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Abstract

This paper presents a CAD tool for the synthesis of robust asynchronous control circuits using limited-fanin basic
gates such as AND gates, OR gates, and C-elements. The synthesized circuits are speed-independent; that is, they
work correctly regardless of individual gate delays. Included in our synthesis procedure is an efficient procedure
for logic optimizations using observability don’t cares and incremental verifcation.  We apply the procedure to a
variety of specifications taken from industry and previously published examples and compare our speed-independent
implementations to those generated using a non-speed-independent synthesis procedure included in Berkeley’s SIS.
Our implementations are not only more robust to delay variations since those produced by SIS rely on bounded
delay lines to avoid circuit hazards but also are on average 13% faster with an area penalty of only 14%.
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1 Introduction .

As competitive asynchronous chips gain attention [lo, 15, 20, 31, 42, 47, 491,  asynchronous design is increasingly
being considered as a practical and efficient design alternative. Asynchronous designs do not require a global clock
for synchronization. Instead, synchronization is event-driven that is transitions on wires act to request the start
of a computation and acknowledge its completion. By removing the global clock, this design style has several
advantages including absence of problems related to clock-skew, freedom from designing for worst-case delay, and
automatic power-down of unused circuitry.

Speed-independent circuits are an attractive subclass of asynchronous circuits because they can tolerate delay
variations resulting from variations in IC processing, temperature, and voltage. More precisely, these circuits work
correctly regardless of the delays of individual gates, while assuming constant wire delays for multiple fanouts
[39].  As a result, achieving speed-independence avoids the need for timing assumptions and delay lines that tend to
increase area and delay while reducing the reliability of the circuit. This insensitivity to variation in gate delays also
means that components within a speed-independent system can be replaced by faster components without needing
to redesign any other part of the system. Moreover, speed-independent circuits can exhibit more concurrency than
fundamental mode circuits [43,  481  which require that inputs change only after the entire circuit is guaranteed to
be stable. Speed-independent circuits can also be easily verified [3, 181  and have a testability advantage-they are
self-checking with respect to a broad class of multiple output stuck-at-faults [2].

Previously, automated synthesis of speed-independent circuits required complex-gates-every specified output
signal was implemented with a single, possibly very complicated, atomic gate [ 12, 371.  Unfortunately, such
circuits can be unreliable, since unmodeled glitches within the complex-gates may cause circuit malfunction. These
unmodeled glitches are especially problematic in standard-cell and programmable gate-array implementations in
which complex-gates are usually implemented with a collection of standard logic cells. A more reliable approach
is to synthesize gate-level implementations comprised of only basic gates that can be easily incorporated into
standard-cell and gate-array libraries.

To build gate-level speed-independent circuits, Martin and Burns add state variables to the specification to
simplify all complex-gates to gates that exist in the gate library or can be reliably generated using a module
generator [33].  Unfortunately, the addition of state variables often requires user intervention and some circuits
require specialized gates which may not be suited for gate-array and standard-cell implementations. Nevertheless,
this semi-automated method has been used to build many large custom designs including a sixteen-bit asynchronous
microprocessor [34,  471.

Kishinevsky and Varshavsky proved that a gate-level speed-independent implementation can always be found for
a limited class of specifications (Chapter 5 of [52]).  They considered distributive specifications of autonomous cir-
cuits [38],  which have no inputs. They proved that all such specifications can be implemented speed-independently
using 2-input NAND gates. Their goal, however, was theoretical in nature and did not include practical considera-
tions such as speed and area. As a result, their algorithm produces large, complex circuits because it unnecessarily
adds many state variables to avoid hazards. In addition, since their circuits do not model inputs, their algorithm is
restricted to circuits that do not exhibit conditional behavior modeled by input (environmental) choice.

Since then, there have been several works on synthesizing speed-independent circuits from specifications with
choice to basic gates with unlimited fanin. First, in a preliminary version of this work [5], we developed an
algorithm to generate unlimited-fanin gate-level speed-independent circuits from state graph (SG) specifications that
can model input choice. Subsequently, K. Lin and C. Lin developed an algorithm transforming a free-choice signal
transition graph (STG) into an unlimited-fanin gate-level speed-independent circuit [30].  In addition, Kondratyev
et al. proposed a similar synthesis algorithm to our previous work [25].  Both the works of [30]  and [25]  do not
address the problem of synthesis using limited-fanin gates and restrict the circuit’s combinational blocks to two-level
logic which may not be the optimal implementation. In addition, the theory in [25]  is ambiguous, allowing some
hazardous circuits to be synthesized. Fortunately, this ambiguity can be resolved with an amendment [24],  making
their theory essentially equivalent to our results presented in [5].

This paper describes a CAD tool for the synthesis of gate-level speed-independent circuits from a class of SG
specifications that include input choice. Our synthesis procedure differs from those described in [30]  and [25]  in
that it addresses synthesis using only limited-fanin gate libraries, and it is capable of using multi-level logic when
necessary. Allowing multi-level implementations can increase gate sharing, reducing circuit area, and can shorten
the critical path, increasing circuit speed.

The synthesis procedure has three steps. First, the procedure implements the circuit using a standard C-
implementation logic template. The procedure employs efficient binate  covering algorithms to find  the optimal
circuit using this template. While this circuit often can be implemented with limited-fanin  basic gates, luger or



very concurrent specifications sometimes require using high-fanin and/or complex gates. Therefore, the second step
of the procedure heuristically decomposes all high-fanin and/or complex gates into limited-fanin basic gates. This
decomposition often requires the addition of connections between gates to remove any hazards caused by the added
delay elements associated with the introduction of new internal signals. Third, the procedure applies a variety of
logic optimizations that improve circuit area and delay.

Both the decomposition and logic optimization procedures explore logic transformations that are not guaranteed
to preserve hazard-freedom. Hence, before accepting any logic transformation, the procedure verifies that the
transformed circuit is hazard-free. Circuit verification has traditionally been computationally expensive, and our
synthesis procedure may require hundreds of verification subtasks. Therefore, to reduce the complexity of the
verification subtasks the procedure uses a logic transformation framework that utilizes observability don’t cares
(ODCs)  and incremental verification. This framework dramatically reduces the amount of computation required for
verifying a sequence of logic transformations, thereby making our synthesis procedure computationally feasible.

We present the area and performance results of the synthesized circuits for all benchmark specifications given
in [27].  Our tool successfully synthesized all circuits with limited-fanin (4-input or less) basic gates. We compare
our synthesized circuits with their non-speed-independent counterparts synthesized by the asynchronous circuit
synthesis package provided in Berkeley’s SIS, in which bounded delay lines are used to remove circuit hazards.
The comparison shows that our circuits are on average 14% larger but 13% faster. These results suggest that while
our constrained logic synthesis strategy to achieve speed-independence may cost marginally in area, the lack of
bounded delay lines often yields faster, more robust circuits than can otherwise be achieved.

2 Specification and implementation

Automated circuit synthesis begins with a high-level specification that describes the desired input/output behavior
of the circuit. For asynchronous circuits, many styles of high-level specifications have been proposed including
languages [32,  501,  graphs [ 12, 141,  and state machines [43].  Although there are many differences between the
various specification styles, they all model (at least implicitly) both the desired circuit behavior and the circuit’s
environment. Thus, unlike many synchronous specification styles, these specifications dictate the input behavior
the circuit can expect, without which it would be quite difficult, if not impossible, to synthesize a hazard-free
implementation. An example of a simple specification using a signal transition graph STG with choice [12]  is
given in Figure l(a).

The first step in our synthesis strategy is to translate the high-level specification into an intermediate format
called a state graph (SG). A SG is general enough to capture all external behavior of a system and can be easily
obtained from most high-level languages. The SG obtained from the STG depicted in Figure l(a) is depicted in
Figure l(b). From the SG, our synthesis procedure synthesized a circuit that implements all output signals with
a netlist of basic gates such as AND gates, OR gates, and C-elements with arbitrary inverted inputs and number
of fanins limited by a given maximum. A hazard-free gate-level speed-independent circuit for the SG depicted
in Figure l(b) is depicted in Figure l(c). This section formalizes both our state graph and circuit implementation
models.

2.1 State graph
A state graph (SG) is modeled by the tuple (I, 0, @, r, s 0, X), where I is a set of input signals, 0 is a set of output
signals, @ is a set of states, r c @ x @ is a set of state transitions, SO is the initial, or reset, state, and X is a labeling
function for states. The set of external signals is the union of the input and output signals (denoted A spec).

The labeling function X labels each state s E @ with a bitvector over the external signals, i.e., A(s)  E BAQec.
The value of a signal u E A,,, in a state s is the value of u in the label of s, i.e., s(u) E X(s)(u). The function
bitcomp(  s, u) returns the label formed from s by complementing the bit corresponding to u. For example, for the
state s labeled [0000] in the SG in Figure 1 (b), bitcomp(  s, a) = [ lOOO].

A state graph must be strongly connected and each ordered pair (s, s’) must differ in exactly one signal, i.e.,
X( s’) = bitcomp(  s, u) for some u E A,,,. For a state transition (s, s’) E r in which X( s’) = bitcomp(  s, u), the
notation s$s’ may be used. A signal u E As,,, is enabled in state s (denoted enabZed(u,  s)) if u can change in
state s, that is, if there exists an s’ E @ such that s:s’ holds.

A SG has unique state coding [ 121  if every state in the state graph has a unique label. A SG has complete
state coding [ 121  if for every pair of states s and s’ that have the same label, s and s’ have the same output signals
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Figure 1: (a) A STG with input choice (motivated by the example STG in Figure 3(d) of [ 13]),  (b) the corresponding
determinate SG and, (c) a corresponding hazard-free gate-level circuit.

enabled. Complete state coding is a necessary property for a state graph to be implementable as a speed-independent
circuit [12].  It has been reported that adding state variables can transform an arbitrary SG into one that satisfies
complete state coding [13,  28, 511.  We therefore assume that one of these algorithms is used before the SG is fed
into our synthesis tool.

A SG with complete state coding can be transformed into a SG with unique state coding by folding states with
the same label into a single state. More precisely, to fold states, take every pair of states s and s’ with the same label,
remove s’ from the set of states @, and replace s’ with s in every place s’ appears in r. Also, if SO  = s’, reassign
so to s. Note that folding such states has no effect on the semantics of the specified output signal behavior and
guarantees that states can be unambiguously referred to by their label, thereby simplifying algorithm presentation.
Therefore, without loss of generality, our algorithms assume that the state graph has unique state coding.

A signal u is disabled by a signal V, v # u, in a state s if u is enabled in state s and not enabled in s’ where
s%‘. A SG is determinate speed-independent if in every state transition in the SG, output signals may not disable
any signals (no output choice) and input signals may not disable output signals but may disable other input signals
(input choice).

The SG in Figure l(b) is determinate speed-independent. Formally, this SG is modeled by (I, 0, @, r, s 0, X)
where I = {a,b}  and 0 = {c,d}. There are 9 states in the set of states @ including states [0000] and [OlOO].
There are 9 transitions in the set of transitions r including [0000] 3[1000]  and [0000] $[OlOO].  These two state
transitions illustrate input choice between a and b since when a fires, b is disabled and when b fires, a is disabled.

2.2 Circuit implementation

A circuit implementation is modeled by a graph (I, 0, N, E, F), where I is the set of input signals, 0 is the set of
output signals, N is the set of internal signals, E is a set of connections between signals, and F is a set of local
gate functions. The set of circuit signals is the union of inputs, outputs, and internal signals (denoted A Gaul).  Each
edge e E E represents a connection between circuit signals. An edge e is directed, connecting a source signal to
a sink signal. The set of fanins of u, denoted FI(u),  is all sources of edges that have u as its sink. Similarly,
the set of fanouts of u, denoted FO(u), is all sinks of edges that have u as its source. This paper considers only
externally-cut circuits in which outputs of all memory elements are primary outputs and external signals cut the
circuit.

The status of an implementation at some point in time is modeled using an implementation state that is either
a bitvector over A,,,l, i.e., Q E 2AI@, or the special value, qfail,  that models the failure state of an implementation
entered after the occurrence of a hazard (defined formally in Appendix E). Each gate output signal u has an
associated Boolean function f E F of arity ]FZ(u)  ] + 1. We refer to fu (q( u), q(vl),  . . . , q(v,)), where Z-V(u)  =
{Vl, 1. *, v,.}, as the internal evaluation of u in q since it depends on the values of circuit signals in state q and we
abbreviate it as fU (q).

3
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Figure 2: (a) The next-state table for c, (b) a complex-gate implementation for the SG depicted in Figure 1, and
(c) the naive sum-of-products implementation.

