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Abstract

Tolerating memory latency is essential to achieving high performance in scalable shared-

memory multiprocessors. In addition, tolerating instruction (pipeline dependency) latency is

essential to maximize the performance of individual processors. Multiple-context processors

have been proposed as a universal mechanism to mitigate the negative effects of latency. These

processors tolerate latency by switching to a concurrent thread of execution whenever one of the

threads blocks due to a high-latency operation. Multiple context processors built so far, however,

either have a high context-switch cost which disallows tolerance of short latencies (e.g., due to

pipeline dependencies), or alternatively they require excessive concurrency from the software.

We propose a multiple-context architecture that combines full single-thread support with

cycle-by-cycle context interleaving to provide lower switch costs and the ability to tolerate short

latencies. We compare the performance of our proposal with that of earlier approaches, show-

ing that our approach offers substantially better performance for parallel applications. We also

explore using our approach for uniprocessor workstations — an important environment for com-

modity microprocessors. We show that our approach also offers much better performance for

multiprogrammed uniprocessor workloads.

Finally, we explore the implementation issues for both our proposed and existing multiple-

context architectures. One of the larger costs for a multiple-context processor arises in providing

a cache capable of handling multiple outstanding requests, and we propose a lockup-free cache

which provides high performance at a reasonable cost. We also show that amount of processor

state that needs to be replicated to support multiple contexts is modest and the extra complexity

required to control the multiple contexts under both our proposed and existing approaches is

manageable. The performance benefits and reasonable implementation cost of our approach

make it a promising candidate for addition to future microprocessors.
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Chapter 1

Introduction

The increasing computational requirements of applications has resulted in considerable inter-

est in the design of shared-memory multiprocessors which can scale to large numbers of pro-

cessors [CGB91, KCA91, BFKR92, Hag92, LLJ+93]. Most of thesescalableshared-memory

multiprocessors have a similar basic structure, as shown in Figure 1.1. Memory is distribut-

ed with each processing node and the nodes are connected via a low-latency, high-bandwidth

network. Cache coherence is maintained through the use of a directory-based coherence pro-

tocol [Tan76, CF78, CKA91, Len92, Web93], where the directory is distributed along with the

memory and keeps information on which caches are sharing each memory location. The dis-

tributed nature of memory on these machines results in low-cost accesses to cache and local

memory; however, cache misses which require remote memory accesses are fairly expensive.

Proc Mem Proc Mem

Scalable Interconnection Network

Figure 1.1: General structure of a scalable multiprocessor.

Since these multiprocessors harness together large numbers of high-performance processors,

their peak performance is quite impressive. In practice, however, many applications realize

only a small fraction of the peak performance. One of the key obstacles limiting application

1



performance is the long latency of remote memory operations [GHG+91, CB92]. By exploiting

techniques to avoid or tolerate these long-latency memory operations, application performance

can be significantly improved.

There are several ways to avoid memory latency. These include the caching of shared data,

which allows the processor to keep a copy of frequently referenced data close by, thereby exploit-

ing temporal and spatial locality in the data stream. The application can also be restructured to

further take advantage of cache locality (e.g. by blocking the data accesses for the cache [LRW91])

and memory locality (e.g. allocating data on the local memory of the processor most likely to

use it). While all of these methods improve the amount of computation a processor performs

before requiring a long-latency memory access, often applications still end up spending a large

portion of their time waiting on memory references [GHG+91]. To deal with this remaining

latency, several latency tolerating schemes have been proposed, including relaxed memory con-

sistency models [DSB86, SD87, AH90, GLL+90, Goo91], prefetching [CKP91, CB92, MLG92]

and multiple-context processors [Smi81, HF88, WG89b, ALKK90, ACC+90, BR92, LGH92].

Relaxed memory consistency loosens the ordering constraints between specific memory op-

erations to allow buffering and pipelining of memory references. Prefetching relies on being

able to predict the future use of a data item. Data references whose access can be predicted in

advance are then brought into the cache via nonblocking memory operation, with the goal that

by the time the data is actually needed, it will reside in the cache. Multiple-context processors

tolerate latency by overlapping the long-latency operations of one thread of computation with

the execution of other thread(s) and are an interesting and flexible method for tolerating many

forms of latency. However, while prefetching and relaxed consistency models are being incor-

porated into the latest microprocessor designs [Dig92a, JMY92, Hei93], multiple contexts has so

far largely been ignored.

In this thesis, we focus on the multiple context solution. We examine the reasons behind its

lack of acceptance by microprocessor designers. We then propose a multiple-context architecture

capable of addressing these concerns. We look in detail at the performance and implementation

complexity of both our proposed architecture and the current multiple-context approaches, show-

ing that our proposed architecture makes it possible to build a multiple-context processor that

provides good performance across a range of systems at a reasonable implementation cost.
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1.1 The Latency Problem

In addition to the large memory latencies possible in a scalable shared-memory multiprocessor,

application performance on these machines suffers from the latency of inter-process synchro-

nization, and instructions which take multiple cycles to produce their result. In this thesis, we

will refer to these three types of latency as:memory, synchronization, and instruction latency,

respectively.

For most applications that have been studied on large-scale, shared-memory multiprocessors,

memory latency dominates synchronization and instruction latency in determining an applica-

tion’s performance, even after providing coherent caches and structuring the applications to take

advantage of the cache and memory hierarchy [GHG+91, KCA91, LGH92]. The importance of

memory latency in determining parallel application performance is based on two conspiring fac-

tors. First, because different processes are cooperating on the same problem, data communication

between the processes adds to the cache miss rate. This communication component of the cache

miss rate is often much larger than uniprocessor cache miss effects, and can dominate the cache

miss behavior [WG89a]. Second, the latency for cache misses is larger than in a uniprocessor

due to the physical distribution of memory. Increased miss rates due to communication and the

long memory latency have a multiplicative effect, resulting in a large amount of time being lost

in the memory system.

Synchronization and instruction latency play a secondary, but important, role in determining

multiprocessor utilization [KCA91, LGH92]. Synchronization latency includes any time one

process spends waiting on another process, such as time spent in barriers to synchronize all

processes and time spent acquiring and releasing locks protecting application critical sections.

This latency varies widely by application and is very difficult to remove architecturally since it

represents a control dependency between the processes. Finally, instruction latency arises due to

pipelining of the processor, which causes some instructions to take multiple cycles to produce

their result. Compilers schedule instructions to overlap much of this latency with execution

of independent instructions, however, even aggressive compiler scheduling cannot tolerate all

instruction latency.

The first step to addressing these three forms of latency is to reduce or avoid as much of the

latency as possible. Latency reduction techniques include coherent caching and blocking transfor-

mations to lower memory latency, hardware and software primitives for fast synchronization, and

fast functional units and pipeline bypassing for reduced instruction latency. Unfortunately, even



after aggressively applying these and other techniques, a processor can still spend a significant

portion of its time idle [GHG+91, LGH92] and some form of latency tolerance, such as multiple

contexts, must be employed to improve performance further.

1.2 The Multiple-Context Solution

Multiple-context processors share a single processor between several threads of computation,

overlapping the latency encountered by one context with useful work by another context.1 In

order for multiple contexts to work well, the cost to switch between contexts needs to be much

smaller than the long-latency operation to be tolerated.

The earliest multiple-context processors, such as the Denelcor HEP [Smi78] switched contexts

each cycle, making the cost to switch contexts zero. This low switch cost allowed all three forms

of latency to be tolerated. Unfortunately, each context in these early designs was limited to a single

instruction being active in the pipeline. This constraint prevented pipeline dependencies from

arising, allowing the processor design to be simplified, however, it placed two onerous burdens

on applications. First, a large number of threads were necessary to fully utilize the processor

— enough to both fill the pipeline and hide the memory latency. Second, the performance of a

single thread was extremely poor, as each thread could issue a new instruction every pipeline-

depth cycles at best. Therefore, any serial portion of an application could greatly impact the

overall application performance. The limitations of these early designs were quite severe and

most recent designs have instead focused on another technique for building multiple-context

processors.

Multiple-context processors of this second type, exemplified by Weber and Gupta [WG89b]

and the MIT APRIL [ALKK90], share the processor between a number of contexts; however,

a single context utilizes all of the processor resources until it reaches a long-latency operation,

such as a cache miss, at which point the processor switches to another context. Because blocks

of instructions are executed between context switches, this second scheme has been referred

to as blocked [FP91, KCA91]. The original HEP-style scheme has since been labeledfine-

grained[KCA91].

Blocked multiple-context processors address the poor single-thread performance and need

for large number of contexts of the fine-grained schemes, but they do so at the expense of

increasing the context switch cost. The decision to switch contexts depends on determining

1In this thesis, we use the wordscontextandthreadinterchangeably.
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whether a cache miss occurred and this determination is made late in the pipeline. Without

extensive modifications to the processor, the cost to switch contexts will be close to the depth

of the pipeline, as the partially-executed instructions from the switching context will need to be

flushed from the pipeline.

This high context switch cost prevents blocked multiple-context processors from being able

to tolerate very short latencies, such as those caused by pipeline dependencies and primary cache

misses where the miss is serviced by a secondary cache. Trading-off the ability to tolerate these

smaller latencies for good single-thread performance makes sense for a multiprocessor, as mul-

tiprocessor performance is mainly determined by the effects of long-latency memory operations.

However, the processor performance impact of multiple contexts should not be examined only

for multiprocessor systems, as most multiprocessors are built using standard off-the-shelf mi-

croprocessors [Hag92, Thi92, LLJ+93, Cra93, GW94], in order to take advantage of their high

performance and commodity costs. These off-the-shelf microprocessors are still primary sold for

use in uniprocessors, making it important that multiple contexts are also able to address their la-

tencies. Being able to tolerate shorter latencies is much more important for uniprocessors, where

memory does not need to be distributed, making all memory access local, and not having to deal

with communication traffic allows effective cache hierarchies to be built, reducing the frequency

that even this nearby memory needs to be accessed. If commodity microprocessors are to ever

incorporate multiple contexts, the switch cost must be lowered to allow uniprocessor latencies to

be tolerated.

1.3 This Thesis

In Chapter 2, we examine previous multiple-context proposals in detail to determine if a multiple-

context processor with a lower switch cost can be built. We then propose a newinterleaved

multiple-context processor which combines the cycle-by-cycle switching of the fine-grained

schemes with the data caching and full single-thread support of the blocked scheme to achieve

a low context switch cost and good single thread performance. We present some examples illus-

trating the potential performance advantages of the interleaved scheme over the blocked scheme,

and then briefly discuss the implementation requirements of both approaches.

To quantify the performance advantages of the interleaved scheme, Chapter 3 presents a

simulation study which explores the use of interleaved multiple-context processors in a shared-

memory multiprocessor similar to the Stanford DASH [LLJ+93]. The interleaved scheme is



shown to provide significant performance gains over the blocked scheme in this environment.

Chapter 3 also verifies that the performance advantages of the interleaved scheme hold over a

number of multiprocessor architectural variations, such as when multiple contexts are combined

with release consistency and nonblocking loads, and as memory latency and cache size and

associativity are varied.

To evaluate the ability of the interleaved multiple-context processor in tolerating the smaller

latencies of uniprocessors, we examine the effectiveness of multiple contexts on a multipro-

grammed, high-performance uniprocessor in Chapter 4. We show that the blocked scheme does

little to improve application throughput, whereas the interleaved scheme is able to show large

increases in throughput due to its fast context switch and ability to tolerate instruction latency.

Chapter 4 also shows that a multiprogrammed workload places larger demands on resources

shared between the contexts, such as the caches and translation buffers, than was encountered for

the multiprocessor applications. Despite the larger cache and TLB interference, the interleaved

multiple-context processor is still quite effective in improving uniprocessor throughput.

Chapters 3 and 4 show that the interleaved scheme provides a significant performance ad-

vantage over the blocked scheme. To examine the other side of the performance/cost tradeoff,

Chapters 5–7 examine the implementation costs for both schemes. Since the ability of the cache

to support multiple outstanding requests is central to any multiple-context design, we first exam-

ine the design of the lockup-free cache in Chapter 5. We propose a lockup-free cache that keeps

track of outstanding memory operations directly in the cache via a pending state. This pending

state allows compatible requests to be merged and prevents conflicting requests to the same cache

line from being issued, thereby simplifying the design of the lockup-free cache. The chapter also

explores deadlock issues for the lockup-free cache and then finishes with a detailed performance

analysis of the proposed lockup-free design.

We then examine the remaining issues involved in implementing both the blocked and inter-

leaved schemes in Chapters 6 and 7, respectively. The costs beyond the lockup-free cache can be

broken into two major components: state replication and context scheduling logic. We show that

the amount of replicated state is small for both schemes. We also show that the context schedul-

ing logic for the blocked scheme is simpler than the interleaved scheme, however, the scheduling

logic for both schemes is relatively straightforward. Finally, Chapter 8 presents conclusions and

future directions.
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1.4 Contributions

The main contributions of this dissertation are:

� Development of the interleaved multiple-context architecture, which combines the low

context switch cost and instruction latency tolerance of the fine-grained scheme with the

coherent caches and good single-thread performance of the blocked scheme, allowing the

interleaved multiple-context processor to tolerate much shorter latencies than the blocked

scheme.

� A detailed performance study of the proposed and existing multiple-context architectures on

a modern, deeply-pipelined processor, using both multiprocessing and multiprogramming

workloads, which shows the proposed interleaved scheme to have significant performance

advantages for both workloads.

� Proposal of a novel lockup-free cache design which allows only a single outstanding request

per cache line, simplifying the cache implementation at a negligible cost in performance.

A detailed performance study points out the importance of keeping occupancy of memory

operations low and the negligible effect of collisions due to multiple requests to the same

pending cache line.

� Detailed examination of the implementation issues for the proposed multiple-context archi-

tecture, showing that the amount of state which needs to be replicated is small. In addition,

our implementation study shows that while the interleaved processor is more complex than

a comparable multiple-context processor using the blocked scheme, this extra complexity

is not overwhelming.



Chapter 2

A New Multiple-Context Processor

Existing multiple-context designs do not provide both a low context switch cost and full support

for singlethreaded operation. Fine-grained processors have a very low switch cost, but poor

single-context performance. On the other hand, blocked processors fully support the single

context, but the cost of context switching is much higher than the fine-grained schemes.

This chapter starts by examining the previous multiple-context designs in more detail in Sec-

tions 2.1 and 2.2. In Section 2.3 we observe that the cycle-by-cycle switching of the fine-grained

scheme can be combined with the coherent caches and full single-context support of the blocked

scheme. This new multiple-context design, which we callinterleaved, satisfies the twin goals

of low switch cost and full single-context support. Several examples are presented to illustrate

the differences between the new, interleaved multiple-context processor and the existing blocked

scheme. We conclude Section 2.3 by presenting an overview of the implementation requirements

of both the blocked and interleaved schemes. Related work is discussed in Section 2.4, and

Section 2.5 summarizes the chapter.

2.1 Fine-grained Multiple-Context Processors

Multiple-context processors date back to the early 1960’s, where they were used in the Control

Data Corporation 6600 to time-share a CPU and memory interconnect between a number of

peripheral processors [Tho64]. The earliest multiple-context processor proposals concentrated on

the fine-grained architectures, with the seminal representative being the Denelcor HEP [Smi78,

Smi81] built in the late 1970’s. HEP consisted of a small number of processors interconnected to

a number of memory modules via a packet-switched network. Fine-grained multithreading was

8
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used by the processors to attack the problems of both pipeline stalls and memory latency. To

address pipeline stalls, a context was prevented from issuing an instruction more than every eight

cycles, which corresponded to the pipeline depth. Since an instruction could never encounter a

pipeline dependency, no hardware or compiler resources had to be devoted to resolving pipeline

hazards.1 In addition, HEP provided the ability to tolerate the latency of a memory request by

removing an instruction stream from the issue queue while memory was being accessed. Since

HEP did not support data caches, large numbers of threads were required to hide both the pipeline

and memory latency. For this reason, each HEP processor supported up to 128 active contexts.

HEP continues to evolve, and has been through two more incarnations. The Horizon [KS88,

TS88] succeeded HEP. The processing elements were superscalar, capable of issuing three op-

erations per cycle. The major architectural advancement of the Horizon was the addition of a

lookahead field to each instruction, which encoded instruction dependencies, allowing multiple

instructions to simultaneously use the pipeline. Lookahead provided limited compiler-resolved

pipeline interlocks. Due to the size of the lookahead field, a maximum of eight instructions from

the same context could be simultaneously executing. Unfortunately, like HEP, Horizon did not

support caches. While instruction lookahead decreased the number of contexts needed for full

pipeline utilization, a single context could still not fully utilize the pipeline. This is because the

average response time of memory was expected to be around 50-80 cycles, and a lookahead of

eight instructions is not nearly large enough to allow a pipeline this deep to be filled.

Horizon was a paper design. The Tera [ACC+90, AAC+91] computer is based on much of

the Horizon design, and is currently being built by the Tera Computer Company. It enhances

Horizon by improving the support for thread management and synchronization and by requiring

lookahead only for memory operations. Memory lookahead helps to reduce the number of

contexts needed to tolerate Tera’s expected 70 cycle memory latency. Unfortunately, Tera ensures

that register dependencies are respected by reverting to HEP’s policy of limiting each context

to a single instruction in the pipeline (although, unlike HEP, once an instruction has caused its

memory reference to be issued, the next instruction can be issued if the lookahead for all previous

instructions is satisfied). Since Tera is expected to have a pipeline of between 11 and 13 stages,

at least this many contexts will be needed to fill the pipeline.

Kaminsky and Davidson also proposed another early fine-grained multiple-context proces-

sor [KD79]. The primary goal of their multiple-context proposal was not to hide memory or

1An exception to this is the divide unit, which could not sustain an issue rate of one divide per cycle.



pipeline latency, but rather to effectively utilize chip and pin resources. This is essentially anoth-

er way of looking at the same problem, since increasing the utilization of chip and pin resources

occurs by overlapping time that would be spent idle by one context with the active time of another

context. The main focus of the paper is on a design methodology for utilizing chip resources

efficiently when developing a multiple-context processor. Interestingly enough, as a case study,

they look into the use of virtual registers, an idea that has been reexamined recently [ND91].

A few more recent architectures have been based on the fine-grained scheme, including

MASA [HF88], DART [SB91], and the Stellar SPMP [SMM88]. However, most recent multiple-

context designs have avoided the fine-grained scheme because of its inability to efficiently handle

code with limited parallelism. As mentioned in Chapter 1, to overcome this limitation of fine-

grained multiple-context processors, blocked multiple-context processors were proposed.

2.2 Blocked Multiple-Context Processors

The blocked multiple-context processor provides hardware for a small number of resident threads,

but only executes a single thread at any given time. Long-latency operations are masked by

switching to another thread. Several early blocked multiple-context processors were proposed

for hiding specific long-latency operations or allowing costly resources to be shared. The Xerox

Alto personal computer provided multiple microcode-level registers sets for sharing the CPU

between the instruction set interpreter and the I/O devices [TML+82]. To prevent the I/O from

interrupting atomic series of microcode operations, a field was added to the microcode to specify

points at which context switching was allowed. Another early example was the Message-Driven

processor [DCC+87], which provided two hardware contexts, one for normal processor execution

and the other for handling high-priority messages.

The first published exploration of multiple-context processors in a shared-memory multipro-

cessor environment was performed by Weber and Gupta [WG89b]. They performed trace-driven

simulation of three parallel applications, with their processor switching contexts at each primary

cache miss. Even with a relatively fast memory (20–30 processor cycles), they found perfor-

mance benefits for blocked multiple-context processors with a small number of contexts (two or

four) per processor.

More recently, the Alewife multiprocessor being built at MIT [KCA91, ACD+91] is designed

with a blocked multiple-context processor, APRIL [ALKK90]. APRIL supports four contexts

in hardware and is based on a modified SPARC [Cyp90] processor. APRIL performs context
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switching through a fast processor trap, switching contexts in 11 processor cycles. APRIL

context switches whenever a memory request cannot be satisfied by the cache or local memory.

In addition, APRIL provides the ability to force a context switch on a failed synchronization

attempt. Using these two events as switch criteria, APRIL has the ability to tolerate the latency

of both memory requests and synchronization.

While blocked multiple-context processors address the poor single-thread performance and

need for large number of contexts of the fine-grained schemes, they do so at the expense of

increasing the context switch cost. The high switch cost of the blocked multiple-context processor

limits the types of latency which can be tolerated, and places an upper bound on the potential

performance of the multiple-context processor. Assuming all memory latency is hidden by context

switching, this upper bound is given in Equation 2.1.2 The average runlength (the number of

cycles between context switches) is broken into its componentsRA, cycles active, andRS, cycles

stalled due to pipeline dependencies (which cannot be tolerated due to the high switch cost).C is

the cost of a context switch. With memory latency completely tolerated, on average each context

executes forRA +RS cycles, followed byCcycles for the switch to the next context. Of these

RA + RS + Ccycles, onlyR A cycles are actually performing useful work. This upper bound

can be fairly restrictive. For example, an application with a 20 instruction average runlength

(RA = 20), a CPI of 1.5 with a perfect memory system (RS = 10), and a 10 cycle context switch

cost will limit processor utilization to 50%.

MaximumBlocked ProcessorUtilization =
RA

RA +RS + C
(2:1)

In attempt to reduce this switch cost, a few blocked architectures have been proposed which

replicate the pipeline registers [ND91, Omo91]. With this pipeline register replication, the context-

switch cost could be a low as a single cycle (at least one cycle is needed to broadcast the switch

decision to the entire chip for use by the TLB, pipeline forwarding logic, etc.) Unfortunately,

pipeline register replication comes at a substantial implementation and performance cost. Repli-

cating the pipeline registers results in a substantial increase in pipeline size, as latches which

hold pipeline state are a significant fraction of the total pipeline area. In addition, the outputs

of these replicated latches need to be multiplexed before being sent to the combinational por-

tion of the pipeline. When these multiplexor delays are combined with the higher fanout and

longer wire delays resulting from the area increase, it is difficult to imagine that the cycle time

of the processor will not be significantly impacted. Instead of trying to reduce the switch cost

2A simplified version of this upper bound, not accounting for pipeline dependencies, is developed in both [SBCvE90]
and [Aga92].



of the blocked scheme by brute force, a better approach can be developed by reexamining the

fine-grained scheme.

2.3 Interleaved Proposal

If one looks closely at the two major problems with fine-grained processors, the need for large

numbers of active contexts and the poor single-thread performance, it becomes apparent that

the limitations of the fine-grained scheme are not due to the cycle-by-cycle context switching.

Instead, two decisions incorporated into most fine-grained processors are the culprits. The first

is the decision to not support data caching, which makes every memory reference a long-latency

operation. The second is the decision to prevent a context from having more than one instruction

in the pipeline, thereby increasing the minimum latency of each instruction to the pipeline depth.

By adding both caching and full single-thread support to the fine-grained scheme, it becomes

possible to design a multiple-context processor which interleaves contexts on a cycle-by-cycle

basis, yet effectively supports a single context. Thisinterleavedmultiple-context processor works

as follows. Issuing of instructions is switched each cycle between available contexts in a round-

robin fashion. Contexts become unavailable when they encounter a long-latency operation, and

are made available when the long-latency operation completes. When a context becomes unavail-

able (an operation analogous to the context switch of the blocked scheme), the only instructions

in the pipeline which are squashed are those of the context becoming unavailable. In addition,

the cycle-by-cycle interleaving spaces out instructions from the same context, decreasing the

probability that two dependent instructions from the same stream result in a pipeline stall.

2.3.1 Performance Advantages

The interleaved scheme achieves its lower switch cost by squashing only the instructions in the

pipeline from the context encountering the long-latency operation. To illustrate this lower context

switch cost, let us examine a context switch induced by a cache miss for both the blocked and

interleaved schemes. We will assume that each processor has four active contexts (labeled A –

D), and that context A encounters the cache miss. Figure 2.1 shows the overhead to tolerate the

latency of the cache miss for the pipeline we will be using in our simulations. The exact details

of each pipeline stage will be discussed later; the important impact of the pipelining is that the

cache access occurs late in the pipeline, and therefore the context switch determination cannot

be made until the WB stage. As mentioned earlier, the blocked scheme will need to squash
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all instructions in the pipeline (including the instruction which caused the cache miss) before

it can start the next context and therefore a context switch costs seven cycles on the pipeline

shown.3 However, for the interleaved scheme, instructions from all four active contexts are being

interleaved. Since only the instructions from context A need to be squashed, the overhead to

handle the cache miss of context A is reduced to two cycles. Of course, the context switch cost

of the interleaved scheme will depend on the number of contexts being interleaved, but even with

a small number of contexts will be much lower than that of the blocked scheme.

IF1 IF2 RF EX DF1 DF2 WB

Pipeline

A A A A A A A

Blocked Scheme

C B A D C B A

Interleaved Scheme

Figure 2.1: Example illustrating the lower context switch cost of interleaved scheme.

The interleaved scheme also benefits from the cycle-by-cycle context switching tolerating

short instruction latencies. Like the pipeline of a single-context processor, the interleaved pro-

cessor stalls when an instruction needs a result from a previous instruction which has not yet

been computed. However, because there are no dependencies between instructions from different

contexts, if sufficient instructions from other contexts are interleaved between dependent instruc-

tions from the same context, the instruction latency dependency can be hidden. An example of

this instruction latency tolerance is shown in Figure 2.2. Context A executes two instructions: a

LOAD into R4 (with the load result available for forwarding at the end of DF2), and an ADD

which uses the value of R4 as one of its operands. With the blocked scheme, these instructions

will issue back-to-back, and as shown in Figure 2.2, the pipeline dependency is resolved by

introducing a two cycle pipeline bubble. This bubble allows the result to be properly forwarded

from the DF2 stage of the LOAD to the EX stage of the ADD. Assuming that four contexts are

active, the cycle-by-cycle switching of the interleaved scheme provides enough delay between

the two dependent instructions that the result of the LOAD is available before the EX stage of

the ADD. Thus, the pipeline does not need to stall to insure that the result from the LOAD is

ready for the ADD. As with the context switch cost, the number of cycles of any given pipeline

3Alternately, the context switch cost can be viewed as the time needed by the next context to fill the pipeline.



dependency that can be tolerated by the interleaved scheme will depend on the exact context

interleaving.

IF1 IF2 RF EX DF1 DF2 WB

Blocked Scheme

Interleaved Scheme

LD R4 <- (R3+4)

R5 <- R4 + R2

LD R4 <- (R3+4)

R5 <- R4 + R2

IF1 IF2 RF EX DF1 DF2 WB

Other Context

Other Context

Other Context

IF1 IF2 RF EX DF1 DF2 WB

IF1 IF2 RF EX DF1 DF2 WB

IF1 IF2 RF EX DF1 DF2 WB

IF1 IF2 RF EX DF1 DF2 WB

IF1 IF2 EX DF1 DF2 WBRF

Figure 2.2: Example illustrating instruction latency tolerance by the interleaved scheme.

To further illustrate these two advantages of the interleaved scheme, we show the execution

of four threads for both the blocked and interleaved schemes in Figure 2.3. The four threads are:

A Issues two instructions, with the second causing a cache miss.

B Issues one instruction, followed by a two cycle pipeline dependency, followed by two more

instructions, the last of which cache misses.

C Issues four instructions, with the fourth causing a cache miss.

D Issues six instructions, with the last causing a cache miss.

The blocked scheme is shown on the upper timeline. Context A starts executing, issuing its

two instructions, the second of which causes a cache miss. The pipeline must be flushed at this

point before context B can execute, as shown below the timeline. Context B then executes one

instruction, stalls due to the pipeline dependency, and then executes until it encounters its cache

miss, at which point the pipeline is flushed and C starts executing, and so on. The interleaved

scheme executing the same set of threads is shown on the lower timeline. The processor starts

with all four contexts being interleaved. As we can see, this interleaving is enough to separate
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the dependent instructions from Context B, completely hiding the instruction latency. The lower

switch cost of the interleaved scheme is also illustrated in Figure 2.3; the switch cost associated

with a cache miss is reduced from the seven cycles of the blocked scheme to two cycles for

context A, three cycles for contexts B and C. Note that as contexts are made unavailable, the

number of contexts being interleaved on the pipeline decreases, until we reach the point where

only the single context D is being interleaved. As a result of the lower switch cost and pipeline

dependency tolerance, the interleaved scheme was able to complete all four threads well before

the blocked scheme.

DB B DA DC C

Blocked Scheme

DD DC
C

C

I1
R

F
E

X
D

1
W

BC
C

C
C

C

I2
D

2

B
B

I1
R

F
E

X
D

1
W

B

B
B

B
B

B

I2
D

2

Miss Miss Miss Miss
Inst.
Lat.

BBA C DD

Interleaved Scheme

C D C D D D

C
D

I1
R

F
E

X
D

1
W

B

A
B

A
B

C

I2
D

2

B
C

I1
R

F
E

X
D

1
W

B

C
D

D
C

D

I2
D

2

D
B

I1
R

F
E

X
D

1
W

B

B
C

C
D

B

I2
D

2

Miss MissMiss Miss
Inst.
Lat.

A
A

I1
R

F
E

X
D

1
W

BA
A

A
A

A

I2
D

2

Figure 2.3: Comparison of the blocked and interleaved multiple-context schemes for a set of four
threads.



2.3.2 Implementation Requirements

Now that we have outlined the performance advantages of the interleaved scheme, we will briefly

discuss the hardware requirements for the two schemes to get a feel for their complexity.

The first requirement of all multiple-context processors is that the cache be capable of han-

dling multiple outstanding memory requests. These caches are calledlockup-free, and are more

expensive than standard blocking caches. We will explore the design of these caches in detail in

Chapter 5. Beyond providing a lockup-free cache, the blocked and interleaved multiple-context

schemes have differing requirements, and we briefly discuss these requirements here. Chapters 6

and 7 will explore these requirements in more detail.

Blocked Scheme

In order to reduce the context switch cost to a minimum, the blocked multiple-context processor

needs to replicate all the process-specific state on the processor. This state includes the program

counter, the register file, and any miscellaneous process-specific state from the processor status

word. In addition to this state replication, the blocked multiple context processor must provide

some mechanism for causing a context switch on long-latency operations.

Memory latency can be tolerated by providing hardware mechanisms to force a context

switch on each data cache miss. When this hardware detects a cache miss, any partially executed

instructions in the pipeline are marked to not update any processor state, and the next context

immediately starts filling the pipeline. Eventually the processor will switch back to the original

context, which will reissue its load or store instruction, and hopefully the data for this instruction

will now be loaded into the cache.

Synchronization latency in a blocked multiple-context processor can be tolerated by pro-

viding an explicit context switchinstruction. With an explicit context switch instruction as

the basic mechanism, a number of synchronization latency tolerance policies can be implement-

ed [ALKK90]. Note that since the blocked processor runs one context until that context encounters

a long-latency operation, providing an explicit switch (or some form of watchdog timer [WG89b])

is essential to avoid deadlock between synchronizing processes which are loaded on the same

processor.

The explicit switch instruction can also be used to tolerate instruction latency on a blocked

multiple-context processor. The blocked scheme can tolerate instruction latency only if the cost

of the instruction latency is larger than the cost of an explicit context switch instruction. By
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inserting an explicit switch instruction before an instruction which uses the result of a previous

long-latency instruction, the latency of the previous instruction can be tolerated. Unfortunately,

the blocked scheme does not have a mechanism for tolerating instruction latencies which are

shorter than the cost of the explicit switch instruction.

Interleaved Scheme

The interleaved scheme also requires each context to have its own copy of the program counter,

register file, and any miscellaneous process-specific state from the processor status word. Unlike

the blocked scheme, this state is replicated not to keep the switch cost down, but rather to allow

the multiple contexts to be simultaneously active.

Issuing instructions from multiple active streams requires the interleaved multiple-context

processor to have a more sophisticated instruction issue unit than the blocked processor. In

addition, sharing the pipeline between multiple contexts requires the pipeline to be able to identify

which context an instruction was issued from to properly implement result forwarding and to allow

instructions from only one context to be squashed when that context needs to be made unavailable

because of a long-latency operation.

Finally, the interleaved multiple-context processor must provide some mechanism for making

contexts unavailable for the duration of long-latency operations. For memory operations, this can

be accomplished by providing onetransaction bufferper context which tracks the outstanding

request of that context. When a cache miss occurs, this buffer is loaded with the address of the

memory operation. Any instructions in the pipeline from the context encountering the miss are

squashed and a signal is sent to the instruction issue unit to prevent further instructions from this

context from being generated. When the reply to the cache miss returns, the transaction buffer

is marked invalid, instruction issuing from this context is enabled again, and the context restarts

by issuing a repeat of its memory request.

For the interleaved scheme, policies for synchronization latency tolerance can be built on top

of a backoffinstruction. The backoff instruction has the effect of making the context unavailable

for the number of cycles specified by the instruction. Issuing this instruction is equivalent to the

context encountering a cache miss of latency equal to the backoff value.

The interleaved scheme actually has two mechanisms which it can employ to tolerate in-

struction latency. As mentioned earlier, instruction latency can be tolerated by the cycle-by-cycle

context interleaving. Since instruction latencies tend to be short, the cycle-by-cycle switching

of the interleaved scheme should be very effective in tolerating most of this latency. Longer



instruction latencies, that are likely to result in a stall even after interleaving, can be handled by

the same backoff mechanism used to tolerate synchronization latency. This backoff can either be

triggered automatically by a hardware scoreboard, in which case the backoff value will be exactly

the amount needed to resolve the dependency, or it can be triggered by a backoff instruction.

2.4 Related Work

Recently, there has been an explosion of research into using an interleaved-like approach to

increase the amount of instruction-level parallelism available to superscalar processors. This

increase in research interest has been motivated by commercial microprocessors which are be-

ginning to exploit instruction-level parallelism [Dig92b, JMY92]. This trend towards using more

instruction-level parallelism to boost microprocessor performance is expected to continue. How-

ever, the amount of parallelism in a single stream is limited [Wal91, LW92]. As attempts are

made to issue more and more instructions per cycle, the laws of diminishing returns take over,

limiting performance improvements. To get around these diminishing returns, several researchers

have proposed using multiple instruction streams.

Daddis and Torng [DT91] propose a dynamic superscalar architecture in which instructions

from several contexts are used to fill a common instruction window. A group from the Media

Research Laboratory of Matsushita have proposed an architecture aimed toward the processing

element of a large-scale multiprocessor [HKN+92]. The processor consists of a number of inde-

pendent instruction fetch and decode units which share several functional units. The architecture

is superscalar in that multiple instructions from different threads can be issued in a single cycle;

however, each thread can only issue a single instruction per cycle. Prasadh and Wu [PW91] and

Keckler and Dally [KD92] both propose adding multiple contexts to a VLIW (very long instruc-

tion word) architecture. In both of these proposals, multiple threads, statically scheduled for a

large number of functional units, are dynamically interleaved at runtime to improve functional

unit utilization.

Unfortunately, most of the interleaved proposals for superscalar processors add multiple con-

texts to a processor with a very wide instruction issue in order to make the processor operate with

reasonable efficiency at an expensive point in the design/complexity spectrum. Rather than mak-

ing the processors extremely complex in order to get the last few percentage points of functional

unit utilization, a more reasonable design would be to employ multiple simpler processors. Each

processor would support more modest amounts of instruction-level parallelism, thereby making
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its design much simpler. Interleaved multiple contexts could then be added to these simpler

processors to tolerate memory, synchronization, and instruction latency.

