
represented by the c most signi�cant bits of their true values. The resulting estimate rP̂j(cs)

has truncation error

�p(cs) � 2� (2�f � 2�n) � 21�f (13)

Thus, the maximum truncation error for an estimate of a carry-save shifted partial remain-
der is strictly less than 2 ulps.

From this discussion, the number of integer bits i in rP̂j can be determined analytically.
Using the general recurrence for SRT division, the maximum shifted partial remainder is
given by

rPj(max) = r�dmax (14)

6



For IEEE operands,

dmax = 2� 2�n (15)

As previously stated, for a carry-save two's complement representation of the partial re-
mainder, the truncation error is always nonnegative, and therefore the maximum estimate
of the partial remainder is

rP̂j(max) =
j
r � �� (2� 2�n)� 2f

k
=2f (16)

The minimum estimate of the partial remainder is

rP̂j(min) =
l
�r � �� (2� 2�n)� 2f

m
=2f � �p(cs) (17)

Accordingly, i can be determined from

rP̂j(max) � rP̂j(min) � 2i (18)

i �
l
log2(rP̂j(max) � rP̂j(min))

m
(19)

3.2 Uncertainty Regions

By using a redundant quotient-digit set, it is possible to correctly choose the next quotient-
digit even when using the truncated estimates rP̂j and d̂. Due to the truncation error in
the estimates, each entry in the quotient-digit selection table has an uncertainty region
associated with it. For each entry, it is necessary for all combinations of all possible values
represented by the estimates rP̂j and d̂ to lie in the same selection interval. For a carry-save
representation of the shifted partial remainder, this involves calculating the maximum and
minimum ratios of the shifted partial remainder and divisor, and ensuring that these ratios
both lie in the same selection interval:

ratiomax =

8<
:

rP̂j+�p(cs)

d̂
if Pj � 0

rP̂j

d̂
if Pj < 0

(20)

ratiomin =

8><
>:

rP̂j

d̂+�d
if Pj � 0

rP̂j+�p(cs)

d̂+�d
if Pj < 0

(21)

If an uncertainty region is too large, the maximum and minimum ratios may span more
than one selection interval, requiring one table entry to return more than one quotient-digit.
This would signify that the estimate of the divisor and/or the shifted partial remainder has
too much truncation error. Figure 2 shows several uncertainty regions in a radix 4 P-D
plot. Each uncertainty region is represented by a rectangle whose height and width is
a function of the divisor and partial remainder truncation errors. The value of ratiomax

corresponds to the upper left corner of the rectangle, while ratiomin corresponds to the
lower right corner. In this �gure, the four valid uncertainty regions include a portion of

7



qj=2

qj={1,2}

qj=1

qj={0,1}

qj=0

Divisor

1

2

3

4

5

U2

U1

L2

U0

L1

Valid uncertainty regions

Illegal uncertainty region

Sh
if

te
d 

P
ar

ti
al

 R
em

ai
nd

er

ratiomax

ratiomin

Figure 2: Uncertainty regions due to divisor and partial remainder estimates

8



an overlap region. Further, the lower right uncertainty region is fully contained within an
overlap region, allowing the entry corresponding to that uncertainty region to take on the
quotient-digits of either 0 or 1. The other three valid uncertainty regions may take on only
a single quotient-digit. The upper left uncertainty region spans more than an entire overlap
region, signifying that the corresponding table entry, and as a result the entire table, is
not valid. To determine the valid values of b and f for a given r and a, it is necessary to
calculate the uncertainty regions for all 2b+i+f entries in the table. If all uncertainty regions
are valid for given choices of b, i, and f , then they are valid choices.