Figure l(c) depicts a circuit implementation of the SG shown in Figure l(a). Formally, the circuit is modeled
by (I, 0, N, E, F), where I = {a, b}, 0 = {c, d}, N = {e,g}. There are 10 edges in E including (a, d), (b, d),
and (c, d) which correspond to the fanins of d. The functions f E F that are associated with each internal and
output signal are fd = AND-N-3(u,  b, c), fe = AND-N-I-3(u, b, c), fg = OR(d,  e), and fc = C-ELEMENT(c,  b, g).
The circuit signals a and b are input signals and thus have no associated gate function; their behavior is derived
from the specification. Notice that the inverter bubbles are included in the gate function. For example, the gate
AND-N-3 is an AND gate whose third input is inverted.

3 The gate-level synthesis problem

The gate-level synthesis problem is to find a netlist of library gates that implements a given state graph. Previously,
Chu [ 121 and Meng [37]  solved the problem by assuming the gate library had all possible complex gates such that
each output function could be implemented with a single complex gate. When the gate library is more constrained,
such as is in standard cell-based and gate-array designs, each output function must be decomposed into a netlist of
gates available in the library while preserving speed-independence. This section reviews the complex-gate solution
and describes how naive gate-level implementations of output functions can introduce hazards into the circuit, to
present an intuitive overview of our new necessary and sufficient conditions that guarantee hazard-freedom.

3.1 Complex-gate implementations

The synthesis problem using complex gates amounts to deriving the next-state equations for each output signal from
the SG, finding the optimal logic function satisfying the next-state equation, and implementing the optimal logic
function with a single complex gate. As described in [12]  and [37],  the next-state equation of an output signal u
is an incompletely specified function derived from the state graph. For each state s E @ in which u is enabled to
rise or has already risen and is not enabled to fall, its next state is assigned 1. For all other states in s E @, its next
state is assigned 0. The remaining unreachable states in the Boolean space (L?ASpe~  - @) are don’t cares. Standard
Boolean techniques can be used to optimize the next-state equation [8]. The resulting equation is then assumed
to be implemented using a single complex gate. For the output signal c in Figure 1, the next-state function and
complex-gate implementation is illustrated in Figures 2(a) and 2(b).

A complex-gate correctly implements a next-state function if the gate evaluates to the next-state function in each
state. When every complex gate correctly implements the corresponding next-state function, the circuit is complex-
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gate equivalent to its specification. Informally speaking, a circuit is said to be hazard-free if logic glitches cannot
occur at the output of any gate. If every output signal is implemented with a single complex gate, complex-gate
equivalence is sufficient to guarantee that the circuit is hazard-free.

3.2 Gate-level implementations

Gate-level implementations are circuits in which each output signal is implemented with a netlist of basic gates. The
key difference between gate-level implementations and complex-gate implementations is the presence of internal
signals and their associated arbitrary delay elements whose behavior is not modeled in the SG. Since these arbitrary
delays can result in unexpected changes in the arrival order of signal transitions, naive decompositions of complex
gates into netlists of basic gates often introduce hazards. For example, in this section we show that the naive
sum-of-products decomposition of the complex-gate implementation shown in Figure 2(c) has numerous sources of
hazards.

To find hazard-free decompositions, we must understand the sources of such hazards and ensure that our
decompositions do not introduce any of these sources. This subsection describes a classification of hazard sources
based on an interpretation of the request/acknowledge handshaking protocol on circuit gates. First we describe our
interpretation of this protocol in general terms and then use the above example to explain the details.

3.2.1 The request/acknowledge protocol

In its general form, the request/acknowledge handshaking protocol is a method of managing the communication
between modules. For example, a request can represent that data is valid on the inputs of a function block F and
that F should begin to compute. A corresponding acknowledgement from F indicates that the computation has
been completed and that valid data exists on its outputs.

For gate-level speed-independent circuits, a request is a set of states in which a circuit signal u is supposed to
change to a particular value. An acknowledgement of this request is any primary output transition that cannot occur
until after the signal reaches the particular value. A necessary condition to guarantee hazard-freedom is that every
request is acknowledged before a new request is sent to the same signal. Otherwise, the two requests can collide
which causes a hazard.

Acknowledgement, however, is a necessary but not a sufficient condition for hazard-freedom. Since the request
may need to travel through many gates until it reaches the input to the gate that drives the signal, the request must be
guaranteed to be glitch-free. In other words, the request must reach the signal monotonically. Acknowledgement and
monotonicity together form necessary and sufJicient  conditions for hazard-freedom. These concepts are formalized
in Appendices A and B.

3.2.2 Acknowledgement and monotonicity

Since our circuits are externally-cut, only acyclic combinational logic connects internal signals to external signals.
Hence, each circuit signal is either driven high or driven low in each state s but does not necessarily reach this
value before the circuit leaves state s. The value that a signal u is driven to is referred to as the external evaluation
of u in state s, denoted ext-evaZ( s)(u). A signal region of u is a maximal connected set of states in which u has the
same external evaluation, where a set of states is connected if any two members are mutually reachable through an
undirected path of states in the set. Each signal region is a single request for the signal u to change to its external
evaluation. For example, a request for signal v to rise is represented by the signal region { [ 11111,  [ 11 lo], [Ol  lo]}
because v evaluates to 1 in all these states, as depicted in Figure 3.

A path of states through a signal region of u is acknowledged by a transition of a primary output v if the path
includes a state transition ~5s’ which cannot fire until after u reaches its new external evaluation. A signal region
is acknowledged if all paths through the region are acknowledged. There may be many primary output transitions
that can acknowledge the same path through a request. In fact, in the presence of input choice, many primary
output transitions may be needed to acknowledge a single request.

Every request must be acknowledged before a new request is sent to the same signal to prevent two requests
from colliding. Consider the decomposition of the complex gate for the signal c described in Figure 3. Consider
the highlighted path through the rising request for v following states [Ol  lo] and [OOlO].  Notice that the path is not
acknowledged since it does not contain any output signal transition that acknowledges 21 rising. As a result, this
rising request on v can collide with the subsequent falling request on v. In other words, if the AND gate be is
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slow, it may not rise before the circuit enters state [OOlO] and can later be disabled. This can cause the sequence
of transitions u-, c-, v+, c+, v-, c-, representing a dynamic hazard at signal c.

Rising region qf v

State =a
Inputs = {a, b}

Outputs = {c, d)

Figure 3: Illustration of a naive decomposition introducing an acknowledgement violation into the circuit.

As mentioned earlier, the request for a signal transition must be monotonic. Consider the rising request of c
in Figure 4 corresponding to the signal region consisting of states { [OlOO],  [OllO],  [ll lo], [llll], [IlOll}.  In state
transition [ 111 l] z[ 11 lo], the request must travel through the AND gate driving signal w before it reaches the OR
gate that drives signal c. To ensure that c sees this request glitch free during this state transition, c must be insensitive
to d, the falling input to the OR gate. In other words, the request must travel through the AND gate and drive v
high before d can fall. Unfortunately this ordering is not guaranteed and the sequence of transitions d -, c- , v+ ,
c+ depicted in Figure 4 can occur, representing a static O-hazard on output c.

Rising region of c

State

d

7-L
al: U

b-

Inputs = {a, bl

Outputs = {c, dl

Figure 4: Illustration of a naive decomposition introducing monotonicity violation into a circuit,

Appendix C formalizes a procedure that conservatively identifies when internal signals are guaranteed to be
high or low. Appendix D then formalizes the corresponding notions of acknowledgement and monotonicity and
shows that they are sufficient (but not necessary) to guarantee hazard-freedom. We use these sufficient conditions to



prove that
hazards.

our synthesis algorithm generates hazard-free circuits and that our logic transformations do not introduce

4 Standard C-implementation

The first step of our proposed procedure is to generate an optimal block-level implementation. To accomplish this,
set and reset excitation regions of each output signal are identified in the SG and are implemented in independent
blocks called region functions. Intuitively, each region function implements a different output signal transition in a
higher-level specification. For example, the two c+ transitions in the STG depicted in Figure l(a) are independently
implemented using two region functions. The region functions for each output are merged into a signal network,
depicted in Figure 5, using two OR gates and one two-input Muller C-element, an asynchronous memory element.
This C-element has a non-inverted input from the set network SU, an inverted input from the reset network RU,
and one output u. The next state equation is fu = (Su + R,) . u + S, . R,. In other words, when S, is high and
R, is low, the signal u is driven high. When S, is low and R, is high, u is driven low. Otherwise, the signal u
retains its old value. The collection of signal networks, one for each output, is referred to as the circuit’s standard
C-implementation. Note that while this implementation strategy may not immediately represent an optimal hazard-
free circuit, particularly when logic can be shared across set and reset region functions, optimizations presented in
Section 6 can be used to significantly improve circuit quality.

To ensure hazard-freedom of the block-level implementation, the covers of the region function must satisfy
certain correct cover constraints. This section first develops these constraints and describes their relationship to
ensuring hazard-freedom, i.e., acknowledgement and monotonicity. Next, this section casts the problem of finding
the optimal correct cover into a
correct cover.

binate covering problem and presents two efficient algorithms to find the optimal

1

0
0
0

j
u

j + l
0
0
0

m

Figure 5: A signal network for an output signal u consisting of m region blocks denoted 1 through m.

4.1 Theory

4.1.1 Excitation and quiescent regions

For each output signal, the state graph is partitioned into a collection of excitation and quiescent regions. An
excitation region is a maximally connected set of states in which the output signal is both enabled and at a constant
value. Excitation regions are divided into two types depending on the value of the output signal in the excitation
region. If the value is 0, the region is a set excitation region since in all excitation region states the output signal is
enabled to rise; otherwise the region is a reset excitation region. A maximally connected set of states in which the
output signal is not enabled is called a quiescent region of the output signal. In a determinate speed-independent
SG, there exists at most one quiescent region directly reachable from a given excitation region, but a quiescent
region may be entered from multiple excitation regions. The excitation regions for a signal u are indexed with the
variable Ic and the kth excitation region of signal u is denoted ER( u, k). The associated quiescent region is denoted



QR(u, Ic). For example, there are two excitation regions forthe  signal c to rise in Figure 1. The first, denoted
EZ?(c,  I), is the set of states { [OlOO]}  and the second, denoted ER(c,  2), is the set of states { [ llol]}.  Both these
excitation regions share the same quiescent region QR(c,  1) = QR(c,  2) = { [Ol  lo],  [ 11 lo],  [ll 111).

4.1.2 Correct covers

The cuver of an excitation region C(u, Ic) is a set of states in which the corresponding region function externally
evaluates to one. A cover is a correct cover if it satisfies two conditions. First, it must satisfy the covering constraint
which says that the reachable states in the cover must include the entire excitation region but must not include any
states outside of the union of the excitation and associated quiescent region, i.e.,

Second, it must satisfy the entrance constraint which says that a correct cover must only be entered through
excitation region states, i.e.,

[s $! c(u,  k) A s’ E C(u, k) A (s, s’) E r] * s’ E lqu, k).

As proven in Appendix E, ensuring that all region function covers are correct covers is sufficient to guarantee that
the standard C-implementation is a correct circuit provided that each region function is implemented with a single
atomic gate. The covering constraint guarantees that the circuit is complex-gate equivalent to the specification. A
correct cover guarantees that each region function is only allowed to turn on when it is actively trying to fire u.
This guarantees that every request of the region functions, the OR gates, and the C-element is acknowledged by
the output signal changing. Moreover, it guarantees that no two inputs to the OR gates are simultaneously one,
avoiding what has traditionally been called a delay hazard [l].  We also show that a correct cover guarantees the
monotonicity of all requests on all gates in the signal network.

To illustrate the importance of the entrance constraint in correct covers consider the cover and corresponding
standard C-implementation for the output signal c shown in Figure 6. The cover { [OlOO],  [OllO],  [OlOl],  [0111]}

Reachable states of cover

f

violating the entrance constraint

Inputs = {a, b}
outpu t s  =  {c, d}

State =a

Figure 6: (a) A cover violating the entrance constraint for a set excitation region of the signal c, and (b) the
corresponding hazardous logic implementation.

(which includes unreachable states [OlOl] and [Olll])  fails to satisfy the entrance constraint since it can be en-
tered from the state [ll lo] which is not in the excitation region. As a result, the corresponding region function
AND-N-l@, b) can turn on and off without being acknowledged. This can cause a glitch at the output of the AND
gate which may cause the circuit to malfunction.
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The relationship between cover constraints and the acknowledgement of the region function requests is subtle.
Kondratyev et al. in [25]  misinterpreted these conditions, which we first presented in [5],  and erroneously claimed
that our covering constraints do not guarantee acknowledgement and allow hazardous implementations to be syn-
thesized [24].  In fact, the constraints described in their paper are not complete, allowing hazardous covers such as
the one shown in Figure 6. This ambiguity, however, can be resolved with a simple amendment to their theory,
making the two sets of covering constraints essentially equivalent [24].

