
RYO: A VERSATILE INSTRUCTION

INSTRUMENTATION TOOL FOR

PA-RISC

Daniel F. Zucker and Alan H. Karp

Technical Report: CSL-TR-95-658

January 1995

This work was supported by NASA under contract NAG2-842 and Hewlett-

Packard under gift No. 23487.

RYO: a Versatile Instruction Instrumentation Tool for PA-RISC

by

Daniel F. Zucker and Alan H. Karp1

Technical Report: CSL-TR-95-658

January 1995

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, California 94305-4055

Abstract

RYO (Roll Your Own) is actually a family of novel instrumentation tools for the PA-

RISC family of processors. Relatively simple awk scripts, these tools instrument PA-RISC

assembly instruction sequences by replacing individual machine instructions with calls to

user written routines. Examples are presented showing how to generate address traces by

replacing memory instructions, and how to analyze oating point arithmetic by replacing

oating point instructions. This paper introduces the overall structure and design of RYO,

as well as giving detailed instructions on its use.

Key Words and Phrases: instrumentation, address tracing, cache, arithmetic

1Hewlett-Packard Laboratories

1501 Page Mill Road

Palo Alto, CA 94306

Copyright c 1995

by

Daniel F. Zucker and Alan H. Karp

Contents

1 What Is RYO 1

1.1 Overview : 1

1.2 Advantages and Disadvantages : 1

1.3 Implementation : 3

1.3.1 Branch Delay Slot : 3

1.3.2 Saving and Restoring Machine State and Parameter Passing : : : : : 6

2 How to Use RYO 7

2.1 Compiler Errors : 7

2.1.1 Branch Targets : 8

2.1.2 Indirect procedure calls : 8

2.2 Long Branches : 8

2.3 O�set.awk : 9

3 Example Data 9

3.1 Arithmetic : 10

3.2 Memory : 10

4 Conclusion 11

5 Acknowledgments 11

A Source Code for Ryols.awk 12

B An Example Instrumentation Routine 25

iii

List of Figures

1 Simple Instruction Substitution : 2

2 Mistake in Control Flow for Branch Delay Slot : : : : : : : : : : : : : : : : 4

3 Unconditional Branch Instrumentation : 5

4 Conditional Branch Instrumentation : 6

5 Instrumented Code with `Stepping Stone' to Correct Long Branch Errors : 9

6 Operand Length Histogram : 10

7 Data Cache Miss Rate : 11

iv

1 What Is RYO

RYO (Roll Your Own) is a family of novel instrumentation tools for the PA-RISC family

of processors [3]. These tools replace a speci�c set of PA-RISC assembly instructions with

user supplied subroutines.

Because the user provides his own custom instrumentation routines, the use of the tool is

virtually unlimited. Its uses could range from replacing a faulty hardware divide instruction

with a correct software substitute, to generating address trace �les for later analysis. Like

Pixie[5], RYO generates program analysis output by running an instrumented executable,

yet RYO bene�ts from both a simpler implementation and greater exibility by its use of

arbitrary user supplied subroutines.

This paper introduces the overall structure and design of RYO, as well as giving detailed

instructions on its use. A speci�c member of the RYO family, RYOLS (Roll Your Own Load

Store), is presented to illustrate correct program usage. The �nal section shows actual

experimental data obtained with two members of the RYO family, RYOLS and RYOFP

(Roll Your Own Floating Point).

1.1 Overview

RYOLS expects an assembly level, or .s, �le for input. It makes two passes through the pro-

gram and replaces memory operations (oating point operations in the case of RYOFP) with

an unconditional jump to the RYOLS library calling stub. This stub saves the state of the

machine, does any necessary parameter passing, calls the proper RYOLS library procedure,

and �nally unconditionally jumps back to the original execution sequence (�gure 1).

The overall design simplicity is an attractive feature, yet actual implementation involves

overcoming a number of pesky problems. For this purpose, a number of small companion

programs{�xtargets, o�set.awk, and lbranch.awk{have also been implemented.

1.2 Advantages and Disadvantages

Using this relatively simple substitution strategy has a number of advantages and disad-

vantages. On the plus side, substituting a single branch instruction for the single memory

instruction results in an exact one for one instruction substitution that leaves the rela-

tive positions of the instructions unchanged. Of course, code must be inserted to build

the library calling stubs, but this code is placed between procedures where it can do little

harm. Keeping the relative instruction position constant not only eliminates the need to

translate a branch to a target plus a constant o�set to a corrected o�set, but is also the

only way to ensure correct indirect branching. In the case of indirect branching, the target

address cannot be known until runtime, so the o�set cannot be translated when doing the

instrumentation.

Another advantage is the use of high level C-language routines for instruction substitu-

tion. This makes it relatively simple to implement arbitrarily complex on-the-y analysis.

Finally, because the application code is actually executed along with the extra analysis

routines, veri�cation is performed simply by comparing program output before and after

instrumentation. For example, when instrumenting an mpeg decoder, many subtle bugs

1

original code:
...

 .SPACE $TEXT$,SORT=8
 .SUBSPA $CODE$,QUAD=0,ALIGN=8,ACCESS=0x2c,CODE_ONLY,SORT=24
DoDitherImage
 .PROC
 .CALLINFO CALLER,FRAME=16,SAVE_RP,ARGS_SAVED
 .ENTRY
 STW %r2,-20(%r30)
 LDO 64(%r30),%r30
 ADDIL LR'ditherType-$global$,%r27

...

modified code:
...

