
AN ANALYSIS OF DIVISION

ALGORITHMS AND

IMPLEMENTATIONS

Stuart F. Oberman and Michael J. Flynn

Technical Report: CSL-TR-95-675

July 1995

This work was supported by NSF under contract MIP93-13701.

AN ANALYSIS OF DIVISION

ALGORITHMS AND

IMPLEMENTATIONS

by

Stuart F. Oberman and Michael J. Flynn

Technical Report: CSL-TR-95-675

July 1995

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, California 94305-4055

pubs@shasta.stanford.edu

Abstract

Floating-point division is generally regarded as a low frequency, high latency operation
in typical oating-point applications. However, the increasing emphasis on high perfor-
mance graphics and the industry-wide usage of performance benchmarks forces processor
designers to pay close attention to all aspects of oating-point computation. Many algo-
rithms are suitable for implementing division in hardware. This paper presents four major
classes of algorithms in a uni�ed framework, namely digit recurrence, functional iteration,
very high radix, and variable latency. Digit recurrence algorithms, the most common of
which is SRT, use subtraction as the fundamental operator, and they converge to a quo-
tient linearly. Division by functional iteration converges to a quotient quadratically using
multiplication. Very high radix division algorithms are similar to digit recurrence algo-
rithms, but they incorporate multiplication to reduce the latency. Variable latency division
algorithms reduce the average latency to form the quotient. These algorithms are explained
and compared in this work. It is found that for low-cost implementations where chip area
must be minimized, digit recurrence algorithms are suitable. An implementation of division
by functional iteration can provide the lowest latency for typical multiplier latencies. Vari-
able latency algorithms show promise for simultaneously minimizing average latency while
also minimizing area.

Key Words and Phrases: Floating-point, division, algorithms, SRT, functional itera-
tion, very high radix, variable latency, computer arithmetic

Copyright c 1995

by

Stuart F. Oberman and Michael J. Flynn

Contents

1 Introduction 1

2 Digit Recurrence Algorithms 3

2.1 De�nitions : 3
2.2 Recurrence : 4
2.3 Implementation of Basic Scheme : 4

2.3.1 Choice of Radix : 5
2.3.2 Choice of Quotient Digit Set : 6
2.3.3 Residual Representation : 7
2.3.4 Quotient-Digit Selection Function : : : : : : : : : : : : : : : : : : : 8

2.4 Increasing Performance : 10
2.4.1 Simple Staging : 10
2.4.2 Overlapping Execution : 12
2.4.3 Overlapping Quotient Selection : 13
2.4.4 Overlapping Residual Computation : : : : : : : : : : : : : : : : : : : 15
2.4.5 Range Reduction : 15
2.4.6 Simple Operands Scaling : 18

2.5 Other Issues : 19
2.5.1 Quotient Conversion : 19
2.5.2 Rounding : 20

2.6 Analysis : 20

3 Functional Iteration 21

3.1 Newton-Raphson : 21
3.2 Series Expansion : 23
3.3 Starting Approximations : 25

3.3.1 Look-up tables : 25
3.3.2 Partial Product Arrays : 26

3.4 Rounding : 27
3.5 Analysis : 28

4 Very High Radix Algorithms 29

4.1 Accurate Quotient Approximations : 29
4.2 Short Reciprocal : 32
4.3 Rounding and Prescaling : 33
4.4 Multiplicative Iterative Division : 34
4.5 Analysis : 35

5 Variable Latency Algorithms 36

5.1 Result Caches : 36
5.2 Speculation of Quotient Digits : 39
5.3 Analysis : 40

iii

6 Comparison 42

7 Conclusion 44

8 Acknowledgements 45

A Pentium Bug 46

B Square-Root 46

B.1 SRT : 46
B.2 Functional Iteration : 47

iv

List of Figures

1 Basic SRT Topology : 5
2 P-D diagram for radix-4 : 7
3 Enhanced SRT Topology : 8
4 Radix-4 next quotient/root selection table : : : : : : : : : : : : : : : : : : : 10
5 Higher radix using hardware replication : 11
6 Three methods of overlapping division components : : : : : : : : : : : : : : 12
7 Two stages of self-timed divider : 13
8 Higher radix by overlapping quotient selection : : : : : : : : : : : : : : : : 14
9 Radix-4 with overlapped residual computation : : : : : : : : : : : : : : : : 16
10 Decomposition into stages and segments : 17
11 CPI vs area with and without division cache : : : : : : : : : : : : : : : : : : 37
12 Hit rates for in�nite division and reciprocal caches : : : : : : : : : : : : : : 38
13 Hit rates for �nite division and reciprocal caches : : : : : : : : : : : : : : : 39
14 Units for digit speculation : 41

v

List of Tables

1 Summary of algorithms : 42
2 Latencies for di�erent con�gurations : 43

vi

1 Introduction

In recent years computer applications have increased in their computational complexity.
The industry-wide usage of performance benchmarks, such as SPECmarks, forces processor
designers to pay particular attention to implementation of the oating-point unit, or FPU.
Special purpose applications, such as high performance graphics rendering systems, have
placed further demands on processors. High speed oating-point hardware is a requirement
to meet these increasing demands.

Modern applications comprise several oating point operations including addition, mul-
tiplication, and division. In recent FPUs, emphasis has been placed on designing ever-faster
adders and multipliers, with division receiving less attention. Typically, the range for addi-
tion latency is 2 to 4 cycles, and the range for multiplication is 2 to 8 cycles. In contrast, the
latency for double precision division in modern FPUs ranges from less than 8 cycles to over
60 cycles [24]. A common perception of division is that it is an infrequent operations whose
implementation need not receive high priority. However, it has been shown that ignoring
its implementation can result in signi�cant system performance degradation for certain ap-
plications [27]. While the methodology for designing e�cient high-performance adders and
multipliers is well-understood, the design of dividers still remains a serious design challenge,
often viewed as a \black-art" among system designers. Extensive theory exists describing
the theory of division. However, the design space of the algorithms and implementations
is large, due to the large number of parameters involved. Furthermore, deciding upon an
optimal design depends heavily on its requirements.

Division algorithms can roughly be divided into four classes. The �rst and most common
class is digit recurrence. The majority of commercial implementations are based on this
class. Digit recurrence algorithms form a quotient one digit at a time, in a manner similar
to traditional paper-and-pencil division. SRT division is a widely used variation of digit
recurrence division, named for Sweeney, Robinson, and Tocher who independently proposed
the algorithm. In each step of the algorithm a multiple of the divisor is subtracted from
the dividend or partial remainder. The latency of forming a quotient using digit recurrence
is linear with the length of the operands. The major advantages of digit recurrence are
simplicity of implementation and the availability of a �nal remainder at the completion of
the computation. The disadvantage is the linear convergence.

The second class of algorithms is functional iteration. These algorithms represent the
division or reciprocal operation as a function, and use function-solving techniques such as
the Newton-Raphson equation to converge to the quotient or reciprocal. Several commer-
cial implementations have been based on this class of algorithm. Implementations of the
Newton-Raphson equation require approximately two multiplications per step of the iter-
ation, rather than a simple subtraction. The advantage of functional iteration is that it
converges to the quotient or reciprocal faster than linearly, with typical implementations
converging quadratically. The disadvantages are that the complexity per step of the itera-
tion is complex and that a �nal remainder is not readily available.

The third class of algorithms is known as very high radix division. These algorithms are
essentially extensions of simple digit recurrence algorithms to higher radices. The term very
high radix typically refers to division implementations that retire more than 10 quotient bits

1

per iteration step. These algorithms incorporate multiplication into the iteration step to
simplify the formation of quotient digits and divisor multiples. The advantages of very high
radix division are that more quotient bits are retired per step than simple digit recurrence
and a �nal remainder is available. The iteration step requires more complexity than simple
digit recurrence, but can require less than functional iteration. The disadvantage is linear
convergence to the quotient. Only one commercial implementation has been based on this
class of algorithm, the Cyrix 83D87 arithmetic coprocessor [2]. As the desire for higher
performance division increases, this class could become more common.

The fourth class of algorithms is variable latency algorithms. Whereas the �rst three
classes always have a �xed latency regardless of the input operands, variable latency algo-
rithms have the ability to produce a result faster than the worst case latency, depending on
the operands. These algorithms allow for increased average division performance without all
of the complexity required for increased worst case division performance. However, a system
that incorporates such a divider must be able to manage variable latency functional units.
Therefore, such a system is typically more complex. One commercial processor implementa-
tion uses a variable latency divider, the self-timed divider in the Hal Sparc64 microprocessor
[24]. However, variable latency functional units hold promise for future processors. As sys-
tems become more complex and allow for out-of-order execution and completion, variable
latency dividers will be a cost-e�ective method for improving oating-point performance.

In the past, others have presented summaries of speci�c classes of division algorithms
and implementations. Flynn [19] discusses the theory and methodology of multiplication-
based division algorithms. Atkins [1] is the �rst major analysis of SRT algorithms. Tan
[38] derives and presents the theory of high-radix SRT division, along with an analytic
method of implementing SRT look-up tables. Soderquist [35] presents performance and area
tradeo�s in divider design in the context of a specialized application. Ercegovac and Lang
[9] present a thorough coverage of SRT algorithms. This study synthesizes the fundamental
aspects of these and other works, in order to clarify the division design space. The four
classes of division algorithms are presented and analyzed in terms of the three major design
parameters: latency in system clock cycles, cycle time, and area. Other issues related to the
implementation of division in actual systems are also presented. Throughout this work, the
majority of the discussion is devoted to division, but the theory of square-root computation
is an extension of the theory of division, and most of the analyses and conclusions for
division can also be applied to the design of square-root units. Further details regarding
square-root computation are presented in appendix B.

The remainder of this paper is organized as follows. Section 2 presents digit recurrence
algorithms. Section 3 presents functional iteration. Sections 4 and 5 discuss very high radix
and variable latency algorithms. Section 6 compares the algorithm classes. Section 7 is the
conclusion.

2

2 Digit Recurrence Algorithms

The simplest and most widely implemented class of division algorithms is digit recurrence.
Digit recurrence algorithms retire a �xed number of quotient bits in every iteration. Imple-
mentations of digit recurrence algorithms are typically of low complexity, utilize small area,
and have relatively large latencies. The fundamental issues in the design of a digit recur-
rence divider are the radix, the choice of allowed quotient digits, and the representation of
the intermediate remainder. The radix determines how many bits of quotient are retired in
an iteration, which �xes the division latency. Larger radices can reduce the latency, but in-
crease the time for each iteration. Judicious choice of the allowed quotient digits can reduce
the time for each iteration, but with a corresponding increase in complexity and hardware.
Similarly, di�erent representations of the intermediate remainder can reduce iteration time,
with corresponding increases in complexity.

Various techniques have been proposed for further increasing division performance, in-
cluding staging of simple low-radix stages, overlapping sections of one stage with another
stage, and prescaling the input operands. All of these methods introduce tradeo�s in the
time/area design space. This section introduces the principles of digit recurrence division,
along with an analysis of methods for increasing the performance of digit recurrence imple-
mentations. Also presented are techniques for handling �nal rounding and conversion in an
e�cient manner.

2.1 De�nitions

Digit recurrence algorithms use subtractive methods to calculate quotients one digit per
iteration. For the purposes of this paper, the input operands are assumed to be represented
in a normalized oating-point format with fractional signi�cands of n radix-r digits in sign-
magnitude representation. The algorithms presented in this work are applied only to the
magnitudes of the signi�cands of the input operands. Techniques for computing the resulting
exponent and sign are straightforward and are not discussed here. The most common format
found in modern computers is the IEEE 754 standard for binary oating-point arithmetic
[20]. This standard de�nes single and double precision formats, where n=24 for single
precision and n=53 for double precision. The signi�cand consists of a normalized quantity,
with an explicit or implicit leading bit to the left of the implied binary point.

Digit recurrence algorithms can be further divided into restoring and nonrestoring di-
vision. Restoring division is similar to the familiar paper and pencil division. When dividing
two n-bit numbers, the division can require up to 2n + 1 adds. Nonrestoring division elimi-
nates the restoration cycles, and thus only requires up to n adds. This can be accomplished
by allowing negative values of the quotient as well as positive values. In this way, small
errors in one iteration can be corrected in subsequent iterations. SRT division is the name
of the most common form of nonrestoring division. This class of division was named for
Sweeney, Robertson, and Tocher, who independently proposed similar nonrestoring division
algorithms [40]. The remainder of this section presents aspects relevant to SRT division.

3

2.2 Recurrence

For division, the quotient can be computed as follows:

q =
dividend

divisor

Accordingly, this expression can be rewritten as:

dividend = q � divisor+ remainder

such that

jremainderj < jdivisorj � ulp and sign(remainder) = sign(dividend)

where the input operands are given by dividend and divisor, and the results are q and
remainder. The precision of the quotient is de�ned by the unit in the last position (ulp),
where for an integer quotient ulp = 1, and for a fractional quotient ulp = r�n, assuming a
radix-r representation and an n-digit quotient.

The following recurrence is used at every iteration:

P0 = dividend (1)

Pj+1 = rPj � qj+1divisor (2)

where Pj is the partial remainder, or residual, at iteration j.
In each iteration, one digit of the quotient is determined by the quotient-digit selection

function:

qj+1 = SEL(Pj; divisor) (3)

In order for the next residual Pj+1 to be bounded, the value of the quotient digit is chosen
such that

jPj+1j < divisor

The remainder can be computed from the �nal residual by:

remainder =

(
Pn � r�n if Pn � 0
(Pn + divisor)� r�n if Pn < 0

Furthermore, the quotient has to be adjusted when Pn < 0 by subtracting r�n.

