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Abstract

Pseudo-random testing is popularly used, particularly in Built-In Self Test (BIST) appli-
cations. To achieve a desired fault coverage, pseudo-random patterns are often supple-
mented with few deterministic patterns. When positions of deterministic patterns in the
pseudo-random sequence are known a priori, pseudo-random sub-sequences can be
chosen such that they also cover these deterministic patterns. We call this method of
test application, pseudo-deterministic testing. The theory of discrete logarithm has been
applied to determine positions of bit-patterns in the pseudo-random sequence generated
by a modular form or internal-XOR Linear Feedback Shift Register (LFSR) [Mukund 9 11,
[Lempel94].  However, the scheme requires that all the inputs of the combinational logic
block (CLB), under test, come from the same LFSR source. This constraint in circuit
configuration severely limits its application.

In this paper, we propose a practical and cost effective technique for pseudo-determinis-
tic testing. For most part, the problem of circuit configuration has been simplified to one
of scan path insertion, by employing LFSR/SR (an arbitrary length shift register driven
by a standard form or external-XOR LFSR). To enable the usage of LFSR/SR as a
pseudo-deterministic pattern source, we propose a method to determine positions of bit-
patterns, at arbitrarily chosen tap configurations, in the LFSR/SR sequence.

*. This author is with R&D, Cirrus Logic Inc., pursuing graduate study in Electrical Engineering through the Honors
Cooperative Program at Stanford University.
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1. Introduction
With growing complexity of integrated circuits and systems, the cost of testing has
become ever more significant. BIST is increasingly being applied as an effective means
to reduce the cost of testing. The test complexity is cut down through systematic struc-
tured approach and the test time is reduced through concurrency. BIST also gives us
the ability for testing parts in-circuit, and possibly on-line [McCluskey 851.

For built-in self testing, one must be able to generate and apply test patterns internally.
Due to simplicity and compactness, LFSR is popularly used as the apparatus for gener-
ating pseudo-random test patterns. Pseudo-random test patterns are effective when the
circuit is random-pattern testable. A typical circuit may however have some random
pattern resistant (RPR) faults. As a result, it is often required to supplement random-
patterns with few deterministically generated patterns. This situation may sometimes
be alleviated by using weighted random patterns or through logic changes to improve
random-pattern testability [Eichelberger 9 11. Several techniques that embed determin-
istic patterns in pseudo-random sequence have been proposed [Dufaza  911, [Hellebrand
921, [Vasudevan  931. These methods either have large area overhead or can embed only
a limited number of deterministic patterns.

1.1 On Pseudo-Deterministic Testing

An optimal choice of pseudo-random subsequences can be made, if positions of deter-
ministic test vectors, say corresponding to RPR faults, is known a priori. Through
appropriate choice of seeds, the hardware apparatus for pseudo-random testing can be
made to additionally cover deterministic patterns. This method of pseudo-deterministic
test application is especially well suited for BIST, where the test vectors have to be gener-
ated internally.

When the LFSR has fewer stages, say less than 16, one can use the brute-force method
of running it through the maximal sequence and thereby determine positions of deter-
ministic patterns. However, as the number of stages become larger, it becomes prohibi-
tive to do so. The theory of discrete logarithms has been used to address this problem.

A related problem of interest is that of identifying RPR faults. Random-pattern resis-
tance is a function of pseudo-random test length. The exponential dependency between
pseudo-random test length and fault coverage, suggests that there is a point beyond
which increasing the test length does not improve fault coverage significantly [McClus-
key 881. For a given pseudo-random test length, an efficient method for identifying RPR
faults has been suggested in [waicukauski  851.

In order to find an optimal set of seeds, one must consider a reasonable size subset, if
not all, of the test vectors for every RPR fault class. At least one of the test vectors for
each RPR fault class needs to be covered by the pseudo-deterministic sequence. Clearly,
if a very short test length is chosen, the working set of patterns to consider can become
very large. Therefore, pseudo-deterministic test is best thought of as an enhancement
and not an alternative to pseudo-random test. This trade-off and related heuristics have
been discussed in [Lempel 941.