4.2 Algorithms
While standard logic minimization techniques exist to find optimal covers [8], they do not guarantee hazard-free
logic. In particular, they are not suited to solve our more constrained covering problem. To guarantee hazard-free
logic, we included the notion of an entrance constraint which requires that a correct cover can be entered only
through excitation region states. The entrance constraint ensures that if a state in the quiescent region is covered
than each of its predecessor states must also be covered. This implication leads to a binate  covering problem [22].

This section presents algorithms to solve this binate covering problem obtaining an optimal region function.
In general, a region function is composed of a set of cubes. A cube is a set of liter&  which are either an
external signal or its complement. First, we present a general algorithm that finds an implementation for each
region function composed of the minimal number of cubes. It is often the case, however, that a region function
can be implemented using only a single cube. If this is the case, we use a more efficient algorithm which finds a
single-cube implementation for each region function composed of the minimal number of literals.

4.2.1 General algorithm

The goal of the general algorithm is to find an optimal sum-of-products function for each region function that
satisfies our definition of a correct cover. The final hazard-free multi-level logic implementation of this function is
obtained using the decomposition techniques described in the next section.

The sum-of-products cover consists of a disjunction of implicants. An implicant of an excitation region is a
cube that may be part of a correct cover. In other words, a cube c is an implicant of an excitation region ER(u, Ic) if
the set of reachable states covered by c is a subset of the states in the union of the excitation region and associated
quiescent region, i.e.,

[c n @I  C [Wu,  k) u QR(u, k>l.

A prime irnplicant  is an implicant which is not contained by any other implicant of the excitation region [35].  A
sum-of-products cover is optimal if there exist no other cover with fewer implicants.

To capture the entrance constraint, each implicant c is said to have a corresponding set of implied states (denoted
IS(c)).  An implied state of a cube c is a state that is not covered by the implicant but due to the entrance constraint
must be covered if the implicant is to be part of the cover. More precisely, a state s is an implied state of an
implicant c for the excitation region ER( u, Ic) ‘f1 s is not covered by c and is a predecessor of a state that is both
covered by c and in the quiescent region, i.e.,

IS(C) = {s 1 s # c A 3s’ [(s, s’) E r) A (s’ E c) A (s’ E Q+, k))] }

It is important to note that an implicant may have implied states that are outside the excitation and quiescent regions
and cannot be covered by any correct cover. For this reason, some instances of our covering problem cannot be
solved using only prime implicants and non-prime implicants must be considered.

To this end, we define an implicant to be a candidate implicant if there exists no other implicant which properly
contains it and has a subset of the implied states. In other words, c is a candidate implicant if there does not exist
an implicant c’ that satisfies the following two conditions:

c’ > c
ZS(c’)  c IS(c).

Notice that prime implicants are always candidate implicants, but that a candidate implicant need not be prime. It
is easy to prove that an optimal cover always exists that consists of only candidate implicants.

Using these candidate implicants, our covering problem is formulated by creating a binary function in conjunctive
(product-of-sums) form to be satisfied with minimum cost. The binary function is defined over a set of Boolean
variables li, one for each candidate implicant ci. The variable li is TRUE if the cube ci is included in the cover
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and FALSE otherwise. A conjunctive function over these variables is composed of two types of disjunctive clauses.
This function is TRUE when the included cubes make up a correct cover.

First, a covering clause  is included for each state s in the excitation region of an output signal. Each clause
consists of a disjunction of candidate implicants that cover s, i.e.,

To satisfy the covering clause for a state s, at least one li must be set to TRUE. This means that one cube that
covers s must be included in the cover. It follows that the set of covering clauses for an excitation region guarantee
all excitation region states are covered. Since all candidate implicants are guaranteed not to include states outside
of the excitation and associated quiescent region, the cover is guaranteed to satisfy the covering constraint.

Second, for each candidate implicant ci, a closure clause is included for each of its implied states s E Z,S(ci).
Each closure clause represents an implication that states if the Boolean variable associated with the cube ci is true
then the implied state s must be covered. To fit into a conjunctive form the implication is translated to the equivalent
disjunction, i.e.,

ip/ v lj.
jISEC,

A closure clause states that if ei is in the cover, some other cube must also be selected that covers the implied state
s. The covering and closure clauses together ensure that the cover satisfies the entrance constraint.

When the entire conjunctive function is satisfied, the corresponding cover is correct. Our goal is to find an
assignment of Boolean variables that satisfies the function with the minimum cost. The cost function we minimize
is the number of implicants, though, the number of literals can also be used. Since the implication introduces
negated variables into the satisfiability product-of-sums framework, our optimization problem is a binate covering
problem.

We now present an algorithm to find a cover using the minimum number of candidate implicants. First, the
algorithm finds the prime implicants for each region function. Second, it uses this set to find all the candidate
implicants. Then, it solves the binate covering problem represented as a covering and closure table  (or CC table)
[21],  using traditional reduction and branching techniques. We are currently exploring newer algorithms that may
solve our binate covering problems more efficiently [9, 23, 29, 441.

In order to find the set of prime implicants, our algorithm partitions the Boolean space into three sets, the on-set,
the off-set, and the don’t care-set. The on-set is composed of every state in the excitation region. The don’t-care
set is composed of every state in the associated quiescent region as well as every unreachable state. The off-set is
composed of every other reachable state. The prime implicants are found using standard techniques [8].

Next, the algorithm expands the set of prime implicants to include all candidate implicants using the procedure
described in [21].  The algorithm first seeds the list of candidate implicants with the prime implicants, sorted by
the number of literals in the implicant. Beginning with the candidate prime with the fewest number of literals, the
algorithm considers all implicants extended with a literal not already used in the prime. If any new implicant satisfies
the conditions given above then the algorithm inserts it into the list. Each subsequent implicant is considered in
order until no new candidate implicants can be added.

To solve the binate covering problem, a CC table is constructed to represent the conjunctive function described
above. The table has one row for each candidate implicant and one column for each clause. The columns are divided
into a covering section and a closure section, corresponding to covering and closure clauses. In the covering section,
for each excitation region state s, a column exists containing a cross in every row corresponding to a candidate
implicant that covers s. In the closure section, for each implied state s of each candidate implicant ci, a column
exists containing a dot in the row corresponding to c i and a cross in each row corresponding to a candidate implicant
cj that covers the implied state s.

As an example, the CC table for excitation region ER(c, 1) in our example is depicted in Table 1. The CC table
is solved using the reduction rules described in [21],  which are listed here for convenience:

Rule 1: (Select essential rows) If a column contains only a single cross and blanks elsewhere, then the row with
the cross must be selected. This row is deleted together with all columns in which it has crosses.

Rule 2: (Remove columns with only dots) If a column has only a single dot and blanks elsewhere, the row containing
the dot must be deleted together with all columns in which it has dots.
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CC Table

bd
cd

Table 1: The CC table for the general covering algorithm applied to ER(c, 1).

Rule 3: (Remove dominating columns) A column Cj dominates a column Ci if it has all the crosses and dots of
Ci. If Cj dominates Ci, then Cj is deleted.

Rule 4: (Remove dominated rows) A row Ri dominates a row Rj if it (a) has all the crosses of Rj, and (b) for
every column CP in which Ri has a dot, either Rj has a dot in Cp or there exists a column C, in which
Rj has a dot, such that, disregarding the entries in rows Ri and Rj, CP dominates C,. If Ri dominates
Rj, then Rj is deleted together with all columns in which it has dots.

Rule 5: (Remove rows with only dots) If a row only has dots, then the row is deleted together with all columns in
which it has dots.

It is important to note that when applying rule 4, two rows may mutually dominate each other. To break this tie,
our algorithm removes the row corresponding to the implicant composed of the larger number of literals.

The table is completely solved when all columns are eliminated, and the resulting cover is the set of essential
rows selected by Rule 1. In our limited experience, these reduction rules are usually sufficient to solve the table.
For some cases, however, the reduction rules do not reduce the table completely, leaving a cyclic table. To solve
the cyclic table, we currently use traditional branching techniques [35]  and are exploring the use of newer branch
and bound techniques [9, 23, 441.

The reduction steps solve the table depicted in Table 1 as follows. First, the rows UC,  be,  and cd along with
the three columns labeled [ 11011  A[ 111 l] can be removed by Rule 2. Moreover, rows Eb, abc, ad, and bd  are
dominated by row abc and can be removed along with the column [ll lO]~[OllO] by Rule 4. The remaining
candidate implicant, abz is essential and is picked by Rule 1, solving the table. Note that in this case the table can
only be solved by selecting an implicant that is not prime.

This example motivates two optimizations. First, prime implicants that cover only don’t care states need not be
considered in the generation of the candidate implicants, since such candidate implicants are never part of an optimal
cover. Second, quiescent region states that are not reachable from some state in the excitation region through a path
consisting of only other quiescent region states can be put in the off-set when determining the prime implicants,
since the entrance constraint excludes them from being part of a correct cover. These optimizations can make the
initial CC table significantly smaller.

4.2.2 Single-cube algorithm

The above binate covering formulation is often more general than needed since many region functions can be
implemented with a single-cube cover. In this subsection, we present a more efficient algorithm designed to find an
optimal single-cube cover if one exists. This algorithm is derived from an algorithm used to synthesize complex-
gate timed circuits [40]  by adding the necessary closure constraints needed to handle gate-level hazards, and it has
also been applied to the synthesis of gate-level timed circuits [41].  Our synthesis procedure initially attempts to
find single-cube covers, and only when this algorithm fails is the general algorithm described above invoked.

For a single-cube cover to hazard-freely implement a region function, all literals in the cube must correspond to
signals that are persistent, i.e., constant throughout the excitation region (this is a slightly more general definition
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4 1 set 1100 XlXX
d 2 reset 1111 XXlX

Table 2: Enabled cubes and trigger cubes for our example, where the cube vector is (a, b, c, d)

than the one in [12]).  Otherwise, the single-cube cover would not cover all excitation region states. When a
single-cube cover exists, an excitation region EZ?(u,  k) can be sufficiently approximated using a cube called an
enabled cube, denoted EC(u,  k), defined on each signal u as follows:

0 if ‘V’S  E ER(u,  k) [s(v) = 0]
EC@, k)(v) = 1 if V’s E ER(u,  k) [s(w) = l]

X otherwise

If a signal is 0 or 1 in the enabled cube, it can be used in the cube implementing the region. A cube, such as the
enabled cube, implicitly represents a set of states in the obvious way. The set of states implicitly represented by
the enabled cube is always a superset of the set of excitation region states.

Each single-cube cover in the implementation is composed of trigger signals and context signals. For a given
excitation region, a trigger signal is a signal whose firing can cause the circuit to enter the excitation region while
any non-trigger signal which is stable in the excitation region can be a context signal. The set of trigger signals for
an excitation region ER(u,  k) can also be represented with a cube called a trigger cube, denoted TC(u, k), defined
as follows for each signal V:

TC(u, k)(w) E
s’(w) If 3s, s’ 1 (SZS’> A (s 6 ER(u, k)) A (s’ E E+, k))]x

otherwise

It is easy to show that in order for a single-cube cover to satisfy the covering constraint it must contain all
its trigger signals. Since only persistent signals can be included in a single-cube cover, a necessary condition for
a single-cube cover to exist is that all trigger signals be persistent. In other words, for a given excitation region
ER( U, k), the following must be true:

The enabled cubes and trigger cubes are easily found with a single pass through the state graph. The enabled
cubes and trigger cubes corresponding to all the excitation regions in our example are shown in Table 4.2.2. Notice
that every trigger signal is persistent and our algorithm proceeds to find the optimal single-cube cover.

Our algorithm starts with a cube consisting only of the trigger signals. If this cover contains no conflicts, i.e.,
states that violate either the covering or entrance constraint, we are done. This, however, is often not the case, and
context signals must be added to the cube to remove any conflicting states. For each conflict detected, the procedure
determines the choices of context signals which would exclude the conflicting state. Finding the smallest set of
context signals to resolve all conflicts is a covering problem. Due to the implication in the entrance constraint,
inclusion of certain context signals may introduce additional conflicts which must be resolved. Therefore, the
covering problem is binate.

To solve this binate covering problem, we again create a CC table for each region. There is a row in the CC
table for each context signal, and there is a column for each conflict and each conflict that could potentially arise
from a context rule choice. An entry in the table contains a cross (x) if the context signal resolves the conflict. An
entry in the table contains a dot (0)  if the inclusion of the context signal would require the conflict to be resolved.