3.3 Reducing Table Complexity

The size of the table implementation can be reduced nearly in half by folding the table entries
as suggested in Fandrianto [8]. Folding involves the conversion of the two's complement
representation of rP̂j to signed-magnitude, allowing the same table entries to be used for
both positive and negative values of rP̂j . This reduction does not come for free. First,
it requires additional logic outside of the table, such as a row of XOR gates, to perform
the representation conversion, adding external delay to the quotient digit selection process.
Second, it may place further restrictions on the table design process. When a carry-save
representation is used for rPj and a truncated estimate rP̂j is used to consult the table, the
truncation error is always nonnegative, resulting in an asymmetrical table. To guarantee
the symmetry required for folding, additional terms must be added to the table, resulting
in a less than optimal implementation.

A complexity-reducing technique proposed in this study is to minimize �p. As presented
previously, when using an external carry-assimilating adder for a truncated two's comple-
ment carry-save partial remainder estimate, the maximum error �p(cs) is approximately 2

1�f .
This error can be further reduced by using g fractional bits of redundant partial remainder
as input to the external adder, where g > f , but only using the most signi�cant f fractional
output bits of the adder as input to the table. The maximum error in the output of the
adder is

�p(adder) = 2�g + 2�g � 21�n (22)

Then, by using f bits of the adder output, the maximum error for the input to the table is

�p(cs) = 2�f � 2�g + �p(adder)

= 2�f + 2�g � 21�n � 2�f + 2�g (23)

For the case g = f , the error remains approximately 21�f . However, by increasing g, the
error �p(cs) is reduced, converging towards the error for a nonredundant partial remainder

which is approximately 2�f . Reducing the truncation error �p(cs) decreases the height of the
uncertainty region in the PD diagram. This has the e�ect of allowing more of the entries'
uncertainty regions to fully �t within overlap regions, increasing the exibility in the logic
minimization process, and ultimately reducing the complexity of the �nal table. A block
diagram illustrating the various components of an SRT divider is shown in �gure 3.

9



TABLE

Pj D

MUX

CSA

CONVERTER

i+g

i+f

i+f

(optional)

b

q
j+1

Pj+1

Pjs c

i+g

Pj+1s c

CPA

Figure 3: Components of an SRT divider

10



4 Experimental Methodology

The focus of this paper is to quantitatively measure the tradeo�s between the parameters
r, a, b, i, f , g, and the complexity of the logic equations, measured by the number of
product terms, as well as the complexity of the resulting random logic implementations of
the tables, as measured by implementation delay and area. The following design ow was
used to automatically generate quotient-digit selection tables in random logic:

Table Spec PLA Entries Logic Equations Standard Cell Netlist
TableGen Espresso Synopsys

Figure 4: Design ow

In this study, a carry-save two's complement representation is used for the partial re-
mainder in all tables.

4.1 TableGen

The program TableGen performs the analytical aspects of the quotient-digit selection table
design. This program takes the table parameters as input, and it produces the unminimized
PLA entries necessary to implement the table. First, all of the uncertainty regions for all
entries in the table are computed. TableGen determines whether or not the choice of input
parameters results in a valid table design. If the table is valid, it then computes the allowable
quotient-digits for each entry in the table, based upon the size of the uncertainty region.
The allowable quotient-digits are then written in PLA form for all 2i+b+f possible shifted
partial remainder and divisor pairs.

To allow for the greatest reduction in the complexity of the table implementations, it is
proposed in this study to use a Gray code to encode an entry's allowable quotient-digits.
In a Gray encoding, neighboring values only di�er in one bit position [2]. This allows for
the e�cient representation of multiple allowable quotient-digits in the PLA output, while
still only requiring dlog2 re bits. The Gray-coding of the digits is recommended to ensure
that given a choice between two allowable quotient-digits in an overlap region, the optimal
choice can be automatically determined that will result in the least complex logic equations.