2.5 Summary

In this chapter we proposed aninterleavedmultiple-context processor that combines the cycle-

by-cycle switching of the fine-grained schemes with the coherent caches and full single-context

support of the blocked scheme. This results in a processor with a much lower context switch

cost than the blocked scheme, because the number of instructions in the pipeline that need to

be squashed to tolerate a long-latency operation will often be much smaller. In addition, the

cycle-by-cycle context switching helps to tolerate the latency of dependent instructions from the

same context by separating them with instructions from other contexts.

We now need to quantify the performance advantages of the interleaved multiple-context

processor. We have developed an event-driven simulation environment for comparing the blocked

and interleaved schemes. In Chapter 3 we will examine the benefits of employing the two

multiple-context schemes in a scalable shared-memory multiprocessor. Because it is important

for multiple contexts to also be useful in a uniprocessor setting, Chapter 4 will explore the

advantages of the interleaved scheme over the blocked scheme for a multiprogrammed, high-

performance uniprocessor.



Chapter 3

Multiple Contexts: Utility for

Multiprocessors

Chapter 2 qualitatively argued that a multiple-context processor built using the interleaved scheme

should outperform one built using the blocked scheme. In this chapter this performance advantage

is quantified for a shared-memory multiprocessor via simulation.

We start this chapter by describing our base architecture and simulation environment in

Section 3.1. Event-driven simulation of the SPLASH [SWG92] application suite on a model of a

shared-memory multiprocessor similar to the Stanford DASH [LLG+90] will be used to compare

the blocked and interleaved schemes.

In Section 3.2, we present the results of the performance comparison between the two schemes.

Multiple contexts prove to be extremely effective for three of the SPLASH applications (speeding

them up by factors of 2.0 to nearly 3.5), show more modest gains for three of the applications

(1.15 to 1.6 speedups), and do very little for the final application. The interleaved scheme does

outperform the blocked scheme, especially for the three applications showing the largest gains

from multiple contexts. For these three applications, the (geometric) mean speedup for eight con-

texts per processor is 2.75 for the interleaved scheme, compared to 1.94 for the blocked scheme.

We end this section by exploring the characteristics of the individual SPLASH applications which

determine both the general effectiveness of multiple contexts and the differences between the two

schemes.

In order to ensure that our comparison of the blocked and interleaved schemes holds across

a range of system assumptions, we then explore several variations to our base architecture and

latency tolerance policies in Section 3.3, including varying memory latencies and cache sizes

20
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and associativities. The interleaved scheme retains its performance advantage over the blocked

across all the variations.

Section 3.4 examines the use of multiple contexts in combination with two alternative latency

tolerance techniques: relaxed memory consistency models and nonblocking loads. Being able

to combine well with these other latency tolerance schemes is important as the other schemes

provide latency tolerance within a single thread and therefore work well when multiple contexts

cannot be taken advantage of due to limited workload parallelism. Multiple contexts combines

with both schemes without performance penalty. However, because multiple contexts can be used

to tolerate the same latencies as relaxed memory consistency and nonblocking loads, only fairly

modest performance gains are seen for combining the latency tolerance schemes over multiple

contexts alone.

Interference in resources shared between the contexts, such as the caches and TLBs, is a

frequently raised concern for multiple-context processors, and in Section 3.5, we show this the

shared resource interference to be modest. In particular, cache interfence between the contexts

is a frequently raised concern, and we show that, while multiple contexts generally increase the

data cache miss rate, for larger caches this increase is small. Even with smaller caches where the

miss rate does rise somewhat, much of the extra memory latency resulting from the increased

misses can be tolerated by the multiple contexts.

3.1 Evaluation Methodology

Before we present our simulation results we need to first describe our evaluation methodology. We

start by presenting the base processor and system architecture. We then describe the simulation

environment, and finally discuss the benchmark applications and simulation configurations used

in the study.

3.1.1 Base Architecture

Figure 3.1 shows the base multiprocessor architecture selected for this study. This base ar-

chitecture draws heavily upon the experience gained from building the DASH multiproces-

sor [LLG+92, LLJ+93]. The multiprocessor consists of a number of nodes connected together

by a high-bandwidth, low-latency interconnect. Each node consists of a processor, cache, and a

portion of the global memory. The caches are kept coherent using a distributed, directory-based

protocol similar to that of DASH [LLG+90]. Our base architecture differs from DASH in two
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Figure 3.1: Base multiprocessor architecture.

major respects. First, the DASH cluster of four processors is changed to contain a single, high-

performance processor. This modification was made in order to remove the potential memory

bandwidth bottleneck of the cluster bus. As a secondary consideration, removing the DASH

clustering allowed the simulation model to be simpler, which in turn allowed larger problems

to be simulated. Second, DASH employs a two-level data cache hierarchy. We have selected a

single-level data cache hierarchy since our base architecture contains a fairly large (64 Kbyte)

writeback primary cache, and therefore most misses will be due to communication, and multi-

level hierarchies do not help with communication misses. In our variational analyses where we

explore primary caches smaller than 64 Kbytes, we will back the primary cache with a large

secondary cache.

The processor was selected to be representative of current, high-end RISC microprocessors.

It executes the MIPS II instruction set [Hei93], except that the delayed branches of the MIPS

architecture have been removed. Delayed branches are an artifact of the first-generation RISC

processors that do not extend well into future generations. The integer pipeline of the processor

is based on the MIPS R4000 [Hei93], but is slightly more aggressive. As Figure 3.2 shows, a

seven stage integer pipeline is modeled. The first two stages comprise fetching the instruction

from the instruction cache. The instruction is decoded and the register operands fetched in the

RF stage. In addition, the target for a branch instruction is computed in the RF phase. The ALU

operation, memory virtual address calculation, or branch outcome is computed in the EX phase.

The data cache access takes two cycles, DF1 and DF2. Finally, the operation is written back in

the WB cycle. The R4000 has a separate Tag Check stage between DF2 and WB, which has

been folded into the DF2 stage for our processor.

High floating-point performance is demanded by many scientific applications, therefore we

decided to model a floating-point pipeline based on the DEC Alpha 21064 [Dig92b], which
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Figure 3.2: Processor pipeline.

has a more aggressive floating-point design than the R4000. The modeled floating-point pipeline

replaces the EX through WB stages of the integer pipeline with five EX phases followed by a result

writeback phase, resulting in a nine stage floating-point pipeline. Both pipelines forward results

whenever possible to reduce operation latency. The arrows above the pipelines in Figure 3.2

denote possible result forwarding paths. The integer pipeline can forward from any pipe stage

back to the execute stage. The floating-point pipeline allows forwarding only from the EX5 and

WB stages to the first execute stage. The exception to this is floating-point loads, which are

available at the end of EX3 (DF2), and can be forwarded from that point on.

Table 3.1: Branch target buffer parameters.

Size 2 Kbytes
Associativity direct-mapped
Prediction Scheme 2-state
Default Prediction for BTB Miss not taken
Misprediction Penalty 3 cycles

Because the ALU provides result bypassing, most operations have an effective latency of

a single cycle. However, a small number of operations require longer to complete. As is

evident from the pipeline, load operations are followed by two delay slots; the load result is not

available until the end of DF2 for forwarding to the following EX phase. Branches have an even

longer latency. Since the branch condition is evaluated in the EX phase, taken branches could

potentially cost four cycles, however, a branch target buffer (BTB) [LS84] is used to reduce

the branch penalty. The BTB can produce a predicted target in a single cycle, resulting in no

penalty for a correctly predicted branch. A mispredicted branch still requires the incorrectly

fetched instructions to be squashed and the BTB updated. By updating the BTB in parallel with



fetching the mispredicted branch instruction, a minimal penalty of three cycles results.1 The

characteristics of the processor’s BTB are given in Table 3.1.

Table 3.2: Long-latency operations.

Operation Issue Latency
Integer Divide 45 45
Integer Multiply 21 21
Shift 1 2
Load 1 3
Floating-point Add/Subtract/Convert/Multiply 1 5
Floating-point Divide 61 (31) 61 (31)

The latency and issue rate of operations which take greater than a single cycle are given in

Table 3.2. Most integer operations execute in a single cycle, with the exception of integer divide,

multiply, and shift. While the latency of floating-point operations is five cycles, the floating-point

units are fully pipelined, allowing them to issue a new operation each cycle. However, floating-

point divides have a much higher latency and are not pipelined. For floating-point division,

operation on single-precision data is faster than for double-precision, and the single-precision

values are shown in parenthesis in the table.

3.1.2 Simulation Environment

Our simulator is built on top of Tango-Lite [GD90, DGH91], which provides an execution-driven

simulation of a parallel program on a uniprocessor. The details of using Tango-Lite to simulate

our target pipeline on a machine with a different pipeline are discussed in Appendix A. This

section focuses on the processor and memory simulator which are coupled to Tango-Lite to

provide instruction and memory latencies. Our simulator models pipeline interactions and cache

effects in great detail. In contrast, the memory system is somewhat idealized in order to speed

up simulation. We first describe the pipeline model and then present the memory system model.

Processor Simulation

The processor simulator models all major pipeline dependencies, includingload, execution result,

execution issue, andcontrol-transferhazards. These hazards are tracked in the simulator through

1Achieving this misprediction penalty requires the BTB to be dual-ported. This very aggressive BTB design was
chosen to minimize the cost of branches for the single-context processor.
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a scoreboard [Tho70] which maintains information on the functional unit usage and register usage

of all operations in progress. Instructions are not allowed to issue until the desired functional

unit is available and all register dependencies (true, anti-, and output) are satisfied.

Since application performance can be greatly affected by the compiler, it is important that the

code be highly optimized to remove as many redundant operations as possible. To this end, all

applications are compiled using the most recent MIPS CC and F77 compilers (version 2.1) with

the -O2 level of optimization. In addition, the code needs to be properly scheduled in order to

eliminate as many pipeline dependencies as possible. Since we are simulating a pipeline different

from that of our MIPS R3000-based workstations, the standard MIPS code scheduling will be

inadequate. Fortunately, code scheduling is performed by the MIPS assemblers, not compilers.

To properly schedule the code for our pipeline, we simply replace the MIPS assembler with the

Twine parameterizable scheduler and MASM assembler, developed at Stanford for the superscalar

TORCH project [Smi92].

Table 3.3: Context switch costs.

Switch Cause Blocked Interleaved
Cache Miss 7 1–7
Explicit switch instruction 3 NA
Backoff instruction NA 1–3

In addition to modeling pipeline dependencies, the processor simulator also handles the mul-

tiplexing of the multiple contexts on the processor. The costs to context switch are shown in

Table 3.3, with the exact cost for the interleaved scheme depending on the dynamic context

interleaving. The switch-spinning policy [ALKK90], where each unsuccessful synchronization

operation results in a context switch, is used for tolerating synchronization latency. The blocked

processor is assumed to have the ability to use the explicit switch instruction to tolerate instruction

latency, and the interleaved scheme uses a backoff mechanism triggered by a hardware scoreboard

to tolerate instruction latency remaining after the context interleaving.

Memory System Simulation

The memory simulator consists of a detailed model of the TLB and data cache connected to a

simplified network and memory system. The TLB provides the ability for pages shared between

the contexts to use a single TLB entry, and the default TLB parameters are shown in Table 3.4.



The data cache is lockup-free [Kro81], with the simulator modeling all the internal states. The

default data cache parameters are given in Table 3.5. In contrast to the detailed model of the

data cache, the instruction cache is modeled as ideal — all instruction accesses are assumed to

be cache hits in order to speed up simulation. Modeling the instruction cache as ideal should not

result in much simulation error, since the code size of all but one of the applications is less than

50 Kilobytes (PTHOR has a code size of approximately 80 Kilobytes) and an instruction cache

the same size as the data cache should mainly encounter cold misses.

Table 3.4: Base TLB parameters.

Size 128 entries
Associativity Fully Associative
Replacement Policy Random
TLB Miss Penalty 50 cycles
Page Size 4 Kbytes

Table 3.5: Base data cache parameters.

Size 64 Kbytes
Associativity Direct Mapped
Line Size 32 bytes
Read Occupancy 1 cycle
Write Occupancy 1 cycle
Invalidate Occupancy 2 cycles
Cache Fill Occupancy 1 cycle

Previous studies have shown that relaxed consistency complements the use of multiple-context

processors [GHG+91]. In order to take advantage of this synergy, the memory system operates

under release consistency [GLL+90]. The unloaded latency of memory operations are listed in

Table 3.6, and are based on the memory latencies of the Stanford DASH [LLG+90]. Contention

for the caches is modeled, which can increase these base latencies. While cache contention

is modeled, the network and memories are modeled as contentionless to speed up simulation.

Simplifying the network and memory system allows us to simulate larger problems, while still

providing a sufficient model of the memory system behavior, as cache contention is likely to

dominate network and memory contention [Aga92].
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Table 3.6: Default memory latencies.

Hit in Primary Cache 1 cycle
Reply from Local Memory 25–45 cycles (uniform distribution)
Reply from Remote Memory 75–135 cycles (uniform distribution)
Reply from Remote Cache 96–156 cycles (uniform distribution)

3.1.3 Applications Suite

To evaluate the multiprocessor performance of the two multiple-context alternatives, we use the

SPLASH applications. The SPLASH suite contains a variety of parallel scientific and engineering

applications written in either C or Fortran. The applications use the Argonne National Laboratory

macro package [LOB+87] for synchronization and sharing. An overview of the seven SPLASH

applications is presented in Table 3.7. More information on the computational behavior and

important data structures for each application can be found in Appendix B. In addition, a more

detailed discussion of the applications can be found in [SWG92].

Table 3.7: SPLASH suite summary.

Application Language Lines Description
Barnes-Hut C 2700 hierarchical N-body gravitation simulation
Cholesky C 2000 Cholesky factorization of sparse matrices
LocusRoute C 6400 routes wires in VLSI standard cell designs
MP3D C 1500 simulates rarefied hypersonic flow
Ocean Fortran 3300 simulates eddy currents in an ocean basin
PTHOR C 9200 simulates digital logic circuits
Water C 1500 simulates water molecule interaction

Application Input Selection

Because we would like our simulation results to indicate behavior of the application on the real

system, selecting realistically-sized input sets for the applications is very important. Ideally, our

experiments would be performed on a multiprocessor system that allowed us to run the full-scale

applications while unobtrusively gathering relevant statistics. Unfortunately, such a system does

not exist even for single-context processors, and we must rely on simulation. Simulation has

advantages over hardware in that the simulator can make measurements without distorting the

results, and any desired statistic can be gathered, provided enough simulator detail. However,



simulation does have a big disadvantage: speed. For example, our detailed simulation results

in approximately a thousandfold slowdown compared to the base hardware. In addition, since

we are simulating multiple processors on a uniprocessor workstation, this slowdown must be

multiplied by the number of processors being simulated.

With these sort of slowdowns, an application which executes for several minutes on the

actual multiprocessor will take weeks of simulation time. This is clearly unacceptable, as we are

planning to do many simulation runs across the SPLASH applications to evaluate our architectural

features. Therefore we must somehow reduce the application simulation time.

Simulation time can be reduced by taking advantage of the properties of the applications

being simulated. First, some applications perform essentially the same computation each time-

step over a slowly-changing data set. Since the application behavior is similar for each time-step,

the number of time-steps simulated can be greatly reduced. Barnes-Hut, MP3D, Ocean, PTHOR,

and Water all exhibit this behavior. This is an ideal way to reduce simulation time, as the

application is using its full-size input set.

Not all applications have this repetitive structure. However, some applications are intended

as the inner loop of a much larger problem. Both LocusRoute and Cholesky fall in this category.2

For these problems, the parallel application must run in a few seconds or minutes, so it is possible

to simulate the entire application. Note that the entire SPLASH suite is covered by these two

classes of applications.

Table 3.8: Application data sets.

Application Input Set Iterations
Barnes-Hut 4K particles 3 time-steps
Cholesky BCSSTK23 (3134x3134 matrix, 24K non-zeros) NA
LocusRoute Primary2.grin (26K cells, 3.8K wires) NA
MP3D 150K particles, 2.6K space cells 4 time-steps
Ocean 258x258 grid 3 time-steps
PTHOR NTT (11.5 K elements) 20 clock cycles
Water 256 molecules 2 time-steps

By reducing the number of time steps simulated or running with a problem which would

complete quickly on the real machine, we can simulate reasonable-sized inputs for the SPLASH

applications running on a 16-processor machine. The applications and their input sets are given

2Cholesky may be used in applications with requirements ranging from factoring many smaller matrices quickly to
factoring a few large matrices once. In the interests of tractable simulation, we assume operation in the former mode.
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in Table 3.8. For the applications where we have reduced the number of time steps, we reset

the simulation statistics after the first time step. The first step often has much different behavior

than the other steps, as the caches of all processors except the initializing processor are empty.

For LocusRoute, we gather statistics only during the parallel routing section of the computation.

Since reading the design would be done once before evaluating multiple placements, gathering

statistics only during the parallel routing section is appropriate. Statistics are also gathered only

during the numeric factorization phase of Cholesky. The other sections of Cholesky could be

parallelized, but this has not been done yet, so they are not included in the statistics.

3.1.4 Simulation Configurations

One of the more important decisions made when designing a multiple-context processor is se-

lecting the number of contexts to be supported in hardware. Chapters 6 and 7 will show that

a significant portion of the cost of a multiple-context processor depends directly on the number

of contexts, therefore, we want to keep this number small. For our simulations, we vary this

number of contexts between one and eight.

As we add more contexts per processor, the number of application processes is increased

to keep all contexts busy. Because of this increasing number of application processes, lack

of application parallelism and load imbalances can affect the results. To explore the potential

effects of limited application parallelism and varying context workload, we simulated the SPLASH

applications using the input data sets from Table 3.8 and assuming a perfect memory system (all

memory accesses cost a single cycle).

Speedups for the applications from this simulation are given in Figure 3.3. Since our eval-

uations will be simulating a 16 processor system, and we will at most simulate eight contexts

per processor, we are interested in the speedups over 16 – 128 processes. Over this range,

Barnes-Hut, LocusRoute, MP3D, and Water exhibit nearly linear speedup, so lack of application

parallelism should not be a factor in their multiple-context simulations. Ocean does not speedup

quite as well, but there still should be enough parallelism for at least small numbers of contexts.

Cholesky and PTHOR on the other hand, are already starting to saturate at 16 or 32 processes.

For these two applications, the restricted amount of additional parallelism will likely limit the

effectiveness of multiple contexts. However, inclusion of these two applications is interesting,

as in any multiprocessor workload, several applications may be operating without much parallel

slack.
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Figure 3.3: SPLASH application speedups with a perfect memory system.

3.2 Effectiveness of Multiple-Contexts

Speedups resulting from adding multiple contexts to our base processor are shown in Figure 3.4

for all seven SPLASH applications. The SPLASH applications are listed along the bottom of the

graph, with two sets of bars per application. The left set of bars corresponds to the application

speedup when using up to four contexts per processor, the right set up to eight contexts per

processor. As we can see from the graph, the largest speedups due to multiple contexts occur for

MP3D, Barnes, and Water, with the interleaved scheme showing speedups of 3.5, 2.9, and 2.1

respectively with eight contexts. The same eight-context speedups for the blocked scheme are

2.9, 2.1, and 1.2. For these three applications, blocked speedups with four contexts per processor

are quite close to the eight-context speedups. As we will see in Section 3.2.2, this is due to the

applications nearing the upper bound on processor utilization. Because the interleaved scheme

has a higher upper bound on processor utilization, it is able to still show reasonable performance

increases going from four to eight contexts per processor.

Ocean, LocusRoute, and PTHOR show more modest gains. The speedups for the interleaved

scheme are 1.6, 1.3, and 1.2 respectively; for the blocked scheme 1.5, 1.1, and 1.1. For these

applications, there is no performance advantage in going from four to eight contexts per processor.

Of all the applications, only Cholesky shows no gains at all.

Figure 3.4 also shows that the interleaved scheme outperformed the blocked scheme for all

applications, with substantial differences between the two schemes exhibited for Barnes and Water.
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Figure 3.4: Speedups with four or eight contexts per processor for both the blocked and interleaved
schemes.

In fact, with four contexts per processor, the interleaved scheme outperforms the eight-context

blocked scheme for all applications except MP3D, where the performance of the four-context

interleaved processor is very close to that of the eight-context blocked processor. We will explore

the performance differences between the two schemes in more detail in Section 3.2.2.

3.2.1 Application Classification

To explain the differing performance of multiple contexts for the SPLASH applications we be-

gin by examining the breakdown of the applications’ single-context execution time, shown in

Figure 3.5.

Figure 3.5 divides the execution time of the measured, parallel section of the applications

into five categories. Starting from the bottom up, the first category,busy, accounts for time spent

on work specified by the application. The next two categories account for time spent stalled due

to instruction latency. Pipeline dependencies of four or fewer cycles (four being the maximum

stall due to a floating point add/subtract/multiply result hazard) are labeledshort, while all longer

pipeline dependencies are labeledlong. Time spent in thememorysystem is next, covering

processor time stalled due to data cache misses. Finally, thesynchronizationcategory accounts

for time spent in synchronization, such as waiting for a critical section or at a barrier. Figure 3.5
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Figure 3.5: Breakdown of SPLASH execution time for the single-context processor.

shows the average of these categories for allnprocesses, computed using Equation 3.1.

FractionSpent inCategory i=

1
n

P
n

j=1TimeSpent inCategoryi byProcessj

Total MeasuredExecutionTime
( 3:1)

For almost all the applications, the single-context processor utilization (the fraction of time

spent busy) is quite poor, with the processor utilization falling in the 15–35% range. The lone

exception is LocusRoute, which has a much better single-context processor utilization of 60%.

Memory latency is a significant contributor to this poor processor utilization for all applications

except Water, reinforcing the importance of multiple contexts being able to tolerate memory

latency as efficiently as possible. Figure 3.5 also substantiates the importance of multiple contexts

being able to tolerate synchronization and instruction latency. Instruction latency is small for most

applications, however, for both Barnes and Water, the processor spends more time stalled due

to pipeline dependencies than it does doing actual work. Synchronization overhead also tends

to be small for most applications, with the exception of PTHOR, where synchronization latency

accounts for over 40% of the measured execution time.

The general effectiveness of multiple contexts for a specific application will depend on both

the single-context processor utilization and the availability of extra concurrency. Single-context

performance determines the maximum application speedup — an application with lower single-

context performance has more room to benefit from latency tolerance. The amount of extra
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application parallelism is also important for multiple-context performance, since it is this ex-

tra parallelism which will be used to tolerate the long-latency operations. The single-context

performance and latency distribution from Figure 3.5 and ideal speedups from Figure 3.3 are

summarized in Table 3.9. The table also includes latency distributions for use in contrasting the

performance of the two different multiple context schemes in the following section.

Table 3.9: Application characteristics important for determining multiple-context effectiveness.

Latency Distribution
Application Excess Single-context Inst. Inst.

Name Concurrency Performance Sync. Mem. (Long) (Short)
MP3D High Low 2% 88% 7% 3%
Barnes High Low 10% 47% 31% 12%
Water High Low 27% 3% 36% 34%
LocusRoute High Med/High 8% 80% 4% 9%
Ocean Med Med 3% 77% 0% 20%
PTHOR Low Low 48% 42% 0% 9%
Cholesky Low Low 23% 47% 0% 30%

Based on the first two columns of Table 3.9, we can divide the SPLASH suite into three

categories:

1. Extra application parallelism, poor single-context performance: MP3D, Barnes, and Water.

2. Extra application parallelism, good single-context performance: LocusRoute.

3. Limited application parallelism: Ocean, PTHOR, and Cholesky.

The first group consists of applications which have substantial amounts of latency and large

amounts of parallelism which multiple contexts can exploit in order to tolerate that latency. This

is the ideal situation for multiple contexts, and not surprisingly these applications showed the

largest speedups for multiple contexts. The second group contains applications which have large

amounts of parallelism available, but are already achieving good single-context performance.

Multiple contexts can help to remove the remaining latency, but since this latency is small the

performance gains due to multiple contexts will also be small. Of the SPLASH applications,

LocusRoute is the sole example of this type of application.

Finally, the last group consists of applications which have limited amounts of extra parallelism.

These applications pose a problem, since multiple contexts relies on extra application parallelism

for its latency tolerance. Ocean, PTHOR, and Cholesky fall in this group. Ocean has the largest



additional parallelism of this group, and is able to get reasonable speedups with up to four contexts

per processor until the extra overhead resulting from dividing the problem more and more finely

outweighs the gains from the latency tolerance of the additional contexts. PTHOR and Cholesky

have much more limited amounts of additional parallelism, and not surprisingly, exhibited the

lowest speedups. For Ocean and Cholesky, the lack of application parallelism is due mainly to

the small problem sizes we had to chose to keep our simulation time down. With larger input

sets, multiple contexts should be able to show larger gains for these applications. The parallelism

in PTHOR, on the other hand, is limited by the input circuit’s topology, and most circuits simply

do not provide enough parallelism for large numbers of threads [Sou92].

3.2.2 Comparison of Interleaved and Blocked Schemes

Looking now at the differences in performance between the two schemes, we would expect this

difference to be fairly small for applications in the second and third categories, since multiple

contexts are only going to be modestly effective for these applications. However, multiple

contexts should be very effective for the first category, and for these applications the lower switch

cost of the interleaved scheme should allow it to significantly outperform the blocked scheme. In

addition, the difference between the two schemes should be largest for applications with significant

amounts of short instruction latencies, since these cannot be tolerated by the blocked scheme.

Table 3.9 shows Water to spent a large percentage of its time in short instruction latencies and

Water does indeed exhibit the largest performance differences between the two schemes.

To further examine the performance difference between the two schemes and to verify that

our classification is explaining the differing application speedups, a breakdown of the multiple-

context execution time is shown for the blocked scheme in Figure 3.6, for the interleaved scheme

in Figure 3.7. In these graphs, execution time of the measured portion of the application is

presented for one, two, four, and eight contexts per processor, normalized to the single-context

time. This execution time is now divided into six categories, with the new category,context

switch, accounting for time spent in switching overhead.

Looking first at applications in the third category, we observe the effects of the limited paral-

lelism of Ocean, PTHOR, and Cholesky. For PTHOR and Cholesky, time spent in synchronization

actually increases with larger number of contexts even though the multiple contexts are tolerating

some of this synchronization latency. In addition, for all three applications, the total amount of

application-specified work actually increases with the number of processes. For Cholesky the

amount of work depends on the distribution of the supernodes and this changes with increasing
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Figure 3.6: Application execution time breakdown for the blocked scheme.
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Figure 3.7: Application execution time breakdown for the interleaved scheme.



processes. Ocean statically divides its grids among the processes, and extra work is done for

boundary elements. As the number of processes increases, the fraction of elements that are on

the boundary also increases. PTHOR uses a set of distributed task queues, and more time is

spent maintaining these queues as the number of processes increases. Not only does this extra

work remove some of the gains due to multiple contexts, but some of these extra instructions

are themselves memory references. Table 3.10 lists the total number of memory reads generated

by the application as the number of contexts is increased. We can see that for the three applica-

tions the number of read references does increase, including a dramatic increase for Ocean and

PTHOR. Since these extra memory references will result in extra cache misses, the amount of

latency that must be tolerated is further increased. This combination of extra instructions execut-

ed and increased synchronization and memory latency prevents these applications from getting

large speedups.

Table 3.10: Total number of reads per application (in millions).

Contexts MP3D Barnes Water Ocean Locus PTHOR Cholesky
One 15 M 49 M 22 M 60 M 121 M 61 M 93 M
Two 15 M 49 M 22 M 71 M 121 M 66 M 98 M
Four 15 M 49 M 22 M 93 M 121 M 82 M 103 M
Eight 15 M 49 M 22 M 135 M 124 M 140 M 112 M

Turning next to LocusRoute, the sole application in the second category, we see that while

there is very little latency to be tolerated, multiple contexts can effectively use LocusRoute’s

additional parallelism to tolerate this remaining latency. For both schemes, almost all latency is

removed using four contexts per processor, and increasing to eight contexts per processor actually

reduces performance due to increased synchronization overhead and interference between the

contexts. We also see that the interleaved scheme outperforms the blocked for LocusRoute due

to its much lower switch cost and ability to tolerate short pipeline stalls. However, because there

was little latency to begin with, these advantages do not result in a large performance difference

between the two schemes.

Finally, MP3D, Barnes, and Water fall into the first category. To examine these three appli-

cations in more detail, we will show the same data from Figure 3.6 and Figure 3.7 in a different

form: processor utilization graphs. Rather than normalizing versus the single-context results,

processor utilization graphs show the percent of time spent in each category in a self-normalized
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fashion. This allows us to more easily observe trends, however, we must be careful in interpret-

ing these graphs. Even when the absolute time spent on a given category decreases as we add

more contexts per processor, the percent of time spent on that category may actually increase

(due to decreasing at a slower rate than other categories). Figures 3.6 and 3.7 can be used to

determine that the absolute time decreased while the percentage of time devoted to this category

increased. Finally, note that the amount of real work done by all of these applications remains

constant as more processes are added, so an increased processor utilization translates directly into

an increased application speedup.

Examining the application latency distributions in Table 3.9, we see that instruction latency

plays a significant role for Barnes and Water, but is not as critical to the performance of MP3D.

Thus, the performance advantage of the interleaved scheme for MP3D will be mainly due to the

lower switch overhead, while for Barnes and Water it will be a combination of the two factors.

We will examine MP3D first, concentrating on the effects of the lower switch overhead of the

interleaved scheme. We then turn to Barnes and Water to examine the differences in instruction

latency tolerance between the two schemes.
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Figure 3.8: Processor utilization for MP3D.

Processor utilization for both the blocked and interleaved schemes running MP3D is shown

in Figure 3.8. The single-context processor spends only about a quarter of its time busy, with the

rest of the time primarily being lost in the memory system. Both schemes are able to tolerate

this large memory latency of MP3D, however, the interleaved scheme is able to do so at a much

lower switch cost. This allows the interleaved scheme to achieve a higher processor utilization



then the blocked scheme. At eight contexts per processor, the blocked scheme is able to reach a

70% processor utilization, while for the interleaved scheme the utilization is over 80%.
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Figure 3.9: Processor utilization for Barnes.

Instruction latency is a significant fraction of the total latency for Barnes and Water. Examin-

ing the processor utilization graphs for Barnes and Water in Figures 3.9 and 3.10 respectively, we

observe that both schemes are tolerating some of the long instruction latency, with the interleaved

scheme tolerating slightly more than the blocked scheme. Barnes and Water have large amounts

of longer instruction latency, due primarily to floating-point divides, which take 61 cycles on

our pipeline. The long latency of these divides is handled by context switching for the blocked

scheme and by backing-off for the interleaved scheme. Since the floating-point divide unit is not

pipelined, these latency tolerance techniques will be successful only if floating-point divides are

spread apart far enough to avoid saturating the divide unit. We can see this saturation occurring

in Figures 3.6 and 3.7. For both Barnes and Water, the amount of time spent in floating-point

divide stalls actually increases slightly for the interleaved scheme and remains constant for the

blocked scheme when going from four to eight contexts per processor due to the divide unit

being saturated.

Even though the blocked scheme is able to tolerate some longer pipeline stalls, it may do

so fairly inefficiently due to the larger cost of explicit context switches compared to scoreboard-

initiated backoff. This is indeed the case with Water as is apparent from the processor utilization

graphs shown in Figure 3.10. For the blocked scheme, switching on instruction latency comes

at the cost of a large context switch overhead, and this large switch cost, coupled with the short
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Figure 3.10: Processor utilization for Water.

latencies which cannot be tolerated, results in a small processor utilization increase, going from

roughly 30% for the single-context case to under 40% with eight contexts. For the interleaved

scheme, the cycle-by-cycle interleaving along with the lower switch cost for backoff instructions

allow the pipeline latency to be hidden much more effectively, and a processor utilization of over

60% with eight contexts per processor results.

3.2.3 Summary

This section has shown that the interleaved scheme does indeed benefit from a lower context

switch overhead and tolerance of short pipeline stalls. The performance advantage of the inter-

leaved scheme varies depending on the application, and can be substantial for some applications.

Table 3.11 summarizes the multiple-context speedups for all seven SPLASH applications. In the

following section, we perform some variational analyses to confirm that these advantages of the

interleaved scheme hold across a broad range of multiprocessor environments.

Table 3.11: Summary of application speedups due to multiple contexts.

Scheme MP3D Barnes Water Ocean Locus Pthor Cholesky Mean
Four Interleaved 2.84 2.48 1.90 1.56 1.31 1.16 1.00 1.64

Contexts Blocked 2.58 2.12 1.17 1.48 1.14 1.14 1.00 1.43
Eight Interleaved 3.46 2.92 2.05 1.56 1.31 1.16 1.00 1.74

Contexts Blocked 2.91 2.14 1.18 1.48 1.14 1.14 1.00 1.46



3.3 Variational Analyses

We start our variational analyses by examining the importance of providing mechanisms allowing

the multiple-context processor to tolerate synchronization and instruction latency. We then ex-

amine the effects of different memory latencies, cache sizes, and cache associativities, as would

be found across a range of multiprocessors.

3.3.1 Synchronization Latency Tolerance Mechanisms

The numbers presented for the interleaved scheme in Section 3.2 assume that the interleaved

scheme provides a backoff instruction upon which a switch spinning policy can be implemented.

The design of the interleaved multiple-context processor could be simplified somewhat by not

providing a backoff instruction and instead letting a context spinning on synchronization simply

waste processor cycles. However, relying solely on spinning does have a significant performance

penalty as shown in Table 3.12. The table lists the maximum speedup under a simple spinning

policy, under a switch-spinning policy using a fixed backoff value of 150 cycles, and under

a switch-spinning policy using an application-specific backoff value (shown in Table 3.13). In

addition to the maximum speedups, the table shows in parenthesis the number of contexts required

to achieve that speedup.

Table 3.12: Performance of different synchronization tolerance policies for the interleaved mul-
tiple context processor.

Policy MP3D Barnes Water Ocean Locus PTHOR Cholesky Mean
Spinning 2.72 (8) 2.51 (8) 1.88 (8) 1.51 (4) 1.10 (2) 1.02 (2) 1.00 (1) 1.55
Switch spinning 3.44 (8) 2.92 (8) 2.05 (8) 1.56 (4) 1.31 (4) 1.14 (2) 1.00 (1) 1.74

- tuned 3.46 (8) 2.92 (8) 2.05 (8) 1.56 (4) 1.31 (4) 1.16 (2) 1.00 (1) 1.74

Table 3.12 shows that switch spinning is very effective for the interleaved scheme, even

though both switch spinning algorithms employed were quite primitive, using a fixed backoff

value for all synchronization events within a given application. The tuned values were selected

by trial and error, however since the applications did not benefit much from tuning, any fixed

value roughly equal to a remote memory latency would likely work well. The performance of the

switch spinning policy could have been better if the backoff scheme were tailored to the specific

type and/or instance of each synchronization event. However, even with our simple approach,

the mean performance of the applications improved by 11% by employing switch spinning. As



Chapter 3. Multiple Contexts: Utility for Multiprocessors 41

Chapter 7 will show, the extra complexity required to implement the backoff instruction is small

enough to be justified by this large performance improvement.

Table 3.13: Backoff values (in processor cycles) employed for the tuned switch spinning policy.

