
EFFICIENT SCHEDULING ON MULTIPROGRAMMED
SHARED-MEMORY MULTIPROCESSORS

a dissertation

submitted to the department of computer sci ence

and the committee on graduate studi es

of stanforduniversi ty

in partial fulfi llment of the requirements

for the degree of

doctor of phi losophy

By
Andrew Tucker
December 1993

c Copyright 1994 by Andrew Tucker
All Rights Reserved

ii

Abstract

Shared-memory multiprocessors are often used as compute servers, with multiple users running
applications in a multiprogrammed style. On such systems, naive time-sharing scheduling poli-
cies, such as straightforward extensions of policies found on modern uniprocessors, can result
in poor performance for parallel applications. The reason is that many parallel applications are
written assuming a model where applications are running uninterrupted on a fixed number of
processors. In compute server environments, where new applications are continuously moving in
and out of the system, the computing environment is much more unstable; processes are frequent-
ly preempted to allow other applications’ processes to run, and both the number of processors
and the set of processors running an application varies over time. The result is a decrease in
performance due to a variety of factors, including processes being obliviously preempted inside
critical sections and cached data being replaced by intervening processes.

This thesis explores the problem of developing more sophisticated scheduling systems to
avoid the performance problems raised by running parallel applications in a multiprogrammed
environment. It begins with a discussion of the causes and extent of potential performance loss.
It continues with a study of two previously proposed solutions, cache affinity scheduling and
gang scheduling. Effective new implementations of each have been developed that maintain good
response time and fair processor allocation. Performance results from a suite of multiprogrammed
workloads containing parallel and serial applications, run on a 4-processor Silicon Graphics
workstation, show improvements of up to 16% and 15% (over a standard UNIX scheduler) for
cache affinity and gang scheduling, respectively.

The thesis then presents the design, implementation, and performance of a novel approach
that offers high performance by combining the techniques ofprocess controlandprocessor par-
titioning. The process control approach is based on the principle that to maximize performance,
a parallel application must dynamically match the number of runnable processes associated with
it to the effective number of processors available. This avoids problems arising from frequent
process preemption and allows applications to work at better operating points on their speedup
curves. Processor partitioning is necessary for dealing with realistic multiprogramming environ-
ments, where both process controlled and non-controlled applications may be present. It also
helps improve the cache performance of applications and removes the bottleneck associated with
a single centralized scheduler. Performance results show speedups of up to 22% over the per-
formance of a standard UNIX scheduler, even better than the 15–16% achieved by cache affinity
and gang scheduling running the same workloads on the same machine.

iii

iv

Acknowledgements

Like any substantial body of work, this dissertation could not have been completed without help
from many sources. I would first like to thank my advisor, Anoop Gupta, for his constant guidance
over the past several years as I studied multiprocessor scheduling and performed the research
and writing that resulted in this thesis. I would like to thank David Cheriton, Carl Gotsch, John
Hennessy, and Mendel Rosenblum for serving as members of my oral defense committee. I
would also like to thank David Cheriton and John Hennessy for serving as readers of my thesis,
and making helpful comments that improved its quality.

My research was aided by many colleagues, both at Stanford and elsewhere. David Black,
then at Carnegie-Mellon University, helped immeasurably with my early work with Mach, and
contributed many valuable ideas. Locally, I have been helped by many of the members and
associates of the DASH group. Luis Stevens and Josep Torellas worked closely with me in parts
of this research. Luis also guided me through my first encounter with the SGI machine and its
operating system. Rohit Chandra, Jonathan Rose, and Ed Rothberg provided substantial help
with the applications used to measure performance. Jonathan Chew and Dave Nakahira helped
with problems with the DASH machine.

Many others have made less tangible contributions to this thesis. I would like to thank my
parents, Gilliam and Sandra Tucker, for their confidence of my ability to succeed in graduate
school and their support when I needed it. I want to thank all of the friends who made graduate
school a fun experience as well as an educational one, and the cycling buddies who gave me
physical challenges to go along with the mental ones. Finally, thanks to the gang at Team Louis
for helping me relax at the end of the day, and to Shandon Lloyd, for love and support.

v

vi

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Problem Statement: 1
1.2 Previous Approaches: 3

1.2.1 Cache Affinity: 3
1.2.2 Gang Scheduling: 4

1.3 The Process Control Approach: 4
1.4 Thesis Contributions: 5
1.5 Thesis Organization: 6

2 Experimental Environment 7
2.1 Base Machine and Operating System: 7
2.2 Applications : 8

2.2.1 LocusRoute: 9
2.2.2 Ocean : 9
2.2.3 MP3D : 10
2.2.4 Cholesky: 10
2.2.5 Water : 10
2.2.6 Pmake: 11

2.3 Application Performance : 11
2.4 Benchmark Workloads: 13
2.5 Experimental Methodology: 13

3 Sources of Performance Loss 15
3.1 Direct Context Switch Overhead: 15
3.2 Synchronization Effects: 16
3.3 Cache Data Loss: 19
3.4 Operating Point Effect: 21
3.5 Upper Bound on Achieved Performance: 23
3.6 Conclusions : 26

vii

4 Cache Affinity 27
4.1 Potential Benefits of Cache Affinity: 28

4.1.1 Application Characteristics: 28
4.1.2 Workload Characteristics: 30
4.1.3 Summary of Application and Workload Characteristics: : : : : : : : : : 32

4.2 Implementation of Affinity Scheduling: 32
4.3 Performance Results: 34

4.3.1 Base Results: 34
4.3.2 Attached Scheduling: 37
4.3.3 Increasing the Time Quantum: 37

4.4 Discussion and Related Work: 38
4.5 Conclusions : 40

5 Gang Scheduling 41
5.1 Introduction : 41
5.2 Previous Approaches: 41

5.2.1 Medusa : 42
5.2.2 Psyche: 43
5.2.3 Other Approaches: 43

5.3 Proposed Design and Implementation: 44
5.4 Performance Analysis: 45
5.5 Conclusions : 47

6 The Process Control Approach 49
6.1 Application Programming Model Issues: 49
6.2 Kernel-Application Interaction: 51

6.2.1 Identifying Relevant Events: 51
6.2.2 Communicating Events to Applications: : : : : : : : : : : : : : : : : : 53
6.2.3 Effect of Delays on Performance: 55
6.2.4 Applications with Limited Parallelism: : : : : : : : : : : : : : : : : : 56

6.3 Processor Partitioning: 56
6.3.1 Grouping of Applications: 57
6.3.2 Processor Allocation: 58

6.4 A Process Control Example: 60
6.5 Related Work : 62

6.5.1 Scheduler Activations: 63
6.5.2 Processor Partitioning: 64

6.6 Concluding Remarks: 64

7 Process Control Performance 66
7.1 Multiprogramming Performance: 66

7.1.1 High Application Load : 68
7.1.2 Mixing Controlled and Non-controlled Applications: : : : : : : : : : : 69

viii

7.2 Response Time Issues for Interactive Applications: : : : : : : : : : : : : : : : 70
7.3 Performance in the Presence of I/O: 70
7.4 Performance under Varying System Load: 71
7.5 Conclusions : 72

8 Conclusions 75
8.1 Contributions : 75
8.2 Extensions and Future Work: 76

8.2.1 Larger UMA Machines: 76
8.2.2 NUMA Machines : 77

8.3 Final Remarks: 77

A Process Control Interface 79
A.1 Kernel Interface : 79
A.2 Library Interface: 81

Bibliography 82

ix

List of Tables

2.1 Benchmark workload set for evaluation of scheduling policies.: : : : : : : : : 14

3.1 Mean dispatch interval duration for the workloads, and estimated cost of context
switching. : 16

3.2 Amount of reused data and mean dispatch interval for the applications.: : : : : 20
3.3 Performance cost for each multiprogrammed workload resulting from cache data

loss, using a standard UNIX scheduler.: 21
3.4 Increase in context switch rate of multiprogrammed workloads resulting from use

of two-phase synchronization, when using a standard UNIX scheduler.: : : : : 22
3.5 Efficiency of applications when running with two and four processes, compared

with “ideal” performance based on execution times running with one process.: 22

4.1 Potential performance loss in standard UNIX scheduler from cache data loss
assuming flushed caches.: 29

4.2 Breakdown of events that terminate dispatch intervals.: : : : : : : : : : : : : : 30
4.3 Number of misses per dispatch interval.: 32
4.4 Summary of process and workload characteristics that determine the potential of

exploiting cache affinity.: 33

x

List of Figures

1.1 Execution time forLocusRoute and Ocean applications running simultane-
ously as the number of processes is varied. The applications were run on an SGI
4D/340 with 4 processors.: 2

2.1 Execution times of parallel portions of applications as number of processes varies
from 1 to 16, on a 4-processor SGI machine.: : : : : : : : : : : : : : : : : : : 12

2.2 Normalized speedup curves of applications corresponding to the execution times
in Figure 2.1. : 12

3.1 Total time (in milliseconds) spent spinning waiting for synchronization in each
workload, both running one application at a time (U) and with all applications
running together (M). : 18

3.2 Number of times processes yield the processor due to synchronization in each
workload, both running one application at a time (U) and with all applications
running together (M). : 18

3.3 Potential performance of workloads, shown using batch mode with 4 processes
per application (“batch”), and limiting the number of processes of each application
to its optimal operating point (“operating point”). Execution times are normalized
with respect to performance with standard UNIX scheduling.: : : : : : : : : : 24

4.1 Distribution of the length of the effective time slices for the workloads studied.
Effective time slices shorter than 1 ms are ignored.: : : : : : : : : : : : : : : 31

4.2 Performance of workloads under light and heavy affinity scheduling, normalized
with respect to standard UNIX performance.: : : : : : : : : : : : : : : : : : : 35

4.3 Distribution of the length of the effective time slices under affinity scheduling.
Effective time slices lasting longer than 400 ms are shown as 400 ms.: : : : : 36

4.4 Performance of workloads under attached scheduling and affinity scheduling, nor-
malized with respect to standard UNIX performance.: : : : : : : : : : : : : : : 38

4.5 Performance of workloads with 100 millisecond time slices, and with affinity,
normalized with respect to standard UNIX performance: : : : : : : : : : : : : 38

5.1 Performance of workloads under the SGI and Stanford implementations of gang
scheduling, normalized with respect to standard UNIX performance.: : : : : : 45

xi

5.2 Coscheduling percentage for Stanford gang scheduler as compared with standard
UNIX scheduler.: 46

6.1 Stages of computation for a process control system with 4 processors and 2
applications. : 61

7.1 Performance of workloads under processor partitioning alone, and processor parti-
tioning with process control, normalized with respect to standard UNIX performance. 67

7.2 Geometric mean of normalized execution times of workloads using standard UNIX
scheduling, process control, cache affinity scheduling, and gang scheduling.: : : 67

7.3 Performance of workloads LOP and LMCP under process control, normalized
with respect to standard UNIX performance.: : : : : : : : : : : : : : : : : : : 69

7.4 Performance of workload LMC running simultaneously with an interactive serial
application, along with system response time. Performance is shown both for the
standard UNIX scheduler and the process control scheduler.: : : : : : : : : : : 71

7.5 Performance ofCholesky application with pages reserved. Data is presented
with I/O generated signals turned on and turned off.: : : : : : : : : : : : : : : 72

7.6 Performance of workload LOC with applications started at 10 second intervals,
under standard UNIX scheduling and process control.: : : : : : : : : : : : : : 73

xii

Chapter 1

Introduction

Although multiprocessors have become increasingly available in recent years, they still involve
a substantial investment. This fact, combined with their considerable compute power, makes it
attractive to use them ascompute servers. Users running applications needing substantial CPU
power would run them on the multiprocessors in preference to personal workstations. For ease
of access and use, the parallel machines should be available to multiple users simultaneously,
and be usable in a normal interactive manner. Thus, to work effectively in the role of compute
servers the machines need to be able to efficiently handle a dynamic multiprogrammed load of
applications that are both parallel and serial, CPU-bound and I/O bound.

The most common and easily-used type of multiprocessors are the shared-memorybus-based
machines, which contain multiple processors communicating through a shared memory bus. These
machines are also called UMA (Uniform Memory Access) machines, since access to a memory
location via the bus takes the same amount of time regardless of which processor is performing
the access and what memory location is being accessed. Cache coherency is maintained across
processors through a variety of snooping and invalidation techniques. These machines are gen-
erally of small to moderate scale (usually less than 16–32 processors) due to problems with bus
saturation with higher numbers of processors. For many uses, they provide a good compromise
between high computational power, ease of use, and affordability. Examples include the Sun
SPARCcenter 2000, the Silicon Graphics Power and Challenge machines, the Encore Multimax,
and many others. The focus of this thesis is on finding the best operating system scheduling
policies for these machines for multiprogrammed workloads.

1.1 Problem Statement

Applications written for parallel computers often assume that they will have sole use of the
machine with all processors dedicated to them. This allows them to run at maximal performance
when they do have the machine to themselves. However, on a multiprogrammed machine, where
multiple users and applications may be active simultaneously, this is frequently not the case and
each processor may be shared among multiple processes. In such environments, the throughput
of the system can degrade substantially when the total number of active processes in the system

1

2 CHAPTER 1. INTRODUCTION

� Locus
� Ocean

|
0

|
1

|
2

|
3

|
4

|0

|20

|40

|60

 Number of processes per application

 E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

�

�

�

�

�

�

Figure 1.1: Execution time forLocusRoute and Ocean applications running simultaneously
as the number of processes is varied. The applications were run on an SGI 4D/340 with 4
processors.

does not match the total number of processors.
Figure 1.1 shows the impact on performance when a parallel application’s processes must

contend for processors. The data is gathered from a Silicon Graphics 4D/340 multiprocessor
with 4 processors. The graph shows the finish time for two parallel applications,LocusRoute
and Ocean, when the two are started at the same time and as the number of processes is
varied. LocusRoute [32] is a VLSI standard-cell router, andOcean [37] is an ocean basin
current simulator. (These applications, and the machine on which they are run, are discussed
in detail in Chapter 2.) Each application breaks its problem into a number of tasks, which are
scheduled onto the processes executing that application. The figure shows that the performance
of both applications worsens considerably when the number of processes in each application
exceeds two, and thus the total number of processes in the system exceeds four, the number of
processors. Furthermore, the larger the number of processes, the worse the performance.

The performance degradation from multiprogramming, as seen above, can occur due to several
reasons. First, there is the overhead of context switching between processes. Aside from the
problem of corrupted caches (discussed below), a context-switch involves a number of system-
specific operations, such as saving and restoring registers and switching address spaces, that
do no real work. Second, many parallel applications use synchronization that requires busy-
waiting on a variable. If the process that will set the variable is preempted, other processes may
end-up wasting processor time waiting for that variable to be set [45]. Third, frequent context

1.2. PREVIOUS APPROACHES 3

switching can indirectly affect processor cache behavior. When a context switch is performed,
the preempted process may be rescheduled onto another processor, without the cache data that
had been loaded into the cache of the original processor. Even if the process is rescheduled onto
the same processor, intervening processes may have replaced needed cache data.

An additional factor can influence the performance of parallel applications in multipro-
grammed workloads. Most parallel applications get sublinear speedups with increasing number
of processors (i.e., the speedup withN processors is less than twice the speedup withN=2 pro-
cessors) due to load balancing problems, worse cache behavior, greater contention for locks, etc.
Consequently, when a large number of processors are used to run an application, the processor
efficiency is less than when fewer processors are used. When a single application is running on
a system, it generally gets best performance when its number of processes is equal to the number
of processors in the system. When multiple applications are running simultaneously, however,
only a few processes of each application are able to run at a time, and the applications will
perform more efficiently if each uses fewer processes. We call this theoperating pointeffect as
it indicates a better “operating point” on the applications’ speedup curves.

1.2 Previous Approaches

To address the above issues, several solutions have been proposed. One approach that has been
used to address the problem of processes being preempted while inside critical sections is to
use blocking or two-phase synchronization primitives instead of busy-waiting primitives [31, 18].
With blocking synchronization, processes yield the processor if they are unable to acquire a
lock, allowing other processes to run and reducing the time until the process inside the critical
section is rescheduled (assuming it is currently unscheduled). Two-phase synchronization involves
spinning on the lock for a short duration before blocking, if the lock cannot be acquired. The
idea is that if the process holding the lock is scheduled and running, it will soon release the lock,
and the waiting process will be able to acquire it before yielding the processor. If the process
holding the lock is unscheduled, the waiting process will block before wasting much processor
time. Previous studies of this approach [18, 21] found it fairly effective and suggest that if the
duration of spinning before blocking is fixed, the duration should be close to the duration of a
context switch. More complex solutions have also been proposed involving adapting the spin
duration to the specific lock in question based on previous history [21]. Other researchers have
proposed keeping spinning synchronization but using intelligent schedulers that are given enough
knowledge about the applications to avoid preempting processes while they are inside a critical
section [13, 47].

1.2.1 Cache Affinity

The above approaches, while helping the problem of processes wasting time waiting for locks
held by preempted processes, do not address the problem of cache behavior in a multiprogrammed
system. In fact, they may worsen the problem, as blocking or two-phase synchronization can
lead to increased context switching. As processors grow faster relative to memory speed, the
effective use of data caches becomes more and more vital. To address the cache hit-rate problem,

4 CHAPTER 1. INTRODUCTION

scheduling strategies that usecache affinity(the amount of relevant data a process has in some
processor’s cache) to determine which process to schedule on a processor have been proposed [41,
18]. Unfortunately, these techniques have had only limited success in real implementations [46].

One problem with cache affinity scheduling is that it is difficult to integrate into a general-
purpose system where response time and fair allocation of processors are important. This thesis
looks again at cache affinity scheduling, using a new implementation that avoids problems with
response time and fairness. The performance of a number of multiprogrammed workloads im-
proved by up to 10%, a small but significant increase.

1.2.2 Gang Scheduling

Researchers have also proposed the use ofgang schedulingstrategies [31, 13, 14, 8] that ensure
that all processes belonging to an application execute at the same time. The idea is that by
scheduling all processes simultaneously, synchronization performance will be improved. That
is, time spent waiting for preempted processes (if using spinning synchronization) or excess
context switching due to synchronization (if using blocking synchronization) will be reduced or
eliminated.

Unfortunately, little work has been done on evaluating the performance of gang scheduling in a
realistic environment. This thesis looks at the performance of gang scheduling when implemented
on a real system, with varying results. The performance of some multiprogrammed workloads
improved by as much as 15%, but other workloads slowed by up to 5%. On average, workload
performance improved by 4%.

1.3 The Process Control Approach

The above scheduling approaches take as a given the number of processes in the system. They use
scheduling tricks to avoid some of the problems associated with time-slicing between applications,
but time-slicing is still prevalent and the problems are just reduced, not eliminated. They also
do not consider or provide a solution to the operating point effect. In contrast to the above
approaches, which focus almost exclusively on the operating system scheduler, we believe that a
synergistic approach that involves both the application and the operating system can offer higher
performance that resolves all of the performance problems resulting from multiprogramming.
In this thesis, I propose and fully investigate one such approach called theprocess control
technique[45]. It requiresprocess controlfrom the applications andprocessor partitioningand
interface support from the operating system.

The process control technique is based on the principle that to maximize performance, a
parallel application must dynamically control its number of runnable processes to match the
effective number of processors available to it. In a multiprogramming environment, this adjust-
ment of processes must be dynamic because other applications are constantly entering and leaving
the system, and consequently the number of processors available to an application is constantly
changing. By dynamically maintaining a match, context switches are largely eliminated and good
cache and synchronization behavior can be ensured. The process control approach is most easily
applied to the wide variety of parallel applications that are written using the task-queue or threads

1.4. THESIS CONTRIBUTIONS 5

style [1, 6, 7, 11, 16, 19, 22], where user-level tasks (threads) are scheduled onto a number of
kernel-scheduled server processes. In such an environment, the number of server processes can
be safely changed without affecting the running of user-level tasks. Another important implica-
tion is that process control can be made totally transparent to the applications programmer by
embedding it completely in the runtime system of a programming language or threads package.

In the processor partitioning technique, a policy module in the operating system continuously
monitors the system load and dynamically (based on need, fairness, and priority) divides up the
processors among the applications needing service. Scheduling of processes within a partition is
handled at a lower level independently of the policy module. Processor partitioning is motivated
by our need to handle realistic multiprogramming environments where we expect a mixture of
applications—there may be some parallel applications that control their processes, there may be
others that don’t, and there may be single-process applications like compilers, editors, and network
daemons. The problem with using process control in such environments, without processor
partitioning, is that applications that do not control their processes may get an unfair share
of the processors. The processor partitioning technique further allows a closer binding to be
established between an application and the processors executing it, thus helping to improve cache
performance. The technique also helps in removing the bottleneck associated with a single
centralized scheduler in highly parallel machines.

In this thesis, these design, implementation, and policy issues involved in creating and using
a process control system are studied in detail. Executions of parallel workloads using process
control, on a 4-processor Silicon Graphics workstation, show an 8–22% performance improvement
over the performance on a standard UNIX scheduler.

An approach similar to process control was developed concurrently with it at the University of
Washington. This approach,scheduler activations[1], will be discussed in detail in Section 6.5.1,
along with its differences from process control.

1.4 Thesis Contributions

This thesis addresses a number of issues concerning the problem of multiprogramming on multi-
processors. First, it studies two previously proposed approaches for resolving multiprogramming
issues, cache affinity scheduling and gang scheduling, using new implementations that retain
reasonable system response time and fairness of processor allocation in addition to effectively
reaching the goals of the base scheduling policies. Both implementations involved additions to
the standard UNIX priority system with a minimum of disruption to other parts of the operating
system. The traditional application-kernel interface is also preserved.

Second, it develops process control, a novel synergistic approach to process scheduling in-
volving cooperation between the application and kernel. This approach raises a large number of
design and implementation issues, which I have considered and resolved so that process control
can be reasonably used on real compute server systems.

Finally, it compares the performance of each scheduling approach, along with that of the “s-
tandard” UNIX scheduler, in a consistent and realistic manner. Each approach was tested running
a variety of multiprogrammed parallel workloads, on the same high-performance multiprocessor

6 CHAPTER 1. INTRODUCTION

running the same base operating system. It also studies the sources of the performance gains
attained by each approach.

1.5 Thesis Organization

The thesis is structured as follows. Chapter 2 begins by considering the basic environment
needed to provide a consistent basis for evaluating the performance of scheduling approaches. It
discusses the machine to be used, the operating system that is modified to implement each new
scheduling approach, and the applications and workloads that run on the system. It also specifies
the experimental methodology used for gathering the data that is presented in the remainder of
the thesis. Chapter 3 studies the performance loss that these workloads incur when running
on the chosen machine using a standard UNIX scheduler, breaking down the performance loss
according to source. This indicates the potential performance that each new scheduling approach
might achieve.

Chapters 4 and 5 look at the performance of two previously proposed approaches to resolving
problems with multiprogrammed parallel workloads, cache affinity scheduling and gang schedul-
ing. In each case, the design and implementation issues of the approach are presented, followed
by a description of our implementation, and finally a study of the performance results using the
suite of workloads described in Chapter 2.

Chapters 6 and 7, present the process control approach. Chapter 6 presents the basic idea
of process control and discusses the many design and implementation issues involved, and our
solutions to those issues. Chapter 7 evaluates the performance of the process control approach.
It also compares the performance of process control to that of the other proposed scheduling
approaches.

Finally, Chapter 8 discusses how these results might extend to other types of machines,
particularly with larger numbers of processors. It also discusses possible future work relating to
this research, and more general directions of multiprocessor operating systems research.

