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Abstract

The increasing computation requirements of modern computer applications have stim-
ulated a large interest in developing extremely high-performance floating-point dividers.
A variety of division algorithms are available, with SRT being utilized in many computer
systems. A careful analysis of SRT divider topologies has demonstrated that a relatively
simple divider designed in an aggressive circuit style can achieve extremely high perfor-
mance. Further, an aggressive circuit implementation can minimize many of the perfor-
mance advantages of more complex divider algorithms. This paper presents the tradeoffs
of the different divider topologies, the design of the divider, and performance results.
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1 Introduction

Modern computer applications have increased in their computation complexity in recent
years. The development of high-speed floating-point arithmetic is a requirement to meet
the computation demands of modern applications which have increased in their computa-
tion complexity in recent years. The emphasis on high performance graphics in worksta-
tions has placed further demands on the computation abilities of processors. Furthermore,
the industry-wide usage of performance benchmarks, such as SPECMarks,  forces processor
designers to pay particular attention to floating-point computation. With die sizes of pro-
cessors also increasing, processor designers can realistically include aggressive floating-point
units directly on-chip to achieve even higher performance.

Floating-point intensive applications typically exhibit a distribution of operations sim-
ilar to the following: 45% addition, 45% multiplication, 5% division, and 3% square- root.
Past research and development efforts have placed a large emphasis on designing high-
performance floating-point adders and multipliers. Thus, these two areas have many fast
and efficient solutions. Division, though, has not seen a similar research effort. Being
the third largest contributor to floating-point arithmetic, an increasing emphasis on high-
performance division is vital to producing fast and competitive processors. Many division
algorithms exist which can provide high-performance. Moreover, in a standard static CMOS
implementation, the more complex algorithms often exhibit markedly higher performance
than simpler algorithms. For example, Newton-Raphson implementations can achieve ex-
tremely low latency, as Newton-Raphson division converges to a result quadratically. This
performance comes at the price of additional hardware, complexity, and accuracy.

In this paper, a variety of SRT division schemes will be compared. SRT is often used in
workstations because it provides reasonable performance and it is relatively simple [l, 21.
The tradeoffs of these schemes will  be analyzed, and the design and performance of a
new divider will be presented. It will be shown that by mapping a simple topology to an
aggressive circuit style in conjunction with some logic optimization, a high-performance
CMOS divider can be implemented. Analysis of the latencies achievable in a dynamic
CMOS circuit implementation demonstrates that the more complex algorithms do not show
a distinct performance advantage. Rather, sufficiently high-performance can be obtained
at a lower complexity cost by using a simple divider implementation.

2 Division

2.1 SRT Overv iew

SRT is a non-restoring division algorithm that is basically
utilizes the following relationship:

pj+l = rpj - Qj+l D

a trial and error process. I t

This equation models the paper-and-pencil method of division. To calculate a next partial
remainder, the divisor is multiplied by the next quotient digit, and the result is subtracted



from the product of the last partial remainder, or dividend for the first iteration, and a
radix r. The next quotient digit is obtained by supplying a fixed number of bits from the
last partial remainder, approximately 8 bits for a radix-4 divider, to a look-up table. By
choosing a radix to be a power of 2, the product of the radix and the last partial remainder
can be formed by shifting. Similarly, the various products of the divisor multiplied by
the next quotient digit can be formed by multiplexing different multiples of the divisor.
However, the problem with this basic scheme is that it requires a full-width subtractor.
Consequently, this scheme can be very slow.

In order to improve upon this basic scheme, some redundancy is introduced into the
algorithm. An extra constraint is added to provide redundancy:

where k = n / (r - 1) and n is the number of positive allowed digits for the next quotient
digit. A design tradeoff can be noted in this relationship. By using a large number of allowed
digits for the next quotient digit, and thus a large value for k, a smaller look-up table is
required, and thus the complexity and latency of the table look-up can be reduced. However,
choosing a smaller number of allowed digits for the quotient simplifies the generation of the
multiple of the divisor. Multiples that are powers of two can be formed by simply shifting.
If a multiple is required that is not a power of two (e.g. three), an additional operation
such as addition may also be required, which can add to the complexity and latency of the
divisor multiple generating process. Thus, the complexity of the look-up table and that of
generating multiples of the divisor must be balanced.