 .SPACE $TEXT$,SORT=8
 .SUBSPA $CODE$,QUAD=0,ALIGN=8,ACCESS=0x2c,CODE_ONLY,SORT=24
DoDitherImage
 .PROC
 .CALLINFO CALLER,FRAME=16,SAVE_RP,ARGS_SAVED
 .ENTRY
$n1 b,n $m1 ; STW %r2,-20(%r30) ; substituted instruction
 LDO 64(%r30),%r30
 ADDIL LR'ditherType-$global$,%r27

...

procedure calling stub:

$m1
 stw %r2,156(0,%r30) ; save machine state
 bl $saveall,%r2
 nop
 copy %r30,%r25 ;copy basereg to %r25 ; pass parameters
 bl .+12,%r26
 ldo -3(%r26),%r26
 STW %r2,-20(%r30) ; copy op to pass to ryo_word
 bl ryo_word,%r2 ; call instrumentation
 ldo 320(%r30),%r30 ; routine
 bl $restall,%r2 ; restore machine state
 ldo -320(%r30),%r30
 STW %r2,-20(%r30) ; do mem op
 b,n $n1+4 ; return to normal

; program flow

Figure 1: Simple Instruction Substitution

2

were noticed only because the video image displayed did not look quite the way it did when

running the uninstrumented code.

The major disadvantage of this tool is that source code is required to do the instrumen-

tation. This relies on the compiler to correctly generate an intermediate assembly output

which does not always happen. Furthermore, library calls and other pieces of code dy-

namically linked in to the executable will not be instrumented. Finally, in the current

implementation, no information is maintained concerning basic blocks and cycles between

instrumented instructions. This strategy was chosen to make implementation simpler in

that the the high level instrumentation routine does not know any global information about

the program state. It only knows that a given instruction was executed. These drawbacks

could be corrected in future revisions if necessary.

1.3 Implementation

In order to cause a one for one instruction substitution, the basic strategy is to replace

a targeted instruction with an unconditional jump to a stub, save the machine state, and

unconditionally jump back to the instruction following the targeted instruction (see �gure 1).

If the return address was not hard coded at the time of instrumentation, it would be

necessary to store a return address in a register, and thereby alter the machine state.

1.3.1 Branch Delay Slot

This works correctly for the most part, except that a problem arises when a load or store

instruction falls in the branch delay slot of a preceding branch instruction. In this case,

a branch would be substituted in the branch delay slot. The instruction instrumentation

routine will be correctly called as anticipated, but the �nal branch will be to the return

point statically calculated at instrumentation time. Thus, the control ow will return to

the second instruction following the branch rather than the correct branch target (�gure 2).

Note that the branch placed in the branch delay slot of the initial branch correctly modi�es

control ow when a nullifying branch is used.

This problem is corrected as shown in �gure 3. Now the branch instruction with a

load or store following it is also targeted for replacement. It now has its own stub with

an appropriate instrumentation call. This time, though, the �nal instruction in the stub is

not the load or store instruction as before, but instead the branch with the load or store

in the delay slot. The �nal branch returns to the second instruction past the branch, since

the instruction immediately following was already executed in the delay slot. Furthermore,

the initial instruction in the stub is the same branch followed by another branch in the

delay slot that branches to the next sequential instruction. This is so to determine if the

instruction in the delay slot would have been nulli�ed. If it was nulli�ed, then the branch

to the next sequential instruction will now be nulli�ed instead, and the branch will go to

the intended target. If the instruction was not nulli�ed, then the branch in the delay slot

will be executed, and the control ow will continue sequentially. Additionally, the load or

store instruction in the main program body is replaced with an unconditional branch to its

own stub as before.

3

original code:
...

 ADDIL LR'ditherType-$global$,%r27
 BL %r2,$target$
 STW %r2,-20(%r30)
 LDO 64(%r30),%r30

...

...
$target$
 ADDIL LR'M$2-$global$,%r27
 LDO RR'M$2-$global$(%r1),%r26

...

modified code:
...

 ADDIL LR'ditherType-$global$,%r27
 BL %r2,$target$
$n1 b,n $m1
 LDO 64(%r30),%r30

...

...
$target$
 ADDIL LR'M$2-$global$,%r27
 LDO RR'M$2-$global$(%r1),%r26

...

...
$m1
 stw %r2,156(0,%r30)
 bl $saveall,%r2
 nop
 copy %r30,%r25 ;copy basereg to %r25
 bl .+12,%r26
 ldo -3(%r26),%r26
 STW %r2,-20(%r30)
 bl ryo_word,%r2
 ldo 320(%r30),%r30
 bl $restall,%r2
 ldo -320(%r30),%r30
 STW %r2,-20(%r30)
 b,n $n1+4

Figure 2: Mistake in Control Flow for Branch Delay Slot

4

initial code:
...

$L0
 B $00000005
 STW %r29,-52(%r30)

...

modified code:
...

$L0
$n5 b,n $m5 ; B $00000005
$n6 b,n $m6 ; STW %r29,-52(%r30)

...

procedure calling stubs:
$m5
 B $00000005
 b,n .+4 ; test for branch nullification
 stw %r2,156(0,%r30)
 bl $saveall,%r2
 nop
 copy %r30,%r25
 bl .+12,%r26
 ldo -3(%r26),%r26
 STW %r29,-52(%r30)
 bl ryo_word,%r2
 ldo 320(%r30),%r30
 bl $restall,%r2
 ldo -320(%r30),%r30
 B $00000005 ; execute branch and instruction
 STW %r29,-52(%r30) ; in branch delay slot
 b,n $n5+8
$m6

...