1.2 Modular Form LFSR - Generator of GF(2n)
The theory of discrete logarithm has been applied to determine positions of bit patterns
in the sequence generated by a modular form LFSR [Mukund 911, [Lempel94].  Consider
the modular realization of a n-stage LFSR in Fig. 1, with the feedback polynomial

p(x) = cg+clx+ . . . +c,~lxn-l  +xn .

We call this, the Shift Division Circuit (SDC).

Let p(x) be primitive and a be one of its roots in GF(Zn).  Then we can identify the state:

P = [b() b, .** on-J

of the SDC with the field element:
p = bo+bla+...+b,-,a”-’ *

Notice that every step of work performed by the device corresponds to multiplying the
field element /3 by the field element a. This means, starting from any non-zero state PO,
the SDC generates all the other non-zero elements of GF(Zn) successively as:

In particular, in order to determine how many steps it will take for the SDC, starting
from the state PO, to arrive at the state /3, we need only compute log,p - log,&.

CO Cl

Figure 1. Modular Form LFSR or SDC

The problem of computing the discrete logarithm, m = log,/3 , has received wide atten-
tion in the area of Cryptography [Pohlig 781, [Coppersmith 841, [Odlyzko 84). If the value
of n is so chosen that ZR- 1 is a large prime or at least one of its prime factors is large,
then it is very hard to extract logarithms in the field GF(2n).  On the other hand, it is
much easier to exponentiate. It is this disparity that led Diffe and Hellman [Diffe 761 to
propose a cryptographic scheme based on exponentiation in finite field.

However, in the pseudo-deterministic test application, the value n can be chosen such
that 2n- 1 is smooth (expressible as a product of relatively small primes). Fortunately,
most values of n in the range of interest, say 16 < n < 100, are such that 2n-1 is smooth.
Methods for computing discrete logarithms that are particularly suited for this applica-
tion and the procedure for making choices of n have been proposed in [Mukund 911.



2. Motivation
Consider the pseudo-random BIST situation of Fig. 2. The input registers can be config

Figure 2. A BIST Example

ured as independent LFSRs  to test random pattern testable faults in CLBl and CLB2.
However, for pseudo-deterministic testing, it is essential that all the inputs of every CLB
come from the same source. As a result, we need to configure the three registers into
one large LFSR, such that only a subset of the LFSR stages are connected to each CLB.
The number of possible test patterns, for every RPR fault class, grows exponentially with
the difference in the number of LFSR stages and the number of CLB inputs. The prob-
lem of identifying positions of deterministic test patterns is soon rendered impractical.
In reality, the interplay between the inputs of CLBs is even more complex, especially in
non-data path situations.

In order to satisfy the constraint that the inputs to every CLB must come from the same
source, we adopt LFSR/SR, a device proposed for pseudo-exhaustive testing [Bar-Alai
831. LFSR/SR is simply a standard form LFSR driving an arbitrary length shift register
(scan-chain). The inputs of CLBs are connected to the shift register at arbitrarily chosen
tap positions. Given certain tapping configuration, a method for selecting the feedback
polynomial is discussed in [Barzilai  831. In practice, the number of stages in the driving
LFSR is one or two stages more than the number of inputs of the maximum input CLB .

Our intent is to find a method to determine positions of bit-patterns, at arbitrary tap
configurations, in the sequence generated by the LFSR/SR.

3. Standard Form LFSR - The Dual 1

In preparation, we first develop a linear transformation that will help us identify posi-
tions of bit-patterns in a standard form LFSR sequence.

*. Most combinational networks have more than one output. In many cases each of the outputs depend on only a subset
of the inputs. We can hence consider the input sets on which every output depends as the target, instead of CLBs
[McCluskey 841.  This can potentially make the driving LFSK smaller and hence further simplify the problem of
pseudo-deterministic test.



We call the autonomous time-sequential circuit of Fig. 3,

‘?- D < 4 De . . .

V V V

Figure 3. Standard Form LFSR

with the transition matrix:

T =

0 0 . . . 0 co
1 0 . . . 0 Cl

0 1 . . . 0 c2

. . . . . . . . . . . . . . .
0 0 . . . 1 C,-l

the standard form LFSR.