2.3 Implementation of Basic Scheme

A block diagram of an implementation of the basic recurrence is shown in �gure 1. The
critical path of the topology is shown by the dotted line.

As can be noted from equations 1 and 2, each iteration of the recurrence comprises the
following steps:

4

TABLE

MUX

Pj D

MUX
Quotient

SUBTRACTOR

Figure 1: Basic SRT Topology

� Determine next quotient digit qj+1 by the quotient-digit selection function.

� Generate the product qj+1 � divisor.

� Subtract qj+1 � divisor from r � Pj

Each of these components can contribute to the overall cost and performance of the
algorithm. Depending on certain parameters of the algorithm, the execution time can vary
widely. To tradeo� cost for performance, these parameters can be studied and appropriately
chosen.

2.3.1 Choice of Radix

The fundamental method of decreasing the overall latency (in machine cycles) of the al-
gorithm is to increase the radix r of the algorithm. It is convenient to choose the radix
to be a power of 2. In this way, the product of the radix and the partial remainder can
be formed by shifting. Assuming the same quotient precision, the number of iterations of
the algorithm required to compute the quotient is reduced by a factor k when the radix is
increased from r to rk. For example, a radix 4 algorithm retires 2 bits of quotient in every
iteration. Increasing to a radix 16 algorithm will allow for retiring 4 bits in every iteration,
for a 2X reduction in latency. This reduction does not come for free. As the radix increases,
the quotient-digit selection becomes more complicated. It can be seen from �gure 1 that
quotient selection is on the critical path of the basic algorithm. The cycle time of the di-
vider is de�ned as the minimum time to complete this critical path. The result of this is
that the number of cycles may have been reduced due to the increased radix. However, the

5

time per cycle may have increased. As a result, the total time required to compute an n bit
quotient will not be reduced by the factor k. Additionally, the generation of all required
divisor multiples may become impractical or infeasible for higher radices. Thus, these two
factors can o�set some or possibly all of the performance gained by increasing the radix.

2.3.2 Choice of Quotient Digit Set

In digit recurrence algorithms, some range of digits is decided upon for the allowed values
of the quotient in each iteration. The simplest case is where, for radix r, there are exactly
r allowed values of the quotient. However, to increase the performance of the algorithm, it
is desirable to utilize a redundant digit set. Such a digit set can be composed of symmetric
signed-digit consecutive integers, where the maximum digit is a. The digit set is made
redundant by having more than r digits in the set. In particular,

qj 2 Da = f�a;�a+ 1; : : : ;�1; 0; 1; : : : ; a� 1; ag

Thus, to make a digit set redundant, it must contain more than r consecutive integer values
including zero, and thus a must satisfy

a � dr=2e

The redundancy of a digit set is determined by the value of the redundancy factor �, which
is de�ned as

� =
a

r � 1
; � >

1

2

Typically, signed-digit representations have a < r� 1. When a = d r
2
e, the representation is

called minimally redundant, while that with a = r�1 is called maximally redundant, with
� = 1. A representation is known as non-redundant if a = (r� 1)=2, while a representation
where a > r � 1 is called over-redundant. For the next residual Pj+1 to be bounded when
a redundant quotient digit set is used, the value of the quotient digit must be chosen such
that

jPj+1j < �� divisor

The design tradeo� can be noted from this discussion. By using a large number of
allowed quotient digits a, and thus a large value for �, the complexity and latency of the
quotient selection function can be reduced. However, choosing a smaller number of allowed
digits for the quotient simpli�es the generation of the multiple of the divisor. Multiples
that are powers of two can be formed by simply shifting. If a multiple is required that
is not a power of two (e.g. three), an additional operation such as addition may also be
required. This can add to the complexity and latency of generating the divisor multiple.
The complexity of the quotient selection function and that of generating multiples of the
divisor must be balanced.

After the redundancy factor � is chosen, it is possible to derive the quotient selection
function. A containment condition can be derived which allows for determining selection

6

qj=2

qj={1,2}

qj=1

qj={0,1}

qj=0

Divisor

1

2

3

4

5

5 10 15

P
ar

ti
al

 R
em

ai
nd

er

1/3D

2/3D

4/3D

5/3D

8/3D

Figure 2: P-D diagram for radix-4

interval expressions. A selection interval is the region in which a particular quotient digit
can be chosen. These expressions are given by

Uk = (�+ k)d Lk = (��+ k)d

where Uk (Lk) is the largest (smallest) value of rPj such that it is possible for qj+1 = k to
be chosen and still keep the next partial remainder bounded. The P -D diagram is a useful
visual tool when designing a quotient-digit selection function. It has as axes the shifted
partial remainder and the divisor. The selection interval bounds Uk and Lk are drawn as
lines starting at the origin with slope � + k and �� + k, respectively. A P-D diagram is
shown in �gure 2 with r = 4 and a = 2. The shaded regions are the overlap regions where
more than one quotient digit may be selected.

2.3.3 Residual Representation

The residual can be represented in either of two di�erent forms, either redundant or
nonredundant forms. Conventional 2's complement representation is an example of a
nonredundant form, while carry-save 2's complement representation is an example of a
redundant form. Each iteration requires a subtraction to form the next residual. If this
residual is in a nonredundant form, then this operation would require a full-width adder
requiring carry propagation. Consequently, the cycle time would be large.

If the residual is computed in a redundant form, a carry-free adder can be used in
the recurrence, minimizing the cycle time. However, the quotient-digit selection, which is

7

CLA

TABLE

MUX

Pj D

MUX

CSA

Quotient

CONVERTER

Figure 3: Enhanced SRT Topology

a function of the shifted residual, becomes more complex. Additionally, twice as many
registers are required to store the residual between iterations. Finally, if the remainder
is required from the divider, the last residual will have to be converted to a conventional
representation. At a minimum, it is necessary to be able to determine the sign of the
�nal remainder in order to implement a possible quotient correction step, as discussed
previously. A block diagram of a divider with redundant residual and quotient-digit set is
shown in �gure 3.

2.3.4 Quotient-Digit Selection Function

Critical to the performance of a divider is the e�cient implementation of the quotient
selection function. If a redundant representation is chosen for the residual, the residual
is not known exactly, and neither is the exact next quotient digit. However, by using a
redundant quotient digit set, the residual does not need to be known exactly to select the
next quotient digit. It is only necessary to know the residual well enough to know which
range in �gure 2 it lies. The selection function is realized by approximating the residual
Pj and divisor to compute qj+1. This is typically done by means of a lookup table. The
challenge in the design is deciding how many bits of Pj and divisor are needed, while
simultaneously minimizing the complexity of the table.

The standard method of designing SRT lookup tables is through the use of selection
constants. The divisor range is separated into equal intervals [di; di+1) such that:

d1 =
1

2
; di+1 = di + 2��

8

The interval can be represented by the � most signi�cant bits of the divisor. Within each
interval, a quotient digit is selected by the selection constants mk(i) as given by:

for d 2 [di; di+1); qj+1 = k if mk(i) � rPj � mk+1(i)� r�n

The set of selection constants for a given value of k form a series of steps that connect the
overlap regions in �gure 2. The greater the redundancy factor of the implementation, the
wider the steps can be, and the fewer bits of divisor and/or residual that are needed.

Let d̂ be an estimate of the divisor using the � most signi�cant bits of the true divisor
and P̂j be an estimate of the partial remainder using the c most signi�cant bits of the true
partial remainder. To determine the minimum values for � and c, it is necessary to consider
the uncertainty region in the resulting estimates d̂ and P̂j . The estimates will have errors �d
and �p for the divisor and partial remainder estimates respectively. Because the estimates
of both quantities are formed by truncation, �d and �p can each be 1 ulp. Additionally, if
the partial remainder is kept in a carry-save form, �p can be as much as 2 ulps. This is
due to the fact that both the sum and the carry values have been truncated, and each can
have a 1 ulp error. When the two are summed to form a nonredundant estimate of the
partial remainder, the actual error can be 2 ulps. The worst case ratios of P̂j and d̂ must
be checked for all possible values of the estimates. For a two's complement representation
of the partial remainder, �d and �p are always positive, and the maximum and minimum
values of the ratio are given by:

maximum =

8<
:

P̂j+�p

d̂
if Pj � 0

P̂j

d̂
if Pj < 0

minimum =

8><
>:

P̂j

d̂+�d
if Pj � 0

P̂j+�p

d̂+�d
if Pj < 0

It is necessary for the minimum and maximum values of the ratio to lie in regions such that
both values can take on the same quotient digit. If the values require di�erent quotient
digits, then the uncertainty region is too large for the table con�guration. Several iterations
over the design space may be necessary to determine an optimal solution for the combination
of radix, redundancy, values of � and c, and error terms �p and �d.

Having performed the analysis to determine an optimal choice for the design parameters,
the resulting table will be asymmetrical around zero. The asymmetry in the table is due
to the asymmetry in the two's complement number system. To implement such a table in
hardware, it is necessary to implement both the positive and negative halves of the table.
This can lead to a large and slow implementation. An optimization can be made by carefully
\folding" the negative portion of the table into the positive half [17]. For negative partial
remainders, this requires conversion to a signed magnitude form. While the resulting table
will be smaller and faster, the critical path of the divider increases by the delay of a two's
complement to signed magnitude converter, which is essentially the delay of an exclusive-or
gate. Figure 4 shows an implementation of a folded radix-4 next quotient-digit table that
also supports shared square-root [18].

9

1

00.00

00.01

00.10

00.11

01.00

01.01

01.10

01.11

10.00

10.01

10.10

10.11

>11.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Divisor

P
ar

ti
al

 R
em

ai
nd

er

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 01 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 12

1 1 1 1 1 1 1 1 1 1 12 2 2 2

2 2 2 2 2 2 2 1 1 1 1 1 1 1 1

A

A

B

A

1 1 1 1 1 12 2 2 2 2 2 2 2 2 2

2 22 2 2 2 2 2 2 2 2 2 1 1 1

2 2 2 2 2 222 2 2 2 222 2 2

2 2 2 2 2 222 2 2 2 222 2 2

$xxx.xxy

__1
16
X

A = 1 if negative and y bit = 1; A = 2 otherwise;

B = 2 if negative and y bit = 1; B = 1 otherwise.

Figure 4: Radix-4 next quotient/root selection table

2.4 Increasing Performance

2.4.1 Simple Staging

In order to retire more bits of quotient in every cycle, a simple low-radix divider can
be replicated many times to form a higher radix divider, as shown in �gure 5. In this
implementation, the critical path is equal to:

titer = 2tqsel + 2tqDsel + 2tCSA

In general, the implementation of divider hardware can range from totally sequential,
as in the case of a single stage of hardware, to fully combinational, where the hardware
is replicated enough such that the entire quotient can be determined combinationally in
hardware. For totally or highly sequential implementations, the hardware requirements are
small, saving chip area. This also leads to very fast cycle times, but the radix is typically
low. Hardware replication can yield a very low latency in clock cycles due to the high radix
but can occupy a large amount of chip area and have unacceptably slow cycle times.

One alternative to hardware replication to reduce division latency is to clock the divider
at a faster frequency than the system clock. For example, in the HP PA7100, the very
low cycle time of the radix-4 divider compared with the system clock allows it to retire 4
bits of quotient every machine cycle, e�ectively becoming a radix-16 divider [16]. The only
additional hardware cost in this implementation is a few gates to generate the 2X clock.

10

CLA

TABLE

MUX

Pj D

MUX

CSA

Quotient

CONVERTER

CLA

TABLE

Pj D

MUX

CSA

Quotient

CONVERTER

Figure 5: Higher radix using hardware replication

11

QS DMF PRF

QS DMF PRF

QS DMF PRF

QS DMF PRF

QS

QS

DMF

DMF PRF

PRF

1)

2)

3)

QS q quotient selection
DMF qD divisor multiple formation
PRF rp-qD partial remainder formation

Figure 6: Three methods of overlapping division components

2.4.2 Overlapping Execution

It is possible to overlap or pipeline the components of the division step in order to reduce the
cycle time of the division step [39]. This is illustrated in �gure 6. The standard approach
is represented in this �gure by choice 1. Here, each quotient selection is dependent on the
previous partial remainder, and this de�nes the cycle time. Depending upon the relative
delays of the three components, choices 2 or 3 may be more desirable. Choice 2 is appropriate
when the overlap is dominated by PRF time. This would be the case when the partial
remainder is not kept in a redundant form. Choice 3 is appropriate when the overlap is
dominated by QS, as it the case when a redundant partial remainder is used.