Accordingly, there are dlog2 re outputs of the table which are the bits of the encoded
quotient-digit. Table entries where ratiomin and ratiomax are both greater than �� r are
unreachable entries. Thus, their outputs are set to don't care. An example of Gray-coding
for r = 4 and a = 3 is shown in table 1. In this example, a value of x implies a don't care.
Because the table stores digits in encoded form, all tables in this study require an explicit
decoder to recover the true quotient-digit and select the appropriate divisor multiple. This
results in the addition of a decoder delay into the critical path. However, since all tables in
this study use the same encoding, this is a constant delay that only grows as the log of the
radix. Alternatively, the quotient-digits could be stored in an unencoded form, removing the

11



Allowable Digits Encoding

0 00

1 01

0 or 1 0x

2 11

1 or 2 x1

3 10

2 or 3 1x

Table 1: Gray encoding for maximally redundant radix 4

need for the decoder. Optimal logic minimization becomes a much more di�cult problem
for unencoded digits.

Espresso is used to perform logic minimization on the output PLA. This produces a
minimized PLA and the logic equations representing the PLA in sum of products form.
The number of product terms in these expressions is one metric for the complexity of the
tables. To verify the correctness of the tables, an SRT divider was simulated using a DEC
Alpha 3000/500 with the minimized logic equations as the quotient-digit selection function.
After each table was generated, the equations were incorporated into the simulator. Several
thousand random and directed IEEE double precision vectors were used as input to the
simulator, and the computed quotients for each table were compared with the computed
results from the Alpha's internal FPU.

4.2 Table Synthesis

To quantify the performance and area of random logic implementations of the tables, each
table was synthesized using a standard-cell library. The Synopsys Design Compiler [18]
was used to map the logic equations describing each table to an LSI Logic 500K 0.5�m
standard-cell library [12]. In the mapping stage, low attening and medium mapping e�ort
options were used. However, area was always sacri�ced to reduce the latency. In order to
minimize the true critical path of the tables, the input constraints included the late arrival
time of all partial remainder inputs due to an external carry-assimilating adder.

Area and delay estimates were obtained from a Design Compiler pre-layout report.
Each delay includes intrinsic gate delay, estimated interconnect wire delay, and the input
load of subsequent gates. All delays were measured using nominal conditions. Each area
measurement includes both cell and estimated routing area. The delay and area are reported
relative to those for a base radix 4 table, which is Gray-coded with i = 3, f = 3, g = 3, and
d = 3. The base table requires 43 cells and has a delay of 1.47ns.

The results are presented in tables 2 through 6. The complexity of the tables is mea-
sured by the number of product terms, the relative delay, and the relative area for each
con�guration. The terms result contains both the number of product terms for each output
of the table, as well as the total number of terms in the table. For a given radix r, there are

12



exactly nout = log2 r outputs of the table. Accordingly, this column �rst lists the number of
terms in each of the nout outputs. Because there is usually some internal sharing of product
terms, the last number, which is the total number of unique terms required to implement
the table, is typically less than the sum of the terms for the individual outputs. The re-
ported delay is the worst-case delay of any of the nout outputs, typically corresponding to
the output which has the highest number of product terms.

5 Results

5.1 Same Radix Tradeo�s

Description a b i f g Terms Relative Delay Relative Area

Baseline 2 3 4 3 3 19,8,25 1.00 1.00
2 3 4 3 4 17,8,23 0.88 0.93
2 3 4 3 5 17,8,23 0.84 0.91
2 3 4 3 52 14,6,18 0.77 0.77

Folded 2 3 4 3 4 13,5,17 0.79 0.65

Folded +
t-bit conv 2 3 4 3 4 12,4,16 0.71 0.57

Line Encode 2 3 4 3 4 17,7,23 0.84 0.86

Choose Highest 2 3 4 3 4 22,13,33 1.05 1.23

Max Red 3 2 5 1 1 6,9,14 0.80 0.54
3 2 5 1 52 3,6,9 0.63 0.30

Table 2: Radix 4 Tradeo�s

Table 2 shows the results for various radix 4 con�gurations. The parameters varied in
this table are 1) the number of g bits vs f bits, 2) folding, 3) method of choosing values in
the overlap regions, and 4) the amount of redundancy. The �rst entries examine the e�ects
of using g bits of the redundant partial remainder into the short CPA outside of the table,
while only using f bits of the adder output as input to the table. Simply extending the
CPA by one bit reduces the delay by 12% and area by 7%. Extending the CPA by two bits
reduces the delay by 16% and area by 9%. In the limit, where g = n and a full-mantissa
carry propagate addition is required, the delay and area are both reduced by 23%. This
demonstrates that increasing the width of the CPA by as little as one or two bits can reduce
the complexity of the table.