... ; simple substitution routine as in fig 1

...
 b,n $n6+4

Figure 3: Unconditional Branch Instrumentation

5

At this point one might wonder why it is necessary to replace both the branch and the

instruction in the delay slot with branches to stubs. Since the instrumentation routine for

the load or store in the delay slot is called from the stub for the branch, why is it necessary

for the instruction in the delay slot to have its own calling stub? This is because it is

possible for the instruction in the delay slot to be a target for some previous jump. In this

case it should be executed as a standalone instruction and not in the delay slot of a branch.

A �nal complication is added in the case of an unconditional branch. Recall that the

�rst instructions in the calling stub are the original branch and a branch in its delay slot

(see �gure 3). This was done to determine if the delay slot instruction should be nulli�ed.

For unconditional branches, the nulli�cation is dependent upon the direction of the branch,

so that care must be taken to ensure that the branch direction is the same as it was in the

original code. This is done by having the branch go to a forward or reverse stub, which

then branches to the original target (see �gure 4). The decision whether to use a forward

or reverse stub can be determined at instrumentation time by comparing the address of

the branch instruction with the target. In this �nal form, all branches will be correctly

instrumented and executed.

initial code:
...

 ADDIL LR'ditherType-$global$,%r27
 COMIB,=,N 0,%r8,$0002004A ;offset 0x2ac
 LDWX,S %r9(%r7),%r26

...

modified code:
...

 ADDIL LR'ditherType-$global$,%r27
$n115 b,n $m115 ; COMIB,=,N 0,%r8,$0002004A
$n116 b,n $m116 ; LDWX,S %r9(%r7),%r26

...

procedure calling stub:
$m115
 COMIB,=,N 0,%r8,$forwstub115 ; replace target field
 b,n .+4
 stw %r2,156(0,%r30)
 bl $saveall,%r2
 nop
 copy %r9,%r24
 copy %r7,%r25
 bl .+12,%r26
 ldo -3(%r26),%r26
 LDWX,S %r9(%r7),%r26
 bl ryo_wx,%r2
 ldo 320(%r30),%r30
 bl $restall,%r2
 ldo -320(%r30),%r30
 COMIB,=,N 0,%r8,$forwstub115 ; do branch and op in delay slot
 LDWX,S %r9(%r7),%r26
 b,n $n115+8
$forwstub115
 b,n $0002004A

Figure 4: Conditional Branch Instrumentation

1.3.2 Saving and Restoring Machine State and Parameter Passing

After it has been determined that the load or store instruction targeted is not to be nulli�ed,

the state of the machine must be stored. This is done simply by copying the register set

6

to the stack. All caller-save general purpose and oating point registers, as well as relevant

special registers such as the shift amount register, and space id registers are copied. The

stack pointer is then incremented to point to the new top of stack. Performance could be

improved by saving only those registers currently in use, but doing the necessary dependency

checking would probably greatly complicate the implementation.

Next, the appropriate parameters must be copied to the correct registers for passing to

the instrumentation routine. First, a BL instruction is executed such that the return address

points to the targeted load store instruction. This pointer is passed to the instrumentation

routine so that the instruction in machine format is available for analysis. In most cases,

the base address and o�set are also passed as parameters, but this can vary for di�erent

types of memory operations.

After the instrumentation routine is called, the machine state is restored in the opposite

way from which it was saved, and the control ow is returned to the next proper instruction.

In this way, when the program is executed, all instructions will be executed as normal, but

instrumentation routines will also be called for all targeted instructions.

2 How to Use RYO

RYOLS is really an awk script that takes an assembly �le as input. An instrumented

.s �le is output and assembled to an object �le. The object �le is then linked with the

instrumentation library to create an instrumented executable. If one were to instrument

the C program test.c, for example, one would type :

cc -S -O test.c

awk -f ryols.awk <test.s >test.fs

as -o test.o test.fs

cc test.o lib.c -o test_inst.

2.1 Compiler Errors

This assumes that the .s assembly �le is correct. Unfortunately, the HP C compiler does

not always produce a correct .s �le. The authors have found two problems for which

solutions are given below, however, it is likely that other compiler bugs exist. Therefore,

if the instrumented code does not behave as expected, the �rst thing to check is to see if

it runs correctly without instrumentation, but compiled through an intermediate assembly

language step. For the above example, one would see if the executable created with :

cc -S -O test.c

as -o test.o test.s

cc test.o -o test_s

behaves the same as one compiled in the normal way. The GNU C compiler actually uses an

intermediate .s �le in program compilation, since it generates object code with the native

assembler. For this reason, one would expect generation of a correct .s �le when compiling

with GCC, however, use of the non-native compiler may generate less e�cient code.

7

2.1.1 Branch Targets

Occasionally, the compiler will lose track of branch targets and will substitute \???" for

the branch target �eld. If left uncorrected, this will cause an error in the assembler. The

tool �xtargets �xes this problem.

Fixtargets requires the existence of a correct .o and the awed .s �le. These can be

created with :

cc -S -c test.c.