One recent SRT implementation using overlapped execution is reported by Williams
[41]. This implementation di�ers from conventional designs in that it uses self-timing and
dynamic logic to increase the divider's performance. It comprises �ve cascaded radix-2
stages as shown in �gure 7. Because it uses self-timing, no explicit registers are required
to store the intermediate residual. Accordingly, the critical path does not contain residual
register clock-to-q or setup time delays. The adjacent stages overlap their computation by
replicating the CPAs for each possible quotient digit from the previous stage. This allows
each CPA to begin operation before the actual quotient digit arrives at a multiplexor to
choose the correct branch. Two of the three CPAs in each stage are preceded by CSAs
to speculatively compute a truncated version of Pi+1 � D, Pi+1 + D, and Pi+1. This
overlapping of the execution between neighboring stages allows the delay through a stage
to be the average, rather than the sum, of the propagation delays through the remainder
and quotient-digit selection paths. This is illustrated in �gure 7 by the two di�erent drawn
paths. The self-timing of the data path dynamically ensures that data always ow through
the minimal critical path. This divider, implemented in a 1.2�m CMOS technology, is able
to produce a 54-b result in 45 to 160ns, depending upon the particular data operands. The
Hal SPARC V9 microprocessor, called the Sparc64 or PM1, also implements a version of

12

MUX

MUX

 3b
CSA

 3b
CSA

 3b
CPA

 3b
CPA

 3b
CPA

 55b
CSA

Qsel
Logic

MUX

MUX

 3b
CSA

 3b
CSA

 3b
CPA

 3b
CPA

 3b
CPA

 55b
CSA

Qsel
Logic

+D
0

-D

+D
0

-D

+D

-D

+D

-D

Remainder Remainder
Remainder

Quot_Digit

Quot_Digit

Quot_Digit

i

i

i-1

i-1

i+1

i+1

Figure 7: Two stages of self-timed divider

this self-timed divider, producing IEEE double precision results in 8 or 9 cycles [24].

2.4.3 Overlapping Quotient Selection

To avoid the increase in cycle time that results from staging radix-r segments together
in forming higher radix dividers, some additional quotient computation can proceed in
parallel [39]. In such a scheme, the quotient-digit selection of stage j + 2 is overlapped
with the quotient-digit selection of stage j + 1, as shown in �gure 8. This is accomplished
by calculating an estimate of the next residual and the quotient-digit selection for qj+2
conditionally for all 2a+ 1 values of the previous quotient digit qj+1. Once the true value
of qj+1 is known, it can be used to select the correct value of qj+2. As can be seen from
�gure 8, the critical path is equal to:

titer = tqsel + tqDsel + 2tCSA + tmux(data)

Accordingly, comparing the simple staging of two stages with the overlapped quotient se-
lection method for staging, it can be seen that the critical path has been reduced by

�titer = tqsel + tqDsel � tmux(data)

This is a reduction of slightly more than the delay of one stage of quotient-digit selection, at
the cost of replicating 2a+1 quotient-digit selection functions. This scheme has diminishing
returns when overlapping more than two stages. Each additional stage requires the calcula-
tion of an additional factor (2a+ 1) of quotient-digit values. Thus the kth additional stage
will require (2a + 1)k replicated quotient-selection functions. Because of this exponential
growth in hardware, only very small values of k are feasible in practice.

Prabhu [30] discusses a radix-8 shared square-root design that utilizes overlapping quo-
tient selection in the Sun UltraSPARC microprocessor. In this implementation, three radix-
2 stages are cascaded to form a radix-8 divider. The second stage conditionally computes
all three possible quotient digits of the the �rst stage, and the third stage computes all

13

q

q

{d}

y

{d} {d}

rPj rPjad -ad

rPj

Pj+1

d

d

Pj+2

rPj+1

j+2
q

j+1

qSel
logic

qSel
logic

qSel
logic

CSA CSA

CSA

CSA

* * * short CSA

MUX

qD

qD

j+1

Figure 8: Higher radix by overlapping quotient selection

14

three possible quotient digits of the second stage. In the worst case, this would involve
replication of three quotient-selection blocks for the second stage and nine blocks for the
third stage. However, by recognizing that two of the nine blocks conditionally compute the
identical quotient bits as another two blocks, only seven are needed.

2.4.4 Overlapping Residual Computation

A further optimization utilized both in the UltraSPARC and the Sparc64 is the overlap-
ping of the residual computation. Both dividers implement a radix-2 digit set. Thus, the
quotient can only take on the values of -1, 0, and +1. The divider's critical path after the
quotient digit has been selected need not contain the delay of divisor multiple formation
and the subtraction in the CSA. The divisor multiple formation and CSA hardware can be
replicated three times, assuming one of the three quotient digit values for each replication.
A multiplexor is then placed after these three stages so that the quotient digit can select the
correct partial remainder. The delay is reduced by a CSA in the case of the UltraSPARC
and by a CSA and a short CPA in the Sparc64 as shown in �gure 7.

Quach [31] and Oberman [29] report similar optimizations for radix-4 implementations.
For radix-4, it might initially seem that because of the �ve possible next quotient digits,
�ve copies of residual computation hardware would be required. However, in the design
of quotient-selection logic, the sign of the next quotient digit is known in advance, as it
is just the sign of the previous partial remainder. This reduces the number of number of
copies of residual computation hardware to three: 0, �1, and �2. However, by looking at a
standard implementation of a radix-4 quotient-digit selection table, such as �gure 4, it can
be seen that the boundary between quotient digits 0 and 1 can be easily determined. To
take advantage of this, the quotient digits are encoded as:

q(�2) = Sq2

q(�1) = Sq1q2

q(0) = q1q2

q(1) = Sq1q2

q(2) = Sq2

In this way, the number of copies of residual computation hardware can be reduced to two: 0
or �1, and �2. A block diagram of a radix-4 divider with overlapped residual computation
is shown in �gure 9. The choice of 0 or �1 is made by q1 early, after only a few gate delays,
by selecting the proper input of a multiplexor. Similarly, q2 selects a multiplexor to choose
which of the two banks of hardware is the correct one, either the 0 or �1 bank, or the �2
bank. The critical path of the divider becomes: max(tq1,tCSA)+ 2tmux+ tshortCPA . Thus,
at the expense of duplicating the residual computation hardware once, the cycle time of the
standard radix-4 divider is nearly halved.

2.4.5 Range Reduction

Higher radix dividers can be designed by partitioning the implementation into lower radix
segments, which are cascaded together. Unlike simple staging, in this scheme there is

15

CLA

TABLE

MUX

Pj D

CSA

Quotient

CSA

MUX

CLA

MUX MUX

pj

q

q

1

2

Dividend Divisor

Figure 9: Radix-4 with overlapped residual computation

16

no shifting of the partial remainder between segments. Multiplication by the radix r is
performed only between iterations of the step, but not between segments. The individual
segments reduce the range of the partial remainder so that it is usable by the remaining
segments [9, 18].

A radix-8 divider can be designed using a cascade of a radix-2 segment and a radix-4
segment. This decomposition is illustrated in �gure 10. In this implementation the quotient

SHIFT (1 bit)

RADIX 2 STAGE

SHIFT (2 bits)

RADIX 4 STAGE

P
j

2Pk

4Pk+1

P
j+1

q

q

k+1

k+2

q
j+1

= 4q + q
k+1 k+2

Staging

q

q

h

l

SHIFT (3 bits)

RADIX 2
SEGMENT

RADIX 4
SEGMENT

P
j

8Pj

P
j+1

q
j+1

= q + q
h l

Segments

Figure 10: Decomposition into stages and segments

digit sets are given by:

qj+1 = qh + ql qh 2 f�4; 0; 4g; ql 2 f�2;�1; 0; 1; 2g

However, the resulting radix-8 digit set is given by:

qj+1 = f�6; : : : ; 6g � = 6=7

When designing the quotient-digit selection hardware for both qh and ql, it should be realized
that these are not standard radix-2 and radix-4 implementations, since the bounds on the
step are set by the requirements for the radix-8 digit set. Additionally, to reduce the cycle
time, the quotient-digit selections can be overlapped as discussed previously. In the worst
case, this overlapping would involve two short CSAs, two short CPAs, and three instances
of the radix-4 quotient-digit selection logic. However, it can be noticed that to distinguish
the choices of qh = 4 and qh = �4, an estimate of the sign of the partial remainder is
required, which can be done with only three bits of the carry-save representation of the
partial remainder. Then, both qh = 4 and qh = �4 can share the same CSA, CPA and
quotient-digit selection logic by muxing the input values. This overall reduction in hardware

17

has the e�ect of increasing the cycle time by the delay of the sign detection logic and a
mux.

The critical path for generating ql is given by:

titer = tsignest + tmux + tCSA + tshortCPA + tqlsel + tmux(data)

In order to form Pj+1, q
l is used to select the proper divisor multiple which is then subtracted

from the partial remainder from the radix-2 segment. The additional delay to form Pj+1
is a mux select delay and a CSA. For increased performance, it is possible to precompute
all partial remainders in parallel and use ql to select the correct result. This reduces the
additional delay after ql to only a mux delay.

2.4.6 Simple Operands Scaling

Higher radix dividers generally have their cycle times dominated by the time for quotient-
digit selection. The complexity of quotient-digit selection increases exponentially for in-
creasing radix. To simultaneously decrease latency and cycle time, it is desirable to reduce
the complexity of the quotient-digit selection function. By looking at a PD diagram such as
�gure 2, it is apparent that the maximum overlap occurs for the largest value of the divisor.
Assuming a normalized divisor in the range 1=2 � d < 1, the greatest amount of overlap
occurs close to d = 1. To take advantage of this overlap, the divisor can be restricted to a
range close to 1. This can be accomplished by prescaling the divisor [8, 37]. In order that
the quotient be preserved, either the dividend also must be prescaled, or else the quotient
must be postscaled. In the case of prescaling, if the true remainder is required after the
computation, postscaling is required. The dividend and the divisor are prescaled by a factor
M so that the scaled divisor z is

1� � � z = Md � 1 + �

where � and � are chosen in order to provide the same scaling factor for all divisor intervals
and to ensure that the quotient-digit selection is independent of the divisor. The initial
partial remainder is the scaled dividend. The smaller the range of z is, the simpler the
quotient-digit selection function is. However, shrinking the range of z becomes more complex
for smaller ranges. Thus, a design tradeo� exists between these two constraints.

By restricting the divisor to a range near 1, the quotient-digit selection function becomes
independent of the actual divisor value, and thus is simpler to implement. The radix-4
implementation reported in [8] uses 6 digits of the redundant partial remainder as inputs to
the quotient-digit selection function. This function assimilates the 6 input digits in a CPA,
and the 6 bit result is used to consult a look-up table to provide the next quotient-digit.
The scaling operation is achieved through the use of a 3-operand adder. In the case where
a CSA is already being used for the division recurrence, no additional CSAs are required.
Instead, the scalings proceed in sequence. To determine the scaling factor for each operand,
a small table is typically consulted which yields the proper factors to add or subtract in the
CSA to yield the scaled operand. Thus, prescaling requires a minimum of two additional
cycles to the overall latency; one to scale the divisor, and one to assimilate the divisor in a

18

carry-propagate adder. In parallel with the divisor assimilation, the dividend is scaled, and
it can be used directly in redundant form as the initial partial remainder. The motivation
for scaling is that reduction in cycle time due to the simpler quotient-selection logic should
more than o�set the addition of any required scaling cycles.

Enhancements to the basic prescaling algorithms have been reported by Montuschi [25]
and Srinivas [36]. Montuschi reports how the use of an over-redundant digit set can be used
in combination with operand prescaling. The proposed radix-4 implementation uses such
an over-redundant digit set f�4;�3;�2;�1; 0g. The quotient-digit selection function uses
a truncated redundant partial remainder that is in the range [�6; 6], requiring four digits of
the partial remainder as input. A 4-bit CPA is used to assimilate the four most signi�cant
digits of the partial remainder and to add a 1 in the least signi�cant position. The resulting
4 bits in two's complement form represent the next quotient digit. The formation of the
�3d divisor multiple is an added complication, and the solution for this implementation
is to split the quotient digit into two separate stages, one with digit set f0;�4g and one
with f0;�1;�2g. This is the same methodology used in the range reduction techniques
previously presented. Thus, the use of a redundant digit set simpli�es the quotient-digit
selection from requiring 6 bits of input to only 4 bits.

Srinivas reports an implementation of prescaling with a maximally redundant digit set.
This implementation represents the partial remainder in radix-2 digits f�1; 0;+1g rather
than carry-save form. Each radix-2 digit is presented by 2 bits. Accordingly, the quotient-
selection function need only observe 3 digits of the radix-2 encoded partial remainder. The
resulting quotient digits produced by this algorithm belong to the maximally redundant
digit set f�3; � � � ;+3g. This simpler quotient-digit selection function decreases the cycle
time relative to a regular redundant digit set with prescaling implementation. Srinivas
reports a 1.21 speedup over Ercegovac's regular redundant digit set implementation, and a
1.10 speedup over Montuschi's over-redundant digit set implementation, both for n = 53
IEEE double precision mantissas. However, due to the larger than regular redundant digit
sets in the implementations of both Montuschi and Srinivas, each requires hardware to
generate the �3d divisor multiple, which in these implementations results in requiring an
additional n CSAs.

2.5 Other Issues

2.5.1 Quotient Conversion

As presented so far, the quotient has been collected in a redundant form, such that the
positive values have been stored in one register, and the negative values in another. At the
conclusion of the division computation, an additional cycle would be required to assimilate
these two registers into a single quotient value using a carry-propagate adder for the subtrac-
tion. However, it is possible to convert the quotient digits as they are produced such that
an extra addition cycle is not required. This scheme is known as on-the-y conversion [9].

In on-the-y conversion, two forms of the quotient are kept in separate registers through-
out the iterations, Qk and QMk. QMk is de�ned to be equal to Qk � r�k. The values of

19

these two registers for step k + 1 are de�ned by:

Qk+1 =

(
Qk + qk+1r

�(k+1) if qk+1 � 0

QMk + (r� jqk+1j)r
�(k+1) if qk+1 < 0

and

QMk+1 =

(
Qk + (qk+1 � 1)r�(k+1) if qk+1 > 0

QMk + ((r� 1)� jqk+1j)r
�(k+1) if qk+1 � 0

From these conditions on the values of Qk and QMk, it can be seen that all of the additions
can be implemented with concatenations. As a result, there is no carry or borrow propa-
gation required. As every quotient digit is formed, each of these two registers is updated
appropriately, either through register swapping or concatenation.