Barnes Cholesky Locus MP3D Ocean PTHOR Water
100 500 150 300 50 50 150

3.3.2 Instruction Latency Tolerance Mechanisms

The results in Section 3.2 assumed that the blocked processor switched contexts to tolerate longer

instruction latencies, and the interleaved processor issued a scoreboard-triggered backoff for all

untolerated instruction latencies it encountered. We now examine the performance advantages

of being able to tolerate these instruction latencies by comparing our base blocked processor to

one which is unable to use its explicit switch instruction to tolerate pipeline dependencies and

our base interleaved processor to one which is unable to use backoff to hide instruction latencies

not tolerated by the context interleaving. In addition, for the blocked scheme we also examine

a processor with a slower explicit switch cost than the base (seven cycles, the same as for the

switch on a cache miss.)

Table 3.14 shows the application speedups for the processors with the better instruction latency

tolerance abilities over their more limited counterparts. The interleaved scheme exhibited a 9%

mean improvement in performance, while for the blocked scheme the mean of the execution

time improvement was 7% for the fast switch, and 6% for the slower switch. As we will show

in Chapter 6, providing a fast switch results in a fair amount of additional complexity, and our

numbers here show that the performance to be gained by this fast switch are very small.

For four of the applications, no improvement or a slight decrease in performance resulted from

switching contexts to tolerate instruction latency. The slight performance degradation seen in some

instances occurred because instruction latency tolerance used up application parallelism which

would have been better employed to tolerate the longer memory or synchronization latencies

present. Barnes, Water, and MP3D, on the other hand, showed significant gains due to tolerating

instruction latency. Because the context switch and backoff instructions are required to effectively

deal with synchronization latency, the mechanism for instruction latency tolerance will already be

included in the multiple-context processor, and the performance improvements from utilizing this

mechanism are large enough to warrant an investigation of its additional implementation costs in



Chapters 6 and 7.

Table 3.14: Speedup due to tolerating longer instruction latency.

Scheme MP3D Barnes Water Ocean Locus PTHOR Cholesky Mean
Blocked - Fast 1.14 (8) 1.25 (8) 1.17 (8) 1.00 (4) 0.96 (4) 0.98 (2) 1.00 (1) 1.07
Blocked - Slow 1.11 (8) 1.24 (4) 1.16 (4) 1.00 (4) 1.01 (4) 0.96 (2) 1.00 (1) 1.06

Interleaved 1.19 (8) 1.23 (8) 1.33 (8) 1.00 (4) 0.99 (4) 0.97 (2) 0.95 (1) 1.09

3.3.3 Effects of Memory Latency

To examine the effectiveness of multiple contexts in a broad range of multiprocessors, we varied

the memory latency to be one-half, twice, and four times as the base simulator latencies. Results

for six of the seven SPLASH applications are given in Table 3.15. Simulating Ocean for the

longer memory latencies required more memory than our workstations had available, so we have

excluded it from the table. For the different memory latencies, numbers are normalized to the

single-context execution times with that memory latency. Again, the number of contexts required

to gain the listed speedup are given in parenthesis.

Table 3.15: Effects of memory latency.

Latency Scheme MP3D Barnes Water Locus PTHOR Cholesky Mean
1
2x Interleaved 2.80 (8) 2.69 (8) 2.04 (8) 1.28 (4) 1.18 (2) 1.02 (4) 1.69

base Blocked 2.55 (8) 1.96 (8) 1.18 (8) 1.23 (4) 1.17 (2) 1.00 (1) 1.43
1x Interleaved 3.46 (8) 2.92 (8) 2.05 (8) 1.31 (4) 1.16 (2) 1.00 (1) 1.78

base Blocked 2.91 (8) 2.14 (8) 1.18 (8) 1.14 (4) 1.14 (2) 1.00 (1) 1.46
2x Interleaved 3.55 (8) 3.32 (8) 2.03 (8) 1.44 (4) 1.29 (4) 1.00 (1) 1.88

base Blocked 3.57 (8) 2.49 (8) 1.18 (8) 1.34 (4) 1.21 (4) 1.00 (1) 1.60
4x Interleaved 5.04 (8) 3.93 (8) 2.13 (8) 1.56 (4) 1.35 (4) 1.00 (1) 2.11

base Blocked 4.56 (8) 3.09 (8) 1.26 (8) 1.37 (4) 1.29 (4) 1.00 (1) 1.78

The performance difference between the blocked and interleaved schemes remains roughly

constant around 20% with increasing memory latency. Even at very long memory latencies,

the applications still have significant segments of execution where the memory latency can be

completely tolerated by the contexts, and during these sections the interleaved scheme still benefits

from the lower switch cost and instruction latency tolerance.
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3.3.4 Effects of Differing Cache Organizations

Finally, to examine the effects of differing cache sizes on multiple context performance, we

gathered results for 4, 16, 64, and 256 Kbyte primary data caches. For the 4 Kbyte and 16

Kbyte caches, the simulations included a 1 Mbyte secondary cache. Speedups with the differing

cache sizes are listed in Table 3.16. We were unable to run Ocean for cache sizes other than

64 Kbytes due to the memory limitations of our workstations. Multiple-context speedups were

fairly constant across the different cache sizes, however there is a trend for speedups to increase

slightly from the smaller to larger cache sizes. The slightly lower speedup for small caches is

due to their susceptibility to interference between the contexts as will be shown in Section 3.5.3.

Table 3.16: Multiple-context speedup for differing cache sizes (all caches direct-mapped).

Size Scheme MP3D Barnes Water Locus PTHOR Cholesky Mean
4 KB Blocked 2.24 (8) 1.97 (8) 1.15 (4) 1.06 (2) 1.02 (2) 1.00 (1) 1.33

Interleaved 3.08 (8) 2.94 (8) 1.99 (8) 1.23 (4) 1.00 (2) 1.21 (4) 1.73
16 KB Blocked 2.64 (8) 2.12 (8) 1.14 (4) 1.10 (2) 1.09 (2) 1.00 (2) 1.40

Interleaved 3.42 (8) 2.96 (8) 1.97 (8) 1.26 (4) 1.04 (2) 1.24 (4) 1.79
64 KB Blocked 2.91 (8) 2.14 (8) 1.18 (8) 1.14 (4) 1.14 (2) 1.00 (1) 1.46

Interleaved 3.46 (8) 2.92 (8) 2.05 (8) 1.31 (4) 1.16 (2) 1.00 (1) 1.78
256 KB Blocked 2.96 (8) 2.02 (8) 1.17 (8) 1.18 (4) 1.11 (2) 1.00 (1) 1.45

Interleaved 3.54 (8) 2.80 (8) 2.03 (8) 1.26 (4) 1.13 (2) 1.18 (4) 1.80

To examine the effects of cache associativity on multiple-context speedups, we simulated

a direct-mapped cache, a direct-mapped cache combined with a 16-entry victim cache [Jou90],

and two and four-way set associative caches. The size of the caches was held constant at 64

KBytes. Again, the multiple-context speedups were fairly constant across the different cache

associativities, with a slight trend towards better performance with greater cache associativity for

the interleaved scheme. As with increasing the cache size, greater cache associativity reduces the

susceptibility to interference between the contexts.

3.4 Combining with Other Latency Tolerance Mechanisms

Because the other latency tolerance mechanisms (prefetch, relaxed memory consistency, and

nonblocking loads) exploit parallelism within a single thread, they can be used to tolerate latency

when not enough parallelism exists for multiple contexts. Therefore it is important that multiple

contexts be able to combine with these other approaches without a performance loss. In this



Table 3.17: Multiple-context speedup for differing cache associativities (all caches 64 KB).

Assoc. Scheme MP3D Barnes Water Locus PTHOR Cholesky Mean
Direct Blocked 2.91 (8) 2.14 (8) 1.18 (8) 1.14 (4) 1.14 (2) 1.00 (1) 1.46

Mapped Interleaved 3.46 (8) 2.92 (8) 2.05 (8) 1.31 (4) 1.16 (2) 1.00 (1) 1.78
Sixteen Blocked 2.93 (8) 2.07 (8) 1.17 (8) 1.23 (4) 1.18 (2) 1.00 (1) 1.48
Victim Interleaved 3.56 (8) 2.87 (8) 2.03 (8) 1.35 (4) 1.20 (4) 1.02 (4) 1.80
Two Blocked 2.94 (8) 2.04 (8) 1.18 (8) 1.18 (4) 1.17 (2) 1.00 (1) 1.46
Set Interleaved 3.52 (8) 2.81 (8) 2.03 (8) 1.31 (4) 1.22 (4) 1.15 (4) 1.82

Four Blocked 2.96 (8) 2.00 (8) 1.18 (8) 1.19 (4) 1.16 (2) 1.00 (1) 1.46
Set Interleaved 3.52 (8) 2.77 (8) 2.03 (8) 1.33 (4) 1.19 (4) 1.21 (4) 1.83

section, we examine combining multiple contexts with two of the three other major latency

tolerance techniques, relaxed memory consistency models and nonblocking loads. We would have

liked to also evaluate combining multiple contexts with prefetching, unfortunately, the compiler

we are using does not support prefetching. Compiler-based prefetching has been shown to perform

well on some applications that cause difficulty for multiple contexts [Mow94], while multiple

contexts provides gains on some applications where prefetching shows little gains. Combining

multiple contexts with prefetching will not be simple, as the use of multiple contexts will cause

additional cache interference, which will complicate the prediction of which references will be

cache misses done by the compiler or programmer. Despite this concern, there does seem to be

promise for combining the two schemes [GHG+91], and a detailed study of this combination

should provide interesting results.

3.4.1 Multiple Contexts and Release Consistency

All our previous results have been for applications running under release consistency [GLL+90].

To examine the benefits of combining multiple contexts with a relaxed memory consistency

model, we now compare the performance of our release-consistent multiple-context processors

to multiple-context processors employing sequential consistency [Lam79]. Before doing this, we

first show the performance gains of release consistency over sequential consistency for the base

single-context processor in Table 3.18. As in previous studies [GGH91, GHG+91, GGH92], our

study shows release consistency to provide substantial gains over sequential consistency for the

SPLASH suite, resulting in a 34% mean speedup in execution time.

Table 3.19 lists the benefits of combining relaxed memory consistency with multiple con-

texts. All speedups are relative to the single-context sequentially-consistent case. Since multiple
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Table 3.18: Speedup due to release consistency for the single-context processor.

MP3D Barnes Water Ocean Locus PTHOR Cholesky Mean
1.57 1.57 1.03 1.54 1.31 1.22 1.27 1.34

contexts are capable of tolerating some of the same write latency that can be tolerated by release

consistency, adding release consistency results in only a 12% and 7% execution time speedup

for the interleaved scheme and blocked scheme respectively. The larger gain occurs for the

interleaved scheme because it is tolerating a larger number of long-latency operations and bene-

fits more from relaxed consistency reducing the number of operations which result in a context

switch.

Table 3.19: Combining release consistency with multiple contexts.

Scheme MP3D Barnes Water Ocean Locus PTHOR Cholesky Mean
Blocked, SC 3.99 (8) 3.29 (8) 1.21 (4) 1.93 (2) 1.58 (4) 1.32 (2) 1.06 (2) 1.83
Blocked, RC 4.57 (8) 3.37 (8) 1.21 (8) 2.28 (4) 1.49 (4) 1.38 (2) 1.27 (1) 1.96

Interleaved, SC 3.91 (8) 4.36 (8) 2.07 (8) 1.66 (2) 1.70 (4) 1.25 (4) 1.12 (4) 2.02
Interleaved, RC 5.43 (8) 4.59 (8) 2.10 (8) 2.39 (4) 1.71 (4) 1.40 (2) 1.27 (1) 2.34

Release consistency improves the performance of the single-context processor by such a sub-

stantial margin that future microprocessors are likely to incorporate support for some form of

relaxed memory consistency. This implies that multiple-context processors will be supporting re-

laxed consistency. Our study reinforces a previous study [GHG+91] showing relaxed consistency

to combine well with multiple contexts, providing better performance than either relaxed consis-

tency or multiple contexts alone. By combining relaxed consistency and multiple contexts, the

processor may be able to reach a desired performance target with a smaller number of contexts.

3.4.2 Multiple Contexts and Nonblocking Loads

We now turn to exploring the benefits arising from combining multiple contexts with nonblocking

loads. Nonblocking loads tolerate memory latency by allowing a processor to continue after a

cache miss until the processor actually needs the result of the load. A recent paper by Boothe

and Ranade [BR92] investigated the advantages of combining nonblocking loads with multiple

contexts for a system without caches, thereby allowing the processor to switch on the use of a



register rather than on each load. By grouping together loads, they found substantial gains for

switch-on-useoverswitch-on-load. These large gains arise because the compiler can easily group

several loads together, thereby pipelining the memory references. They also investigated adding

caches to their switch-on-use scheme, and found this resulted in an additional performance gain

by a factor at least as large as going from switch-on-load to switch-on-use. However, the one

comparison not performed by Boothe and Ranade was to compare the advantages of switch-on-

use versus switch-on-load for a system with coherent caches. We would expect the advantages of

switching on the data use to be much smaller for this case, since multiplemissesmust be grouped

together to pipeline memory accesses. We have investigated this further by adding nonblocking

loads to our cache-coherent, multiple-context multiprocessor.

We developed a primitive compiler post-processor for nonblocking loads similar to that of

Boothe and Ranade, which does dependency analysis within a basic block and rearranges code to

group loads together. Our post-processor groups loads within each basic block by moving them

up as far as their dependencies will allow. We then simulated this rearranged code on both a

blocked and interleaved processor with nonblocking loads. For these multiple-context processors

with nonblocking loads, the cost to switch contexts (blocked) or maximum cost of making a

context unavailable (interleaved) was assumed to be three cycles, as the determination of whether

a register has been loaded with its data occurs earlier in the pipeline than determining if a cache

miss has occurred.

The benefits of adding nonblocking loads to the blocked scheme are shown in Figure 3.11.

All execution times are normalized to the single-context case with standard blocking loads, there-

fore the single-context bars show the advantages of adding nonblocking loads to a conventional

processor. By comparing with Figure 3.6, we see that the largest performance gains due to

nonblocking loads occur for the single-context case, with the difference between blocking and

nonblocking loads diminishing as more contexts are added.

The interleaved scheme, shown in Figure 3.12, exhibits similar behavior, however, the ad-

vantage due to nonblocking loads does not diminish as much with increasing contexts. The

interleaved scheme encounters more untolerated memory latency than the blocked scheme, and

therefore shows larger gains from the nonblocking loads tolerating some of this memory latency.

The advantages of adding nonblocking loads are summarized in Table 3.20. In contrast

with the large gains shown for systems without caches, the advantages of adding nonblocking

loads and switch-on-use to a system with caches is much smaller. Of course, the benefits from

combining multiple contexts and nonblocking loads presented here could be increased with help
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Figure 3.11: Blocked scheme with nonblocking loads.
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Figure 3.12: Interleaved scheme with nonblocking loads.



Table 3.20: Speedup of switch-on-use over switch-on-load.

Scheme MP3D Barnes Water Locus Ocean PTHOR Cholesky Mean
Blocked 1.02 (8) 1.02 (8) 1.02 (8) 1.10 (4) 1.11 (4) 1.10 (2) 1.00 (1) 1.05

Interleaved 1.07 (8) 1.05 (8) 1.00 (8) 1.06 (4) 1.13 (4) 1.13 (2) 1.08 (4) 1.07

from the compiler. The same compiler analyses which are used to predict which loads will miss

in the cache for prefetching [Mow94] could also be used in determining which loads to group

together. However, the small number of processor registers will tend to limit the amount of

added performance which can be gained from improving the compiler support and it is likely

that the decision to select switch-on-use over switch-on-load will be determined by whether the

base architecture already supports nonblocking loads for other reasons.

3.5 Shared Resource Impact

Finally, to complete our multiprocessor analyses, we examine the impact of multiple contexts

on the resources shared between the contexts. The shared resource most often focused on is

the cache, since supporting multiple processes on a single-context processor is known to cause

cache interference. However, there are a number of other resources important to processor

performance that are shared by the contexts. These resources include the branch prediction

hardware and the translation look-aside buffer. We will first show that running different threads

of the same application on the multiple contexts does not significantly impact these additional

shared resources. Then we will explore the cache interference issue in more detail.

3.5.1 Branch Prediction

Having multiple threads share the same 2048-entry, direct-mapped BTB has a small effect on its

effectiveness as shown in Table 3.21. The table shows the miss rate of the TLB and the percent

of branches mispredicted for both the single-context processor and the multiple-context processor

(using the number of contexts which exhibited the largest speedup). Note that a branch can miss

in the cache but still be considered predicted correctly if the branch is not taken. Cholesky is

excluded from the table as multiple contexts did not improve its performance. The best-case

number of contexts and its miss and misprediction statistics are shown on right side of the arrow,

the single context statistics on the left side. We see that for nearly all applications, there is a
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fairly small change in the percent of branches mispredicted. For some applications the miss rate

actually decreases, as one context on the processor prefetches entries into the BTB for the other

contexts.

Table 3.21: Effect of multiple contexts on the BTB.

MP3D Barnes Water Ocean Locus PTHOR
Blocked 1 ! 8 1 ! 8 1 ! 8 1 ! 4 1 ! 4 1 ! 2

Miss Rate (%) 6.2! 6.2 17.1! 15.5 11.3! 11.4 10.3! 7.5 3.6! 3.7 23.6! 18.5
Mispred. Rate (%) 7.6! 7.5 15.7! 15.5 11.4! 12.2 2.3! 3.5 3.8! 4.0 17.0! 14.4

Interleaved 1 ! 8 1 ! 8 1 ! 8 1 ! 4 1 ! 4 1 ! 2
Miss Rate (%) 6.2! 6.3 17.1! 15.5 11.3! 12.4 10.3! 7.5 3.6! 4.9 23.6! 19.8
Mispred. Rate (%) 7.6! 7.5 15.7! 16.0 11.4! 14.2 2.3! 4.1 3.8! 4.0 17.0! 15.2

3.5.2 Translation Look-aside Buffer

It is very important that the multiple-context processor does not cause TLB thrashing, as TLB

misses are handled on most processors by either a software routine or by a hardware table-walker

which is unlikely to be able to simultaneously process multiple TLB misses. Thus, multiple

contexts will be unable to tolerate the increase in TLB miss overhead. The result of multiple

threads using the same 128-entry fully associative data TLB are shown in Table 3.22 (for 4 Kbyte

pages). The Shared row shows the miss rates when the TLB provides the ability for a page shared

between the contexts to use a single TLB entry, while the Non-shared row shows the miss rate

when each context needs its own separate mapping for shared pages. Only for MP3D does the

ability to represent shared pages with a single TLB entry make a significant performance impact.

In general, for the SPLASH applications, multiple contexts have a negligible effect on the TLB

miss rate, and again we see that in a few cases where TLB entries can be shared the miss rate

actually went down due to prefetching occurring between contexts.

While these interference numbers are very encouraging, the SPLASH applications tend to be

small (by scientific application standards), and are not simulated with their largest data set sizes.

Multiple-context TLB interference for applications with very large data sets needs to be studied

in the future to ensure that the TLB does not become a limiting resource.



Table 3.22: Effect of multiple contexts on the data TLB miss rate (%).

MP3D Barnes Water Ocean Locus PTHOR
Blocked 1 ! 8 1 ! 8 1 ! 8 1 ! 4 1 ! 4 1 ! 2
Shared 0.23! 0.11 0.00! 0.00 0.00! 0.00 0.11! 0.07 0.02! 0.11 0.84! 0.95
Non-shared 0.23! 2.49 0.00! 0.00 0.00! 0.00 0.11! 0.23 0.02! 0.10 0.84! 0.96
Interleaved 1 ! 8 1 ! 8 1 ! 8 1 ! 4 1 ! 4 1 ! 2
Shared 0.23! 0.11 0.00! 0.00 0.00! 0.00 0.11! 0.07 0.02! 0.11 0.84! 0.97
Non-shared 0.23! 1.06 0.00! 0.00 0.00! 0.00 0.11! 0.22 0.02! 0.23 0.84! 1.02

3.5.3 Data Cache

The effects of multiple contexts on the read miss rate for caches of differing sizes is first examined.

We simulated cache sizes of 4, 16, 64, and 256 KBytes. Read miss rates for all applications

but Ocean are shown in Figure 3.13. As we would expect, interference is largest for the smaller

caches, and becomes less of an issue for the larger caches. We also see that the miss rate for

the interleaved scheme tends to be slightly larger than for the blocked scheme, although there

are a few cases where the interleaved scheme has a lower miss rate than the blocked scheme.

Even though the miss rates are increasing due to interference, multiple contexts can tolerate a

substantial portion of this increased memory latency provided the memory system has sufficient

bandwidth. This was shown in Section 3.3.4, where even for the small cache sizes which exhibit

a fair amount of interference, multiple contexts were still very effective. This ability to tolerate its

own cache interference is an advantage multiple contexts has over prefetching, where increased

cache interference due to prefetching leads to misses that are not tolerated and therefore slow

down the processor.

Looking at Figure 3.13 more closely we see that for MP3D, Water, and PTHOR, the miss rate

stays relatively constant as we increase the number of processors as long as the cache is 64 KB

or larger. For smaller caches, inter-context interference leads to large increases in the miss rate

for Water and PTHOR and more modest increases for MP3D. Both Locus and Cholesky show

increases in miss rate for all cache sizes, with the increase being larger for the smaller caches.

Barnes actually shows a decrease in miss rate with more contexts, provided the cache is 64 KB

or larger. This reduced miss rate is due to one context prefetching data for the other contexts,

and occurs in Barnes because processes near each other are working on overlapping data sets.

While we were unable to simulate Ocean with cache sizes other than 64 KBytes, Ocean has

a rather interesting miss rate graph for the 64 KByte runs. The miss rate for Ocean depends
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(a) MP3D (b) Barnes
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(c) Water (d) Locus
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(e) PTHOR (f) Cholesky

Figure 3.13: Miss rates for varying cache sizes.
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Figure 3.14: Ocean miss rates for a 64 KByte data cache.

strongly on what is labeled a miss. If every read that does not find its data in the cache is

labeled as a miss, the miss rates with increasing numbers of contexts is shown by the upper set

of lines in Figure 3.14. As we can see, the miss rates diverge at eight contexts per processor

for the blocked and interleaved schemes. The lower set of lines explains this divergence. This

set of lines plots the number of those misses which are actually hits to a pending cache line.

In Ocean, a significant fraction of the misses occur right after a barrier as all contexts attempt

to simultaneously access the same set of cache lines. For the interleaved scheme this results in

all contexts issuing their load to the same address, followed by all contexts waiting for the data.

Thus for the interleaved scheme, the number of pending hits increases as we increase the number

of contexts per processor. For the blocked scheme, the first context will access the memory line,

followed by a context switch and its associated delay, then the next context access the same

memory line, and so on. As long as the number of contexts is small, the miss behavior for

the blocked scheme is the same as for the interleaved scheme. However, when the number of

contexts becomes large, the miss data actually returns before all contexts have been able to issue

their request, causing contexts later in the issuing sequence to actually hit in the cache, and this

results in the divergence in miss rates between the two schemes for eight contexts per processor.

The miss rates for 64 Kbyte caches with varying associativities are shown in Figure 3.15. As

would be expected, the general shapes of the miss rate curves for a given application is similar,

with the miss rate decreasing as associativity is increased for many of the applications.
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(a) MP3D (b) Barnes
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(c) Water (d) Locus
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Figure 3.15: Miss rates for varying cache associativities (64 KB caches).



3.6 Summary

This chapter has shown that most of the SPLASH applications show some benefit from multiple

contexts. Three applications showed very large speedups due to multiple contexts (2.0 to 3.5

speedups with eight contexts per processor), three applications showed more modest gains (1.15

to 1.6 speedups), and only one application showed no gains at all. The interleaved scheme

outperformed the blocked for all applications, including substantial performance differences for

MP3D, Barnes, and Water.

The interleaved scheme was found to be effective across a range of multiprocessor configu-

rations, including multiprocessors with memory latencies both smaller and larger than those of

the Stanford DASH [LLJ+93], and with varying cache sizes and associativities. We also showed

that combining multiple contexts with relaxed memory consistency and nonblocking loads results

in relatively modest performance gains. Being able to combine multiple contexts with these

other latency tolerance mechanisms without incurring in a performance loss is important, as the

other latency tolerance mechanisms exploit parallelism within a single thread and work well in

situations where limited parallelism prevents the use of multiple contexts.

Finally, we examined the impact of multiple contexts on the resources shared between the

contexts, namely the caches, TLB, and BTB. We found the interference to be modest for caches

64 KB and larger and for our base TLB size of 128 entries and BTB size of 2048 entries.

For some applications, cache interference was significant for the smaller caches (4 and 16 KB).

However, because the multiple contexts were able to tolerate the additional cache misses caused

by this interference, these applications still showed significant performance improvements for the

smaller cache sizes.

This chapter has shown that the interleaved scheme is quite effective in speeding up parallel

applications on a shared-memory multiprocessor. In the following chapter, we explore its use in

a high-performance uniprocessor environment.



Chapter 4

Multiple Contexts: Utility for

Uniprocessors

Since large-scale multiprocessors are generally built using off-the-shelf microprocessors whose

design is targeted for uniprocessors, it is important that multiple contexts also address the needs

of uniprocessors. Applying multiple-context processors to a general-purpose uniprocessor has

not received much attention from the research community.

Culler et. al. [CGL92] have examined using blocked multiple-context processors to improve

throughput for a multiprogrammed uniprocessor. Their study uses traces of a subset of the

SPEC benchmarks [Car92] to simulate multiple contexts across a wide range of cache sizes and

associativity for two, four, and eight contexts per processor. They found multiple contexts to

actually reduce the cache miss rate for associative caches due to the blocked multiple-context

processor giving threads with lower miss ratios a larger fraction of the processor cycles. This

is in contrast with the applications timesharing a single-context processor, where all applications

are given the same fraction of the total processor cycles.

Of course, the bottom line is the increase in processor throughput due to the multiple contexts.

For a 50 cycle memory latency and switch cost of 5 cycles, they found a processor utilization

increase of 13% for two contexts, 29% for four contexts, and 39% for eight contexts. Their

results are encouraging — unfortunately, their study has several limitations. First, they ignore

operating system overhead, including the operating system displacing cache state between context

switches. Second, they assume a relatively aggressive switch cost of 5 cycles, but only a modestly

aggressive memory system consisting of a single level of caches backed by a 50 cycle memory.

Finally, the most important limitation of their study is that they model all instructions as ideal,
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taking only a single cycle, and therefore do not account for any processor stall time except

that due to memory latency. For modern superpipelined or superscalar processors, dependencies

between instructions prevent the maximum instruction issue rate from being sustained for most

applications. Pipeline effects need be modeled before any conclusions can be drawn about the

advantages of multiple contexts. In this chapter we will examine the improvement in uniprocessor

throughput for both the blocked and interleaved schemes while avoiding the limitations of this

previous study.

Section 4.1 starts this chapter by describing our simulation environment and workloads. We

simulate six workloads composed of several applications from the SPEC suite and another work-

load composed of uniprocessor versions of the SPLASH applications. In Section 4.2, we present

simulation results for two and four contexts per processor. We show that the blocked scheme is

able to increase throughput only slightly (11% increase with four contexts), whereas the inter-

leaved scheme shows much larger increases in throughput (50% with four contexts). The higher

switch cost of the blocked scheme prevents it from doing well in this environment. In Section 4.3

the shared resource interference is examined. Instruction cache, BTB, and TLB interference is

larger than encountered in the previous chapter for a multiprocessor, but is still small enough to

be greatly outweighed by the gains of the multiple contexts. Data cache interference turns out to

be surprisingly small for most workloads. Finally, we summarize the chapter in Section 4.4.

4.1 Methodology

The base uniprocessor system employs the same microprocessor as for the multiprocessor studies.

Of course, the memory system is different for the uniprocessor studies, as shown in Figure 4.1.

The base cache sizes for our uniprocessor studies are 64 Kbyte direct-mapped instruction and

data caches, backed by a 1 Mbyte direct-mapped, unified secondary cache. For our uniprocessor

studies, we simulate the instruction cache in full detail, since different applications may cause

instruction cache interference.

The memory system is four-way interleaved, connected to the processor across a high-speed,

split-transaction bus. The unloaded memory access times are given in Table 4.1. Cache and

memory contention are modeled, and can add to these latencies. While the data cache is lockup-

free, the instruction cache is blocking, therefore no context switching will be done for instruction

cache misses. We have deliberately modeled a very aggressive memory system, since this will

be the worst case situation for multiple contexts.
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Figure 4.1: Base uniprocessor architecture.

Table 4.1: Uniprocessor memory latencies.

Hit in Primary Cache 1 cycle
Hit in Secondary Cache 9 cycles
Reply from Memory 34 cycles

The operating system model is based on measurements by Torrellas [Tor92] and Gupta,

Tucker, and Stevens [GTS91] of IRIX, a UNIX System V variant, running on a Silicon Graphics

4D/340 [BJS88]. The time-slice used by the operating system is 30 ms, and assuming a 200 MHz

processor this translates to a scheduler interrupt every six million processor cycles. The scheduler

uses a simple affinity mechanism which keeps the same application scheduled on the processor

for the equivalent of three time slices (i.e. three time slices for the single-context processor, six

for the two-context processor, etc.). Because of this affinity mechanism, the actual number of

processes which are switched by a scheduler call varies from none to the number of hardware

contexts supported.

The simulator does not actually run the operating system scheduler, rather, the operating

system is modeled as a routine with negligible latency which displaces a number of cache lines.

Scheduler execution times were determined to be negligible based on measurements made of the

IRIX scheduler latency [GTS91]. The cache interference caused by the scheduler depends on

the number of contexts which must be swapped, as shown in Table 4.2. Cache interference is

modeled by issuing the number of memory requests given in the table to addresses selected using



a random distribution. These cache interference numbers were taken from measurements of the

IRIX operating system [Tor92].

Table 4.2: Operating system costs.

Processes Instruction Cache Data Cache
Switched Interference Interference

0 4 25
N 50N + 158 100N + 180

Six workloads are generated using members of the SPEC benchmarks. The members selected

include Doduc, Eqntott, Li, Matrix300, Tomcatv, and NASA7 broken into its kernels: Btrix,

Cholsky, Cfft2d, Emit, Gmtry, Mxm, and Vpenta.1 These workloads were constructed to have

the following characteristics:

IC Stresses the instruction cache.

DC Stresses the data cache.

DT Stresses the data TLB.

FP Floating-point intensive.

R0 Random workload.

R1 Random workload.

A seventh workload (labeledSP) uses the uniprocessor versions of four SPLASH applications.

These seven workloads are listed in Table 4.3.

Since many applications take several minutes of CPU time each, the workloads are not run

to completion. Instead, the workload is run for 36 time-slices (roughly 1 second of CPU time).

Because we are only simulating a fraction of the complete application, it is important that we are

simulating the section of the application responsible for most of the execution time. To ensure

that statistics are gathered for the relevant application section, references from the application are

sent to the simulator only after entering this portion of the code. In addition, to remove cold-start

effects, each application in the workload is run for a time slice before simulation statistics are

1These applications were selected from the SPEC 1 suite solely on the basis of being able to pass through our
compilation system with no or minor adjustments to the application itself.
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Table 4.3: Uniprocessor workloads.

Workload
IC DC DT FP R0 R1 SP

Doduc Cfft2d Btrix Emit Emit Mxm MP3D
Li Gmtry Cholsky Cholsky Btrix Li Water

Eqntott Tomcatv Gmtry Doduc Cfft2d Matrix300 Locus
Mxm Vpenta Vpenta Matrix300 Eqntott Tomcatv Barnes

gathered. Thus, when simulation statistics are being gathered, the applications are in their major

routines and the caches have been loaded.

Table 4.4: Characteristics of measured portion of uniprocessor applications.

Proc. Util. Breakdown (%) Runlength
Application Busy Inst. Mem. Other (proc cycles)
Doduc 26.7 64.3 0.7 8.3 1660
Eqntott 71.3 20.5 8.0 0.2 144
Li 59.9 24.9 0.5 14.7 1610
Matrix300 36.5 54.8 8.7 0.0 167
Tomcatv 36.1 35.1 28.3 0.5 53
Btrix 45.3 40.0 14.3 0.4 85
Cholsky 36.6 41.6 21.4 0.4 75
Cfft2d 35.9 38.6 23.6 1.9 32
Emit 43.0 51.6 5.4 0.0 505
Gmtry 22.1 26.4 50.4 1.1 24
Mxm 51.9 35.5 10.5 1.6 78
Vpenta 13.1 20.8 64.8 2.3 13
Barnes 30.2 64.8 2.2 2.8 424
Locus 90.3 4.8 4.5 0.5 299
Mp3d 51.1 24.9 22.3 1.7 144
Water 36.4 60.8 0.2 2.6 18000

Table 4.4 shows the uniprocessor statistics for the base applications.Busyagain refers to cy-

cles spent doing useful work.Instructionrefers to time spent stalled due to pipeline dependencies.

Memoryrefers to the time spent stalled on memory due to data cache misses. Multiple contexts

provide the potential to tolerate these first two forms of stall.Other refers to the remaining stall

time that multiple contexts will not be able to tolerate. The major components of theOther cat-

egory are stalls due to instruction misses and data TLB faults. Finally, the runlength, or number

of cycles between read misses, is also given for each application. Note that the applications



are generally spending more time busy than the multiprocessor applications from the previous

chapter. Instruction latency tends to be fairly large for most of the applications, with memory

latency dominating instruction latency only for Gmtry and Vpenta. Thus, based on Table 4.4,

the uniprocessor environment would seem to be much more difficult for effectively employing

multiple contexts when compared to the multiprocessor environment.

The workloads selected represent an environment where several large jobs are being mul-

tiprogrammed on a single workstation. This is the situation found on the workstations in our

research lab, however, many workstations run with one large job in the background and smaller

jobs in the foreground. While we do not explicitly model this environment here, our results

should be indicative of the benefits that multiple contexts can provide by allowing the smaller

jobs to be loaded and run on the processor without requiring the larger job to be switched out.

In addition to providing this advantage, multiple contexts allow background applications which

suffer significantly from memory latency to be written as parallel programs to take advantage of

the latency tolerance. Finally, there are a large number of applications which are designed to

run on workstation clusters or small-scale multiprocessors that are already multithreaded and can

take advantage of the multiple contexts on the processor. While the throughput improvement of

several large jobs is not a metric directly applicable to these other situations, all these situations

benefit from multiple contexts.

4.2 Effectiveness of Multiple Contexts

Before we examine the effects of multiple contexts on multiprogramming throughput, we first need

to discuss the impact of multiple contexts on process scheduling. As was observed in [CGL92],

applications with lower miss rates tend to get more cycles under blocked multiple contexts than

applications with higher miss rates. This is because lower miss rates usually translate into longer

runlengths, and assuming a strict round-robin scheduling, the fraction of the total processor

cycles allocated to each application will depend on the size of its runlength relative to the other

runlengths as shown in Equation 4.1, whereRi denote the runlength of processi andN is the

total number of contexts on the processor.

P e r c e n t o f P r o c e s s o r Cy c l e s Al l o c a t e d t o P r o c e s s i =
Ri

R1 +R2 + � � �+RN

( 4: 1)

A similar effect also occurs for the interleaved scheme. Assuming the processor supports

N contexts, an application receives1
N

of the processor cycles as long as it is not unavailable
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due to an outstanding memory request. Since applications with longer runlengths spend less of

their time waiting for memory, they will get a larger fraction of the processor. However, for the

interleaved scheme, an additional factor is involved in determining the fraction of time spent on

each application, namely the total number of cycles an application spends stalled after latency

has been tolerated. Because the interleaved scheme switches between available contexts on a

per-instructionbasis, applications with larger total stalls will get a larger fraction of the processor

cycles.