To construct the table for a given excitation region ER(u,  k), the algorithm first finds all states in the initial cover
which conflict with the covering constraint. In other words, a conflict exists if a state s is (implicitly) contained by
TC(u, k) but is not in the excitation or associated quiescent region. If a conflict exists, the algorithm adds a new
column to the table with a cross in each row corresponding to a context signal v that would exclude the conflicting
state (i.e., EC(u, k)(v) = S(U)).
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The next step in the table construction is to find all state transitions which conflict with the entrance constraint
in the initial cover or may conflict due to a context signal choice. For any state transition s --%  s’, this is possible
when s is not in the excitation region (i.e., s @’ EC(u,  AT)), s’ is in the quiescentregion  (i.e., s’ E QR(u, Ic)), s’ is
in the initial cover (i.e., s’ E TC(u, Ic)), and v excludes s (i.e., EC( U, k)(v) = s(v)).  For each entrance conflict
detected, the algorithm adds a new column to the table again with a cross in each row corresponding to a context
signal that would exclude the conflicting state. If the signal v in the state transition is a context signal, the state s ’
only needs to be excluded if 2, is included in the cover. This implication is represented with a dot being placed in
the row corresponding to the signal w.

In a single pass through the state graph, all the CC tables can be constructed. Returning to our example, the CC
table for the excitation region ER(c, 1) is given in Figure 3. For this excitation region, the enabled state is [OlOO]

CC Table

[llOO] [llOl]  [1110]~[0110]  [1111]~[1110]

Table 3: The CC table for the single-cube covering algorithm applied to ER(c, 1).

and b is its only trigger signal. The covering section includes states [llOO] and [llOl] because all other states are
either in the excitation or quiescent region or are excluded by the trigger signal 6. There are two closure columns.
The first, corresponding to the transition [lllO]  $[Ol  lo],  indicates that if a is included then state [Ol lo] must be
excluded. The only context signal that excludes this state is c. The second closure column corresponds to the
transition [llll] z[ll lo] and is formed similarly. Note that the transition [llOl]  $[lll  l] does not have a column
since c does not exclude state [ 11011.

When the construction of the CC table is successful, the table is solved using essentially the same reduction
algorithm used in the general case outlined above. In this case, however, ties that occur in Rule 4 are resolved by
picking the rule that provides symmetry between different regions of the same signal. This symmetry can often be
exploited later during logic optimizations (see Section 6). Returning to our example, the table is solved as follows.
First, row a is picked since it is an essential row (Rule l), removing it as well as columns [ 1 1001,  [ 11011,  and
[1111]~[1110]  from the table. Since this removes a dot in column [lllO]  $[OllO],  this column is covered next. To
accomplish this, row c is picked since it is an essential row (Rule l), removing the column [i 1101 -%[OllO]  solving

- -the table. The resulting correct cover, as expected, is the same single cube ubc found by the general algorithm.
When a trigger signal is not persistent or when the CC table construction fails, we can use the more general

algorithm described in Section 4.2.1 to find a multi-cube cover. Alternatively, we can change the specification by
constraining concurrency [37]  or by adding state variables [25,  52, 61 such that a single-cube cover can be found.
We note that this alternative may not be possible without changing the inte$ace  behavior of the circuit (i.e., without
constraining an input signal).

5 Implementing region functions
Once an optimal cover is found, the cover must be implemented using limited-fanin basic gates. Often, the cover
is reduced to a single cube with only a small number of literals where an AND gate that implements the cube is
usually found in the target library. In addition, simple multi-cube covers can often be implemented safely with
carefully designed and-or-invert gates. For larger, more concurrent specifications, however, single-cube covers that
correspond to high-fanin AND gates or multi-cube covers may be needed. Therefore, it is important to consider
how such covers can be implemented hazard-freely at the gate-level.

Our approach is to iteratively decompose the function into smaller functions until all base functions can be
implemented by gates in the target library. This decomposition follows a break-and-repair strategy. First, the
function is decomposed into two functions introducing a new internal signal into the circuit, adding a new delay
element into the circuit which often causes a hazard, i.e., breaks the circuit. The repair step of our strategy adds
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connections to the circuit to reestablish hazard-freedom. The steps are iterated until all functions are of manageable
size or no more functions can be successfully decomposed.

The most common function to be decomposed is a conjunction of many literals corresponding to a single-cube
cover that covers relatively few states. For such functions, the obvious decomposition is a cascade of two smaller
conjunctions. Since there may be many such decompositions, heuristics are used to order the attempts in such a
way as to help find a decomposition leading to a correct circuit quickly.

For multi-cube covers there are many possible strategies for decomposition, including kernel extraction and
function decomposition [17].  In [S],  we describe an efficient decomposition heuristic in which the function is
recursively decomposed into multi-level logic, guided by the relative ordering of signal transitions. We refer the
reader to [5] for more details and focus in this paper on the repair aspects of our methodology which are general
enough to be applicable to all decomposition techniques.

5.1 Acknowledgement wire forks

When a function is decomposed into two functions a new gate is introduced into the circuit and with it an associated
arbitrary delay. While some decompositions maintain correctness [46],  many introduce hazards into the circuit.
When the only decompositions found introduce hazards, the algorithm attempts to repair the damage by adding
connections between gates, called acknowledgement wire forks.

Decompositions can generate two sources of acknowledgement and monotonicity violations. Consider a decom-
position of a function fv into two functions fu and f: such that fV = f: o fU. Recall from Section 3.2 that the
new signal u has its own set of requests for changes that must be acknowledged and be monotonic for the circuit
to be hazard-free. The requests for signal w are unchanged. Signal w, however, may now have new violations of
monotonicity which must be removed. The monotonicity violations are caused by the added delay element in the
network. Before the decomposition, the stability of some fanins of w may have made it insensitive to inputs that
might cause hazards. After the decomposition, the functionality of these inputs may have been pulled out into fu
which may not stabilize soon enough to prevent the monotonicity violation on w.

5.2 Algorithm for repairing a decomposition

Our algorithm to repair a decomposition, depicted in Figure 7, is described using a circuit synthesized from a
specification borrowed from [25],  shown in Figure 8(a). In the synthesized circuit, shown in Figure 8(b), we attempt
to decompose the complex gate fV = ub + cb into two functions fu = a + c and f: = bfu. The goal of the repair
decomposition algorithm is to repair any acknowledgement or monotonicity violations caused by the presence of
the new internal signal u. In other words, the algorithm attempts to ensure that all requests on u are acknowledged
and monotonic. Recall from Section 3.2 that this means that every path through every signal region of u must be
acknowledged. By adding an acknowledgement wire fork from u to some gate that controls an output signal, a
transition of the output signal can be made to acknowledge previously unacknowledged paths. An obvious goal is
to add a minimal number of such acknowledgement wire forks that guarantee that every path through the request
is acknowledged. In other words, an optimal algorithm would find a minimal cut-set of acknowledging transitions.

Since finding the minimal cut-set is intractable, our algorithm uses a heuristic which may require more than the
minimal number of acknowledgement wire forks, but works well in practice. The heuristic is to decompose each
signal region into overlapping subregions that are independently acknowledged. The function decompose-regions
finds the set of subregions for the region. Each subregion is formed from a different possible sequence of input
choices made before and during the signal region. The distinguishing feature of a subregion is that both signal
transitions between subregion states and signal transitions between a subregion state and a different signal region
cut the subregion. As illustrated in Figure 9(a), the rising region of u in our example is decomposed into two
overlapping subregions. One consisting of 8 states and the other of 3 states. These subregions arise from different
ways that the rising signal region can be entered due to the input choice in the specification. The falling region of
u is a single subregion.

Before examining possible acknowledgement wire forks, however, the algorithm must also consider the mono-
tonicity violations of w caused by the decomposition. The functionjindstubility-constraints()  identifies the stability
constraints of the subregion. A stability constraint of a subregion is any state in which f U must be stable in order
to prevent a monotonicity violation of f L. In the example, a stability constraint of the falling region is state [OOOl]
since u must be stable to avoid a monotonicity violation of w. That is, u must be guaranteed not to fall before b falls,
since this can cause a glitch at w. If the stability constraint is initially satisfied, i.e. the function satisjiesstabiZity()
returns TRUE, no acknowledgement wire fork is needed for the current subregion.
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Algorithm 5.1 (Repair decomposition) .
/* Let G contain a new internal signal u with associated function f U and a diflerent function f I for signal w
thatf, = fLofu. */
repairdecomposition(u,  w, G, M) {

R = Jindl-egions( u , G) ;
R’ = decompose-regions(R);
foreach Ri E R’

Pi = findstability-constraints(w  , R’);
if (satis$es-stabiZity(  Rg , Pi) # TRUE)

c = $nd-cuts(  Ri , Pi) ;
if (c == NULL)

relax-constraints(u, w, G, AI)
c = find-cuts(  Ri , Pi);
if (c == NULL)

exit with failure;
e = jind-best-awfi  Ra  , Pi, C) ;
if (e == NULL)

Pi = add-conn(u,  w, G, M);
e = $nd_best-awfi  Ri , Pi, c);

if (e == NULL)
exit with failure;

buildawfle);

such

Figure 7: Algorithm for repairing a decomposition.

Otherwise, the stability constraints limit the choices of acknowledgement wire forks of a signal u. They indicate
that u must be stable before entering the stability constraint state. The function find-cuts0  finds the output signal
transitions that precede the stability constraint which might acknowledge u. For the falling subregion of the signal
u in our example, there are no output signal transitions that cut the subregion which also precede the stability
constraints. Hence, no acknowledgement wire forks can possibly be found that would guarantee that u is stable
before state [OOOl]  is entered. Fortunately, by adding additional inputs using the function relax-constraints() to the
gate controlling w, the algorithm can sometimes relax the stability constraints. In this example, by adding z to the
AND gate controlling w, the stability constraint is moved to state [OOOO]. Once moved, the function Jind-cuts0
determines that a d- transition can now acknowledge the falling subregion of u.

Once the set of acknowledging transitions is found, the function find-best_awfi) locates the best potential
acknowledgement wire forks. The function searches wire forks to all gates that control each potential acknowledging
transition. A wire fork is a potential acknowledgement wire fork if the connection acknowledges the region and
does not introduce additional acknowledgement or monotonicity violations. The implementation of checking the
last requirement is addressed in Section 6. We note that one reason a wire fork is not a potential acknowledgement
wire fork is that the wire fork would introduce extra unacknowledged requests on the acknowledging gate. By
adding inputs to these acknowledging gates, using the function add-conn(), the extra requests can be prevented. Of
course, since our goal is to minimize fanin and complexity, the addition of gate inputs is only done when necessary.

Finally, the function$nd_best_awfl)  returns the acknowledgement wire fork to the acknowledging gate with the
lowest fanin, thereby attempting to avoid the creation of new high-fanin gates. In our example, one of the three
subregions is already acknowledged and satisfies its stability constraints and requires no acknowledgement wire
forks. The other two subregions are acknowledged by two acknowledgement wire forks shown in Figure 9(b).
Once acknowledgement wire forks are built, inputs to the acknowledging gates may become redundant and may be
removed with optimizations discussed in Section 6. In this example, both the inputs E and c of the top AND gate
can be removed. As a result the net overhead for the acknowledgement wire forks is negligible-one additional
connection.

Although successful for this example, this heuristic break-and-repair methodology can fail when jnd_bestawfo
fails to find a connection that acknowledges the region and satisfies the stability constraints. When using this
decomposition technique to break up high-fanin gates, the addition of acknowledgement wire forks can also introduce
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Figure 8: An example of decomposing complex gates.

d
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Inputs = {a, b} Rising region 0

Outputs = {c, d} Falling region 0

Figure 9: An example of acknowledging subregions.

d

new high-fanin gates, which must be subsequently decomposed. When this approach successfully decomposes all
gates, the circuits generated are usually very efficient. The approach, however, is not guaranteed to successfully
decompose all circuits. For such circuits, carefully designed complex gates can be used to ensure hazard-freedom,
or the circuits’ specifications can be altered by adding state variables. Identifying the class of specifications with
choice for which all functions can be sufficiently decomposed while preserving the circuit’s interface behavior is an
open research problem. Nevertheless, our algorithm has successfully synthesized all SIS benchmark specifications
with gates of fanin 4 or less.
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6 Logic optimizations .

This section describes a variety of logic optimization techniques that can improve the initial gate-level circuit.
Namely, this section describes removing redundant gate inputs, sharing and merging gates, signal-network simpli-
fication, and inverter bubble shuffling. Algorithms used to implement the optimizations are discussed in Section 7.

6.1 Removing redundant gate inputs

A redundant gate input is one which can be removed from the circuit while preserving correctness. The removal
of the input must preserve both complex-gate equivalence and hazard-freedom. A gate input can be functionally
redundant, i.e., its removal preserves complex gate equivalence, while still not being a redundant gate input (e.g.,
an acknowledgement wire fork).