Chapter 2

Experimental Environment

One of the main goals of this thesis, as discussed in Chapter 1, is to study and compare the per-
formance of several different scheduling approaches in a multiprogrammed environment. Before
we can do this, we need to determine how to measure the performance of different schedulers.
The focus of this chapter is the environment used for performance evaluation experiments. I will
first discuss the machine chosen and the base operating system that will be modified for each
scheduling approach. I will then discuss the applications that will be executed and the workloads
into which they will be grouped to provide a multiprogrammed load. Finally, I will briefly talk
about the methodology used to gather results.

2.1 Base Machine and Operating System

To study scheduling performance for a class of machines, we would like to use a fairly typical
representative of that class. The quantitative results presented in this thesis are based on a Silicon
Graphics (SGI) PowerStation 4D/340 multiprocessor [3]. The system consists of four 33 MHz
MIPS R3000/R3010 processors on a shared bus and provides peak computing power of about 100
MIPS and 35 MFLOPS. Each processor has a 64 Kbyte instruction cache, a 64 Kbyte first-level
(primary) data cache and a 256 Kbyte second-level (secondary) data cache. A first-level cache hit
costs 1 clock cycle (or 30 ns), a second-level hit costs about 14 clock cycles, and a second-level
miss costs about 30 clock cycles. All caches are direct-mapped and have 16-byte blocks. (The
machine has been slightly modified for use as a 4-processor cluster of the DASH distributed-
memory multiprocessor [24]. An unmodified SGI 4D/340 has a second-level cache with a fetch
size of 64 bytes and a miss cost of 50 cycles.) As a result of the large miss penalties, it is very
important to have high cache-hit rates to get high processor utilizations. To accurately study
the execution of applications, a performance monitoring board has been added to the system,
providing a real-time clock with 60 ns granularity and hardware probes that trace cache misses.

The SGI machine is very typical of a modern bus-based shared-memory multiprocessor. The
MIPS processors provide high performance at a reasonable cost. These machines are packaged
as workstations and commonly sold for use as high-powered graphics engines, though their
suitability for scientific computation is also readily apparent.

7

8 CHAPTER 2. EXPERIMENTAL ENVIRONMENT

The operating system running on the SGI 4D/340 is IRIX, a multithreaded version of UNIX
System V with added functionality for supporting parallel applications. The scheduler is a
straightforward extension of the standard UNIX priority system to multiprocessor use. That
is, runnable (but not running) processes are placed in a global queue, and each processor selects
from the top of the queue. Processes are ranked by priority, and priority is derived from a base
value plus the recent CPU usage of the process. Similar approaches are used in most UNIX
systems [2, 23]. The IRIX system also includes some additional functionality, including an
implementation of gang scheduling that will be discussed in Chapter 5.

2.2 Applications

Once we have a machine and operating system on which to implement our scheduling approaches,
we need workloads to execute. Unfortunately, so far there has been very little work on standard-
ized workloads for multiprogrammed use, and none using parallel applications. Most work on
multiprogrammed parallel operating systems has either not done performance evaluation on a real
machine or has used “toy” applications. Since either option is unsatisfactory, we have developed
a set of workloads by combining complex and realistic applications of various types. These
include both closely communicating parallel applications and essentially serial applications.

For the scheduling analysis, we primarily use workloads composed of five parallel appli-
cations selected from the SPLASH (Stanford ParalleL Applications for Shared Memory) suite
of parallel benchmarks [38]. The SPLASH applications used in this thesis areLocusRoute ,
Ocean, MP3D, Cholesky , andWater . They are complex scientific and engineering programs
representing the fields of VLSI design, oceanography, aeronautical simulation, numerical analy-
sis, and molecular dynamics (described briefly below; more details can be found in the SPLASH
report). The applications were chosen as a group of realistic scientific parallel codes, both “k-
ernels” that make up integral parts of larger applications (Cholesky) and fully self-contained
applications (LocusRoute , Ocean, MP3D, andWater).

In the standard SPLASH release of these applications (available by anonymousftp from
mojave.stanford.edu), parallelism is implemented using a collection of macros designed
at the Argonne National Laboratory (ANL) [5]. However, in this thesis, alternate versions of the
applications written in the COOL (Concurrent Object-Oriented Language) [6] parallel language
are used. COOL provides basic tasking and synchronization mechanisms and an overall object-
oriented framework for parallel programming. The basic mechanism is a collection of task queues
containing the work to be performed in parallel. This will become important in Chapters 6 and 7,
as a full implementation of process control requires applications that use task queues. The COOL
versions of the SPLASH applications have been carefully optimized for running alone on the SGI
multiprocessor so that their performance is comparable to the original (highly tuned) ANL macro
versions. COOL uses distributed task queues to provide cache locality for applications, assuming
its processes stay on the same processors. The synchronization primitives used to implement
the COOL runtime system spin for a short period of time before blocking. COOL was chosen
over other task-queue-based systems primarily because of familiarity with the internals of its
runtime system and because several large parallel applications have been implemented using it;

2.2. APPLICATIONS 9

other task-based parallel languages (such as Jade [22]) or even general-purpose user-level thread
packages (such as C-threads [7]) would work as well.

One goal of this research was to test the effect of workloads including “serial” and I/O-bound
applications on scheduling performance. A parallel version of the standardmake application,
Pmake, was selected as a commonly used program development tool that requires both good
CPU and I/O performance to run well.Pmake is a component of the IRIX operating system
used on Silicon Graphics machines.

We will now look at the purpose, structure, and memory requirements of these applications
in a little more detail.

2.2.1 LocusRoute

LocusRoute [32] is a commercial-quality global router for VLSI standard cells. It uses an
iterative algorithm to route wires with the goal of minimizing overall chip area. The application
does this by selecting one wire to be routed at a time, and calculating a cost function for each
possible route for that wire by counting the number of wires already routed in regions (orrouting
cells) that this wire would pass through. The wire is then given the route that incurs the lowest
cost.

The major data structures consist of a shared cost array and data on wires’ pin positions and
current routes. The cost array is frequently accessed and contains 8 bytes for each routing cell.
The pin positions of the wires is roughly 300 bytes for each wire. Routes are stored in terms
of 20-byte structures for each straight segment of the wire. The computation is broken into a
number of independent tasks, each representing an unrouted wire. Each task calculates the cost
function for all possible alternate routes for the wire and places the wire in the best route. The
experiments in this thesis runLocusRoute with Primary2 , a standard circuit containing 3817
wires, and perform 4 routing iterations. The cost array forPrimary2 contains 25800 routing
cells (1290 in each of 20 channels), taking a total of 200 Kbytes of memory. The pin positions
consume roughly 1 Mbyte. The routes are progressively stored as the application computes,
finally amounting to about 600 Kbytes.

2.2.2 Ocean

Ocean [37] simulates eddy currents in an ocean basin using a discretized quasi-geostrophic
circulation model. The simulation is performed for many time steps until the eddies and ocean
flow attain a mutual balance. Each time step involves setting up and solving a set of spatial
partial differential equations over two-dimensional fixed-size grids representing horizontal cross-
sections of the ocean basin. The parallel version of the application solves the equations using the
Gauss-Seidel method with successive over-relaxation (SOR).

The main data structures are 25 two-dimensional double-precision floating-point arrays hold-
ing the discretized values of the functions associated with the equations. The grid representing the
basin is divided into tasks for each phase of the computation, and phases are separated by barrier
synchronization. For the experiments, I used a 130� 130 grid, with a tolerance for convergence
of 10�7. These parameters force a number of time steps resulting in a highly accurate simulation

10 CHAPTER 2. EXPERIMENTAL ENVIRONMENT

for problems of mesoscale (one to a few hundred kilometers) resolution. The active data set size
with this grid size is about 3.2 Mbytes.

2.2.3 MP3D

MP3D[29] is a particle-based simulator used to study the pressure and temperature profiles created
as an object flies at high speed through the upper atmosphere. It simulates the trajectories of a
collection of representative of air molecules, subject to collisions with boundaries of the physical
domain, objects under study, and other molecules. Space is represented by a three-dimensional
space arrayof cells. Molecular collisions are statistically determined among molecules occupying
the same cell. The overall computation consists of evaluating the positions and velocities of the
molecules over a sequence of time steps and gathering appropriate statistics.

The primary data structures inMP3Dare the state information of each molecule (36 bytes per
molecule), and the space array cells (40 bytes per cell). Each time step is broken into five phases
of execution, separated by barriers. Within each phase, parallel tasks are created by spatially
partitioning the set of molecules. Hence, there is spatial locality in access to the molecules’
data structures, but not to the space array. In these experimentsMP3Dis run with approximately
100,000 molecules for 10 time steps. A space array of 16� 16� 16 = 4096 cells is used.
Although a problem with 100,000 molecules is fairly small for an aerodynamic simulation, the
amount of data accessed by each process still exceeds the capacity of both the first-level and
second-level caches. With these parameters, the particles takes 3.4 Mbytes of memory, and the
space array takes 160 Kbytes. Larger problems should behave similarly.

2.2.4 Cholesky

The Cholesky [33] application is used for factoring sparse, symmetric, positive definite ma-
trices. Factorization of positive definite matrices is important in a number of domains including
structural analysis and device and process simulation. Cholesky factorization solves the equation
A = LLT for a lower triangular matrixL, givenA, by successively adding a multiple of one
column to another column to cancel non-zeros in the upper triangle of the matrix.

In Cholesky , the dynamic supernodal fan-out method is used to parallelize the factorization
method. The factorization is broken into tasks involvingsupernodes, groups of columns with
similar non-zero structure. Large supernodes are further divided intopanelsto increase concur-
rency. A typical parallel task consists of one panel updating another panel in the matrix. The
primary data structure is the matrix itself, stored by columns with arrays of non-zero elements
and their corresponding rows. The experiments in this thesis usedbcsttk18 , a standard matrix
from the Boeing/Harwell test set [12]. The matrix is fairly large, 11948� 11948, with 68571
non-zero elements. The unfactored matrix takes about 1 megabyte; the factored matrix uses 5.7
megabytes. There are 7438 supernodes in the input matrix, of sizes up to 208 columns. The
maximum panel size used in the computation contains 3240 non-zeros.

2.2.5 Water

Water [36] is an N-body molecular dynamics application that evaluates forces and potentials in a

2.3. APPLICATION PERFORMANCE 11

system of water molecules in the liquid state. The computation performs a user-specified number
of time steps, hopefully allowing the system to reach a steady state. Each time step involves
setting up and solving the Newtonian equations for motion of water molecules in a cubical box
with periodic boundary conditions.

The main data structure is an array of records, each holding all the data necessary for one
molecule. Each record uses 600 bytes of memory. The work in each time-step is divided into
phases, each a computation over all molecules in the system. Each phase is partitioned into
tasks to be run in parallel by statically partitioning the molecules in the system. Barriers are
used between the phases. The experiments use a problem with 343 molecules, running for 3
time steps. The small number of time steps allows us to evaluate a reasonable-size problem in
a short amount of time; results should directly scale to runs with more time steps. With these
parameters, the array of records takes 200 Kbytes of memory; if we include per-process private
data structures, the entire application takes 230 Kbytes.

2.2.6 Pmake

Pmake is a parallel version of the standard UNIXmake command [15]. It spawns multiple
simultaneous compilation threads up to a predefined limit. The result is a number of simultane-
ously running I/O-dependent processes with very little intercommunication and synchronization.
Due to the lack of communication, we can consider the separate processes as each being an
essentially serial computation; by using multiple processes we simply reduce the amount of work
done by each. The experiments usePmake to compile a set of 17 independent C files (a portion
of the IRIX kernel), averaging 800 lines of code each.

2.3 Application Performance

In order to get an idea of how the applications behave with different numbers of processes, and
to show the effects of excess processes, we look at the performance of each application as the
number of processes is varied from 1 to 16. The execution times of the parallel portion of the
applications running on the 4-processor SGI machine are shown in Figure 2.1, and Figure 2.2
shows the corresponding speedup curves with each application normalized to the performance
of the parallel code when run with one process. The parallel portion ofPmake is its entire
execution.

With 1 to 4 processes, all five COOL applications behave similarly. The peak performance
occurs when the number of processes matches the number of processors. The speedup with 4
processes forLocusRoute , Ocean, MP3D, Cholesky , andWater is 3.6, 3.3, 2.9, 3.0, and
3.9, respectively. The speedup is not perfect due to communication overhead, load balancing
problems, redundant work done in multiple processes, and a worse cache hit rate as compared
to the sequential runs. As the number of processes is increased, the cache hit rate gets worse
due to two reasons: (i) there is less spatial locality as adjacent locations within the same cache
line may be used by different processes (also calledfalse sharing), and (ii) the number of misses
corresponding to true communication between the parallel processes increases.

With greater than 4 processes, several of the COOL applications incur a significant drop

12 CHAPTER 2. EXPERIMENTAL ENVIRONMENT

� LocusRoute
� Ocean

 MP3D
 Cholesky
� Water
� Pmake

|
0

|
4

|
8

|
12

|
16

|0

|20

|40

|60

|80

|100

 Number of processes

 E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

�

�

�
�

� � �

�

�

�

�

�

�

�

�
� � � �

�

�

�

�
� � �

Figure 2.1: Execution times of parallel portions of applications as number of processes varies
from 1 to 16, on a 4-processor SGI machine.

� LocusRoute
� Ocean

 MP3D
 Cholesky
� Water
� Pmake

|
0

|
4

|
8

|
12

|
16

|0

|1

|2

|3

|4

 Number of processes

 S
pe

ed
up

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � �

Figure 2.2: Normalized speedup curves of applications corresponding to the execution times in
Figure 2.1.

2.4. BENCHMARK WORKLOADS 13

in performance. Ideally, if there were no overheads to having more processes than processors
available to run them, the curves would flatten out beyond 4 processes, achieving the same
performance with 8, 12, and 16 processes as they did with 4 processes. Instead,MP3DandCho-
lesky take 1.3 times as long to run with 8 processes as they do with 4 processes.Ocean is
even worse, taking over twice as long with 8 processes as it does with 4 processes. This is largely
due to poor cache behavior as intervening processes flush relevant data from the cache. With 16
processes, the performance is even worse;MP3D, Ocean, andCholesky slow down by factors
of 2.7, 4.2, and 1.8, respectively, as compared to performance with 4 processes.LocusRoute
andWater are somewhat less affected, both slowing by only a factor of 1.3 with 16 processes
when compared with the 4-process performance.

Pmake is an exception to the rule that application performance drops when the number of
processes exceeds the number of processors. Since compilations involve a large amount of I/O
(reading in the file to be compiled and writing out the compiled object file),Pmake processes are
often idle. Thus, running with only 4 processes leaves some processors idle, and the application
is sped up by only a factor of 2.4. The result is that maximal performance is achieved with 8
processes, keeping more processors busy and reaching a speedup of 2.6 over the serial execution
time. The experiments in this thesis runPmake with 8 processes for this reason. The speedup is
low even with 8 processes because of the substantial variation between the compilation times of
different files, causing load imbalance, and because even with only one process some parallelism
is achieved. This is because the compilation of a file invokes multiple child processes each
representing a stage of the compilation—some of the stages can be slightly overlapped to achieve
some parallelism even when multiple files are not being compiled simultaneously. The result is
slightly better performance running with one process on a parallel machine that running with one
process on an equivalent serial machine.

2.4 Benchmark Workloads

To evaluate the performance of different scheduling approaches, we have selected a number of
workloads, made up of the above applications, to be used as a benchmark set. The workloads
are listed in Table 2.1. The first column shows the names of the workloads, made up of the
first initials of the constituent applications. Most of the workloads consist solely of the COOL
applications, but two also includePmake. In addition to these workloads, we will also use new
workloads when necessary to examine or address a specific point.

2.5 Experimental Methodology

Workloads are executed with each application using 4 processes (matching the number of proces-
sors in the system), exceptPmake, which uses 8 processes (as discussed earlier). This provides
optimal performance for each application running alone. Although running with fewer processes
might result in better performance when multiple applications are run simultaneously, applications
cannot normally dynamically alter the number of processes they use to match the system load.
For most experiments, the applications are synchronized before each enters its parallel section,

14 CHAPTER 2. EXPERIMENTAL ENVIRONMENT

Table 2.1: Benchmark workload set for evaluation of scheduling policies.

Applications
Workload LocusRoute Ocean MP3D Cholesky Water Pmake

1 (LO)
p p

2 (LM)
p p

3 (OC)
p p

4 (OM)
p p

5 (LOC)
p p p

6 (LMC)
p p p

7 (LOP)
p p p

8 (LOMC)
p p p p

9 (LMCP)
p p p p

10 (LOMCW)
p p p p p

and the duration of execution of the parallel code is measured. This gives a good indication of
the steady-state performance of various scheduling policies. The synchronization is necessary
since the duration of serial setup code preceding the parallel section varies widely across the
applications, and without synchronization some applications might finish executing before others
begin executing in parallel.

Chapter 7 will also look at the performance of the workloads when no synchronization
of parallel sections is performed, and the starts of the applications are staggered to provide a
varying load. This will show the performance of the measured scheduling policies in a setting
more closely resembling a real compute server load, where applications are constantly entering
and leaving the system. These experiments will use the execution times of the entire applications
(not just the parallel time) to give the “bottom-line” performance of the applications (i.e., the
time a hypothetical user would have to wait for his or her application to finish).

Performance measurement of operating systems is difficult because they run in a very het-
erogeneous environment. Network traffic, system daemons, extra applications, and many other
things can affect performance, possibly without the knowledge of the experimenter. For this
reason, I chose to isolate the system I was using to a limited extent, and used multiple runs to
account for statistical variations. All data in this thesis was gathered with only the system console
active, and all other access to the machine locked out. While it remained attached to the local
network, no other machines used its files remotely. Each data point was gathered by running
the experiment 10 times and averaging the results after examining them for anomalies (such as
might occur due to a transient high network load, for example).

Chapter 3

Sources of Performance Loss

Chapter 1 introduced the possible sources of performance loss occurring in multiprogrammed
systems. In this chapter we discuss these sources in more detail and study the real effect on
performance of each source. The sources discussed in Chapter 1 were direct overhead from
context switching, increased synchronization cost, and cache data replacement cost. Sections 3.1–
3.3 consider each source in turn, estimating the effect on the performance of the workloads
and machine proposed in Chapter 2. In Section 3.4, we consider the influence the “operating
point effect” has on performance. Section 3.5 estimates the potential performance that might
be achieved if the multiprogramming problems were eliminated, and applications could be run
at their optimal operating points. In later chapters, these estimates will be used to evaluate the
effectiveness of real scheduling approaches that propose to eliminate one or more of these sources
of performance loss.

3.1 Direct Context Switch Overhead

The simplest source of performance loss in a multiprogrammed system is the amount of time
taken to store the state of a preempted process and retrieve the state of a newly scheduled process.
However, this time is usually fairly low in relation to its frequency. Table 3.1 shows the average
duration ofdispatch intervalsfor the workloads proposed in Chapter 2, run on the SGI machine
also discussed in Chapter 2. A dispatch interval is the duration a process runs continuously on
a processor and corresponds to the interval between context switches. The SGI machine uses
a typical default time quantum of 30 milliseconds, so no dispatch interval is longer than this
value. The table also shows the direct cost of the context switches in terms of percentage of
performance lost. The SGI machine takes about 50 microseconds to switch processes. The result
is a direct overhead from context switching that varies between 0.7–2.9%. As one may have
expected, the workloads with the most overhead are those including thePmake application. The
mean overhead is only 1.3%. From this data, we can see that the direct cost of context switching
is a small part of any performance loss from multiprogramming.

15

16 CHAPTER 3. SOURCES OF PERFORMANCE LOSS

Table 3.1: Mean dispatch interval duration for the workloads, and estimated cost of context
switching.

Workload Mean Dispatch Interval Cost of Context Switches
(ms) (%)

LO 4.8 1.0
LM 5.3 0.9
OC 3.8 1.3
OM 7.0 0.7
LOC 4.3 1.2
LMC 5.4 0.9
LOP 1.9 2.6
LMCP 1.7 2.9
LOMC 5.0 1.0
LOMCW 4.4 1.1

3.2 Synchronization Effects

The second potential source of performance loss is poor synchronization behavior. As discussed in
Chapter 1, synchronization primitives used by applications (such as acquiring a mutual exclusion
lock) can generally be characterized as eitherspinningor blocking. The former type busy-wait if
unable to successfully perform the synchronization; the latter yield the processor, allowing other
processes to perform useful work on the processor even if the synchronizing process must wait.
A slight modification of the blocking strategy istwo-phasesynchronization, where processes
attempting to synchronize first busy-wait for a period of time (the “spinning” phase), then block
if still unable to perform the synchronization (the “blocking” phase).

Parallel application programmers often use spinning synchronization because it involves min-
imal overhead. For example, if a lock will become available in a few microseconds, it is much
more efficient for a process trying to acquire the lock to busy-wait rather than incurring the cost
of a context switch. Since parallel applications are tuned to minimize synchronization costs, the
amount of time spent waiting for synchronization can generally be assumed to be low. However,
this tuning generally assumes a uniprogrammed environment, where each processor runs only a
single process.

When run in a multiprogrammed environment, performance in the presence of spinning syn-
chronization can worsen considerably. In a multiprogrammed environment, processes are fre-
quently preempted to allow processes from other applications to run. If a process is preempted at
the wrong time, other processes of the same application may be forced to wait until the preempted
process is rescheduled to complete synchronization. For example, consider a process preempted
while inside a critical section controlled by a mutual exclusion lock. Other processes, trying to
enter the critical section, are forced to wait. The result is similar for barrier synchronization,
where other processes in the application are forced to wait for a preempted process to complete

3.2. SYNCHRONIZATION EFFECTS 17

its part of the barrier-controlled computation. With spinning synchronization, the time spent
waiting is wasted processor time and results in a reduction in performance. Simulation studies,
done jointly by the author along with Anoop Gupta and Shigeru Urushibara, found that parallel
applications using spinning synchronization in a multiprogrammed environment often spend over
50% of their execution time waiting for preempted processes [18]. Another earlier work by the
author and Anoop Gupta found that reducing context switching by using process control improved
the performance of multiprogrammed applications using spinning synchronization by over 200%,
largely by reducing the amount of busy-waiting.

A partial solution to this problem is to use blocking or two-phase synchronization. Wait-
ing processes may then yield their processors, either immediately after unsuccessfully trying to
synchronize or after a short spinning phase. This allows other processes and applications to do
useful work while the synchronizing processes wait for a preempted process to be rescheduled.
Yielding the processor can also reduce the amount of time until a preempted process is resched-
uled. Strict blocking synchronization can add unwanted overhead when busy-waiting for a short
period of time is cheaper than a context switch. Two-phase synchronization, however, adds little
cost unless the process is forced to wait for more than a few microseconds. In the simulation
study mentioned above, two-phase synchronization reduced synchronization time to less than 4%.

The parallel applications in the suite of workloads introduced in Chapter 2 use two-phase
locks for these reasons, and the effects of multiprogramming on synchronization performance in
these applications is thus less than if spinning synchronization were used. Synchronization is
also reduced due to the use of a task-queue-based language for the implementation of the COOL
applications, since application synchronization is often handled at a task level by blocking a
task rather than the process running that task. Synchronization required by the COOL runtime
system, however, must block processes, and synchronization time is still increased in the presence
of multiprogramming.

Figure 3.1 shows the amount of time (in milliseconds) each workload spends spinning waiting
on synchronization, broken down by application. The left bars (labeled “U”) show the time when
the workload is run one application at a time (uniprogrammed rather than multiprogrammed). The
right bars (labeled “M”) show the time when all applications are run together in multiprogrammed
fashion on the IRIX system. Since the applications use two-phase synchronization, the spinning
time is fairly low, as processes spin for only a short time before yielding the processor. Figure 3.2
shows the corresponding data, with the same format, for the number of times the applications in
each workload yield the processor due to synchronization.