We also know that the transition matrix of an accompanying SDC with the same feed-
back polynomial is the transpose:

TT =

0 1 0 . . . 01
0 0 1 . . . 0
. . . . . . . . . . . . . . .
o o o . . .  1
co Cl c2 **- c,-1

If the feedback polynomial is primitive and we start from any non-zero state, then both
the circuits traverse through all the 2n - 1 distinct non-zero states. The position of a bit-
pattern in the standard form LFSR sequence can be determined by the following theo-
rem.

Theorem 1: There exists a one-to-one correspondence between,the  state sets of a stan-
dard form LFSR and a SDC with the same feedback polynomial, which is linear and
respects the succession of states in both the devices.



Proof: Considering the invertible matrix:

A =

it is easy to verify that:

Cl c2 cj . . . c,-l 1

c2 cg Cd . . . 1 0

. . . . . . . . . . . . . . . . .
C n-l 1 0 . . . 0 0

1 0 o... 0 0

TA = ATT

(Equation 1)

Thus, if we define the linear mapping o by sending the state (3 of the standard form LFSR
to the corresponding state:

o(P) = PA (Equation 2)

of the accompanying SDC, then it is evidently invertible and we see from:

o(PT) =  PTA =  PATT  =  o@)TT,

that the transition of states in both the devices is preserved. Q. E. D.

We see from this theorem that in order to determine the distance between the test vec-
tors PO and p in the standard form LFSR, we need only compute log,a (p) - fog,0 (PO) .

4. LFSR/SR - The Apparatus
The apparatus particularly suited for pseudo-deterministic BIST is the LFSR/SR illus-
trated in Fig. 4. The shift register (scan chain) could potentially be inserted in a post-

bk+i0

V
b k +  1,

V

bk+iI-1

Figure 4. A 2 tap, N-stage LFSR/SR with n-stage driving LFSR

logic design step with the head of the shift register re-configured into a standard form
LFSR.



As discussed in [Barzilai 831, one can generate test patterns of the form:

bk+i ... bk+i ,k”1 1I-1

by the help of an arbitrarily chosen tapping configuration:

T =
[
i, i, i,  .  .  .  i,-, ,Olii<N-  11

on a N-stage LFSR/SR,  where the driving n-stage standard form LFSR has a primitive
feedback polynomial. A problem of interest is to make the choice of a primitive feedback
polynomial such that all I-patterns can be generated at a set of s arbitrarily chosen tap-
ping configurations*:

0, 1, 1, 1, s, 1,
2 ,z , a*-, z *

To this end, a theorem is obtained in [Barzilai 831. Here we give a proof in a different
perspective that illustrates how the position of a test pattern 6k at the tapping confrgura-
tion z can be determined in the LFSR/SR sequence.

Theorem 2: For any integer $, we divide x1’ by p(x) to obtain the remainder

r,, t-a = xfmod(p(X))  = CiI’ o+Ci,,l~+ ... +ci,,~-lxfl-l.

If the feedback polynomial p(x) is primitive, then the tapping configuration z generates all
Z-patterns if and only if, the vectors:

y(f)  =  [q. c;,,~  .  .  . ci (Equation 3)
I’

are linearly independent.

Proof: Suppose the LFSR starts working with the non-zero state:

P =[0 b, 6, . . . b,J

and we write:

Divide x1’ by p(x) to obtain:

XL1 = 4, (X>P (~1 + ri, (~1 deg trl (x> > < n *
I I J

Then, since p(T) = 0, we see from:

pk+i, = pgTk+” = PkTLJ  = Pkri CT) 7
J

*. For the sake of clarity only one of the s tapping configurations is illustrated in Fig. 4.



that the signal b,, i , being the zeroth component of the vector pk+ i , can be computed
as: I I

which means we have:

where:

(Equation 4)

Thus we see, if the columns of C are linearly dependent, then fixed non-trivial linear
relations can be found between the components of 6k. This means not all l-patterns can
be obtained from the tap configuration 2. If, on the contrary, the columns of C are lin-
early independent, then since Pk can be any non-zero n-vector, every given Z-pattern can
be obtained by selecting a suitable k. Q. E. D.