Redundant gate inputs arise for three reasons. First, since both set and reset functions of a signal are implemented
separately and merged, they may duplicate needed logic. Sometimes the functions can be simplified while preserving
correctness as illustrated in Section 7.2. Second, when an acknowledgement wire fork is added to a gate, other
existing inputs of the gate may become redundant. Third, gate inputs may become redundant as a consequence of
other optimizations, such as merging gates.

6.2 Sharing and merging gates

Two internal gates, gates whose outputs are internal signals, that have the same function can be safely shared as long
as one of the internal gates is not used to acknowledge a request of an internal signal that is not also acknowledged
by the other gate. Similarly, two internal gates that have exactly the opposite function can be implemented with
one gate by adding inverter bubbles to the fanout of one of the gates. If two output gates, gates whose outputs are
primary outputs, have the same function, then, instead of inverter bubbles, an inverter is necessary. Moreover, an
internal and output gate can be shared, but the output gate must be replaced with a buffer or inverter, depending
on if the two gates have the same or opposite functions, respectively. Otherwise, two outputs which are specified
to be ordered may become concurrent in the implementation, violating the specification.

A generalization to the sharing gate optimization is when two arbitrary gates can be implemented with one gate.
It is easy to see that within a sum-of-product, two AND gates that differ in only the phase of one literal can be
safely merged into one gate. In addition, other AND gates in sum-of-product blocks that are logically distance-one
apart can often be symmetrized and then merged. Similarly, if AND gates in different parts of the circuit can be
safely symmetrized to the point that they have the same functionality, the AND gates can be shared.

Two different approaches have been proposed to implement this optimization. The first approach, suggested
by Kondratyev et al. [25],  is a one-step process, but is limited to unoptimized AND gates implementing region
functions. They suggest to formulate the covering constraints for a group of excitation regions to see if a single
cube cover exists for the group. As long as each excitation region is covered by exactly one cube, correctness
is guaranteed. The second approach is a two-step process. A minimum set of signals is added to the two AND
gates that make them distance-one apart yet preserve the correctness of the circuit. Then, the distance-one-apart
gates are merged. Checking that the first step preserves correctness can be a computationally expensive task and its
implementation is deferred to Section 7. The second step, merging distance-one-apart gates in a sum-of-products,
however, is always correctness-preserving. Once merged, inputs to the gate may become redundant which can be
removed by subsequent optimizations.

6.3 Signal network simplification
If the covers of either the set (reset) excitation regions of a signal u include their entire associated quiescent regions,
then the set (reset) network is functionally equivalent to u. Unfortunately, even though the reset (set) network is
not needed to implement signal u, it may still be necessary for acknowledgement of other internal signals. If all
the acknowledgement wire forks attached to the reset (set) network can be relocated, the redundant logic can be
removed. Specifically, u’s reset (set) network and the C-element can be removed, reducing u’s signal network to
u’s set (reset) network.

In addition, if the set and reset region networks of a signal network differ in phase the signal network can often
be simplified. Consider the simplest case in which S, = vi 212 and R, = 211%.  In this case, the two AND gates
can be removed and the inputs to the C-element are reassigned to Sh = wi and Rh = ~2.  Note that w1 and w2 may
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be outputs of other gates. In fact, when the set and reset networks consist of AND gates with more than 2-inputs,
it is still possible to split the AND gate inputs while preserving correctness.

6.4 Inverter bubble shuffling

An additional optimization technique is the shuffling of inverter bubbles [ 111. Using DeMorgan’s  law, inverters can
be pushed through gates, converting AND and OR gates to their duals. This is beneficial for two reasons. First
NOR and NAND gates are smaller and faster than AND and OR gates in CMOS technology. Second, by applying
this transformation, inverter bubbles on both ends of a wire can cancel out. Our CAD tool uses a simple greedy
algorithm that finds a local optimum of inverter bubble placement.

7 Performing logic transformations and optimizations

Sharing of identical gates, signal network simplification, and bubble shuffling are guaranteed to be correctness-
preserving. The implementation of these techniques, therefore, is straight-forward. The other two optimization
techniques, removing gate inputs and gate symmetrization, however, must be performed selectively to ensure
hazards are not introduced. Similarly, adding acknowledgement wire forks must also be done selectively.

In fact, the impact of such logic transformations can be far from obvious and naive analysis techniques are
computationally prohibiting. This section describes an algorithm that efficiently verifies that a logic transformation
does not introduce new hazards into the circuit, i.e., is non-hazard-increasing.

7.1 Overview
The key difference between legal logic transformations in synchronous logic and non-hazard-increasing transforma-
tions in speed-independent circuits is that in speed-independent circuits transient behavior of the logic is critical. As a
result, transformations in speed-independent circuits are more constrained than logic transformations in synchronous
circuits. While non-hazard-increasing transformations have been well studied for fundamental-mode circuits [48],
these results do not generally apply to speed-independent circuits because of the additional concurrency allowed in
speed-independent circuits between the circuit and its environment.

One approach to testing whether a logic transformation is non-hazard-increasing is to perform the transformation
and verify that the new circuit has no additional hazards. While this approach is computationally infeasible with
traditional verification techniques, it is possible with the conservative verification algorithm we developed in a
related paper [3]. The complexity of this conservative verification algorithm is linear with respect to the size of the
circuit and its SG for the class of circuits addressed in this paper.

Complete verification, however, is often not necessary. Since a logic transformation represents a local change
in a circuit, only the affected parts of the circuit need to be verified. We describe how to take advantage of this
fact using incremental verification, thereby providing an efficient means of checking whether logic transformations
are non-hazard-increasing.

This section describes two techniques used in the incremental verification which target the two parts of our
definition of correctness: complex-gate equivalence and hazard-freedom. The first technique manages observability
don’t care (ODC) information which is used to efficiently check that complex-gate equivalence is preserved while
also filtering out additional transformations which are guaranteed to fail our conservative hazard-freedom check.
The second technique manages stability information which is used to efficiently check that no hazards are introduced
into the circuit.

7.2 Incrementally verifying complex-gate equivalence with ODCs

In traditional synchronous circuits, observability don’t cares are used to characterize all legal transformations that
are local to a gate in a circuit. This subsection explores the representation of ODCs  in speed-independent circuits
and explains how ODCs  can be used to facilitate a local check for the preservation of complex-gate equivalence
while also filtering out other hazard-increasing transformations.
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Figure 10: An example of where the combinational ODC algorithm leads to a hazard.

7.2.1 Representation

In the combinational circuit domain the most common representation of ODC’s of a particular node u is a function
which evaluates to TRUE when the value of u is not observable to any of the primary outputs of the circuit. In a
synchronous sequential circuit this representation is complicated by signals separated by a clock cycle [ 161.

Fortunately, in an asynchronous circuit, the state of the circuit is not synchronized to a clock. Rather, the circuit
state is held in the values of the primary input and output signals and stored in memory elements which can change
at any time. Recall that this paper considers only externally-cut circuits, in which outputs of memory elements
must be primary outputs and logic values of all primary outputs are given in each state. Hence, in each state, our
circuits behave completely combinationally. Consider that the next state function of a two-input C-element with
inputs a and b and output u is f u = ub + (a + b) u. Since u is a primary output, the value of u in each state is
known to be either 0 or 1. In states in which u is 0, the C-element acts like a 2-input AND gate. In states in which
u is 1, the C-element acts like a 2-input OR gate. Therefore, in each state a combinational circuit representation
can be obtained which behaves identically to the original circuit by changing all the memory elements to their
combinationally equivalent gate in that state.

Now that we have converted our problem into a set of related combinational circuit problems, we can work
from existing algorithms to determine ODC’s. Informally speaking, a state is an ODC for an internal signal if no
primary output is sensitized, defined below, to the internal signal in that state. As a result, we represent ODC’s for
node u as a set of SG states, referred to as ODC(  u).

7.2.2 Sensitized and insensitized signals

Our notion of sensitization is motivated both by the traditional combinational definition and hazard-freedom. In
combinational circuits, a signal x is sensitized to a signal u if the Boolean difference function %(s)  evaluates to
1 [36].  In effect, Boolean difference %(s)  tells us what values we must assert on all other fanins of x, referred
to as side-inputs [36],  to make fz sensitized to the value of u. Hence, in our notation if fx = OR(w,  u), then
e(s)  = ext-evaZ(s)(w). It is important to realize that this sensitization is guaranteed only after all signals have
settled. In an asynchronous circuit, however, in addition to the settled values, the transient behavior of the signals
is relevant to avoid hazards. Therefore, the set ODC(u) found using existing combinational algorithms can contain
states which always lead to hazards in an asynchronous circuit.

Consider the example specification shown in Figure 10(a).  When the corresponding correct circuit shown in
Figure 10(b)  is in states [Ol l] and [ill], both u and w evaluate to 1. Since in both states either u or w can enable
the OR gate to rise, the combinationally-based algorithm given in [ 161  would conclude that they are ODC states
of u. Using this set, standard algorithms would consider applying the logic transformation involving adding the
connection z to the buffer associated with u, producing a 2-input AND gate, shown in Figure 10(c).  While after
applying this logic transformation the circuit remains complex-gate equivalent to the specification, it has a hazard.
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Algorithm 7.1 (Find Observability Don’t Cares)
Find-ODC( G, M) {

D = ( primary outputs )
initialize ODC(u) = 8 for all u E AI,,/
while (D # hmpl)

select u E (AImPj  - D} such that FO(u)  c D
foreach state s E @

if ( for at most one TJ E FO( u) is sensitized( u, w, s, CA(s))
and ( for all o E FO( u) does (sensitized( u, w, s, CA(s))
and s E ODC(v)) or insensitized(u, ZI, s, CA(s))))

then ODC(u)  = ODC(u) U {s}
D = D u {u}

Figure 11: Algorithm for finding observability don’t cares

Consider the path [OlO]  --+  [Oil]  + [OOl] + [ 1011  inside the rising request of x. In states [OlO]  the signal u tends
to enable x to rise. But, u can fall as soon as state [Oil]  is entered. At the same time, if the non-inverting buffer
attached to 21 is slow, v can be still rising. This can cause a: to glitch in state [Oil] as illustrated in Figure 10(c).
This hazard does not occur in the circuit shown in Figure 10(b)  because in that circuit u could not fall until v has
risen. For this reason, we conclude that [Ol  l] should not be included in the set ODC(u).

This distinction between asynchronous and synchronous circuits is captured by redefining the notions of sen-
sitization for asynchronous circuits. We provide informal definitions here and formalize them in Appendix D. A
fanin u) is an insensitized fanin of signal u in an state s if f 21  is completely determined by the value of w in state s.
For example, an input to an OR gate u is a sensitized fanin of u if and only if all side-inputs are stable 0. A fanin
w is an insensitized fanin of signal u in an state s if j-u is independent of the value of w in state s. For example,
an input to an OR gate u is an insensitized fanin u if and only if a side-input is stable 1. Notice that sensitized
and insensitized are not all inclusive in that there may be an input to a gate which may be neither if not enough
side-inputs are stable. We defer the description of the algorithm to determine stability until Section 7.3.

7.2.3 Finding ODC’s

Given the new notions of sensitized and insensitized from the previous subsection, Algorithm 7.1, similar in form
to that given in [ 161,  finds ODCs  for speed-independent circuits. Essentially, the algorithm declares that a state is
in a signal’s ODC set if, in that state, the signal cannot affect any of its fanouts or it affects exactly one fanout
which also has that state in its ODC set. As in the combinational case [16],  the signal may not affect more
than one of its fanout. Otherwise, ODC’s found for circuits with reconvergent fanout  can result in violations of
complex-gate equivalence. It is not difficult to show that using ODCs  found by our algorithm does not violate
complex-gate equivalence. In addition, our definition of ODC’s omits additional states which lead to hazards such
as the problematic state [ll l] in the example described above.

7.2.4 Using ODC’s to perform logic transformations

To verify that a transformation preserves complex-gate equivalence, our procedure checks to see if the transformation
affects only ODC states, i.e.,

[ext-evaZ(  u’)( s) # ext-evaZ(  u)(s)] + s E ODC( u)

for all states s E @. The complexity of this check is O(Q)  whereas verifying complex-gate equivalence directly is
O(@ ~ E).

Even using our restricted ODC sets, however, logic transformations must still be chosen with care to maintain
correctness. For example, acknowledgement wire forks are functionally redundant connections-they do not affect
the external evaluation of any circuit node in any state. Hence, removing the connection always preserves complex-
gate equivalence regardless of the relevant ODC set. Unfortunately, removing such a connection leads to hazards.
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Figure 12: (a) A SG specification, (b) the unoptimized circuit, and (c) the optimized circuit

7.2.5 An example

As an example of a logic transformation using ODCs,  consider the specification and unoptimized circuit obtained
from the techniques described in Section 3 shown in Figure 12. Using Algorithm 7.1, we obtain ODC(u)  =
-wool,  WI, [llll, [1011~. Removing the connection from a to u, our ODC check is satisfied and also preserves
hazard-freedom. After removing the resulting non-inverting buffer, the optimized circuit is as given in Figure 12(c).