Next, type :

fixtargets test

and the correct .o code will be disassembled to provide the correct branch targets for

substitution into the .s �le. Branches to a symbolic target plus an o�set are handled such

that the o�set is always in decimal.

2.1.2 Indirect procedure calls

If a procedure name is used as a parameter passed to another procedure, incomplete assem-

bly code is generated. If, for example, a procedure named key is the parameter to another

procedure call, the compiler will generate :

.WORD key.

towards the end of the .s �le. This must be altered so that it instead reads :

.WORD P'key.

2.2 Long Branches

In some cases, so much instrumentation code will be added to the executable that the

branch target �eld will not have enough bits to hold the correct target. This usually occurs

in branches to procedures in other modules. In this case, the linker will try to build a

procedure stub at the beginning of the object �le. If the object �le is very large, then

branches from the end of the �le will not be able to reach the beginning of the �le. This is

usually seen during link time with an error like :

The value 0xfffbffcc did not fit into a 19 bit field at offset 0x4024c

In this case one should execute these instructions :

cp test.fs test.fs.bad

awk -f offset.awk <test.fs.bad | awk -v StartFix=262632 -f lbranch.awk >test.fs

8

original code:
...

 copy %r30,%r25
 .CALL ARGW0=GR,ARGW1=GR,RTNVAL=GR
 BL printf,%r2
 b,n .+4

...

modified code:
...

printf_stub
 .CALL ARGW0=GR,ARGW1=GR,RTNVAL=GR
 bl,n printf,%r0

...

...

...
 copy %r30,%r25
 BL printf_stub,%r2
 b,n .+4

...

Figure 5: Instrumented Code with `Stepping Stone' to Correct Long Branch Errors

In this case, 262632 is the o�set given in the above error message (0x4024c) converted

to decimal less 100. The factor of 100 is an error margin to allow for insertion of extra

instructions and can be made larger or smaller at the user's discretion.

This will create a `stepping stone' for all procedure calls after the o�set where the error

was encountered. A `stepping stone' is an intermediate branch target followed by a branch

to the original target so that the long branch is broken into two shorter ones (�gure 5).

Note that this strategy will only work up to a certain point. The authors have not

encountered any cases where it did not work, but this does not guarantee that it always

will. Some manual tweaking of the branch targets may be called for. Furthermore, if this

does not work the �rst time and further iterations of lbranch.awk are required, one must

always resume from the original �le, test.fs.bad.

2.3 O�set.awk

Finally, o�set.awk is a utility provided to calculate the new instruction o�sets after the

instrumentation code has been added. To use o�set.awk, simply type :

awk -f offset.awk <test.fs >test.fs.off

Test.fs.o� can be modi�ed and run through multiple iterations of o�set.awk.

3 Example Data

This section presents experimental data actually obtained with RYOLS and RYOFP. Two

examples of data are presented to illustrate how varying the instructions targeted for re-

placement and the instrumentation library can produce totally di�erent types of data. The

�rst example shows arithmetic data generated from a JPEG [6] decoder, and the second

shows address traces generated from mpeg play [4].

9

Length of Longer Operand (bits)

N
u

m
b

er
 o

f
O

p
er

at
io

n
s

0

5000

10000

15000

20000

25000

30000

0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

4
8

5
0

5
2

Figure 6: Operand Length Histogram

3.1 Arithmetic

To generate this data, RYOFP was run on djpeg, the Independent JPEG Group's JPEG

software decoder modi�ed to use oating point for the DCT calculations. It was also

modi�ed to use DE arithmetic enhancement for increased performance [7]. Floating point

operations were selected for instrumentation. The instrumentation library dynamically

calculated the length of operands in bits for each oating point arithmetic operation en-

countered when executing the instrumented code on the image Lena, and wrote the longer

of the two operands to an output �le. Finally, a graph was constructed to show a histogram

of operand lengths.

The most interesting thing to note from the data is the large number of zero length

operands. A compressed image will tend to have many zero elements in each 8x8 macro

block, and this is clearly indicated in the experimental data obtained.

There is also a noticeable hump at approximately 27 bits. This is an e�ect of DE

calculation methodology. In this case, operands are 27 bits long when one of the two

operands packed into a single double precision data word equals zero.

3.2 Memory

This data was obtained by using RYOLS to instrument load and store instructions in

mpeg play, Berkeley's MPEG [1] player. The instrumentation library simply printed the

type of operation and the instructions address to an output trace �le. In this case, not

only load and store instructions, but also the library routine fread was instrumented. It

was observed that all input data was coming through fread, so this routine was additionally

10

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
E

+
0

6Cache Size (bytes) 8
4

2
1

Associativity

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Miss Rate

Figure 7: Data Cache Miss Rate

instrumented to simulate more accurate memory behavior.

These address traces were then used as an input to dineroIII [2], a popular cache simu-

lator. The same address trace �le was used to generate cache miss rates for many di�erent

cache designs. The data is shown in �gure 7. It is interesting to note that for the movie

played, waterski.mpg, virtually all the data references are captured with a cache of size 1MB.

Finally for smaller sized caches, changing from direct mapped to 2 way gives approximately

the same e�ect as doubling the cache size.

4 Conclusion

RYOLS and RYOFP are two general purpose tools from the RYO family of instumentation

tools for the PA-RISC architecture. Since an arbitrary instrumentation routine is substi-

tuted for designated instructions, the utility of the tool is limited only by the creativity of the

user. For information on obtaining RYOLS email the authors at zucker@umunhum.stanford.edu

or karp@hpl.hp.com.