To illustrate the effect of untolerated stalls on the number of cycles devoted to each application

on the interleaved processor, consider the following simple example. Two applications (A and

B) are sharing the interleaved multiple-context processor. Both applications never cache miss.

Application A has no stalls when running on the single-context processor; each instruction in

application B is followed by a two-cycle pipeline dependency stall on the single-context processor.

When A and B are interleaved on the multiple-context processor, one of the stall cycles of

application B will be tolerated by the interleaving, leaving one untolerated cycle of stall. Because

A and B issue instructions round-robin, B will get two processor cycles (one active and one stalled)

for every one processor cycle of A. When the applications running on the interleaved processor

have comparable miss rates, these stalling effects can have a significant impact on the percentage

of total time devoted to each application.

The behavior of both schemes is in contrast with the same applications timesharing a single-

context processor, where each application receives the same fraction of the processor’s cycles

assuming all applications are running at the same priority. Since users would like their application

to get its fair share of the processor, it is desirable to provide feedback to the operating system

on how much time is being devoted to each context. The operating system can then incorporate

this information into its scheduling algorithm to make the processor allocation more fair.

Since we would like to compare the blocked and interleaved schemes based on how well they

improve the throughput of all applications in the workload, not on whether they devote more

processor time to applications with better memory or worse pipeline behavior, we will assume

that the hardware provides this information to the operating system, and the operating system

schedules the workload to even out the amount of processor cycles devoted to each application.

Therefore, we will normalize our results (which do not include the effects of this feedback to the

operating system) to the case where each application out ofN is given 1
N

of the processor.

The improvement in throughput for our workloads resulting from blocked multiple contexts is

shown in Figure 4.2. Processor utilization is broken into five categories:busy, time spent doing
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Figure 4.2: Blocked scheme processor utilization — switch on primary cache miss.

useful work,instruction, time stalled due to pipeline dependencies,inst cache/TLB, time stalled

due to instruction references,data cache/TLB, time stalled on memory due to data references, and

context switch, time spent context switching. The number on top of the bars show the percent

of time spent busy. In general, processor utilization does not increase much with additional

contexts. This is because many of the workloads simply do not contain that much memory or

long-instruction latency for the multiple contexts to tolerate. For workloads where there is a

fairly large amount of memory latency, such asDC andDT, the high cost of context switching

removes much of the gain of tolerating the memory latency.

Selecting the proper criteria for determining when to context switch is not as straightforward

for the uniprocessor environment as for the multiprocessor, since many misses in the primary

data cache are likely to hit in the secondary cache. Because the cost of a primary cache miss that

hits in the secondary cache is close to the cost of the context switch, there may be an advantage

in waiting to context switch until a miss occurs in the secondary cache. Figure 4.3 shows that for

some workloads this results in the same performance as switching on the primary miss, while for a

few workloads this results in a slightly lower performance. For our memory latencies switching on

the primary results in the best performance, however, with different memory latencies the choice
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Figure 4.3: Blocked scheme processor utilization — switch on secondary cache miss.

might not be so clear. This complicates the implementation of the multiple-context processor

targeted at the uniprocessor, as design simplicity argues for a fixed switch criteria.

The interleaved scheme does not encounter this dilemma, as its switch cost is small enough

to tilt the equation toward always switching on primary misses. A breakdown of processor u-

tilization for the interleaved scheme is shown in Figure 4.4. The interleaved scheme is much

more successful in tolerating both memory and instruction latency. Processor utilization increas-

es significantly under the interleaved scheme for workloads with large amounts of instruction

latency, as the cycle-by-cycle interleaving tolerates these shorter instruction latencies, while the

scoreboard-triggered backoff tolerates the long instruction latency. In addition, workloads with

large amounts of memory latency (DC andDT) gain over the blocked scheme due to the lower

switch cost of the interleaved scheme.

Table 4.5 summarizes the increase in processor utilization (and therefore throughput) for the

two schemes. The blocked scheme increases throughput by only 11% with four contexts per

processor, while the interleaved scheme is able to increase throughput by 50% with four contexts

per processor. The 50% increase in throughput is much more compelling when making a decision

concerning the cost/performance tradeoffs of adding multiple contexts to a processor.
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Figure 4.4: Interleaved scheme processor utilization.

Table 4.5: Increase in application throughput with multiple contexts.

Scheme IC DC DT FP R0 R1 SP Mean
Two Interleaved 1.15 1.23 1.22 1.29 1.21 1.21 1.26 1.22

Contexts Blocked 1.01 1.02 1.00 1.04 1.00 1.01 1.10 1.03
Four Interleaved 1.28 1.65 1.46 1.79 1.41 1.54 1.44 1.50

Contexts Blocked 1.01 1.23 1.09 1.21 1.02 1.08 1.15 1.11

4.3 Shared Resource Impact

Sharing the caches, TLBs, and branch prediction logic between distinct applications is more chal-

lenging than sharing them between multiple threads of the same application. In this section, we

examine the BTB, TLB, instruction cache, and data cache interference for our multiprogrammed

workloads.

4.3.1 Branch Prediction

Sharing a BTB between multiple applications requires some additional hardware support. Because

we want to avoid one context using the branch prediction information of another context, we
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have assumed that the BTB is tagged with a process identifier (PID) in addition to the normal

address tag. We use PID tagging instead of context identifier (CID) tagging because we still

want applications with the same process identifier but different context identifiers (i.e. threads

of a single parallel application) to share entires. Interference for our direct-mapped, 2048-

entry BTB with PID tagging is shown in Table 4.6. This table shows the change in both BTB

miss and misprediction rate when going from the single-context to the four-context processor.

Applications which have a very high single-context prediction rate can be especially affected by

BTB interference. For example, branch prediction in Tomcatv is primarily determined by the

predictability of the inner loop branch. If this prediction information should get displaced from

the BTB, a large increase in branch misprediction can occur, as occurred for workloadR1 for

both schemes. The important point is that despite this increase in BTB interference, interleaved

multiple contexts were still able to significantly improve uniprocessor throughput.

4.3.2 Translation Look-aside Buffers

The change in miss rates for the 128-entry, fully associative data TLB when going from one to

four contexts is shown in Table 4.7 (for 16 Kbtye pages).2 For most workloads the increase in the

data TLB miss rate due to supporting four contexts was small. The exceptions wereDC andDT,

where the data TLB miss rates for some of the NASA7 kernels went from a few hundredths of

a percent to up to nearly seven percent, worst case. These kernels were already placing pressure

on the data TLB before multiple contexts. Again, despite the large increase in TLB miss rates,

multiple contexts were able to improve throughput for these workloads. These results do point

out the need for the operating system or miss-handling hardware to keep track of how many

TLB misses are occurring to prevent the operating system from continuously scheduling contexts

which are thrashing in the TLB.

Interference turned out to not be an issue for the 32-entry, fully-associative instruction TLB

simulated. The largest increase occurred for Doduc in workloadIC , where the instruction miss

rate with four contexts per processor increased from under 0.01% to 0.02%.

216 KByte pages were used for the uniprocessor studies (in contrast with the 4 KByte pages of the multiprocessor
studies), since the single-context data TLB miss rate was unacceptably high for several of the NASA7 kernels when
using 4 KByte pages, and would have distorted the results.



Table 4.6: Effect of multiple contexts on the BTB.

Blocked doduc li eqntott mxm
Miss Rate (%) 33.8! 43.4 22.9! 23.8 0.9! 1.8 0.0! 0.3

Workload Misprediction Rate (%) 13.1! 20.0 15.3! 16.0 1.0! 1.6 0.4! 0.7
IC Interleaved doduc li eqntott mxm

Miss Rate (%) 33.8! 40.3 22.9! 25.0 0.9! 1.7 0.0! 0.3
Misprediction Rate (%) 13.1! 18.0 15.3! 16.8 1.0! 1.6 0.4! 0.7

Blocked cfft2d gmtry tomcatv vpenta
Miss Rate (%) 0.2! 0.4 0.3! 0.2 0.5! 0.5 0.0! 0.3

Workload Misprediction Rate (%) 0.8! 0.9 1.2! 1.2 0.5! 0.5 0.6! 0.9
DC Interleaved cfft2d gmtry tomcatv vpenta

Miss Rate (%) 0.2! 0.4 0.3! 0.1 0.5! 0.6 0.0! 0.2
Misprediction Rate (%) 0.8! 0.9 1.2! 1.2 0.5! 0.6 0.6! 0.8

Blocked btrix cholsky gmtry vpenta
Miss Rate (%) 2.5! 3.5 3.4! 4.8 0.3! 0.5 0.0! 0.0

Workload Misprediction Rate (%) 3.4! 4.4 1.2! 2.4 1.2! 1.5 0.6! 0.6
DT Interleaved btrix cholsky gmtry vpenta

Miss Rate (%) 2.5! 4.0 3.4! 3.6 0.3! 0.3 0.0! 2.8
Misprediction Rate (%) 3.4! 4.9 1.2! 1.2 1.2! 1.3 0.6! 3.4

Blocked emit cholsky doduc matrix300
Miss Rate (%) 47.2! 47.4 3.5! 3.9 32.4! 32.9 2.5! 3.1

Workload Misprediction Rate (%) 0.3! 0.4 1.2! 1.7 13.1! 13.5 1.2! 1.9
FP Interleaved emit cholsky doduc matrix300

Miss Rate (%) 47.2! 48.0 3.5! 3.6 32.4! 32.9 2.5! 2.9
Misprediction Rate (%) 0.3! 0.5 1.2! 1.6 13.1! 13.6 1.2! 1.7

Blocked emit btrix cfft2d eqntott
Miss Rate (%) 47.2! 48.1 2.5! 2.7 0.2! 0.4 0.9! 0.6

Workload Misprediction Rate (%) 0.3! 0.2 3.4! 3.6 0.8! 1.0 1.1! 0.8
R0 Interleaved emit btrix cfft2d eqntott

Miss Rate (%) 47.2! 46.8 2.5! 2.7 0.2! 0.3 0.9! 0.9
Misprediction Rate (%) 0.3! 0.3 3.4! 3.6 0.8! 0.9 1.1! 1.0

Blocked mxm li matrix300 tomcatv
Miss Rate (%) 0.0! 0.2 20.4! 20.5 2.5! 3.7 0.5! 8.5

Workload Misprediction Rate (%) 0.4! 0.6 15.3! 15.4 1.2! 2.5 0.5! 8.5
R1 Interleaved mxm li matrix300 tomcatv

Miss Rate (%) 0.0! 0.3 20.4! 20.6 2.5! 3.4 0.5! 3.4
Misprediction Rate (%) 0.4! 0.7 15.3! 15.4 1.2! 2.2 0.5! 3.4

Blocked mp3d water locus barnes
Miss Rate (%) 1.9! 10.9 11.7! 15.4 2.5! 3.0 13.8! 26.7

Workload Misprediction Rate (%) 7.4! 9.4 11.5! 14.2 2.7! 2.9 12.1! 22.0
R2 Interleaved mp3d water locus barnes

Miss Rate (%) 1.9! 15.4 11.7! 16.8 2.5! 3.4 13.8! 24.0
Misprediction Rate (%) 7.4! 11.2 11.5! 15.1 2.7! 3.3 12.1! 19.5
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Table 4.7: Effect of multiple contexts on the data TLB.

Blocked doduc li eqntott mxm
Workload Miss Rate (%) 0.00! 0.00 0.00! 0.00 0.00! 0.00 0.00! 0.00

IC Interleaved doduc li eqntott mxm
Miss Rate (%) 0.00! 0.00 0.00! 0.00 0.00! 0.00 0.00! 0.00

Blocked cfft2d gmtry tomcatv vpenta
Workload Miss Rate (%) 0.00! 1.62 0.03! 4.67 0.02! 0.33 0.03! 3.68

DC Interleaved cfft2d gmtry tomcatv vpenta
Miss Rate (%) 0.00! 1.52 0.03! 4.83 0.02! 0.60 0.03! 3.46

Blocked btrix cholsky gmtry vpenta
Workload Miss Rate (%) 0.01! 1.85 0.01! 0.69 0.03! 6.83 0.03! 4.42

DT Interleaved btrix cholsky gmtry vpenta
Miss Rate (%) 0.01! 2.61 0.01! 0.71 0.03! 5.98 0.03! 4.17

Blocked emit cholsky doduc matrix300
Workload Miss Rate (%) 0.00! 0.00 0.01! 0.02 0.00! 0.00 0.01! 0.02

FP Interleaved emit cholsky doduc matrix300
Miss Rate (%) 0.00! 0.00 0.01! 0.01 0.00! 0.00 0.01! 0.01

Blocked emit btrix cfft2d eqntott
Workload Miss Rate (%) 0.00! 0.02 0.01! 0.32 0.00! 0.30 0.00! 0.02

R0 Interleaved emit btrix cfft2d eqntott
Miss Rate (%) 0.00! 0.03 0.01! 0.32 0.00! 0.30 0.00! 0.04

Blocked mxm li matrix300 tomcatv
Workload Miss Rate (%) 0.00! 0.00 0.00! 0.00 0.01! 0.02 0.02! 0.02

R1 Interleaved mxm li matrix300 tomcatv
Miss Rate (%) 0.00! 0.00 0.00! 0.00 0.01! 0.02 0.02! 0.02

Blocked mp3d water locus barnes
Workload Miss Rate (%) 0.01! 0.01 0.00! 0.00 0.00! 0.01 0.00! 0.02

R2 Interleaved mp3d water locus barnes
Miss Rate (%) 0.01! 0.01 0.00! 0.00 0.00! 0.01 0.00! 0.01

4.3.3 Caches

Finally, the miss rates for both instruction and data caches of differing sizes (4, 16, 64, and

256 KBytes) and differing associativities were examined. Indexing into the instruction cache is

based on both the instruction address and the process identifier, with the PID hashed into the

upper bits. This is done to prevent the code of the multiple applications from lying on top of

each other in the cache. Indexing into the data cache is based solely on the data address. While

there are advantages to also hashing the PID into the index function for the data cache, as the

stacks and private data spaces of multiple applications tend to have the same virtual addresses,

we performed some simulations which showed the effects to be negligible.



Data Cache

The read miss rates for the primary data cache are shown in Figure 4.5. Note that the scale on

the miss rate axis is not constant for all workloads. In general, interference is not that large, even

for some of the smaller caches, however, there are several workloads, such asFP andSP, that

do have substantial interference between the applications. These modest increases in miss rate

are quite encouraging, as one would expect the interference for a multiprogramming workload to

be larger. However, the average miss rate does not show the entire picture, and even for cases

where the miss rate does not increase substantially, the miss rates of certain applications in the

workload may increase a fair amount. As an example, Figure 4.6 shows that the miss rate of all

applications in workloadR1 increase at roughly the same rate, whereas most of the increase for

workloadSP is due to Barnes. However, even with this large increase in miss rate for Barnes,

SP showed a good throughput improvement for interleaved multiple contexts.

Instruction Cache

Figure 4.7 shows that instruction cache interference is fairly large for the 4 and 16 KByte caches.

For the 64 and 256 KByte caches, the instruction cache interference between the applications is

fairly small. Instruction cache interference is more serious than data cache interference, since we

assumed the instruction cache was not lockup-free. These cache interference studies show that

lockup-free instruction caches should be seriously considered if the instruction cache is 16 KBytes

or smaller. In addition, while our workloads exhibited little interference for the larger caches,

the operating system should be provided with some feedback on instruction cache interference to

avoid scheduling applications that are thrashing.

4.4 Summary

This chapter has shown that achieving large performance gains from multiple contexts in the

uniprocessor environment is more difficult than for the multiprocessor environment. The lower

switch cost and ability to tolerate short instruction latencies of the interleaved scheme is crucial

for good performance in uniprocessors. The interleaved scheme was able to improve throughput

by 50% for the workloads we examined, while the blocked scheme could only achieve a 11%

increase. We also examined shared resource interference between the contexts and found it to be

larger for a multiprogramming workload than for multiple threads of the same parallel application.
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(c) IC (d) FP

Figure 4.5: Data cache read miss rates for varying cache sizes.
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Figure 4.5: Data cache read miss rates for varying cache sizes (continued).
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Figure 4.6: Data cache read miss rates by application for the 64 KByte cache.

However, the increase in interference did not outweigh the latency tolerating advantages of the

multiple contexts.

The interleaved scheme has been shown to substantially outperform the blocked for both

multiprocessor and uniprocessor workloads. This is promising — we now need to examine the

implementation costs of the interleaved scheme to determine if the additional costs are justified

by the extra performance we have seen. The next chapter starts the implementation exploration

by examining the costs of providing a cache capable of multiple outstanding requests, which is

required by any multiple context scheme. Chapters 6 and 7 then examine the remaining cost for

the blocked and interleaved schemes, respectively.
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Figure 4.7: Instruction cache miss rates for varying cache sizes.
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Figure 4.7: Instruction cache miss rates for varying cache sizes (continued).



Chapter 5

Lockup-free Cache Design

Chapters 3 and 4 have shown the performance of multiple-context processors to be promising,

especially the interleaved approach. We now need to examine the implementation costs involved

in building a multiple-context processor. One of the largest implementation complexity increase

for multiple-context processors occurs in providing a cache capable of supporting multiple out-

standing misses, or to use the prevailing terminology, alockup-freecache. Lockup-free cache

designs are more complex than standardblockingcaches and it is important that this additional

complexity does not translate into a large increase in implementation cost.

We start this chapter by examining previous lockup-free cache designs in Section 5.1. All

previous lockup-free cache proposals track outstanding requests either in a set of transaction

buffers [Kro81], or directly in the cache itself [LLG+90, Len92]. However, the tradeoffs between

these two methods of tracking requests have not been explored in detail, and in Section 5.2 we

examine this tradeoff for the four major methods of generating multiple outstanding requests.

Based on this examination we then propose a lockup-free cache design which employs a pending

state in the cache to allow requests to the same address to be merged. This pending state is also

used to prevent issue of requests to the same cache line from different addresses. Section 5.2 also

discusses how the deadlock issues which arise for lockup-free caches can be avoided. Deadlock

can arise for a multiple-context processor due to pathological replacement patterns between the

contexts, and we propose a mechanism calledadaptive stallingto address this problem. In

Section 5.3 we show that our lockup-free cache proposal provides good performance and that the

impact of adaptive stalling on performance is minimal. We also show the importance of reducing

the occupancy of replies for caches with larger line sizes. Finally, Section 5.4 summarizes the

chapter.

74
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5.1 Previous Work

One common feature of previous lockup-free cache designs is that they all provide some mecha-

nism for tracking outstanding requests. Previous proposals can be split into two categories based

on where outstanding requests are tracked. Most lockup-free caches have tracked outstanding

requests in separate transaction buffers [Kro81, PBG+85, SD91, SDL91, KCA92]. These trans-

action buffers are often called MSHRs (miss information/status holding registers), as this was the

term used by Kroft in the first published paper discussing lockup-free caches [Kro81]. Outstand-

ing requests can also be tracked directly in the cache itself, as done in the remote access cache

of the Stanford DASH [LLG+90, Len92].

In this section we first describe both Kroft’s and the Stanford DASH lockup-free caches as

representatives of the two approaches. We then discuss the limitations of the existing lockup-free

cache proposals and describe how these limitations can be addressed.

5.1.1 Transaction Buffer Request Tracking

The seminal lockup-free cache design was presented by Kroft [Kro81]. This lockup-free cache

was used in Control Data Corporation’s Cyber 835, which was introduced in 1979. The same

basic lockup-free cache design was also used in the Cyber 930 and 932 [Kro92].

To implement a lockup-free cache capable of supporting nonblocking loads and multiple

outstanding writes, Kroft adds a number of miss information/status holding registers (MSHRs)

and some associated logic. Each MSHR handles one or more misses to a single memory line.

Table 5.1: MSHR state entries.

State Description
Cache Line Pointer Pointer to cache line allocated for pending request
Request Address Address of pending request
Unit Identification Tags (one per word) Identifies requesting processor unit
Send-to-CPU Status (one per word) Valid bits for Unit Identification Tags
Partial Write Codes (one per word) Bit vector tracking partial writes to a word
Valid Indicator Valid MSHR contents
Obsolete Indicator Underlying cache line has been reallocated

Kroft’s design allows virtually any combination of multiple outstanding requests to the same

cache line, including requests with different addresses. Consequently, the MSHRs consist of a

fair amount of state to handle these multiple outstanding requests, as shown in Table 5.1. First,



the MSHRs are designed for a set associative cache, where several cache lines can be allocation

candidates for a given address. Therefore, the MSHR has a cache line pointer, which is used

to keep track of the cache line to store the returning data. The request address is also stored

to allow merging of subsequent requests to the same memory line. Each word (a word is the

smallest unit of request) has a requesting unit identification tag and a send-to-CPU status bit.

This is used to forward data to the CPU functional unit which made the request. Partial write

codes are associated with each word to handle partial-word writes. There is also a valid indicator

(to signify valid MSHR contents) and an obsolete indicator, whose purpose will be explained

later. Kroft also has some extra fields to control the loading of return data from a buffer into

the cache, and handle requests while loading the cache from this buffer. We will not discuss this

buffer control further, as it is a side issue detailed in [Kro81].

The MSHRs are accessed in parallel with the cache. If the access hits in the cache, the normal

cache hit actions take place. If the access misses in the cache, the operations that occur depend

on the MSHR status. We first detail the operations that occur on a MSHR miss. For a miss, a

free MSHR is allocated and initialized as follows:

1. Valid indicator is set.

2. Obsolete indicator is cleared.

3. Cache line pointer is loaded with cache index.

4. Request address is loaded.

5. Requested word has its send-to-CPU status bit set and requesting unit identifier loaded with

the functional unit designator.

6. All other send-to-CPU status bits cleared.

7. The block of words is requested from the memory system.

8. If request was a store the data is written into the cache and the appropriate partial write

bits are set.

9. All MSHRs with the same cache line pointer are purged.

The valid indicator is set and the obsolete indicator cleared to indicate that the MSHR now

contains valid information. The cache line pointer is loaded in order to detect later requests
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which map to the same cache line. The request address is loaded to be able to merge requests to

the same address. The CPU requesting unit identifier is loaded and send-to-CPU status bit is set

to allow the appropriate data from the eventual reply to be forwarded to the proper unit. Finally,

the block of words is requested from the memory system and all MSHRs with the same cache

line pointer are purged, as the cache line has been reallocated for this new request.

For evolutionary reasons, this MSHR purging was implemented using two methods, depend-

ing on whether the line is being reallocated for an address that has a previous request still

outstanding [Kro92]. If a previous request for the same address is still outstanding, the obsolete

bit is set to prevent multiple hits in the MSHRs (both the valid and obsolete bits are used in the

MSHR hit detection determination). Otherwise, the MSHR was purged by simply setting all the

partial write codes to ones (ensuring that the data would not be put into the cache upon return).

The write bits can safely be set to all ones in this case because the cache line has been reallocated

for a new address.

When the reply returns, the cache line pointer determines the cache line to load with the

returning data. The partial write codes are used to avoid writing stale data into the cache. The

send-to-CPU status bits and requesting unit identifiers are used to forward the replies to the

waiting functional units.

A request for a cache line that is outstanding (a MSHR hit) can be merged with a previous

outstanding request (thereby using the same MSHR) under several circumstances. First, all store

operations to an outstanding request can be merged by writing the data into the cache and setting

the appropriate partial write bits. Second, loads of a word that has not already been requested

can use the same MSHR, as the CPU requesting unit identifier and send-to-CPU status bit of that

word are available. Loads of a word already requested need to allocate a new MSHR, as there

is only a single CPU requesting identifier per word. Finally, loads of a word completely written

in the cache can simply read the data from the cache buffer.

A number of recent lockup-free cache designs have been built based on transaction buff-

ers. Scheurich and Dubois [SD88, SD91] and Senstrom, Dahlgren, and Lundberg [SDL91]

both present transaction buffer-based lockup-free caches for processors which support a relaxed

memory consistency model. Kubiatowicz, Chaiken, and Agarwal [KCA92] present a transaction

buffer-based lockup-free cache for a multiple-context processor, APRIL.



5.1.2 In-cache Request Tracking

Instead of requiring a separate set of transaction buffers, it is is possible to provide lockup-

free support in the cache itself, as we did for the Remote Access Cache (RAC) of the DASH

multiprocessor [LLG+90, Len92]. The RAC provides lockup-free cache support for a cluster of

four processors in the DASH prototype. The state required to track the outstanding transactions

is a part of each cache line. The RAC is a direct-mapped cache, with each line containing the

information shown in Figure 5.1.

Start
Byte

 End
Byte

 Inval
Count

Wait
Field

Conflict
  Field

StateTag Data

Figure 5.1: Format of each line in the DASH Remote Access Cache.

The tag contains the portion of the address needed to uniquely identify the address allocated

to a particular RAC line. The cache state tracks the progress of a RAC transaction. The wait and

conflict field are bit vectors to track the processors from a cluster waiting for the results of a RAC

entry. The wait field contains the processors waiting for an outstanding request. The conflict field

contains the processors with a request for a conflicting address which has mapped to the same

line as a previous outstanding address. The count field tracks invalidation acknowledgements,

allowing DASH to support both a processor and a release memory consistency model. The

start and end bytes are used by the RAC for repeat of operations on partial cache-lines. The

byte information was stored in the RAC because negative acknowledgements did not retain this

information.

The RAC employs a large number of states to track the status of the many different flavors of

outstanding requests available in DASH [Len92]. The basic flow of state transitions for a RAC

entry is the following. The RAC snoops all processor requests which issue to the cluster bus. If

the RAC entry for the address is free, it is allocated in a pending state, the request is issued to the

memory system, and the processor has its bit set in the wait vector to indicate it is now waiting

for the reply. If the RAC entry is already allocated for a compatible request1, the processor’s bit

in the wait vector is simply set to indicate that it is also waiting for the reply. If the RAC entry

is allocated for an incompatible request, the bit for the processor is set in the conflict field. Once

the reply returns, the RAC entry transitions into a state that indicates that data has been received,

but has not been given to the requesting processor(s). The processors in the wait field are then

1Compatible requests correspond to a read that encounters a read or read-exclusive pending, and a read-exclusive
that encounters another read-exclusive pending.
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freed and told to repeat their requests. Once the first waiting processor receives its response data

from the RAC, the RAC frees any conflicting processors so they can repeat their request. The

RAC entry then transitions to either an invalid state if the processor took ownership of the line or

into a “soft” shared state if the processor did not take ownership. The “soft” shared state means

that the RAC entry can be reallocated by a processor which needs the entry to process a remote

request.

5.1.3 Discussion

Designing the RAC led to insights into the limitations of existing lockup-free cache proposals.

First, previous designs have not evaluated the tradeoff between providing separate transaction

buffers and tracking requests directly in the cache. Second, some of the transaction-buffer based

proposals have a significant amount of complexity due to allowing multiple outstanding requests

with different addresses to the same cache line. For example, because Kroft’s MSHRs allowed

multiple requests to the same cache line, the obsolete bit had to be added later in the design to

handle the case where a cache line was allocated for one request, reallocated for a request to

a different memory line, and then reallocated again for the first request, all before the reply to

the the first request had returned [Kro92]. Simplifications resulting from placing restrictions on

the allowable outstanding requests have not been explored in detail. Finally, existing proposals

have generally targeted one specific method of generating multiple-outstanding requests. Kroft

targeted a processor with nonblocking loads, Scheurich and Dubois a system with relaxed memory

consistency, Kubiatowicz et. al. a multiple-context processor.

We start the following section by examining the requirements placed on a lockup-free cache

by all four major methods of generating multiple outstanding requests: prefetch, relaxed memory

consistency, non-blocking loads, and multiple contexts. This examination discusses where the

outstanding requests generated by each method are best tracked: in separate transaction buffers,

within the cache itself, or by a combination of the two. The following section also explores how

limits can be placed on the outstanding requests to simplify the design.

5.2 Lockup-free Cache Design

In order to provide a framework for our lockup-free cache discussion, we assume a shared-memory

multiprocessor where each node has the data cache hierarchy given in Figure 5.2. Since we are

concentrating on high-performance processors, the cache hierarchy at each node is assumed to



consist of multiple levels of writeback caches. Caches closer to the processor are referred to

as upper or nearer; caches closer to the network interface are referred to as lower or outer.

No assumptions are made about the associativity of the caches at any level. To simplify the

discussion, the same line size is used for all levels throughout the hierarchy.2

Processor

Writeback Cache 1

Writeback Cache M

Directory, Memory, and Network Interface

Figure 5.2: Data cache hierarchy.

Cache coherence is maintained between nodes through the use of a distributed, directory-

based protocol [LLG+90, JLGS90, CKA91, Sim92, Web93]. To simplify our discussion, the

hardware necessary to support both the directory-based protocol and track the completion of

memory operations (for use in enforcing a relaxed memory consistency model) is assumed to

exist outside the cache hierarchy.

While the directory maintains coherence between nodes, a separate coherence protocol needs

to be developed to maintain coherence within the cache hierarchy. Appendix C describes an

intra-hierarchy coherence protocol which we now summarize here. The protocol is based on the

four cache states given in Table 5.2. The protocol employs two variants of the exclusive cache

state because of the multiple levels of writeback caches. An exclusive copy is only up-to-date in

one of the caches, and therefore the dirty state is used to tag that copy, while the stale state tags

the other exclusive copies in the hierarchy.

The messages listed in Table 5.3 are sent between the caches to satisfy both processor requests

and external coherence operations, and to maintaininclusion [BW88] between the cache levels.

The function of most messages is self-explanatory, with the exception of flush and copyback.
2The common scenario where cache line size monotonically increases from inner to outer caches is a straightforward

extension of our discussion covered in Appendix C.
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Table 5.2: Cache states used to support the intra-hierarchy coherence protocol.

State Description
D exclusive, up-to-date copy (Dirty)
T exclusive, out-of-date copy (sTale)
S shared copy (Shared)
I invalid (Invalid)

The flush request asks for exclusive data from the cache, requiring that the cache also invalidate

its copy. The copyback request also asks for exclusive data from the cache, but allows the cache

to keep a shared copy. The flush and copyback replies then return the exclusive data.

Table 5.3: Coherence messages.

Message Description Direction
ExcRq Exclusive Request
ShdRq Shared Request From upper cache
FshRp Flush Reply to lower cache
CbkRp Copyback Reply
FshRq Flush Request
Cb kRq Copyback Request From lower cache
I nvRq Invalidate Request to upper cache
ExcRp Exclusive Reply
ShdRp Shared Reply

The intra-hierarchy protocol handles processor requests by percolating them downward until

they either encounter a cache which has the requested line in the proper state (shared or dirty for

the shared request, dirty for the exclusive request) or are sent to the external interface. Replies

to these processor requests are sent up the cache hierarchy, updating each cache as they progress

towards the processor. Shared replies are loaded into each cache in the hierarchy in a shared

state, while exclusive replies are loaded into all levels of the cache hierarchy except the innermost

in the stale state. In the innermost cache exclusive data is loaded in the dirty state, as this will

be the most up-to-date copy.

External flush and copyback requests percolate upward from the external interface, modifying

the state of the cache lines at each level (changing the line to invalid for the flush, shared for the

copyback request) until they encounter the dirty copy, at which point a reply is generated for the

external interface. Invalidates simply traverse up the cache hierarchy, invalidating all shared lines



they encounter. Note that handling these coherence requests requires the caches to be dual-ported,

as they will need to accept external requests while a processor request is outstanding.

Table 5.4: General cache coherence protocol.

Trans- Cache State
action DH DM TH TM SH SM I

ShdRq ! T ;

?ExcRp " ShdRq # ShdRq # ? ShdRp " ShdRq # ShdRq #

ShdRp ; ! S ; ! S ; ! S ! S

? FshRp # FshRq " I nvRq " >ShdRp "

> ShdRp " > ShdRp " > ShdRp "

ExcRq ! T ;

? ExcRp " ExcRq # ExcRq # ExcRq # ExcRq # ExcRq #

ExcRp ; ! T ; ! T ! T ! T ! T

? FshRp # FshRq " > ExcRp " I nvRq " > ExcRp "

> ExcRp " > ExcRp " > ExcRp "

FshRq ! I ! I ;

? FshRp # FshRq "

FshRp ; ! D

FshRp # > FshRp # > Cb kRp # FshRp # FshRp #

Cb kRq ! S ! S ;

? Cb kRp # Cb kRq "

Cb kRp ; ;

FshRp # FshRp # > Cb kRp # FshRp # FshRp #

I nvRq ; ; ! I

I nvRq "

! state transition
# message to lower-level cache
" message to upper-level cache

? read data from cache into message
> write data from message into cache

; error (should not occur)

The protocol for all caches except the innermost is given in Table 5.4. The protocol for the

primary cache is given in Appendix C and differs from that of the other caches in that it loads

exclusive data in the dirty state and never sends requests to upper level caches.

Messages are listed along the left side, the cache states along the top. The cache state

subscripts H and M are used to signify a hit or miss respectively. A detailed discussion of all

the state transitions of Table 5.4 can be found in Appendix C; we will discuss one transition (an

exclusive reply that encounters the cache line allocated in the stale state for a different address)
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here as an example. This transition is located under theTM column, in theExcRp row. The table

specifies that (a) the cache transition to the stale state (now with a new address tag), (b) the new

data be written into the cache line, and (c) two messages be generated for the upper-level cache.

First, a flush request needs to be sent for the current cache address to maintain inclusion. Second,

the exclusive reply is sent to the upper-level cache to update that cache level and eventually be

forwarded to the processor.

5.2.1 Lockup-free Requirements

Now that we have established our base coherent cache hierarchy, we can examine in detail

the requirements placed on the cache hierarchy to support the multiple outstanding requests

resulting from prefetch, relaxed memory consistency, nonblocking loads, and multiple contexts.

All methods of generating multiple requests require the lockup-free cache to handle requests

from the processor simultaneous with replies from outside the processor. Since coherent caches

must already handle memory requests from the processor side and coherence requests from the

network side, the logic to arbitrate between messages from both sides is already in place, and can

be easily extended to handle these multiple replies. Beyond this basic requirement, each latency

tolerance approach presents additional demands on the lockup-free cache.

Requirements for Prefetch

Prefetching requires the cache hierarchy to handle multiple outstanding read and/or read-exclusive

requests. Prefetching has several properties which help to keep the design of the lockup-free cache

simple. First, since prefetch requests are only performance hints, they can be dropped as needed.

Second, prefetch operations only specify data movement, they do require any data to be modified.

Third, the only correctness requirement for prefetching is that its addition does not cause any

violation of either coherence or memory consistency. Finally, the impact on the cache hardware

of the basic prefetching performance constraints is rather modest. Ideally, prefetches should be

dropped when the data is already in the cache hierarchy or when the memory system becomes

overloaded. In addition, combinations of prefetch and normal requests or multiple prefetches to

the same cache line should be merged whenever possible.

With these loose constraints the support required for handling multiple prefetch requests is

rather small. In the simplest case, prefetches can simply be sent down the cache hierarchy,

checking each cache as they pass. If the prefetch hits in any cache on the way out, it is dropped.



Otherwise the prefetch is issued to the external interface and will either return with data or be

dropped externally.

However, this simple approach does have a few drawbacks. First, multiple prefetches/memory

requests to the same line within the cache hierarchy are not merged. Since prefetches are likely

to be generated either by performance-hungry programmers or sophisticated compilers, multiple

prefetches to the same cache line should be infrequent, however merging of a prefetch and a

regular memory reference is desirable, since this situation will arise whenever the prefetch could

not be issued far enough in advance to completely tolerate the memory latency. If the two requests

are not merged, extra cache bandwidth is occupied by the prefetch/request combination. In

addition, allowing multiple prefetches and/or normal requests to the same line to be simultaneously

in flight in the network does cause some additional races for the external coherence protocol,

which it must handle correctly. Second, the “unsolicited” replies generated by the prefetches may

return to find all possible cache lines which can hold the data are allocated to pending requests

for other addresses. The prefetch data must then either be dropped (for a shared copy) or be

treated as if it was just replaced from the cache (for an exclusive copy).