2.5.2 Rounding

The previously described on-the-y conversion can be extended to also handle �nal round-
ing [9]. For oating-point representations such as the IEEE 754 standard, provisions for
rounding are required. Traditionally, this is accomplished by computing an extra guard digit
in the quotient and examining the �nal remainder. Based on the rounding mode selected
and these two values, one ulp is conditionally added. The disadvantages in the traditional
approach are that 1) the remainder may be negative and require a restoration step, and
2) the the addition of one ulp may require a full carry-propagate-addition. Accordingly,
support for rounding can be expensive, both in terms of area and performance.

To extend the on-the-y techniques, it is necessary to keep a third version of the quotient
at all times QPk , where QPk = Qk + r�k. Correct rounding requires the computation of
the sign of the �nal remainder. Sign detection logic requires at a minimum some form of
carry-propagation detection network, such in standard carry-lookahead adders. The �nal
quotient can be selected from the three available versions. For negative remainders, QMk or
Qk can be chosen to appropriately reduce the quotient or round it. For positive remainder,
either QPk or Qk is chosen, again depending on the rounding conditions.

2.6 Analysis

This section has presented the various tradeo�s in digit recurrence division. Fundamentally,
to reduce division latency, more bits need to be retired in every cycle. However, directly
increasing the radix can greatly increase the cycle time and the complexity of divisor mul-
tiple formation. The alternative is to stage lower radix stages together to form higher radix
dividers, through simple staging or segments, and possibly overlapping one or both of the
quotient selection logic and residual computation hardware. All of these alternatives lead
to an increase in area, complexity and potentially cycle time. Given the continued industry
demand for ever-lower cycle times, any increase must be managed.

Higher degrees of redundancy in the quotient digit set and operand prescaling are the
two primary means of further reducing the recurrence cycle time. These two methods can
be combined for an even greater reduction. For radix-4 division with operand prescaling, it

20

has been shown that an over-redundant digit set can reduce the number of partial remainder
bits required for quotient selection from 6 to 4. Choosing a maximally redundant set and a
radix-2 encoding for the partial remainder can reduce the number of partial remainder bits
required for quotient selection down to 3. However, each of these enhancements requires
additional area and complexity for the implementation that must be considered.

Due to the cycle time constraints and area budgets of modern processors, these dividers
are realistically limited to retiring fewer than 10 bits per cycle. However, a digit recurrence
divider is an e�ective means of implementing a low cost division unit which operates in
parallel with the rest of a processor.

3 Functional Iteration

Unlike digit recurrence division, division by functional iteration utilizes multiplication as
the fundamental operation. The primary di�culty with subtractive division is the linear
convergence to the quotient. Multiplicative division algorithms, though, are able to take ad-
vantage of high-speed multipliers to converge to a result quadratically. Rather than retiring
a �xed number of quotients bits in every cycle, multiplication-based algorithms are able to
double the number of correct quotient bits in every iteration. However, the tradeo� between
the two classes is not only latency in terms of the number of iterations, but also the length of
each iteration in cycles. Additionally, if the divider shares an existing multiplier, the perfor-
mance rami�cations on regular multiplication operations must be considered. Oberman [26]
reports that in typical oating-point applications, the performance degradation due to a
shared multiplier is small. Accordingly, if area must be minimized, an existing multiplier
may be shared with the division unit with only minimal system performance degradation.
This section presents the algorithms used in multiplication-based division, both of which
are related to the Newton-Raphson equation. Additionally, it discusses issues related to
increasing the performance of multiplication-based division algorithms, including methods
for generating starting approximations, type of multiplier, and rounding methods.

3.1 Newton-Raphson

Division can be written as the product of the dividend and the reciprocal of the divisor, or

Q = a=b = a � (1=b);

where Q is the quotient, a is the dividend, and b is the divisor. In this case, the challenge
becomes how to e�ciently compute the reciprocal of the divisor. In the Newton-Raphson
algorithm, a priming function is chosen which has a root at the reciprocal [19]. In general,
there are many root targets that could be used, including 1

b
, 1

b2
, a
b
, and 1 � 1

b
. The choice

of which root target to use is arbitrary. The selection is made based on convenience of the
iterative form, its convergence rate, its lack of divisions, and the overhead involved when
using a target root other than the true quotient.

The most widely used target root is the divisor reciprocal 1

b
, which is the root of the

priming function

f(X) = 1=X � b = 0: (4)

21

The well-known quadratically converging Newton-Raphson equation is given by:

xi+1 = xi �
f(xi)

f 0(xi)
(5)

The Newton-Raphson equation of (5) is then applied to (4). The function and its �rst
derivative are evaluated at X0:

f(X0) = 1=X0 � b

f 0(X0) = �1=X2

0
:

These results are then used to �nd an approximation to the reciprocal:

X1 = X0 �
f(X0)

f 0(X0)

X1 = X0 +
(1=X0 � b)

(1=X2

0
)

X1 = X0 � (2� b�X0) (6)

...

Xi+1 = Xi � (2� b�Xi) (7)

The corresponding error term is given by

�i+1 = �2i (b);

and thus the error in the reciprocal decreases quadratically after each iteration. As can be
seen from the general relationship expressed in (7), each iteration involves two multiplica-
tions and a subtraction. The subtraction is equivalent to the two's complement operation
and is commonly replaced by it. Thus, two dependent multiplications and one two's comple-
ment operation are performed each iteration. The �nal quotient is obtained by multiplying
the computed reciprocal with the dividend.

It can be seen that the number of operations per iteration and their order are intrinsic
to the iterations themselves. However, the number of iterations required to obtain the
reciprocal accurate to a particular number of bits is a function of the accuracy of the initial
approximation X0. By using a more accurate starting approximation, the total number of
iterations required can be reduced. To achieve 53 bits of precision for the �nal reciprocal
starting with only 1 bit, the algorithm will require 6 iterations:

1! 2! 4! 8! 16! 32! 53

By using a more accurate starting approximation, for example 8 bits, the latency can be
reduced to 3 iterations. By using at least 14 bits, the latency could be further reduced to
only 2 iterations.

22

3.2 Series Expansion

A di�erent method of deriving a division iteration is based on a series expansion. A name
sometimes given to this method is Goldschmidt0s algorithm. Consider the familiar Taylor
series expansion of a function g(y) at point a p,

g(y) = g(p) + (y � p)g0(p) +
(y � p)2

2!
g00(p) + � � �+

(y � p)n

n!
g(n)(p) + � � � :

In the case of division, it is desired to �nd the expansion of the reciprocal of the divisor,
such that

q =
a

b
= a� g(y);

where g(y) can be computed by an e�cient iterative method. A straightforward approach
might be to choose g(y) equal to 1=y with p = 1, and then to evaluate the series. However,
it is computationally easier to let g(y) = 1=(1 + y) with p = 0, which is just the Maclaurin
series. Then, the function is

g(y) =
1

1 + y
= 1� y + y2 � y3 + y4 � � � � :

So that g(y) is equal to 1/b, the substitution y = b � 1 must be made, where b is bit
normalized such that 0:5 � b < 1, and thus jY j � 0:5. Then, the quotient can be written as

q = a�
1

1 + (b� 1)
= a�

1

1 + y
= a� (1� y + y2 � y3 + � � �)

which, in factored form, can be written as

q = a � [(1� y)(1 + y2)(1 + y4)(1 + y8) � � �]: (8)

This expansion can be implemented iteratively as follows. An approximate quotient can
be written as

qi =
Ni

Di

where Ni and Di are iterative re�nements of the numerator and denominator after step i of
the algorithm. By forcing Di to converge toward 1, Ni converges toward q. E�ectively, each
iteration of the algorithm provides a correction term (1 + y2i) to the quotient, generating
the expansion of (8).

Initially, let N0 = a and D0 = b. To reduce the number of iterations, a and b should both
be prescaled by a more accurate approximation of the reciprocal, and then the algorithm
should be run on the scaled a0 and b0. For the �rst iteration, let N1 = R0 � N0 and
D1 = R0 �D0, where R0 = 1� y = 2� b, or simply the two's complement of the divisor.
Then,

D1 = D0 �R0 = b� (1� y) = (1 + y)(1� y) = 1� y2:

Similarly,
N1 = N0 �R0 = a� (1� y):

23

For the next iteration, let R1 = 2 � D1, the two's complement of the new denominator.
From this,

R1 = 2�D1 = 2� (1� y2) = 1 + y2

N2 = N1 � R1 = a � [(1� y)(1 + y2)]

D2 = D1 � R1 = (1� y2)(1 + y2) = (1� y4)

Continuing, a general relationship can be developed, such that each step of the iteration
involves two multiplications

Ni+1 = Ni � Ri and Di+1 = Di �Ri

and a two's complement operation,

Ri+1 = 2�Di+1

After i steps,

Ni = a� [(1� y)(1 + y2)(1 + y4) � � �(1 + y2i)] (9)

Di = (1� y2i) (10)

Accordingly, N converges quadratically toward q and D converges toward 1. This can be
seen in the similarity between the formation of Ni in (9) and the series expansion of q
in (8). So long as b is normalized in the range 0:5 � b < 1, then y < 1, each correction
factor (1 + y2i) doubles the precision of the quotient. This process continues as shown
iteratively until the desired accuracy of q is obtained.

Consider the iterations for division. A comparison of equation (9) using the substitution
y = b� 1 with equation (7) using X0 = 1 shows that the results are identical iteration for
iteration. Thus, the series expansion is mathematically identical to the Newton-Raphson
iteration forX0 = 1. Additionally, each algorithm can bene�t from a more accurate starting
approximation of the reciprocal of the divisor to reduce the number of required iterations.
However, the implementations are not exactly the same. First, Newton-Raphson converges
to a reciprocal, and then multiplies by the dividend to compute the quotient, whereas
the series expansion �rst prescales the numerator and the denominator by the starting
approximation and then converges directly to the quotient. Each iteration in both algo-
rithms comprises two multiplications and a two's complement operation. From (7), it can
be noted that the multiplications in Newton-Raphson are dependent operations. In the
series expansion implementation, though, the two multiplications of the numerator and de-
nominator are independent operations and may occur in parallel. As a result, the series
expansion implementation can take advantage of an existing pipelined multiplier to obtain
higher performance. Second, the Newton-Raphson iteration is self-correcting, in that any
error in computing Xi can be corrected in the subsequent iteration, since all operations
are dependent. However, in the series-expansion implementation, the result is computed as
the product of independent terms, and the error in one of them will not be corrected. To
account for this error, the calculations should use a few extra bits of precision. A perfor-
mance enhancement that can be used for both iterations is to perform early computations

24

in reduced precision. This is reasonable, because the early computations do not generate
many correct bits. As the iterations continue, quadratically larger amounts of precision are
required in the computation.

In practice, dividers based on functional iteration have used both versions. The Newton-
Raphson algorithm was used in the Astronautics ZS-1 [4], Intel i860 [21], and the IBM
RS/6000 [22]. The series expansion was used in the IBM 360/91 [15] and TMS390C602A
[13]. Latencies for such dividers range from 11 cycles to more than 16 cycles, depending
upon the precision of the initial approximation and the latency and throughput of the
oating-point multiplier.

3.3 Starting Approximations

As mentioned previously, Newton-Raphson and series expansion division implementations
can bene�t from a more accurate initial reciprocal approximation. There is one standard
methods and one newer method of forming starting approximations:

1. Look-up tables

2. Partial product arrays

3.3.1 Look-up tables

For modern division implementations, the most common method of generating starting
approximations is through a look-up table. Such a table is typically implemented in the
form of a ROM or a PLA. Typical implementations consist of a 1 kilobyte ROM which
provides an approximation of 8 or 9 bits. An advantage of look-up tables is that they are
fast, since no arithmetic calculations need be performed. The disadvantage is that a look-up
table's size grows exponentially with each bit of added accuracy. Accordingly, a tradeo�
exists between the precision of the table and its size.

To index into a reciprocal table, it is assumed that the operand is IEEE normalized
1:0 � b < 2. Given such a normalized operand, k bits of the truncated operand are used
to index into a table providing m output bits of the reciprocal approximation, which has
the range 0:5 < recip � 1. The truncated operand is represented as 1.b0

1
b0
2
� � �b0k, and the

output reciprocal approximation is 0.1b01b
0
2 � � �b

0
m. Typically, the design of a reciprocal table

starts with a speci�cation for the minimum accuracy of the table, often expressed in bits.
This value dictates the minimum size of each table entry. To determine the number of bits
of the input operand required to index into the table, the following expression is evaluated:

j
1

b
�

1

b� 2�n
j � �0;

where �0 is de�ned as the error due to approximation. When truncating b at the nth bit,
the reciprocal approximation must not di�er from the true reciprocal by more than �0.
A common method of designing the look-up table is to implement a piecewise-constant
approximation of the reciprocal function. In this case, the approximation for each entry is
found by taking the reciprocal of the mid-point between 1.b0

1
b0
2
� � �b0k and its successor where

25

the mid-point is 1.b0
1
b0
2
� � � b0k1. The reciprocal of the mid-point is rounded by adding 2

�(m+1),
and then truncating the result to produce the reciprocal approximation 0.1b01b

0
2
� � �b0m. As

can be seen, all values will have a leading-one that can be implied and therefore do not need
to be explicitly stored in the table.