The next two entries demonstrate the e�ects of using folded tables. For both tables,
it is assumed that f = 3 and g = 4, which matches the format of the table suggested in
Fandrianto [8]. The use of only a two's complement to sign-magnitude converter yields the
�rst folded table, which achieves an additional delay reduction of 10% and an additional
area reduction of 30% over the f = 3 g = 4 table without folding. This introduces a serial
delay of an XOR gate external to the delay of the table. When the sign-magnitude converter

13



a b i f g Terms Relative Delay Relative Area

1 0 3 1 1 3 0.35 0.07

Table 3: Radix 2

is combined with a \t-bit converter", which further constrains the range of input values to
the table, the delay is reduced relative to the simple folded table by an additional 10%,
and the area is reduced by an additional 12%. This converter introduces the serial delay of
an OR gate external to the table. These results show that folding can reduce the size and
delay of the table. However, the delay of the required external gates must be considered for
the overall design. If the sum of the XOR and OR gate delays is less than 29% of the base
table delay, table folding can result in a net decrease in delay.

Di�erent encodings of the quotient-digits can change the complexity of the tables. The
lower bound for delay and area of the table is achieved when each boundary between two
consecutive quotient-digits is individually encoded. The recovery of the unencoded quotient-
digit may require a large external decoder. When using such a \line" encoding scheme, again
with f = 3 and g = 4, the delay and area are reduced by 5% and 8% respectively relative to
the base Gray-coded table, also with f = 3 and g = 4. However, the external decoder delay
grows linearly with increasing a for line encoding, while only growing as the log of a for
Gray-coding. Another common encoding scheme always uses the highest digit whenever a
choice is available between two consecutive quotient-digits. This is represented in the table
as \choose highest" encoding. While simplifying the table generating process, this method
increases the resulting table delay by 19% and area by 32% over the base f = 3 g = 4
table. Thus, this study shows that Gray-coding of the quotient-digits achieves delays and
areas approaching the lower bound of line encoding, while requiring less complex external
decoders.

The redundancy of the digit set has an impact on table complexity. The �nal entries in
the table are for maximally redundant radix 4 tables, with a = 3. For an implementation
with f = g = 1, the delay and area are reduced by 20% and 46% respectively. When g

increases to n = 52, requiring a full mantissa-width CPA, the delay is further reduced by
21% and the area by 44%. These results show that if the hardware is available to generate
the 3x divisor multiple, the iteration time can be reduced by over 20%, due to the reduction
in table complexity and length of the external short CPA.

Table 3 shows the complexity of a basic radix 2 table. This table can be implemented
by a single three-input gate, as it only has 3 PLA terms, which can be contrasted with the
25 terms in the baseline radix 4 table. The resulting delay is 65% less than the base radix
4 table, while 93% less area is required. Accordingly, the radix 2 table is 2.86 times faster
than the base radix 4 table, and 2.40 times faster than a g = 5 radix 4 table.

5.2 Higher Radix

Tables 4, 5, and 6 show the complexity for tables that directly implement radix 8, 16,

14



a b i f g Terms Relative Delay Relative Area

4 7 5 4 4 137,59,114,292 1.85 10.2
7 5 4 5 111,48,94,240 1.76 8.80
6 5 5 5 110,50,94,240 1.70 8.85
5 5 6 6 104,50,85,221 1.67 8.21

5 5 5 3 3 42,19,69,122 1.45 5.21
4 5 4 4 35,14,57,103 1.47 4.05

6 5 5 2 2 26,35,39,92 1.46 4.82
4 5 3 3 24,33,38,88 1.46 4.46
3 5 5 5 27,29,33,78 1.36 4.03