By tracking outstanding prefetches, either in a separate prefetch buffer [GHG+91] or in the

cache itself [Len92], multiple prefetch/memory requests to the same cache line can be merged

within the cache hierarchy and a space is always reserved for the prefetch reply. Prefetches can

be tracked very simply in the cache itself by adding a pending cache state to the primary cache.

When a prefetch misses in the primary cache it allocates a cache line in the pending state and

sends the prefetch to the next cache level. If all possible allocation targets for the prefetch are

already pending for other address, the prefetch can either be dropped or can cause the processor

to stall until one of the allocation targets frees up. Multiple prefetches to the same cache line

or a prefetch followed by a normal memory request are detected as pending hits, allowing the

second request to be merged with the first by simply dropping the second request. Note that

prefetches do not need to allocate pending cache lines in the cache levels beyond the primary,

because allocation in the primary cache (where the smallest number of possible allocation targets

for any given address exists) implies that an allocation target will exist for the returning prefetch

data in all outer caches.

Tracking prefetch requests does have the disadvantage that prefetches can no longer be silently

dropped. Dropping a prefetch requires a negative acknowledgement to be returned so the cache

line reserved for the prefetch can be freed. In addition, if a normal request cannot allocate

a cache line due to all possible allocation targets being used for prefetching, the processor is
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forced to stall. These disadvantages seem relatively small and are most likely outweighed by the

advantages of request merging and guaranteed line allocation for the returning data.

Requirements for Relaxed Memory Consistency

The requirements on the lockup-free cache to support relaxed memory consistency are very

different from those for prefetching. Relaxed memory consistency gains most of its performance

benefits by overlapping multiple outstanding writes.3 Allowing multiple outstanding writes poses

a larger problem than multiple outstanding prefetches because each write consists not only of an

exclusive request for the cache line, but also specifies new data which needs to be merged into

the reply. Supporting multiple outstanding writes entails the following:

� Merging multiple writes to the same line.

� Handling writes to a cache line which has a read outstanding.

� Detecting a read request to already written data, and potentially forwarding the written

data.

� Buffering the write data until it can be merged with the reply.

One common approach to supporting relaxed memory consistency for a system consisting of a

writethrough cache backed by a writeback cache is to add a write buffer between the writethrough

and the writeback cache [BJS88, SD91, DBCÖ92]. This buffer holds the write data for a pending

write miss in addition to the standard service of providing buffering between the caches. This

solution allows multiple writes to be outstanding with respect to the processor without actually

supporting multiple requests outside the cache hierarchy, however, it does not take full advantage

of the relaxed consistency model, since the first write miss stalls all subsequent memory requests

to the secondary, writeback cache. Read bypassing can be added to the write buffer to address

this problem [GGH91]. While read bypassing does increase performance, it greatly complicates

the once simple buffer, since now each buffer entry must have address compare logic to be able

to compare the address of all writes in the buffer against any read. Providing a lockup-free cache

which supports relaxed memory consistency has been found to result in much better performance

than a write buffer with read bypassing [GGH91], and in the following paragraphs we argue that

it is also a lower cost solution.
3Relaxed memory consistency is also necessary to get maximum benefits from nonblocking loads [GGH92]. A

relaxed memory consistency model is assumed when discussing the cache requirements for nonblocking loads.



Adding read bypassing to the write buffer increases the implementation cost for a number

of reasons. First, as already mentioned, each buffer entry must have an associated address

comparator to be able to compare the address of the buffered write against any incoming reads.

Second, the datapath for allowing the read to bypass the write buffer must exist, including some

means of buffering the read in case the cache is busy. Finally, the write buffer itself must be

made relatively deep, to hold all the writes which will backup while the first write miss is being

serviced. Summed up, this is a fair amount of additional complexity.

The naive approach to supporting multiple writes directly in the lockup-free cache is to add

subblock valid bits to each cache line, and store the write data in the cache until the reply returns.

Upon a write miss, the cache goes to a pending state, while also setting the valid bit(s) of the

word(s) being stored. Merging of multiple writes is done by simply writing the data into the

cache and setting the appropriate valid bits. Forwarding written data to subsequent reads occurs

by signaling a cache hit for reads to valid data in a pending cache line. Unfortunately, providing

subblock valid bits in the cache is quite expensive, and most of the valid bits will not contain

useful information, as they are only needed while a write miss is outstanding.
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Figure 5.3: Lockup-free cache supporting relaxed memory consistency using a pending-write
buffer.

A better approach is to keep only the data from the write in the cache, maintaining the valid

bits in a separate buffer, as was done in Kroft’s design [Kro81]. Thispending-writebuffer can

be built as a small fully-associative cache, with the tag pointing to the cache line for which

pending-write entry is allocated. Figure 5.3 shows a lockup-free cache with two-word cache

lines and its pending-write buffer. The figure shows the cache handling outstanding requests for
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three cache lines (marked as pending by a P in the state field). Two of the outstanding requests

(to the lines tagged 19 and 20) were caused by three stores, as signified by the darkened data

blocks. The lockup-free cache tracks which of these pending words contains valid data through

the pending-write buffer. Multiple writes to the same cache line are merged by simply writing the

data into the cache and setting the appropriate valid bits in the pending-write buffer. Forwarding

of written data to subsequent reads is done by including the pending-write buffer status when

making the cache hit determination. Finally, the pending-write buffer is used to prevent the store

data in the cache from being overwritten by the exclusive reply data (the cache will need the

ability to only fill in the invalid portions of the line). Once the reply has been merged into the

cache, the corresponding pending-write entry can be freed for further use.

Comparing the pending-write buffer to a write buffer with bypassing, the pending-write buffer

will likely be smaller and simpler to implement. Both the write buffer and pending-write buffer

require address comparator logic for each entry, however, the pending-write buffer will be smaller

than the write buffer since it only holds state for write misses, whereas the bypassing write buffer

holds the address and data for the original write miss, and all subsequent writes, regardless of

whether they would be hits or misses. Not only is the pending-write buffer likely to be lower

cost, but it has higher performance potential, since it truly supports multiple outstanding writes.

The one advantage of the conventional write buffer is that it can be integrated with the outgoing

request buffer. However, this integration comes at the expensive of making each buffer entry

much more expensive and requiring more entries than would be needed for simple buffering.

Requirements for Nonblocking Loads

Nonblocking loads again have differing requirements than either prefetching or relaxed mem-

ory consistency. Nonblocking loads require: (a) the cache to be capable of handling multiple

outstanding loads, (b) the loads to be merged with any other outstanding requests as appropri-

ate, and (c) some mechanism for forwarding the word requested by the nonblocking load to the

appropriate register when the load reply returns.

Handling this forwarding of load data is best done by separate transaction buffers next to

the primary cache which hold the address/register pairs for outstanding requests. When a reply

returns, it checks these buffers and forwards the data to the appropriate registers. A pending state

in the primary cache is also needed to merge requests and prevent a request from being issued if

it cannot allocate a cache line.



Requirements for Multiple Contexts

Finally, supporting multiple contexts requires that each context be allowed a single outstanding

request. Context switches are likely to be performed on both read and write misses for a proces-

sor operating under sequential consistency, while a processor operating under relaxed memory

consistency is likely to switch only on read misses. Since the processor will repeat its load or

store after the reply has returned, handling multiple stores generated by a sequentially-consistent

multiple-context processor is simpler than handling the multiple stores of relaxed consistency,

as the store data does not need to be kept in the cache. As with the other latency tolerance

mechanisms, the lockup-free cache will achieve the best performance when compatible requests

are merged. A pending state in the primary cache can handle this merging and also prevent a

request from being issued until it can allocate a cache line.

The interleaved scheme places an additional requirement on the lockup-free cache. A reply to

a request which caused a context switch needs to be detected in order to reenable the context. De-

tecting this can be done in a fashion similar to the forwarding of replies for the nonblocking loads

by providing a set of transaction buffers next to the primary cache holding the address/context

number pairs.

5.2.2 Lockup-free Cache Proposal

These differing methods of generating multiple requests have placed several requirements on the

primary cache:

1. Outstanding prefetches, loads, and stores need to be tracked in the cache to support request

merging and to provide a cache line to place returning data.

2. Write data can be stored in the cache, allowing the write to complete immediately under

a relaxed consistency model, by providing separate transaction buffers (the pending-write

buffer) that maintain the subblock valid bits.

3. Separate transaction buffers are needed to track nonblocking loads to allow the data to be

forwarded to the proper processor register.

4. Separate transaction buffers are needed for an interleaved multiple-context processor to

reenable a context when its reply returns.
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Table 5.5: Lockup-free cache coherence protocol (uppermost writeback cache).

Trans- Cache State
action WH DH DM PH PM SH SM I

S h d Rq ! P ! P ! P

? Ld Rp " ? Ld Rp " ? F s h Rp # y y ? Ld Rp " S h d Rq # S h d Rq #

S h d Rq # y y

y

P s h Rq ! P ! P ! P

? F s h Rp # S h d Rq # S h d Rq #

S h d Rq #

S h d Rp ; ; ! S ; ; ; ;

Ex c Rq # >

Ex c Rq ! P ;) V ) V ! P ; ) V ! P ; ) V ! P ; ) V

> F s h Rp # > y Ex c Rq # Ex c Rq # Ex c Rq #

Ex c Rq # > > >

>

P ex Rq ! P ! P ! P ! P

? F s h Rp # Ex c Rq # Ex c Rq # Ex c Rq #

Ex c Rq #

Ex c Rp ) I ; ; ! D ; ; ; ;

>

F s h Rq ! I ;

? F s h Rp #

C b k Rq ! S ;

? C b k Rp #

I n v Rq ; ! I

! cache state transition
) pending-write buffer state transition

# message to lower-level cache
" message to processor

? read data from cache into message
> write data from message into cache

y context switch / stall
; error (should not occur)

In this section, we use these requirements to extend our base intra-hierarchy coherence pro-

tocol to support prefetch, relaxed memory consistency, and multiple contexts. The protocol we

present here was used for the performance simulations of Chapters 3 and 4. Extending this

protocol to support nonblocking loads is straightforward (and was done to simulate the effects

of combining multiple contexts and nonblocking loads in Section 3.4.2). The protocol uses a

pending state in the primary cache to allowing merging of compatible requests and to prevent a



request from being issued which cannot allocate a cache line. Since the pending state guarantees

that a single request is outstanding per cache line, the protocol for all caches except the primary

cache remains the same as the blocking cache protocol given in Table 5.4. The protocol for the

primary cache is given in Table 5.5.P signifies the pending state,WH signifies a hit in the

pending-write buffer,PexRq andPshRq are prefetch exclusive and prefetch shared requests,

andLdRp is the data returned from the cache for the load (ShdRq) operation.

Since the primary cache needs to allocate the cache line in a pending state upon a cache miss,

the old line is replaced immediately, not when the reply returns as for the blocking protocol.

When a processor makes a request which conflicts with a pending line, the processor either

context switches without issuing the request or stalls until the pending line is freed (the conditions

under which the processor stalls will be given in Section 5.2.4). These conflicts are expected to

be infrequent, so the performance loss due to the extra switching or stalling should be small, and

will be explored in Section 5.3. Note that the protocol supports merging requests to the same

address, including merging of a read followed by a write request. For the read followed by a

write, the write request actually stores its data into the cache and allocates a pending-write buffer

entry. If a shared reply is returned for the read request, the cache then generates an exclusive

request. Beyond these conflicts and merges, the protocol behaves as would be expected. Context

switching occurs on read misses, and the pending-write buffer is used to hold the valid bits for

writes while their requests are outstanding.

In addition to impacting the protocol for the primary cache, supporting multiple outstanding

requests also introduces two situations where forward progress can be violated. The first involves

the finite buffering between the caches. Deadlock arising due to limited buffering can occur for

any lockup-free cache design which has multiple levels of writeback caches. In contrast, the

second deadlock issue arises solely due to multiple contexts sharing the cache. We briefly discuss

buffering deadlock in the following section. Then, in Section 5.2.4, deadlock issues specific to

multiple-context processors are examined.

5.2.3 Buffer Deadlock

Deadlock can arise due to the finite buffering between writeback caches. For example, in Fig-

ure 5.4, the processor has issued a shared request for line A which missed in the primary

(writeback) cache, but has hit in the secondary cache. However, there is no incoming buffer

space to hold the shared reply, so the shared request cannot be processed. The flush requests

which are preventing the shared request from being processed are waiting for buffer space in the
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Figure 5.4: Buffer deadlock example.

outgoing buffer. Unfortunately, space in the outgoing buffer can only be generated by processing

the original shared request. This circular dependency has resulted in deadlock.

There are a large number of solutions to this problem, several of which are discussed in Ap-

pendix D. The simplest solution is to only use a single level of writeback caches, as deadlocks

only arise due to circular dependencies between writeback caches. If multiple levels of write-

back caches are desired, a range of solutions exist — from statically limiting the total number

of requests in the cache hierarchy from both the processor and external interface to dynami-

cally limiting the requests between any two levels of the cache hierarchy using the Banker’s

algorithm [Tan86]. Since most systems with multiple writeback caches employ only two levels,

placing static limits on the total number of requests from both the processor and the external

interface is very straightforward and will give good performance as long as the limits are not too

small.

Buffer deadlock can occur for any cache hierarchy with multiple levels of writeback caches.

For lockup-free caches supporting multiple contexts, an additional source of potential deadlock

arises due to the use of split-phase memory transactions.

5.2.4 Multiple-Context Deadlock

Many multiple-context processors introduce two-phase memory transactions to the memory sys-

tem design. A two-phase memory operation consists of apendingphase followed by awaiting

phase. The phases are bounded by three memory operations: request, response, and completion.

The request operation occurs when a memory request is issued from the cache, and marks the



start of the pending phase. The response operation occurs when the reply returns from the mem-

ory system and is put in the cache. The response signals the end of the pending phase and the

start of waiting phase. Finally, the completion operation occurs when the processor reissues the

original request and receives the data from the cache, ending the waiting phase. However, since

the cache may be satisfying other requests during the waiting phase, it is possible that the cache

line could be replaced before the completion operation can be issued. For example, two requests

could map to the same cache line, and if the second request occurs between the response and

completion phases, the first request will be replaced from the cache.

Since operations are vulnerable to cache replacement during the waiting phase, this phase has

also been referred to as thewindow of vulnerability[KCA92]. Under pathological conditions,

replacement during the window of vulnerability can occur indefinitely, leading to system deadlock.

A lockup-free cache supporting multiple contexts must be designed to address this deadlock.

Since this deadlock arises due to multi-phase memory transactions, we will start by discussing

support of multiple contexts with only single-phase memory transactions. We will then address

the deadlock issues for multiple context schemes with multi-phase memory transactions.

Avoiding Multi-phase Memory Transactions

There are several ways to implement multiple-context processors without using two-phase memo-

ry transactions. The first method removes the window of vulnerability by collapsing the response

and completion phases. This can be done by updating the requesting context’s registers when a

reply returns (to do this may require the use of valid bits on the registers, or a distinct load buffer

per context). Since the register is loaded when the reply returns, the response and completion

operations have been merged into a single operation, removing the waiting phase.

A second solution is to implement multiple contexts by using a combination of prefetch

operations, standard blocking loads and stores, and an explicit context switch instruction. Multiple

contexts are supported on such a processor by replacing all loads and stores (or only loads and

stores that are expected to miss) with a prefetch followed by an explicit context switch and then

finally the actual load or store.4 The performance of a multiple context processor using this

compiler-controlled context switching was evaluated in [BR92], and showed promise.

4To reduce the number of explicit context switches required, the compiler can group together several loads and
stores and insert a single switch instruction between them and instructions which depend upon their completion.
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However, the jury is still out on the completely compiler-controlled multiple-context proces-

sor. Since many multiple-context designs (including ours) assume two-phase memory transac-

tions [WG89b, ALKK90, LGH92], we need to explore the issues involved in preventing deadlock

in the presence of the window of vulnerability.

Handling Multi-phase Memory Transactions

Work by the Alewife group at MIT [KCA92] presents four distinct types of thrashing during the

window of vulnerability which can result in deadlock. These four types are: (a)invalidation

thrashing, (b) replacement thrashing, (c) instruction-data thrashing, and (d) high-availability

interrupt (HAI) thrashing. We now discuss each of these four deadlock situations in more detail.

We start with instruction-data and HAI thrashing, as they cannot occur under our assumptions,

and then turn to invalidation and replacement thrashing.

Instruction-data thrashing occurs only for processors with a combined instruction and data

cache. If an instruction and its data map to the same cache line, it is possible to deadlock, as

the data and instruction lines repeatedly replace each other in the cache, as shown in Figure 5.5.

Time advances from left to right in the figure. The lower bar represents the different contexts

executing on the processor. The arrows above this bar show outgoing (up arrow) and incoming

(down arrow) messages. The window of vulnerability is shown in gray. The processor starts with

context A executing instruction Y, which performs a load of memory location X. X is not in the

cache, so the processor issues a read request for X and performs a context switch. Eventually,

the read for X completes, knocking instruction Y out of the cache. When the processor restarts

context A, the processor fetches Y (IF), and stalls until the instruction fetch is complete (IR).

However, the instruction has knocked X out of the cache, so the processor again issues a load for X

and performs a context switch. This cycle will continue indefinitely. Luckily, modern processors

have separate instruction and data caches, in order to support their bandwidth requirements of

one to four instructions and one data reference per cycle. With separate instruction and data

caches, instruction-data thrashing cannot arise.5

High-availability interrupt thrashing occurs when a processor supports high priority interrupts

to handle asynchronous events, some of which may be necessary for an outstanding memory

operation to complete. For example, in Alewife, HAI are used to deal with buffers filling during

an outstanding request [KCA92]. When the interrupt code for the HAI is run during the window

5Instruction-data thrashing is possible if the separate instruction and data caches are backed by a unified cache
which enforces subset property before returning data to the upper level caches.
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Figure 5.5: Instruction-data thrashing scenario.

of vulnerability the cache line may be removed due to cache conflicts with code or data used by the

HAI. Under pathological conditions this can occur indefinitely, leading to deadlock. Note that the

HAI problem is not confined to multiple-context processors. Since HAIs can interrupt a processor

while it is stalled on a memory operation, the addition of HAIs to a single-context processor turns

its memory accesses into two-phase operations. The simplest way to avoid HAI deadlock is to

not implement high-availability interrupts, as we have assumed with our architecture. However,

assuming HAIs need to be supported, HAI deadlock must be addressed, and we will discuss a

few possible methods for handling HAIs at the end of this section. These methods tend to be

expensive and therefore the decision to support HAIs should be weighed carefully.

Invalidation thrashing occurs when two or more processors contend for the same memory line,

and at least one of the processors wishes to perform a write. Figure 5.6 illustrates one possible

invalidation thrashing scenario. Processors 1 and 2 are contending over the same memory line

X. Context A on processor 1 wishes to read the line, while context A on processor 2 wishes to

write the line. First, processor 1 makes a read request (ShdRq), and performs a context switch.

At a later point, the shared reply (ShdRp) returns, but context A no longer is executing on the

processor. We have now entered the window of vulnerability for the read request on processor

1. While in the window of vulnerability, context A on processor 2 does a write (ExcRq) to

the same memory line and context switches. This write invalidates the line X from processor

1 and eventually returns an exclusive reply (ExcRp) to processor 2. However, context A is not

executing on processor 2, and the window of vulnerability starts on processor 2. Before context

A can restart on processor 2, context A on processor 1 restarts and repeats its read request, which

removes the exclusive copy from the cache in processor 2. Under pathological conditions, this

sequence of events could continue indefinitely, leading to deadlock.

There are several simple solutions to this problem, all of which involve closing the window

of vulnerability for write operations. The first solution is to stall on write misses. This would
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Figure 5.6: Invalidation thrashing scenario.

obviously remove the window of vulnerability. However, for a multiple-context processor op-

erating under the strong consistency model, context switching can be an important mechanism

for tolerating write miss latency and stalling on write misses can have a significant impact on

performance.

A better solution is to remove the window of vulnerability by ensuring that the write completes

atomically with the exclusive reply being received. Our lockup-free proposal guarantees this by

storing the write data in the cache line and atomically merging the written data with the exclusive

reply. This solution has a higher performance potential, because the processor does not have to

switch on write misses for which a cache line can be allocated (it still has to switch or stall if the

line cannot be allocated). However, this solution does have a hardware cost, as a pending-write

buffer must store the valid status of the cache line until it can be merged in with the exclusive

reply. Due to this hardware cost, we will not rule out cache designs for which invalidation

thrashing is possible when developing our deadlock handling solution.

A B C D A B C D

ShdRq X
ShdRp X

ShdRq Y
ShdRp Y

ShdRq X
ShdRp X

ShdRq Y
ShdRp Y

Figure 5.7: Replacement thrashing scenario.

Replacement thrashing is the remaining cause of deadlock for multiple-context processors.



An example of replacement thrashing resulting in deadlock is given in Figure 5.7. Due to limited

associativity in the cache, lines X and Y map to the same cache line. Contexts A and C are

requesting copies of X and Y, respectively. Figure 5.7 shows a scenario where they repeatedly

knock each other out of the cache, resulting in livelock. This livelock will turn into deadlock

when the other processes in the multiprocessor cannot make forward progress without the results

from contexts A and C.

Adaptive Stalling

To address both invalidate and replacement thrashing, we have developed a deadlock detection

and breaking scheme calledadaptive stalling. Under adaptive stalling, the processor detects

a thrashing situation, and backs off to a stalling method of memory access when thrashing is

encountered. Since stalling on a memory access closes the window of vulnerability, the deadlock

cycle is broken. The key to adaptive stalling is that the processor backs off to a single-phase

memory transaction whenever it detects the potential for deadlock.

A B C D A B C

ShdRq X
ShdRq XShdRp X ShdRp Y

ShdRq Y ShdRq X ShdRq Y
ShdRp Y

Figure 5.8: Adaptive stalling handling replacement thrashing.

Handling the replacement thrashing scenario using adaptive stalling is shown in Figure 5.8.

The black areas on the context portion of the time line show the processor stalling in order to

break the potential deadlock. When context A retries its request for X and misses in the cache,

it reissues the request for X, but stalls rather than switches. Thus A will complete its request for

X when the reply returns. When context C reissues its request for Y, it also stalls until the reply

for Y returns.

Figure 5.9 shows invalidation thrashing being handled by adaptive stalling. When context A

on processor 1 reissues its shared request, it stalls until the shared reply returns. Context A on

processor 2 behaves similarly when it repeats its write request.

Adaptive stalling also handles instruction-data thrashing deadlock, as shown in Figure 5.10.

Adaptive stalling can also handle HAIs, if a HAI can never occur when a processor is stalled on

memory. However, if a HAI can interrupt a stalled processor, the adaptive stalling scheme cannot
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Figure 5.9: Adaptive stalling handling invalidation thrashing.

guarantee forward progress as it no longer can close the window of vulnerability by stalling.

A B C D A

ShdRq X ShdRp X IFtch Y
IRp Y

ShdRq X ShdRp X

Figure 5.10: Adaptive stalling handling instruction-data thrashing.

Detection of potential deadlock must be simple for adaptive stalling to be easily imple-

mentable. Luckily an easy detection method exists. When a context that had been switched out

due to a cache miss restarts, the first instruction it will issue is the memory reference which caused

the cache miss. If the data item is not in the cache for this memory reference repeat, instead of

switching again, the processor stalls until the memory operation completes. Implementation of

this scheme only requires that the retry of a memory operation be identifiable and that the cache

controller recognize this retry so that it can stall instead of switch. As we will see in Chapters 6

and 7, identifying this second memory access is very straightforward.

The adaptive stalling scheme has the advantage that most of the time, when the processor

is not thrashing, there are no limitations placed on the outstanding requests (either in number

of requests or ordering). Only when there is thrashing does the processor pay a performance

penalty. As we will see in Section 5.3, this thrashing is infrequent, making the performance cost

of adaptive stalling minimal.



Related Work

The thrashwaitscheme [KCA92], developed at MIT simultaneously with our development of

adaptive stalling, employs mechanisms very similar to adaptive stalling. The main difference

is that they keep track of whether a request is being repeated in the cache, as implementing

thrashwait by tagging repeated instructions would have required additional modifications to the

Alewife processor, APRIL [ALKK90]. Their in-cache tracking is not quite as powerful as adaptive

stalling, and thrashwait is unable to prevent invalidation thrashing.

Like adaptive stalling, thrashwait is unable to prevent HAI thrashing, and because APRIL

supports high-availability interrupts, the thrashwait algorithm is not used in Alewife. Instead,

a rather complex collection of deadlock handling mechanisms calledassociative thrashlockis

employed. First, a set of associative transaction buffers is supported. These buffers not only hold

state to track outstanding requests, they also hold the cache line data, providing extra associativity,

much like a victim cache [Jou90]. Each context has its own set of two transaction buffers (one for

an instruction and one for a data request) and two tried-once bits. The same thrashing detection

scheme as for thrashwait is used, however, livelock is no longer possible, since each context has

its own transaction buffers. The additional transaction buffers are provided for the use of the

HAI handler and for prefetching. HAIs are handled by providing two buffer lock bits, one for

instruction thrashing, and one for data thrashing. These buffer lock bits are set when thrashing is

detected (and therefore the processor is stalled). When the bit is set, the cache controller prevents

data in the transaction buffers from being invalidated during the HAI.

Transaction buffers add a fair amount of complexity to Alewife, not only because the func-

tionality of the buffers is complex, but also because valid data is kept in the buffers. This adds

extra capacitive loads to the cache datapath, and also requires that the buffers be able to override

data being read from that cache. However, given the requirements of supporting HAIs on a se-

quentially consistent processor with a single combined instruction and data cache, the associative

thrashlock solution adopted by APRIL seems a reasonable alternative.

Supporting HAIs under our constraints would also be difficult (although easier than for

APRIL). We briefly outline how this would be done. Supporting HAIs requires the addition

of a single extra buffer, theHAI victim line. This line contains two state bits: athrashbit and a

valid bit. The line also contains space for a cache tag, a pointer to a line in the cache, and line

of data. When thrashing is detected, the HAI victim line thrash bit is set, valid bit cleared, and

pointer loaded with the address of the stalled cache line. If the processor finishes stalling without

a HAI occurring, the HAI victim line thrash bit is reset (clearing the HAI victim line). If a HAI
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occurs and the stalled line is replaced or invalidated during the HAI, its tag and data are loaded

into the HAI victim line and the victim line valid bit is set.

We will now outline how HAI deadlock is prevented. If a high-availability interrupt occurs

while a context is adaptively stalling, the processor is either (a) stalled due to a read whose reply

has not returned or (b) stalled due to a read or write which cannot allocate a line (due to the line

being pending). The processor cannot be stalled due to a write whose reply has not returned,

since writes complete upon allocating the cache line.

We will start by addressing the first case. During the HAI, two scenarios hold. First, the

cache line for which the context is stalled will have avoided replacement during the HAI, in

which case the processor will complete its request after the HAI completes. Otherwise, the line

will have been replaced during the HAI, and will be occupying the HAI victim line. When the

HAI completes, the context retry can get its data from the HAI victim line. The HAI victim

line valid and thrash bits are reset upon the processor making its first request after the HAI, as

the data may have been invalidated during the HAI by an actual coherence request, not mapping

conflicts, and therefore the data use must be one-shot only. Thus, for a context stalled for a read

reply, the processor will be successful upon its first repeat from the HAI.

We now address the second case, where the processor is stalled on allocating a cache line.

We will assume that the processor reissues the full request to the cache for a write retry (i.e.

the processor will regenerate the write data). By constraining the HAI to return to the same

context that was stalled (a constraint used in APRIL), and forcing the HAI handler to do a fence6

before returning, we can guarantee that the context will be able to allocate its cache line upon

reissue. This is because no other contexts are allowed to issue requests during the HAI, and all

lines requested by the HAI will have completed. Thus upon retry, the processor will reissue its

request, missing in the HAI victim line. However, the cache line can be allocated at this point.

For a write, since the line can be allocated, the write is considered complete. For a read, the

cache line is allocated and the HAI victim line reinitialized. We are now at the starting state of

the first case, and the read is therefore guaranteed to complete.

The complexity required to handle HAIs is nontrivial. For this reason, architects must care-

fully weigh all the options before making a decision on requiring HAI support.

6A fence is an operation which blocks until all previous outstanding requests have completed [GLL+90].



5.3 Performance Issues

In this section we explore the performance of our lockup-free cache proposal. One of the

outstanding questions was how many writes should be supported by the pending-write buffer

and Section 5.3.1 answers this question. This number is larger than one, showing that there

are performance benefits to supporting multiple outstanding writes. However, the number of

outstanding write misses is still small enough that the implementation cost of the pending-write

buffer will be reasonable. In the previous section we claimed that adaptive stalling should

have a minimal impact on performance, and Section 5.3.2 shows that the percentage of cycles

the processor spends stalled as a result of using adaptive stalling to prevent deadlock is small.

Finally, because contention for the cache will occur between the requests of the active contexts

and the replies of the inactive contexts, we examine this in Section 5.3.3. Contention is not a

major problem for our base 32 byte lines, but does become a problem if the line size is increased

to 128 bytes. Wide-ending the data helps to address the contention problem.

The base cache configuration used for these studies assumes the following cache parameters:

1. Adaptive stalling is used to prevent multiple context deadlock.

2. Buffer deadlock is handled by providing large buffers between the caches and limiting the

number of requests from the processor and external interfaces (modeled as infinite buffers

between caches).

3. Writeback of dirty data is buffered.

4. Reply data requires the cache to be busy while the cache is filled (four cycles for the

primary cache, based on 32 byte lines and a 16 byte, half-speed memory interface to the

processor).

5. Invalidations occupy the cache for one or two cache cycles (one for the tag lookup, and

potentially one for the invalidation).

5.3.1 Multiple Outstanding Writes

We start by examining the benefits of allowing multiple outstanding writes by presenting his-

tograms showing the number of pending-write buffer entries required to service each write miss

in Figure 5.11. Results from Cholesky were not included since it did not see any benefits from
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multiple contexts. The most common situation was that no other write misses were outstand-

ing, accounting for over 50% of all write misses for most applications. However, there was a

significant number of writes which encountered one, two, or for some applications three or four

outstanding write misses. Since these histograms only count write misses to different cache lines,

they only show the benefits of pipelining multiple write requests. Allowing write hits to also

access the cache while misses are outstanding is another benefit of the pending-write buffer.

Table 5.6: Speedup due to supporting multiple outstanding writes for the single-context processor.

Number of writes MP3D Barnes Water Ocean Locus PTHOR Mean
1 1.34 1.30 1.01 1.35 1.23 1.18 1.23
2 1.50 1.45 1.02 1.52 1.29 1.21 1.32
4 1.57 1.56 1.02 1.53 1.29 1.21 1.35

Infinite 1.57 1.57 1.03 1.54 1.31 1.22 1.36

The performance gains for various sizes of pending-write buffers are listed in Table 5.6 for

the single-context processor, in Table 5.7 for the multiple-context processor. These tables show

that the pending-write buffer does indeed provide significant performance advantages over a

standard write buffer with read-bypassing. The figure also shows that the pending-write buffer

can be built at a reasonable cost, as a four-entry buffer would be sufficient to realize nearly

all the performance gains for both the single-context and multiple-context processor. The only

significant performance gains from a pending-write buffer with more than four entries occurred

for the eight-context MP3D runs.

Table 5.7: Speedup due to supporting multiple outstanding writes for the multiple-context pro-
cessor.

Num. writes Scheme MP3D Barnes Water Ocean Locus PTHOR Mean
0 Blocked 3.99 (8) 3.29 (8) 1.21 (4) 1.93 (2) 1.58 (4) 1.32 (2) 2.00

Interleaved 3.91 (8) 4.36 (8) 2.07 (8) 1.66 (2) 1.70 (4) 1.25 (4) 2.23
1 Blocked 4.05 (8) 3.37 (8) 1.21 (4) 2.03 (2) 1.56 (4) 1.41 (2) 2.05

Interleaved 4.21 (8) 4.63 (8) 2.09 (8) 1.88 (2) 1.68 (4) 1.37 (4) 2.37
2 Blocked 4.24 (8) 3.38 (4) 1.21 (8) 2.19 (4) 1.57 (4) 1.40 (2) 2.09

Interleaved 4.47 (8) 4.67 (8) 2.08 (8) 2.35 (4) 1.74 (4) 1.41 (2) 2.51
4 Blocked 4.50 (8) 3.39 (4) 1.21 (8) 2.26 (4) 1.55 (4) 1.41 (2) 2.12

Interleaved 4.82 (8) 4.70 (8) 2.09 (8) 2.37 (4) 1.78 (4) 1.41 (2) 2.56
Infinite Blocked 4.57 (8) 3.37 (8) 1.21 (8) 2.28 (4) 1.62 (4) 1.31 (2) 2.12

Interleaved 5.43 (8) 4.69 (8) 2.10 (8) 2.39 (4) 1.74 (4) 1.40 (4) 2.60
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Figure 5.11: Histogram of number of outstanding write misses encountered by each write miss
(includes the miss itself).
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5.3.2 Adaptive Stalling Performance

Adaptive stalling attempts to detect deadlock situations on the basis of the processor repeating a

memory request. Sometimes these repeats may simply be due to conflicts in the cache which are

not causing a deadlock situation, and the processor would perform better if it allowed the retry

of the memory request to cause a context switch for these situations. By increasing the threshold

on the number of times a memory request must be repeated before adaptive stalling kicks in, the

latency of these temporary conflicts can be tolerated.

Table 5.8 shows the percent of total cycles lost due to adaptive stalling for thresholds of one,

two, four, and eight retries. With a single retry, the impact of conflicts for the same cache line

are small for all applications except Locus, which spends 3% of its cycles stalled due to conflicts,

and MP3D, which spends nearly 10% of its cycles stalled due to conflicts for the blocked scheme,

6% for the interleaved scheme. By making the threshold only slightly larger, such as two or four

retries, most of the stalling due to conflicts is removed. The lower number of cycles stalled by

making the retry value larger must be traded off with the lost performance due to switching a

larger number of times before stalling in true deadlock situations. The best performance was

achieved with four retries, however the performance difference between two, four, and eight

retries was quite small, so selecting a value in the two to four range seems reasonable.

Table 5.8: Percent of total time stalled due to adaptive stalling.

Threshold MP3D Barnes Water Ocean Locus PTHOR

Blocked
One retry 9.8% (8) 1.7% (8) 0.4% (8) 0.6% (4) 3.0% (4) 1.6% (2)

Two retries 2.6% (8) 0.9% (8) 0.2% (8) 0.3% (4) 1.8% (4) 1.1% (2)
Four retries 0.8% (8) 0.2% (8) 0.1% (8) 0.2% (4) 0.8% (4) 1.0% (2)
Eight retries 0.2% (8) 0.0% (8) 0.0% (8) 0.1% (4) 0.3% (4) 0.7% (2)

Interleaved
One retry 5.8% (8) 1.6% (8) 0.7% (8) 0.6% (4) 3.0% (4) 0.8% (2)

Two retries 3.7% (8) 0.9% (8) 0.4% (8) 0.3% (4) 2.0% (4) 0.1% (2)
Four retries 1.5% (8) 0.3% (8) 0.2% (8) 0.1% (4) 0.9% (4) 0.0% (2)
Eight retries 0.6% (8) 0.1% (8) 0.0% (8) 0.0% (4) 0.1% (4) 0.0% (4)

5.3.3 Cache Occupancy

As the processor tolerates more and more memory latency, the cache becomes a hotly contended

resource. It is therefore important to keep the occupancy of cache operations as low as possible.