Das Sarma [5] has shown that the piecewise-constant approximation method for gener-
ating reciprocal look-up tables minimizes the maximum relative error in the �nal result. He
further describes how to generate optimal k-bits-in m-bits-out reciprocal tables. A k-bits-in
k-bits-out reciprocal table will guarantee a precision of at least k + 0:415 bits. Also, it
is shown that with m = k + g, where g is the number of output guard bits, a generated
table with one, two, and three guard bits on the output are guaranteed precision of at least
k + 0:678 bits, k + 0:830 bits, and k + 0:912 bits respectively.

Rather than using a constant approximation to the reciprocal, it is possible to use a
linear or polynomial approximation. A polynomial approximation is expressed in the form
of a truncated series of the form:

P (x) = a0 + a1x+ a2x
2 + a3x

3 + � � �

To get a �rst order or linear approximation, the coe�cients a0 and a1 are stored in a look-up
table, and a multiplication and an addition are required. Schulte [14] developed methods for
selecting constant and linear approximations which minimize the absolute error of the �nal
result for Newton-Raphson implementations. Minimizing the maximum relative error in an
initial approximation minimizes the maximum relative error in the �nal result. However,
the initial approximation which minimizes the maximum absolute error of the �nal result
depends on the number of iterations of the algorithm. Accordingly, they present the tradeo�
between n, the number of iterations, and k, the number of bits used as input to the table, for
constant and linear approximations, and the e�ects on the absolute error of the �nal result.
In general, linear approximations guarantee more accuracy than constant approximations,
but they require twice as many entries in the table and additional operations.

In a more recent study, Das Sarma [6] describes bipartite reciprocal tables. These tables
utilize separate table lookup of the positive and negative portions of a reciprocal value in
borrow-save form. This separation allows 4-9 bit reciprocal tables to be 2 to 4 times smaller
than conventional tables. For 10-16 bit tables, bipartite tables can be 4 to more than 16
times smaller than conventional implementations. Using such bipartite tables may allow
for larger starting approximations than would normally be considered.

3.3.2 Partial Product Arrays

Another alternative to look-up tables for starting approximation is the use of partial product
arrays [33]. A partial product array can be derived which sums to an approximation of the
reciprocal operation. Such an array is similar to the partial product array of a multiplier.
As a result, an existing oating-point multiplier can be used to perform the summation.

A multiplier used to implement IEEE double precision numbers involves 53 rows of 53
elements per row. This entails a large array of 2809 elements. If Booth encoding is used in
the multiplier, the bits of the partial products are recoded, decreasing the number of rows
in the array by half. A Booth multiplier typically has only 27 in the partial product array.

26

A multiplier sums all of these boolean elements to form the product. However, each boolean
element of the array can be replaced by a generalized boolean element. By back-solving
the partial product array, it can be determined what elements are required to generate the
appropriate function approximation. These elements are chosen carefully to provide a high-
precision approximation and reduce maximum error. This can be viewed as analogous to the
choosing of coe�cients for a polynomial approximation. In this way, a partial product array
is generated which reuses existing hardware to generate a high-precision approximation.

In the case of the reciprocal function, a 17 digit approximation can be chosen which
utilizes 18 columns of a 53 row array. Less than 20% of the array is actually used. However,
the implementation is restricted by the height of the array, which is the number of rows.
The additional hardware for the multiplier is 484 boolean elements. It has been shown that
such a function will yield a minimum of 12.003 correct bits, with an average of 15.18 correct
bits. An equivalent ROM look-up table that generates 12 bits would require about 39 times
more area. If a Booth multiplier is used with only 27 rows, a di�erent implementation
can be used. This version uses only 175 boolean elements. It generates an average of 12.71
correct bits and 9.17 bits in the worst case. This is about 9 times smaller than an equivalent
ROM look-up table.

3.4 Rounding

The main disadvantage of using functional iteration for division is the di�culty in obtain-
ing a correctly rounded result. With subtractive implementations, both a result and a
remainder are generated, making rounding a straightforward procedure. Functional itera-
tion which converges directly to the quotient, such as the series expansion implementation,
only produces a result which is close to the correctly rounded quotient, and it does not pro-
duce a remainder. The Newton-Raphson algorithm has the additional disadvantage that
it converges to the reciprocal, not the quotient. Even if the reciprocal can be correctly
rounded, it does not guarantee that the quotient will be correctly rounded.

There are two main techniques used to compute a correctly rounded result when using
series expansion functional iteration. The �rst method requires a datapath twice as wide as
the �nal result. The quotient is computed to a little more than twice the precision of the
�nal quotient, and then the extended result is rounded to the �nal precision. An explanation
of this procedure is as follows. Consider that the dividend X and the divisor Y are both
normalized and represented by b bits, and the �nal quotient Q = X=Y is represented by b

bits. It must be �rst noted that the exact halfway quotient can not occur when dividing two
b bit normalized numbers. For an exact halfway case, the quotient would be represented
by exactly a b + 1 bit number with both its MSB and LSB equal to 1, and thus having
exactly b� 1 bits between its most signi�cant and least signi�cant 1's. The product of such
a number with any non-zero �nite binary number must also have the same property, and
thus the dividend must have this property. But, the dividend is de�ned to be a normalized
b bit number, and thus can it can have a maximum of b�2 bits between its most signi�cant
and least signi�cant 1's.

To obtain b signi�cant bits of the quotient, b bits are computed if the �rst quotient bit
is 1, and b + 1 bits if the �rst quotient bit is 0. At this point, because the exact halfway

27

case can not occur, rounding can proceed based solely on the values of the next quotient
bit and the sticky bit. The sticky bit is 0 if the remainder at this point is exactly zero. If
any bit of the remainder is 1, then the sticky bit is 1. Let R0 be the value of the remainder
after this computation, assuming the �rst bit is 1:

X = Q0 � Y + R0; with R0 < 2�b

Then, compute another b bits of quotient, denoted Q1.

R0 = Q1 � Y +R1; with R1 < 2�2b

Q1 is less than 2�b, with an accuracy of 2�2b, and Y is normalized to be accurate to 2�b.
Accordingly if Q1 = 0, then R0 = R1. But, R0 can equal R1 if and only if R0 = R1 = 0.
This is because R0 < 2�b and R1 < 2�2b and Y is a b bit quantity. Similarly, if Q1 6= 0,
then the remainder R0 can not equal 0. The computation proceeds in the same manner if
the �rst quotient bit is 0, except that b+1 bits will have been computed for Q0. From this
analysis, it is apparent that by computing at most 2b+1 bits, the quotient can be correctly
rounded without requiring the actual remainder.

The principal disadvantage of this method is that it requires one additional full iteration,
and it requires a datapath at least two times larger than is required for non-rounded results.
A faster and smaller method has been shown to be possible that was �rst implemented on
the TI 8847 and TMS390C602A [13]. This scheme does not require a two times larger
datapath. Rather, the quotient is computed in a datapath with six extra guard bits. The
quotient at that point is equal to

q =
dividend

divisor
+ rem:

An extra multiplication is then performed to compute q� divisor. This result is compared
with the actual dividend, still with only six extra guard bits. From this low-precision
comparison, the rounding direction can be readily obtained.

An additional method has been proposed for rounding in Newton-Raphson implemen-
tations that utilize a signed-digit multiplier [10]. The signed-digit representation allows for
the removal of the subtraction or complement cycles of the iteration. In this scheme, it
is possible to obtain a correctly rounded quotient in nine cycles, including the �nal multi-
plication and ROM access. The redundant binary recoding of the partial products in the
multiplier allows for the simple generation of a correct sticky bit. Using this sticky bit and
a special recode circuit in the multiplier, correct IEEE rounding is possible at the cost of
only one additional cycle to the algorithm.

3.5 Analysis

Both the Newton-Raphson and series expansion iterations are e�ective means of imple-
menting division in hardware. For both iterations, the cycle time is limited by two multi-
plications. In the Newton-Raphson iteration, these multiplications are dependent and must
proceed in series, while in the series expansion, these multiplications may proceed in paral-
lel. To reduce the latency of the iterations, an accurate initial approximation can be used.

28

This introduces a tradeo� between additional chip area for a look-up table and the latency
of the divider. An alternative to a look-up table is the use of a partial product array, pos-
sibly by reusing an existing oating-point multiplier. Instead of requiring additional area,
such an implementation could increase the cycle time through the multiplier. The primary
advantage of division by functional iteration is the quadratic convergence to the quotient.
Functional iteration does not readily provide a �nal remainder. Accordingly, correct round-
ing for functional iteration implementations is di�cult. When a latency is required lower
than can be provided by an SRT implementation, functional iteration is currently the pri-
mary alternative. It provides a way to achieve lower latencies without seriously impacting
the cycle time of the processor and without a large amount of additional hardware.

4 Very High Radix Algorithms

Digit recurrence algorithms are readily applicable to low radix division and square-root
implementations. As the radix increases, the quotient-digit selection hardware and divisor
multiple process become more complex, increasing cycle time, area or both. To achieve very
high radix division with acceptable cycle time, area, and means for precise rounding, it is
necessary to use a variant of the digit recurrence algorithms, with simpler quotient-digit
selection hardware. The term \very high radix" applies roughly to dividers which retire
more than 10 bits of quotient in every iteration. The very high radix algorithms presented
are similar in that they all use multiplication for divisor multiple formation and look-up
tables to obtain an initial approximation to the reciprocal. They di�er in the number and
type of operations used in each iteration and the technique used for quotient-digit selection.

4.1 Accurate Quotient Approximations

This high radix algorithm proposed by Wong [42] is as follows. The quotient Q is de�ned
in terms of the normalized dividend X and divisor Y as

Q =
X

Y
:

In the algorithm, truncated version of X and Y are used, denoted Xh and Yh. Xh is de�ned
as the high-order m + 1 bits of X extended with 0's to get a n-bit number. Similarly, Yh
is de�ned as the high order m bits of Y extended with 1's to get a n-bit number. From
these de�nitions, it is clear that Xh is always less than or equal to X and Yh is always
greater than or equal to Y . This implies that 1=Yh is always less than or equal to 1=Y , and
therefore Xh=Yh is always less than or equal to X=Y .

The algorithm is as follows:

1. Initially, set the estimated quotient Q and the variable j to 0. Then, get an approxi-
mation of 1=Yh from a look-up table, using the top m bits of Y , returning an m bit
approximation. However, only m�1 bits are actually required to index into the table,
as the guaranteed leading one can be assumed. In parallel, perform the multiplication
Xh � Y .

29

2. Scale both the truncated divisor and the previously formed product by the reciprocal
approximation. This involves two multiplications in parallel for maximum perfor-
mance,

(1=Yh)� Y and (1=Yh)� (Xh � Y)

The product (1=Yh) � Y = Y 0 is invariant across the iterations, and therefore only
needs to be performed once. Subsequent iterations need only compute one multipli-
cation:

Y 0 � Ph;

where Ph is the current truncated partial remainder. The product Ph � 1=Yh can
be viewed as the next quotient digit, while (Ph � 1=Yh) � Y is the e�ective divisor
multiple formation.

3. Perform the general recurrence to obtain the next partial remainder:

P 0 = P � Ph � (1=Yh)� Y;

where P0 = X. Since all products have already been formed, this step only involves a
subtraction.

4. Compute the new quotient as

Q0 = Q+ (Ph=Yh)� (1=2j)

= Q+ Ph � (1=Yh)� (1=2j)

The new quotient is then developed by forming the product Ph � (1=Yh) and adding
the shifted result to the old quotient Q.

5. The new partial remainder P 0 is normalized by left-shifting to remove any leading 0's.
It can be shown that the algorithm guarantees m� 2 leading 0's. The shift index j is
revised by j0 = j +m� 2.

6. All variables are adjusted such that j = j0, Q = Q0, and P = P 0.

7. Repeat steps 2 through 6 of the algorithm until j � q.

8. After the completion of all iterations, the top n bits of Q form the true quotient. Sim-
ilarly, the �nal remainder is formed by right-shifting P by j� q bits. This remainder,
though, assumes the use of the entire value of Q as the quotient. If only the top n

bits of Q are used as the quotient, then the �nal remainder is calculated by adding
Ql � Y to P , where Ql comprises the low order bits of Q after the top n bits.

This basic algorithm reduces the partial remainder P by m � 2 bits every iteration. Ac-
cordingly, an n bit quotient requires dn=(m� 2)e iterations.

An advanced version of this algorithm has also been proposed. Rather than representing
the approximate reciprocal by a single constant term 1=Yh obtained from a look-up table,

30

more terms from a Taylor series approximation can be used. The Taylor series approxima-
tion equation for 1=Y at Y = Yh is:

1=Y = 1=Yh ��Y=Y 2

h + (�Y)2=Y 3

h � � �

The advanced version uses the same iteration steps as in the basic algorithm presented
earlier. However, in step 1, while 1=Yh is obtained from a look-up table using the leading
m bits of Y , in parallel approximations for 1=Y 2

h , 1=Y
3

h , etc. are obtained from additional
look-up tables, all indexed using the leading m bits of Y . These additional tables have word
widths of bi given by

bi = (m� t� t) + dlog
2
te � (m� i�m� i):

where t is the number of terms of the series used, and thus the number of look-up tables.
The value of t must be at least 2, but all subsequent terms are optional. The advanced
version reduces P 0 by m� t� t� 1 bits per iteration, and therefore the algorithm requires
dn=(m� t � t � 1)e iterations.