7 6 6 1 1 16,23,43,76 1.46 3.90
3 6 2 2 15,21,35,64 1.41 3.53

Table 4: Radix 8

and 32 respectively. The allowable choices of i, b, and f determined in this study correspond
with the results presented in [4] for radix 8 and 16. In our study, we extend the allowed
operand truncations to radix 32. For radix 16 and radix 32, the minimally redundant
con�gurations required 20 or more inputs to the table. Due to computational constraints,
table optimization was limited to con�gurations containing fewer than 20 inputs. Those
con�gurations where optimization was infeasible are denoted with a dagger in the tables.

For a given choice of radix and redundancy, there exists more than one possible table
design. As discussed previously, a minimum number of divisor estimate bits is required
as input for a given con�guration. This corresponds to a maximum number of partial
remainder bits that need be used. However, it is possible to trade an increase in divisor bits
for a reduction in the number of partial remainder bits. This might initially seem desirable,
as the partial remainder bits must �rst be assimilated in an external adder, adding to the
overall iteration time. By using a fewer number of partial remainder bits in the table,
the external adder can be smaller, reducing the external delay. However, for carry-save
partial remainders, the maximum partial remainder truncation error �p(cs) is greater than
the maximum divisor truncation error �d. By trading-o� fewer partial remainder bits for
more divisor bits, the height of the uncertainty region increases at approximately twice
the rate at which the width of the region decreases. As a result, the overall uncertainty
region area increases as fewer partial remainder bits are used. This result can be seen
quantitatively in tables 4, 5, and 6. For any given choice of radix and redundancy, the use
of the maximum number of divisor bits and minimum number of partial remainder bits
results in the largest number of total product terms, and typically the largest delay and
area. As the number of divisor bits is reduced and the number of partial remainder bits
increased, the number of product terms, the delay, and the area are all typically reduced.

This study con�rms that as the radix increases, the complexity of the tables also in-
creases. Fitting the average area at a given radix to a curve across the various radices

15



a b i f g Terms Relative Delay Relative Area

8 11 6 5 5 y y y
8 6 6 6 y y y

7 6 8 8 y y y

9 7 6 4 4 198,98,176,481,871 2.56 32.9
6 6 5 5 170,81,154,410,745 2.50 29.0

10 7 6 3 3 120,58,231,280,616 2.37 24.8
6 6 4 4 105,57,191,240,530 2.32 21.4
5 6 5 5 96,49,183,227,497 2.24 21.1

11 6 6 3 3 80,44,159,258,484 2.21 21.1
5 6 4 4 68,39,142,208,418 2.10 18.9

12 7 6 2 2 79,138,144,228,481 2.17 25.0
6 6 3 3 66,112,119,172,373 2.09 19.1

13 6 6 2 2 60,105,105,207,393 2.14 20.4
5 6 3 3 62,104,99,186,344 2.07 18.5

14 5 6 2 2 48,101,136,169,383 2.14 20.2
4 6 6 6 54,92,110,139,310 2.06 16.5

15 9 7 1 1 47,76,135,193,383 2.16 19.2
5 7 2 2 39,69,99,136,281 2.03 15.4
4 7 3 3 42,61,93,125,261 1.94 14.8

Table 5: Radix 16

determines that the area increases geometrically with increasing radix:

Area = :1R2 (24)

for radix R, where this area is the table area relative to that of the base radix 4 divider.
Similar analysis of average delay demonstrates that delay increases only linearly with in-
creasing radix. For radix 8, the delay is on the average about 1.5 times that of the base
radix 4 table. However, it can require up to 10 times as much area. While radix 16 tables
have about 2 times the base delay, they can require up to 32 times the area. In the case of
radix 32, it was not even possible to achieve a delay of 2.5 times the base delay, the max-
imum desired delay, with actual delays between 3.5 and 4.7. The area required for radix
32 ranges from 57 to 141 times the base area. These results show that radix 16 and 32 are
clearly impractical design choices, even ignoring practical implementation limitations such
as generating all divisor multiples. This study shows that it is possible to design radix 8
tables with reasonable delay and area; a minimally-redundant radix 8 table is demonstrated
to be a practical design choice.