Cache occupancy for hits is a single cycle, however, the occupancy for a cache miss may be

much larger, as it includes the occupancy of both the original request which caused the miss

and of the reply data returning. Because the memory interface of the processor tends to be

narrower than the cache line size, and is often running at a lower rate than the internal logic of

the processor [Dig92b, Hei93], reply data is generally returned to the processor over a number

of cycles. With a standard processor which blocks on loads, the data can be written into the

cache as it streams in with minimal performance penalty.7 For the multiple context processor,

this returning data may lock an executing context out of the cache for several cycles, and we

would like to reduce the occupancy of the data response. This can be done by gathering the

response in a buffer and then writing the entire cache line into the cache in a small number of

cycles. This is referred to aswide-endingthe data into the cache.

We examined the performance of the cache both with and without wide-ending of data.

The external interface of the processor is assumed to be 16 bytes wide, running at one-half the

internal processor frequency. Because the cost of the cache fill depends on the line size, we ran

experiments for both our standard 32 byte lines and for larger 128 byte lines. The reply data

occupancy is a single cycle with wide-ending and four cycles without wide-ending for the 32

byte lines, four cycles with wide-ending and sixteen cycles without wide-ending for the 128 byte

lines.

Table 5.9 lists the fraction of the total processor cycles lost due to the processor stalling

because the external interface had control of the cache. The external interface can busy the cache

from external invalidation, flush, or copyback requests, or with reply data. With 32 byte lines,

the percent of time spent in these cycles is fairly small for most applications, with the exception

of MP3D, where over 8% of the processor’s cycles are lost to these stalls for the blocked scheme,

over 12% for the interleaved scheme. For 128 byte lines, the overhead due to cache contention

is much more serious, and four of the SPLASH applications lose more than 5% of their cycles

to cache contention. MP3D is again particularly bad, with cache contention consuming 19%

of the cycles for the blocked scheme, 25% for the interleaved scheme. For both line sizes the

interleaved scheme keeps the processor busier, and therefore loses a larger percent of its cycles

to these cache contention stalls. Adding wide-ending reduces the stalls due to cache contention

significantly.

Of course, some of the extra cycles gained by reducing the cache contention may be lost

7If the processor supports early restart, a small performance penalty arises due to the remaining reply data consuming
cache bandwidth.
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Table 5.9: Percent of total time stalled due to cache contention.

Line Size, Reply Policy MP3D Barnes Water Ocean Locus PTHOR

Blocked
32B, No wide-ending 8.4% (8) 0.5% (8) 1.5% (4) 4.7% (4) 2.0% (4) 1.2% (2)
32B, Wide-ending 3.1% (8) 0.2% (8) 1.5% (8) 1.4% (4) 0.5% (4) 0.9% (2)
128B, No wide-ending 19.3% (8) 7.9% (8) 1.7% (4) 7.4% (2) 8.9% (4) 4.0% (2)
128B, Wide-ending 4.7% (8) 1.5% (8) 1.4% (4) 1.4% (2) 1.7% (4) 1.1% (2)

Interleaved
32B, No wide-ending 12.3% (8) 2.1% (8) 1.9% (8) 3.2% (4) 2.4% (4) 1.2% (2)
32B, Wide-ending 4.7% (8) 0.9% (8) 0.8% (8) 1.6% (4) 0.7% (4) 0.8% (2)
128B, No wide-ending 24.9% (8) 12.4% (8) 1.4% (4) 10.5% (4) 11.7% (4) 3.2% (2)
128B, Wide-ending 7.0% (8) 3.1% (8) 2.1% (8) 2.9% (4) 2.2% (4) 1.1% (2)

in the memory system or other stalls. We show the performance improvements due to wide-

ending in Table 5.10. For 32 byte lines only MP3D and Ocean, the applications with the

largest cache contention, showed significant gains. The performance improvements for the other

applications were small enough to be overwhelmed by small perturbations in application sharing

and synchronization behavior between simulation runs. Cache contention was much more serious

for 128 byte lines, and nearly all applications showed significant performance gains from wide-

ending.

Table 5.10: Speedup due to wide-ending.

Line Size, Reply Policy MP3D Barnes Water Ocean Locus PTHOR Mean

Blocked
32B, No wide-ending 2.13 (8) 1.21 (4) 2.73 (8) 1.46 (4) 1.13 (2) 1.17 (4) 1.54
32B, Wide-ending 2.14 (8) 1.14 (4) 2.91 (8) 1.48 (4) 1.14 (2) 1.18 (8) 1.55
128B, No wide-ending 2.02 (8) 1.06 (4) 1.59 (8) 1.08 (2) 1.06 (2) 1.17 (4) 1.29
128B, Wide-ending 2.20 (8) 1.15 (4) 1.84 (8) 1.15 (2) 1.00 (2) 1.18 (4) 1.36

Interleaved
32B, No wide-ending 2.89 (8) 1.28 (4) 3.21 (8) 1.53 (4) 1.17 (2) 2.01 (8) 1.87
32B, Wide-ending 2.92 (8) 1.31 (4) 3.46 (8) 1.56 (4) 1.16 (2) 2.05 (8) 1.91
128B, No wide-ending 2.64 (8) 1.11 (4) 1.61 (8) 1.22 (4) 1.00 (2) 1.86 (4) 1.48
128B, Wide-ending 3.12 (8) 1.21 (4) 1.89 (8) 1.32 (4) 1.07 (2) 1.95 (8) 1.64

We were able to reduce the number of cycles lost due to cache contention down to a small

fraction of the processor cycles by adding wide-ending. We could take wide-ending one step

further and provide enough reply buffers to handle the requests from all the contexts. By being



more intelligent about when the reply data was placed in the cache, the effects of cache contention

could be nearly eliminated. For example, under the blocked scheme, these replies could be written

into the cache only during the pipeline flush cycles of a context switch. Or, by pipelining the

arbitration for the cache, the replies could be slipped in during cycles when the cache would

otherwise be idle (due to the instruction in the data fetch stage not being a load or store). Our

experiments have shown that wide-ending removes most of the cycles lost due to cache contention

and these more expensive options would probably result in very little performance gain.

5.4 Summary

Previous lockup-free cache designs did not explore in detail the tradeoff between tracking out-

standing requests in separate transaction buffers or within the cache itself. In addition, most

lockup-free cache designs targeted a specific method of generating multiple outstanding requests.

Finally, the designs were sometimes complex because they allowed multiple outstanding requests

to the same cache line.

We have examined the requirements placed on lockup-free caches by the four major mecha-

nisms for generating multiple outstanding requests: prefetch, relaxed memory consistency, non-

blocking loads, and multiple contexts. We proposed a lockup-free cache that tracks outstanding

prefetches, loads, and stores using a pending state in the cache. This pending state supports

request merging and prevents multiple conflicting requests to the same cache line, which guar-

antees that a reply will always have a cache line allocated to place its data in. Write data is

stored directly in the cache, allowing the store to complete immediately under a relaxed consis-

tency model, by providing separate transaction buffers (the pending-write buffer) that maintain

the subblock valid bits. Separate transaction buffers are needed to track the destination register

for nonblocking loads and for reenabling a context when a memory operation completes for the

interleaved multiple-context processor.

We also addressed deadlock issues for our lockup-free cache hierarchy. We showed that

buffer deadlock can arise for any cache hierarchy containing multiple writeback caches, and this

deadlock can be solved by a variety of techniques. We then focused on deadlock and livelock

issues specific to multiple contexts. Under pathological conditions, it is possible for multiple-

context processors to never complete their request due to multiple requests contending for the

same line in the cache or to multiple processors simultaneously reading and writing the same

cache line. To address these deadlock situations, we proposed a novel technique called adaptive
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stalling. Adaptive stalling works by detecting thrashing conditions and backing off to a stalling

mode of memory access under these thrashing conditions.

We evaluated our cache proposal, and found benefits from the pending-write buffer allowing

multiple outstanding write misses. For the SPLASH applications, a pending-write buffer with

four entries was enough to capture nearly all of the benefits, allowing an effective pending-write

buffer to be built at a reasonable implementation cost. We also examined the performance impact

of adaptive stalling and found this penalty to be small as long as a threshold larger than one

was employed. Finally, we examined the effects of contention for the cache between processor

requests and external requests and replies. We showed that by wide-ending reply data into the

cache, this contention could be reduced to a small percentage of the total application cycles, even

for caches with large line sizes.



Chapter 6

Blocked Scheme Implementation

Chapters 3 and 4 have shown the potential benefits of multiple-context processors, and Chapter 5

addressed the largest complexity for these processors — building a lockup-free cache. The issues

that remain revolve around the hardware complexity required to support multiple contexts on a

single processor. In this chapter we explore these issues for the blocked scheme, while the next

chapter explores these issues for the interleaved scheme.

The hardware requirements for the blocked scheme can be broken into two categories. First,

process-specific state needs to be saved across context switches. Second, scheduling logic and

state is needed for switching between the contexts. Section 6.1 examines the state replication

issues, while the scheduling logic and state are explored in Section 6.2. Section 6.3 summarizes

the chapter.

6.1 State Replication

In order to drive the context switch time down to that of a pipeline flush, a reasonable amount

of process-specific state needs to be replicated. Each context needs its own program counter,

register file, and copy of any process-specific state that exists in the processor status word. We

will examine each of these components in turn.

6.1.1 Program Counter

Before discussing how the program counter will be replicated, we first present the PC unit of the

base single-context processor and discuss its operation to provide a basis for our discussion on

how the program counter will be replicated.

108



Chapter 6. Blocked Scheme Implementation 109

Single-context Program Counter Unit

Exception
   Vector Sequential

        PC

Instruction
      Size Exception

       PC

Result Bus

Branch Target Buffer

Hit?
PC Chain

PC Bus

Predicted
   Branch

Mispredicted
      Branch

Computed Branch Target

Figure 6.1: Single-context processor PC unit.

The PC unit for our single-context processor is given in Figure 6.1. The rectangles in the diagram

represent registers; all registers have clock enable capability. The clock enable and tristate control

are not shown. On any given cycle, one of several sources drives the PC bus. The possible PC

sources are: (a) old PC value plus the instruction size (normal sequential flow), (b) Branch Target

Buffer (predicted branch), (c) computed branch target (mis- or unpredicted branch), (d) exception

vector, or (e) EPC register (restore from an exception).

The unit which determines whether a branch was predicted correctly and drives the computed

branch target bus is shown in Figure 6.2. The branch target is calculated during the RF phase. For

a PC relative branch, the branch target is the result of the sign-extended branch offset added to the

address of the branch (which is taken from the PC chain). For a jump absolute, the target is taken

directly from the instruction; for a jump register, the branch target is read from the appropriate

register. During the EX phase, both the target and the fall-through address are compared to the

predicted address and the miscomparison signal is selected from these two comparisons based on

the result of the branch condition. If the branch was incorrectly predicted, during the next cycle

the computed branch is driven onto the PC Bus, the BTB is updated, and the incorrectly fetched

instructions in the pipeline are squashed.

The exception vector and EPC register provide the ability to take and recover from exceptions.

During normal execution, as each instruction retires the address of that instruction is loaded into

the EPC register from the PC chain. When an exception occurs, the loading of the EPC register
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Figure 6.2: Branch target generation and prediction verification for the base single-context pro-
cessor.

is stopped with the guilty instruction, and it and the following instructions in the pipeline are

squashed (marked to not update any state). The exception vector is then placed on the PC bus,

and the handler starts executing. The EPC is connected to the result bus to allow the exception

handler to save and restore the EPC manually. When the exception has been handled, the EPC

is forced onto the PC Bus via the use of an ERET (exception return) instruction, and execution

continues from the point at which it left off. Note that because we have removed the MIPS

branch delay slot, only a single EPC is needed. Supporting multiple contexts on a processor with

branch delay slots is discussed in [LGH92].

Multiple-context Program Counter Unit

The ability of the EPC to save an instruction address for later repeat is exactly the same function-

ality needed to correctly save the program counter after a context switch. To be able to support

multiple contexts, we simply need to replicate this functionality for each context. A PC unit

capable of supporting two contexts is shown in Figure 6.3. This PC unit is very similar to that

of a single-context processor, with the only difference being a modification to the EPC register
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in order to support the two contexts. This modification adds an EPC register per context, which

doubles as both the exception PC register and the context restart register (which contains the

saved PC for that context). We now explain the multiple-context PC unit operation by discussing

how it handles exceptions and context switches.
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Hit?
PC Chain

PC Bus

Predicted
   Branch

Mispredicted
      Branch

Exception
      PC1

Exception
      PC0

Computed Branch Target

Adaptive Stalling Counters

Figure 6.3: Two-context processor PC unit.

Exceptions continue to use the EPC register in the same manner as the single-context proces-

sor. The EPC register for the active context is continually being updated during normal operation,

while the EPC for the idle context remains unchanged. When an exception occurs, the EPC stops

being updated and the exception vector is driven onto the bus. The behavior of the PC unit for

a context switch is very similar to that for an exception. When a context needs to be switched,

the context switch is delayed until the normal exception point, at which time the EPC register

for the blocked context stops loading as if an exception had occurred. The partially completed

instructions in the pipeline are squashed and the next context is selected. The EPC register of

the next context is driven onto the PC bus, and the new context starts executing at the instruction

where it left off at its previous context switch. The value of the adaptive stalling counter is also

sent down the pipeline with the PC, and the counter incremented. If the instruction completes

(by finding data in the cache), the counter is cleared, otherwise the processor either switches or

stalls depending on whether the terminal count has been reached.

Sharing the same EPC register for both context switches and exceptions causes a problem

when the exception handler takes a data cache miss. Under the above scheme, the EPC value

would be destroyed by the context switch. In addition, since the processor is in kernel mode,



without providing separate mode bits per context, switching to another context could allow user

code to run in kernel mode, which is definitely a protection violation. For these reasons, context

switching needs to be disabled upon taking an exception, much like interrupts are disabled. Before

returning from the exception, the handler would be responsible for reenabling context switching.

This disabling of context-switching would seem to preclude the operating system from taking

advantage of using multiple kernel threads, however, this is not the case. Provided the kernel

can access the EPC registers of contexts other than the active context, it is possible for the

kernel to manually save and restore the EPC registers. Therefore, if the kernel wishes to run in

multithreaded mode, it simply needs to save the appropriate state (including the EPC) for as many

contexts as it wishes to use, update the context control register (described in the next section) to

indicate only the kernel contexts as being loaded on the processor, and then load up the multiple

kernel threads.

To summarize, the additional hardware necessary to replicate the program counter turns out

to be very modest — one 64-bit EPC register per additional context. We now turn to the register

file to see if its replication requirements are also this manageable.

6.1.2 Register File

The simple approach to replicating the register file is to design a register file withN times as many

registers, whereN is the number of contexts per processor supported. This simple replication

has the advantage that the registers of any context can be accessed during a given cycle. The

disadvantages are an increase in the register file size (an increase ofN for the registers themselves,

and an increase oflogNfor the decoder), and access time. We will call this scheme thereplicated

register file.

We have designed a replicated register file for a multiple-context processor supporting four

contexts [McF93]. The design was for a register file with 4 ports (supporting 4 reads or 2 writes

per each processor minor cycle) using a 0.8� double-metal CMOS technology. The timing results

are shown in Table 6.1. As we can see, there is a 50% increase in the four-context register file

access time due to an increase in both the decode time and in the time required to drive a bit

line which is four times as long as for the single-context case.

However, being able to access the registers of any context on the same cycle is not very

useful for a blocked multiple-context processor, as only one context is executing on the processor

at any given time. Therefore, the registers could be replicated in such a manner to reduce the

space requirements by taking advantage of having only a single context active. We will call this
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Table 6.1: Timing information for the replicated register file.

Delay Source Single Context Four Contexts
Decode and Word Line 1.53 ns 1.94 ns
Bit Line 0.57 ns 1.74 ns
Sense 1.07 ns 1.07 ns
Total Delay 3.17 ns 4.75 ns

scheme theapportionedregister file. After considering several variants, our implementation of a

single cell of the apportioned register file is shown in Figure 6.4, along with a cell from the both

the replicated and single-context register file.

Single-context register file cell

Four-context replicated register file cell Four-context apportioned register file cell

Figure 6.4: Cells for both the replicated and apportioned register files.

The apportioned register file uses a dynamic shift register to store the state of all the contexts

except the currently active context. When a context switch occurs, state from the current context

is shifted into the tail of the shift-register, while the next context is loaded into the master cell

from the head of the shift register. By using two-phase clocking to control the shifting, the shift

register can be implemented using seven inverters. In addition, all of these inverters except the

last which has to overdrive the master cell can be minimum-sized. By taking advantage of the

single active context of the blocked scheme, we are able to reduce the size of each register cell

roughly in half, and we remove the extra decoder delay. This results in the much more acceptable



18% increase in register file access time shown in Table 6.2.

Table 6.2: Statistics for the replicated and apportioned four-context register file.

Register File Size Single Context Replicated Apportioned
Array Width 2610� 2610� 2610�
Array Height 900� 3600� 2430�

Delay Source
Decode and Word Line 1.45 ns 1.94 ns 1.57 ns
Bit Line 0.57 ns 1.74 ns 1.10 ns
Sense 1.07 ns 1.07 ns 1.07 ns

Total Delay 3.17 ns 4.75 ns 3.74 ns

Of course, the apportioned register file does require some additional logic to insure that

either a context switch or shift register refresh occurs with a minimum frequency to avoid losing

information in the dynamic shift chain. The overhead for this extra refresh logic should be

minimal. The major limitation of the apportioned register file is that tolerating instruction latency

becomes more difficult, as the instruction whose latency is being tolerated would like to write

its result to the register file when it completes. For instruction latency to be tolerated with an

apportioned register file, the result of such instruction must be placed in a holding register until

the context starts executing again. Implementing these holding registers can be expensive, as one

is required per context per functional unit that can produce a long-latency result, and they need

to be able to bypass their result on context restart.

6.1.3 Processor Status Word

The final state that needs to be replicated is the process-specific portion of the processor sta-

tus word. The processor status word (PSW) is a catchall phrase for the architecture- and

implementation-specific process and kernel state residing on the processor. In Appendix E, we

explore the processor status word of the MIPS R4000. We show that while modern processors

have a large number of PSW registers, only a few of these registers contain process-specific

state. In particular, adding multiple contexts to the R4000 PSW requires that the floating-point

control/status register and the LL bit and LL address registers (used for implementing the load-

linked/store-conditional synchronization primitive) be replicated to provide each context with its

own copy. In addition, a single new Context Status register needs to be added. The Context

Status register (a) keeps track of the context identifier of the currently executing context, (b)

maintains information concerning which contexts on the processor contain valid processes, and
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(c) holds the context-switch enable bit. Finally, a set of TLB control registers: EntryHi, Entry-

Lo0, and EntryLo1, need to be modified to support the multiple address-space identifiers of the

different contexts, and to allow a single TLB entry to be used for pages shared between con-

texts if so desired. Appendix E describes how these registers can be replicated for the blocked

multiple-context processor. The extra complexity to replicate these registers is modest. The

number and type of process-specific MIPS R4000 PSW registers is also compared to that of the

DEC Alpha [Dig92b] in Appendix E and found to be similar.

6.1.4 Summary

Modification of the PC unit to support multiple contexts required very modest changes. While

modern processors have a large number of processor status registers, for the architectures we

examined, the MIPS R4000 and the DEC Alpha, the number of process-specific registers requiring

modification for multiple contexts was small, and the modifications required were straightforward

to implement.

This leaves the register file as the major replication cost. The percentage of chip area devoted

to the register file is small for recent processors, so increase in chip area is not a large concern.

More important is the increase in register file access time caused by increasing the register file

size. We examined the straightforward approach to providing register replication for a four-

context processor. This approach resulted in a four-fold increase in register file size and a 50%

access time penalty. By designing a register file which stored the state of the nonexecuting

contexts in a dynamic shift register, we were able to reduce the register file to a two-fold size

increase and a 18% access time penalty. For many current processors, a 50% increase in register

file access time will not impact the critical path, however, for future processors where the timing

of the register file may be more critical, making the register file apportioned will help to keep

the register from impacting the processor cycle time.

6.2 Context Schedule and Control

The blocked multiple-context processor also needs the ability to schedule and control its contexts.

This breaks down to three requirements, that the processor be able to: (a) decide when to context

switch, (b) determine the next context to run, and (c) perform the context switch. We will start

our discussion with the requirements for detection of the context switch.



6.2.1 Context Switch Detection

Under the blocked scheme the decision to context switch is fairly straightforward. Three events

can cause a context switch: a cache miss, an explicit context switch instruction, and a context

timeout.

The decision to switch for a cache miss is generated whenever there is a miss and three

conditions are satisfied: context switching is enabled (CE), the repeat value of the instruction

is not greater than the adaptive stalling threshold, and another context is ready to run.1 The

enabling conditions are shown in Equation 6.1, where OneCount is a function that returns the

number of ones in a bitvector.

EnableCS= CÊ ( RepeatCount < Threshold) ^ ( OneCount( CIDV alid) > 1) ( 6:1)

The explicit context switch instruction can be implemented in a straightforward fashion by

having it mimic a cache miss by the subsequent instruction. However, by switching immediately

upon decoding the explicit switch instruction, better performance can be gained and shorter

latencies can be hidden. Implementation of this lower latency switch operation results in a large

increase in pipeline control complexity as will be discussed in Section 6.2.3. Chapter 3 showed

the performance gains for the quick explicit switch to be small and therefore we assume that an

explicit switch control signal with the proper timing (appears as if a cache miss occurred by the

following instruction) is run from the cache to the context switch controller.

Finally, adding a watchdog timer mechanism to the blocked multiple-context processor pre-

vents one application which is either running for a large number of cycles without a miss or

is deadlocked due to improper synchronization behavior from hogging all the processor cycles.

This watchdog timer can be easily implemented by a counter which advances every cycle but is

reset by a context switch. If the counter overflows, it sends a timeout signal to the switch logic

to force a context switch. It is important to store the address of the first noncompleted instruction

in the EPC, as the instruction being written back when the timeout occurs has completed (these

are the same requirements as for an external interrupt).

Both the explicit switch instruction and watchdog timer should only cause a context switch

if context switching is enabled and another active context is loaded. Thus, the complete context

switch signal depends on the cache miss (Miss) and cache miss switch enable, timeout (TO),

1We found no performance advantage in using context availability when selecting the next context, and for a
blocked processor which always switches round-robin between loaded contexts this final condition can be guaranteed
by having the operating system clear the CE bit for all single-context execution.
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explicit context switch instruction (ES), context switch enable (CE), and CIDValid vector has

shown in Equation 6.2. The cache stall signal (CStall), generated when there is a cache miss and

the switch enabling conditions are not met, is given in Equation 6.3.

Switch= ( Miss^EnableCS) _ ( CÊ ( OneCount( CIDValid) >1) ^ ( TO_ ES) ) ( 6:2)

CStall =Miss^ EnableCS ( 6:3)

6.2.2 Next Context Selection

We have performed experiments that found a strict round-robin interleaving of contexts to perform

as well as a scheme that includes context availability information, therefore the next context can

be selected round-robin, modified by the number of loaded contexts (stored in the CIDValid

vector). Thus, three signals are needed to determine the next context. These signals are: (a)

the current context, (b) the CIDValid vector, and (c) the context switch signal from the previous

section. This next context selection can be implemented using a priority encoder where the lowest

priority is always given to the context which is surrendering the processor.

6.2.3 Context Switch Mechanics

Now that we have replicated the necessary state and provided a mechanism for determining when

to context switch and whom to switch to, we need to examine the actions required to perform

the context switch itself. The operations occurring on a context switch are:

� Save the first uncompleted instruction address from the current context in the EPC.

� Squash all incomplete instructions in the pipeline.

� Start executing from the EPC of next thread.

� Load the new ASID identifier in EntryHi.

� Load the new information into the Floating-point Control/Status register.

� Load the new CID field in the Context Status register.

� Switch the register file control to the new context.



These operations all need to be performed at different points in the pipeline, as shown in

Figure 6.5. The bars give the window for completion of each operation. Saving the current

context’s PC and starting the new context occur as part of the normal operation of the multiple-

context PC unit described in Section 6.1.1. The saving and restoring takes place immediately

upon detecting the context switch. Loading the new ASID identifier can occur anytime between

the context switch and the time the next context will first access the TLB. For our processor, the

TLB hit detection occurs in IF2 for the ITLB and DF2 for the DTLB, and the new ASID will

need to be ready for these comparisons.

Inhibit Current Context EPC Generation

Generate New CID Value and
Enable for ITLB ASID Register

Enable Next Context EPC Generation

Generate New CID Value and
Enable for DTLB ASID Register

Generate New CID for
Context Status Register

Generate New CID for
Integer Register File Read

Generate New CID and Enable
for FP Control/Status Register

Generate New CID for
Integer Register File Write

Generate New CID for
Floating-Point Register File Read
Generate New CID for
Floating-Point Register File Write

or
apportioned register file
replicated register file

IF1 IF2 RF EX DF1 DF2 WB EX5 WB

IF1 IF2 RF EX DF1 DF2 WB EX5 WB

Determine Next Context and
Enable EPC to drive PC Bus

Squash Partially-executed Instructions

Figure 6.5: Timeline for a context switch.

The Context Status Register can only be accessed by the processor in kernel mode, so the

earliest it would need to be updated is for a kernel read of the register. The worse-case scenario

would be for the first instruction of the next context to cause an exception, and the first instruction

of the handler to access one of these registers. This results in a large number of cycles in which

to update this register.
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The floating-point control/status register cannot be changed until after the floating-point write-

back stage for the previous context (due to exception status) and before the rounding mode and

flush denormalized to zero status is needed for the next context (they are needed by EX4). As an

additional constraint, the next context could immediately read the FPCSR, requiring the register

to be switched to the new context by the RF stage.

The switching of the CID values for the register file addressing is more involved. For our

processor, we have two separate pipelines, one for the integer operations, and a longer pipeline

for the floating-point operations. In addition, there are several operations which complete outside

of the pipeline (floating-point divide, integer multiply and divide). This complicates the register

file switch, as the longer operations will need to write their results to the register file when they

complete. If the register file has been switched over too early, they will write their results to the

wrong context’s register.

However, the next context does not need to access the register file until the RF cycle. This

gives a window of a few instructions before the register file has to be switched. This window is

large enough for the standard floating-point operations to complete, as can be seen in Figure 6.5.

For longer operations (such as floating-point divide), the action to be taken depends on whether

the processor is using a replicated or apportioned register file. Recall that a replicated register file

allows the registers of all contexts to be accessed while the apportioned register file only has the

ability to access the registers of the current context. With a replicated register file, these longer

operations can continue in the background, and by tagging their results with both the context and

result register simply update the appropriate register. For an apportioned register file, the longer

operations must complete before the context switch can take place (assuming holding registers

are not provided for the results). This can be done by having the processor scoreboard stall

the pipeline at the RF stage until the longer latency operations complete. Upon completion, the

register files can be switched to the new context and the pipeline unfrozen.

This dependency on the register file between the context being switched out and the next

context also affects the design of a fast explicit context switch instruction. The context switch

instruction can be decoded early in the RF stage of the pipeline, and it should be possible to make

the explicit context switch instruction start the switch by the end of the RF stage. Of course, for

this fast context switch instruction to be able to allow pipeline latency to be hidden, the replicated

register file must be used. Otherwise the apportioned file would stall at the point of the context

switch for the outstanding operations from the previous context to finish, defeating the purpose

of speeding up the switch.
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Figure 6.6: Timeline for a fast explicit context switch with a replicated register file.

Even assuming the replicated file, this fast context switch instruction causes some compli-

cations for instructions in progress from the switching context. Figure 6.6 shows the timing

required to implement the fast explicit switch instruction. The next context starts executing after

RF, causing the timing to get tighter for several of the operations. In addition to tightening the

timing of the register file switch, the pipeline forwarding logic must now include the context

identifiers of instructions when making its forwarding decisions to prevent forwarding results

between different contexts.

The processor must also be more careful when enabling the next context’s EPC. With the

slower switch, we could enable the next context’s EPC immediately, as all the instructions of the

previous context were guaranteed to no longer be able to cause exceptions. However, this is no

longer guaranteed, so the EPC of the next context must be preserved until no instructions from

the previous context may except. The last instruction which could except is the one before the

switch instruction itself. The broken line in Figure 6.6 shows the point at which the exception

occurs for this instruction. Note that by this point several control registers have already been



Chapter 6. Blocked Scheme Implementation 121

switched to the next context. To properly handle the exception, these control registers must be

switched back to the original context. Therefore, at an exception both the integer and floating-

point register file read CIDs need to be loaded from their write CIDs. The ITLB ASID value

needs to be loaded from the DTLB ASID value.

Not only can instructions in progress from the previous context except, but they may also

cause a cache miss. Since the context switch has already been started, this cache miss must not

cause a second context switch. Therefore, for the cycles shown on the graph, context switching

due to cache misses must be disabled. The cache miss will still either result in a stall (due to

adaptive stalling) or cause the instructions following the miss to be squashed and the EPC loading

to be disabled, with the net result that the explicit switch simply started the switch for the cache

miss a little early.

Finally, switching the floating-point control/status register (FPCSR) has become more compli-

cated for the fast explicit context switch. The register cannot be switched until the floating-point

operations from the previous context have updated the exception flags. The latest this could occur

is the floating-point WB stage of the instruction immediately preceding the explicit switch. Since

the FPCSR rounding mode and flush denormalized to zero fields are not needed until EX4, this

leaves a few cycles in which to change the FPCSR, as shown in Figure 6.6. However, this late

changing of the FPCSR does not allow the next context to immediately read the FPCSR register.

Therefore, the interlock for the FPCSR read needs to be modified to also stall the pipeline if the

FPCSR is read before the switching of its contexts can occur. This is in addition to the interlock

ensuring that all outstanding floating-point operations are completed.

Providing a fast explicit switch requires a large amount of additional complexity and Chapter 3

showed the performance benefits of providing this fast switch to be small. This extra complexity

and small performance improvement is a strong argument for implementing the slower explicit

switch instruction.

6.3 Summary

In this chapter we have explored the extra hardware and design complexity required to implement

a blocked multiple-context processor, using the MIPS R4000 architecture as a base for our

exploration. We showed that it is possible to extend the standard single-context PC unit to

multiple contexts by adding an extra exception PC register per context. We also found the number

of process-specific registers in the processor status word to be small and extensible to multiple



contexts in a straightforward fashion. The largest increase in chip area due to multiple contexts

occurs in the replication of the register file. Replication of the register file also slows its access

time. Since register files tend to be a small portion of the total area of modern microprocessors,

this second factor is of larger importance. We presented an optimization to fully replicating the

register file which takes advantage of the blocked scheme having only a single context active at

any given time. Our optimization, theapportionedregister file, provides a fully-ported master

cell only for the active context. The state of the inactive contexts is stored in a compact dynamic

shift register whose head and tail are connected to the master cell. At a context switch, the master

cell state is saved by shifting its contents into the tail of the shift register, while the next context

loads the master cell from the head of the shift register.

Finally, we examined the implementation complexity required to schedule and control the

multiple contexts. We showed that the decisions on when to context switch and which context

to run next can be made by taking into account only a small number of input conditions. We

also showed that the timing for switching the processor state between the two contexts should

be easily met, unless a fast explicit context switch instruction is desired. Supporting a context

switch instruction which causes a switch immediately after decode greatly increased the processor

complexity and did not show enough performance benefits over the slower switch to justify this

increase in cost.



Chapter 7

Interleaved Scheme Implementation

In the previous chapter we examined the implementation costs for the blocked scheme, and

found the costs to be relatively modest. This chapter explores the implementation costs for the

interleaved scheme, in order that the complexity of the two schemes may be compared.

Because the interleaved scheme is switching contexts on a cycle-by-cycle basis, the instruction

issue unit of the processor needs to be capable of issuing from multiple active streams. In addition,

tolerating long-latency operations requires the ability to make contexts active and inactive. This

active status feeds into the instruction issue unit and prevents instructions from being issued from

an inactive context. The instruction issue unit is discussed in Section 7.1, while the details of

the context availability control is discussed in Section 7.2.

The multiple instruction streams also impact the processor pipeline. The PC chain of the

processor needs to be augmented to associate a context identifier with each instruction which

then flows down the pipeline along with the other control signals. This chain of CIDs is used

in the pipeline forwarding decisions and to select the correct context state needed by the various

functional units. Control of the interleaved pipeline in covered in Section 7.3.

Finally, the multiple-context processor requires that each context have its own copy of the

program counter, register file, and process-specific processor status registers. This state needs

to be available constantly, as the next instruction could be from any given context. State repli-

cation issues are discussed in Section 7.4. We end by comparing the blocked and interleaved

implementation requirements and summarizing the chapter in Section 7.5.
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7.1 Instruction Issue

A large portion of the complexity in issuing instructions from multiple contexts resides in the

program counter unit. The PC unit needs to be modified to provide a separate next PC register

per context to allow issuing from multiple streams. Saving the program counter when a context

becomes unavailable can be accomplished by using a separate EPC register per context, as was

done for the blocked processor. Taking an exception in the interleaved multiple-context processor

is complicated because the EPCs ofall contexts need to be loaded with the last uncompleted

instruction. Because context availability can change at any point, the last uncompleted instruction

for a given context can be in any stage in the pipeline or may not have even been issued to the

pipeline.

We start this section by discussing the normal operation of the PC in Section 7.1.1. We then

explore exception and interrupt handling in Section 7.1.2 and finally discuss context availability

changes in Section 7.1.3.

7.1.1 PC Unit

Exception
   Vector

Result Bus

Branch Target Buffer

Hit?

PC Bus

CID and
PC Chain

Computed Branch Target

Next PC 1Next PC 0

Instruction
      Size

Exception
    PC 0

Exception
    PC 1

Adaptive Stalling Counters

Figure 7.1: Two-context processor PC unit.

The PC unit must be able to determine the next instruction to be issued from each context.

Determining this next instruction has become somewhat complicated under the interleaved scheme

because the new PC value for a context becomes available a specific number of pipeline stages

after issue and must be held until the context becomes active again. The delay between when
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an instruction issues and when the new PC value becomes available depends on the type of

instruction that was issued. The new PC value is not known until the end of the EX cycle for a

branch which was not predicted correctly, while for nonbranch and correctly predicted branches

the new PC value is available at the end of IF1. Because of the context interleaving, the context

may not be able to drive its new PC value onto the PC bus immediately when it becomes

available, and holding registers must be provided until the context is selected to drive the PC

Bus. The three PC sources (sequential, predicted branch, computed branch) can be multiplexed

into a single holding register per context, as shown in Figure 7.1. A bit is associated with each

holding register to signify whether the register holds a computed branch which was loaded as a

result of a previous branch being mispredicted. This bit is used to signal that the BTB needs to

be updated to reflect the new branch prediction when the holding register is driving the PC Bus.

This next PC register (NPC) is loaded by one of the following sources (in order of decreasing

priority):

� The computed branch target if the instruction in EX is a mispredicted branch from this

context.

� The predicted branch target if the current PC is from this context and hit in the BTB.

� The sequential address if the current PC is from this context.