7.3 Incrementally verifying hazard-freedom

To determine if a logic transformation introduces hazards in a circuit, we use the theory described in [3,  41 which
develops a tight approximation to the reachable state space and provides a corresponding tight set of sufficient
conditions for correctness. The major result from [3] is an algorithm to test these sufficient conditions that is linear
in time with respect to the size of the circuit and state graph for a broad class of circuits, exponentially faster
than most verification tools. In this subsection, we explain how this theory and algorithm can facilitate incremental
verification, thereby allowing a fast check that logic transformations are non-hazard-increasing.

7.3.1 The cube approximation and sufficient conditions for correctness

The theoretical foundation of our verification procedure is the necessary and sufficient conditions for correctness,
acknowledgement and monotonicity, described in Section 3.2. The notions of acknowledgement and monotonic-
ity lead to the identification of a core set of reachable implementation states, referred to as &cm, from which
hazard-freedom can be verified. The computational efficiency of our verification procedure is achieved through
approximating (finding a superset of) Q~EA. The key result is an approximation that is tight in practice and is
exponentially easier to find than identifying Q C-A itself. The algorithm checks the conditions on this approximation
that guarantee the circuit satisfies acknowledgement and monotonicity.

The intuition behind our approximation is the notion of a stable internal signal, i.e., an internal signal that is
guaranteed to have reached its external evaluation. The key observation is that an internal signal is stable between
the time it is acknowledged and the next request for it to change is issued. Our algorithm uses a data structure,
called a cube approximation, that captures this information in a compact form. Essentially, the cube approximation
is a state graph that has been annotated with stability information regarding all internal signals. Specifically, each
state and state transition is annotationed with a cube that designates if each internal signal is stable in the particular
state or transition. There exists a well-defined correspondence between a cube approximation and a set of reachable
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.

Breaking up high-fanin and complex gates

Totals 11 7248 1 7136 1

Table 4: Results for breaking up high-fanin and complex gates.

implementation states. Our algorithm efficiently finds the best cube approximation that represents a superset of
QCEA-

We developed conditions-abstract versions of acknowledgment and monotonicity-which can be tested directly
on the cube approximation to verify correctness. The conditions are sufficient and not necessary because the cube
approximation is only a conservative estimate of the reachable state space.

7.3.2 Localizing the effects of a logic transformation

Our verification procedure determines if a logic transformation is non-hazard-increasing by recalculating the cube
approximation and testing the sufficient conditions for correctness. Fortunately, both our algorithm for finding the
cube approximation and our sufficient conditions for correctness facilitate incremental analysis.

First, we localize the effects of a particular logic transformation in a circuit. If we consider the underlying
undirected graph modeling the circuit that is cut by all external signals, the effects of a logic transformation are
guaranteed to be localized to only the connected components of gates involved in the transformation. In larger
circuits it is not uncommon that each output signal be implemented with a separate non-overlapping cone of logic.
In this case, each cone of logic represents a separate connected component and our analysis may be limited to a
small portion of the circuit. Of course, if the circuit is a single connected component, then this localization strategy
does not decrease the needed computation. In fact, in this degenerate case, the computation required is slightly
larger due to the time needed to find the connected component (linear with respect to the size of circuit).

Once the affected connected components are identified, only the corresponding portions of the cube approxima-
tion need be re-computed. This is achieved with the same algorithm described in [3] with the only variant being
different initial conditions of the cube approximation. Finally, our procedure tests our abstract acknowledgement
and monotonicity conditions on only the gates in the affected connected components.

7.4 Accepting logic transformations

If a logic transformation fails the ODC check, then it is not complex-gate-equivalence preserving and is rejected.
Otherwise, the stability information is updated and hazard-freedom is checked. Note that for the case of repairing
decompositions and adding connections as acknowledgement wire forks, the circuit need not satisfy all the verifi-
cation conditions to be accepted. Since many subregions may need to be acknowledged, many acknowledgement
wire forks may be needed before the circuit is repaired. Therefore, the procedure accepts an acknowledgement wire
fork if it repairs the violations in the subregion being analyzed and does not introduce new violations. Once a logic
transformation is accepted, the procedure updates the external evaluations, stores the new stability information, and
recalculates those ODC sets that may have changed.

8 Results and conclusions
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.

Our Synthesis CAD Tool vs. SIS
Our CAD tool SIS

Circuit I@1 Area/Del Area/Del

Totals 11 11584 / 137.8 1 10148 / 156.4 1

Table 5: Comparative synthesis results.

The synthesis algorithm and optimization techniques described have been automated in a CAD tool written in C and
tested on a large benchmark of circuits from academia and industry. To estimate the performance of our synthesis
algorithm, we have generated a speed-independent limited-fanin gate-level implementation for all the specification
examples taken from the benchmarks given in [26].  The SG specifications for these examples have been obtained
from their STG specifications using a modified version of the Berkeley’s synthesis system SIS [45].

8.1 Breaking up complex and high-fanin gates
To estimate the advantages of multi-level logic and the cost of our break-and-repair decomposition methodology,
we compared the area before and after the addition of acknowledgement wire forks. For the original circuits, we
needed AND gates with five to eight inputs and a few AND-OR-INVERT gates. We used the SIS asynchronous
library as a basis of area delays and extrapolated the area of the high-fanin gates from the smaller gates in the
library.

We experimented with decomposing high-fanin gates before and after performing logic optimization. In our
experience, decomposing gates after optimizations produces better circuits, but sometimes is not possible. Opti-
mizations, such as removing C-elements and merging gates, makes it more difficult to find good acknowledgement
wire forks. As a result, the high-fanin gates in the optimized pe-send-@  could not be decomposed. For all other
circuits, however, decomposing the circuits after optimization is successful and produces better results. Hence,
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we attempt to decompose the optimized circuit and, if this fails, we decompose the unoptimized circuit and then
perform optimizations.

Our current algorithm for breaking up the high-fanin gates is computationally expensive primarily due to the
number of decompositions that it explores. Decomposing the high-fanin gates in the largest circuit pe-send-@  took
approximately 20 minutes on a SPARC 20 with 128 Megabytes of RAM. Further research is necessary to find more
computationally efficient methods for decomposition. The synthesis run-time excluding the decomposition step,
however, is small, taking under 1 minute for all our examples.

Our final results, depicted in Table 4, demonstrate that decomposition of gates into multi-level logic is not
only feasible, but often decreases circuit area. The primary reason for this is that the breaking up of high-fanin
gates increased the amount of logic sharing between logic blocks. These results suggest that multi-level logic
optimizations may be feasible and worthwhile in speed-independent circuits.

8.2 Comparison with SIS
We compare our synthesis algorithm with an alternative design technique for asynchronous circuits in which syn-
chronous techniques are used to develop the initial logic, and delay lines are then added to remove hazards [27,  261.
For all circuits but pe-send-i@  the results are obtained using an optimal delay insertion algorithm [26]  incorporated
into Berkeley’s SIS, with the minimum delay of all gates set to 0.8 times their maximum gate delay. For pe-send-ifc,
the largest of the benchmark circuits, the optimal algorithm did not complete after 3 days, and the reported result
is obtained with a much faster greedy algorithm [27].

The synthesis results shown in Table 5 indicate that our optimized circuits are, on average, 14% larger but 13%
faster than those obtained with SIS. The reasons for our speed advantage are two-fold. First, the recommended
optimization script that is used with SIS seems to optimize for area rather than speed, and secondly, the delay
lines that SIS needs to add to ensure hazard-freedom represents a significant fraction of the overall circuit delay,
whereas a speed-independent circuit would by definition eliminate these unnecessary delay lines. We note that
current research is directed towards technology mapping for speed-independent circuits which may significantly
improve our results [46].

8.3 Summary

This paper describes a provably correct synthesis procedure from SG specifications to speed-independent circuit
implementations using only limited-fanin basic gates. These SG specifications can easily be derived from many
high-level languages and are capable of specifying a wide class of circuits including many examples from academia
and industry. Our synthesis procedure first produces a standard C-implementation using binate covering formu-
lations designed for both single-cube and multi-cube covers. In addition, our procedure incorporates an efficient
methodology for logic transformations that is based on observability don’t cares and incremental verification. This
work represents the first use of multi-level logic in the domain of gate-level speed-independent circuits. Finally,
our procedure has been fully automated into a CAD tool, and it has been successfully applied to many examples
resulting in circuits that are on average 13% faster with only 14% area penalty when compared with the most
comprehensive benchmark set available [27],
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A Definition of Correctness .

Informally, a correct speed-independent circuit is one whose behavior satisfies a given specification under all
combinations of gate delays. We formalize this notion of satisfies with a definition of correctness of speed-
independent circuits that is comprised of two parts: complex-gate equivalence which primarily deals with functional
correctness and hazard-freedom which primarily deals with behavioral correctness, i.e., transient behavior.

A.1 Complex-gate equivalence
The definition of complex-gate equivalence is based on a couple of ideas. The status of a speed-independent circuit
at any point in time is completely characterized by an implementation state, that is either a bitvector q over A tmPl,
(i.e., q E 2AI~~1),  called a successful implementation state or the special value, q+t,  that models the failure state of
an implementation entered after the occurrence of a hazard (described later in this Appendix). An internal signal
or primary output u is enabled in an implementation state q if u’s value does not equal f U (q). A primary input
u is enabled in an implementation state q if u is enabled in the specification state on which it projects, i.e., the
specification state s in which for all u in Aspec, s(u) = q(u), denoted proj(AsPeC)(  q). No signal is enabled in the
failure state qfUit. Summarizing we have,

I f&) # q(u) u E N U 0 A Q # Qfail

enabled(  u, q) z enable4 u , proj(Aspec) (4)) u E I A q # qfail

I FALSE !l = !&ail.

For each specification state s in an externally-cut circuit, we claim that there exists a unique implementation
state extend(s), called an implementation-state extension, that projects onto s and in which no internal signals are
enabled. The value of signal u in extend(s) is called its settled value. The uniqueness of extend(s) can be easily
proven since when a circuit is externally-cut, the circuit becomes acyclic and combinational.

For each specification state s, the value that a signal is driven to in s is called the the external evaluation of
the signal in s. The external evaluation of an internal or primary output u in state s equals the local evaluation of
u in the implementation-state extension of s. On the other hand, the external evaluation of an input signal u in s
equals s(u) if the input is not enabled in s and s(u) if u is enabled in s. Summarizing, the external evaluation for
each signal in a state s is given by ext-eval(s)  defined as follows

ext-eval( s) (u) q

fU  (extend( s)) if u E N U 0

4 4 if u E I and not enabled(u, s)

44 u E I and enabled(  u, s) .

A circuit is complex-gate equivalent to its specification when the external evaluation of all primary outputs
agree with the specification, that is, if the external evaluation of each primary output differs from its current value
in exactly those specification states in which it is enabled, i.e.,

k’s E @ Vu E 0 [ [ext-e&(s)(u)  # s(u)] e enabled(u, s)] .

Intuitively, complex-gate equivalence states that the specification and implementation should behave the same when
considering only external signals and ignoring hazards. Complex-gate equivalence is both a safety and a liveness
property. It is a safety property because it ensures that ignoring internal signals the circuit behavior is allowed
by the specification. It is a liveness property because it ensures that the circuit can exhibit any specified behavior
given the appropriate input choices and gate delays. It is similar to the liveness notion completeness with respect
to specification introduced by Ebergen [ 191

A.2 Hazard-freedom
If each primary output is built using a single atomic complex-gate, then complex-gate equivalence is the only
correctness criterion needed since under these conditions there are no hazards. However, this paper deals with
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gate-level circuits composed of simple gates in which hazards can occur as a result of the added modeled delay
within the circuit. Hence, the second part of our notion of correctness is hazard-freedom,

Hazard-freedom is a safety property of the actual behavior of a circuit implementation in a particular environment.
Their joint behavior is modeled using an implementation state graph. An implementation state graph is defined by
(QReach,  R, qo), where &Reach  is the set of reachable implementation states, R is a state transition relation, and q. is
the initial state.

The initial state of the implementation qo  is defined to be the implementation-state extension of the initial
specification state SO  (i.e., qo = extend(s0)). This model is based on the assumption that after circuit power-up the
environment holds the external signals fixed until all internal signals have time to settle.

The transition relation R includes one transition for every enabled signal in every implementation state. The
destination states of these transitions depend upon whether or not the transition is hazard-free. A transition associated
with an enabled signal o in successful state q is defined to be hazard-free on u if the firing of v does not disable
u. That is,

hazard-free(  u, q, q’) z u = u V [ enabled(  u, q) + enabled(  u, q’)] ,

where q’ = bitcomp(  u, q). Note that we apply this definition only to internal and output signals, not to primary
inputs which are allowed to disable other inputs.