As in low-radix SRT implementations, both versions of the algorithm can bene�t by
storing the partial remainder P in a redundant representation. However, before any of the
multiplications using P as an operand take place, the top m + 3 bits of P must be carry-
assimilated for the basic method, and the top m+5 bits of P must be carry-assimilated for
the advanced method. Similarly, the quotient Q can be kept in a redundant form until the
�nal iteration. After the �nal iteration, full carry-propagate additions must be performed
to calculate Q and P in normal, non-redundant form.

The hardware required for this algorithm is as follows. At least one look-up table is
required of size 2m�1m bits. Three multipliers are required: one multiplier with carry
assimilation of size (m + 1)� n for the initial multiplications by the divisor Y , one carry-
save multiplier with accumulation of size (m + 1) � (n + m) for the iterations, and one
carry-save multiplier of size (m+1)�m to compute the quotient segments. One carry-save
adder is required to accumulate the quotient in each iteration. Two carry-propagate adders
are required: one short adder at least of size m + 3 bits to assimilate the most signi�cant
bits of the partial remainder P , and one adder of size n+m to assimilate the �nal quotient.

To calculate IEEE double precision quotients, where n = 53, several permutations of
this algorithm are possible. A slower implementation might utilize the basic method with
m = 11. The single look-up table would have 211�1 = 1024 entries, each 11 bits wide, for a
total of 11K bits in the table. Assuming all multipliers with assimilation compute results
in 1 cycle, it would take 2 initial cycles to perform the table look-up of 1=Yh and perform
the two initial multiplications and perform the �rst iteration, 5 cycles for the remaining
iterations, 1 cycle to assimilate the quotient, and 1 cycle for rounding. This results in a
total of 9 cycles. A faster implementation using the advanced method with m = 15 and
t = 2 would require a total table size of 736K bits. It would require 2 initial cycles, 1 cycle
for the additional iteration, 1 cycle for quotient assimilation, and 1 rounding cycle, for a
total of 5 cycles. Thus, at the expense of several multipliers, adders, and two large look-up
tables, the latency of division can be greatly reduced using this algorithm. In general, the
algorithm requires at most dn=(m� 2)e+ 3 cycles.

31

4.2 Short Reciprocal

The Cyrix 83D87 arithmetic coprocessor utilizes a short reciprocal algorithm similar to the
accurate quotient approximation method to obtain a radix 217 divider [23, 2]. Instead of
having several multipliers of di�erent sizes, the Cyrix divider has a single 18x69 rectangular
multiplier with an additional adder port that can perform a fused multiply/add. It can,
therefore, also act as a 19x69 multiplier. Otherwise, the general algorithm is nearly identical:

1. Initially, an estimate of the reciprocal 1=Yh is obtained from a look-up table. In the
Cyrix implementation, this approximation is of low precision. This approximation is
re�ned through two iterations of the Newton-Raphson algorithm to achieve a 19 bit
approximation. This method decreases the size of the look-up table at the expense of
additional latency. Also, this approximation is chosen to be intentionally larger than
the true reciprocal by an amount no greater than 2�18. This di�ers from the accurate
quotient method where the approximation is chosen to be intentionally smaller than
the true reciprocal.

2. Perform the recurrence

P 0 = P � Ph � (1=Yh)� Y (11)

Q0 = Q+ Ph � (1=Yh)� (1=2j) (12)

where P0 is the dividend X . In this implementation, the two multiplications of (11)
need to be performed separately in each iteration. One multiplication is required to
compute Ph � (1=Yh), and a subsequent multiply/add is required to multiply by Y
and accumulate the new partial remainder. The product Ph � (1=Yh) is a 19 bit high
radix quotient digit. The multiplication by Y forms the divisor multiple required
for subtraction. However, the multiplication Ph � (1=Yh) required in (12) can be
reused from the result computed for (11). Only one multiplication was required in
the accurate quotient method because the product (1=Yh) � Y was computed once
at the beginning in full precision, and could be reused on every iteration. The Cyrix
multiplier only produces limited precision results, 19 bits, and thus the multiplication
by Y needs to be repeated at every iteration. Because of the specially chosen 19
bit short reciprocal, along with the 19 bit quotient digit and 18 bit accumulated
partial remainder, this scheme guarantees that 17 bits of quotient are retired in every
iteration.

3. After the iterations, one additional cycle is required for rounding and postcorrection.
Unlike the accurate quotient method, on-the-y conversion of the quotient digits is
possible, as there is no overlapping of the quotient segments between iterations.

Thus, the short reciprocal algorithm is very similar to the accurate quotient algorithm.
One di�erence is the method for generating the short reciprocal. However, either method
could be used in both algorithms. The use of Newton-Raphson to increase the precision of
a smaller initial approximation is chosen merely to reduce the size of the look-up table. The
fundamental di�erence between the two methods is Cyrix's choice of a single rectangular

32

fused multiplier/add unit with assimilation to perform all core operations. While this
eliminates a majority of the hardware required in the accurate quotient method, it increases
the iteration length from one multiplication to two due to the truncated results.

The short reciprocal unit can generate double precision results in 15 cycles: 6 cycles
to generate the initial approximation by Newton-Raphson, 4 iterations with 2 cycles per
iteration, and one cycle for postcorrection and rounding. As mentioned, with a larger
table, the initial approximation could be obtained in as little as 1 cycle, reducing the total
cycle count to 10 cycles. It should be noted that the radix of 17 was chosen due to the
target format of IEEE double extended precision, where n = 64. This divider can generate
double extended precision quotients as well as double precision in 10 cycles. In general, this
algorithm requires at least 2dn=be+ 2 cycles.

4.3 Rounding and Prescaling

Ercegovac and Lang [12] report a high radix division algorithm similar to the previously
presented methods. Their algorithm involves obtaining an accurate initial approximation
of the reciprocal, scaling both the dividend and divider by this approximation, and then
performing multiple iterations of quotient-selection by rounding and partial remainder re-
duction by multiplication and subtraction. By retiring b bits of quotient in every iteration,
it is a radix 2b algorithm. The algorithm is as follows to compute X=Y :

1. Obtain an accurate approximation of the reciprocal from a table. Rather than us-
ing a constant piecewise approximation, this method uses the previously presented
technique of linear approximation to the reciprocal. The look-up table stores two
coe�cients, c1 and c2, which have length b + 5 and b + 6 bits respectively. These
entries are indexed using the most signi�cant bb=2c+ 1 bits of Y . The scaling factor
M , which is equivalent to the short reciprocal, is found from c1, c2 and the b+6 most
signi�cant bits of Y by

M = �c1 � Yh + c2

Thus, this computation utilizes a carry-save multiplier with an incorporated carry-save
adder.

2. Scale Y by the scaling factor M . This involves the carry-save multiplication of the
b+ 6 bit value M and the n bit operand Y to form the n + b+ 5 bit scaled quantity
Y �M .

3. Scale X by the scaling factor M , yielding an n + b + 5 bit quantity X �M . This
multiplication along with the multiplication of step 2 both can share the (b + 6) �
(n+ b+ 5) multiplier used in the iterations. In parallel, the scaled divisor M � Y is
assimilated. This involves an (n+ b+ 5) bit carry-propagate adder.

4. Determine the next quotient digit, needed for the general recurrence:

Pj+1 = rPj � qj+1(M � Y)

33

where P0 = M �X . The choice of scaling factor was made for the purpose of greatly
simplifying the quotient-digit selection function. In this scheme, the choice of scal-
ing factor allows for quotient-digit selection to be implemented simply by rounding.
Speci�cally, the next quotient digit is obtained by rounding the shifted partial re-
mainder in carry-save form to the second fractional bit. This can be done using a
short carry-save adder and a small amount of additional logic. The quotient-digit
obtained through this rounding is in carry-save form, with one additional bit in the
least-signi�cant place. This quotient-digit is �rst recoded into a radix-4 signed-digit
set (-2 to +3), then that result is recoded to a radix-4 signed-digit set (-2 to +2). The
result of quotient-digit selection by rounding requires 2(b+ 1) bits.

5. Perform the multiplication qj+1�z, where z is the scaled divisor M�Y , then subtract
the result from rPj . This can be performed in one step by a fused multiply/add unit.

6. Perform postcorrection and any required rounding. As discussed previously, postcor-
rection requires at a minimum sign detection of the last partial remainder and the
correction of the quotient.

Throughout the iterations, on-the-y quotient conversion is used.
The latency of the algorithm in cycles can be calculated as follows. At least one cycle

is required to form the linear approximation M . One cycle is required to scale Y , and an
additional cycle is required to scale X . dn=be cycles are needed for the iterations. Finally,
one cycle is needed for the postcorrection and rounding. Therefore, the total number of
cycles is given by

Cycles = dn=be+ 4

The hardware required for this algorithm is similar to the Cyrix implementation. One
look-up table is required of size 2bb=2c(2b + 11) bits to store the coe�cients of the linear
approximation. A (b+6)� (b+6) carry-save fused multiply/add unit is needed to generate
the scaling factor M . One fused multiply/add unit is required of size (b+ 6)� (n+ b+ 5)
to perform the two scalings and the iterations. A recoder unit is necessary to recode both
M and qj + 1 to radix-4. Finally, combinational logic and a short CSA are required to
implement the quotient-digit selection by rounding.

4.4 Multiplicative Iterative Division

An extension to the Cyrix short reciprocal non-restoring division algorithm can be made,
as reported by Schwarz [33]. Due to the rectangular fused multiply/add unit in the Cyrix
algorithm, intermediate results are produced in truncated form. Accordingly, each iteration
requires two multiplications. However, by carrying out the iteration in full precision, the
two multiplications can be reduced to one, in a manner similar to Wong's accurate quotient
approximations. The algorithm is as follows:

1. Initially, obtain a b-bit approximation of the reciprocal, 1=Yh.

34

2. Form Y 0 = 1 � (1=Yh � Y), which has n bits. This requires a multiplication and a
subtraction. However, Y 0 is invariant throughout the iterations and only needs to be
computed once. Set the scaled quotient S0 = 0.

3. Perform the iteration:

Pj+1 = (Pj � Y 0)tr

Sj+1 = Sj + Pj

where P0 = X , the dividend. The truncation for the partial remainder recurrence
requires n + g bits, where g is the number of guard bits required. It can be shown
that g is equal to the number of iterations plus one, or d(n + 1)=be + 1. Rather
than accumulating the quotient estimates in each iteration, the partial remainders Pj
are accumulated instead. The scaled quotient is formed by this accumulation. The
latency of the iteration is the multiplication to form Pj+1, performed in parallel with
the addition for the accumulation of the scaled quotient.

4. To form the �nal quotient and remainder:

Q = Slast � (1=Yh)

R = X � Q� Y

This algorithm requires 1 cycle to obtain the initial approximation, 1 multiplication
cycle to form the scaled dividend, and 1 cycle to subtract. Each iteration requires 1 cycle
for a parallel multiplication and addition. Finalization requires 2 multiplication cycles, 1
subtraction cycle, and 1 cycle for postcorrection and rounding. In total, the algorithm
requires dn=be + 7 cycles to compute full precision quotients and remainders. In terms of
hardware, it requires a multiplier of width n+g, a 2b�b bit look-up table, and a full-precision
carry-propagate adder.

Although interesting from a theoretical aspect, this algorithm is not as attractive as the
previously described very high radix algorithms, due to its additional latency in forming
the quotient and remainder.

4.5 Analysis

The primary di�erence between these algorithms are the number and width of multipliers
used. These have obvious e�ects on the latency of the algorithm and the size of the imple-
mentation. In the accurate quotient approximations and short-reciprocal algorithms, the
next quotient digit is formed by a multiplication Ph � (1=Yh) in each iteration. Because
the Cyrix implementation only has one rectangular multiply/add unit, each iteration must
perform this multiplication in series: �rst this product is formed as the next quotient digit,
then the result is multiplied by Y and subtracted from the current partial remainder to
form the next partial remainder, for a total of two multiplications. The accurate quotient
approximations method computes Y 0 = Y � (1=Yh) once at the beginning in full precision,

35

and is able to used the result in every iteration. Each iteration still requires two multiplica-
tions, but these can be performed in parallel: Ph � Y 0 to form the next partial remainder,
and Ph � (1=Yh) to form the next quotient digit.

The rounding and prescaling algorithm, on the other hand, does not require a separate
multiplication to form the next quotient digit. Instead, by scaling both the dividend and
divisor by the initial reciprocal approximation, the quotient-digit selection function can be
implemented by simple rounding logic directly from the redundant partial remainder. Each
iteration only requires one multiplication, reducing the area required compared with the
accurate quotient approximations algorithm, and decreasing the latency compared with the
Cyrix short-reciprocal algorithm. However, because both input operands are prescaled, the
�nal remainder is not directly usable. If a remainder is required, it must be postscaled.
Overall, the rounding and prescaling algorithm achieves the lowest latency and cycle time
with a reasonable area, while the Cyrix short-reciprocal algorithm achieves the smallest
area.

5 Variable Latency Algorithms

Digit recurrence and very high radix algorithms all retire a �xed number of quotient bits
in every iteration, while algorithms based on functional iteration retire a quadratically
increasing number of bits every iteration. This section discusses methods for implementing
dividers that compute results in a variable amount of time. Self-timing is one method of
implementing a variable latency divider, as discussed in section 2. This section presents
two additional techniques for reducing the average latency of division computation. These
techniques take advantage of the fact that the computation for certain operands can be
completed sooner than others, or reused from a previous computation. Reducing the worst
case latency of a divider requires that all computations made using the functional unit will
complete in less than a certain amount of time. In some cases, modern processors are able
to use the results from functional units as soon as they are available. Providing a result as
soon as it is ready can therefore increase overall system performance. For a given division
implementation it may not be possible to reduce the latency for all computations. However,
using these techniques, it is possible to reduce the latency for certain computations, with a
corresponding increase in system performance.