To increase the performance of the subtraction process, the partial remainders them-
selves are kept in a redundant form. Instead of using full-width adders that require carry
propagation to compute partial remainders, a series of carry-save adders are used to compute
the next partial remainder in the delay of a single full-adder. In this way, the conversion
to a non-redundant form only needs to be done after the final iteration using a full width
adder.

2.2 SRT Topologies

In this study, three different SRT topologies were analyzed for cost and performance. Figure
1 shows the topology of a Basic SRT implementation [3].  In this scheme, the critical path,
shown by the dotted line, includes delays through the carry-lookahead adder, an XOR gate,
an OR gate, a look-up table, driving 56 multiplexors, and finally a CSA. The XOR gates
and OR gates are necessary to convert from a two’s complement form to sign-magnitude
before the look-up table can be accessed.

Figure 2 is the topology of a Two-Bank SRT implementation as proposed by Quach  [4].
This design removes some of the latency of the basic SRT scheme by duplicating hardware.
The CSA’s  compute two sums of rPj - qj+r D in parallel: one with qj+r equal to either 0 or
1, and the other with qj+r equal to 2. Because it is known early whether qj+r will be either
0 or 1, this value can simply be multiplexed into one of the CSAs.  From the figure, it can be
seen that the critical path includes delays throuph  a CSA, a multiplexor, a carry-lookahead
adder, and a big multiplexor.
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A topology based upon operand scaling as proposed by Ercegovac et al [5]  is displayed in
figure 3. This design attempts to speed-up the critical path of the conventional SRT scheme.
To reduce the quotient-selection complexity, the divisor is scaled to be around unity. This
scaling procedure makes the quotient-selection function independent of the divisor value.
Accordingly, the table has fewer terms and thus becomes simpler to implement. The overall
algorithm consists of three steps: scaling of the divisor and the dividend, division recurrence,
and quotient conversion. Thus, the critical path is faster due to the decreased look-up table
complexity. However, the algorithm does require an extra cycle for scaling.

3 Mapping to Domino Logic

In order to achieve maximum performance from the divider, circuit styles besides conven-
tional static CMOS were considered. Specifically, the use of a precharged logic style was
decided upon due to its inherent performance advantages. Precharged  logic is fast, as la-
tency is only dependent upon one logic level transition. Latency in static gates is typically
a function of the rise times of the p-transistors in the pull-up network. By devoting a fixed
precharge  phase in every clock cycle in which all gates have their outputs precharged high,
the delay of the gates become more a function of the fall-times of the n transistors, which
are inherently faster due to their higher mobility. Additionally, in general, precharged logic
is denser and provides lower input loading than static logic, as there is only one transistor
per input.

The limitation of precharged logic is that precharged gates can not be easily cascaded.

4



Figure 4: Domino CSA

Utilizing a standard timing convention for input and output signals, inputs to a precharged
gate must be stable during the evaluation period, but the outputs of a precharged gates are
only valid during the evaluation period. Thus, this delay between the timings of the inputs
and outputs precludes the usage of the output of a precharged gate to directly drive the
input of another precharged gate.

Accordingly, it was decided to utilize domino logic for the circuit level implementation.
By placing a static inverter in-between any two precharge  gates, one can take advantage of
the fact that during the evaluation period, the output can only fall. Utilizing a cascaded
inverter, the output of the inverter can only rise. Thus, this output can be used to drive
another domino gate. However, because all outputs are monotonically rising, domino logic
forms a non-inverting logic family. Given that arithmetic circuits are being designed in this
study, it is vital that inverting gates be allowed. By providing the true and complements of
all signals, it is possible to use DeMorgan’s  law to produce inverted outputs. In the worst
case, this requires approximately two times the number of precharged transistors, or about
the number of transistors in a static implementation. Figure 4 is an implementation of a
CSA in domino logic.

To determine the relative performance of the three aforementioned divider topologies,
the components of the critical paths of each of the implementations were simulated in
HSPICE as domino circuits in 1~ CMOS under typical conditions. Table 1 contains the
results of this analysis.