5 Acknowledgments

The authors would like to thank Michael J. Flynn and Ruby B. Lee for their overall support

of this work, and brians@cup.hp.com for his help with the HP C compiler.

11

A Source Code for Ryols.awk

#

This awk script takes a .s file as input and produces a .s file with

all memory ops replaced by subroutine calls. It will

handle nullified ops correctly.

If you use any substantive part of this work, please acknowledge the

source.

#

I'll try to help, but I make no promises.

#

Alan H. Karp, HP Labs, karp@hpl.hp.com

Last modified June 30, 1993

#

Modified by Dan Zucker, Stanford University, January, 1994

Modified again September, 1994 to generate address traces

Modified January, 1995

zucker@umunhum.stanford.edu

#

special command line options:

-v proc=myprocname instruments only the named procedure

#

#

Initialize

#

BEGIN {

offcount = -4

labelcount = 0

label = 0

nh = 0

target = 0

arch = "DA1.0" # DA1.1 for 32 fprs and 5-ops

for (i = 1; i <= 200; i++) hist[i] = 0

#

Routine to call for each op_type

#

nroutines = 0

routine[nroutines++] = "ryo_error"

routine[nroutines++] = "ryo_word"

routine[nroutines++] = "ryo_halfword"

routine[nroutines++] = "ryo_byte"

routine[nroutines++] = "ryo_wm"

routine[nroutines++] = "ryo_wx"

12

routine[nroutines++] = "ryo_hx"

routine[nroutines++] = "ryo_bx"

routine[nroutines++] = "ryo_wax"

routine[nroutines++] = "ryo_cwx"

routine[nroutines++] = "ryo_ws"

routine[nroutines++] = "ryo_hs"

routine[nroutines++] = "ryo_bs"

routine[nroutines++] = "ryo_was"

routine[nroutines++] = "ryo_cws"

routine[nroutines++] = "ryo_bys"

routine[nroutines++] = "ryo_fwx"

routine[nroutines++] = "ryo_fdx"

routine[nroutines++] = "ryo_fws"

routine[nroutines++] = "ryo_fds"

routine[nroutines++] = "ryo_fread"

#

Define caller saves registers

#

grs = "%r1 %r2 %r19 %r20 %r21 %r22 %r23 %r24 %r25 %r26 %r27 %r28 %r29 %r31 "

frs = "%fr4 %fr5 %fr6 %fr7 %fr8 %fr9 %fr10 %fr11 "

if (arch == "DA1.1")

frs = frs "%fr22 %fr23 %fr24 %fr25 %fr26 %fr27 %fr28 %fr29 %fr30 %fr31 " # Used

srs = "%sr0 %sr1 %sr2 %sr3" # Is sr3 needed?

crs = "%cr11"

caller_saves = grs " " frs " " srs " " crs

ncs = split(caller_saves,csr)

frs_calle = "%fr12 %fr13 %fr14 %fr15 %fr16 %fr17 %fr18 %fr19 %fr20 %fr21 "

nce = split(frs_calle,cse)

#

#

Generate instructions to save and restore registers

#

k = 0

n = split(frs,r)

for (i = 1; i <= 2; i++) {

save[r[i]] = " fstds " r[i] "," k "(0,%r30)"

rest[r[i]] = " fldds " k "(0,%r30)," r[i]

k = k + 8

}

for (i = 3; i <= n; i++) {

save[r[i]] = " ldo " k "(%r30),%r1" ORS " fstdx " r[i] ",0(0,%r1)"

rest[r[i]] = " ldo " k "(%r30),%r1" ORS " flddx 0(0,%r1)," r[i]

k = k + 8

}

13

n = split(frs_calle,r)

for (i = 1; i<= n; i++) {

save[r[i]] = " ldo " k "(%r30),%r1" ORS " fstdx " r[i] ",0(0,%r1)"

rest[r[i]] = " ldo " k "(%r30),%r1" ORS " flddx 0(0,%r1)," r[i]

k = k + 8

}

save["%fr0"] = " ldo " k "(%r30),%r1" ORS " fstdx " r[i] ",0(0,%r1)"

rest["%fr0"] = " ldo " k "(%r30),%r1" ORS " flddx 0(0,%r1)," r[i]

k = k + 8

n = split(grs,r)

for (i = 1; i <= n; i++) {

save[r[i]] = " stw " r[i] "," k "(0,%r30)"

rest[r[i]] = " ldw " k "(0,%r30)," r[i]

k = k + 4

}

n = split(srs,r)

for (i = 1; i <= n; i++) {

save[r[i]] = " mfsp " r[i] ",%r1" ORS " stw %r1," k "(0,%r30)"

rest[r[i]] = " ldw " k "(0,%r30),%r1" ORS " mtsp %r1," r[i]

k = k + 4

}

n = split(crs,r)

for (i = 1; i <= n; i++) {

save[r[i]] = " mfctl " r[i] ",%r1" ORS " stw %r1," k "(0,%r30)"

rest[r[i]] = " ldw " k "(0,%r30),%r1" ORS " mtctl %r1," r[i]

k = k + 4

}

#

Calculate additonal stack size needed

Round up to 64 byte boundary

#

added_stack = 64 + 64*int((k+63)/64)

stack_save = " ldo " added_stack "(%r30),%r30"

stack_rest = " ldo -" added_stack "(%r30),%r30"

#

Put out code sequences to save and restore all registers

#

#

Probably don't need to save frs_calle but better safe...