5.1 Result Caches

Computer applications typically perform computations on input data, and produce �nal
output data based on the results of the computation. Due to the nature of applications, the
input operands for one calculation are often the same as those in a previous calculation. For
example, in matrix inversion, each entry of the matrix must be divided by the determinant.
By recognizing that such redundant behavior exists in applications, it is possible to take
advantage of this fact and decrease the e�ective latency of computations.

Richardson [32] presents the technique of result caching as a means of decreasing the
latency of otherwise high-latency operation, such as division. This technique exploits the
redundant nature of certain computations by trading execution time for increased memory

36

 Radix 4 With Cache
� � Radix 256 With Cache
� � No Cache

|
2000

|
4000

|
6000

|
8000

|
10000

|
12000

|
14000

|
16000

|
18000

|
20000

|0.00

|0.02

|0.04

|0.06

|0.08

|0.10

|0.12

|0.14

|0.16

 Area (rbe)

 E
xc

es
s

C
PI

�

�

�
�

�

�

�

�

�

Figure 11: CPI vs area with and without division cache

storage. Once a computation is calculated, it is stored in a result cache. The operation of
a result cache is as follows. When a targeted operation is issued by the processor, access
to the result cache is initiated simultaneously. If the cache access results in a hit, then
that result is used, and the operation is halted. If the access misses in the cache, then the
operation writes the result into the cache upon completion. Various sized direct-mapped
result caches were simulated which stored the results of double precision multiplies, divides,
and square roots. The applications surveyed included several from the Spec92 and Perfect
Club benchmark suites. Signi�cant reductions in latency were obtained in these benchmarks
by the use of a result cache. However, the standard deviation of the resulting latencies across
the applications was large.

In another study, Oberman [28] investigated in more detail the performance and area
e�ects of caches that target division, square-root, and reciprocal operations in applications
from the SPECfp92 and NAS benchmark suites. Using the register bit equivalent (rbe)
model of Mulder [11], a system performance vs. chip area relationship was derived for a
cache that targets only double precision division operations. Each cache entry stores a 55
bit mantissa, indexed by the dividend's and divisor's mantissas with a valid bit, for a total
of a 105 bit tag. The total storage required for each cache entry is therefore approximately
160 bits. The caches were fully-associative, using random replacement on a miss. Figure 11
shows the relationship derived. From �gure 11, is is apparent that if an existing divider
has a high latency, as in the case of a radix-4 divider, the addition of a division cache is
not area e�cient. Rather, better performance per area can be achieved by improving the

37

 Reciprocal
 Division

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 C
ac

he
 H

it
 R

at
e

%

do
du

c

m
dl

jd
p2

to
m

ca
tv or
a

su
2c

or

hy
dr

o2
d

na
sa

7

fp
pp

p

ap
pb

t

ap
pl

u

ap
ps

p

Figure 12: Hit rates for in�nite division and reciprocal caches

divider itself, by any of the means discussed previously. Only when the base divider already
has a very low latency can the use of division cache be as e�cient as simply improving the
divider itself.

An alternative to the caching of quotients is a reciprocal cache, where only the reciprocal
is stored in the cache. Such a cache can be used when the division algorithm �rst computes
a reciprocal, then multiplies by the dividend to form a quotient, as in the case of the
Newton-Raphson algorithm. A reciprocal cache has two distinct advantages over a division
cache. First, the tag for each cache entry is smaller, as only the mantissa of the divisor
needs to be stored. Accordingly, the total size for each cache entry would be approximately
108 bits, compared with the approximately 160 bits required for a division cache entry.
Second, the hit rates are larger, as each entry only needs to match on one operand, not
two. A comparison of the hit rates obtained for in�nite division and reciprocal caches is
shown in �gure 12. Similar results are shown in �gure 13 for �nite sized caches. It is readily
apparent that for these applications, the reciprocal cache hit rates are consistently larger
and less variable than the division cache hit rates. This study showed that a divider using
a reciprocal cache with a size of about eight times that of an 8-bits-in, 8-bits-out ROM
look-up table can achieve a speedup of 1.86. Furthermore, the variance of this speedup
across di�erent applications is low.

38

 Reciprocal Cache
� � Divide Cache

| | | | | | | | ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Entries

 H
it

 R
at

e
%

8 16 32 64 128 256 512 1024 2048

�

�

�

�

�

�

Figure 13: Hit rates for �nite division and reciprocal caches

5.2 Speculation of Quotient Digits

A method for implementing an SRT divider that retires a variable number of quotient bits
every cycle is reported by Cortadella [3]. The goal of this algorithm is to use a simpler
quotient-digit selection function than would normally be possible for a given radix by using
fewer bits of the partial remainder and divisor than are speci�ed for the given radix and
quotient digit set. This new function does not give the correct quotient digit all of the time.
When an incorrect speculation occurs, it is necessary to use at least one iteration to �x the
incorrect quotient digit. However, if the probability of a correct digit is high enough, then
the resulting lower cycle time due to the simple selection function will o�set the increase in
the number of iterations required. In this implementation, a variation of the standard SRT
recurrence is used:

P s
j+1 = rPj � qsj+1d (13)

where qsj+1 is the speculated next quotient digit. After the iteration completes, it is necessary
to determine whether the new partial remainder is within the allowable range as set by the
redundancy of the quotient digit set. If it is within the allowable range, then Pj+1 = P s

j+1,
and the algorithm continues. Otherwise, the partial remainder needs to be corrected. The
correction cycle performs:

Pj+1 = P s
j+1 � qcj+1d (14)

39

Accordingly, qcj+1 has the same weight as q
s
j+1, and the true next quotient digit is given by

qj+1 = qsj+1 + qcj+1

An enhancement to this basic scheme is to allow another option in the case of an
incorrectly speculated quotient digit. If the error is small, it is possible to advance by a
number of quotient bits which is less than a whole digit, and this is known as a partial

advance. The iteration used for partial-advance is

Pj+1 = pPj � q
p
j+1d (15)

where log
2
p is the number of partially advanced bits. Accordingly, the partially advance

quotient digit qpj+1 overlaps with the previous digit by log2
r
p
bits.

The speculation/quotient-digit selection tables were designed iteratively, performing
thousands of random division simulations to determine which quotient values should be
returned for each input. These simulations were repeated for various radices using a vary-
ing number of divisor and partial remainder bits as input. It is also necessary to determine
when an incorrect speculation occurs. While this could be done by implementing a true
radix-r quotient-digit selection function in parallel, it is faster and less complex to sim-
ply detect whether or not the next partial remainder is within the allowable range. The
comparisons that must be performed every iteration are

��d̂c � 2�f+1 � P̂ c � �d̂c � 2�f+1 (16)

where d̂c and P̂ c are truncated, carry-assimilated forms of d and P , each with f fractional
bits. Because this comparison uses truncated values of d and P , it is possible for the
comparison to fail when the speculation is, in fact, correct. This comparison is conservative,
so that all incorrect speculations are detected as incorrect, but some correct speculations
can also be detected as incorrect. The probability of correctly detecting correct speculations
increases with f . The hardware required for digit speculation for both schemes is shown in
�gure 14.

Several di�erent variations of this implementation were considered for di�erent radices
and base divider con�gurations. A radix-64 implementation was considered which could
retire up to 6 bits per iteration. It was found to be 30% faster than the fastest conventional
implementation of the same base datapath, which was a radix-8 divider using segments.
However, because of the duplication of the quotient-selection logic for speculation, it re-
quired about 44% more area than a conventional implementation. A radix-16 implemen-
tation (maximum 4 bits per cycle) implementation using the same radix-8 datapath was
about 10% faster than a conventional radix-8 divider, with an area reduction of 25%.

5.3 Analysis

Self-timing, result caches, and quotient digit speculation have been shown to be e�ective
methods for reducing the average latency of division computation. A reciprocal cache is an
e�cient way to reduce the latency for division algorithms that �rst calculate a reciprocal.
While reciprocal caches do require additional area, they require less than that required

40

digit
speculation

error
detection

MUX

MUX

full-advance
digit speculation

partial-advance
digit speculation

full-advance
bounds comparison

partial-advance
bounds comparison

+1

-1

speculation/
correction cycle

+1

-1

speculation/
partial/
correction cycle

q
j+1

q
j+1

Figure 14: Units for digit speculation

41

by much larger initial approximation look-up tables, while providing a better reduction in
latency. Self-timed implementations use circuit techniques to generate results in variable
time. The disadvantage of self-timing is the complexity in the clocking, circuits, and testing
required for correct operation. Quotient digit speculation is one example of reducing the
complexity of SRT quotient-digit selection logic for higher radix implementations.

As processors become more complex and better able to utilize functional units that
complete in variable time, variable latency dividers will become more important. The
techniques presented in the �rst sections can be used to minimize the cycle time and worst
case latency of the divider implementation. Variable latency techniques can then be included
to further reduce the average division latency. This combination of algorithms allows for
achieving maximum system performance.

6 Comparison

Four classes of division algorithms have been presented. A summary of several algorithms
from these classes is shown in table 1.

Algorithm Iteration Time Latency (cycles) Approximate Area

SRT Qsel table + dn
r
e (+ scale) Qsel table +

(multiple form + CSA
subtraction)

Newton-Raphson 2 serial (2dlog2
n
i
e + 1)tmul + 1 1 multiplier +

multiplications table + control

series expansion 2 parallel (dlog2
n
i e+ 2)tmul + 1 1 multiplier +

multiplications table + control

accurate quotient 1 multiplication (dn
i
e+ 1)tmul 3 multipliers +

approx table + control

short reciprocal 2 serial 2dni etmul + 1 1 short multiplier +
multiplications table + control

round/prescale 1 multiplication (dn
i
e+ 2)tmul + 1 1 multiplier +

table + control

Table 1: Summary of algorithms

In this table, n is the number of bits in the input operands, r = log2 radix for SRT
algorithms, i is the number of bits of accuracy from an initial approximation, and tmul is
the latency of the a fused multiply/add unit in cycles. None of the latencies include any
additional time required for rounding or normalization.

Table 2 illustrates the e�ects of algorithm, operand length, width of initial approxima-
tion, and multiplier latency on division latency. All operands are IEEE double precision
mantissas, with n = 53. Table look-ups for initial approximations require 1 cycle. The SRT
latencies are separate from the others in that they do not depend on multiplier latency, and

42

they are only a function of the radix of the algorithm for the purpose of this table. For the
multiplication-based division algorithms, latencies are shown for multiplier latencies of 1, 2
and 3 cycles. Additionally, latencies are shown for pipelined as well as unpipelined multipli-
ers. A pipelined multiplier can begin a new computation every cycle, while an unpipelined
multiplier can only begin after the previous computation has completed.

Latency (cycles)
Algorithm Pipelined Initial Approx tmul = 1 tmul = 2 tmul = 3

SRT - r = 2 27 - -
r = 3 18 - -
r = 4 14 - -
r = 8 7 - -

Newton-Raphson no/yes i = 8 8 15 22
no/yes i = 16 6 11 16

series expansion no i = 8 9 17 25
no i = 16 7 13 19
yes i = 8 9 10 14
yes i = 16 7 8 11

accurate quotient no/yes i = 8 (basic) 8 16 24
approximations no/yes i = 16 (basic) 5 10 15

no/yes i = 13 and 3 6 9
t = 2 (adv)

short reciprocal no/yes i = 8 15 29
no/yes i = 16 9 17

round/prescale no i = 8 10 19 28
no i = 16 7 13 19
yes i = 8 10 18 26
yes i = 16 7 10 14

Table 2: Latencies for di�erent con�gurations

From table 2, the advanced version of the accurate quotient approximations algorithm
provides the lowest latency. However, the area requirement for this implementation is
tremendous, as it requires at least a 736K bits look-up table and three multipliers. For
realistic implementations, with tmul = 2 or tmul = 3 and i = 8, the lowest latency is
achieved through a series expansion implementation. However, all of the multiplication-
based implementations are very close in performance. This analysis shows the extreme
dependence of division latency on the multiplier's latency and throughput. A factor of
three di�erence in multiplier latency can result in nearly a factor of three di�erence in
division latency for several of the implementations.

It is di�cult for an SRT implementation to perform better than the multiplication-based
implementations due to infeasibility of high radix at similar cycle times. However, through

43

the use of scaling and higher redundancy, it may be possible to implement a radix 256
SRT divider that is competitive with the multiplication-based schemes in terms of cycle
time and latency. The use of variable latency techniques, such as self-timing, can provide
further means for matching the performance of the multiplication-based schemes, without
the di�culty in rounding that is intrinsic to the functional iteration implementations.

7 Conclusion

In this paper, the four major classes of division algorithms have been presented. The sim-
plest and most common class found in the majority of modern processors that have hardware
division support is digit recurrence, speci�cally SRT. Recent commercial SRT implementa-
tions have included radix 2, radix 4, and radix 8. These implementations have been chosen
in part because they operate in parallel with the rest of the oating-point hardware and do
not create contention for other units. Additionally, for small radices, it has been possible
to meet the tight cycle-time requirements of high performance processors without requiring
large amounts of die area. The disadvantage of these SRT implementations is their rela-
tively high latency, as they only retire 1-3 bits of result per cycle. As processors continue
to seek to provide an ever-increasing amount of system performance, it becomes necessary
to reduce the latency of all functional units, including division.