The state the circuit enters when an enabled signal fires depends on whether the transition causes a hazard on
any gate output u (internal signal or primary output). If the firing of the signal causes a hazard at any gate output,
then the state entered is defined to be the failure state qfail. Otherwise, the destination state of the transition is
bitcomp(  w, q). Implementation state transitions are denoted by q Lq’ similar to specification state transitions. In
addition, if the signal that changes, V, is not relevant, the notation q -+ q ’ may be used. This model is based on
the assumption that an internal hazard in a speed-independent circuit can always propagate to a primary output and
hence always represents a circuit malfunction. This assumption, in general, might be conservative, but has been
proven true for a large class of circuits [7].

The set of reachable states of an implementation SG, Q ~~~~~~ can be recursively defined as follows:

extend(  so)  E &Reach;

[3q E QReach [q * q’] ] * [d E &Reach] .

The set of successful states Qsucc is the set of reachable states
A circuit is hazard-free if the failure state is not reachable,

minus Qfail  -

Notice that hazard-freedom by itself is not a sufficient check for correctness because circuits that do not behave as
specified may still be hazard-free.

B Necessary and sufficient conditions for correctness

In section 3.2, we gave intuitive explanations of the notions of acknowledgement and monotonicity
claimed were necessary and sufficient conditions for correctness. This section formalizes these claims.

which we

B.1 Formalization of monotonicity and acknowledgement

To formalize the notions of monotonicity and acknowledgement consider a sequence of implementation states
Ql,-**,!?i,*-*, qn  that project onto specification states within a signal region for signal u. In each of these states u,
the signal is requested to settle to its external evaluation. However, the request does not reach the internal signal
until an implementation state is reached in which the signal’s local evaluation equals its external evaluation, i.e.,

f~ (qi)  = ext-eval(proj(As,,c>( q;))( u) . (1)

Once this implementation state is reached the gate associated with u, u is driven to its new external evaluation after
some delay. In a correct circuit, once this implementation state is reached, the request is maintained until after the
circuit leaves the signal region. In other words, the predicate (1) monotonically increases from false to true through
the sequence. For example, consider a state transition q + q’ within the sequence of implementation states. If in
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q, fU(q)  equals u’s external evaluation, then in q’, fU (q) shouid also equal u’s external evaluation. We denote this
condition by monotonic(  u, q, q ‘) .

Now consider the boundary of a signal region of u. That is, consider a transition q :q’ in which the external
evaluation of u changes. In this case, u should be at its external evaluation in q, which means that u should complete
the O-to-l or l-to-0 change in value before the circuit leaves the region. Otherwise, there exists a sequence of states
in which before w fires u is enabled, and after u fires u is disabled, either directly from v firing or from the firing of
signals subsequently enabled. In other words u must be acknowledged before its external evaluation changes and
denote this condition is denoted by acknowledged( u, q, q ‘).

Monotonicity and acknowledgement of all internal signals and primary outputs combined are necessary and
sufficient conditions for a complex-gate equivalent circuit to be hazard-free [4, 31. However, to directly prove that
our synthesis algorithm generated circuits that satisfy these conditions would be very difficult. Instead, we use these
conditions as the foundation of sufficient conditions for correctness that are more useful in terms of proving our
synthesis procedure correct.

B.2 Relationship between monotonicity/acknowledgment and successful implementation
states

It is useful to identify the relationship between monotonicity and acknowledgement and the set of successful
implementation states. Monotonicity and acknowledgement together ensure that enabled signals are never at their
external evaluation, that is, they are enabled to change only in the direction of their external evaluation. These
conditions are necessary conditions for correctness because the existence of such a reachable implementation state
guarantees that the circuit is hazardous. These necessary and sufficient conditions imply that it is possible to exactly
check correctness by analyzing a subset of reachable implementation states.

To formalize this a signal u is externally aligned in q if in q the signal u is not both enabled and at its external
evaluation, i.e.,

externallyaligned(u,  q )  G 1 [enabledb,  q) A [ q( u> = ext-eval(proj( Aspec)  (a)) (u)]  ] .

An implementation state q is externally aligned if all signals are externally aligned in q, and the set of externally
aligned states in LJ AIm~l is denoted QEA.  The failure state qfai/, by definition, is not externally aligned.

The subset of externally-aligned states reachable through externally-aligned states, referred to as the core set of
externally-aligned states and denoted by QCEA,  can be defined as the smallest set of states satisfying:

extend(so) E QCEA V

[3p~QcduUWO[ hazard-free(  u, q, q’) A externally_aligned(  u, q’)]  ] + [q/ E QCEA]  .

We use the adjective “core” to describe this set to emphasize that there may be externally-aligned states outside
&CM, i.e., those reachable only by sequences of states that contain externally-misaligned states. We have shown
that for all correct circuits QCEA equals QsUCC [3].  However, for some incorrect circuits Q~EA  is a subset of QsUCC.

In summary, QcEA is a subset of reachable states from which it is possible to check for hazard-freedom. The
check is simply to see if any state transitions from this set violate monotonicity or acknowledgement. This allows
us to focus on analyzing &cm  instead of the potentially larger set &Reach  to determine hazard-freedom. As shown
in the next two appendices, this result is very useful in developing sufficient conditions for correctness.

C The cube approximation

A cube approximation is essentially a state graph with cubes that annotate specification states and transitions. Each
cube describes the approximate behavior of all internal signals for the particular state or transition the cube is
associated with. For example, if in a state cube c associated with state s, c(u) = X, then the cube approximation
states that internal signal u can be changing when the circuit is in specification state s. The cube approximation
compactly represents a large set of implementation states.

This appendix introduces an efficient algorithm to find the best cube approximation that represents a superset of
important implementation states (i.e., Q~EA),  developed in Appendix B. This algorithm relies on a formulation of
the notion of acknowledges in which transitions of output signals allow us to infer the stability of internal signals.
The general idea is that once an output signal transition acknowledges a request on a signal, the signal remains
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stable until a new request is issued to the signal. Using the notion of stability provided by the cube approximation,
we present sufficient conditions that test monotonicity and acknowledgement of all internal signals and primary
outputs in all implementation state transitions.

C.l Mapping the cube approximation to a set of states

A cube by itself does not correspond to a set of implementation states since a cube does not define the value of the
external circuit signals. However, given a reference specification state s, the function CtoQ(c,  s) maps a cube c to
a set of implementation states in the traditional way.

A cube approximation of an implementation state graph consists of several cubes: one for each state in the
specification state graph (denoted CA(s) and called a state cube) and one for each transition in the specification
state graph (denoted CA(s, v) and called a transition cube). If only the state cubes are considered, then the set of
implementation states represented by a cube approximation is

QEA n U CtoQ(CA(s),  s).
SE@

The intersection with Q EA, above, is necessary to avoid grossly overestimating &cm.  Since every state in &cm  is
externally-aligned, we know that intersection with Q EA does not cause any states to be missed.

Even when QEA is used in this way, however, the resulting approximation is often too conservative to be useful.
The transition cubes CA(s, V) are used to further constrain the approximation. Let q be an externally-aligned
implementation state such that proj( A,+,,) (q) = s. The state q is in the cube approximation iff

l q E CtoQ(CA(s),  s) and

l for all primary outputs ZJ E 0, if v is enabled in q, then q E CtoQ(  CA(s, ZI),  s).

In other words, q is in the cube approximation iff q E Q CA(s),  where

&CA(~)  = QEA  n CtoQ(CA(s), s) n {q E BA Imp1 1 VV E O[enabled(v, q) 3 q E CtoQ(CA(s,  v), s)] >.

The set of all implementation states represented by the cube approximation is

&CA = U &CA(S).
SE@

C.2 Required fanins and acknowledgement

We say a fanin is required by an output in a specification state given a corresponding cube if in the specification
state the firing of the fanin must precede the firing of the output. This subsection develops a formalization of this
intuition and uses it to define the notion of acknowledgement. Acknowledgement, in turn, is used to determine the
stability of internal signals in computing the cube approximation.

Given a specification state s, a cube c, and a signal u, all implementation states in CtoQ(c,  s) in which u’s
internal evaluation equals its external evaluation are considered. A fanin w of u is required if in all of these states
it is at its settled value as defined below.

required(w, u, s, c) =
w E FZ(u)  A Vq E CtoQ(c,  s) [ [fU(q)  = ext-eval(s)(u)]  + [q(w) = extend(s)(w)]] .

For example, the output of an AND gate that is supposed to rise in state s cannot rise until all its fanins rise. Hence,
all the fanins of this AND gate in state s are required fanins. Similarly, if all but one fanin of an AND gate that is
supposed to fall in state s are stable high, then the AND gate cannot fall until that last fanin of the AND gate falls.
Hence, in state s, the last fanin is a required fanin of the falling AND gate.

Informally, given a specification state s and a primary output 21 which is enabled in s we say the corresponding
state transition ~5s’ acknowledges an internal signal if the internal signal must settle to its external evaluation before
the state transition fires. As described above, this happens when w is a required fanin of some signal u whose
internal evaluation must reach its external evaluation before the enabled primary output v fires. This condition on
w holds in two significant cases. First, it holds when u is identically the primary output v that is enabled to fire
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in s (assuming complex-gate equivalence). Second, it holds when the u is an internal signal
Summarizing, we have

which is stable in s.

Using the notion of acknowledgement, we characterize a
which the following two production rules cannot be applied:

acknowledges(  s, v , w) =
3u E FO(w) [required(w,  U, s, CA(s)) A [u = v V CA(s, U)(U) = ext-eval(s)(u)]]  .

fixpoint of the the cube approximation Q CA as one in

l State production: If s Ls’ and CA(s, w)(u) # CA(s’)(u),  then set CA(s’)(u) to X.

l Transition production: If s%‘,  CA(s)(u) = X, and not acknowledges(s,  V, u), then set CA(s, U)(U) to X.

State productions assert that if in a transition into some state s’ an internal signal u is unstable, then u must be
unstable in s’. State productions reflect the fact an internal signal is stable in a state only when it is stable during
every transition into the state. Transition productions assert that if an internal signal is unstable in a state cube and
the state transition does not acknowledge the internal signal, then the internal signal might still be changing during
the transition. Transition productions reflect the fact that an internal signal becomes stable in a transition cube
only when the transition acknowledges the internal signal. Notice that after the signal is acknowledged, however,
it remains stable until its external evaluation changes.

Since the productions are monotonic and the approximation has a lower bound in which all internal signals are
always X, a least fixpoint exists. Moreover, given an initial cube approximation, the least fixpoint is unique. We
refer to this fixpoint as CA and to the corresponding implementation state set as Q CA.

We have proven in [3] that if a cube approximation implicitly contains the implementation state extend(s) for
each specification state s E @ and is a fixpoint with respect to the above production rules that it represents a superset
of the core externally-aligned states. This fact is made more explicit in the following theorem.

Theorem 1 (Superset theorem)
Let the circuit G = (I, 0, N, E) be externally-cut and complex-gate equivalent to the SG M = (I, 0, @, I, s 0, X).
Let QCEA  be the core set of externally-aligned states of G and M. Let Q CA be the set of states represented by
the cube approximation CA. rf extend(s) E Q CA or all s E @ and no state or transition production rule can bef
applied to CA, then &CA > &cm.

Proof: See [3].

D Sufficient conditions for correctness

This appendix develops sufficient conditions for correctness that are used to prove the correctness of our synthesis
algorithm. These conditions are derived by abstracting the notions of monotonicity and acknowledgement (developed
on the implementation state graph in Appendix B) to specification states and transitions in such a way that they can
be checked through inspection of the cube approximation. Since the cube approximation is a conservative estimate
of the reachable state space, the conditions are sufficient, and not necessary, conditions for correctness.

Consider first the monotonicity of a particular internal or primary output signal u. Since only fanins of u can
affect fu (q) and since u’s external evaluation is the same in all implementation states that project onto a specification
state s, to abstract the notion of monotonicity to specification states only the effects of each fanin w of a signal u
in each specification state s need be considered. We present three sufficient conditions which each guarantee that a
fanin w can not cause fu (q) to be non-monotonic during any implementation state transition from a state q E Q ,-m
that projects onto s.

The first condition is when fanin w encourages the expected change on u, that is when w helps the signal
u reach its external evaluation. For example, as depicted in Figure 13(b), the fanin ws, which is supposed to
rise, is an encouraging fanin of an AND gate that is supposed to rise. The rationale behind this is that from core
externally-aligned states we know ws can only change in the direction of its external evaluation, i.e., it can only
rise. It is easy to see that ws rising cannot cause u to be non-monotonic. This characteristic of encouraging fanins
is made explicit in the following definition,

encouraging(  w, u, s) G w E FI( U) A

vq E aAtmpt [[q(w) # ext-eval(s)(w)  A fU(q)  = ext-eval(u)(s)]  + [fU(bitcomp(w, q)) = ext-eval(u)(s)]]  .