16



a b i f g Terms Relative Delay Relative Area

17 9 7 5 5 y y y
8 7 6 6 y y y

18 9 7 4 4 y y y

8 7 5 5 y y y
7 7 7 7 y y y

19 8 7 4 4 351,208,352,945,1633,3119 4.56 141
7 7 5 5 309,191,308,860,1445,2767 4.18 79.1

20 9 7 3 3 312,164,660,891,1527,3218 4.69 144
7 7 4 4 257,156,531,727,1215,2592 4.24 106

21 8 7 3 3 237,128,507,649,1274,2499 4.13 73.2
7 7 4 4 206,118,424,541,1060,2099 4.06 94.8
6 7 6 6 180,108,366,466,912,1826 3.91 80.5

22 7 7 3 3 192,119,450,733,1032,2127 4.31 101
6 7 5 5 178,90,356,596,794,1696 4.07 80.9

23 7 7 3 3 158,85,365,607,946,1865 4.11 92.5
6 7 4 4 140,84,316,527,814,1621 3.86 78.6

24 9 7 2 2 207,408,421,678,1073,2243 4.62 92.5
7 7 3 3 147,327,314,491,780,1678 3.63 86.8
6 7 4 4 142,286,277,458,699,1497 3.61 73.3

25 8 7 2 2 185,330,318,543,985,1978 4.36 99.6
6 7 3 3 144,252,258,425,747,1534 3.70 76.3

26 8 7 2 2 154,291,299,607,838,1783 3.95 91.6
6 7 3 3 123,249,235,505,687,1475 3.73 75.1

27 7 7 2 2 141,263,266,535,798,1620 3.73 86.4
6 7 3 3 126,221,227,439,661,1377 3.63 73.7

28 7 7 2 2 146,233,359,494,717,1578 3.86 82.0
6 7 3 3 134,218,322,413,599,1327 3.76 74.4

29 7 7 2 2 226,233,342,431,697,1480 3.75 82.1
6 7 3 3 116,188,259,349,573,1241 3.73 69.8

30 6 7 2 2 145,220,318,461,656,1433 4.14 76.0
5 7 7 7 165,184,252,351,505,1143 3.78 61.0

31 11 8 1 1 y y y

6 8 2 2 89,170,241,399,555,1158 4.05 61.3
5 8 4 4 86,152,219,333,486,1021 3.52 57.2

Table 6: Radix 32

17



6 Conclusion

This study has demonstrated a methodology for generating quotient-digit selection tables
from a table speci�cation through an automated design ow. Using this process, perfor-
mance and area tradeo�s of quotient selection tables in SRT dividers have been presented
for several table con�gurations. The use of Gray-coding is shown to be a simple yet e�ec-
tive method that allows automatically determining optimal choices of quotient-digits which
reduce table complexity.

Short external carry-assimilating adders are necessary to convert redundant partial re-
mainders to a non-redundant form. By extending the length of these adders by as little as
one or two bits, it is shown that table complexity can be further reduced. The conventional
wisdom for SRT table speci�cation has been whenever possible, the length of the partial
remainder estimate should be reduced at the expense of increasing the length of the divisor
estimate in order to reduce the width, and thus the delay, of the external adder. However,
this study quantitatively demonstrates that such a choice also increases the size and delay
of the table, mitigating the performance gain provided by the narrower adder. Accordingly,
the overall iteration time is not reduced through such a tradeo�.

As the radix increases, it is shown that the table delay increases linearly. However, the
area increases quadratically with increasing radix. This fact, combined with the di�culty
in generating all of the required divisor multiples for radix 8 and higher, limits practical
table implementations to radix 2 and radix 4.