An alternative to SRT implementations is functional iteration, with the series expan-
sion implementation the most common form. The latency of this implementation is directly
coupled to the latency and throughput of the multiplier and the accuracy of the initial ap-
proximation. The analysis presented shows that a series expansion implementation provides
the lowest latency for reasonable areas and multiplier latencies. If minimizing area is of pri-
mary importance, then such an implementation typically shares an existing oating-point
multiplier. This has the e�ect of creating additional contention for the multiplier, possibly
reducing the performance of multiplication. An alternative is to provide an additional mul-
tiplier, dedicated for division. This can be an acceptable tradeo� if a large quantity of area
is available and maximum performance is desired. The main disadvantage with functional
iteration is the lack of remainder and the corresponding di�culty in rounding.

Very high radix algorithms are an attractive means of achieving low latency while also
providing a true remainder. The only commercial implementation of a very high radix algo-
rithm is the Cyrix short-reciprocal unit. This implementation makes e�cient use of a single
rectangular multiply/add unit to achieve lower latency than most SRT implementations
while still providing a remainder. Further reductions in latency could be possible by using
a full-width multiplier, as in the rounding and prescaling algorithm.

The Hal Sparc64 self-timed divider is the only commercial implementation that gener-
ates quotients with variable latency depending upon the input operands. It is the circuit
design that provides for the lower and variable latency in that implementation. Reciprocal
caches have been shown to be an e�ective means of reducing the latency of division for
implementations that generate a reciprocal. Quotient digit speculation is also a reasonable
method for reducing SRT division latency.

The importance of division implementations will continue to increase as die area in-

44

creases and feature sizes decrease. The correspondingly larger amount of area available for
oating-point units will allow for implementations of higher radix, lower latency algorithms.

8 Acknowledgements

The authors wish to thank N. Quach for his helpful discussions throughout this work, and
G. McFarland for reading and commenting on an early version of this paper.

45

A Pentium Bug

It is interesting to inspect the radix-4 table of �gure 4 somewhat more carefully. It is similar
to that used in the radix-4 divider of the Intel Pentium [34]. In such a radix-4 scheme, the
table is designed such that the shifted next partial remainder will never be greater than
8=3� d, and therefore, it is always bounded. In the �rst release of the Pentium, the PLA
implementing the quotient-selection logic was missing �ve entries along the 8=3 � d line,
corresponding to the truncated divisor values of 1.0001, 1.0100, 1.0111, 1.1010, and 1.1101.
These entries should have contained the next-quotient value of 2. Instead, due to an error
in the process of programming the PLA, these �ve values were set to 0. Accordingly, it was
possible for the Pentium divider to produce erroneous results, depending upon whether or
not in the process of calculating the quotient those entries were ever used. This gave rise
to a large debate with regard to the frequency of erroneous results, which Intel has claimed
to be approximately 1 in 9 billion random divisions. Such an experience demonstrates the
importance of thorough and correct testing of all components of a CPU, at all stages of the
design process.

B Square-Root

B.1 SRT

The recurrence for square-root is conceptually similar to that of division. However, for
oating-point representation and normalized operand, an additional requirement is made
that the operand must have an even exponent in order to permit the computation of the
resulting exponent. Accordingly, it may be necessary to prescale the operand to meet this
requirement.

The following recurrence is used at every iteration:

P0 = operand� 1 (17)

Pj+1 = rPj � 2S[j]sj+1� s2j+1r
�(j+1) (18)

where Pj is the residual, at iteration j. Additionally, the result is denoted by s and S such
that,

s = S[n] =
nX
i=0

sir
�i

The next result digit is chosen using the following function:

sj+1 = SEL(ŷj; Ŝ[j]) (19)

where ŷj and Ŝ[j] are estimates of rPj and S[j] respectively.
From equations (2) and (18), the similarity between the recurrences for division and

square root can be seen. The digit sets and residual representation can be formed in the
same manner as is done for division. Additionally, the function used to generate the next
result digit is similar to that of division. Thus, division and square-root can and usually do
share the same hardware.

46

Typically, though, the �rst few bits of the square-root result require a special result-
selection function, di�erent than the standard look-up table used for the rest of the it-
erations. However, Ercegovac [7] shows a method for generating the �rst few bits of the
result without requiring a separate initial table. Speci�cally, they show a radix-4 square
root implementation that generates the �rst result digit directly from the same table by the
addition of three extra gates. This allows for a simpli�ed implementation with no loss of
performance.

B.2 Functional Iteration

Square-root can be computed using the Newton-Raphson equation (5) in a manner similar
to division. The choice of priming function to solve must be selected carefully. An initial
choice might be

f(X) = X2 � b = 0 (20)

which has a root at X =
p
b. However, a direct application of (5) to (20) will result in

X1 = X0 �
f(X0)

f 0(X0)

X1 = X0 �
(X2

0
� b)

(2X)

...

Xi+1 =
1

2
(Xi +

b

Xi
) (21)

Unfortunately, this direct application leads to an iteration which contains a division, which
itself is an operation that requires iteration in order to be computed. A better method for
computing square-root is to rewrite the the computation as

p
b = b�

1
p
b
:

This leads to a priming function of

f(X) =
1

X2
� b = 0: (22)

When the Newton-Raphson equation is applied, the iteration becomes

X1 = X0 �
f(X0)

f 0(X0)

X1 = X0 �
1=X2

0
� b

�2=X3

0

...

Xi+1 =
1

2
�Xi � (3� b�X2

i) (23)

47

This analysis shows that the reciprocal square-root Newton-Raphson iteration requires three
multiplications, a subtraction, and a division by two, which can be implemented as a shift.
The �nal square-root is obtained by a multiplying the inverse square-root result with the
input operand. By noting that the division operation in (21) can be roughly be replaced by
the three multiplications of (23), it can be inferred that the latency of a division operation
should be designed to be no worse than a factor of three of the multiplication latency.

The development for square-root calculation using a series expansion implementation
proceeds similarly. Initially let N0 = b andD0 = b. In square-root, like division, the number
of iterations can be reduced by prescaling. Accordingly, b should be prescaled by a more
accurate approximation of the reciprocal square-root of b, and then the algorithm should
be run on the scaled b0. A general relationship can be developed, such that each step of the
iteration involves three multiplications

Ni+1 = Ni �R2

i and Di+1 = Di � Ri;

a subtraction, and a shift,

Ri+1 =
3�Di

2
:

From this iteration, N converges quadratically towards 1, and D converges toward
p
b.

48

References

[1] D. E. Atkins. Higher-radix division using estimates of the divisor and partial remain-
ders. IEEE Transactions on Computers, C-17(10), October 1968.

[2] W. S. Briggs and D. W. Matula. A 17x69 Bit multiply and add unit with redundant
binary feedback and single cycle latency. In Proceedings of the 11th IEEE Symposium

on Computer Arithmetic, pages 163{170, July 1993.

[3] J. Cortadella and T. Lang. Division with speculation of quotient digits. In Proceedings

of the 11th IEEE Symposium on Computer Arithmetic, pages 87{94, July 1993.

[4] D. L. Fowler et al. An accurate, high speed implementation of division by reciprocal
approximation. In Proceedings of the 9th IEEE Symposium on Computer Arithmetic,
pages 60{67, September 1989.

[5] D. DasSarma and D. Matula. Measuring the accuracy of ROM reciprocal tables. IEEE
Transactions on Computers, 43(8):932{940, August 1994.

[6] D. DasSarma and D. Matula. Faithful bipartite ROM reciprocal tables. In Proceedings

of the 12th IEEE Symposium on Computer Arithmetic, pages 12{25, July 1995.

[7] M. D. Ercegovac and T. Lang. Radix-4 square root without initial PLA. IEEE Trans-

actions on Computers, 39(8):1016{1024, August 1990.

[8] M. D. Ercegovac and T. Lang. Simple radix-4 division with operands scaling. IEEE

Transactions on Computers, C-39(9):1204{1207, September 1990.

[9] M. D. Ercegovac and T. Lang. Division and Square Root: Digit-Recurrence Algorithms

and Implementations. Kluwer Academic Publishers, 1994.

[10] H. Kabuo et al. Accurate rounding scheme for the Newton-Raphson method using
redundant binary representation. IEEE Transactions on Computers, 43(1):43{51, Jan-
uary 1994.

[11] J. Mulder et al. An area model for on-chip memories and its application. IEEE Journal

of Solid-State Circuits, 26(2), February 1991.

[12] M. D. Ercegovac et al. Very high radix division with selection by rounding and prescal-
ing. In Proceedings of the 11th IEEE Symposium on Computer Arithmetic, pages 112{
119, July 1993.

[13] M. Darley et al. The TMS390C602A oating-point coprocessor for Sparc systems.
IEEE Micro, 10(3):36{47, June 1990.

[14] M. J. Schulte et al. Optimal initial approximations for the Newton-Raphson division
algorithm. Computing, 53:233{242, 1994.

49

[15] S. F. Anderson et al. The IBM System/360 Model 91: Floating-point execution unit.
IBM Journal of Research and Development, 11:34{53, January 1967.

[16] T. Asprey et al. Performance features of the PA7100 microprocessor. IEEE Micro,
13(3):22{35, June 1993.

[17] J. Fandrianto. Algorithm for high-speed shared radix 4 division and radix 4 square
root. In Proceedings of the 8th IEEE Symposium on Computer Arithmetic, pages 73{79,
May 1987.

[18] J. Fandrianto. Algorithm for high-speed shared radix 8 division and radix 8 square
root. In Proceedings of the 9th IEEE Symposium on Computer Arithmetic, pages 68{75,
July 1989.

[19] M. Flynn. On division by functional iteration. IEEE Transactions on Computers,
C-19(8), August 1970.

[20] ANSI/IEEE std 754-1985, IEEE standard for binary oating-point arithmetic.

[21] Intel, i860 64-bit microprocessor programmer's reference manual, 1989.

[22] P. W. Markstein. Computation of elementary function on the IBM RISC System/6000
processor. IBM Journal of Research and Development, pages 111{119, January 1990.

[23] D. Matula. Highly parallel divide and square root algorithms for a new generation oat-
ing point processor. In SCAN-89, International Symposium on Scienti�c Computing,

Computer Arithmetic, and Numeric Validation, October 1989.

[24] Microprocessor Report, Various issues, 1994.

[25] P. Montuschi and L. Ciminiera. Over-redundant digit sets and the design of digit-by-
digit division units. IEEE Transactions on Computers, 43(3):269{277, March 1994.

[26] S. Oberman and M. Flynn. Design issues in oating-point division. Technical Report
No. CSL-TR-94-647, Computer Systems Laboratory, Stanford University, December
1994.

[27] S. Oberman and M. Flynn. Implementing division and other oating-point opera-
tions: a system perspective. To be presented at SCAN-95, International Symposium

on Scienti�c Computing, Computer Arithmetic, and Numeric Validation, Wuppertal,
Germany, September 1995.

[28] S. Oberman and M. Flynn. On division and reciprocal caches. Technical Report No.
CSL-TR-95-666, Computer Systems Laboratory, Stanford University, April 1995.

[29] S. Oberman, N. Quach, and M. Flynn. The design and implementation of a high-
performance oating-point divider. Technical Report No. CSL-TR-94-599, Computer
Systems Laboratory, Stanford University, January 1994.

50

[30] J. A. Prabhu and G. B. Zyner. 167 MHz Radix-8 oating point divide and square
root using overlapped radix-2 stages. In Proceedings of the 12th IEEE Symposium on

Computer Arithmetic, pages 155{162, July 1995.

[31] N. Quach and M. Flynn. A radix-64 oating-point divider. Technical Report No.
CSL-TR-92-529, Computer Systems Laboratory, Stanford University, June 1992.

[32] S. E. Richardson. Exploiting trivial and redundant computation. In Proceedings of the

11th IEEE Symposium on Computer Arithmetic, pages 220{227, July 1993.

[33] E. Schwarz. High-radix algorithms for high-order arithmetic operations. Technical Re-
port No. CSL-TR-93-559, Computer Systems Laboratory, Stanford University, January
1993.

[34] H. P. Sharangpani and M. L. Barton. Statistical analysis of oating point aw in the
pentium processor, November 1994.

[35] P. Soderquist and M. Leeser. Area and performance tradeo�s in oating-point division
and square root implementations. Technical Report EE-CEG-94-5, Cornell School of
Electrical Engineering, December 1994.

[36] H. Srinivas and K. Parhi. A fast radix-4 division algorithm and its architecture. IEEE
Transactions on Computers, 44(6):826{831, June 1995.

[37] A. Svoboda. An algorithm for division. Information Processing Machines, 9:29{34,
1963.

[38] K. G. Tan. The theory and implementation of high-radix division. In Proceedings of

the 4th IEEE Symposium on Computer Arithmetic, pages 154{163, June 1978.

[39] G. S. Taylor. Radix 16 SRT dividers with overlapped quotient selection stages. In
Proceedings of the 7th IEEE Symposium on Computer Arithmetic, pages 64{71, June
1985.

[40] S. Waser and M. Flynn. Introduction to Arithmetic for Digital Systems Designers.
Holt, Rinehart, and Winston, 1982.

[41] T. E. Williams and M. A. Horowitz. A zero-overhead self-timed 160-ns 54-b CMOS
divider. IEEE Journal of Solid-State Circuits, 26(11):1651{1661, November 1991.

[42] D. Wong and M. Flynn. Fast division using accurate quotient approximations to reduce
the number of iterations. IEEE Transactions on Computers, 41(8):981{995, August
1992.

51