#

save_restore_reg = caller_saves #" " frs_calle

nsr = split(save_restore_reg, srreg)

add saveall,restall code

14

hold[++nh] = "$saveall"

for (j = 1; j <= nsr; j++)

if (srreg[j] != "%r2") hold[++nh] = save[srreg[j]]

hold[++nh] = rest["%r1"] #added 10-21-94

hold[++nh] = " bv 0(%r2)"

hold[++nh] = rest["%r2"]

#

Set up to restore all registers before a branch

#

hold[++nh] = "$restall"

for (j = nsr; j > 0; j--)

if (srreg[j] != "%r2") hold[++nh] = rest[srreg[j]]

hold[++nh] = " bv 0(%r2)"

hold[++nh] = rest["%r2"]

#

Set up to save all registers following a branch target

}

#

Read file and keep track of branch targets and op types

#

{

line[NR] = $0

split($0,op," ")

#

Determine instruction type

#

op_type[NR] = "int"

if (substr(op[1],1,1) == ".") op_type[NR] = "directive"

if (index(op[1],",SGL") != 0) op_type[NR] = "float"

if (substr(op[1],1,3) == "FLD") op_type[NR] = "load"

if (substr(op[1],1,3) == "FST") op_type[NR] = "store"

if (index(op[1],",DBL") != 0) op_type[NR] = "double"

if (substr(op[1],1,2) == "LD" && substr(op[1],3,1) != "I" &&

op[1] != "LDO" && op[1] != "LDSID") op_type[NR] = "load"

if (substr(op[1],1,2) == "ST") op_type[NR] = "store"

split(op[1],opc,",")

if (opc[1] == "MOVB" ||

opc[1] == "MOVIB" || opc[1] == "COMB" ||

opc[1] == "COMBT" || opc[1] == "COMBF" ||

opc[1] == "COMIBT" || opc[1] == "COMIBF" ||

opc[1] == "COMIB" || opc[1] == "ADDB" ||

opc[1] == "ADDBT" || opc[1] == "ADDBF" ||

opc[1] == "ADDIBT" || opc[1] == "ADDIBF" ||

opc[1] == "ADDIB" ||

15

opc[1] == "BVB" || opc[1] == "BB" ||

opc[1] == "COMIB")

op_type[NR] = "cbranch"

if (opc[1] == "BL" || opc[1] == "BLR" ||

opc[1] == "BV" || opc[1] == "BE" ||

opc[1] == "BLE" || opc[1] == "B")

op_type[NR]= "branch"

if (substr($1,1,1) == ";") op_type[NR] = "comment"

if (substr($0,1,1) != " " && substr($0,1,1) != "\t") op_type[NR] = "target"

if ($0=="") op_type[NR] = "nothing"

hacks -- causes intentional syntax errors

if (substr(op[1],1,4) == "GATE") print "GATE instruction found"

#

Compute offsets

#

if (op_type[NR] != "target" && op_type[NR] != "comment" &&

op_type[NR] != "directive" && op_type[NR] != "nothing") {

length($0) > 1)

offcount = offcount + 4

offset[NR] = offcount

; ilinenum[offcount] = NR

} else offset[NR] = offcount + 4

keep track of target offset

if (op_type[NR] == "target") toffset[op[1]] = offset[NR]

}

function out_ryo_code(lineout) {

nopc=split(lineout,opc)

type = 0 # Bad op code

if (substr(opc[1],3) == "W") type = 1 # word

if (substr(opc[1],3) == "H") type = 2 # halfword

if (substr(opc[1],3) == "B") type = 3 # byte

if (substr(opc[1],3) == "WM") type = 4 # word and modify

if (substr(opc[1],3,2) == "WX") type = 5 # word indexed

if (substr(opc[1],3,2) == "HX") type = 6 # halfword indexed

if (substr(opc[1],3,2) == "BX") type = 7 # byte indexed

if (substr(opc[1],3,3) == "WAX") type = 8 # word absolute indexed

if (substr(opc[1],3,3) == "CWX") type = 9 #and clear word indexed

if (substr(opc[1],3,2) == "WS") type = 10 # word short

if (substr(opc[1],3,2) == "HS") type = 11 # halfword short

16

if (substr(opc[1],3,2) == "BS") type = 12 # byte short

if (substr(opc[1],3,3) == "WAS") type = 13 # absolute short

if (substr(opc[1],3,3) == "CWS") type = 14 # and clear word short

if (substr(opc[1],3,3) == "BYS") type = 15 # bytes short

if (substr(opc[1],4,2) == "WX") type = 16 # float word indexed

if (substr(opc[1],4,2) == "DX") type = 17 # float double indexed

if (substr(opc[1],4,2) == "WS") type = 18 # float word short

if (substr(opc[1],4,2) == "DS") type = 19 # float double short

if (substr(opc[1],1,2) == "BL" &&

substr(opc[2],1,5) == "fread") type = 20 # fread

#

save registers

#

hold[++nh] = save["%r2"]

hold[++nh] = " bl $saveall,%r2"

hold[++nh] = " nop"

hold[++nh] = rest["%r1"]