From the figures, we see that the time spent spinning in each application has little effect on
the performance of the workload, due to the use of two-phase synchronization, and is often even
reduced when multiple applications are run simultaneously. At most about 100 milliseconds is
spent spinning, corresponding to less than 0.4% of the execution time of any of the workloads.
However, the number of times a process yields the processor because it cannot acquire a lock
can have a larger effect on performance, and can increase substantially. For example, workload
LOC has a 27% reduction in spinning time when the applications are multiprogrammed, but a
316% increase in the number of process yields. (ApplicationCholesky requires the bulk of
the synchronization due to short tasks with a high degree of dependency; workloads that do not
include Cholesky (LO, LM, OM, and LOP) are less affected by synchronization problems.)

18 CHAPTER 3. SOURCES OF PERFORMANCE LOSS

||0

|20

|40

|60

|80

|100

 T
im

e
Sp

en
t S

pi
nn

in
g

(m
s) Locus

28
22

10 9

91

70

21
14

100

73
81

59

28

18

81 85

101

87

102

70

U M U M U M U M U M U M U M U M U M U M
LO LM OC OM LOC LMC LOP LMCP LOMC LOMCW

 Ocean
 MP3D
 Cholesky
 Water

Figure 3.1: Total time (in milliseconds) spent spinning waiting for synchronization in each
workload, both running one application at a time (U) and with all applications running together
(M).

||0

|1000

|2000

|3000

|4000

 N
um

be
r

of
 P

ro
ce

ss
or

 Y
ie

ld
s Locus

153
499

47 149
506

1178

140 140

536

1693

430

1198

153 265
430

3434

553

2902

562

1637

U M U M U M U M U M U M U M U M U M U M
LO LM OC OM LOC LMC LOP LMCP LOMC LOMCW

 Ocean
 MP3D
 Cholesky
 Water

Figure 3.2: Number of times processes yield the processor due to synchronization in each work-
load, both running one application at a time (U) and with all applications running together (M).

3.3. CACHE DATA LOSS 19

Each time a process yields the processor the result is a context switch. The previous section
showed that the direct cost of context switches, even under multiprogramming, is low (less than
2% of execution time). However, an increase in context switches can result in increased loss of
cached data. This indirect effect, to be discussed further in the next section, can have a much
higher impact on performance. Hence the main effect of synchronization problems incurred by
multiprogramming results from the increase in context switches when processes reach the end of
the spinning phase of their synchronization. Note that with spinning locks, there would be no
increase in context switches, but the time spent spinning would be much longer.

3.3 Cache Data Loss

The third factor we have mentioned is the problem of previously cached data being unavailable
when a process is scheduled. When a process is unscheduled, due to blocking on I/O, time quan-
tum expiration, or yielding the processor, a context switch occurs and another process executes.
The unscheduled process may next be scheduled on another processor, forcing data used by the
process to be fetched into the new processor’s cache (and, if modified, invalidated in the old
processor’s cache). Even if the process is next scheduled on the processor it had been using,
intervening processes may have replaced its data from the cache. This can have a serious impact
on cache performance.

We can estimate the performance lost due to cache data loss by measuring the amount of
cached data reused by each application across successive time slices. This gives us an upper
limit on the increase in cache misses, assuming none of a preempted process’s data is in the
cache when the process is rescheduled. By measuring the duration of the application’s dispatch
intervals, we can then estimate the effect of the additional misses on performance.

We used a special performance monitor board on our system to measure the misses in each
application, both running normally and running while flushing the cache after every dispatch
interval. The difference between the two shows the amount of data reused in the cache. The
applications used two-phase locks to minimize spinning due to synchronization. The first column
of Table 3.2 shows, for each application, the difference in the number of cache misses (or the
number of reused 16-byte cache lines) per dispatch interval. The second column shows the mean
duration of dispatch intervals for each application running alone. The third column shows the
amount of time taken to fetch the reused data each dispatch interval divided by the duration of
the dispatch interval, giving an upper limit on the performance loss incurred by cache data loss
in a multiprogrammed environment. The result is an upper limit because it assumes that all of
the data used by a process is unavailable when the process next executes; this is not always true.
However, it is often close to the truth, particularly when the process is scheduled on another
processor, or an intervening process “walks” through the cache replacing all of the data (common
in applications that sequentially access large contiguously-allocated data structures).

We will now consider the data for each application in turn.LocusRoute has a small amount
of reused data, 200 cache lines per dispatch interval (corresponding to 3200 bytes). However,
the dispatch intervals are also short, an average of 1.7 ms. The result is a potential performance
loss of about 11%, assuming each miss must be filled from memory (recall that the cycle time is

20 CHAPTER 3. SOURCES OF PERFORMANCE LOSS

Table 3.2: Amount of reused data and mean dispatch interval for the applications.

Application Reused Data per Mean Dispatch Potential Performance
Dispatch Interval Interval Loss

(misses) (ms) (%)

LocusRoute 200 1.7 10.7
Ocean 2200 9.5 21.1
MP3D 0 7.9 0.0
Cholesky 40 1.6 2.3
Water 2500 21.8 10.4
Pmake 500 2.0 22.7

30 ns and the latency of a miss is 30 cycles) rather than the second-level cache.Ocean has a
much larger amount of reused data per dispatch interval (2200 cache lines or about 35 Kbytes),
but also longer dispatch intervals (9.5 ms). The potential performance loss inOcean is about
21%. MP3Dhas essentially no cache data reuse, as the data set for each process is generally
much larger than the size of the cache.Cholesky also has a small amount of reused data per
dispatch interval but has an even smaller amount of reused data (40 cache lines) with similar-
length dispatch intervals, for a potential performance loss of 2%. Water is similar toOcean,
with 2500 cache lines reused across dispatch intervals, but a longer average dispatch interval
(21.8 ms). The potential performance loss is about 10%. Finally,Pmake has a moderate amount
of reused data (500 cache lines or about 8 Kbytes) and short dispatch intervals (2 ms). The result
is a potential performance loss of 23% due to cache data loss under multiprogramming.

The Pmake case demonstrates that even serial applications can be affected by multipro-
grammed workloads on a parallel machine. This problem can also also occur on a serial ma-
chine, though without the process migration component. Previous researchers have investigated
the effect of context switching on the performance of applications on a serial machine, both using
analytical techniques and using memory access traces of real executions [30, 43]. They found
that context switching can have a significant effect on performance even in serial environments.

The above data on individual applications can be used to estimate the effect of cache data loss
on multiprogrammed workloads. If we assume that none of the cache data used by a process in
a dispatch interval remains in the cache the next time the process runs on the same processor, we
can calculate the performance loss in each workload by averaging the losses from the constituent
applications. Table 3.3 shows the results of these calculations. The result is an upper limit on
the cost of cache data loss that varies between 4–18% for these workloads. The mean cost is
10%. Although the real cost will be lower (since previously cached data is not always replaced
when a process is rescheduled), this suggests that the problem of cache data loss is much more
serious than the direct cost of context switching.

As mentioned in the last section, synchronization problems can contribute to the problem
of cache data loss by increasing the context switch rate. We now consider how much of the

3.4. OPERATING POINT EFFECT 21

Table 3.3: Performance cost for each multiprogrammed workload resulting from cache data loss,
using a standard UNIX scheduler.

Workload Cache Data Loss
(%)

LO 16
LM 5
OC 11
OM 11
LOC 11
LMC 4
LOP 18
LMCP 9
LOMC 8
LOMCW 9

performance loss just discussed can be attributed to synchronization effects. Figure 3.2 showed,
for each multiprogrammed workload, the increase in the number of times a process yields the
processor (causing a context switch) because it cannot successfully synchronize. Table 3.4 shows
the percentage change in the context switch rate this induces. The numbers range from 0–21%,
and most are below 10%, suggesting that scheduling strategies that attempt to resolve problems
with synchronization (such as gang scheduling, to be discussed in Chapter 5) will have only a
small effect on cache data loss.

3.4 Operating Point Effect

The final performance issue that we consider is the operating point effect. As discussed in
Chapter 1, the efficiency of a parallel application normally decreases as the number of processes
(and processors) running the application is increased due to a number of problems including load
balancing, decreasing spatial locality, communication overhead, and redundant work. The effect
of this is that in a multiprogrammed workload, where each application receives only a portion of
the total processor time, applications will run more quickly if they have fewer processes.

For example, consider workload LO, consisting of aLocusRoute application and anOcean
application. Normally, this workload would be run with each application using four processes.
However, since the four processors of the machine are shared among two applications, each
application generally runs on only two processors at a time. If each application were run with
two processes, performance would be improved. Although the amount of processor time received
by the applications would be the same, the applications would run more efficiently due to the
reduced number of processes. They would be running at a betteroperating pointon their speedup
curves.

22 CHAPTER 3. SOURCES OF PERFORMANCE LOSS

Table 3.4: Increase in context switch rate of multiprogrammed workloads resulting from use of
two-phase synchronization, when using a standard UNIX scheduler.

Workload Change in Context Switch Rate
(%)

LO 5
LM 2
OC 9
OM 0
LOC 12
LMC 11
LOP 0
LMCP 9
LOMC 21
LOMCW 7

Table 3.5 shows the efficiency of each application when running with 2 and 4 processes. The
efficiency with 2 and 4 processes was calculated by dividing the speedup obtained with 2 and 4
processes by 2 and 4, respectively.

Table 3.5: Efficiency of applications when running with two and four processes, compared with
“ideal” performance based on execution times running with one process.

Application Efficiency (%)
2 processes 4 processes

LocusRoute 95 89
Ocean 99 84
MP3D 86 71
Cholesky 90 75
Water 99 97
Pmake 86 59

The table shows that all of the applications butWater suffer substantial losses in efficiency
with four processes. With two processes, the situation is better, thoughMP3D, Cholesky , and
Pmake still lose 10% or more. From this data we can conclude that if applications were to run
with two processes rather than four when only half of a 4-processor machine was available (as
when two parallel applications are running simultaneously), their performance would improve by
2–27% (the difference between the efficiency with two processes and that with four processes).
If they were to be run with one process rather than four when only a quarter of a 4-processor

3.5. UPPER BOUND ON ACHIEVED PERFORMANCE 23

machine was available (as when four parallel applications are running simultaneously), their
performance would improve by 3–41% (the difference between “ideal” or 100% efficiency and
that with four processes).

In conclusion, the operating point effect has the potential to substantially impact the perfor-
mance of parallel applications. Although not a direct “cost” of multiprogramming, the operating
point effect indicates that applications running without concern for the number of processes they
use can be running much slower than their potential in a multiprogrammed environment. In the
next section, we will hypothesize a scheduling method that runs each application at its optimal
operating point at any given time. This method would also eliminate performance losses from
multiprogramming due to synchronization and cache data loss. The result will be optimal perfor-
mance for multiprogrammed workloads. We will estimate its effect on our set of workloads to
determine the extent to which appropriate scheduling techniques can improve multiprogrammed
performance.

3.5 Upper Bound on Achieved Performance

The previous sections have examined potential sources of performance loss from multiprogram-
ming and looked at the impact of each source on application and workload performance. This
section will consider the question of the overall impact of all sources of performance loss; that
is, how much performance is being lost due to all of these problems combined? The results will
indicate the potential for any new scheduling policies to improve performance.

Figure 3.3 shows this effect for our suite of multiprogrammed workloads. Two sets of execu-
tion times are shown for each of our workloads, both normalized with respect to the performance
of the workload running under a standard UNIX scheduler. The full length of the bars (“batch”)
indicates the potential performance of the workloads when the costs of multiprogramming (not
including the operating point effect) are removed. Each application in a workload is run in batch
style with four processes, using the entire system until completion; the next application in the
workload is then executed. Although this is not a reasonable approach for scheduling applications
on a real system, due to considerations of fairness and response time, it is useful for analyzing
the costs of multiprogramming. Since each application has sole use of the system when it is
executing, no context switching occurs, and the direct and indirect costs associated with context
switching, including time taken to perform the context switch, time waiting to synchronize with
preempted processes, and cache data loss, are eliminated. The execution times of the parallel
portions of the applications are then added to provide a comparison with their execution times
running on a standard UNIX scheduler, where the system must be shared among applications to
ensure fair allocation of processor time and reasonable response time.

A caveat for this data is that in comparing executions where the number of processes does
not exceed the number of processors (e.g., the “batch” model and the “operating point” model
discussed below) to executions where the number of processes exceeds the number of processors
(e.g., the standard UNIX scheduler results to which the others are normalized), we can miss
factors that may actuallyimproveperformance under multiprogramming. For example, when the
number of processes exceeds the number of processors, and a process blocks on I/O, processes

24 CHAPTER 3. SOURCES OF PERFORMANCE LOSS

||0

|20

|40

|60

|80

|100

|120

 N
or

m
al

iz
ed

 T
im

e
(%

) Batch

83

99 95
89

95
102

93 90

LO LM OC OM LOC LMC LOMC LOMCW

Operating Point

Figure 3.3: Potential performance of workloads, shown using batch mode with 4 processes per
application (“batch”), and limiting the number of processes of each application to its optimal
operating point (“operating point”). Execution times are normalized with respect to performance
with standard UNIX scheduling.

of other applications may run in its place. Workload LMC actually appears to perform slightly
(2%) worse in the “batch” model than with a standard UNIX scheduler. Although the limited
amount of I/O used by the applications tends to minimize these problems, scheduling policies
that ensure that processors do not sit idle while processes block on I/O may achieve a slightly
higher performance gain than indicated in Figure 3.3.

The light-shaded parts of the bars in the figure (“operating point”) correspond to data derived
in a more complicated fashion. The idea is to not only eliminate the costs of multiprogramming,
as above, but also take advantage of the operating point effect by executing each application with
a number of processes equal to the number of processors available to run that application. This
ensures that each application will use the available processors as efficiently as possible. Thus, a
workload with two applications, such as LO, executes each application with two processes. A
workload with four applications, such as LOMC, similarly executes each application with one
processes. LOMCW, with five applications, also runs with one process per application, since
a lower number is not possible. Workloads with three applications are more of a problem,
however. In these workloads, such as LOC, we can run one application (sayLocusRoute)
with two processes and the other two with one process. However, this results in an unfair
allocation of resources. In addition to the unattractiveness of an unfair policy, it results in a
performance problem. TheLocusRoute application finishes very quickly, using two processes,
while the others take much longer, with one process each. AfterLocusRoute finishes, two
of the processors on the machine are idle, whileOcean and Cholesky applications remain
running. This can happen even in workloads with two or four applications, if one application
finishes executing before others.

The solution to these problems is to consider the number of processes used by an application
to bedynamic. For a workload like LO with two applications, each application is started with two
processes. When one application finishes executing, the other then runs with four processes to

3.5. UPPER BOUND ON ACHIEVED PERFORMANCE 25

take advantage of the extra processors that have become available. Similarly, a three-application
workload like LOC starts running withLocusRoute using two processes andOcean andCho-
lesky using one each. After a short interval,LocusRoute drops to using one process and
Ocean uses two processes. After an equal-length interval,LocusRoute andOcean run with
one process each andCholesky uses two processes. Finally, the two process usage cycles back
to LocusRoute again, and so on until one of the applications finishes executing. The result
is to execute the applications at the most efficient points possible while still maintaining fair
allocation of processor time.

An interesting and important effect of executing workloads in this manner is the virtual
elimination of context switching. Note that in each workload above, the number of processes
used by each application is adjusted so that the total number of processes in the system matches
the number of processors. Hence, there is no need to share a processor among multiple processes,
and context switching is not needed. As a result, the dark-shaded part of the bars in the figure,
indicating the difference between the “batch” data and the “operating point” data, shows the
impact of the operating point effect. The process control scheduling approach mentioned in
Chapter 1 uses the same basic idea to eliminate context switching and run applications at their
optimal operating point. Chapter 6 will discuss in detail the design and policy issues involved in
implementing this approach in a real general-purpose system environment.

Figure 3.3 shows the performance after removing multiprogramming costs, indicated by the
full bars, to be slightly better than the performance of the standard UNIX scheduler. The geometric
mean of the normalized workload execution times is 93.1%, a 6.9% improvement over the
standard scheduler. This suggests that scheduling policies addressing these costs may be able
to improve performance by a small but significant amount. Note that this indicates that the
estimates of the performance effects of cache data loss in Section 3.3 were slightly excessive;
the assumption that no previously cached data remains in the cache after a process is rescheduled
was overly pessimistic.

The impact of the operating point effect is substantially greater. The geometric mean of the
workloads in the light-shaded parts of the bars is 76.6%, a 23.4% improvement over the standard
UNIX scheduler and a 16.5% improvement over the full bars. The operating point effect is thus
shown to be more significant than the direct costs of multiprogramming identified in Sections 3.1–
3.3. We shall see in future chapters that while scheduling policies that address only the direct
costs of multiprogramming can improve performance slightly, a scheduling policy that also takes
advantage of the operating point effect performs much better.

The careful reader will have noticed that Figure 3.3 only includes 8 workloads out of our suite
of 10; workloads LOP and LMCP are missing. The reason for this is those workloads include
the Pmake application. Unfortunately, sincePmake contains a large amount of I/O, it is not
conducive to the sort of modeling performed for the data in the figure. In the case of the “batch”
model,Pmake runs almost as fast when running with other applications as it does running alone.
The result of the model would show the missing workloads running much slower in batch mode
than they do with a standard UNIX scheduler. In the case of the “operating point” model,Pmake
varies the number of processes it uses continually. While a more sophisticated system (such as
the process control system described in Chapter 6) will adjust to this, it is difficult to manage
with the simple calculations performed in this section.

26 CHAPTER 3. SOURCES OF PERFORMANCE LOSS

3.6 Conclusions

This chapter has discussed the possible sources of performance problems when applications are
run in a multiprogrammed style, and the extent to which each source contributes to overall
performance. These sources can be divided into two kinds: direct costs, resulting from context
switching between multiple applications contending for processors, and an indirect cost, resulting
from running applications with a sub-optimal number of processes given the number of processors
available.

The first kind of performance loss includes the direct cost of context switching, synchroniza-
tion problems, and cache data loss. The direct cost was shown to be relatively insignificant,
counting for an average of less than 2% of execution time. Additionally, the increase in time
processes spent busy-waiting for synchronization due to multiprogramming in our applications
was also low, as the applications use two-phase locks to minimize busy-waiting. However, using
two-phase locks in the presence of multiprogramming also increases the number of times pro-
cesses yield the processor, raising the context switch rate and worsening problems associated with
context switching. The performance cost of cache data loss is even more significant, potentially
slowing workloads by as much as 18%. We expect that scheduling policies that resolve either
cache data loss or synchronization problems may provide a small but significant benefit to system
performance under multiprogramming.

The second, indirect, kind of performance loss is associated with the “operating point” effect,
where most applications run more efficiently with fewer processes. By dynamically adjusting the
number of processes an application uses in order to run with maximal efficiency, we can obtain
a substantial performance advantage. A scheduling policy that works in this manner can attain
an average performance advantage of 17% from the operating point effect and an additional 6%
by reducing context switching and minimizing synchronization problems. Policies only reducing
context switching and minimizing synchronization problems will only be able to achieve the 6%
advantage.

The next four chapters will describe policies to address these problems. Cache affinity
scheduling, discussed in Chapter 4, tries to reduce cache data loss due to context switching.
Gang scheduling, discussed in Chapter 5, tries to minimize synchronization problems. Finally,
process control, discussed in Chapters 6 and 7, tries to do both of these in addition to taking
advantage of the operating point effect.

Chapter 4

Cache Affinity

The performance achieved by applications on shared-memory multiprocessors is often highly
sensitive to the latency of memory accesses. In small- and medium-scale high-performance
machines, this latency can often be several tens of cycles. Consequently, it is important to
develop techniques to reduce the number of cache misses suffered by the workloads running on
these machines.

There are two factors that increase the number of misses when running multiprogrammed
workloads. First, since an idle processor simply selects the highest priority runnable process,
a given process often moves from one CPU to another. This frequent migration results in the
process having to continuously reload its state into new caches, producing streams of cache
misses. Second, several processes are forced to time-share the same cache, resulting in one
process displacing the cache state previously built up by an earlier one. Consequently, even if
this earlier process does not migrate, when it is next scheduled it will generate a stream of misses
as it rebuilds its cache state.

To reduce the number of misses in these workloads, processes should reuse their cached state
more. One way to encourage this is to schedule each process based on its affinity to individual
caches, that is, based on the amount of state that the process has accumulated in an individual
cache. This technique is calledcache affinity scheduling.

Cache affinity scheduling has been the subject of several previous studies. However, many of
these studies were based on analytical modeling [41], simulations [18], or synthetic application-
s [10], missing the subtle effects of real applications running on a real machine. Others studied
uniprocessors [30], single applications within a narrow domain [42], or systems with unusual
(space-sharing) scheduling policies [46].

This chapter makes a more thorough attempt to understand the effect of cache affinity sched-
uling on a real system running a variety of applications. It first investigates the ways application
and workload characteristics affect their ability to benefit from affinity scheduling. Section 3.3
used the cache data reuse and mean dispatch interval length of each application to estimate the
performance lost due to cache data replacement or loss. This chapter extends this work by also
using the amount of process blocking and the effect of other applications in the workload to es-
timate the extent to which cache affinity scheduling can improve performance. We use hardware
probes into the SGI 4D/340 to measure these characteristics for our suite of multiprogrammed

27

28 CHAPTER 4. CACHE AFFINITY

workloads and find that workloads must satisfy a number of conditions to achieve even moderate
gains from affinity.

We then compare our model with the performance of the workloads running with a simple but
effective affinity scheduler on the SGI machine. Although the affinity scheduler does improve
the performance of most of the workloads, the gains are at most only 10%. We compare the
results with two alternative methods that have been used to exploit cache reuse, namely attaching
processes to processors and extending the time quantum, and finally discuss the benefits of more
complex ways of implementing affinity scheduling.

The contents of this chapter are based on previously published work done jointly by the
author along with Josep Torellas and Anoop Gupta [44]. The older work developed a workable
implementation of affinity scheduling and applied it to a number of workloads consisting of
parallel applications using ANL macros [5] to provide explicit parallelism. This chapter re-
applies affinity scheduling to the workloads selected for this thesis so that its performance can
be compared with that of gang scheduling and process control.

This chapter is organized as follows. Section 4.1 characterizes the workloads from the s-
tandpoint of cache affinity. Section 4.2 describes the baseline affinity function. In Section 4.3,
we discuss the results, first focusing on the basic results of affinity scheduling (Section 4.3.1),
and then on attached scheduling and increasing the time quantum (Section 4.3.2 and 4.3.3). We
present discussion and related work in Section 4.4, and conclude in Section 4.5.

4.1 Potential Benefits of Cache Affinity

There are numerous factors that can affect the performance of a workload using cache affinity
scheduling. One of the purposes of this chapter is to determine how characteristics inherent to a
workload affect its potential to benefit from techniques that exploit affinity. In later sections, we
will look at the ability of different techniques to fulfill this potential. Section 3.3 studied the effect
of cache data loss on the performance of multiprogrammed workloads using a standard UNIX
scheduler. In this section we will consider how much of this loss can be recovered through cache
affinity scheduling. We will first look at the characteristics of a workload’s constituent applications
that affect its ability to benefit from affinity scheduling, and then at how the interactions between
applications in a workload affect the benefit.