� The NPC, causing the register to maintain its current value.

The computed branch has priority over all other sources if a previous branch was mispredicted,

because this is guaranteed to be the correct path of instruction flow. Note that the determination

of the mispredicted branch can actually occur before the predicted branch address has been issued

to the PC Bus due to the context interleaving. If this occurs, the branch will only cost a single

cycle, even though it was mispredicted. The unit which verifies branch prediction and computes

the branch target is shown in Figure 7.2. In the single-context unit, the predicted target could

be taken directly from the PC chain. However, for the interleaved processor the cycle-by-cycle

switching implies that the predicted branch address may reside in the NPC or may already be

somewhere in the PC chain when the prediction verification needs to be made. Hardware to

locate this predicted address in the PC chain would be fairly complicated. This hardware can be

avoided because the actual branch prediction is made immediately, and the predicted address can

be loaded into apredicted PC chain, which keeps a copy of the predicted address in step with

the branch instruction for comparison.
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Figure 7.2: Branch target generation and prediction verification for the interleaved multiple-
context processor.

In addition to affecting the PC unit design, the processor pipeline control also needs to handle

mispredicted branches. Upon determining that the branch is mispredicted, the incorrectly fetched

instructions in the pipeline must be squashed. This can be done by sending a branch squash signal

coupled with a branch squash CID. Instructions following the branch in the pipeline with the same

CID as the squash CID are then marked to not update any state. In addition to squashing the

incorrectly fetched instructions, the computed branch is loaded into the NPC and the mispredicted

status bit is set. On the next instruction issue from this context, the NPC will be driven onto the

PC Bus and the BTB updated.
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7.1.2 Exception and Interrupt Handling

In addition to issuing instructions from the multiple contexts, the PC unit must also be able

to properly handle exceptions and interrupts. Exceptions on an interleaved processor could be

correctly handled by requiring only the context causing the exception to squash its instructions in

the pipeline and enter the exception handler. The exception handler would then run concurrently

with the remaining contexts. However, there are several reasons not to adopt this model. First,

since the exception handler may want to modify status registers, the processor now has the

problem of needing to update status registers simultaneous with the status registers providing

state for executing instructions. Second, since another context could except while the first is still

being handled, the exception handlers would need to be able to handle multiple exception handler

threads running concurrently. Finally, since exceptions and interrupts are infrequent events, there

will be little performance gain from not flushing the entire pipeline. Therefore, on an exception

or interrupt, the processor will flush the entire pipeline.

In addition to flushing the pipeline, the address of the first unexecuted instruction forall

contexts must be saved. This is in contrast with the blocked scheme, where the excepting context

only had to worry about saving its own PC address. Saving the excepting context’s PC value

is done by stopping the loading of its EPC with the guilty instruction. However, for the other

active contexts, their EPC will contain the lastcompletedinstruction. Since the EPC needs to

contain the last uncompleted instruction, these EPCs need to be updated as follows. At the point

of the exception, all instructions in the pipeline are squashed, and the exception vector is forced

onto the PC Bus. The squashed instructions are then advanced down the pipeline ahead of the

exception vector. As these instructions reach the writeback stage, the EPCs of the other active

contexts need to be loaded with the first squashed instruction from their context. To implement

this properly, the EPCs need to have both a valid bit and agather bit associated with them.

The valid bit controls whether the EPC is updated with PC values as they fall off the pipeline.

Normally, the valid bits on the EPCs are all invalid, and the EPC gathers PC values. On an

exception, all instructions in the pipeline are squashed, the excepting context’s EPC valid bit is

set and gather bit cleared, and the gather bits of all other contexts are set. The gather bit signifies

that the next instruction from this context to fall off the pipeline should set the EPC to valid (at

which point the gather bit is cleared).

Note that it is possible for an active context to have no instructions in the pipeline when

an exception occurs. This could occur if the number of active contexts is greater than the

pipeline depth or if a context had just become active before the exception. For these contexts,



the EPC valid bit will remain invalid, and the NPC will hold the address of the first uncompleted

instruction. Thus, to return from an exception, the contexts simply issue their EPC to the PC

Bus if the valid bit is set, otherwise they issue from the NPC. When the EPC (or NPC) restarts

the context, the valid bit and gather bit of that context are reset to handle the next exception.

7.1.3 Context Availability Change

In addition to handling exceptions, the interleaved PC unit must be able to handle context avail-

ability changes due to cache misses and backoff instructions (as mentioned earlier, the backoff

instruction causes a context to become unavailable for a specific number of cycles). We will start

by discussing cache misses. When the cache miss is detected, the issuing of instructions from

that context needs to be stopped and all partially completed instructions in the pipeline squashed.

Further issuing of instructions is stopped by clearing the context availability signal to mark the

context as unavailable. Squashing of already issued instructions can be accomplished by provid-

ing a conditional squash signal coupled with a squash CID. All instructions in the pipeline that

match the CID will be marked to not affect any state. The PC value of the instruction causing

the miss is loaded into the EPC and the EPC valid bit is set.

When the context eventually becomes available again, the EPC of that context will be driven

on the PC Bus when the context issues its first instruction. The context will then start reexecuting

from the instruction which caused the context to become unavailable.

The backoff instruction has a similar behavior, however, the PC value of the backoff instruc-

tion cannot be stored in the EPC, as the context will then repeat the backoff instruction forever.

Backoff instructions can be handled by including anextbit in the EPC. When a backoff instruc-

tion causes the EPC to be loaded with its address, both the valid and next bits are set. The next

bit signifies that the real EPC is the subsequent instruction. When the context becomes available

and next bit of the EPC is set, the EPC plus instruction size is driven onto the PC bus instead of

just the EPC.

7.2 Context Availability Control

A context is available to issue instructions as long as it is not waiting on a memory operation or on

a backoff instruction. In the previous section we discussed how the PC unit handles availability

changes; in this section we cover the hardware mechanisms needed to maintain the availability

status. We will start with the cache miss hardware, and then look at support for the backoff
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instruction.

When a context encounters a cache miss, its availability signal needs to be reset to inhibit

the context from being selected by the issuing mechanism. When the reply for this context

returns, the context availability signal will be set to indicate that the context is again available.

As discussed in Chapter 5, availability status can be tracked by providing a register per context

to hold the miss address. We will refer to this buffer as thePending Missregister. When a

cache miss causes a context to become unavailable, this register is marked valid and loaded with

the address causing the miss. The addresses of replies from memory are compared against this

register, and when the proper reply returns, its pending miss register is marked invalid and the

context is made available again.

Changing context availability as a result of a backoff instruction can be implemented using a

backoff register per context. This register is loaded with the count of the number of unavailable

cycles specified by the backoff instruction and then decrements each cycle until it reaches zero.

While the backoff register is nonzero, the context is unavailable for issuing instructions.

As for the explicit context switch instruction of the blocked scheme, the backoff instruction

can take effect either early or late in the pipeline. When being used to tolerate synchronization

latency, the decision to make the backoff instruction take effect sooner or later in the pipeline

is not as important as for the blocked scheme, since the context interleaving is already reducing

the cost of making a context unavailable. Therefore the backoff instruction can be made to take

effect later in the pipeline if this results in a simpler implementation cost.

The backoff instruction can also be used to tolerate instruction latency, however doing so

is more difficult than via an explicit context switch instruction for the blocked scheme. This

is because the interleaving of the contexts makes determination of the proper backoff value

dependent on the dynamic interleaving. Luckily, the interleaved scheme can tolerate most short

latencies through its cycle-by-cycle switching, so only longer latencies need to be tolerated via

backoff. By placing the backoff instruction immediately following the instruction whose latency

is to be tolerated, the maximum uncertainty in selecting the proper switch value can be made

as small as the number of contexts on the processor. However, the compiler can often place

several unrelated instructions following the long-latency instruction, and ideally we would like to

be able to force the backoff to occur after these unrelated instructions have been issued. As the

number of instructions increases between the long-latency instruction and the backoff instruction,

the probability also increases that the compiler will select a backoff value that is either too long

or too short.



In addition to this difficulty, the value used by a backoff instruction to tolerate instruction

latency is tied to a specific implementation, in terms of both number of hardware contexts and

instruction latency. Thus, the value used for one implementation may be totally inappropriate for

the next generation of processors. This lack of forward compatibility is in contrast to employing

a context switch instruction for instruction latency tolerance under the blocked scheme. Since

the context switch instruction helps to tolerate any latency greater than the switch cost, forward

compatibility only becomes an issue if the cost of the operation latency drops below the cost of

the context switch.
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Figure 7.3: Instruction latency toleration using dynamic context backoff detection.

This argues that the explicit backoff instruction should be used only for handling synchro-

nization latency. Pipeline latency can either be handled solely by the context interleaving, or

the effects of a backoff instruction can be implemented by hardware means. For example, a

scoreboard could cause a context to become unavailable upon detecting a potential stall, making

the context available again at precisely the correct time to avoid the stall. An example using this

hardware-controlled backoff is shown in Figure 7.3.
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7.3 Context Control

Controlling the contexts requires the ability to select the next context to issue an instruction to

the pipeline and requires a pipeline capable of supporting the multiple instruction streams. We

describe both of these requirements in this section.

7.3.1 Next Context Selection

For the interleaved scheme, determination of the next context is done round-robin, modified

by the context availability. To support the processor operating with fewer than its maximum

number of contexts, the CIDValid field from the status register maintains information on which

contexts are loaded with a valid process. The processor gets context availability information

from three sources: the cache miss status, the backoff register, and the CIDValid bits, as shown

in Equation 7.1.

Co nt e x t Ava i l a b l e =Ca c he Mi s s P e nd i ng ^ ( Ba c k o f f Co unt = 0) ^ CI DV a l i d ( 7:

The interleaved scheme switches contexts each cycle unless the pipeline stalls or the context

enable bit in the Context Status register is cleared, and therefore determining the next context

for the interleaved scheme depends on: (a) the current context, (b) context availability, and (c)

a switch inhibit signal. As for the blocked scheme, a priority encoder which places the lowest

priority on the context which issued the last instruction can be employed to implement this next

context selection.

For the interleaved scheme a further complication arises, as the processor needs to handle

the situation where the last context becomes unavailable. This did not occur for the blocked

processor because context availability depended only on the number of contexts loaded. One

way to handle this situation is to squash all instructions in the pipeline, stalling the processor

when all EPCs have been loaded. When the first context becomes available again, the processor is

restarted by issuing instructions from that context. As an alternative, the processor could simply

stall the pipeline without squashing any instructions. If the first context to receive a reply was

also the last context to become unavailable, the pipeline is unfrozen at no penalty. Otherwise,

the instructions in the pipeline are squashed and the newly available context starts executing.

This second alternative is likely to give only slightly higher performance (most of the time the

last context to become unavailable will not be the first to become available). However, since the

processor needs the ability to stall the pipeline on cache misses to support both single-context



execution and adaptive stalling, implementation of this second option may also be simpler than

the first.

7.3.2 Context Interleaving

Process state is changing each cycle in the interleaved processor, and Figure 7.4 shows exact

cycle during which the various state registers need to transition. The cycle-by-cycle interleaving

of contexts also affects the operation of the pipeline itself. First, the pipeline needs to treat all

instructions as if their operands came from one large register file. This implies that all pipeline

forwarding logic needs to compare not only the register address, but also the context identifier

when determining which items to forward. The processor also needs a scoreboard per context to

track instruction dependencies.

IF1 IF2 RF EX DF1 DF2 WB EX5 WB

Determine Next Context and
Enable Appropriate PC Register

On Cache Miss, Disable Current Context EPC Generation,
Squash Instructions in the Pipeline, and Mark Context Unavailable

Switch ITLB ASID

Switch DTLB ASID

Switch FP Control/Status Enables/Flags

Switch Integer Register File Read CID

Switch Integer Register File Write CID

Switch Floating-Point Register File Read CID

Switch Floating-Point Register File Write CID

Switch FP Control/Status RM/FS

Figure 7.4: Timeline for control of the interleaved multiple-context processor pipeline.

7.4 State Replication

As for the blocked scheme, the per-process state needing replication can be broken into three

components: the program counter, the process-specific portion of the processor status word, and

the register files. We have already covered program counter replication in Section 7.1. We now

discuss the PSW and register file replication issues.
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The same PSW register modifications are needed by the interleaved processor as was done

for the blocked processor. However, since the state from any given context needs to be available

continuously, the registers need to be able to switch state every cycle. This implies that replication

of the floating-point control/status register is more difficult for the interleaved scheme, as it is user

writable and providing the illusion of a single floating-point control/status register per context

under cycle-by-cycle context interleaving is complicated, as shown in Appendix E.

For the interleaved scheme, the register file needs to provide the ability to read and write the

registers of any of the contexts during any given cycle (in fact, it may be reading from one context

and writing from another context during the same cycle). Therefore, the fully replicated register

file discussed in the previous chapter will need to be supported. The replicated register file does

have a longer access time than either an apportioned register file (where only the memory cell

for the active context has full drive capability) or the single-context register file. This increased

access time may well be acceptable for many processors where the register file access is not on

the critical path. For those processors where the increase in register file access time will impact

the critical path, either a more aggressive register file design will need to be employed or a

reduction in the number of contexts will need to be considered. In the worse case, the additional

cycle time resulting from the interleaved scheme will need to be carefully evaluated against the

benefits of adding multiple contexts.

7.5 Summary

We have seen that the implementation of the interleaved scheme is more complex than the blocked

scheme. The blocked scheme is simpler to implement because most of the time it behaves like

a single-context processor, changing state between contexts only at the point of the switch itself.

On the other hand, the interleaved scheme is continually cycling through the active contexts,

requiring the processor state to potentially change each cycle. While the complexity of the

interleaved scheme is greater, this extra complexity is not overwhelming, especially compared

against the extra complexity required to support multiple instruction issue with out-of-order

execution [Joh89], which is starting to appear in off-the-shelf microprocessors [Mot91, Kru91].

The largest difficulty to be surmounted by the interleaved scheme is keeping the access time

of the replicated register file to an acceptable level. For many of the current generation of

processors [Cyp90, Hei93], the register file access is not in the critical path and increasing the

register file access time by a small amount should not impact the processor cycle time. However



with the cycle time of processors getting smaller and smaller, the register file access time may

become an issue in the future.

For any design the true complexity cost only becomes apparent when doing an actual im-

plementation. The performance advantages of the interleaved scheme are enticing and the im-

plementation cost seems manageable, making implementation of such a processor a worthwhile

effort.



Chapter 8

Conclusions

The potential benefits from using multiple contexts to tolerate memory, synchronization, and

instruction latency makes them an attractive candidate for addition to microprocessors. Unfortu-

nately, existing multiple-context designs did not provide both good single-thread performance and

fast context switching. Good single-thread performance is important because not all applications

can be broken into multiple threads. Fast context switching is crucial for tolerating shorter laten-

cies. Early,fine-grainedmultiple-context processors switched contexts every cycle, supporting a

very low-cost context switch. However, any given context could only have a single instruction

in the pipeline, causing the single-context performance to suffer.Blockedmultiple-context pro-

cessors only switch contexts when the processor encounters a long-latency operation, providing

good single-thread performance. However, the context switch cost for the blocked processor

is fairly large, as the decision to switch is made late in the pipeline and the pipeline must be

flushed before executing the next context. This thesis has shown that is it possible to combine

the best aspects of the fine-grained and blocked approaches by designing a multiple-context pro-

cessor which switches contexts on a cycle-by-cycle basis while providing data caching and full

pipeline interlocks. Thisinterleavedprocessor provides both the quick context switch and good

single-thread performance.

The interleaved multiple-context processor exhibits a significant performance advantage over

the blocked processor for both multiprocessor and uniprocessor environments. Table 8.1 sum-

marizes the speedups we saw for the SPLASH applications on a multiprocessor similar to the

Stanford DASH, while Table 8.2 summarizes the throughput improvement for several multipro-

gramming workloads (consisting of members of the SPEC and SPLASH suites) running on a

high-performance workstation. The interleaved scheme results in significantly better speedups
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and throughput increases for both environments.

Table 8.1: Summary of speedups with eight contexts per processor for the SPLASH applications.

Scheme Barnes Cholesky Locus MP3D Ocean PTHOR Water Mean
Blocked 2.14 1.00 1.14 2.91 1.48 1.14 1.18 1.46

Interleaved 2.92 1.00 1.31 3.46 1.56 1.16 2.05 1.74

Table 8.2: Summary of throughput increase with four contexts per processor.

Scheme IC DC DT FP R0 R1 SP Mean
Blocked 1% 23% 9% 21% 2% 8% 15% 11%

Interleaved 28% 65% 46% 79% 41% 54% 44% 50%

The interleaved scheme must be able to be implemented with reasonable cost and complexity

if these performance benefits are to be reaped. One of the major costs for multiple-context

processors is in providing a lockup-free cache. This thesis examined the requirements placed on

lockup-free caches by prefetching, relaxed-memory consistency, nonblocking loads, and multiple

contexts. We showed that it is possible to build a lockup-free cache which supports all methods of

generating multiple outstanding requests by combining a pending state in the cache with separate

transaction buffers for keeping track of (a) write valid bits, (b) result registers for nonblocking

loads, and (c) interleaved context availability. Employing a pending state in the cache is important

to allow compatible requests to the same cache line to be merged and to prevent incompatible

requests from allocating the same cache line.

Both the blocked and interleaved schemes have additional implementation requirements, and

this thesis explored those requirements. Both schemes require process-specific state to be repli-

cated per context. The main costs for saving process state between context switches reside in the

replication of the register file. The increase in chip area resulting from replicating the register

file is fairly small, however the replication does result in a larger register file access time. This

increase in access time should not impact the critical path of most modern processors, however,

it is an important cost of adding multiple contexts to a processor. This increase in access time

is the same as would be found when comparing the register file of a processor with register

windows [Cyp90] against a processor with a single register file. Thus, as long as processors

with register windows can be made to have competitive cycle times, a multiple-context processor
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should be able to also achieve these cycle times.

In addition to replication of process-specific state, the blocked scheme requires the ability to

switch between contexts, while the interleaved scheme requires the ability to issue instructions

from multiple streams to the pipeline and to change context availability to tolerate long-latency

operations. Providing an instruction issue unit and pipeline capable of handling multiple in-

struction streams increases the complexity of the interleaved scheme beyond that of the blocked

scheme. Despite this increased complexity, the implementation cost of the interleaved scheme

still seems manageable, and because the performance of the interleaved scheme is so promising,

the next logical step for this research is to build a multiple-context processor using the interleaved

scheme to truly evaluate this additional complexity. In addition to providing concrete evidence

that such a processor can be built, the processor would also open the door for interesting research

into many of the unresolved issues involving multiple-context processors, such as the interaction

of the operating system with multiple contexts and the effects of combining multiple contexts

with prefetch.



Appendix A

Details of the Tango-Lite Based

Simulator

In this appendix we discuss how our simulation environment allows execution-driven simulation

of one pipeline on a machine with a different pipeline.

Tango-Lite is the lightweight threads-based successor to the Tango reference generator [GD90,

DGH91] and allows parallel programs to be simulated on a uniprocessor. The real power of

Tango-Lite comes from combining the reference generator with a detailed architectural simulator.

This allows simulation of applications running on realistic parallel architectures.

Our architectural simulator models both the pipeline and memory system in detail. Tango-Lite

uses execution-driven simulation [GH93], however because we are simulating a pipeline different

than the pipeline of the processor on which we perform our simulations, we need to produce an

“executable” for the target pipeline. This target executable is then used by the pipeline simulator

to generate accurate pipeline timing.

The steps involved in generating the target executable are shown in Figure A.1. First, ANL

macros in the application source are expanded using a special Tango-Lite macro library to make

the synchronization references visible to the Tango-Lite scheduler. The result of the macro

expansion is a set of plain C or Fortran source files. This C or Fortran source is then compiled

down to assembly code. Both the application assembly files and the assembled code for key

library routines are then assembled (and scheduled) for the target pipeline. Finally, these target

object files are linked to create the target executable.

Now that we have the target executable, the next step is to generate the actual Tango-Lite

program that will perform the simulation. The steps for this process are shown in Figure A.2.
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Figure A.1: Target “executable” compilation path.

First, the pipeline and memory simulator is compiled down to object code. Then, the application

assembly files and assembly code for the key library routines are augmented with additional

instructions to make the memory references and basic block entry points available to Tango-Lite.

Since we will be simulating the target pipeline, the addresses used in the basic block augmentation

are provided by the target executable generated in Figure A.1.

At this point, we have assembly code containing enough hooks to allow Tango-Lite to properly

simulate the pipeline and memory system for the application and its key library routines. This

augmented assembly code is assembled and linked with the architectural simulator and the libraries

which could not be instrumented (due to being used by the simulator routines) to form the

simulator executable. Before starting the application simulation, the simulator reads in the target

executable to allow the pipeline behavior of the application to be properly modeled.

Figure A.3 shows the run-time relationship between the Tango-Lite scheduler, the augmented

application threads, and the system simulation routines. Tango-Lite simulates the execution of

parallel programs on a uniprocessor by switching between threads. The scheduler maintains

a local clock for each thread, and schedules the thread furthest back in time to execute next.

Tango-Lite is responsible for scheduling both the application and memory simulator threads. An

application thread runs until it generates a synchronization event, memory reference, or basic

block entry. At this point, the application thread issues a reference to the processor simulator and
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Figure A.2: Tango-Lite compilation path.

blocks. The processor simulator will then simulate the reference executing on the processor’s

pipeline, passing control to the memory simulator if necessary. When the operation completes,

the processor simulator updates the time of the blocked application thread and frees it to generate

further references.

By using execution driven-simulation where the addresses generated during execution index

into the properly-scheduled executable, cycle-accurate simulation of one pipeline on a machine

using another pipeline becomes possible.
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Figure A.3: Tango-Lite execution model.



Appendix B

SPLASH Application Descriptions

This appendix briefly discusses the computational behavior and important data structures for each

application in the SPLASH suite. A more detailed discussion of the applications can be found

in [SWG92].

B.1 Barnes-Hut

Barnes-Hut performs a hierarchical N-body gravitational simulation [SHG92]. Each body is

modeled as a point mass, exerting forces on all other bodies in the system. To reduce the

complexity of the algorithm fromO( n2) to O( n � l o g ( n) ) , a set of bodies far enough away is

modeled as a single body residing at its center of mass. To implement this enhancement, physical

space is recursively divided into octrees, until there is at most a single body in each space cell.

Each element of the octree maintains information on the center of mass of all particles beneath

it in the tree.

The primary data structure for Barnes-Hut is this octree, which is implemented as an array

of bodies and an array of space cells. The bodies and cells are then linked together to form the

octree. Each processor is statically assigned a set of bodies for the duration of a time-step. The

processor calculates the forces of all other bodies on its subset of the bodies. This is done by

traversing the octree starting from the root. If at any point, the center of mass of the cell is far

enough away, the entire subtree under that cell is approximated by its center of mass. Otherwise,

the cell is “opened”, and each of its subcells recursively visited. After the forces have been

computed, the bodies are then moved in response to these forces. Finally, the tree is regenerated

and repartitioned for the next time-step. Barriers are used for synchronization between different
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phases of the computation and between successive time-steps.

B.2 Cholesky

Cholesky performs a parallel Cholesky factorization of a sparse positive definite matrix. It uses

a dynamic version of the supernodal fan-out method [RG90]. A supernode is a set of columns

with a nearly identical non-zero structure. Supernodes which have been completely updated are

kept on a global task queue. Each supernode is updated only from supernodes to its left in the

matrix. The update status of the supernode is determined by an incoming counter. This counter

is initialized to the total number of updates to be received and decremented with each update.

Once the counter reaches zero, the supernode has received all of its updates and is placed on the

task queue. This supernode will then be pulled off the queue by an available processor and used

to update other supernodes.

The principal data structure in Cholesky is the structure holding the matrix itself. Since the

matrix is sparse, it is stored in a compressed fashion nearly identical to that used in SPARSPAK.

Most of the computation in Cholesky consists of the addition of a multiple of one column of

the matrix to another column. Contention between processors occurs when they access the task

queue or update the same supernode. A set of locks is used to ensure mutual exclusion for these

operations.

B.3 LocusRoute

LocusRoute [Ros88] is a VLSI standard cell router. It uses multiple processors to route several

wires in parallel. To facilitate parallel routing, the circuit is divided into regions, each with its

task queue. All wires with their leftmost pin in a region are placed on that region’s task queue. A

wire is worked on by a single processor. Each processor has a preferred task queue for retrieving

wires, however if this queue is empty, the processor will scavenge from other queues.

LocusRoute attempts to minimize circuit area by routing wires through regions (routing cells)

which have few other wires running through them. It does this by evaluating many routes for a

wire, calculating a cost function for each route. The lowest cost route is then selected. The cost

function is based on the number of wires already routed through the cells selected by the route.

Information on the number of wires routed through each cell is maintained in thecost array.

The cost array is the primary data structure in LocusRoute. Each row of the cost array



corresponds to a routing channel in the circuit. The elements of the cost array maintain a count

of the number of wires that have been routed through that routing cell. The cost array is read

repeatly when evaluating possible routes for a wire. Once the final route is selected, the routing

cells are updated to reflect the addition of the new wire. The cost array is not locked during this

update, as the effect of occasional contention on the final circuit quality is tolerable.

B.4 MP3D

MP3D is a three-dimensional, particle-based simulator for rarefied air flow. It is used to study

shock waves created by an object flying at high speed through the upper atmosphere. The overall

computation consists of evaluating the positions and velocities of the particles over several time-

steps while gathering relevant statistics. Each molecule can be treated independently during a

time-step, as molecular collisions are statistically determined. Since they are independent, the

particles are statically divided among the processors. During each time-step, each molecule is

moved according to its velocity vector, taking into account collisions with the boundaries, the

object being simulated, and other molecules. A single barrier is used to separate different phases

of the program. Six separate invocations of this barrier are encountered in each time-step.

The main data structures in MP3D are the particle array and the space array. The particle

array contains all of the molecules, recording their positions, velocities, and other molecule

information. The three-dimensional wind tunnel is divided into a number of cells, which form

the space array. Each space cell contains information on the boundaries of wind tunnel and the

location of the object. Statistics information is also maintained in the space cells.

B.5 Ocean

Ocean [SH92] studies the role of eddy and boundary currents in influencing large-scale ocean

movements. The program starts with a set of spatial partial differential equations. These equations

are transformed into difference equations which are solved on two-dimensional fixed-size grids.

The simulation is performed for many time-steps until the eddies and mean ocean flow attain a

mutual balance.

The principal data structures for Ocean are the two-dimensional arrays holding the values of

the various functions associated with the model equations. There are 25 double-precision two-

dimensional arrays in all. These arrays are partitioned among the processors, with each processor
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responsible for a contiguous set of columns. The array size is allocated as 300x300, as allocation

by a power of two causes mapping problems in the cache. Problems smaller than 300x300 use

only a portion of the arrays. The primary form of synchronization is a number of barriers which

are used to separate both the phases of computation during a time-step and subsequent time-steps.

B.6 PTHOR

PTHOR [Sou92] is a parallel, event-driven, logic simulator. It is based on a conservative

distributed-time algorithm which is a modified version of the Chandy-Misra algorithm [CM81].

The Chandy-Misra algorithm allows each simulation element to advance its own time value

independently of other elements.

The primary data structures in PTHOR are the element and node structures, and a set of

distributed task queues. The element structure holds the logic elements while the node structure

contains information on the nets linking the logic elements. The task queues holding activated

elements are distributed to increase locality; as in LocusRoute, if a process runs out of work it

will search for work in other task queues. PTHOR has two distinct, alternating phases: element

evaluation and deadlock resolution. During element evaluation, a processor removes elements

from its task queue and computes the new output behavior (if any) of the element. It then uses

the node structure to determine which elements are affected by the new output value and places

those newly activated elements on the appropriate task queue. It is possible for the simulation to

deadlock, which is manifested by all task queues being empty. PTHOR then performs a deadlock

resolution phase which results in new elements being activated.

B.7 Water

Water is an N-body application adapted from the Perfect Club Benchmarks [BCKK88]. It evalu-

ates forces and potentials in a system of water molecules in the liquid state. The computation is

performed over a number of time-steps, until the system reaches a steady-state. Each time-step

consists of setting up and solving the Newtonian equations of motion for water molecules in a

cubical box with periodic boundary conditions. For the parallel version, molecules are statically

divided among the processors.

The primary data structure in Water is a three-dimensional array of molecular structures. Each

molecular structure contains a three dimensional array, indexed by simulation variable type (e.g.



displacement, velocity, force), spatial direction, and atom number within the water molecule.

The structure also contains a smaller array with three entries per molecule. Barriers are used to

separate both successive time-steps and phases within a time-step. In addition to the barriers, it

is possible for multiple processes to be computing intermolecular interactions involving the same

molecule. A lock per molecule is used to ensure mutually exclusive updates.



Appendix C

Coherent Cache Design

Many protocols for maintaining cache coherence for shared-memory multiprocessors have been

developed. These protocols can be broken into two parts, the protocol providing coherence

between the processors, and the protocol maintaining coherence within a single processor’s cache

hierarchy.

In this appendix we will examine both portions of the coherence protocol. A large number of

protocols for coherence between processors have been developed, and we will start by summa-

rizing these protocols, emphasizing the impact they have on the design of the caches themselves.

The issues for maintaining coherence within a single processor’s cache hierarchy have not been

explored in much detail, and the bulk of this appendix will be devoted to developing an intra-

hierarchy coherence protocol for a general cache hierarchy. This protocol is used in Chapter 5

as the base protocol between the caches to which lockup-free capability is added.

C.1 Coherence Between Processing Nodes

Many protocols providing coherence between processors have been developed — both for snoopy-

bus and scalable multiprocessors. These protocols allow a processor to modify a memory location

either by first obtaining an exclusive copy which it can then modify (invalidate-based) [PP84,

KEW+85, EK89] or by broadcasting the new data to all cached copies of the memory loca-

tion (update-based) [TS87]. Scalable protocols have primarily been invalidate-based [LLG+90,

JLGS90, CKA91, Sim92, Web93], as the update-based protocols lack write atomicity, that is the

write does not appear to happen as an atomic unit when viewed by multiple observers. This

lack of write atomicity makes implementation of cache coherence and the memory consistency
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model difficult. On the other hand, snoopy-bus protocols have used both schemes, as the bus pro-

vides atomicity for the write. However, the performance of the update-based protocols is much

more sensitive to the application sharing behavior [AB86, EK88], and most recent bus-based

multiprocessors use an invalidate-based variant [BJS88, TS90, GW94]. Exploring the issues for

coherence between the processors is beyond the scope of this work — issues for scalable proto-

cols are covered in detail in [Len92, Sim92, Web93]. The commonality between these scalable

protocol proposals is that there is an entity which is responsible for tracking outstanding requests,

in order to implement both normal message handling and to detect and correct coherence races.

As an example of a coherence race, if the network does not guarantee strict point-to-point

ordering, (e.g due to adaptive routing [CK92] or due to multiple networks such as in the DASH

interconnect [LLG+90]), it is possible for an invalidation to bypass the reply it was supposed to

invalidate. This coherence race must be detected and corrected by the entity tracking outstanding

requests. The external protocol may also allow situations in which negative acknowledgements

may be generated in response to a request. Using the DASH protocol as an example again, a

negative acknowledgement can be received in response to memory request whenever multiple

processors simultaneously try to read and write the same memory line. Requests which receive

negative acknowledgements must then be repeated.

The entity tracking these external requests can either be located outside of the processor’s

cache hierarchy (as done for the Remote Access Cache of the DASH multiprocessor [LLG+90]) or

can be integrated into the cache hierarchy (as in the transaction buffers of the Alewife [KCA92]).

Determining whether these races should be handled outside the cache hierarchy depends on a

number of implementation issues which are outside the scope of this thesis. [Len92, Sim92,

KCA92, Web93] discuss these issues in detail. For this discussion, since this entity is logically

separate from cache hierarchy, we will assume it is also physically separate. Thus the caches

will only be responsible for maintaining coherence within the cache hierarchy.

C.2 Coherence Within the Cache Hierarchy

The issues involved in maintaining coherence between caches within a processor’s hierarchy have

not been explored in detail. Historically, most multilevel caches have consisted of a writethrough

primary cache backed by a writeback secondary cache [BJS88, Dig92b]. Maintaining coherence

between the writethrough and writeback cache in these systems is very straightforward. The

primary writethrough cache simply passes all misses and write requests to the secondary writeback
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cache, and the secondary writeback cache invalidates from the primary cache any lines that are

removed due to coherence operations.

More recently, however, a number of microprocessors supporting two levels of writeback

caches have appeared [Mot91, Hei93]. Maintaining coherence within this environment is more

difficult than with a single writeback cache, as a modified cache line can potentially live in

multiple levels of the cache hierarchy. In this section we will explore the issues for maintaining

coherence within a cache hierarchy which may contain multiple levels of writeback caches.

Writethrough Cache N

Writethrough Cache 1

Processor

Writeback Cache 1

Writeback Cache M

Directory, Memory, and Network Interface

Figure C.1: General cache hierarchy.

Our general hierarchy is given in Figure C.1. Caches closer to the processor are referred to

as upper or nearer; caches closer to the network interface are referred to as lower or outer. The

processor sits at the top of the cache hierarchy. It generates requests to and accepts replies from

the level one cache. At the lowermost end of the cache hierarchy is the external interface. Request

for data not in the cache hierarchy are sent to the external interface, which eventually replies

to such requests. In addition, from the viewpoint of the cache hierarchy, the external interface

can spontaneously generate coherence requests. Note that this requires that the caches be dual-

ported, as they will need to accept external requests while a processor request is outstanding. For

simplicity, we assume the line size at all levels in the cache hierarchy is the same. Extending our



intra-hierarchy protocol to handle different line sizes at each level is a straightforward extension

discussed at the end of Section C.2.2. Finally, in order to keep the design of the coherence

protocol reasonable, it is important that the cache hierarchy maintainmulti-level inclusion[BW88].

Inclusion refers to the property that an item contained in a given cache will also be found in all

caches further from the processor.

To support coherence within this hierarchy, the cache hierarchy must maintain coherence

information for each cache line, and be able to handle coherence races within the hierarchy. We

now look at these requirements in turn.

C.2.1 Maintaining Coherence for Each Cache Line

All invalidate-based schemes have three states at their heart:exclusive, shared, andinvalid [AB86].

The exclusive state provides for the existence of a single read-write copy in the system. The

shared state allows multiple processors to hold read-only copies of the cache line. Cache lines

enter the invalid state whenever coherence transactions remove the line from the cache. Since

four states can be encoded in two bits, many protocols provide an fourth state to enhance cache

performance. For example, the Illinois protocol [PP84] adds a private-unmodified state to the

base three states. The private-unmodified distinguishes between a read-only copy in multiple

caches and a read-only copy in a single cache. In the case where the read-only copy resides in

a single cache, a write can proceed immediately, changing the state of the cache to exclusive in

the process. With multiple levels of writeback caches a need arises to use a fourth cache state

to distinguish between an exclusive copy that is the most recently modified and exclusive copies

that may be potentially out of date.

Secondary Cache

Primary Cache

A:E B:E C:S D:S E:S F:S G:E H:S

A:E D:SF:S G:E

Figure C.2: Initial state for example illustrating complications due to providing only three coher-
ence states.

While this modified copy could beimplicitly identified as the copy nearest to the processor,

this leads to complications when the line needs to be flushed (or copied back) due to an external

coherence event. To illustrate this problem with an example, we start with the initial cache state
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for a two-level hierarchy of writeback caches in Figure C.2. Each box in the figure represents a

cache line. The labeling of the cache lines is in the formaddress:state. The arrows between the

caches show the mapping of lines from the secondary cache to the primary cache.