In particular, if we
cannot exceed n.

wish the tapping configuration to generate all the I-patterns then I

On the other hand, if L c n and the matrix C has rank I, then for any given l-vector 6,, the
linear system:

pc = 6, (Equation 5)

has 2(n - ‘I solutions for p, say V (6,) . Thus, if the driving LFSR starts with an initial state
PO, then for every step:

2)= (N-n-k) + (fog,o(p)  -fog,o(Bo))mod(2”-1), P E W,) (Equation 6)

of work, the configuration z will output the pattern 6,.



5. An Illustration
In this section, we provide an example to illustrate the application of LFSR/SR in
pseudo-deterministic testing. Consider the scenario shown in Fig. 5. The design has a

$) 2+0 2+2

/,.. *.A..  . . . .

*
:. ‘5

 . . .:.;::> . . . . . . . . . . . . . . . . . . . . .
2 :: *.5.

;;.

2+6
* . . . ..../... **,+.

d2) l+O 1+6 1+7

..:: ll..f -. . . . ;. . ,I‘ .:.- .:... n::. . .

T
I

v v \I/
1 1 1

CLB 1

Figure 5. An Application of the Pseudo-Deterministic Test Apparatus

set of registers, some of which are connected to the inputs of CLBl (gnd CLB2. The goal
is to apply the deterministic pattern Sz(‘) = [I I I] to CLBl and 6, = 010 toCLB2.[ 1
The registers are configured into a shift register. The order in which the registers are
connected is arbitrary. As a result, we have tap configurations 2(l) and x(2) connected to
CLBl and CLB2 respectively. We can pick a primitive feedback polynomial for the driv-
ing LFSR using the method suggested in [6], such that the columns of the C matrices
corresponding to x(l) and T(~) are linearly independent. \nstead,  $t us arbitrarily pick a
4-stage LFSR with the primitive feedback polynomial: x = 1 + x , and test for the linear
independence of the columns of C matrices. From Eqn. 3, we have:

y(l) (0) = xOmod  (p (x) ) = [ 1000]  )
y(l) (2) = x2mod (p (x) ) = [OOlO] ,
y(l) (6) = x%od (p (x) ) = x4x2 = (1 +x3)x2  = x2+x5 = x2+ (1 +x3)x
= x+x2+x4= 1 +x+x2+x3= [llll],

yc2) (0) = x’mod (p (x) ) = [ lOOO] ,
YC2)  (6) = [llll],

YC2) (7) = x6x = (1 +x+x2+x3)x = x+x2+x3+x4= 1 +x+x2= [lllO]

Therefore, from Eqn. 4,

C(l) = ~~~, and Cc2)  = ~~~.

By inspection, the columns of Ct’) and Ct2) are linearly independent.



We can compute discrete logarithms using methods suggested in [5]. Since n is small, all
the elements of GFQn)  can be generated using the SDC shown in Fig. 6.

Figure 6. SDC with feedback polynomial, x4 = 1 + 2

Working the SDC from the root, a = [0 1 0 0] , we can readily obtain the discrete loga-
rithm look-up table:

log,[o 1 0 o]= 19 lo&J1 1 0 1]= 59 lOg,[l 0 1 o]= 93 @,[o 1 1 o]= 1%

log, [o 0 1 o] = 2, log, [l 1 1 1]= 69 1%  [o 1 0 l] = 10, @,[o 0 1 l] = 14,

lw,[o 0 0 1]= 3, lo&J1 1 1 o]= 7, lo&J1 0 1 1]= 11, lo&J1 0 0 o]= 159

lo&J1 0 0 1]= 4, lo&Jo 1 1 1]= 87 @,[l 1 0 o]= 12, lo&[0 10 o]= 1.