4.1.1 Application Characteristics

There are three main characteristics that determine the potential for a process to exploit cache
affinity: (i) the amount of cache data (or state) it reuses, (ii) the length of time it executes contin-
uously without releasing the processor (the dispatch interval), and (iii) the reason for eventually
releasing the processor. We now discuss these characteristics and their effect on gains from
affinity.

4.1. POTENTIAL BENEFITS OF CACHE AFFINITY 29

Amount of Reused State and Duration of Dispatch Interval

As discussed in Section 3.3, the amount of cache data an application reuses and the length of
that application’s dispatch intervals control the performance losses it may suffer under standard
scheduling, and thus the performance gains it may achieve under affinity scheduling. Since the
goal of cache affinity is to reduce the amount of reused data that must be fetched into the cache
more than once, an application with little cache reuse will gain little from affinity. Likewise, one
with a large amount of data reused across dispatch intervals has the potential gain substantially
from affinity. The length of the dispatch interval also affects potential benefits from affinity
because it controls the proportion of time an application spends refetching data into the cache. If
the dispatch interval is long, the time to load reused data into the cache will be small compared
to the time spent in the steady state, and thus the loss of performance due to the extra misses
will be small. Additionally, an application with little reused data per dispatch interval may gain
from affinity if the dispatch intervals are sufficiently short.

The amount of reused cache state reuse and average dispatch interval lengths for the appli-
cations were shown in the previous Chapter in Table 3.1 and discussed in Section 3.3. Potential
losses in the standard scheduler, assuming intervening processes completely replace available
cache data, varied from 0–23%. Table 4.1 shows the exact data.

Table 4.1: Potential performance loss in standard UNIX scheduler from cache data loss assuming
flushed caches.

Application Loss (%)

LocusRoute 11
Ocean 22
MP3D 0
Cholesky 2
Water 10
Pmake 23

Reason Why Dispatch Interval Was Terminated

Even if a workload suffers substantial performance problems due to cache data loss with a standard
scheduler, other factors may also limit the effectiveness of cache affinity scheduling. The third
process characteristic that we consider is the reason why a dispatch interval was terminated. A
dispatch interval may be terminated by the expiration of the time quantum, or by a number of
events initiated by the process. These include blocking on a semaphore (usually due to I/O),
unsuccessfully trying to acquire a lock, issuing a system call, suffering a TLB fault, and other
less frequent events. Of the possible causes of termination, only semaphore blocks actually block
the process. We distinguish between dispatch intervals that block the process and those that do
not. In the former case, the process is less likely to become runnable in time to reuse its state

30 CHAPTER 4. CACHE AFFINITY

left in the cache. Therefore, the potential for cache affinity is smaller.
The causes for dispatch interval termination are presented in Table 4.2. As expected, scientific

applications rarely block. ForWater , 90% of the dispatch intervals end due to time quantum
expiration. LocusRoute , Cholesky , andMP3Dhave a high percentage of dispatch intervals
interrupted due to failure to acquire a lock. The only application with a large amount of blocking
is Pmake, which ends almost half its dispatch intervals by blocking.

Table 4.2: Breakdown of events that terminate dispatch intervals.

Cause LocusRoute Ocean MP3D Cholesky Water Pmake
(%) (%) (%) (%) (%) (%)

End of Quantum 2.7 26.3 24.8 2.2 90.1 21.5
Semaphore Block 0.4 13.2 1.5 0.1 1.1 47.5
Synchronization 96.5 47.8 71.4 97.4 6.3 0.0
System Call 0.2 1.2 0.8 0.1 1.9 14.8
TLB Fault 0.1 6.8 0.7 0.0 0.0 10.3
Other 0.1 4.7 0.8 0.2 0.6 5.9

4.1.2 Workload Characteristics

When we run multiple applications concurrently as a workload, interactions among the applica-
tions can affect the potential benefit of exploiting cache affinity. There are two major interactions:
the way dispatch intervals of different processes interleave, and the amount of cache state that
this interleaving causes. We consider each in turn.

Effective Time Slice

The amount of time a process runs on a processor without intervening processes running is
called aneffective time slice. An effective time slice may contain several dispatch intervals if
the same process is re-scheduled several dispatch intervals in a row. If this occurs frequently,
there will be little potential for benefit from cache affinity since applications will already be
exploiting cache state by running on the same CPU for a long time. This situation, however,
is infrequent in traditional schedulers. To illustrate this, Figure 4.1 shows the distribution of
the length of the effective time slices for our workloads using the standard UNIX scheduler on
our machine. Although there are a few times when enough processes block that the remaining
running processes can run for multiple time quanta, this is rare. The rest of the time, the effective
time slice curves match the dispatch intervals of the constituent applications. This shows that
there is still potential for cache affinity to be exploited in these workloads. (Note that the curves
do not include effective time slices shorter than 1 ms because of their irrelevance to the overall
performance of the workloads.)

4.1. POTENTIAL BENEFITS OF CACHE AFFINITY 31

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|
32

|
36

|
40

|0

|500

|1000

|1500

|2000

|2500

|3000

 LO

 Time (ms)

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|
32

|
36

|
40

|0

|500

|1000

|1500

|2000

|2500

 LM

 Time (ms)

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|
32

|
36

|
40

|0

|500

|1000

|1500

|2000

|2500

 OC

 Time (ms)

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|
32

|
36

|
40

|0

|500

|1000

|1500

|2000

|2500

|3000

 OM

 Time (ms)

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|
32

|
36

|
40

|0
|1000

|2000

|3000

|4000

|5000

 LOC

 Time (ms)

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|
32

|
36

|
40

|0

|1000

|2000

|3000

|4000

 LMC

 Time (ms)

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|
32

|
36

|
40

|0

|2000

|4000

|6000

|8000

|10000

 LOP

 Time (ms)

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|
32

|
36

|
40

|0

|1000

|2000

|3000

|4000

|5000

|6000

|7000

 LOMC

 Time (ms)

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|
32

|
36

|
40

|0

|2000

|4000

|6000

|8000

|10000

 LMCP

 Time (ms)

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|
32

|
36

|
40

|0

|2000

|4000

|6000

|8000

|10000

 LOMCW

 Time (ms)

Figure 4.1: Distribution of the length of the effective time slices for the workloads studied.
Effective time slices shorter than 1 ms are ignored.

32 CHAPTER 4. CACHE AFFINITY

Effect of Intervening Applications

When several processes share the same cache, they displace each other’s state from the cache.
This effect decreases data reuse in the workload and therefore increases the potential of cache
affinity. We approximately estimate the amount of cache displacement caused by an application
by the total number of misses it suffers in an average dispatch interval. Table 4.3 shows the
number of times each application misses in a dispatch interval.Water suffers as many as 14000
misses in a dispatch interval, effectively replacing the second-level data cache.Ocean similarly
suffers close to 10000 misses.MP3Dcauses about 3000 misses, wiping a large part of the first-
level data cache. The other workloads have a smaller effect because their dispatch intervals are
smaller.

Table 4.3: Number of misses per dispatch interval.

Application Misses
(Thousands)

LocusRoute 0.5
Ocean 10
MP3D 3
Cholesky 0.5
Water 14
Pmake 1.5

4.1.3 Summary of Application and Workload Characteristics

With the above data, we can get an accurate picture of what workloads can benefit from techniques
that exploit cache affinity. The most promising workloads are those whose processes (1) are costly
to reload because of the large amount of reused data, (2) execute for short effective time slices,
(3) block infrequently or not at all, and (4) are interleaved with other processes that replace a
large part of the cache when executed.

In summary, we believe that due to the large number of factors that can limit the potential
benefits of an application for exploiting cache affinity, few applications are able to benefit greatly.

4.2 Implementation of Affinity Scheduling

To achieve the potential for benefit from affinity described in Section 4.1, we need an implemen-
tation of affinity scheduling that has low overhead and does not raise the possibility of starvation
or loss of response time. A key goal of this research is to implement new scheduling approach-
es with minimal changes to the existing system, retaining fair allocation of processor time and
good response time while increasing the performance of parallel applications. Our method of
implementing cache affinity scheduling is to modify the existing process priority scheme of the

4.2. IMPLEMENTATION OF AFFINITY SCHEDULING 33

Table 4.4: Summary of process and workload characteristics that determine the potential of
exploiting cache affinity.

Workload Cache Reload Median Eff. Frequent Misses of
Misses Time Slice Process Intervening

(Thousands) (ms) Block? Application
(Thousands)

LO 0.2+2.2 5+15 N+N 10+0.5
LM 0.2+0 5+25 N+N 3+0.5
OC 2.2+0 15+5 N+N 0.5+10
OM 2.2+0 15+25 N+N 3+10
LOC 0.2+2.2+0 5+15+5 N+N+N 10.5+1+10.5
LMC 0.2+0+0 5+25+5 N+N+N 3.5+1+3.5
LOP 0.2+2.2+0.5 5+15+2 N+N+Y 11.5+2+10.5
LMCP 0.2+0+0+0.5 5+25+5+2 N+N+N+Y 5+2.5+5+4
LOMC 0.2+2.2+0+0 5+15+25+5 N+N+N+N 13.5+4+11+13.5
LOMCW 0.2+2.2+0+0+2.5 5+15+25+5+30 N+N+N+N+N 27+18+24+27+13

standard UNIX scheduler. We first describe the existing system, then discuss the modifications
required to add affinity scheduling and their effect.

The standard UNIX scheduling system orders processes based on CPU utilization and run
time. Runnable processes are placed in a run queue, ordered by a single number denoting their
scheduling priority. A processor selecting a process to run picks the highest priority process
from the queue. The priority is based in large part on the past CPU usage of the process it is
associated with. As a process accumulates CPU time, its priority is reduced. This gives processes
that frequently block more chances to run. The accumulated CPU time is periodically decayed to
a fraction of its former value, however, so that long-running processes are not completely starved
in favor of newer processes.

The exact algorithm is as follows. The priority of a process is denoted by its inverse,inv prio,
defined to be

inv prio= base+
cpu

2
:

A low value ofinv priodesignates a high priority, that is, a process that will be chosen earlier to
run. basecan be assumed to be equal for all processes we will be considering.cpuis a measure
of the CPU utilization of the process; it is initially 0 for a new process and is incremented
whenever a timing interrupt (raised every 10 ms on our machine) is received while the process
is running. Finally, the value ofcpu is decayed periodically to put a limit on the priority and
avoid starving long-running processes.

To add affinity to the existing system, we temporarily raise the priorities of processes that
are “attractive” from the standpoint of affinity scheduling when searching the run queue. We
subtract a constant factor,ap (for processor), from theinv priovalues of processes whose most

34 CHAPTER 4. CACHE AFFINITY

recent execution was on the processor that is scheduling. This discourages migration between
processors. We subtract another constant,at (for time), from theinv priovalue of the process
that has just finished executing on the scheduling processor. This encourages processes to run
for consecutive dispatch intervals. Both adjustments are just for the purpose of scheduling at
that moment, and the priorities relapse to their normal values after the processor has selected a
process to run.

Given the priority algorithm, we can compute the effect of a given value of the constants. In
our system, a workload using affinity has a maximum effective time slice of roughly 40a t ms.
The system restricts a process from migrating unless it receives 20ap less processor time than
other processes within a decay interval.

The modification is successful in a number of ways. First, it requires only minor modifications
to the existing scheduler. Second, it is very efficient, since it only involves priority comparisons
between at most three processes. In fact, given minor changes to the run queue structure, we can
examine these processes without searching the run queue. Finally, there is no risk of unfairness
or starvation since the normal priority system is still in place. Processes that are not executed
have their priorities increased with respect to running processes and eventually run when the
priorities are high enough to overcome the affinity adjustments. New and I/O-bound applications
normally have high enough priority to be able to run as soon as they become runnable.

4.3 Performance Results

We begin by presenting the base results, obtained by using affinity scheduling as described in
Section 4.2, both with small changes to process priority and with larger changes. We then evaluate
two alternative ways of exploiting cache affinity, namely attaching processes to processors and
increasing the time quantum of the machine.

4.3.1 Base Results

This section discusses the performance of the affinity function described in Section 4.2. We
study two different degrees of affinity scheduling. First, we consider a scheduler with light
affinity (LightAff) by setting bothat andap to 6. This corresponds to a potential effective time
slice of about 240 ms or 8 time quanta, and a migration threshold of about 120 ms. Second, we
study a scheduler with heavy affinity (HeavyAff) by setting both values to 16, for an effective
time slice of about 640 ms and a migration threshold of about 320 ms.

Figure 4.2 compares the performance of the two affinity scheduling schemes to the per-
formance of the standard scheduler. The figure shows the execution times of the workloads,
normalized with respect to the execution times of the same workloads under standard UNIX
scheduling.

Our observations on the effect of affinity are as follows:

� Cache affinity scheduling speeds up scientific workloads slightly.

With LightAff, each of the workloads runs faster under cache affinity scheduling than it did
under standard UNIX scheduling. The improvement varies from 0–10%, with a geometric

4.3. PERFORMANCE RESULTS 35

||0

|20

|40

|60

|80

|100

|120

 N
or

m
al

iz
ed

 T
im

e
(%

) Light

95 95 95 95 100 102
95 95 96 96 93 93 90 89 90 92 92 93 93 94

LO LM OC OM LOC LMC LOP LMCP LOMC LOMCW

 Heavy

Figure 4.2: Performance of workloads under light and heavy affinity scheduling, normalized with
respect to standard UNIX performance.

mean of 6%. The distribution of effective time slices with affinity scheduling is shown in
Figure 4.3. In the figure, we see that the new effective slices are much longer than before,
often more than 13 time quanta. There are still a large number of short effective time
slices since these are the result of processes blocking rather than being preempted by the
kernel, and are unaffected by cache affinity scheduling. The actual performance gains of
affinity are small, because (as we saw in Chapter 3 and Section 4.1) a number of workload
characteristics can limit the effect of affinity scheduling.

� Cache affinity scheduling also speeds up mixed workloads of scientific and non-
scientific applications.

As we discussed in Section 4.1, thePmake application has good potential for gains from
affinity. The application has a large amount of reused data and processes have short
effective time slices because they often block on I/O, synchronize, or issue system calls.
Since the processes mostly block before being preempted, affinity scheduling does not
affect the effective slice noticeably. However, by encouraging processes to return to the
CPUs on which they last ran, we can eliminate a number of misses. This is indicated
by the performance of workloads LOP and LMCP, each of which improves by 10% with
affinity scheduling, and which are the most improved workloads in the suite.

� Implementation issues can affect the results.

The small changes necessary to support affinity scheduling often interact with other func-
tions in the system. We briefly describe an example of this.

When a process unsuccessfully tries to acquire a lock, it yields the CPU. The expectation is
that the process that holds the lock will be scheduled. However, under affinity scheduling,
the yielding process has its priority boosted by affinity and therefore is picked to run again.
To avoid this, the process is prevented from being selected for this reschedule. While this
solves the problem, it still allows the CPU to interleave between two processes trying to

36 CHAPTER 4. CACHE AFFINITY

|
0

|
50

|
100

|
150

|
200

|
250

|
300

|
350

|
400

|0

|100

|200

|300

|400

|500

|600

 LO

 Time (ms)

|
0

|
50

|
100

|
150

|
200

|
250

|
300

|
350

|
400

|0

|100

|200

|300

|400

 LM

 Time (ms)

|
0

|
50

|
100

|
150

|
200

|
250

|
300

|
350

|
400

|0

|400

|800

|1200

|1600

|2000

 OC

 Time (ms)

|
0

|
50

|
100

|
150

|
200

|
250

|
300

|
350

|
400

|0

|50

|100

|150
|200

 OM

 Time (ms)

|
0

|
50

|
100

|
150

|
200

|
250

|
300

|
350

|
400

|0

|100

|200

|300

|400

|500

|600

 LOC

 Time (ms)

|
0

|
50

|
100

|
150

|
200

|
250

|
300

|
350

|
400

|0

|50

|100

|150

|200

|250

|300

 LMC

 Time (ms)

|
0

|
50

|
100

|
150

|
200

|
250

|
300

|
350

|
400

|0

|2000

|4000

|6000

|8000

 LOP

 Time (ms)

|
0

|
50

|
100

|
150

|
200

|
250

|
300

|
350

|
400

|0

|50

|100

|150

|200

|250

|300

 LOMC

 Time (ms)

|
0

|
50

|
100

|
150

|
200

|
250

|
300

|
350

|
400

|0

|2000

|4000

|6000

|8000

 LOCP

 Time (ms)

|
0

|
50

|
100

|
150

|
200

|
250

|
300

|
350

|
400

|0

|200

|400

|600

|800

|1000

 LOMCW

 Time (ms)

Figure 4.3: Distribution of the length of the effective time slices under affinity scheduling.
Effective time slices lasting longer than 400 ms are shown as 400 ms.

4.3. PERFORMANCE RESULTS 37

acquire a lock. If the process holding the lock does not have affinity for that CPU, it may
not be able to run until the CPU for which it has affinity becomes free. This effect can
cause affinity to slightly slow down workloads with synchronization-intensive applications
like Cholesky , as seen in the performance gain of only 0.1% for workload OC.

� Increasing the level of affinity to large values does not improve performance.

Increasing the level of affinity fromLightAff to HeavyAffwould seem to increases state
reuse, thereby reducing the number of misses. However, the effect on execution times is
minimal or even negative. In fact, only workloads LOC, LMC, and LOP perform better
underHeavyAff, and the improvements are slight. We conclude that a low level of affinity
is sufficient and desirable. Hence, for the remainder of this thesis, we will useLightAff as
our affinity implementation, and refer to it as simply “affinity”.

Overall, we note that our affinity algorithm fulfills the potential described in Section 4.1
quite well, producing low to moderate speedups of up to 10%. In addition, affinity did not cause
significant problems with load imbalance. We also note that affinity does not introduce unfairness.
The problem of unfairness would appear if, while encouraging one process to reuse cache state,
we were consistently denying another process a fair share of CPU time. Our implementation is
not unfair because a favored process will eventually accumulate CPU time and have its priority
reduced with respect to processes that are not running. We have observed that applications with
similar CPU-using characteristics are given equal CPU time.

4.3.2 Attached Scheduling

A simple alternative to our affinity scheduling algorithm is to fix processes on CPUs for the
processes’ entire lifetimes. This strategy tries to increase the reuse of cache state by eliminating
process migration without changing the effective time slice. Figure 4.4 shows the performance of
this strategy, compared with the performance with affinity scheduling. While attached scheduling
works well for very regular applications likeOcean and MP3D, it has problems with a more
heterogeneous environment. This is due to increased load imbalance in the machine. When a
CPU has no processes to run, it is forced to remain idle even if another CPU has more than
one process to run. The result is an average improvement of only 1.6% over standard UNIX
scheduling, much lower than affinity scheduling. In summary, we find that attaching processes
to CPUs is not an acceptable alternative to affinity scheduling.

4.3.3 Increasing the Time Quantum

The simplest way to increase the reuse of cache data is to use a standard scheduler but increase the
nominal time quantum of the machine. This strategy is the converse of attached scheduling—it
tries to extend the effective time slice of processes without limiting process migration.

Figure 4.5 shows the performance of the standard scheduler with time quanta of 100 mil-
liseconds, compared to the performance of affinity scheduling. We see that the workloads all run
slower with 100 ms time quanta than with affinity scheduling. In many cases, they run slower
than with 30 ms time quanta and standard UNIX scheduling. If we look again at Table 4.2, we

38 CHAPTER 4. CACHE AFFINITY

||0

|20

|40

|60

|80

|100

|120

 N
or

m
al

iz
ed

 T
im

e
(%

) Attached

93 95 98 95 90
100

84
95

100 96 100
93 96

90

119

90

104
92

102
93

LO LM OC OM LOC LMC LOP LMCP LOMC LOMCW

 Affinity

Figure 4.4: Performance of workloads under attached scheduling and affinity scheduling, nor-
malized with respect to standard UNIX performance.

see the reason for this. For five of the six applications, less than 30% of the dispatch intervals
are halted by time quantum expiration, with only a 30 ms time quantum. Increasing the time
quantum does not help most of the applications. It additionally causes problems for blocking
processes, since when a blocking process resumes it may be forced to wait longer to execute.

||0

|20

|40
|60

|80

|100

|120

 N
or

m
al

iz
ed

 T
im

e
(%

) 100ms
110

95 98 95
101 100

105
95

101 96 96 93
104

90
98

90

104
92

102
93

LO LM OC OM LOC LMC LOP LMCP LOMC LOMCW

 Affinity

Figure 4.5: Performance of workloads with 100 millisecond time slices, and with affinity, nor-
malized with respect to standard UNIX performance

4.4 Discussion and Related Work

The results we gathered are dependent on the nature of the machine being used. The Silicon
Graphics machine has two data caches, a primary and a secondary, that are fairly close in size
(64 Kbyte and 256 Kbyte) but not in speed (1 cycle and 14 cycles). This means that well-tuned
applications will solely use the primary cache. In fact, all of our applications exceptMP3D

4.4. DISCUSSION AND RELATED WORK 39

and Pmake use the primary cache, and neither of those exceptions makes efficient use of the
secondary cache. Although the primary cache is fairly large, it is small enough that refilling it
every time quantum does not severely hurt performance.

The advantages of affinity scheduling would also be more pronounced on a machine with
longer miss latencies. This is particularly true of the new generation of NUMA machines, where
the miss latency varies and can be very long for remote misses. For example, on the cluster-based
DASH machine developed at Stanford [24], a miss that is not filled by the secondary cache can
take as long as 130 processor cycles. As the latency increases, the time taken to fill the cache
increases, and thus affinity becomes more important. On these machines, issues of geographical
affinity for a processor also come into play.

A number of other researchers have studied affinity scheduling using a variety of techniques
and environments. However, few of these studies have made a detailed study of the benefits
of affinity scheduling on a real multiprocessor with real applications. As a consequence, while
their results are more broad-based, they do not consider many of the subtle issues and complex
interactions of application, architecture, and scheduler discussed here. Squillante and Lazows-
ka [41] measure response time under different affinity-based scheduling policies. Their results
suggest that affinity scheduling provides substantial benefits. However, their results are based
on analytical calculations with simple machine and application models, rather than a real im-
plementation. Another analytical study was done by Squillante and Nelson [40] studying the
effects of migrating processes between processors. They conclude that unconditionally fixing
processes onto processors, while allowing processes to reuse more cache state, causes too much
load imbalance which results in fairness problems and idle time.

Mogul and Borg [30] used address traces of a variety of real applications to study the po-
tential for cache reuse. They found cache reload overheads of up to 8%, depending on the
workload. In contrast to our studies, however, their study was confined to process switching on
a single processor. Their conclusions were also based on the use of a fairly short 16 ms time
quantum. Trace-driven simulations of real applications on a multiprocessor by the author along
with Gupta and Urushibara [18] similarly point to small benefits of affinity, but again a small
time quantum was used (10 ms). Also, I/O and other load variations were not considered. A
study by Devarakonda and Mukherjee [10] evaluated the performance of a real implementation
of cache affinity on a multiprocessor, but used synthetic workloads. Their results suggest that
implementation issues and workload choice can have a large impact on the measured performance
of affinity scheduling, but the synthetic nature of the workloads means that the complex facets
of real applications were missed.

One study that did measure real applications on a real system, by Thakkar and Sweiger [42],
looked only at the performance of a database system under an extreme form of affinity. They
studied a database application with 12 to 24 processors, running with attached scheduling. They
found a significant amount of cache state lost due to cache migration, and simply attaching
processes to processors improved performance significantly. While our results disagree on the
effectiveness of attached scheduling, the difference may be due to the larger number of proces-
sors they use, which cause problems with bus contention. The bus contention increases miss
latency, increasing the potential for gains from affinity. Vaswani and Zahorjan [46] also used
real applications and a real implementation of cache affinity. They found that due to the relative

40 CHAPTER 4. CACHE AFFINITY

infrequency of process preemption, benefits were minimal. However, the results were based sole-
ly on scientific workloads and on aspace-sharingscheduling system that partitions processors
among applications, similarly to process control. The overall effect of the scheduler is to provide
very long (over 300 ms) effective time slices even without affinity, so the small gains for affinity
scheduling with scientific workloads are understandable.