These results demonstrated that the difference between the schemes was not large. Thus,

5



Implementation Critical Path Latency
Conventional CLA + XOR + OR + Table(G) + BigMux + CSA 2.26ns

Two-bank CSA + MUX + CLA + BigMux 1.51ns
Operand Scaling 4-2 CSA + 2 bit-adder + Table(3) 1.45ns
Improved  Conv.  1 CLA +  XOR +  Table($)  +  BigMux +  fastCSA 1 1.86ns

Table 1: Critical path comparison

the choice of which topology to utilize or modify was not clear. The operand scaling scheme
requires more complex CSAs  and an extra scaling cycle. The two-bank scheme essentially
doubles the number of CSAs in each stage, and thus requires nearly double the area. Given
the lowest cost of the conventional scheme in terms of area and complexity, an analysis of
the effects of various optimizations among the different topologies compared to an improved
convcnt~ional scheme (Oberman-Quach) was to be performed.

4 Divider Design

4.1 Logic and Circuit Design
It was decided to implement a divider based upon the conventional scheme based on its
inherently good cost/performance. However, the basis of this research was the methods by
which this divider could be optimized to yield even higher performance. The two means of
optimization were: 1) logic encoding for the look-up table and 2) taking advantage of the
domino logic technology mapping.

The equations for the three different schemes is presented in table 2. The first optimiza-
tion, logic encoding, was made possible by noting some optimizations that could be made
in the logic equations for the look-up table in the conventional scheme. Figure 5 shows an
SRT table with the allowable quotient digits. This is actually a folded table so that only
the positive half of the original table needs to be implemented. This provided an initial
reduction in the size of the look-up table as reported in [3].  To further reduce the size of
the look-up table, the quotients digits were encoded as follows:

This encoding reduces the complexity of the logic to form ql, as it only has to follow the
top edge of the q = 1 region of figure 5. The bottom edge is followed by ANDing  with 42’.
This encoding also allows for the removal of the OR gates that were required in converting

6
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Scheme Equations
Operand Scaling

qm2 = a’bce’ + a’bcd’ + a’bcf’ + a’bcg’ + a’bch’ + ab’c’f’ + ab’c’e’ +
ab’c’d’ + ac’d’e’f ‘h’ + ab’d’e’f’h’ + ab’c’h’ + ac’d’e’f ‘g’ +
ab’d’e’f  ‘g’ + ab’c’g’

qml = ac’d’f’gh  + ab’d’f ‘gh + a’cdefgh + ac’d’e’f + ab’d’e’f +
abc’d’e + ab’cd’e + abc’de’f’ + ab’cde’f’ + ab’c’defgh

q0 = b’c’d’e’f’ + bcd’e’f ’ + bc’de + b’cde + bc’df + b’cdf

ql = b’c’d’e’f  + bcd’e’f  + a’b’c’d’e + abcd’e + a’b’c’de’f’ + abcde’f’

q2 = a’c’de + a’c’df + a’bc’ + a’b’c + abcde + abcdf
Optimized Baseline

ql = a’c’d’u + a’b’u + uv + y + x

q2 = a’b’d’s’yuw + a’b’c’yuw ’ + a’c’d’yuv  + a’b’c’s’yu + a’b’c’d’yu  +
a’b’yuv + b’c’xv + a’xw ) + xuv + a’s’x + a’d’x + a’xv + b’xu +
a’c’x + a’b’x + a’xu + xy + t

Baseline
q‘l = cdt’x’yv’ + bst’x’yw + cst’x’yv ’ + dst’x’yv’w + ct’x’yv’w’ +

a’c’d’t’x’y’u + bct’x’uv  + t’x’y’uv + bdt’x’uv + bt’x’yv’ +
a’b’t ‘x’y’u + at ‘xy’u’v ) + t’x’yu’ + bcdst’xy’u’v’w  + abt’xy’u’ +
act ‘xy’u’ + abt ‘xy’v’ + at ‘x’y

q2 = t + a’xw’ + a’s’x + a’d’x + a’c’x + a’b’x + b’c’xv + a’xv + b’xu +
a’xu + a’b’c’yuw ’ + a’b’d’s’yuw + a’b’c’s’yu + a’b’c’d’yu  + xuv +
a’c’d’yuvw’ + a’c’d’s’yuv  + a’b’yuv + xy

Table 2: Look-up table comparison

the high order 8 bits from a redundant form to the signed-magnitude form required by the
look-up table. Thus, approximately one gate delay can be removed from the critical path
of the conventional scheme.