#

get pointer to op

#

hold[++nh] = stack_save

nreg = split(opc[2],reg,"[()]")

nsubspace = split(reg[2],subspace,",")

if (nsubspace == 1) basereg = subspace[1]

else basereg = subspace[2]

if (type != 20) {

if (type>=5 && type <= 9) {

indexreg = reg[1]

hold[++nh] = " \tcopy " indexreg ",%r24 ;copy indexreg to %r24"

}

if ((type>=5 && type <= 9) && basereg=="%r24") {

temp = rest["%r24"]

sub("%r24","%r25",temp)

hold[++nh] = temp "; restore basereg from memory"

}

else hold[++nh] = " \tcopy " basereg ",%r25 ;copy basereg to %r25"

hold[++nh] = " \tbl .+12,%r26"

hold[++nh] = " \tldo -3(%r26),%r26"

hold[++nh] = lineout

}

17

#

Set up for call

#

#increment stack pointer and call correct routine

hold[++nh] = " bl\t" routine[type] ",%r2"

hold[++nh] = stack_save

hold[++nh] = " nop"

#

restore register set

#

hold[++nh] = " bl $restall,%r2"

hold[++nh] = stack_rest

hold[++nh] = " nop"

hold[++nh] = rest["%r2"] # is this right?

}

#

Now process file

#

END {

#

Replace load/stores with branches

#

second iteration through instruction stream

for (i = 1; i <= NR; i++) {

#

Parse current line

#

split(line[i],op," ")

n = split(op[1],opc,",")

nreg = split(op[2],r,"[(),]")

if (op[1] == ".END") {

for (j = 0; j < nroutines; j++)

print "\t.import " routine[j] ",code\t\t; Added ryofp_s"

}

18

if (op_type[i+1] == "directive") {

na = split(line[i+1],a)

if (a[1]==".PROC") {

if (op_type[i] != "target") print "error of type 1"

else dothisprocedure = (proc == op[1])

}

}

na = split(line[i-1],a)

if (a[1]==".PROCEND") dothisprocedure=0

if (dothisprocedure==1 || proc=="") {

#only instrument certain procedures

#

found a load/store

#

if (op_type[i]=="load" || op_type[i]=="store") {

#

Replace op with branch and build code to make call

#

label++ # Label counter

print "$n" label "\tb,n $m" label " ; " line[i] " " op_type[i]

#

Code to build stub routine begins here

#

hold[++nh] = "$m" label

out_ryo_code(line[i])

hold[++nh] = line[i]

hold[++nh] = "\tb,n $n" label "+4"

#end build code stub

} else if (op_type[i] == "cbranch") {

origline = line[i]

#find next real instruction

nextline = i+1

while((op_type[nextline]=="target" || op_type[nextline]=="directive" ||

op_type[nextline]=="comment" || op_type[nextline]=="nothing") &&

nextline<=NR) nextline++

if (op_type[nextline] =="load" || op_type[nextline] =="store") {

label++

19

print "$n" label "\tb,n $m" label " ; "line[i]

#determine target and target direction

nl = split(line[i],op," ")

nm = split(op[2],field,",")

target_field = field[nm]

targ_offset = toffset[target_field]

if (index(target_field,"+") != 0) {

no = split(target_field,operand,"+")

if (operand[1]==".") operand[1] = offset[i]

targ_offset = toffset[operand[1]] + operand[2]

}

if (index(target_field,"-") != 0) {

no = split(target_field,operand,"-")

if (operand[1]==".") operand[1] = offset[i]

targ_offset = toffset[operand[1]] - operand[2]

}

if (offset[i]-targ_offset >0) forwbranch=0

else forwbranch = 1

if (forwbranch) {

new_targ = "$forwstub" label

} else {

hold[++nh] = "$backstub" label

hold[++nh] = "\tb,n \t" target_field

new_targ = "$backstub" label

}

substitute new target field

op[2] = ""

for (k=1; k<=nm-1; k++)

op[2] = op[2] field[k]","

op[2]=op[2] new_targ

line[i] = "\t" op[1] "\t" op[2]

for (k=3; k<=nl; k++)

line[i]= line[i] " " op[k]

line [i] = line[i]" ; -- "origline

hold[++nh] = "$m" label

hold[++nh] = line[i]

20

hold[++nh] = "\tb,n \t.+4"

out_ryo_code(line[nextline]) #bug with type for the moment

#

fix addib immediate field

#

change immediate value to zero in ADDIB

if (substr(op[1],1,5) == "ADDIB") {

numop=split(line[i], op, " ")

numop2 = split(op[2],op2,",")

tempa = "\t" op[1] "\t0"

for (k = 2; k <= numop2; k++)

tempa = tempa "," op2[k]

for (k = 3; k<= numop; k++)

tempa = tempa " " op[k]

line[i] = tempa

}

hold[++nh] = line[i]

hold[++nh] = line[nextline]

hold[++nh] = "\tb,n \t$n" label "+8"

if (forwbranch == 1) {

hold[++nh] = "$forwstub" label

hold[++nh] = "\tb,n \t" target_field

}

} else print line[i]

}

else if (op[1] == ".CALL" && op_type[i+1] == "branch") {

#found a procedure call

#find next real instruction

nextline = i+2

while((op_type[nextline]=="target" ||

op_type[nextline]=="directive" ||

op_type[nextline]=="comment" ||

op_type[nextline]=="nothing") &&

nextline<=NR) nextline++

numa = split(line[i+1],a," ")

numb = split(a[2],b,",")

look for specific library calls

if (b[1]=="fread") {

label++

print "$n" label "\tb,n $m" label " ; special library call "line[i+1]