4.5 Conclusions

In this chapter, we explored the benefits applications can achieve through the use of cache
affinity scheduling. We found several characteristics inherent in applications that influence their
potential for benefits: the amount of cache data an application reuses, the time its processes run
continuously on a processor, and the frequency and duration of process blocking. We also found
important characteristics of the ways applications interact when run concurrently in a workload:
the effective time slice of their processes and the effect of other applications in the workload in
removing data from the cache. We studied realistic workloads from a variety of domains and
found that while moderate gains are possible, few have characteristics that allow for large gains
from exploiting cache affinity.

We found that a simple and efficient modification to a standard UNIX scheduler, discourag-
ing process migration and extending the effective time slice of processes, accomplishes affinity
scheduling without load imbalance or fairness problems. The implementation improves the per-
formance of our workloads by up to 10%, fulfilling most of their potential for benefiting from
affinity. A small perturbation to the process priority was found to be sufficient (and even desirable)
in attaining this performance.

We compared affinity scheduling to even simpler approaches for achieving this potential,
namely permanently attaching processes to processor and extending the system time quantum.
Although attached scheduling created too much load imbalance to be useful, extending the time
quantum did work as well as affinity scheduling for most workloads. The exceptions are appli-
cations with processes that run only a short time before blocking and benefit from a reduction in
process migration.

In the past, there has been some question as to the usefulness of providing affinity scheduling
in an operating system. Based on the findings in this chapter, we conclude that affinity scheduling
is a worthwhile addition to a standard scheduler. While few workloads are able to benefit sub-
stantially from exploiting cache affinity, affinity scheduling can be easily implemented, provides
moderate gains for some applications, and does not hurt the performance of other workloads. In
upcoming chapters, we will explore the effect of more radical changes to the scheduling system.

Chapter 5

Gang Scheduling

5.1 Introduction

In the previous chapter, we discussed trying to increase performance in multiprogrammed systems
by scheduling using cache affinity. In this chapter, we will study another approach that tries
to solve a related problem occurring in these systems. That problem is the synchronization
inefficiencies that arise when processes of an application are not scheduled simultaneously. If a
running process needs to communicate or otherwise synchronize with another process that is not
also running, the delay involved may be substantial. Even when the applications use blocking
or two-phase synchronization, the direct and indirect overhead from the increased context-switch
rate (caused by increased blocking) can be substantial. Thegang schedulingapproach tries to
avoid these costs by increasing the likelihood that if one process from an application is scheduled,
all other processes from that application are also scheduled at the same time.

Chapter 3 found that little performance loss can directly attributed to synchronization prob-
lems when using applications with two-phase locks. However still, we study gang scheduling for
several reasons. First, gang scheduling has been proposed by others as a solution to multipro-
gramming problems. We wish to compare the performance of gang scheduling to that of other
scheduling policies on an equal basis, using the same machine and set of workloads. Second, we
wish to perform a thorough evaluation of gang scheduling across a variety of multiprogrammed
workloads; previous studies have done very little evaluation. Finally, although our implemen-
tation uses an approach similar to a prior implementation, we consider additional issues not
considered in the prior work. As in Chapter 4, we wish to minimize changes to the standard
UNIX scheduler, and preserve fair allocation of processor time and reasonable response time.

5.2 Previous Approaches

Gang scheduling was first proposed by Ousterhout as part of the Medusa project at Carnegie-
Mellon University [31]. Ousterhout proposed several means of scheduling processes to achieve
the desired goal. These approaches were later expanded on and used in several other systems [13,
14, 8, 35]. We will first discuss these approaches, then describe our approach to the problem and

41

42 CHAPTER 5. GANG SCHEDULING

how it differs from the previous work.

5.2.1 Medusa

The basis for gang scheduling is the scheduling system proposed by Ousterhout for the Medusa
operating system used in the Cm* project at Carnegie-Mellon University. Ousterhout suggested
that one performance problem on parallel machines is that processes often form cooperative
groups, and a running process often wishes to communicate with another in its group that may
not be running. If the scheduler could be forced to schedule all processes from the same group
simultaneously, this problem would become much more rare. This form of scheduling was called
coscheduling. (“Coscheduling” and “gang scheduling” are often used interchangeably in the
literature. This thesis uses gang scheduling as that seems to be the preference of more recent
authors. This should not be confused the use of gang scheduling by other authors [4] to refer to
dedicating a “gang” of processors to a single application until that application completes.)

Ousterhout proposed several methods for implementing gang scheduling on a multipro-
grammed system. The simplest was thematrix method, wherein processes are scheduled based
on their placement in a matrix, with rows representing time slices and columns representing pro-
cessors. The scheduling algorithm places a group of processes on the first row in which they fit.
The system then does round-robin scheduling through the rows of the matrix, with each processor
scheduling the process in the column that corresponds to it. If a process blocks before the end
of the time slice, or if a matrix entry is unfilled when its row is scheduled, the next process in
the same column is scheduled. An arbitrary process cannot be selected since Medusa does not
allow processes to migrate between processors once they have been scheduled.

Ousterhout referred to the proportion of time a scheduler spends running all processes
from a parallel application simultaneously as the scheduler’scoscheduling effectiveness. As
the coscheduling effectiveness drops, so too do the potential benefits from gang scheduling. One
problem with the matrix method is internal fragmentation. If the number of processes used by
applications does not always match the number of processors, there will often be rows that are
only partially filled by a single application. Unless another application is later created that fits in
the remaining portion of the row, many matrix entries will be empty. While processors can always
search for another process to run when a matrix entry is entry, the coscheduling effectiveness is
reduced and load balancing problems are more likely to occur.

Ousterhout proposed two other methods for combating this problem, thecontinuousmethod
and theundividedmethod. The continuous method tries to avoid internal fragmentation by using
a continuous array of processor scheduling slots, rather than a matrix with rows and columns.
An application’s processes are then placed in the first set of available slots that could be enclosed
within a single “window” as wide as the number of processors in the system. The kernel
schedules processes by successively sliding this scheduling window to the beginning of the next
application that has not had all of its processes run. Processors schedule the processes within
the current scheduling window. The undivided method is similar, but only places an application
into contiguous scheduling slots. Both of these approaches reduce internal fragmentation, but
have problems with external fragmentation and did not perform better in simulated experiments.
The simplicity and effectiveness of the matrix method have made it the most commonly used

5.2. PREVIOUS APPROACHES 43

approach, both in Medusa and in modified forms in later systems.

5.2.2 Psyche

The Psyche project at the University of Rochester also looked into implementing gang sched-
uling [8, 9]. The Psyche implementation was based on Ousterhout’s matrix method, but made
several changes to make it more effective on real machines. The foremost variation was the
method for coercing processors to select processes from the same application. Instead of forcing
the scheduler to explicitly select process from a matrix row, as in Medusa, the Psyche system
simply raises the priority of the processes in the appropriate row. Each processor then automati-
cally schedules the gang-scheduled process on its queue. (Psyche has per-processor queues since
the costs of migrating processes on the underlying machine, the BBN Butterfly, are high.) This
has the advantage that if important system processes are waiting to run, they are scheduled in
favor of a gang-scheduled application process. Also, if a gang-scheduled process blocks, the
scheduler automatically schedules the next-highest priority runnable process on the local queue.
This approach also involves no changes to the low-level process scheduler.

5.2.3 Other Approaches

The Silicon Graphics IRIX operating system [35] used on the machine used for experiments in
this thesis provides another, simpler, approach to gang scheduling. Under IRIX, applications can
either be gang-scheduled or non-gang-scheduled. Whenever a processor picks a process from a
gang-scheduled application, it sends an interrupt to all other processors indicating that they should
also start running processes from this application. A processor responding to such an interrupt
attempts to schedule such a process if several conditions are satisfied (for example, if the current
process that is scheduled on it has been running for at least 20 ms). While this allows gang-
scheduled and non-gang-scheduled applications to coexist, the coscheduling effectiveness is not
very good due to the frequency at which interrupts are generated. Whenever a gang-scheduling
process blocks and a process from another gang-scheduling application is scheduled, interrupts
are sent out that may cause some processes to be preempted while others are not. Also, the
excessive number of interrupts can add substantial overhead to the system. We will look further
into the performance of the SGI implementation in Section 5.4.

Feitelson and Rudolph [14] also investigated gang scheduling, in a somewhat different envi-
ronment. They were interested in using gang scheduling in a hierarchical fashion on distributed
machines. They point out the possibility of contention with a centralized gang scheduling system,
and organize their gang scheduler in a distributed fashion. The machine is conceptually struc-
tured into a binary tree, where the leaves represent processors or clusters of processors. Each
interior node of the tree contains a process scheduler. An application is placed in the smallest
subtree in which it fits; that is, where there are enough processors to run all of the application’s
processes simultaneously. Multiple applications within the same subtree are then gang-scheduled.
The idea is to organize the hierarchy to reflect the communication network of the system; pro-
cessors that may communicate quickly can be grouped into the same subtrees. Although this is
an interesting approach to gang scheduling for a distributed system, it would not be effective on

44 CHAPTER 5. GANG SCHEDULING

a closely-coupled system such as the SGI. Since the environment and constraints of their system
are substantially different than those of our system, we will not investigate their approach further.

5.3 Proposed Design and Implementation

Our solution to the problem of gang scheduling is similar to the Psyche approach. As in Medusa
and Psyche, the processes in the system are placed into a matrix, where rows of the matrix
correspond to time slices. Like Psyche, rows of processes are raised in priority to be gang-
scheduled, but since a global queue is used the processes are selected in order of their relative
priority. Unlike the earlier systems, though, the column a process is placed in has no significance;
any process from a given row may run on any scheduling processor. Although this results in
additional process migration, we saw in Chapter 4 that this has little effect on performance.
This form of gang scheduling could also be combined with the affinity scheduling described in
Chapter 4 to minimize process migration without load balancing problems.

Another difference between our system and Psyche (and Medusa) is that no explicit infor-
mation from the application is needed. In Psyche, a parallel application must inform the kernel
of the number of processes it will be using. The kernel then reserves a corresponding number
of slots in a row of the scheduling matrix. We avoid the necessity of modifying applications by
automatically adjusting as an application that was previously thought to be serial indicates that
it is parallel by spawning processes.

Our scheduler works as follows. We maintain a two-dimensional linked list of applications.
Each application contains one or more processes, and the number of processes can change dy-
namically. Each “row” of the linked list represents applications whose processes will have their
priorities raised for a period of time. The system then reduces the priority of those processes and
applications to the values their original values (plus or minus any priority changes that would
have normally occurred during that time period), and raises the priorities of the next row. Each
row contains one or more applications whose total number of runnable processes does not ex-
ceed the number of processors in the system. Although normally there will only be one parallel
application per row, there may be more than one if each uses only a small number of processes,
or serial applications may be combined with parallel applications that do not fill the system. We
call this data structure a “matrix” to match Ousterhout’s terminology, even though the number of
rows is variable and the “columns” are organized by application, not by processor.

When an application is created, it is assumed to be serial and is placed wherever there is an
empty space in the matrix (where there is a row that is not yet full). If the application is in fact
parallel, it will create new processes. When the row an application was placed in becomes too
full due to new processes, it is moved to a newly created row. We create a new row rather than
trying to find an existing row with enough room since we want to avoid moving the application
too much (making a succession of moves as each row becomes too full), and we assume most
parallel applications will use most or all of the system. In larger systems, this may not be the
case and we may wish to vary the scheduling policy accordingly. When an application finishes
executing, its processes are removed from the matrix, and its row is removed if it is now empty.

As Ousterhout found with the Medusa system, the matrix may become fragmented into

5.4. PERFORMANCE ANALYSIS 45

many unfilled rows as applications of different sizes enter and leave the system. Although this
does not result in idle processors, since empty space on a row simply means some processors
run processes that are not currently coscheduled, this does reduce the effectiveness of gang
scheduling by reducing the amount of time applications spend coscheduled. To solve this problem,
we periodicallycompactthe matrix, moving multiple applications onto the same row whenever
possible. We do this by creating a new, empty matrix and placing applications in the new matrix
in order of their number of processes, largest first. We then switch to using the new matrix in
favor of the old one.

We think that this approach provides a simple yet effective approach to gang scheduling.
The scheduling system requires no intervention from the user level and thus no modifications
to existing applications. The scheduler coschedules parallel applications while still scheduling
processor time for serial applications. While response time for interactive and I/O-bound appli-
cations may suffer slightly while coscheduled applications are executed, they are explicitly given
processor time in the matrix, and even preempt gang-scheduled compute-bound processes if their
priorities are sufficiently high (as is typically the case with intermittently executing processes).
The compaction algorithm provides a necessary adjustment of the matrix, periodically moving
applications to maximize coscheduling.

5.4 Performance Analysis

To measure the performance of gang scheduling for multiprogrammed applications, we measured
the execution time of the suite of workloads. We used two forms of gang scheduling: the
standard SGI implementation, and our method described in Section 5.3 (referred to henceforth as
the “Stanford” implementation). Figure 5.1 shows the performance of the workloads with both
gang schedulers, normalized with respect to the performance with the standard UNIX scheduler.

||0

|20

|40

|60

|80

|100

|120

 N
or

m
al

iz
ed

 T
im

e
(%

) SGI

97
92

98
104 107

85

100 97
103 100 100 101 101 97

107
99 101

95 100 99

LO LM OC OM LOC LMC LOP LMCP LOMC LOMCW

 Stanford

Figure 5.1: Performance of workloads under the SGI and Stanford implementations of gang
scheduling, normalized with respect to standard UNIX performance.

We can make several observations from this data. First, we see that the SGI implementation of
gang scheduling has poor performance. In only three of workloads is the performance better than

46 CHAPTER 5. GANG SCHEDULING

that of the standard UNIX scheduler; in the rest the SGI gang scheduler is worse. This is because
of the excessive interrupts discussed in Section 5.2.3. We found that when three gang-scheduled
applications were run simultaneously, the coscheduling effectiveness of the SGI implementation
was only 12%. Moreover, gang-scheduling interrupts were generated approximately once every
5 ms. Given that the cost of sending and receiving an interrupt is approximately 100�s, this
implies an overhead of 2%. The low effectiveness combined with the interrupt overhead made
the SGI gang scheduler perform worse than even the standard scheduler.

The Stanford gang scheduler, on the other hand, is much more effective. Figure 5.2 shows
the coscheduling percentage for each workload, both for a normal UNIX scheduler and for the
gang scheduler. As the table shows, the standard scheduler results in very low values, all under
10%. On the other hand, the gang scheduler is very effective when only parallel compute-bound
applications are running, with percentages in the 70–90% range. Gang scheduling is more difficult
for workloads that includePmake; while full coscheduling is much more common than with a
standard scheduler, the percentages are still only about 40–50%. The I/O-intensive nature of
the Pmake processes tends to disrupt gang scheduling, since I/O-bound processes often have
high enough priority to interrupt priority-boosted (coscheduled) compute-bound processes. The
Stanford gang scheduling implementation also has much lower direct overhead than the SGI
implementation, since interrupts are be sent out only when the “row” being coscheduled changes.
In our implementation this was every 30 ms, and could be set to much longer. The resulting
overhead, with the same assumptions about interrupt cost, is only 0.3%.

||0

|20

|40
|60

|80

|100

 C
os

ch
ed

ul
in

g
E

ff
ec

tiv
en

es
s

(%
) Std. UNIX

2

93

2

92

4

83

4

91

0

89

7

89

2

39

7

52

11

76

7

73

LO LM OC OM LOC LMC LOP LMCP LOMC LOMCW

 Stanford Gang

Figure 5.2: Coscheduling percentage for Stanford gang scheduler as compared with standard
UNIX scheduler.

While the coscheduling percentages of the workloads are vastly increased with gang schedul-
ing, we see that the performance is improved only slightly. The best performance was achieved
by workload OC, which were sped up by 15%. The improvement of the other workloads was
below 10%, with a couple even performing slightly worse with gang scheduling. Average im-
provement, using the geometric mean of the workloads, was only 3.5%. By looking at the
performance of individual applications within the workloads, we have found that the execution
times of LocusRoute , Ocean, and Water are improved by gang scheduling.Cholesky ,

5.5. CONCLUSIONS 47

MP3D, and Pmake, however, appear not to benefit (although they may execute faster in some
workloads, this can be attributed to the increase in available CPU time when other applications
in the workload complete executing more quickly). When the first three applications form the
majority within a workload, the performance gains with gang scheduling are good (if small);
when the latter three applications form the bulk of the workload, the gains are poor.

The poor performance ofPmake is expected, and can be attributed to a slightly slower
response to I/O completion under gang scheduling. A process that has just become ready to
execute due to I/O completion has to compete with processes with boosted priority (the currently
coscheduled row) for processors. This could be easily addressed by tuning the priority system to
decay priorities more slowly, giving I/O-bound jobs more weight. The result is better performance
for the Pmake application and slightly poorer performance for simultaneously running CPU-
bound applications.

The question remains of why gang scheduling does little forCholesky and MP3D. The
answer is similar to the reason they did not benefit greatly from affinity scheduling in the previous
chapter. Both applications have little reuse of cached data across dispatch intervals. As we saw
in Chapter 3, with two-phase locks, the main benefit of gang scheduling is reducing the context-
switch rate. Since with these applications the cost to reload data into the cache after a context
switch is low, the only benefit of a reduced context-switch rate is the negligible direct cost of
context switches.

5.5 Conclusions

This chapter examined the benefits of using gang scheduling to address synchronization prob-
lems in multiprogrammed systems. A number of previous researchers have implemented gang
scheduling systems. One such implementation, developed by Silicon Graphics, was tested and
found to be ineffective at coscheduling parallel applications.

The Stanford implementation, introduced in this chapter, borrows from the original gang
scheduling work by Ousterhout and later enhancements in the Psyche project. This approach
adds the option of process migration to increase coscheduling effectiveness, and includes a more
sophisticated policy for dealing with serial, interactive, and I/O-bound applications. The im-
plementation was developed with the goal of increasing performance while retaining reasonable
response time and fair allocation of processor time, while at the same time adding minimal
complexity to the standard scheduler.

The performance of this gang scheduler was evaluated using the same workload set and base
machine as the cache affinity scheduler in Chapter 4. The scheduler was found to be effective at
coscheduling parallel applications with low overhead. However, the performance of workloads
improved only slightly. Applications that were most sensitive to context-switching behavior
improved the most. Applications that were not sensitive to context switching, including parallel
applications with very small data sets, those with very large data sets that cannot fit in the cache,
and serial applications, were unaffected. The result was an average performance improvement of
3.5% when using gang scheduling.

While this small improvement may not be worth the additional scheduling complexity required

48 CHAPTER 5. GANG SCHEDULING

for gang scheduling, it should be noted that the applications used were not very amenable to
improvements from gang scheduling. As pointed out in Chapter 3, applications using two-phase
synchronization do not spend a large amount of time spinning waiting for a lock, regardless of
the scheduling policy used. Improved synchronization performance simply reduces the number
of times processes must yield the processor. Applications using solely spinning synchronization,
particularly those not implemented using user-level task-queues (which often block a task and
run another rather than spinning or blocking a process), should attain more benefits from gang
scheduling.

Chapter 6

The Process Control Approach

The previous two chapters examined the merits of cache affinity scheduling and gang scheduling
under a multiprogrammed workload. Both approaches involve only slight changes to the operating
system kernel and no involvement at the application level. The modified schedulers generally
provided small but positive improvements in the performance of applications. In the next two
chapters, we will discuss and study a more radical approach that involves cooperation between
the application and kernel.

In a basic sense, the concept of process control introduced in Chapter 1 is fairly simple. When
an application is executed, a set of processors are assigned to it. The application is informed of
the number of processors that have been assigned to it, and other applications from which the
processors were taken are similarly informed of the loss of processors. All applications concerned
(if they support process control) suspend or resume processes as appropriate so that the number
of runnable processes matches the number of processors assigned to them.

While the process control approach is simple and intuitive at a conceptual level, its effective
implementation requires addressing a large number of subtle issues. This chapter discusses some
of these issues and describe the solutions we have adopted. It first discusses how applications
may dynamically change the number of processes they are using. It then considers the problems
associated with the implementation of process control in these applications, and the interaction
necessary between the application and the operating system. It also discusses the policy deci-
sions involved when partitioning processors among the applications, and techniques to ensure
reasonable response time for interactive applications. It concludes with an example illustrating
how the process control approach works on a real system, and a discussion of related work. The
next chapter continues with an analysis of the performance of process control as compared to the
standard UNIX scheduler and to the scheduling policies discussed in Chapters 4 and 5.

6.1 Application Programming Model Issues

Since the process control approach requires dynamic adjustment of the number of runnable
processes in an application, a fundamental question that arises is what programming models allow
this sort of dynamic adjustment. For example, a suitable programming model should be able to

49

50 CHAPTER 6. THE PROCESS CONTROL APPROACH

effectively utilize newly created processes, or previously suspended processes that are resumed
at some point in time. Likewise, to support process control transparently to the applications
programmer, the programming model should make it easy to determine when a process can be
safely suspended, that is, suspended without potential starvation, loss of data, or significant loss
of efficiency.

There are two ways in which the issue of safe suspension can be approached. Process
suspension can either beavoidedexcept when it may be clearly seen that it is safe, or the normal
suspension can occur unhindered but arecoveryprocedure must be invoked if the suspension
was performed at an unsafe point. The recovery procedure may consist of resuming the process
until it reaches a safe suspension point, then suspending it again and continuing. The advantage
of the avoidance-based approach is that it ensures correctness regardless of the synchronization
mechanisms that are used in the application. The advantage of the recovery-based approach is
that it generally allows processes to be suspended more promptly; on the other hand, it must be
able to recognize the synchronization mechanisms used in case it suspends at an unsafe point. We
chose the more conservative avoidance approach. Other work, to be discussed in Section 6.5.1,
looked at the recovery approach, constraining synchronization to simple lock-unlock pairs.

Although the problem of determining safe suspension points is intractable for arbitrary parallel
applications, the problem is fortunately simple for the large class of applications that use atask-
queuemodel. In this model, applications are broken up into a number of tasks, and server
processes repetitively select tasks from a queue and execute them. In these applications, a server
process can safely suspend itself after it has finished executing a task and before it has selected
another task to execute. A server process can also safely suspend itself before it has finished
executing a task, as long as it places that task back on the task queue and it makes sure that the
task is not inside a spin-lock controlled critical section. Furthermore, resumed or newly created
processes can do useful work immediately by simply picking tasks from the task queue and
executing them.

Since task-queue based models are widely used to implement parallel applications on shared-
memory architectures, the applicability of process control is quite large. For example, one can
find several programming languages with runtime systems based on the task-queue model [6, 16,
19, 22], and consequently all programs written in these languages follow the model. Similarly, all
applications written using threads packages [1, 7, 11] follow this model, as do many independently
written applications [17, 32, 39]. In these cases, process control can be added to the library or
runtime system without changing application programs at all. Finally, the process control model
can also be made to work for other programming paradigms that do not follow the task-queue
model, though this requires extra support from the compiler or the programmer to identify safe
suspension points. Appendix A describes the interface to a library that can be used to add process
control to an application or runtime system with a minimum of changes.