From Eqn. 1, we have,

By solving for p (‘I and J3 (2) in p (‘I C (‘I = s211) and p 12) Cc2) = 6, (2) respectively, we have:

~(8~~~))  = I[1 o 1 I]~ [I 1 I 011 and v(Q2)) = $0 I I 1J [o o o 111 .
Let the LFSR start at an arbitrary state, say PO = [0 0 0 1] . Applying Eqn. 6, we have the
positions of bit-patterns as:

2)1 (‘I = (10-4-2) +(log,(  [I 0 1 11 .A)-log,(  [o 0 0 11 .A))mod(l5)

= 4+(log,[O  1 1 I. -log& 0 0 o])mod(l5)=  4+ (8-15>mod(15)=  12,

2)2 (l)= (10-4-Z)  +(log,(  [I 1 1 o] ++og,( [o 0 0 1-j  -A))mod(l5)

= 4+(Iog,,[1  0 0 11 -log& 0 0 o])mod(lS)=  4+ Cd-- 15)modU5)=  8,

Y (2)  =  ( 1 0 - 4 - l )  +(log,(  [o 1 1 11 ++og,(  [o 0 0 I] .A))mMlS)

= 5+(~og,[oo  1  o]-h,[l  o o o ] ) mod (15) = 5 + (2 - 15) mod (15) = 7,

2)2 (2) = (10-4-1)  +(fog,(  [o 0 0 11 -A)-log,(  [o 0 0 I] +())mod(lS)

= 5+(loga[1  0 0 01 -/og,[l  0 0 o])mod(l5)=  5+ (1545>mod(15)=  5.



(1)
The bit pattern &2 = [ 1 1 1 1 at the tappin 9 configuration 2(l) is generated at the step 8
and 12. The bit pattern s, c2) = 1 1o 1 o at z( ) is generated at the step 5 and 7.

Let us now verify the above by actually running the LFSR/SR as shown in Fig. 7.

REGO REGl  REG2  REG3 REG4 REG5 REG6 REG7 REG8  REG9
(1) (1) (1)

20 % z2

(2)
ZO

(2)
%

(2)
z2

STEP
0
1
2
3
4
5
6
7

9 1 1 1 1 0 1 0 1 10
10 1 1 1 0 1 0 1 1 0 0
11 1 1 0 1 0 1 1 0 0 1
12 1 0 MI 0 IIlII  1 0 0 IDII 0
13 0 1 0 1 1 0 0 1 0 0
14 1 0 1 1 0 0 1 0 0 0
15 0 1 1 0 0 1 0 0 0 1

Figure 7. A sequence generated by a (10.4) LFSR/SR

Notice that if we seed the driving LFSR with the pattern [Ol 111, a sequence of length 7
covers the bit patterns of interest. A minimum sequence length of 6 is required for the
driving LFSR to reach the farthest tap position, namely REG 1.

6. Conclusion
For pseudo-deterministic test (pseudo-random test that also covers a set of known deter-
ministic patterns), one needs to identify positions of bit-patterns in pseudo-random
sequences. In this paper, a linear transformation [Eqn. 21 to relate the sequence gener-
ated by a standard form (external-XOR) LFSR with that of an accompanying modular
form (internal-XOR) LFSR has been presented. The positions of bit-patterns are then
identified by computing discrete logarithms in the field generated by the accompanying
modular form LFSR. A further transformation [Eqn. 51 to relate the sequence generated
by a standard form LFSR with the sequence generated at arbitrarily chosen tap positions
in a LFSR/SR (shift register driven by a standard form LFSR) is also presented. A for-
mula [Eqn. 61 for identifying positions of bit-patterns in the sequence generated at these
tap positions has been provided.

Pseudo-deterministic test requires that all the inputs of every CLB (combinational logic
block) come from the same pattern source. In a typical BIST scenario, there is interplay

10



between the inputs of different CLBs. Hence, it is impractical to directly apply LFSR. In
this paper, we have addressed this problem by proposing the use of LFSR/SR as the pat-
tern source. An arbitrary length LFSR/SR can be created simply by scan chaining the
registers driving the CLBs, whose inputs interplay. This apparatus makes pseudo-deter-
ministic testing practical and cost effective.
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