21

hold[++nh] = "$m" label

substitue destination

tempout = "\t" a[1] "\t$nullinstr" label ",%r0"

for (j=3; j<=numa; j++) tempout = tempout "\t" a[j]

hold[++nh] = tempout #BL or BLE

hold[++nh] = "\tb,n \t.+4"

if (op_type[nextline] =="load" || op_type[nextline] =="store") {

fread with load/store in delay slot

out_ryo_code(line[nextline])

hold[++nh] = line[nextline]

} else {

fread with normal op in delay slot

hold[++nh] = line[nextline]

}

hold[++nh] = "$nullinstr" label

out_ryo_code(line[i+1])

hold[++nh] = line[i]

hold[++nh] = line[i+1]

hold[++nh] = "\tnop"

hold[++nh] = "\tb,n \t$n" label "+8"

i++

} else {

if (op_type[nextline] =="load" || op_type[nextline] =="store") {

label++

print "$n" label "\tb,n $m" label " ; .CALL "line[i+1]

hold[++nh] = "$m" label

hold[++nh] = line[i] #.call

hold[++nh] = line[i+1] #BL or BLE

hold[++nh] = "\tb,n \t.+4"

out_ryo_code(line[nextline])

hold[++nh] = line[i] #.call

hold[++nh] = line[i+1]

hold[++nh] = line[nextline]

hold[++nh] = "\tb,n \t$n" label "+8"

i++;

} else print line[i]

} # op type branch but not a specific library call

} else if (op_type[i] == "branch") {

#not procedure call

22

#find next real instruction

nextline = i+1

while((op_type[nextline]=="target" ||

op_type[nextline]=="directive" ||

op_type[nextline]=="comment" ||

op_type[nextline]=="nothing") &&

nextline<=NR) nextline++

if (op_type[nextline] =="load" || op_type[nextline] =="store") {

label++

print "$n" label "\tb,n $m" label " ; "line[i]

hold[++nh] = "$m" label

hold[++nh] = line[i]

hold[++nh] = "\tb,n \t.+4"

out_ryo_code(line[nextline])

hold[++nh] = line[i]

hold[++nh] = line[nextline]

hold[++nh] = "\tb,n \t$n" label "+8"

} else print line[i]

} else {

#not a branch,load, or store

if (op[1] == ".PROCEND") {

print "; ------ Start code added by ryofp ---------------"

#

Print hold[nh] instructions for each routine instructions

#

for (j = 1; j <= nh; j++) print hold[j]

nh = 0

print "; ------ End code added by ryofp -----------------"

}

#output instruction

print line[i]

} #end of else--not a load or store

} else { # code that's not being instrumented

print line[i]

}

Set up for next line

#

if (op_type[i] != "target" && op_type[i] != "directive" &&

op_type[i] != "comment") prev_inst_no = i

} #for i loop

23

} #END

24

B An Example Instrumentation Routine

basic_instr(pointer,basereg)

int *pointer,basereg;

{

int i,j,k;

/* get immediate field */

j = *pointer;

j = j & 0x3fff; /* right most 14 bits */

k = 1<<13;

if (j&1) /* sign extend */ {

j = j | 0xffffc000; /* left most 18 bits */

}

j = j>>1; /* get rid of sign bit (arithmetic shift)*/

fprintf(fpryo,"%x", basereg+j);

fprintf(fpryo,"\t%x",pointer);

#if verbose

fprintf(fpryo,"\tLD/ST W/H/B \n");

fprintf(fpryo,"\t\t\toffset=%i \tbasereg=%x\n",j,basereg);

i = (*pointer >> 21) & 0x1f;

fprintf(fpryo,"\t\t\tbasereg=%%r%i\n",i);

#else

fprintf(fpryo,"\n");

#endif

}

ryo_word (pointer,basereg)

int *pointer,basereg;

{

int i,j,k;

i = (*pointer >> 26) & 0x3f;

if (i==0x1A) fprintf(fpryo,"1 "); /* store */

else if (i==0x12) fprintf(fpryo,"0 "); /* load */

else fprintf(fpryo,"error at %x\n",pointer);

basic_instr(pointer,basereg);

}

25

References

[1] D. Le Gall. MPEG: A Video Compression Standard for Multimedia Applications. Com-

munications ACM, 34(4):46{58, April 1991.

[2] M.D. Hill, J.R. Larus, A.R. Lebeck, M. Talluri, and D.A.Wood. Wisconsin Architectural

Research Tool Set. Computer Architecture News, 21(4):8{10, September 1993.

[3] Ruby B. Lee. Precision Architecture. Computer, 22(1):78{91, January 1989.

[4] K. Patel, B.C. Smith, and L.A. Rowe. Performance of a Software MPEG Video Decoder.

In Proceedings ACM Multimedia 93, pages 75{82, August 1993.

[5] Michael D. Smith. Tracing with pixie. ftp document, Center for Integrated Systems,

Stanford University, April 1991.

[6] Gregory K. Wallace. The JPEG Still Picture Compression Standard. Communications

ACM, 34(4):30{44, April 1991.

[7] Daniel Zucker and Ruby Lee. Reuse of High Precision Arithmetic Hardware to Perform

Multiple Concurrent Low Precision Calculations. Technical Report No. CSL-TR-94-616,

Computer Systems Laboratory, Stanford University, April 1994.

26