Added complications arise in implementing process control for applications with varying
amounts of parallelism. If an application cannot use all of the processors it is allocated, it should
release the unused processors for the use of another application. In a task-queue based application,
processors may be released via a system call when a process cannot find a task to run on the
task queue. Processors may be recovered, via another system call, when new tasks are placed
on the task queue. Like process suspension, this can be encapsulated within a library or runtime

6.2. KERNEL-APPLICATION INTERACTION 51

system, transparently to the application programmer.
For our implementation, we have added process control to the runtime system of COOL [6], a

task-queue based object-oriented programming language. To ensure safe suspension, we suspend
a server process only when its task has finished or when its task blocks on a blocking syn-
chronization primitive.1 Processes can be created or resumed asynchronously without restriction.
Using the library routines in Appendix A.2, less than 100 lines of additional code were needed
(mostly to handle the complexities of COOL’s task-queue system).

6.2 Kernel-Application Interaction

Although applications using the task-queue or threads model allow the use of dynamic process
control, the question still remains of how this control is to be implemented and how the respon-
sibility of process control is to be distributed between the operating system and the application.
In particular, the following issues need to be addressed:

� What system-level events should the applications be informed about to support process
control?

� How are these events to be communicated to the application, given that they may occur
asynchronously with respect to the application?

� Given the goals of process control, how should applications safely and efficiently respond
to relevant events?

� How can the above mechanisms be implemented without incurring significant overheads
and without radically changing currently prevalent operating system environments?

In this section we discuss the various tradeoffs that are involved in resolving these issues, and
present the specific solutions that we have adopted in our implementation. Appendix A describes
the exact interface implemented. Note that in the following discussion when we refer to an
“application” implementing some facet of process control, we really mean the runtime system of
the programming language or the threads package used by the application. In general, we expect
all aspects of process control to be totally transparent to the applications programmer.

6.2.1 Identifying Relevant Events

In order to make use of process control, applications must be informed when events occur that
may affect the number of processes they should be using. These events include kernel-controlled
changes in the number of processors assigned to an application, as well as suspension and
resumption of application processes on kernel semaphores. The latter includes blockages due to

1Note that the blocking synchronization primitives are at the level of the programming language and not at the
kernel level. That is, when a task blocks, that task is put on a wait queue, and the server process picks another task
from the task queue. It is not the case that the server process is blocked on some kernel queue and another process or
kernel-level thread is run on that processor.

52 CHAPTER 6. THE PROCESS CONTROL APPROACH

I/O transactions. As we will discuss in the next subsection, applications respond to these events
by suspending and resuming processes as appropriate. First, though, since processing of events
incurs costs, we need to determine which of the above events are truly relevant, i.e., require some
action to be taken by the application to ensure good performance, and which are only marginally
relevant and may be filtered away.

In general, the relevance of events depends on (i) the nature of the application (some appli-
cations may be better able to tolerate excess processes than others), (ii) the nature of the parallel
machine (some machines may have higher penalties for poor cache hit rates than others), and
(iii) the duration for which the mismatch between the number of processes and processors is
expected to last. We consider events that cause a longer term mismatch to be more relevant than
those that cause a short term mismatch. The tradeoff here is that if a process blocks only for
a short duration, it may be better to let a processor remain idle than to resume another process
in its place. The resumed process will probably suffer from poor processor utilization since its
working set will not be in the cache, and it may also destroy the data cached by the blocked
process. On the other hand, if the process blocks for a longer duration, the idle processor will
result in lower performance than if a new process was created.

Even when the relevance of events is known, there still remains the question of where to filter
out the events. The events may be filtered by the kernel before they are sent to the application,
or they may be filtered by the application before any action is taken on those events. Significant
flexibility is obtained by having the kernel communicateall events to the application, and having
the application filter events. In this way, even if different applications (runtime systems of
different programming languages) find different types of events relevant, they can all share the
same kernel interface. The disadvantage of filtering at the application level is higher overhead.
For example, if the application is informed about the asynchronous events via UNIX signals,
the excess cost of sending and processing signals for irrelevant events may be non-trivial. The
most efficient approach is to have the kernel filter system-level events, and only communicate
those events that will be acted upon. This, however, forces the application to rely on the filtering
provided by the kernel.

The approach we have chosen is as follows. The kernel always informs an application when
the number of processors assigned to it changes, since these are expected to be long duration
events. (As will be discussed in Section 6.3, changes are expected to happen primarily when
new parallel applications enter the system or old ones finish.) However, for blockages on kernel
semaphores, the kernel decides whether or not to communicate an event based on the duration
for which that particular type of semaphore is expected to block. Events corresponding to short
duration semaphores, such as reads from the disk buffer cache in memory, are filtered out by
the kernel. Events corresponding to longer duration semaphores, such as actual disk accesses,
are communicated to the application. Sometimes the duration for which a process blocks on a
semaphore may be highly variable, for example, on semaphores associated with a UNIX pipe.
In such cases, it would be best to send an event to the application only after some additional
state regarding the semaphore has been checked. In our current implementation, however, we do
not exploit this optimization, and the kernel communicates such events anyway. The application
then does further filtering, particularly in the case where two events that are close together cancel
each other’s effects.

6.2. KERNEL-APPLICATION INTERACTION 53

6.2.2 Communicating Events to Applications

Another important issue is how an application should be informed about relevant events; that is,
how it is informed when a processor is taken away from it, or an extra processor is made available,
or a process blocks on I/O.2 The two factors that influence the choice of the mechanisms used
are (i) response time, that is how quickly the application is made aware of relevant system-level
events, and (ii) communication overhead, that is the computational cost of communicating the
events. There are two main choices for mechanisms; the kernel could asynchronously inform
applications when a relevant event occurs, or the applications could synchronously poll the kernel
checking for relevant events.

The role of the kernel is obvious in providing quick response time to events, since the kernel
knows exactly when processor assignments are changed, or when a process blocks on some
kernel semaphore. It is not possible for application-based polling to be competitive in this regard
[45]. The primary drawback of the kernel asynchronously signaling the application is the high
overhead associated with signal handling. In contrast, polling can be made quite cheap by having
a shared data area between the application and the operating system where relevant events are
recorded. As a result, it appears that when response time is critical, kernel-based signaling would
be the mechanism of choice, but when some slack can be tolerated, polling may be best to reduce
overheads.

In determining the type of communication necessary for process control, we consider the
conditions under which it is important that an application receive and respond to events quickly.
Relevant events can be broken down into two types, those that indicate that the application should
decrease its number of processes (suspend a process) and those that indicate that it should increase
its number of processes (resume or create a process). In the former case, the cost of a delay is
frequently small. Although it results in excess processes for a brief time, the processes can be
simply scheduled onto the processors in a round-robin manner, and continue to do useful work.
This is especially true for applications using two-phase rather than spinning synchronization
primitives [18]. If the number of runnable processes isless than the number of processors,
however, one or more processors will sit idle. Although this may be reasonable for very short
periods to avoid excess context switching, any long idle time will result in performance loss.

Also, regardless of how quickly an event is communicated to the application, the application
may have to delay in responding to it. This is particularly true of “suspend” events. The
application must wait until a process reaches a safe suspension point before responding to the
event by suspending a process. “Resume” events, however, can be acted upon immediately, by
creating a new process or resuming a previously suspended one.

Based on the above considerations, in our implementation we chose to have the kernel signal
an application when an event occurs that indicates the application should increase the number of
processes it is using. The application can then immediately create a new process or resume a
previously suspended one, as appropriate. When the application should decrease the number of
processes it is using, however, we do not send a signal. Instead, each process polls the kernel

2Note that these events (aside from blocking on I/O) are asynchronous to the execution of the application. For
example, the kernel may take a processor away from an application any time it considers appropriate, without regard
to the current execution state of the application.

54 CHAPTER 6. THE PROCESS CONTROL APPROACH

whenever it reaches a safe suspension point. Since polling in our implementation is much cheaper
than sending and receiving signals, this reduces the cost of communication by almost one-half
without affecting the response time of the application to such events.

At a more detailed level, the interaction between the kernel and the application takes place as
follows. To communicate process control related information, the kernel and the application use a
shared counter (one per application) that resides in the kernel address space. This integer counter
is read-only for the application and reflects changes in the number of processes the application
should have active (as per the process control philosophy). Whenever the kernel observes a
relevant event, it suitably updates this counter. If the event was one that increased the value of
the counter, indicating that the number of processes should be increased, the kernel sends a signal
to the application indicating that action needs to be taken. On receiving the signal, or on reaching
a safe suspension point, the application reads the kernel counter, and takes whatever action is
necessary. The application bases its action on the change in the value of the kernel counter since
it was last read by an application process. The application process simply compares the current
value of the counter to the old value that had been recorded earlier, suspending processes if the
current value is smaller than the old value and resuming or creating processes if the current value
is larger.3 It is not necessary for the application to modify the kernel counter, which avoids
protection problems for the operating system.

The signal is sent by setting a bit in the process control block of one of the application’s
running processes. Since a process normally responds to a signal only when it is returning from a
system call or context switch, we also send a special interrupt to the processor on which the chosen
process is running, thus ensuring quick attention to that signal. There are several reasons why we
use a shared counter instead of directly encoding event information in signals. First, the counter
provides efficient polling of the necessary kernel information, allowing the previously described
optimization of avoiding signals when the counter value is decreased. Second, the shared counter
lets any process reading the counter, not only the one to which the signal was sent, respond to
process control events. This flexibility helps improve response time. For example, consider the
case when between the time the kernel decides to send a signal to a process and the time that
it actually sends it, the destined process blocks. While the destined process can not respond to
the signal until it unblocks, under our approach another process can take the necessary action.
Third, the shared counter helps combine multiple process control events, reducing overhead. For
example, if multiple processes need to be resumed, this can be determined simply by reading the
kernel counter once and computing the difference between the old and the new values. Finally,
we avoided using signals to encode information because under UNIX information may be lost
when multiple signals are sent to the same process. As a result, in our implementation, the role
of the signals is solely advisory. They are there to improve responsiveness, but they do not affect

3For the moment, we assume that applications can make use of any created or resumed processes. In Section 6.2.4
we will consider the problem of applications with limited parallelism.

6.2. KERNEL-APPLICATION INTERACTION 55

the correctness of the process control algorithm.4

6.2.3 Effect of Delays on Performance

Let us now examine the effects on performance of the delays in our system. One cost is that
a newly allocated processor may remain idle because the application has not yet resumed or
created a process. We expect the waste of processor cycles due to this to be small. That is
because (as discussed earlier) our implementation ensures that the signal handler is invoked
quickly by sending an interrupt immediately after sending the signal in such cases. A second
cost is that when a processor is taken away, until one of the application processes reaches a
safe suspension point, we have more processes than processors. If this duration is small, say
because the tasks are reasonably small, then the excess processes may not hurt performance
as all processors can probably continue to do useful work. If the duration is long, however,
the performance may suffer. One problem is that if a process is preempted while it is inside
a spinlock-controlled critical section, the other processes may waste time spinning idly. In our
implementation, we minimize such idle time by always using blocking synchronization primitives
with a small amount of spin time before blocking. By making the spin time before blocking equal
to the context switching time, we can ensure good performance for both short and long critical
sections [18]. However, there still remains the disadvantage of worse cache behavior when there
are excess processes. The negative impact of this factor is reduced in our implementation due
to processor partitioning — since all processes within a partition are from the same application,
they often have a significant amount of shared data.

We now examine some benefits of having a small delay between process control events and
the corresponding actions. As was stated earlier, the duration for which a process blocks in the
kernel is frequently unpredictable. Because of the unpredictability, process control signals are
sent to applications for many short-duration blockages. In such cases, instead of immediately
resuming a process in response to an initial blockage and then suspending one when the blocked
process soon wakes up, it would be better if no action were taken. This would minimize the
overheads of resumption and suspension and those of cache corruption. The implicit delays that
are present in our system help performance in these cases. As an example, recall than when a
process blocks in the kernel, the shared counter is incremented and a signal is sent to one of the
other processes of that application to take action. If the blocked process resumes quickly, then
by the time that the signal handler is run, the kernel may have already decremented the counter
again. As a result, the signal handler will find the value of the kernel counter unchanged, and as
desired, no action will be taken. Similarly, consider the case where an application has been asked
to suspend a process. Now the application can not respond to this command until one of the
processes reaches a safe suspension point. If during this time, the kernel counter is incremented

4A complication arises when the only running process of an application blocks on a kernel semaphore. As described
so far, the kernel would find no other process belonging to that application that it can inform to create or resume a new
process. For the duration of the blockage, all processes of the application are blocked and any processors assigned to
the application are idle. To avoid this, the kernel temporarily wakes up the blocked process and send a signal to it
indicating (via the shared counter) that the number of processes should be increased. After creating a new process or
resuming a previously suspended one (if appropriate), the signal-handling process returns to its former blocked state.

56 CHAPTER 6. THE PROCESS CONTROL APPROACH

(say because another process blocks on I/O or because another processor has become available),
then the suspension command will be nullified.

6.2.4 Applications with Limited Parallelism

As discussed in Section 6.1, applications sometimes need to inform the kernel that they have been
allocated more processors than they can use. In our implementation, a system call is available
that informs the kernel that the processors allocated to the application should be limited to the
indicated number. Alternatively, it may indicate that the limit should be set to a given number
more or less than the current number of processors allocated. In either case, the new processor
limit for the application is adhered to (fewer processors than the limit may be assigned, but not
more) until the call is made again by the application. In our COOL implementation of process
control, we reduce the maximum number of processes whenever a process cannot find work on
the task queue. We increase the limit when more work is made available via task creation. As
we shall discuss in Section 6.3.2, applications that limit processors in this manner are rewarded
by being able to acquire more processors at a later time, when those processors are needed.

6.3 Processor Partitioning

To make the process control technique usable in realistic system environments, it is important
to have some way of dividing, orpartitioning, the processors in the system among the active
applications. Processor partitioning allows process-controlled applications to be separated from
non-controlled ones, avoiding problems with fair distribution of processing resources. Otherwise,
the non-controlled applications may get an unfairly large fraction of the processing resources.
Another benefit is that since processes running on any given processor are likely to be from the
same parallel application (with common code and shared data), it helps to increase the cache
hit rate, thus increasing processor utilization. Finally, processor partitioning helps avoid the
bottleneck associated with a centralized scheduler with a single run-queue.

As just stated, the processor partitioning approach divides the processors in a multiprocessor
among the applications needing service. This is to be contrasted with most scheduling strategies
that time multiplex the processors among the applications. The basic construct in the processor
partitioning approach is that of theprocessor set. Each processor set consists of a local run-queue
and other related data structures. A high-levelpolicy moduleis responsible for assigning both
resources (processors) and tasks (application processes) to it. Each processor executes processes
that have been assigned to its processor set in a regular time-sliced manner [4], though this can
be changed on a per-partition basis. It is possible to have a processor set with no processors
assigned to it, in which case the processes assigned to it will simply be waiting in the run queue.

The policy module plays a critical role in making processor partitioning effective. For ex-
ample, it must decide when to create or delete processor sets, how to distribute the processors
among the processor sets, and how to assign applications to processor sets. Furthermore, it must
make these decisions in view of higher level goals. These in our case are to provide: (i) fast re-
sponse time for high-priority I/O-bound and interactive applications, and (ii) high throughput for
compute-intensive parallel applications. In the following paragraphs we discuss issues that arise

6.3. PROCESSOR PARTITIONING 57

in the design of processor sets and the policy module. Since the design space is very large, we
use the details of our implementation to make the discussions concrete. Much experimentation,
however, remains to be done in this area.

6.3.1 Grouping of Applications

We first explore the organization of processor sets, that is, how to associate applications with
processor sets. One straightforward solution is to create a separate processor set for each appli-
cation. This approach has two disadvantages. First, the number of processor sets may become
very large, thus greatly increasing the complexity of processor allocation decisions. (Although
the number of parallel applications running at any one time in a typical system may be small,
the total number of applications is often much larger, especially if one includes serial applica-
tions such as compilers and editors and system processes such as network daemons.) Second,
many of these applications may not be able to effectively use even a single processor for the
duration it is allocated to them. An example would be a compiler process that performs a lot of
I/O. As a result, making effective use of processors under this approach requires that processors
be frequently moved between processor sets, which is both inefficient and makes the processor
allocation algorithm difficult.

An alternative strategy is to create one processor set perclassof applications. For example,
we can have one processor set for all process-controlled applications, another for all non-process-
controlled parallel applications, another for compute-intensive serial applications, another for
OS daemons, and so on. As desired, such a strategy avoids the problem of non-controlled
applications grabbing an unfair share of the processing resources. It also has the advantage that
since processors are allocated in larger clumps, there is greater sharing of resources. For example,
if one compiler process is not using a processor due to an I/O blockage, another compiler process
in the same processor set could use it during that time. However, this strategy has the problems
that the set of application classes is quite ad-hoc, and that processor allocation to these aggregate
processor sets, with multiple applications each, is an extremely difficult task.

The approach that we have chosen is in between the above two. Instead of allocating a
processor set for each application in the system, we only allocate processor sets for parallel
applications. All other applications (e.g., network daemons, compilers, editors, etc) execute
within a perpetualdefault processor set. When an application first begins execution, it always
starts in the default processor set. Applications that establish themselves as being parallel are then
migrated to separate processor sets. A processor set is deleted when all processes assigned to it
have completed. The data structures, however, are saved and reused. If the number of processor
sets begins to exceed the number of processors in the system, we assign multiple applications to
the same processor set. Process control signals caused by changes in the number of processors
allocated to a processor set are then sent to all applications in the processor set, so all applications
have the same number of processes. An alternative would have been to continue to assign each
parallel application a separate processor set (thus, some applications may have no processors
assigned to them), letting the processor allocation algorithm ensure that all applications get a
fair share of processors over some longer interval of time. This is also a reasonable option, but
would have degraded response time.

58 CHAPTER 6. THE PROCESS CONTROL APPROACH

6.3.2 Processor Allocation

The next major policy decision is the assignment of processors to processor sets. Our main goal
is to fairly allocate processors among applications, but the existence of serial applications in
the default processor set and parallel applications with varying levels of parallelism makes the
problem more complicated. Our assumption in designing the policy module was that high loads
in the default processor set are often transient, and that handling these loads with high priority
is important to providing good response time. We also wish to reward parallel applications for
limiting the number of processors they use. Finally, we wish to give short-duration applications
slightly higher priority than long-duration applications, since they use up fewer overall resources.

We have devised a priority system for controlling processor allocation that addresses these
issues. This scheme is loosely patterned after the process priority system in a standard UNIX
scheduler (described in Chapter 4.2). Each processor set is assigned aninverse priority, inv prio.
A lower value denotes higher priority, and a higher value conversely denoted lower priority. This
number is adjusted over time, based on the number of processors used by the processor set. A
processor set’sinv prio is initially 0 when an application is first assigned to the processor set,
and is adjusted whenever a new processor allocation is to be made, as follows:

inv prio= inv prio
0
+ nt

whereinv prio 0 is the previous value ofinv prio, nis the mean number of processors that the
processor set has used since the last allocation, andt is the time elapsed since the last allocation.
At periodic intervals, the priority is decayed by multiplying it byc, a preset constant with a value
between 0 and 1, as follows:

inv prio= inv prio
0
c:

Processors are allocated to processor sets in an iterative manner, using the inverse priorities
of the processor sets as follows:

� When allocating a processor, the processor set with the lowest inverse priority is given the
processor. If there is more than one with lowest inverse priority, one is chosen randomly.

� When a processor is allocated to a processor set, the inverse priority of that processor set
is temporarily increased by a constant,s (for the duration of the allocation). That is, if a
processor set has been allocated 3 processors so far in the allocation, its inverse priority is
now inv prio+ 3s for the purposes of further allocation.

� If a processor set has been allocated all processors it is allowed (by a user-defined limit),
it is removed from the pool of sets being considered for further processors. The allocation
continues until all processors have been allocated (if all parallel processor sets reach limits,
extra processors are allocated to the default processor set.)

Thus, given two sets, the difference in their inverse priorities indicates the difference in the
number of processors each is allocated, assuming there are sufficient processors.

The values ofcandsmay be set to control the effect the “history” of a processor set has on its
future allocations. With a high value ofc, prior allocations are reflected in the (inverse) priority

6.3. PROCESSOR PARTITIONING 59

for a long period of time; with a low value, priorities decay quickly regardless of prior usage.
With a high value ofs, priority differences make only a small difference in actual processor
allocation; with a low value, priorities have greater significance. After some experimentation,
we chose the valuesc= :95 ands= 20 as values allowing reasonable behavior; applications are
given some advantage for limiting their processor usage without completely skewing the overall
goals of fairness. We also chose to decay priorities every 300ms.

There still remains the issue of how to treat the default processor set. The problem of
determining how to fairly allocate processor time to both serial and parallel applications has
not been resolved by the operating systems community. Since there may be more than one
application in the default processor set, it has the right to higher priority than other processor sets
containing only a single parallel application. However, those applications are serial applications
and many will be I/O-bound or interactive, so the demands in terms of processor usage of the
default processor set are normally low. Our solution is to treat the default processor set like other
processor sets in processor allocation, except that the constantc used to set the priority is set
to a lower value. This reduces the effect of processor usage on allocation with respect to the
default processor set, effectively giving it higher priority. The number of processors allocated
to the default processor set is also limited to the average number of processes on its run queue,
unless no other processor set can use the additional processors. This avoids allocating processors
to the default processor set that will sit idle due to a low process load.

Another policy question is the frequency with which processor reallocations must be done.
More frequent processor reallocations would be better at adapting to varying application loads and
at preserving fairness, but would add overhead as the costs of processor migration are incurred
more often. In response to this, our policy module performs processor reallocations under two
circumstances. First, whenever a new processor set is created or an old one is deleted (that is,
when a new parallel application enters the system or an old one finishes) a processor reallocation
is done. This means that reallocation always immediately adapts to application load changes.
Second, to allow for adjustments even when applications are not entering or leaving the system,
processor reallocations are done periodically. (This interval is currently 300 ms.) Processor
set priorities are decayed at this time, in addition to the adjustments that are made whenever a
reallocation is performed. In all reallocations, every effort is made to ensure that processors are
not gratuitously moved between processor sets, as this destroys the data accumulated in processor
caches by the applications.

As stated earlier, one of our goals is to provide fast response time to I/O-bound and interactive
applications. In adhering to this goal, when the load in the default processor set is very low and
sporadic, the policy as described above gives rise to the following tradeoff. If we keep one
processor permanently assigned to the default processor set, then we guarantee good response
time, but this processor will mostly be idle. It could probably have been better used by some other
processor set. (This is especially important for machines with a small number of processors.)
However, if we allow the policy module to take away all processors from the default processor
set (for example, this would be done by the policy module if at the time of reallocation the default
processor set had no runnable processes), then consider the situation of an interactive application
that arrives soon after the last reallocation. It may have to wait until the next reallocation interval
(up to 300 ms away) before getting any service, resulting in very poor response time.

60 CHAPTER 6. THE PROCESS CONTROL APPROACH

The solution we have adopted works as follows. If at the time the reallocation is done the
default processor set has no runnable processes, all processors are taken away from it. However,
when a process is added to the previously empty run queue of the default processor set, a “partial”
reallocation is performed, assigning a processor to the default processor set. This ensures that the
response time is reasonable. (Note that the application from which the processor is taken away
is informed of this, so that it may reduce the number of processes it is using.) When processors
that are assigned to the default processor set become idle, they wait for a short interval of time
(about 10–20 ms) for more work to arrive.5 If they find no work, they return to one of the other
processor sets and become usefully employed.