In the figure, lines A and B are both in the exclusive state in the secondary cache. B is

the most up-to-date copy, as it is the closest copy to the processor. However, A is potentially

out-of-date, as there is also a copy of A in the primary cache. When a flush request occurs at the

secondary cache, the cache is unsure of whether it has the most up-to-date copy (as for B) or a

stale copy (as for A). Thus the secondary cache must send a flush request to the primary cache.

However, a problem arises as the secondary cannot throw away its copy because it may be the

most recent. One solution to this problem would be to stall the flush request until either the

flush reply or a negative acknowledgement (signifying there was no copy in the primary cache)

returns. This is the solution adopted for the R4000 [Hei93]. However, there is a problem with this

solution. Since the flush is delayed until the reply returns, we have increased the serialization of

flush requests. In addition, the flush forces other requests and replies behind it to wait, increasing

the latency for these other operations.

Table C.1: Cache states used to support the intra-hierarchy coherence protocol.

State Description
D exclusive, up-to-date copy (Dirty)
T exclusive, out-of-date copy (sTale)
S shared copy (Shared)
I invalid (Invalid)

By making this up-to-date status explicit, this serialization can be avoided. By splitting the

exclusive state into two states:dirty andstale, to distinguish between the up-to-date and out-of-

date copies of the exclusive data, a flush or copyback request can proceed immediately, as either

the exclusive copy is stale and can be discarded, or is dirty and can be sent in response to the

request. We add this explicit tagging of the up-to-date copy to our base states, resulting in the

four states listed in Table C.1.

Messages are sent between caches within the hierarchy to request copies of data and maintain

coherence. In addition, messages are required to handle requests from both the processor and

external interface. The base set of messages used within the cache hierarchy is presented in

Table C.2. Most messages have both a request and reply version. For example, an exclusive

request (Exc Rq ) is generated in response to a processor write request. This exclusive request



Table C.2: Coherence messages.

Message Description Direction
Ex c Rq Exclusive Request
S h d Rq Shared Request From upper cache
F s h Rp Flush Reply to lower cache
C b k Rp Copyback Reply
F s h Rq Flush Request
C b k Rq Copyback Request From lower cache
I n v Rq Invalidate Request to upper cache
Ex c Rp Exclusive Reply
S h d Rp Shared Reply

eventually generates an exclusive reply (Exc Rp ). The lone exception to this message pairing is

the invalidate request,I nv Rq , which has no corresponding reply, as invalidates can be immedi-

ately acknowledged at the external interface under our cache hierarchy assumptions [Gha92]. The

function of most of the messages is self-explanatory, with the exception of flush and copyback.

The flush request asks for exclusive data from the cache, requiring that the cache also invalidate

its copy. The copyback request also asks for exclusive data from the cache, but allows the cache

to keep a shared copy. The flush and copyback replies then return the exclusive data.

C.2.2 Handling Coherence Races Within the Hierarchy

With the addition of this fourth state, we can now develop a protocol which can handle all

intra-hierarchy coherence races. Under this protocol, the caches are completely decoupled by the

buffers between them. This means that a cache can always process a request based solely on its

current state, not on any other states in the hierarchy. In addition, no snooping between incoming

and outgoing buffers is necessary to handle race conditions such as a flush request targeting a line

that has just been replaced from the cache. Instead, the protocol insures that the cache hierarchy

always properly responds to all combinations of external and processor requests.

In this protocol, shared and exclusive requests by the processor percolate outwards until they

either encounter a cache which has the requested line in the proper state (shared or dirty for the

shared request, dirty for the exclusive request) or are sent to the external interface. Shared replies

are loaded into each level of the cache hierarchy in a shared state, while exclusive replies are

loaded into all levels of the writeback cache hierarchy except the innermost in the stale state.

In the innermost writeback cache the data is loaded in the dirty state, as this will be the most
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up-to-date copy. The writethrough caches cannot own cache lines and all data in the writethrough

caches is therefore implicitly in the shared state. External flush and copyback requests percolate

upward from the external interface, modifying the state of the cache lines at each level (to invalid

for the flush, shared for the copyback request) until they encounter the dirty copy, at which point

a reply is generated for the external interface. Invalidates simply traverse up the cache hierarchy,

invalidating all shared lines they encounter.

All the protocol tables use the symbols given in Table C.3. The cache state subscripts H and

M are used to signify a hit or miss respectively. We will start our discussion of the coherence

protocol by focusing on the writeback caches, and then turn to the writethrough caches.

Table C.3: Cache coherence protocol key.

! state transition
# message to lower-level cache
" message to upper-level cache
? read data from cache into message
> write data from message into cache
; error (should not occur)

The protocol for the uppermost writeback cache is given in Table C.4. Writeback caches2

to M-1 use the protocol presented in Table C.5. Writeback cacheM also uses the protocol given

in Table C.5 with two minor differences. First,F s hRq andCb k Rq messages may be able to

hit a shared copy in the cache due to external protocol races. For these races, the requests can

be dropped by the cache. Second, anI nv Rq may hit a dirty or stale copy in the cache due to

external protocol races, and can also be ignored by the cache.

We can explain the protocol for the writeback caches by concentrating on Table C.5. Starting

from the first line of the table, a shared request can be satisfied if the cache contains the requested

line in either a dirty or shared state. If the cache is in a dirty state, it returns an exclusive reply

and changes to stale, as its copy may soon be out-of-date. If in a shared state, a shared reply

is returned. If the shared request cannot be satisfied, it is forwarded to the next cache. The old

cache line is not replaced at this point; it will be replaced when the reply returns. When the

shared reply returns, it loads the data into the cache in the shared state and then forwards the

reply to the upper cache. If the line being replaced by the reply is in the dirty state, the dirty

data is written back (generating a flush reply). If the line is in a stale or shared state, an explicit

flush or invalidate request needs to be generated for the line being replaced to maintain inclusion



Table C.4: Cache coherence protocol — uppermost writeback cache.

Trans- Cache State
action DH DM SH SM I

S h d Rq ?Re p ly " S h d Rq # ?Re p l y "S h d Rq # S h d Rq #

S h d Rp ; ! S ; ! S ! S

? F s h Rp # I n v Rq ">Re p l y "

I n v Rq " >Re p l y "

>Re p l y "

Ex c Rq ?Re p l y "Ex c Rq # Ex c Rq # Ex c Rq # Ex c Rq #

Ex c Rp ; ! D ! D ! D ! D

? F s h Rp #>Re p l y "I n v Rq ">Re p l y "

I n v Rq " >Re p l y "

>Re p l y "

F s h Rq ! I ;

? F s h Rp #

I n v Rq "

C b k Rq ! S ;

? C b k Rp #

I n v Rq ; ! I

I n v Rq "

within the hierarchy.

The protocol behaves similarly for the exclusive request and reply. The exclusive request

differs from the shared request in that it can only be satisfied if the cache is in the dirty state.

For the exclusive reply, the data is loaded into the cache and the cache changes to the stale state.

The reply is forwarded to the next upper level along with the proper flush or invalidate request.

When the reply reaches the uppermost writeback cache, the data is loaded in the dirty state, as it

will be the most up-to-date copy of the exclusive data.

The external coherence protocol can generate flush, copyback, and invalidate requests targeted

at this node. The flush request invalidates all stale copies encountered as it travels up the cache

hierarchy. When the dirty copy is reached, the flush request causes the data to be written back

and the line to transition to the invalid state. The copyback request transitions all copies to

shared as it traverses up the cache hierarchy. When the dirty copy is reached a copyback reply is

generated, and the line transitions to the shared state. As this copyback reply returns down the

cache hierarchy, it updates all shared copies along the way with the most up-to-date data. Finally,

the invalidate request simply propagates up the cache hierarchy, invalidating shared copies. Once

it reaches a cache without a shared copy, it stops, as the inclusion property guarantees that the



Appendix C. Coherent Cache Design 155

Table C.5: Cache coherence protocol — writeback caches except uppermost.

Trans- Cache State
action DH DM TH TM SH SM I

S h d Rq ! T ;

? Ex c Rp " S h d Rq # S h d Rq # ? S h d Rp " S h d Rq # S h d Rq #

S h d Rp ; ! S ; ! S ; ! S ! S

? F s h Rp # F s h Rq " I n v Rq " > S h d Rp "

> S h d Rp " > S h d Rp " > S h d Rp "

Ex c Rq ! T ;

? Ex c Rp " Ex c Rq # Ex c Rq # Ex c Rq # Ex c Rq # Ex c Rq #

Ex c Rp ; ! T ; ! T ! T ! T ! T

? F s h Rp # F s h Rq " > Ex c Rp " I n v Rq " > Ex c Rp "

> Ex c Rp " > Ex c Rp " > Ex c Rp "

F s h Rq ! I ! I ;

? F s h Rp # F s h Rq "

F s h Rp ; ! D

F s h Rp # > F s h Rp # > C b k Rp #F s h Rp # F s h Rp #

C b k Rq ! S ! S ;

? C b k Rp # C b k Rq "

C b k Rp ; ;

F s h Rp # F s h Rp # > C b k Rp #F s h Rp # F s h Rp #

I n v Rq ; ; ! I

I n v Rq "

line will not exist in any lower caches.

The protocol for the writethrough caches is given in Table C.6. This table employs several

new states and messages. First, the distinction between theExc Rp and ShdRp messages no

longer exists for the writethrough caches, so all reply messages are simply encoded asRe p l y .

Second, the states used in the writethrough cache are simplyV , valid, andI , invalid. Valid

information is kept on a word basis. The statesVH andIH in the table are interpreted differently

depending on the message. ForShdRq andExc Rq , they correspond to the valid bit of the

targeted word. ForRe p l y , the actions specified in the table are taken for each word. Finally,

for I nv Rq , the VH actions are taken if any word is valid, theIH actions otherwise. Note that

Table C.6 assumes a write-validate policy [Jou93] coupled with a fetch of the cache line which

does not stall the processor.



Table C.6: Cache coherence protocol — writethrough caches.

Trans- Cache State
action VH IH Mis s

S h d Rq ?Re p l y "S h d Rq # S h d Rq #

Ex c Rq ! Vmine ! Vmi n e; Iothe r
> Ex c Rq #> Ex c Rq # > Ex c Rq #

Re p l y ! V ! Vall
Re p l y " >Re p l y " >Re p l y "

I n v Rq ! Ia l l
I n v Rq "

Support for Different Line Sizes

Cache hierarchies which do not employ the same line size throughout the hierarchy commonly

have line sizes which are strictly increasing as the caches get further from the processor [Hei93].

Under these constraints, a single dirty/stale distinction per cache line will not suffice. Instead, a

cache line will need to keep separate modified bits for each distinct cache line in the next upper

level. When a line is a target of a flush or copyback, if any portion of the line is dirty in the upper

caches, the valid dirty data at this level needs to be buffered and flush or copyback request(s)

which target the portions of the line that are stale sent to the next upper cache. Eventually all the

flush or copyback replies from the next upper cache will be received and the complete response

can be constructed and sent to the next lower level.

Direct-mapped Simplifications

The protocol in Table C.5 sends an explicit flush or invalidate message for lines replaced by a

reply, as it does not rely on the same cache line being replaced at all levels of the cache hierarchy.

Under certain conditions, this replacement policy can be guaranteed due to a restrictive mapping

of caches to sets. This is true for a hierarchy consisting of only direct-mapped caches which all

have the same line size. As an additional constraint, the cache hierarchy must consist solely of

unified caches or data caches (i.e. a hierarchy which consists of unified caches in the lower levels

and separate data and instruction caches in the upper levels violates this replacement policy).

Under these constraints, replies do not need to explicitly invalidate or flush the lines they are

replacing, as the traversal of the reply up the cache hierarchy will implicitly perform that flush

or invalidation.
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C.3 Summary

A coherent, blocking cache hierarchy has several basic needs. First, all caches in the hierarchy

must be dual-ported (either via time multiplexing or via a true dual-port cache design) to be

able to handle requests from both the processor and external interface. Second, the use of

multiple writeback caches is most efficiently handled through four cache states, two of which

track whether an exclusive copy of data is up-to-date or stale. Finally, a coherence protocol

needs to be developed which can handle all the intra-hierarchy races. We have developed such

a protocol in this appendix.



Appendix D

Buffer Deadlock in Multilevel Cache

Hierarchies

FshRq X

FshRq Y

ShdRq A

ShdRq B

Primary
 Cache

Secondary
    Cache

Figure D.1: Buffer deadlock example.

This appendix discusses how to address deadlock which arises due to the finite buffering between

writeback caches. An example of this deadlock occurs when there are a pair of buffers between

two writeback caches (one incoming, one outgoing), they are completely full, and in order to

process the messages at the head of each queue the cache must generate a response for the other

queue. This scenario is shown in Figure D.1.

We can look at the deadlock problem more formally by generating a resource graph [Hol72].

A resource graph is a directed graph with two types of nodes: processes (shown as ovals) and

resources (shown as rectangles). An arc from a resource to a process signifies that the resource

has been granted to the process. An arc from a process to a resource means that the process

158
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is blocked waiting for that resource. A cycle in the graph implies that a deadlock has occurred

involving the processes and resources in the cycle. We can see the cycle in the resource graph

for our buffer deadlock example in Figure D.2. Each buffer entry is represented as a resource,

and each message as a process. Caches are not modeled as resources, since they can always

accept a message as long as there is buffer space for the response messages generated.

FshRq X

FshRq Y

ShdRq A

ShdRq B

Out Buf Tail

Out Buf HeadIn Buf Tail

In Buf Head

Figure D.2: Resource graph for buffer deadlock example.

Within a cache hierarchy, messages cannot randomly ask for any buffer resource. The buffers

maintain FIFO ordering, so for all locations within a buffer except the head, a message can only

be blocked for the next FIFO entry. At the head of the FIFO, servicing a message by the cache

can require entry into zero, one or two FIFOs as specified by the protocol given in Chapter 5

and Appendix C.

We show the possible inter-FIFO transitions allowed by the protocol in the right half of

Figure D.3. The FIFOs are shown as boxes. Note that incoming messages sent to the writethrough

caches never generate an outgoing request under the coherence protocol, so messages to the

writethrough caches cannot become involved in a deadlock cycle. However, incoming messages

to the writeback caches can generate outgoing messages and vice versa. This leads to a possibility

for deadlock cycles to arise when the buffers fill. For example, a deadlock cycle could arise

between IBN+2 and OBN+2, or between IBN+3, IB N+2, OB N+2 and OBN+3.

We will now explore a number of solutions to solve the deadlock problem. These solutions

are not intended to be exhaustive; the point is to show that buffer deadlock can be handled

through a variety of techniques. Deadlock solutions come in three forms: prevention, avoidance,

and detection and removal [Tan86]. Prevention schemes provide enough resources to ensure that

a circular dependency cannot arise. Avoidance schemes carefully allocate resources in a manner
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Figure D.3: Permitted message transitions between buffers.

that avoids any circular dependencies which may lead to deadlock. Detection and removal simply

ignores the deadlock problem until a deadlock situation arises. At this point, some method of

breaking the deadlock is invoked.

D.1 Deadlock Prevention

The simplest deadlock prevention solution is to use only a single level of writeback cache in the

cache hierarchy. This removes the possibility of deadlock because the protocol and FIFO ordering

of messages guarantees that no cycle involving the buffers can arise as shown in Figure D.4.

However, assuming multiple levels of writeback caches are needed for performance reasons, a

more general deadlock prevention scheme needs to be developed.

Deadlock can be also be prevented by limiting the number of requests that are injected into

the hierarchy, both from the processor and from the external interface. By limiting the number of

requests that can be in transit within the hierarchy and providing buffers large enough to handle
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Incoming Buffer 1

External Interface

Processor

Writethrough Cache 1

Outgoing Buffer 1

Writethrough Cache N

IB 1

IB N

OB 1

OB N

IB N+2 OB N+2

Incoming Buffer N +1

Writeback Cache 1

Outgoing Buffer N+1 IB N+1 OB N+1

Outgoing Buffer N+2Incoming Buffer N +2

Figure D.4: Permitted message transitions between buffers for cache hierarchy with a single level
of writeback caches.

all these messages, deadlock can be prevented. For example, if the processor can only havem

outstanding requests, and onlyn incoming requests from the external interface are allowed in the

cache hierarchy, a maximum of2m+n messages can be in transit within the cache hierarchy.1

Under these constraints, deadlock can be prevented by providing buffers between the caches

which can holdd 2m+n
2 e+1 messages (based on our requirements being most restrictive between

two adjacent writeback caches, a pair of incoming and outgoing buffers must be able to hold

all 2m + n messages plus one extra space per buffer space to allow a waiting message to be

processed).

While this solution prevents deadlock, it can reduce performance since limits are placed

on the number of requests which can be in transit within the hierarchy. To make the impact on

performance minimal the number of requests allowed within the hierarchy can be made reasonably

large, however this will also result in fairly large buffers between caches. We will now discuss

a deadlock avoidance technique which will allow a large number of requests to be outstanding,

1Each external request can only generate one reply, making the maximum messages due to each external request
one. Each processor request can generate a response which may also replace a single dirty cache line, making the
maximum messages due to each processor request two.



but can do so with more modest buffer requirements.

D.2 Deadlock Avoidance

A deadlock avoidance solution can be constructed using the Banker’s algorithm [Tan86]. The

Banker’s algorithm regulates entry into the queues to avoid deadlock; a message can only enter a

queue when it is guaranteed that the resources it will need are available. We show this pictorially

in Figure D.5. For the shared request for B to be processed as a miss in the primary cache, not

only must there be space in Outgoing Buffer 2, but there must also be space for the secondary

cache to place a reply to the request from B in Incoming Buffer 2 in case of a hit or to place an

request in Outgoing Buffer 3 for a miss. By only processing messages that meet these guarantees,

deadlock can be avoided.

Primary Cache

Outgoing Buffer 1
ShdRq B

Incoming Buffer 1

Outgoing Buffer 2
ShdRq A

Incoming Buffer 2

Secondary Cache

FshRq X

Outgoing Buffer 3 Incoming Buffer 3

FshRq Y

Figure D.5: Example for deadlock avoidance solution.

However, there is a complication with this scheme, in that the secondary cache also needs

to look at the status of Incoming Buffer 2 and Outgoing Buffer 2 to determine if it can process

incoming flush and copyback messages. This requires the primary and secondary caches to

communicate — and avoiding this communication was the one of the driving forces behind

providing the buffering.

Luckily, the basics of the Banker’s algorithm can be implemented by ensuring that there is

always enough buffering for requests making the “loop-around”. For example, if all requests and
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replies occupy a single buffer entry, if half of the buffer space is reserved for requests looping-

around, deadlock cannot arise. Under this scheme, an incoming bufferN would signal full to

messages from incoming buffer( N + 1) when only half-full. The other half of the buffer is

reserved for messages from outgoing bufferN making the loop-around. Outgoing bufferN also

signals full to outgoing buffer( N � 1) when only half-full. With this scheme, deadlock can be

avoided while still using small buffers (the minimum size being two entries).

Of course if the messages have differing sizes, the buffers would need to take the message

size into account when determining how many incoming requests it can allow. For example, if

requests occupy one buffer entry and replies occupy three buffer entries, an incoming bufferN

would need to signal full to incoming buffer( N + 1) when only one-quarter full.

This scheme has the advantage that is very simple to implement and retains the decoupling of

caches. The cost of this simplicity is a delay in processing messages due to the buffers signaling

full when according to the complete resource graph the buffer could accept the message without

possibility of deadlock. With buffers not much larger than the minimum allowable size of two,

the occurrence of this false full signal should be infrequent.

D.3 Deadlock Detection and Removal

The final general method used to solve deadlock is deadlock detection and removal. This is

done by detecting and breaking some of the cycles. For example, a timeout could be generated

if the buffers have not progressed for a certain number of cycles. This timeout would cause

some entity to intercede and somehow break the deadlock (such as turning all requests into

negative acknowledge replies). A timeout mechanism is used in both the LimitLESS [KCA92]

and DASH [LLG+90] protocols to break deadlocks in the network buffers. In such instances,

it may be possible to integrate the cache buffer deadlock algorithm with the existing network

deadlock handling. However, if the cache buffers are relatively small, the deadlock situation may

arise frequently enough that the cost of the deadlock detection and removal scheme may be too

expensive.

D.4 Summary

We have outlined a number of techniques that can be used to address the problem of buffer

deadlock. As mentioned earlier, the techniques listed are not exhaustive, but instead show that the



deadlock problem can be addressed by a variety of methods. The selection of a specific deadlock

handling technique will depend on the probability of deadlock occurring and the performance/cost

of the various deadlock handling mechanisms. Of course, the lowest cost deadlock solution is to

only support a single level of writeback caches, however the performance of this solution may

not be the most optimal.



Appendix E

Processor Status Word

In this appendix, we examine the processor status word (PSW) replication requirements for a

multiple-context processor. Because each architecture (and potentially implementation) will have

a different PSW, in order to make our discussion concrete we have selected the MIPS R4000, as

the processor we simulated was partially based on the R4000. The insights gained through this

examination should be applicable to other architectures although the specifics may not.

The R4000 has a number of status registers, as shown in Table E.1. More detail on the status

registers can be found in [Hei93]. While the R4000 has a large number of status registers, most

of them contain state which is not process-specific, but rather provided for use by the kernel or

for control of the processor and its interface. The only registers which have process-specific state

are given in Table E.2.1 The WatchHi and WatchLo registers may also need to be replicated to

be able to watch a unique addresses for each context — we have assumed that providing the

ability to watch a single address for all contexts is sufficient. We now examine how to replicate

these process-specific registers in detail, starting with EntryHi and EntryLo. Replication of these

registers is the same for both the blocked and interleaved schemes, with the exception of the FP

Control/Status register.

E.1 EntryHi and EntryLo

The EntryHi and EntryLo registers are used as an access port to the TLB. They have the format

shown in Figure E.1. The MIPS R4000 TLB maps two consecutive pages with a single TLB

1The R4000 also has separate integer multiply/divide registers, MHI and MLO. Since our simulated architecture
based its floating-point on the DEC 21064, which does not use separate multiply/divide registers, we do not discuss
MHI and MLO in this appendix.
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Table E.1: MIPS R4000 processor status word registers.

Register Explanation

Memory Management
Page Mask Mask for variable size pages.

EntryHi, EntryLo0, EntryLo1 Registers used to read, write, or probe the TLB.
Index Register used to control the TLB entry read, written, or probed.

Random Register used to control the random TLB entry written.
Wired Register used to control the random replacement of TLB entries.

Exception Handling
Context, XContext Pointer to PTE base coupled with bad page number.

BadVAddr Displays most recent address that failed to have a valid translation.
Count Free-running timer.

Compare Interrupts processor when value equals count (timer service).
Status Various processor status and control.
Cause Holds cause of most recent exception.
PRId Processor implementation and revision level.

Config Processor configuration information.
WatchHi, WatchLo Provides memory address tracing capability.

ECC, CacheErr, TagLo, TagHi ECC control and cache diagnostic registers.
ErrorEPC Exception PC used solely for parity and ECC errors.

Floating-point Control
FP Control/Status Floating-point rounding-mode and exception cause, enable, and flags.

FP Implementation/Revision Floating-point implementation and revision level.

Table E.2: MIPS R4000 process-specific portion of the processor status word.

Register Explanation
EntryHi, EntryLo0, EntryLo1 Registers used to read, write, or probe the TLB.

Status Various processor status and control.
FP Control/Status Floating-point rounding-mode and exception cause, enable, and flags.

LL Bit Status bit for the Load Linked/Store Conditional instructions.
LL Addr Address of most recent Load Linked instruction.

entry, requiring two EntryLo registers per EntryHi register. The fields in EntryHi and the two

EntryLo registers are:

R Region (user, supervisor, kernel).

VPN2 Virtual page number divided by 2 (maps to two pages).

ASID Address space id (process identifier allowing multiple processes to share the TLB).

PFN Page frame number.
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R Unused Unused ASID

2 22 27 5 8

EntryHi

GVDCPFNUnused

34 24 3 1 1 1

EntryLo0 and EntryLo1

VPN2

Figure E.1: EntryHi and EntryLo registers.

C Cache coherence algorithm (e.g. non-coherent, invalidate, update).

D Dirty bit.

V Valid bit.

G Global bit (if set, the ASID is ignored).

Most of the functionality provided by EntryHi and EntryLo is not affected by the addition of

multiple contexts to the processor. However, the ASID and G fields are of interest for multiple-

context processors. The ASID field allows multiple processes to share the processor without

having to flush the TLB at each context switch. This is done by assigning a unique ASID to

each process. Thus, the TLB needs to be flushed only when all the ASIDs on the processor have

been allocated. The TLB also provides a global bit per TLB entry to override the ASIDs. If the

global bit is set for a mapping, the ASID is ignored in determining the TLB entry validity. The

global bit is useful for operating system pages.

Thus, the current MIPS TLB allows for a process to have its own private mappings, and it also

provides for global mappings for use by all processes. However, the TLB lacks the capability

to efficiently provide a mapping for a set of processes on the same processor. Assigning the

same ASID to all processes in the set does not allow the processes to have any nonshared pages

for their stacks and private data. Therefore, the processes must have separate ASIDs, and the

EntryHi register will need to provide a separate ASID per context.

In addition, while our simulation studies showed only MP3D to benefit from providing the

TLB with the ability to map pages shared between the contexts with a single TLB entry, applica-

tions with larger data sets that are placing much more pressure on the TLB will desire this ability.

Without further modifications, the MIPS TLB cannot support pages shared between contexts.



Table E.3: Modes for each TLB entry.

Global Bit Private Bit Explanation
1 1 Illegal
1 0 Valid for all processes
0 1 Valid for processes with same ASID and GID
0 0 Valid for processes with same ASID

R Unused Unused ASID

2 22 27

EntryHi

VPN2

ASID0 ASID1

Result Bus

EntryLo0 and EntryLo1

C D V P GPFNUnused

33 24 3 1 1 1 1

4

GID

1 8

GID1GID0

Figure E.2: EntryHi and EntryLo registers, modified for two contexts.

This support can be implemented rather easily by supplementing the ASID by a Group

Identifier (GID) of sizel o g2( n u mb e r o f c o n t e x t s ) bits and providing an additionalprivate bit

per TLB entry. The complete process identifier now consists of the GID concatenated to the

original ASID. The new operation of the TLB is as follows. If the private bit is set, both the

GID and ASID are used in determining TLB hits, providing per-process page mappings. If the

private bit and global bit are both cleared, only the ASID is used when determining TLB hits,

allowing process set mappings. Finally, if the global bit is set, both the ASID and GID are

ignored in determining TLB hits. This operation is summarized in Table E.3. Of course, the

operating system must assign a process set the same ASID for the TLB to function effectively.

Shared pages within the process set would have both their global and private bits cleared, while

private pages would have their global bit cleared and private bit set.
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Since the ASID is contained in the EntryHi register, the multiple-context processor will need

this portion of the register to be replicated to hold an ASID for each context. These extra ASIDs

will need to be transferred on each context switch. Figure E.2 shows a two-context modified

EntryHi register. On a context switch, the appropriate ASID is written into the EntryHi ASID.

When initializing the ASID for a new processes, the operating system should be executing as

the context it is loading. Writes to the EntryHi register come from the result bus and update the

appropriate context ASID register in addition to EntryHi.

E.2 Status

IMDSRERPCU

4 1 1 1 9 8 2

FR KX SX UXKSU ERL EXL IE

1 1 1 1 1 1

Figure E.3: Status register.

The status register is shown if Figure E.3. This register contains various processor control

information:

CU Coprocessor usability

RP Enable reduced-power operation.

FR Select 16 or 32 floating-point registers.

RE Reverse endian in user-mode.

DS Diagnostic status.

IM Interrupt mask.

KX Select 64- or 32-bit addressing in kernel mode.

SX Select 64- or 32-bit addressing in supervisor mode.

UX Select 64- or 32-bit addressing in user mode.

KSU Mode (kernel, supervisor, user).

ERL Error level.

EXL Exception level.

IE Interrupt enable.

Several of these fields (RP, FR, DS) provide processor control and therefore do not need to

be replicated for a multiple-context processor. Other fields are the same for all user processes

or provided for the kernel or supervisor (CU, IM, KX, SX, KSU, ERL, EXL, IE). Finally,



the remaining fields (RE, UX) can vary for different user programs. We could replicate these

fields, however, it is much simpler to require that the operating system always schedule a set

of processes that have the same addressing mode and endianness. Of course, for processes of a

parallel application, these two application characteristics will be the same.

Result Bus

CE

1

CIDCIDValid

2 128

Unused

Current Context

Figure E.4: Context status register (for two contexts).

While no fields from the status register needed to be replicated for the multiple-context

processor, some additional control fields are required. Since there is no space in the existing

status register, we add a single separate context status register to the processor. A Context Status

register which supports two contexts is shown in Figure E.4. The context-switch enable (CE) bit

is provided to allow context switching to be inhibited for single-context operation and upon entry

into the kernel. A CID field is supported to identify the currently executing context. Finally,

a CIDValid field is provided which signifies the contexts loaded with valid processes on the

processor. This field can either be a bit vector, as shown, or simply contain the ID of the highest

valid context (requiring the operating system to pack the contexts).

E.3 Floating-point Control/Status

The floating-point control/status register (FPCSR) controls floating-point operation. The FPCSR

is unique in that it is user-visible and therefore needs to handle both reads and writes from a user

process. The R4000 architecture specifies that a FPCSR read will interlock until all previous

floating-point operations have completed. FPCSR writes will only work properly if no floating-

point instructions are in the pipeline, so all FPCSR writes are preceded by FPCSR reads to

guarantee that the floating-point pipeline is empty.

The format of the FPCSR register is shown in Figure E.5. The fields are:

FS Flush denormalized results to zero.

C Result of last floating point compare.

Cause Cause of last floating-point exception.
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Enables Enable of floating-point exceptions.

Flags Exception status flags.

RM Rounding mode.

RMFlagsEnablesCause0FS0

7 1 1 5 6 5 5 2

C

Figure E.5: Floating-point control/status register.

Because it is user-visible, replication of the FPCSR differs between the blocked and inter-

leaved schemes. Replicating the FPCSR for the blocked multiple-context processor is fairly

straightforward. The C (compare) field must be replicated since it is part of the process state. If

this field was not saved, it could be generated and tested on different sides of a context switch,

leading to incorrect execution. All of the other fields except the Cause field (which is provided

solely for the exception handler and is never visible to the user) must be replicated to properly

implement the IEEE 754 standard. Thus the modified floating-point control/status register shown

in Figure E.6 results.

RMFlagsEnablesCause0FS0

7 1 1 5 6 5 5 2

C

FS0 C0 FS1 C1 Enable0 Flag0 RM0 Enable1 Flag1 Rm1

Result Bus

Comparison Result

Floating-point Operation Flags

Figure E.6: Floating-point control/status register, modified for two contexts.

Replicating the FPCSR for the interleaved scheme is slightly more complicated. Under the

interleaved scheme these reads and writes can be interspersed with FPCSR updates resulting from

floating-point operations in progress. By interlocking on all outstanding floating-point operations,

regardless of which context initiated them, the FPCSR read can access the appropriate context

state after the interlock is resolved. The MIPS architecture specifies that a FPCSR write must

only occur when there are no outstanding floating-point operations. Under the interleaved scheme



this requirement can be relaxed to specify that a FPCSR write from a given context must only

occur when there are no outstanding floating-point operations from that context.

This looser requirement can be ensured by the having the FPCSR read interlock until floating-

point operations from all contexts have completed. When a context immediately precedes a

FPCSR write by a FPCSR read, this does not guarantee that no floating-point operations are

in progress fromany context, but will still guarantee that the context doing the read does not

have any outstanding floating-point operations. By updating only the replicated fields of the

FPCSR register, the FPCSR write will not disturb the operation of the FPCSR register for any of

the floating-point operations from other contexts which are currently in operation. However, as

shown in Figure E.7, being able to update the replicated FPCSR state from both a FPCSR write

and a normal operation requires a separate datapath for the FPCSR write. As an alternative to

providing this additional datapath and its control, the architecture could provide interlocks for

both FPCSR reads and writes.

RMFlagsEnablesCause0FS0

7 1 1 5 6 5 5 2

C

FS0 C0 FS1 C1 Enable0 Flag0 RM0 Enable1 Flag1 Rm1

Result Bus

Comparison Result

FPCSR Write

Figure E.7: Interleaved floating-point control/status register.

E.4 LL Bit and LL Addr

The LL Bit is the user-visible state for the load linked/store conditional instructions. The load

linked/store conditional pair are used to perform atomic operations on the R4000. The operation

of the load linked/store conditional pair is as follows. The load linked instruction performs a

load into a register and sets the LL Bit. This LL Bit is cleared if a coherence operation to the

memory location specified by the load linked operation or an exception return occurred between

the load linked and store conditional. The store conditional instruction stores to the address if
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the LL Bit is still set. Regardless of whether the store conditional succeeds, the status of the LL

Bit is placed in a result register. For our discussion, we will assume that the LL Addr register2,

a user-hidden register which maintains the address of the most recent load linked, is used by the

hardware to track coherence operations.

With multiple contexts, we will need to provide a copy of both the LL Bit and LL Addr

register per context. Both of these registers need to be replicated because more than one context

can simultaneously be operating in the critical section between a load linked and its corresponding

store conditional. Without replication, the processor could get into a deadlock situation where no

context can complete its store conditional before another context issued a load linked.

E.5 DEC 21064 PSW

We have just examined the processor status word for the MIPS R4000, and found its replica-

tion requirements to be reasonable. To see if this holds for at least one other architecture, we

also looked at the PSW for another second generation RISC processor, the DEC 21064. The

process-specific portion of the processor status word for the 21064 is surprisingly similar to the

R4000. The 21064 has a larger number of processor control registers, however, the number of

actual process-specific registers is still small. The first of these registers is the instruction cache

control/status (ICCSR) register. This register holds a large amount of processor status and some

process-specific status. This process-specific status includes the address space number (ASN), the

type of branch prediction (not taken, based on displacement sign, BTB), and some performance

monitoring control. It is comparable to the Status register of the R4000, but also includes the

ASN, which resides in the EntryHi register on the R4000. The 21064 also has an EXCSUM reg-

ister that is used to look at the exception bits associated with the register file (used for arithmetic

overflows and other imprecise interrupts). This register returns the exception bit of the registers

in sequence with each read. The 21064 also has a lockflag and lockedphysicaladdress for its

load locked/store conditional instruction pair which function the same as the LL Bit and LL Addr

of the R4000. Finally, the 21064 also has a floating point control register which contains the

rounding mode and exception flags.

Only the EXCSUM register does not have a corresponding R4000 PSW register. The

multiple-context modifications for all the other registers would be similar to the R4000. The

2There is a LLAddr register provided for diagnostic purposes on the R4000. We are not referring to this register,
but instead to an implementation-specific register which allows for efficient tracking of coherence operations to the
most recent load linked address.



EXC SUM register will simply need to be modified to return the exception bits of the register

file of the current context. In addition, the 21064 also only provides two TLB modes, private

and global, so the TLB would need to be modified to handle process sets.

E.6 Summary

In this appendix we have examined the PSW replication requirements for two different architec-

tures, the MIPS R4000 and the DEC Alpha. While one cannot draw final conclusions about PSW

size from two examples, the similarity of the PSWs is encouraging. For at least two modern

architectures, the number of state registers that need to be replicated turned out to be rather

small.
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