References

[1] D. E. Atkins. Higher-radix division using estimates of the divisor and partial remain-
ders. IEEE Transactions on Computers, C-17(10), October 1968.

[2] A. Barna and D. Porat. Integrated Circuits in Digital Electronics. John Wiley and
Sons, 1973.

[3] M. Birman, A. Samuels, G. Chu, T. Chuk, L. Hu, J. McLeod, and J. Barnes. Developing
the WTL 3170/3171 Sparc oating-point co-processors. IEEE Micro, 10(1):55{63,
February 1990.

[4] N. Burgess and T. Williams. Choices of operand truncation in the SRT division algo-
rithm. IEEE Transactions on Computers, 44(7):933{937, July 1995.

[5] T. Carter and J. Robertson. Radix-16 signed-digit division. IEEE Transactions on

Computers, 39(12):1243{1433, December 1990.

[6] M. D. Ercegovac and T. Lang. Simple radix-4 division with operands scaling. IEEE

Transactions on Computers, C-39(9):1204{1207, September 1990.

[7] M. D. Ercegovac and T. Lang. Division and Square Root: Digit-Recurrence Algorithms

and Implementations. Kluwer Academic Publishers, 1994.

18



[8] J. Fandrianto. Algorithm for high-speed shared radix 4 division and radix 4 square
root. In Proceedings of the 8th IEEE Symposium on Computer Arithmetic, pages 73{79,
May 1987.

[9] J. Fandrianto. Algorithm for high-speed shared radix 8 division and radix 8 square
root. In Proceedings of the 9th IEEE Symposium on Computer Arithmetic, pages 68{75,
July 1989.

[10] S. Knowles. Arithmetic processor design for the T9000 transputer. ASPAAI-2, 1991.

[11] S. Kuninobu, T. Nishiyama, H. Edamatsu, T. Tanaguchi, and N. Takagi. Design of
high speed MOS multiplier and divider using redundant binary representation. In
Proceedings of the 8th IEEE Symposium on Computer Arithmetic, pages 80{86, 1987.

[12] LSI Logic lcb500k standard-cell library, 1994.

[13] P. Montuschi and L. Ciminiera. Over-redundant digit sets and the design of digit-by-
digit division units. IEEE Transactions on Computers, 43(3):269{277, March 1994.

[14] S. Oberman and M. Flynn. An analysis of division algorithms and implementations.
Technical Report No. CSL-TR-95-675, Computer Systems Laboratory, Stanford Uni-
versity, July 1995.

[15] J. A. Prabhu and G. B. Zyner. 167 MHz Radix-8 oating point divide and square
root using overlapped radix-2 stages. In Proceedings of the 12th IEEE Symposium on

Computer Arithmetic, pages 155{162, July 1995.

[16] J. E. Robertson. A new class of digital division methods. IRE Transactions on Elec-

tronic Computers, EC-7(3):88{92, September 1958.

[17] H. Srinivas and K. Parhi. A fast radix-4 division algorithm and its architecture. IEEE
Transactions on Computers, 44(6):826{831, June 1995.

[18] Synopsys Design Compiler version v3.2b, 1995.

[19] K. G. Tan. The theory and implementation of high-radix division. In Proceedings of

the 4th IEEE Symposium on Computer Arithmetic, pages 154{163, June 1978.

[20] G. S. Taylor. Radix 16 SRT dividers with overlapped quotient selection stages. In
Proceedings of the 7th IEEE Symposium on Computer Arithmetic, pages 64{71, June
1985.

[21] A. Vandemeulebroecke, E. Vanzieleghem, T. Denayer, and P.G.A. Jespers. A new
carry-free division algorithm and its application to a single-chip 1024-b RSA processor.
IEEE Journal of Solid State Circuits, 25:748{756, June 1990.

[22] D. Zuras and W. McAllister. Balanced delay trees and combinatorial division. IEEE

Journal of Solid State Circuits, SC-21(5):814{819, October 1986.

19