There is another practical complication that we need to address. In many machines, it is
sometimes necessary that a process run on some specific processor. For example, on a Silicon
Graphics 4D/340, the network driver does not protect global data, and thus any processes wishing
to do network I/O are forced to run on processor 1. We address such situations as follows. When
a process wants to run on a specific processor, the kernel places it on a special global queue
with a note saying that it must be run on the requested processor. (This is themust-runqueue
in the Silicon Graphics IRIX operating system.) All processors check this global queue before
their normal processor-set run queue, and execute relevant processes from this queue first. When
such special operations are completed, the process is returned to its normal queue. Certain high-
priority system processes may also be placed on the global queue for optimal response time.
Since processes on the global queue run only for a short time on the processors that execute
them, they should have little effect on the performance of applications assigned to processor sets.

6.4 A Process Control Example

We end this discussion of process control design and implementation with a simple example
demonstrating process control and processor partitioning in action. Consider a four-processor
parallel machine, with two CPU-bound parallel applications,A and B. Each of the applications
may be adjusted via process control to use any number of processes, but initially starts with one
process. The stages of execution are shown in Figure 6.1.

When applicationA begins, as in part (a) of the figure, it is the only application running in the
system. It begins running in the default processor set, which has been assigned all 4 processors.
The application then notifies the system that it is a parallel application. The processor partitioning
policy module then assigns the application to its own processor set, and allocates 4 processors
to that processor set. When this allocation has completed, the kernel sets the counter shared
between the kernel and applicationA to 4 and sends a signal toA’s process. When the signal
is received, the process checks the shared counter, and creates 3 new processes. The process
returns to performing work, and we now have 4 processes running on 4 processors, shown in
part (b) of the figure, and a stable system.

5The reason for waiting for a short interval is the following. Consider a situation where a process is doing a lot
of disk I/O. If every time it blocked on I/O we took its processor away, then it would not get the processor back for
another 100 ms or so, even though the I/O may have completed much earlier. Waiting for a short period helps this
situation considerably.

6.4. A PROCESS CONTROL EXAMPLE 61

Application A Application B

CPUCPUCPUCPU

idle

Application A Application B

CPUCPUCPUCPU

Application A Application B

CPUCPUCPUCPU

blocked idle

CPUCPUCPUCPU

Application A

idle idleidle

(a)

(c)

(e)

(g)

CPUCPUCPUCPU

Application A

Application A Application B

CPUCPUCPUCPU

Application A Application B

CPUCPUCPUCPU

blocked

CPUCPUCPUCPU

idle

Application A

idle

(f)

(h)

(b)

(d)

Figure 6.1: Stages of computation for a process control system with 4 processors and 2 applica-
tions.

62 CHAPTER 6. THE PROCESS CONTROL APPROACH

Now, consider what happens when applicationB begins. LikeA, B begins executing in the
default processor set. The policy moves one processor to the default processor set to execute the
application’s initial process. This results in taking a processor fromA. The kernel decrements
A’s shared counter by 1 (to 3). The first process ofA’s to reach a safe suspension point checks
this counter and suspends itself. ApplicationB notifies the system that it is a parallel application,
and is assigned its own processor set. The policy module allocatesB the processor previously
allocated to the default processor set and one of the processors previously allocated toA. This
stage is shown in part (c) of the figure. After this reallocation occurs, bothA’s shared counter
and B’s shared counter are set to 2 and a signal is sent toB’s process. WhenB receives the
signal, it checks the shared counter and creates a new process to take advantage of the extra
processor. No signal is sent toA, but the first process ofA’s to reach a safe suspension point
suspends itself (recall that processes always check the shared counter at safe suspension points).
After this occurs, each application will have 2 processes executing on 2 processors, and we will
have a stable system, as shown in part (d).

The next case we will consider is the effect of an I/O operation. Assume a process of
applicationA does a read. The process is suspended pending completion of the read. This is
shown in part (e) of the figure. When the process is suspended, the kernel incrementsA’s shared
counter (to 3) and sends a signal to one of the other processes ofA. When that process receives
the signal, it checks the counter and resumes one of its previously suspended processes. While
the I/O operation is being performed, the extra process serves to avoid letting the processor that
had been running the I/O-initiating process sit idle, as shown in part (f). When the I/O operation
completes, the process that initiated the I/O is resumed. Before exiting the kernel, though, the
kernel decrementsA’s shared counter (to 2). The process that initiated I/O returns to executing
code. For a brief time, 3 processes are running on 2 processors. This stage is represented in part
(g). The first process ofA’s to reach a safe suspension point suspends itself. When that process
is suspended, the applications will again be at an equilibrium, as in part (d) of the figure.

Finally, consider what occurs whenB completes beforeA. B’s processor set is destroyed once
applicationB exits and the two processors assigned to it are released and reassigned to application
A. This is shown in part (h) of the figure.A’s shared counter is set to 4 and a signal is sent to one
of its processes. That process receives the signal and resumes 2 previously suspended processes.
At the end of this,A will have 4 processes executing on 4 processors, as in part (b).

6.5 Related Work

Other researchers have also investigated the use of spatial partitioning as a way of handling
multiprogrammed workloads. Scheduler activations is an approach with many similarities to
process control that was developed in parallel with it, but has chosen different answers to some
of our questions about design issues. Processor partitioning mechanisms have also been developed
for use in allocating applications fixed numbers of processors for fixed periods of time.

6.5. RELATED WORK 63

6.5.1 Scheduler Activations

Anderson et al. at the University of Washington [1] have developed a system that is similar in
concept and motivation to the process control and processor partitioning approach proposed in
our previously published paper [45] and further developed in later work [18] and this thesis. In
the Anderson work,scheduler activationsare directly mapped onto processors assigned to an
application in a one-to-one manner. (Scheduler activations are essentially the same as processes
within an address space or kernel-level threads.) The scheduler activations are responsible for
executing user-level tasks as per the task-queue model. When a task running on a scheduler
activation blocks for I/O, or when the kernel assigns another processor to the application, the
kernel directly and automatically creates a new scheduler activation. This scheduler activation is
then run on the newly freed/allocated processor and it starts picking tasks from the task queue and
executing them. Similarly, when the kernel wishes to take away a processor from an application,
it directly intervenes and destroys one of the scheduler activations in asafemanner. Primitives
are also provided for the application to inform the kernel when it cannot use the resources that
have been allocated to it, or when it needs more resources. As we see, similar to the process
control approach, there is a close correspondence maintained between the server processes and
the number of processors allocated to an application. To the extent that the number of active
processes matches the number of processors, both approaches eliminate the need for context
switches and thus ensure low overheads and good cache performance.

While the approaches are conceptually similar, there are some differences in the underly-
ing mechanisms and implementations. In the scheduler activations model, the user-level threads
package and the kernel are more tightly coupled than in our approach. For example, the kernel di-
rectly creates and destroys scheduler activations in response to changes in numbers of processors,
while in our approach the kernel only provides hints to the threads package which then resumes
or suspends server processes. The method used to ensure safe suspension is also different in the
two approaches. The scheduler activation approach uses a recovery-based method. To destroy an
activation (when a processor is to be taken away), the kernel first preempts two activations saving
their tasks. The kernel then creates a new activation which makes sure that the two saved tasks
were not blocked within a critical section. It does so by further executing one of the saved tasks
until it is outside of critical sections, then putting that task on the threads package’s run queue,
and then executing the second saved task. In contrast, we use a simple preventive approach in
our implementation—we wait until an application process itself decides that it is at a safe point
before suspending it. Although this introduces some delay in suspension of excess processes, our
method does not require that all critical sections in the application code be clearly identified. In
our experiments so far, we have not found the delays in suspension to be a problem. Rather, we
have found that the slightly sluggish response of our approach helps prevent many short dura-
tion suspensions and resumptions of processes, which if done immediately would have degraded
system performance. This would be even more true in large-scale multiprocessors [25] where
the cost of cache misses can be very high, with each miss costing tens or hundreds of processor
cycles. In such machines, it is often better to have the processor be idle for a few cycles, rather
than bringing in a new task that may destroy the cache data accumulated by the previous task.

Finally, we note that the essential difference between process control and scheduler activations

64 CHAPTER 6. THE PROCESS CONTROL APPROACH

is the way in which signaled events are handled at the user level by the application and the
accompanying runtime system. In our system, individual applications may use a scheduler-
activations-like approach by simply making a system call with flags directing the kernel to send
signals to the application on every process-control-related event, regardless of whether the action
should be to suspend or resume a process. The runtime system could then employ an avoidance-
based approach to process suspension, just as in scheduler activations, at the user level.

6.5.2 Processor Partitioning

The processor partitioning kernel interface we use owes much of its structure to the implemen-
tation of processor sets developed for Mach [4]. In Mach, users may flexibly create and destroy
processor sets, assign processes to different processor sets, and allocate processors to processor
sets (security restrictions notwithstanding). This allows a variety of scheduling policies to be
implemented by user-level servers, though initially only a simple batch-based scheduling policy
was implemented. In our system, we use the same basic mechanisms, but have implemented
a sophisticated kernel-based policy module to control processor allocation. This lets us pro-
vide an integrated scheduling policy that provides processor partitioning and does not depend on
user-level interaction and control.

In Section 6.1 we mentioned that applications need to be able to communicate their resource
requirements to the kernel, so that processors that cannot be used by an application can be
allocated elsewhere. The importance of using such information in scheduling decisions has
previously been emphasized by Majumdar et al. [27] and Zahorjan and McCann [48]. In a
recent report, McCann et al. [28] empirically evaluate the use of such a “dynamic” processor
allocation approach and the results show noticeable benefits when running applications with highly
variable parallelism. The benefits are relative to the performance of an “equi-partition” policy
that is based on the concept of process control [45], but unfortunately lacks some important
elements of our process control approach. The equi-partition policy described requires that a
processor being moved between applications be “released” by the application to which it was
allocated before the reallocation can take place. This results in problems with response time,
as new applications must wait for processors to be released before executing, and in problems
with fairness when running uncooperative applications (which do not release processors when
requested). Our process control policy avoids these problems by allowing the kernel to reallocate
processors as needed immediately, informing applications of reallocations but not waiting for the
applications to respond.

6.6 Concluding Remarks

This chapter considered the design and implementation issues involved in implementing process
control on a real system. We found that a wide class of applications can be implemented using
a process control model. Process control and processor partitioning can readily be added to
standard operating system kernels in an elegant and efficient manner. The result is a system that
allows process control applications to run efficiently while still allowing other applications to run
unaffected, time-slicing among available processors as usual.

6.6. CONCLUDING REMARKS 65

Two major concerns in this work were the fair allocation of processor time to applications,
and response time for interactive and I/O-bound applications. Thepolicy moduledeveloped in
Section 6.3 addresses these concerns by adapting the standard UNIX process priority system that
handles these problems in a traditional system to a more complexapplication priority system.
This policy module can also be easily adapted to system goals and constraints. For example, an
environment that included animation would want to ensure very good response time, even at a
slight cost to the performance of compute-bound applications. This can easily be done in our
system by adjusting the parameters of the policy module.

In sum, the process control system described in this chapter seems to be a very reasonable
solution to the performance problems raised by multiprogramming. The necessary changes to the
kernel can be seamlessly integrated to create a system that looks like a traditional system except
to appropriate applications. The next chapter will investigate the performance benefits that can
be achieved using this system.

Chapter 7

Process Control Performance

Chapter 3 showed that as the number of processes executing an individual application increases,
the efficiency of the application decreases. From this we found that we could improve perfor-
mance substantially by controlling the number of processes based on the system load in process
control style. The following sections present results for the system performance running real
multiprogrammed workloads under process control schedulers. We first see that for our multi-
programmed workloads, the process control approach wins over other scheduling approaches by
a significant margin. In the next section, we study the effect when both process controlled and
non-controlled applications are present at the same time. We show that the use of the processor
partitioning approach prevents the non-controlled applications from monopolizing the system re-
sources, resulting in good performance for both kinds of applications. In the following section
we present experiments that show the affect of our policy module on the response time of inter-
active applications. In the next section we show the effectiveness of the process control approach
for applications performing a significant amount of I/O. Finally, in the last section we look at
the effect of workloads where applications are executed at staggered intervals, so the number of
applications in the system varies dramatically.

7.1 Multiprogramming Performance

In previous chapters, we considered adding affinity and gang scheduling to the traditional UNIX-
style scheduling system. We will now investigate the effect of process control scheduling. We
will also compare the results with an approach where processors are spatially partitioned among
applications but the applications do not limit the number of processors they use (regular UNIX
scheduling is used within each partition). Figure 7.1 shows the results when we run our standard
workload set, both using only partitioned scheduling, and using process control with partitioning.
As in previous chapters, the figure shows the mean execution time of the parallel part of the
applications in each workload, normalized with respect to the mean execution times under the
standard UNIX scheduler.

As the figures show, process control does significantly better than either the standard scheduler
or using processor partitioning alone. If we compare with the cache affinity results in Chapter 4

66

7.1. MULTIPROGRAMMING PERFORMANCE 67

||0

|20

|40

|60

|80

|100

|120

 N
or

m
al

iz
ed

 T
im

e
(%

) Partitioned

99

78

102
90

100
89

98

79

98

85

98
89

96

79

102
92

98

79

98

83

LO LM OC OM LOC LMC LOP LMCP LOMC LOMCW

 Process Control

Figure 7.1: Performance of workloads under processor partitioning alone, and processor parti-
tioning with process control, normalized with respect to standard UNIX performance.

and the gang scheduling results in Chapter 5, we see that process control is also superior to these.
Figure 7.2 compares the geometric mean of all three policies across the suite of workloads. We
see that process control attains a 16% performance advantage over standard UNIX scheduling,
as compared to 6% with affinity scheduling and 3.5% with gang scheduling.

||0

|20

|40

|60

|80
|100

 N
or

m
al

iz
ed

 T
im

e
(%

) 100.0

84.3

94.0 96.5

Standard Process Affinity Gang
UNIX Control

Figure 7.2: Geometric mean of normalized execution times of workloads using standard UNIX
scheduling, process control, cache affinity scheduling, and gang scheduling.

There are two main reasons for this. First, with process control and processor partitioning,
each application runs in its own environment with almost no interference from other applications.
More importantly, as we can see by comparing the performance of the simply partitioned approach
with the process control approach, the application processes do not interfere with each other. This
lack of interference results in better cache behavior and leads to higher performance. Second,
with process control, each application runs at a better “operating point” on its speedup curve.

68 CHAPTER 7. PROCESS CONTROL PERFORMANCE

The result is that in the presence of multiprogramming, techniques like cache affinity and gang
scheduling exhibit low processor efficiency, since they use all the processors in the machine for
each application. In contrast, the process control approach dynamically partitions the machine
into several smaller machines, one per application, with each smaller machine providing higher
processor utilization.1

It is interesting to compare the performance of the real process control implementation with
the “ideal” model of running applications at their optimal operating point developed in Sec-
tion 3.5. The ideal model resulted in an average performance gain of 23%. The gains of the
real implementation are lower for a number of reasons. These include the overheads associat-
ed with process control (partitioning, scheduling, and signaling). Additionally, real applications
cannot instantly change the number of processes they use as was assumed in the previous model.
Finally, external events (such as network interrupts) can affect the performance of a workload
on a real system. Given these problems, process control seems to do a good job of attaining
much of the performance that is possible when problems (direct and indirect) associated with
multiprogramming are eliminated.

The following subsections consider specific workloads in Figure 7.1, and additional workloads
created to demonstrate particular points. The goal is to show the robustness of process control
in a wide variety of contexts.

7.1.1 High Application Load

Although the process control strategy appears to work well with a small number of parallel
applications, the question arises of how it performs when the number of applications exceeds the
number of processors in the system. Workload LOMCW in Figure 7.1 shows the performance
of process control, as compared with the standard UNIX system, when 5 parallel applications
are run simultaneously on our 4-processor system. Those applications includeLocusRoute ,
Ocean, MP3D, Cholesky , andWater .

With process control, the five parallel applications are each placed in their own processor
sets. Although the kernel cannot allocate one processor to all applications simultaneously, it
can allocate one processor to each of four applications, and reallocate processors so that all
applications receive equal processing time. During this time, the applications all reduce the
number of processes they use to one. Even if an application has no processors assigned to it, it
cannot reduce beyond one process, since then it will have no way to resume suspended processes.
Reducing beyond one process is also not necessary, since an application is effectively blocked
when there is no processor allocated to run it. The overall result is that 5 processes, each from
one application, time-share 4 processors. Unlike traditional time-sharing, however, the duration
between process schedulings is the 300 ms reallocation interval. This contrasts with the normal
30 ms time quantum of the standard system. The result is that, although the performance is not

1As an interesting aside about the workings of the processor allocation module, observe that with process control
and three or five parallel applications (as in workloads LOC, LMC, and LOMCW), the four processors in the SGI
4D/340 do not divide evenly among the applications. As discussed in Section 6, the policy module switches one of
the processors between the applications periodically (every 300 ms) to maintain fairness. Since the overhead of the
processor reallocation is small and it is done infrequently, the process control approach performs quite well.

7.1. MULTIPROGRAMMING PERFORMANCE 69

as good as it would have been if there had been enough processors to prevent any time-sharing,
the longer effective context-switch interval makes the performance much better than the standard
UNIX system. The reduced number of competing processes also helps improve the performance
of the process control approach.

7.1.2 Mixing Controlled and Non-controlled Applications

Most of the workloads in Figure 7.1 consist solely of process-controlled parallel applications.
We now focus on the performance of the process control approach when applications that do
not respond to process control are also run concurrently. Workloads LOP and LMCP combine
compute-bound parallel applications that may use process control with a parallel make (Pmake),
which cannot use process control (since it does not have a task-queue structure). When the
workloads are run using process control,Pmake is run in the default processor set.

Figure 7.3 compares the performance of workloads LOP and LMCP under the standard UNIX
scheduler and the process control approach in detail. The overall performance of each workload
is broken into the components contributed by each application. The data shows that the process
control approach performs significantly better than the standard UNIX scheduler for the process-
controlled applications, and that thePmake performance is similar with and without process
control. According to the processor allocation policy described in Chapter 6, multiple processors
are assigned to the default processor set if all 4 compiler processes are running. If the number
of runnable processes drops due to I/O (as frequently occurs inPmake), some of the processors
are switched back to the other applications.

||0

|20

|40

|60

|80
|100

 E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

) Locus

54

43

58
54

Std UNIX Proc Ctl Std UNIX Proc Ctl
LOP LMCP

Ocean
MP3D
Cholesky
Pmake

Figure 7.3: Performance of workloads LOP and LMCP under process control, normalized with
respect to standard UNIX performance.

One of the effects of our processor allocation system is that the proportion of processor time
received by a serial application is much higher than with a standard scheduling system. Under
a UNIX scheduler, a single serial application running concurrently with a number of parallel
applications receives a small portion of the processor time. If three parallel applications are
being run at the same time as a serial application on a 4-processor system, as in workload LMCP,
the serial application receives only up to about 1/13 of the total processor time, or less than

70 CHAPTER 7. PROCESS CONTROL PERFORMANCE

1/3 of a single processor. With process control, on the other hand, the processing time received
by the serial application is on par with that of the parallel applications. This leads to greater
fairness between applications regardless of the number of processes used and avoids incentives
to increase processes in order to receive more processor time. Although the CPU time received
by the parallel applications is reduced with our scheduler, as compared to the standard UNIX
scheduler, the better efficiency of process control more than compensates. Other researchers have
similarly found that allocating CPU time fairly to each job, regardless of type, is the best way to
minimize the mean running time of all jobs in the system [26].

7.2 Response Time Issues for Interactive Applications

Another interesting class of serial applications is interactive programs, where the applications
sleep for long periods of time broken by short periods of CPU use. Applications of this type
abound on timesharing systems, from network servers to editors. The important factor in the
performance of these applications is response time, not throughput. In our system we have
sacrificed some response time in favor of parallel application throughput by allowing all processors
to be taken away from the default processor set (see Section 6.3). We now examine how much
effect this tradeoff has on response time. To test this aspect of performance, we implemented an
application that repeatedly sleeps for a random period of time, then wakes up and executes for
a short time before sleeping again. By comparing the measured duration of the sleep with the
actual duration that was requested, we can tell how long it took to run the process after it woke
up.

We ran this application simultaneously with workload LMC, which consists of theLocus-
Route , MP3D, andCholesky applications. We compared the performance under the standard
UNIX scheduler and under process control. The parallel execution times and approximate re-
sponse times are shown in Figure 7.4.

With the standard scheduler, the average response time is fast (5 ms) but the performance
of the parallel applications, as seen before, is poor (average execution time for the applications
is 72 seconds). With process control, the response time is not quite as good (21 ms) but the
performance is much better (average execution time is 54 seconds). The response time is worse
for process control because all processors are assigned to non-default processor sets most of the
time. When the application in the default processor set becomes runnable, there is a time lag
before a processor is reallocated to the default processor set. In addition there may be extra delay
while higher-priority processes (also in the default processor set) are executed. We believe that
the added response time is small enough to be negligible.

7.3 Performance in the Presence of I/O

As stated in Section 6.2, when a process blocks on I/O, a signal is sent to the application so that
it may create or resume a process to run on the processor just made idle. So far, however, our
experiments have not shown the benefits of this feature since our applications perform very little
I/O. To generate more I/O activity in the system without changing the applications, we locked

7.4. PERFORMANCE UNDER VARYING SYSTEM LOAD 71

||0

|10

|20

|30

|40

|50

|60

|70

|80

 E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

70

56

79

57

68

49

5ms

21ms

Scheduler
Application

UNIX Proc Ctl UNIX Proc Ctl UNIX Proc Ctl UNIX Proc Ctl
Locus MP3D Cholesky Response-Time Appl

Figure 7.4: Performance of workload LMC running simultaneously with an interactive serial
application, along with system response time. Performance is shown both for the standard UNIX
scheduler and the process control scheduler.

a number of pages in physical memory, effectively reducing the amount of memory available
to other applications. We used a machine with 32 Mbytes of physical memory, and locked in
between 4 and 16 Mbytes of memory. We then ranCholesky using process control. We
compared two variants of I/O signaling. In one case, we turned off the signals that are generated
when a process blocks on I/O. In the other case, these signals are turned on. The execution times
as the amount of memory taken away is varied are shown in Figure 7.5. Regardless of the amount
of memory reserved, performance is consistently best with I/O generated signals turned on. With
4MB and 8MB taken away, the execution times of both approaches are essentially equal. There
is still enough memory in the system to avoid paging. With 12MB taken away,Cholesky took
35 seconds with signals turned on, and 30 seconds with I/O signals turned off. With 16MB taken
away, theCholesky execution thrashes, taking 175 seconds with signals turned on, and 125
seconds with signals turned off. Although the use of I/O signals does not completely avoid the
problem of poor memory system behavior when the working set of a program does not fit into
physical memory, it does help avoid aggravating the problem with excessive processor idle time
waiting for pages.

7.4 Performance under Varying System Load

Until now, all of the experiments done with the workloads have involved synchronizing their
constituent applications before each enters its parallel section, and timing only the parallel code.
This measures the performance of scheduling policies under a steady load of parallel applications,
but does not model well the case of varying loads, where applications are frequently entering and
leaving the system. We will now look at the performance, including both parallel and serial time,
of the workloads when run without inter-application synchronization and with the applications
started at 10 second intervals.

72 CHAPTER 7. PROCESS CONTROL PERFORMANCE

 without I/O signals
� with I/O signals

|
0

|
4

|
8

|
12

|
16

|
20

|0

|40

|80

|120

|160

 Megabytes Removed

 T
im

e
in

 S
ec

on
ds

� �
�

�

Figure 7.5: Performance ofCholesky application with pages reserved. Data is presented with
I/O generated signals turned on and turned off.