32



u

ext-eual  (w3, s) = 0
ext-eual  (u, s) = 0

(4
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w3

ext-eval (w3, s) = 1

ext-eval (u, s) = 1

@I

Figure 13: (a) and (b) Depiction of typical cases in which w3 is an encouraging fanin of u. (c) and (d) Depiction
of typical cases in which ws is an insensitized fanin of u.

The definition of encouraging fanins depends solely on the gate type and external evaluation of the relevant signals
and can be easily hard-coded for simple gates.

The second condition is when the signal u is insensitized to the fanin w in a particular specification state or
transition, i.e., when the behavior of fU is independent of the actions of w given the current approximation of
internal signals in the specification state or transition. Let the approximation of internal signals be represented by
the cube c. Then, we formalize the notion of insensitized in a state s given the cube c based on the straight-forward
notion of insensitized in implementation states as follows:

insensitized( w, u, q) s w E FZ( u) A fu (q) = fU  (bitcomp(w,  q))
insensitized( w , u , s, c) z Vq E CtoQ(  c, s) [ insensitized( w , u , q)] .

As Figure 13(c) illustrates, ws is an insensitized fanin of u since the side-input w 1 is 1, a controlling value for the
OR gate. Given a cube approximation, it is easy to see how this can be generalized to all simple gates and is very
easy to check, taking O(FZ(u))  time to compute.

The third condition that ensures a fanin w does not violate the monotonicity of the signal u in a specification
state s is when the fanin of u is stable in s. While cubes indicate when internal signals are stable in specification
states, external signals are always stable in a specification state s, since when they change a new specification state
is always entered. To express this, given a state or transition cube c, we say a signal is stable if it is fixed according
to the cube or if it is an external signal, i.e.,

stable(u, c) E u E I U 0 V c(u) # X.

Since a stable signal cannot change in any relevant implementation states that project onto s, it cannot cause u to
violate monotonicity in this specification state.

We summarize these conditions in the following definition of monotonicity in specification states.

s-monotonic(u, s) S
VW E (FZ(u)  U {u}) [stuble(w,s)  V encouruging(  w , u, s) V insensitized(  w , u, s , CA(s)) ] .

Monotonicity must also hold during the transition between two specification states s $s’ in which u’s external
evaluation does not change. In this case, the transition cube CA(s, w) can be used to check the insensitivity of a fanin
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ui instead of the state cube CA(s). This provides a tighter condition since the transition s -%s’ could acknowledge
some internal signals making them stable in CA(s, v). In addition, only the effect of w on u need be analyzed, since
this is the only signal that changes in this specification state transition. Hence, sufficient conditions for monotonicity
in specification transitions can be given as follows:

t-monotonic(u, s, s’) = encouruging(v, u, s) V insensitized(w,  u, s, CA(s, v)) V u 6 (FZ(u)  U {u}) .

Guaranteeing that the signal is acknowledged before a particular specification state transition fires is easy since
once any specification state transition acknowledges a signal, the signal remains stable until its external evaluation
is changed. Specifically, an internal signal u is acknowledged before the state transition S&J’ fires if u is stable in
the transition cube CA(s, u).

acknowZedged(u,  s, s’) E stubZe(u,  CA(s, II)),

where L&S’.
Together, monotonicity and acknowledgement provide the following sufficient conditions for correctness.

Theorem 2 (Sufficient conditions for correctness)
Let G = (I, 0, N, E) be an externally-cut circuit implementing SG M = (I, 0, @, I, so, A). If QcA  _> QcEA,  G

is complex-gate equivalent to M, and for all s E Q> and all u E N U 0 s-monotonic(u, s) and for all (s, s I) E I
andalluENU0

[ ext-evaZ(  u) (s) = ext-evaZ(  u) (z?)] * t-monotonic(  u, s , s’)

[ ext-evaZ(  u) (s) # ext-evaZ(  u) (s’)] + acknowZedged(  u , s, s’) ,

then the circuit is correct.

Proo$ See [3].

E Proof of correctness

The design of speed-independent circuits has proven to be a tricky art. A published speed-independent circuit
was later found to be hazardous [ 181 and we have shown that a published competing algorithm for the automatic
design of speed-independent circuits [25]  can be interpreted to allow for the synthesis of hazardous circuits. Both
of these events motivate the need for a provably-correct synthesis algorithm. This section presents a proof that
our standard C-implementation generates only correct circuits. Our proof strategy is to show that for our standard
C-implementation their exists a cube approximation fixpoint for which the conditions in Theorem 2 are satisfied.

E.1 Defining a cube approximation fixpoint

Our sufficient conditions of monotonicity and acknowledgement (Theorem 2) can be applied to any cube approx-
imation CA that corresponds to a set &CA that is a superset  of Q CU. For a given circuit C there are many such
cube approximations, some which may satisfy our tests of monotonicity and acknowledgement and some which are
guaranteed to fail this test. For example, the cube approximation in which all internal signals are always unstable
clearly represents a superset of Q CEA, however, the acknowledgement test is guaranteed to fail. The problem is
that this cube approximation is very poor, representing many unreachable states. To better check monotonicity and
acknowledgement it is important to identify a good cube approximation (a close approximation of Q CEA) on which
the conditions of acknowledgement and monotonicity are tested.

Theorem 1 states that if the cube approximation is a fixpoint with respect to the given state and transition
production rule and included ~0, then the cube approximation is guaranteed to be a superset of QCEA.  However,
the quality of the resulting fixpoint depends on the initialization of the cube approximation. It turns out that a
good cube approximation can be obtained if each element in the cube approximation is initialized to its external
evaluation.

More precisely, a cube approximation can be obtained from the following algorithm.

1. For all s E @ and for all u E N set CA(s)(u) = ext-evaZ(s)(u).

2. For all state transitions s-%’ in r and for all u E N set CA(s,v)(u) = ext-evaZ(s)(  u).
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3. Apply state and transition productions rules until a fixpdint is reached.

The resulting cube approximation corresponds to a &CA which contains ~0 and is a fixpoint. Hence, by Theorem 1
we have that Q CA > &cm.  This algorithm uniquely defines the cube approximation fixpoint which is used to show
that the standard C-implementation yields correct circuits.

E.2 Acknowledgement and stability

In order to prove correctness of our standard C-implementation, one of our proof obligations is to show that every
request of every internal signal in the standard C-implementation is acknowledged. This is defined to mean that the
cube approximation fixpoint must indicate that the internal signal u is stable in all state transitions between states
of different requests of u. Our proof strategy is to use induction on the fixpoint definition. First, we show that
acknowledgement holds in the initial cube approximation. Then, we show that no application of either production
rule can ever invalidate acknowledgement.

To make this statement more precise we need to introduce the notion of an intermediate cube approximation.
Let CA; represent the cube approximation after i production rules have been applied after first being initialized
according to steps 1 and 2 of the above algorithmic definition. Also, let CA represent the cube approximation
fixpoint.

Lemma 2.1 Let R be a signal region of internal signal u. Zf all state paths through R to state s ” include a
transition sv‘s’ for which acknowledges(s,  v, u) holds in CAi for all i then CAj (s”)(u) = ext-eval(s)(u)  for all j.

Sketch of proof
We prove this by induction on the length of the longest path from s ’ to s”.
Base case: (length of path is zero).
This is the case when s’ = s”. For this case, CA(s, v)( )u can never be set to X since acknowZedges(  s, u, u)
guarantees that the guard for the transition production which can set CA(s, V)(U)  to z is always false. Since
CAo(s,  u)(u) = ext-evaZ(s)(u), we conclude that CAj  (s, w)(u) = ext-evaZ(  s) (u) for all j. As a result, the state
production that sets CAi (s”‘) (u) to X can never fire. Since CAo( s”) (*u) = ext-evaZ(  s) (u) we can conclude that
CAj(s”)(u)  = ext-evaZ(s)(u)  for all j.

Inductive case: Consider all s”’ such that s”‘ss”.  Either CA(s”‘)( u) = ext-eval(s)(u)  or acknowZedges(s”‘,  u’, u)

where s”‘<s”.  In both cases, the guard for the transition production that sets CA(s”‘, w’) is always false. Since
CAo(  s”‘, z+)(u)  = ext-evaZ( s) (u) , we conclude that CAj  (s”‘, 21’)  (u) = ext.evaZ(  s) (u) for all j. As a result, the state
production that sets CAi(s”‘)(u)  to X can never be applied. Since CAo(s”)( u) = ext-evaZ(s)  (u), we conclude that
CAj(s”)(u)  = ext-evaZ(s)(u)  for all j. n

E.3 Final proof of our synthesis algorithm

The final proof has two parts. First, we prove that our our standard C-implementations are correct block-level
circuits. Second, we proof that the decomposition and optimization steps preserve correctness.

The critical step is to prove that the correct region function covers yield correct standard C-implementations.

Theorem 3 Zf for all primary outputs u E 0 all region function covers C(u, k) are correct and are implemented
atomically, then the Standard C-implementation depicted in Figure 5 is correct.

Proof: According to our definition of correctness we must show that the circuit implementation satisfies complex-
gate equivalence and hazard-freedom.

Using only the cover condition of correct covers, simple Boolean logic verifies that the circuit is complex-gate
equivalence.

Our proof strategy for proving that the circuit is hazard-free is to prove that the circuit satisfies the sufficient
conditions for correctness described in Theorem 2. We show that there exists an output signal transition that
acknowledges all requests and hence that every request is acknowledged. Moreover we show that all requests on
all signals are monotonic.

First, we prove that the falling requests of all region networks and the single OR gate in the set network S,
are acknowledged by any falling transition of u. In a determinate speed-independent SG, every path between two
rising transitions of u includes a falling transition of u. Therefore, the covering condition guarantees that, in every
path between two region-network covers, a falling transition of u exists. Using this, it follows that the falling
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requests of each region-networks are cut by a falling transition of u. That is, every path through a falling request
of a region-network contains a transition of u. Similarly, every path through a falling request of the OR gate in
the set network is cut by a falling transition of u. It is easy to see that the falling transition of all region-networks
and the OR gate in the set network are always required for the C-element to fall. Therefore u acknowledges their
falling transition. Therefore, in every state transition between falling and rising requests u is stable at its external
evaluation (by Lemma 2.1. In other words, the request for u is guaranteed to be acknowledged. The proof for the
components in the reset network is analogous.

Second, we prove that the rising requests of all region networks and OR gates in set network S, are acknowledged
in the following steps:

1. Since the specification is determinate speed-independent, we know that every excitation
transition of u. In fact, a transition of u is always the last transition in such a path.

region is cut by a

2. We prove that the entrance constraint guarantees that every path through the rising request of a region-network
includes a rising transition of u in two steps. First, recall that the entrance constraint guarantees that the
cover of a region network Ai can only be entered through a state in the excitation region. Second, recall that
every path from an excitation region state through the request must include a rising transition of u.

3. Next, we show that the combination of the entrance constraint and closure constraint ensures that the on-set
(covers) of all region networks gates are disjoint. This means that if A; externally evaluates to one in any
state s that all other region networks Aj in the set network externally evaluate to 0 in this state.

4. This implies that for all other region networks Aj, s is part of falling request. Moreover, we can conclude
that in every path through this falling request to state s there exists a falling transition of u.

5. We have already shown that the falling transition of u acknowledges the falling transition of all region-
networks, which guarantees that all other region networks are stable 0 in state s (By Lemma 2.1).

6. Therefore the rising region-network is a required input to the rising OR gate in the set network
rising region-network and the rising OR gate are acknowledged by the rising transition of u.

and both the

The proof for the components in the reset network is analogous.
Now, we consider the monotonicity requirement. Monotonicity of the region networks is trivially satisfied

because all inputs to the network are external. The monotonicity of the OR gates follows since when an OR gate
input is unstable it is encouraging. The monotonicity of the C-element follows since the C-element is insensitive
to any non-encouraging input because the other input is stable at a controlling value.

Since all gates satisfy monotonicity and acknowledgement, the circuit is correct. w
This theorem states the block-level implementation is correct if the covering constraints on all region functions

are satisfied. The proof that the two presented binate covering algorithms correctly find correct covers because they
are straight-forward and are thus omitted.

Our final proof responsibility is to prove that the logic transformations and optimizations preserve correctness.
This is relatively easy since all non-trivial logic transformations (including the break-and-repair decomposition steps
and logic optimizations) are accepted only if they pass the incremental verification algorithm. Hence, our proof
responsibility reduces to showing that the incremental verification procedure is correct, which easily follows from
the proof that the complete verification algorithm is correct [3].
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