Figure 7.6 shows the performance of the LOC workload under standard UNIX scheduling
and process control, respectively. The workload consists ofLocusRoute , Cholesky , and
Ocean, with applications staggered at 10 second intervals, and no synchronization of parallel
sections. The figure shows the number of processes running at each point in time. In the
standard UNIX case, there are as many as 12 processes running in the system when all three
applications are running in parallel simultaneously. In the process control case, the process
control system serves to limit the number of processes to near 4 at all times. The process control
execution completes in 49 seconds, as compared to 56 seconds for the standard UNIX scheduling
system, an improvement of 15%. This is the same as the improvement for process control when
the applications are synchronized and only parallel execution is measured. The performance
of most of the individual applications is also improved under process control;LocusRoute
takes essentially the same time in each case, butCholesky takes 35 seconds with process
control rather than 40 (an improvement of 15%) andOcean takes 28 seconds rather than 36 (an
improvement of 29%).

7.5 Conclusions

In conclusion, we see that the process control approach performed much better than the standard
UNIX scheduler for all of our workloads. In addition, it performed substantially better than either
cache affinity or gang scheduling. The performance improvements held even when the number
of parallel applications exceeded the number of processors in the system. The process control
approach was also shown to work well when non-process-controlled and interactive applications
were run concurrently with process-controlled applications; processors were allocated in such

7.5. CONCLUSIONS 73

 Locus
 Cholesky
 Ocean

|
0

|
10

|
20

|
30

|
40

|
50

|
60

|0

|4

|8

|12

 Time in Seconds

 N
um

be
r

of
 P

ro
ce

ss
es

 Locus
 Cholesky
 Ocean

|
0

|
10

|
20

|
30

|
40

|
50

|
60

|0

|4

|8

|12

 Time in Seconds

 N
um

be
r

of
 P

ro
ce

ss
es

Figure 7.6: Performance of workload LOC with applications started at 10 second intervals, under
standard UNIX scheduling and process control.

74 CHAPTER 7. PROCESS CONTROL PERFORMANCE

a way as to preserve the performance of process-controlled applications while retaining fast
turnaround and response time for other types of applications. We also studied the performance
of the process control approach in the presence of a significant amount of I/O. The use of kernel
notifications when processes block on I/O kept processors from idling, though the difference in
overall performance was small until the I/O activity became substantial. Finally, process control
also performed well under conditions of varying system load, where applications enter and leave
the system at staggered intervals.

Chapter 8

Conclusions

8.1 Contributions

This thesis has investigated several approaches to efficiently scheduling multiprogrammed ap-
plications on a shared-memory multiprocessor. These approaches varied in complexity and in
the extent of modification to existing scheduling systems, from selectively boosting the priori-
ty of appropriate process-processor pairs (cache affinity scheduling), to boosting the priority of
entire applications simultaneously (gang scheduling), to primarily allocating processors to appli-
cations spatially rather than temporally (process control). This thesis thoroughly evaluated and
compared these scheduling approaches in a consistent manner by measuring the performance of
each approach running a fixed set of realistic workloads. Implementations of the approaches
were developed using the same base operating system and the workloads were run on the same
machine.

The first two approaches have been proposed by others. The thesis work developed new
techniques for implementing each approach simply and efficiently, and studied the effect of each
on a suite of parallel and serial workloads. Both cache affinity scheduling and gang scheduling
attained small performance gains under most workloads. The limited extent of the performance
gains appears to be the result of inherent factors of the applications and workloads, not problems
with the scheduling implementations.

The thesis then proposed an approach to multiprocessor scheduling that uses cooperation
between the kernel and applications to execute applications efficiently. The approach, called
process control, involves providing support for applications to dynamically match the number
of processes they use to the number of processors that are available to them. Processors are
partitioned among applications in such a way that multiple applications may be run simultaneously
while preserving fairness. The partitioning also serves to promote stable running environments
and improves cache efficiency.

An important facet of the structure of the system is that it allows flexibility in the applications’
use of process control. The decision of when a process should be suspended, resumed, or
created, is left to user-level software, rather than being embedded in the kernel. This also allows
our modifications to fit into the standard UNIX model of process scheduling; the system still
supports run queues, time slices, process priorities, and other standard UNIX mechanisms. In

75

76 CHAPTER 8. CONCLUSIONS

fact, if there is only one active processor set in the system, processes are scheduled exactly as
they would be in a standard UNIX system.

The process control approach performed much better than the standard UNIX scheduler when
the number of processes exceeded the number of processors under both single-application and
multi-application conditions. The better performance can be attributed to two main factors. First,
process control offered significantly reduced context switch rates, eliminating direct context switch
overhead and indirectly providing better cache hit rates and synchronization performance. The hit
rates improved since there were no intervening processes to displace useful data from the cache.
Second, a more subtle factor, the performance also improved because the process control approach
allowed each application to run at a better “operating point” on its speedup versus processors
curve. By running each application with fewer processes, process control helped improve cache
hit rate (reducing false-sharing and communication misses), load balancing, and synchronization
overhead for the applications. Our tests in Chapter 3 indicated that the operating point effect is
the main source of performance gains for applications using process control.

The process control approach also performed better than the alternative approaches of cache
affinity scheduling and gang scheduling. Process control provides a more comprehensive answer
to the problems of synchronization performance due to multiprogramming and cache data loss,
virtually eliminating both among applications able to fully take advantage of process control.
Process control is also the only approach that takes advantage of the operating point effect.

8.2 Extensions and Future Work

The results in this thesis have been based on a machine with only four processors. An obvious
question that arises is how the results would scale to larger machines. The next subsection
discusses the effect of using a single-bus machine with more processors. The following subsection
discusses issues involved in scheduling on scalable multiprocessors.

8.2.1 Larger UMA Machines

An increase in the number of processors in a machine, without changes to the rest of the machine
structure, would have little effect on the problems of cache data replacement and synchronization
issues involved with multiprogramming. Process migration may be slightly increased in a stan-
dard UNIX scheduler, since there will be even less probability that a process will randomly be
selected to run on the processor it previously ran. Synchronization problems may be increased
a bit more substantially since applications will be run with more processes, necessitating more
synchronization. However, by far the largest difference will be in the operating point effect. The
efficiency of an application not only tends to decrease as more processes are used, but the rate
of decreaseincreaseswith more processes. For example, if an application runs 20% more effi-
ciently with two processes than with four, it might run 40% more efficiently with four processes
than with eight. The result is that the operating point effect becomes even more significant in
application performance.

Thus, process control should perform even better on a machine with more processors. I have
performed some experiments on a SGI machine similar to the one used for the results in this

8.3. FINAL REMARKS 77

thesis, but with eight processors. The results showed an improvement from process control that
is substantially greater than the results presented in Chapter 7.

8.2.2 NUMA Machines

This thesis has been devoted to studying problems that arise when running multiprogrammed
workloads on single-bus shared-memory machines, with small to moderate numbers of processors.
As system designers try to build machines with more processors, they run into an inherent
limitation in the single-bus design, as the bus begins to saturate with traffic. The alternative is
to build a scalable system, using a point-to-point network connecting clusters of one or more
processors on a bus. Shared-memory mechanisms can still be supported in hardware. The
Stanford DASH machine [25] is such a machine, with 4-processor clusters.1

On many scalable machines, remote memory accesses (accessing memory in another cluster)
take much longer than local memory accesses (accessing memory in the same cluster).2 These are
also called NUMA (Non-Uniform Memory Access) machines because of this effect. The result
is to increase the cost of inefficiencies from a naive approach to scheduling multiprogramming
workloads. Process migration between clusters, and scheduling applications on more than one
cluster, can have a substantial cost. The scheduling solutions to this problem must also be made
more sophisticated. For example, cache affinity scheduling must distinguish between a process’s
affinity for a processor and its affinity for a cluster (or memory). The latter may actually be more
important than the former. The policy module of a process control system should likewise pay
attention to cluster boundaries (in machines where clusters consist of more than one processor) and
partition processors as much as possible along those boundaries. System-wide gang scheduling
may be unreasonable when the cost of migrating data between clusters is high; however, a
hierarchical gang scheduler (as suggested by Feitelson and Rudolph [14]) where applications are
gang-scheduled within clusters or small groups of clusters might work well. In sum, the advent
of scalable shared-memory machines creates a great opportunity for improving the performance
of multiprogrammed workloads with intelligent scheduling policies. Several researchers have
begun to work on these problems in the context of NUMA machines [9, 14, 34, 49].

8.3 Final Remarks

In conclusion, process control has been shown to be a simple but effective approach to improving
the performance of parallel applications on multiprogrammed systems, one that may be cleanly
integrated into a traditional operating system. Although other scheduling policies, like cache
affinity and gang scheduling, may provide some performance benefits as compared to a standard
scheduler, process control provides more substantial benefits to a wider class of applications.

As applications and user-level support packages become more and more sophisticated, it

1As mentioned in Chapter 2, the machine used in the experiments for this thesis was actually a single-cluster
DASH machine. The DASH machine was used in preference to a standard SGI machine because of the additional
performance measurement hardware available.

2Note that some machines have only one processor per cluster, associating local memory with each processor.

78 CHAPTER 8. CONCLUSIONS

becomes increasingly important to inform them about kernel-level events. Process control is only
one example of the use that can be made of information about resource management. Others have
considered informing applications of the state of the virtual memory system [20]; an application
might try to reduce its memory usage in an attempt to keep its working set in physical memory.
In a NUMA machine that allowing process migration, it can be important to give applications
information on memory and process placement. Database programmers, trying to tune their
applications to run at optimal performance, often desire information on scheduling and memory
management. While operating systems are often designed with the intention of hiding as many of
the low-level details as possible from the user, this work indicates that future operating systems
designers should consider revealing some of these details to applications that can make good use
of the information.

Appendix A

Process Control Interface

In Chapter 6 we saw the necessary characteristics of an application to use process control. This
appendix describes the interfaces that applications (or threads packages, parallel languages, etc.)
with these characteristics can use to implement process control on the Silicon Graphics system.
Section A.1 describes system calls added to IRIX to put an application in its own processor set
and cause signals to be sent to the application telling it the number of processes it should be
using. Section A.2 describes calls to a library that provides a simpler user-level interface to
applications, easing the transition to using process control.

A.1 Kernel Interface

The interface to the kernel for process control is implemented using the prctl() call:

int prctl(flag, var1, [var2])
int flag, var1, var2;

The process control commands are represented by specific flags.

prctl(PR PSETMAT, num)
PR PSETMATcreates a separate processor set for the current process (or group of processes
sharing an address space) and tells that the application will initially createnum processes to run
in this processor set.

prctl(PR PSETNEED, type, val)
PR PSETNEEDinforms the kernel of changes in the kernel setting of the maximum number
of processors the current application (process or group of processes sharing an address space)
can use. type is eitherNEEDREL or NEEDABS, and denotes whetherval is to be treated
as a relative change to the current setting, or an absolute value to replace the current setting,
respectively. Atype of NEEDABS and aval of -1 informs the kernel that the application
can use an unlimited number of processors; this is the default for a new processor set.

79

80 APPENDIX A. PROCESS CONTROL INTERFACE

prctl(PR PSETASS, pid, psetid)
PR PSETADDassigns processpid (or the group of processes sharing an address space that
includes processpid) to processor set with idpsetid . This can be used to run multiple
applications within a single processor set (other than the default).

prctl(PR RMPSET, psetid)
PR RMPSETdeletes the processor set with idpsetid and moves all processes and processors
currently assigned to that processor set to the default processor set.

prctl(PR GETPSET)
PR GETPSETreturns the processor set id of the current process. The default processor set has
an id of 0.

prctl(PR STRTPSET)
PR STRTPSETsignals to the kernel that all setup operations for process control have been
performed by the application associated with the current process, and process control signals can
now be freely sent (including those that have been stored up pending this call).

prctl(PR SETDPCTRL)
PR SETDPCTRLtells the kernel to allocate the shared counters used to indicate the number of
processes that the current application should use, and prepare to send process control signals.

prctl(PR GETDPCTRL)
PR GETDPCTRLreturns a value indicating whether or not the shared counters and process control
signals have been initialized (byPR SETDPCTRL) for the current application.

prctl(PR BLOCKIGN)
PR BLOCKIGNtells the kernel not to send explicit signals to the current application in reaction
to an event that indicates an application process should block; for example, a processor being
taken away from the application, or a process returning from an I/O operation. This is used to
optimize performance as described in Chapter 6.

Any operations associated with process control not described here are performed automatically
by other kernel operations. For example, if a new process is created that shares the same address
space as the parent process, the child process is placed in the same processor set as the parent.
If the new process has its own address space, it is assumed to belong to a different application
and is placed in the default processor set. When the last process in a processor set (other than
the default) exits, the processor set is automatically deleted.

A.2. LIBRARY INTERFACE 81

A.2 Library Interface

Setting up the user-level support for process control can be moderately complicated. I have
designed a library to ease the problem for implementors of parallel languages and threads sys-
tems by providing a much simpler interface than kernel calls listed above. The language/thread
writer simply needs to call the library when appropriate, and design a system for blocking and
unblocking processes when notified. The library implements a process control system with one
client application per processor set. The library calls (with descriptions of when they should be
called) are as follows.

void pctrl init(maxprocs, currprocs, signals, handler)
int maxprocs, currprocs, signals;
void (�handler)();

pctrl init initializes the process control system, creating a processor set for the application
and setting up the shared counter and signal handler.maxprocs is the maximum number of pro-
cesses the application wishes to use (a value of-1 denotes an unlimited number).currprocs
is the number of processes that will automatically be created by the application. This call should
be madebeforeprocesses other than the master process have been created.signals is a boolean
value denoting whether or not the process control signals should be used.handler is the func-
tion that should be called when the number of processes should be changed; it will be passed
a number indicating the number of processes to be created/resumed (if positive) or blocked (if
negative).handler will be called either in response to a kernel-generated signal or due to an
application-originatedpctrl check call.

void pctrl check()
pctrl check checks the value of the shared counter and calls the application-defined handler
if appropriate. This should be called whenever the application is in a safe suspension point; e.g.,
when it has finished executing one task or thread and is about to select another to execute.

Bibliography

[1] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy. Sched-
uler activations: Effective kernel support for the user-level management of parallelism. In
Proceedings of the 13th ACM Symposium on Operating System Principles, pages 95–109,
October 1991.

[2] Maurice J. Bach.The Design of the UNIX Operating System. Prentice-Hall Inc., Englewood
Cliffs, New Jersey, 1986.

[3] Forest Baskett, Tom Jermoluk, and Doug Solomon. The 4D-MP graphics superworkstation:
Computing + graphics = 40 MIPS + 40 MFLOPS and 100,000 lighted polygons per second.
In Proceedings of COMPCON ’88, pages 468–471, February 1988.

[4] David L. Black. Scheduling support for concurrency and parallelism in the Mach operating
system.IEEE Computer, 23(5):35–43, May 1990.

[5] James Boyle, Ewing Lusk, et al.Portable Programs for Parallel Processors. Holt, Rinehart,
and Winston, 1987.

[6] Rohit Chandra, Anoop Gupta, and John Hennessy.COOL: A Language for Parallel Pro-
gramming. Research Monographs in Parallel and Distributed Computing. The MIT Press,
1990.

[7] Eric C. Cooper and Richard P. Draves. C threads. Technical Report CMU-CS-88-154,
Department of Computer Science, Carnegie-Mellon University, 1988.

[8] Mark Crovella. The costs and benefits of coscheduling. Technical report, University of
Rochester Computer Science Department, May 1991.

[9] Mark Crovella, Prakash Das, Cezary Dubnicki, Tom LeBlanc, and Evangelos Markatos.
Multiprogramming on multiprocessors. InProceedings of the Third IEEE Symposium on
Parallel and Distributed Computing, pages 590–597, December 1991.

[10] Murthy Devarakonda and Arup Mukherjee. Issues in implementation of cache-affinity sched-
uling. In Proceedings Winter 1992 USENIX Conference, pages 345–357, January 1992.

[11] Thomas W. Doeppner, Jr. Threads: A system for the support of concurrent programming.
Technical Report CS-87-11, Brown University, 1987.

82

BIBLIOGRAPHY 83

[12] Iain S. Duff, Roger G. Grimes, and John G. Lewis. Sparse matrix test problems.ACM
Transactions on Mathematical Software, 15(1):1–14, March 1989.

[13] Jan Edler, Jim Lipkis, and Edith Schonberg. Process management for highly parallel UNIX
systems. InProceedings of the USENIX Workshop on UNIX and Supercomputers, pages
1–17, 1988.

[14] Dror G. Feitelson and Larry Rudolph. Distributed hierarchical control for parallel process-
ing. IEEE Computer, 23(5):65–77, May 1990.

[15] Stuart I. Feldman. Make: A program for maintaining computer programs. Technical Re-
port 57, Computing Science, Bell Laboratories, 1977.

[16] Richard P. Gabriel and John McCarthy. Queue-based multi-processing Lisp. InACM Sym-
posium on Lisp and Functional Programming, pages 25–43, 1984.

[17] Anoop Gupta, Charles Forgy, Dirk Kalp, Allen Newell, and Milind Tambe. Parallel im-
plementation of OPS5 on the Encore multiprocessor: Results and analysis.International
Journal of Parallel Programming, 17(2), 1988.

[18] Anoop Gupta, Andrew Tucker, and Shigeru Urushibara. The impact of operating system
scheduling policies and synchronization methods on the performance of parallel applications.
In Proceedings of SIGMETRICS ’91, pages 120–132, May 1991.

[19] Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic computation.ACM
Transactions on Programming Languages and Systems, 7(4):501–538, October 1985.

[20] Kieran Harty and David R. Cheriton. Application-controlled physical memory using ex-
ternal page-cache management. InProceedings of the Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems, pages 187–197,
September 1992.

[21] Anna R. Karlin, Kai Li, Mark S. Manasse, and Susan Owicki. Empirical studies of com-
petitive spinning for shared-memory multiprocessors. InProceedings of the 13th ACM
Symposium on Operating System Principles, pages 41–55, October 1991.

[22] Monica S. Lam and Martin Rinard. Coarse-grain parallel programming in Jade. InPro-
ceedings of Third ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, April 1991.

[23] Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels, and John S. Quarterman.
The Design and Implementation of the 4.3BSD UNIX Operating System. Addison-Wesley,
1989.

[24] Dan Lenoski, Kourosh Gharachorloo, James Laudon, Anoop Gupta, John Hennessy, Mark
Horowitz, and Monica Lam. Design of scalable shared-memory multiprocessors: The DASH
approach. InProceedings of COMPCON ’90, pages 62–67, February 1990.

84 BIBLIOGRAPHY

[25] Dan Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. The
directory-based cache coherence protocol for the DASH multiprocessor. InProceedings of
the 17th Annual International Symposium on Computer Architecture, May 1990.

[26] Scott T. Leutenegger and Mary K. Vernon. The performance of multiprogrammed multi-
processor scheduling policies. InProceedings of SIGMETRICS ’90, pages 226–236, 1990.

[27] Shikharesh Majumdar, Derek L. Eager, and Richard B. Bunt. Scheduling in multipro-
grammed parallel systems. InProceedings of SIGMETRICS ’88, pages 104–113, 1988.

[28] Cathy McCann, Raj Vaswani, and John Zahorjan. A dynamic processor allocation policy for
multiprogrammed, shared memory multiprocessors. Technical Report 90-03-02, Department
of Computer Science, University of Washington, February 1991.

[29] Jeffrey D. McDonald and Donald Baganoff. Vectorization of a particle simulation method
for hypersonic rarified flow. InAIAA Thermodynamics, Plasmadynamics and Lasers Con-
ference, June 1988.

[30] Jeffrey C. Mogul and Anita Borg. The effect of context switches on cache performance. In
Proceedings of the 4th International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 75–84, April 1991.

[31] John K. Ousterhout. Scheduling techniques for concurrent systems. In3rd International
Conference on Distributed Computing Systems, pages 22–30, 1982.

[32] Jonathan Rose. LocusRoute: A parallel global router for standard cells. InProceedings of
the 25th ACM/IEEE Design Automation Conference, June 1988.

[33] Edward Rothberg and Anoop Gupta. Techniques for improving the performance of sparse
matrix factorization on multiprocessor workstations. InProceedings of Supercomputing ’90,
November 1990.

[34] Sanjeev K. Setia, Mark S. Squillante, and Satish K. Tripathi. Processor scheduling on
multiprogrammed, distributed memory multiprocessors. InProceedings of SIGMETRICS
’93, pages 158–170, May 1993.

[35] Silicon Graphics Inc.IRIX 4.0 Programmer’s Reference Manual, August 1991.

[36] Jaswinder Pal Singh and John L. Hennessy. An empirical investigation of the effectiveness
and limitations of automatic parallelization. InProceedings of the International Symposium
on Shared Memory Multiprocessing, April 1991.

[37] Jaswinder Pal Singh and John L. Hennessy. Finding and exploiting parallelism in an o-
cean simulation program: Experience, results, and implications.Journal of Parallel and
Distributed Computing, 15(1):27–48, May 1992.

[38] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford Parallel
Applications for Shared Memory.Computer Architecture News, 20(1):5–44, March 1992.

BIBLIOGRAPHY 85

[39] Larry Soule and Anoop Gupta. Characterization of parallelism and deadlocks in distributed
digital logic simulation. InProceedings of the 26th ACM/IEEE Design Automation Confer-
ence, June 1989.

[40] M. Squillante and R. Nelson. Analysis of task migration in shared-memory multiprocessor
scheduling. InProceedings of SIGMETRICS ’91, pages 143–155, May 1991.

[41] Mark S. Squillante and Edward D. Lazowska. Using processor-cache affinity in shared-
memory multiprocessor scheduling.IEEE Transactions on Parallel and Distributed Systems,
4(2):131–143, February 1993.

[42] Shreekant S. Thakkar and Mark Sweiger. Performance of an OLTP application on Symmetry
multiprocessor system. InProceedings of the 17th Annual International Symposium on
Computer Architecture, pages 228–238, May 1990.

[43] Dominique Thiebaut and Harold S. Stone. Footprints in the cache.ACM Transactions on
Computer Systems, 5(4):305–329, November 1987.

[44] Josep Torrellas, Andrew Tucker, and Anoop Gupta. Evaluating the benefits of cache-affinity
scheduling in shared-memory multiprocessors. Technical Report CSL-TR-92-536, Computer
Systems Laboratory, Stanford University, August 1992. Published in short form in the
Proceedings of SIGMETRICS ’93, pages 272–274, May 1993.

[45] Andrew Tucker and Anoop Gupta. Process control and scheduling issues for multipro-
grammed shared-memory multiprocessors. InProceedings of the 12th ACM Symposium on
Operating Systems Principles, pages 159–166, 1989.

[46] Raj Vaswani and John Zahorjan. The implications of cache affinity on processor scheduling
for multiprogrammed, shared memory multiprocessors. InProceedings of the 13th ACM
Symposium on Operating System Principles, pages 26–40, October 1991.

[47] John Zahorjan, Edward D. Lazowska, and Derek L. Eager. Spinning versus blocking in par-
allel systems with uncertainty. InProceedings of the International Seminar on Performance
of Distributed and Parallel Systems, pages 455–472, December 1988.

[48] John Zahorjan and Cathy McCann. Processor scheduling in shared memory multiprocessors.
In Proceedings of SIGMETRICS ’90, pages 214–225, 1990.

[49] Songnian Zhou and Timothy Brecht. Processor pool-based scheduling for large-scale NUMA
multiprocessors. InProceedings of SIGMETRICS ’91, pages 133–142, May 1991.