Second, many of the terms in the new table’s equations are heavily dependent upon
the divisor, which is constant throughout the entire computational process. Synthesis tools
can reduce the overall gate delay of the table by noting this behavior. Specifically, in
this design, Synopsys was utilized to synthesize the improved baseline look-up table. It
generated combinational logic to implement the table, with the constraints for the design
optimization being to minimize the critical path for any of the inputs which are from the
partial product (i.e. variables t, x, y, u, v, and w). A library of standard-cells was used as
input to Synopsys, with fan-in of each gate limited to a maximum of three. The optimized
implementation yielded a critical path of 5 two-input NOR gates.

Third, because two of the three inputs to the partial remainder CSA’s  are known early,
as they are the result of the previous partial remainder, there is only one late signal. Thus,
the CSA is similar to a mux. This can be implemented in domino logic by placing the latest
arriving signal, the multiple of the divisor driven by the table output, close to the CSA
output. In this way, the latency of the CSA can be further reduced.

8



By util izing HSPICE, the CSA’s,  muxes, latches, and CLA’s were sized to provide
maximum performance. There is always a tradeoff in domino logic between evaluation time
and precharge time. Typically, in domino logic, the designer designs to make one edge, the
rising edge of the inverter, to be very fast. This can be accomplished by appropriate sizing:
increasing the size of the p-transistor in the inverter, and decreasing the n-transistor. This
can bring two problems: 1) the falling/precharge  edge can become very slow, and 2) noise
margins can become a significant problem.

-

The inverters were designed to have large noise margins. The pull-ups were designed
three times as large as the pull-downs, which almost exactly compensates for the mobility
differences in the MOSIS process, placing the DC switching point very near Vdd/2. Thus,
noise margins, area, and power were considerations in this design.

Further analysis demonstrated that the n-transistor in the evaluation path of the domino
gates is not necessarily needed. As long as all of the inputs to the domino gate are guaranteed
to be low during the precharge phase, an explicit evaluation transistor is not required.
However, this guarantee becomes difficult to achieve, as without the evaluation transistor,
any domino gate can not precharge until its previous gate has precharged,  and so on. Thus,
while this scheme can decrease the evaluation times in the circuit, it can lead to an increase
in precharge times.

A summary of the effects of the various optimizations on the different dividers’ com-
plexity is shown in table 3.

Method Sca l ing  2 -banks  Oberman-Quach
Scaling down

Encoding down down
Radix, Encoding down down down

Circuit UP down

Table 3: Complexity effects of optimizations

This table demonstrates how the Oberman-Quach design compares in terms of reducing
the complexity, and thus the latency, of the various divider components in relation to the
other designs.

4.2 L a y o u t / A r e a

Layout has been done for the radix-256 divider utilizing a two-level metal technology file
for Magic. Figure 6 shows a domino CSA extracted from the magic layout.

Current cell area for a CSA is 11,120 pm2.  Thus, the total area for the four-levels of 56-
wide CSAs is approximately 2.5mm2.  Total area, including control logic and wire routing,
should be under 5mm2.
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Figure 6: Layout of a CSA
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5 Results

5.1 Single Stage Analysis

The HSPICE simulations using 1,~  CMOS and typical conditions provided the following
results:

Circuit Evaluation Time
fast CSA fan-out 8 = .32ns
reg CSA fan-out 8 = .42ns
4-2 CSA .83ns

2-bit adder .30ns
2-input XOR 200fF = .20ns
2-Input M UX 200fF=.15ns,  2pF=.33ns
4-Input OR 200fF=.lOns

CLA 200fF=.61ns

Table 4: Evaluation Times

The worst case precharge time for all gates was a maximum of .7ns. Thus, the cycle
time for a radix-4 (single stage) improved conventional divider would be 2.56ns.

5.2 Multiple Stage Analysis

Higher radix dividers can be formed by cascading single stage radix-4 dividers [4].  To
calculate the cycle times and latencies for other radices, it is necessary to multiply the
evaluation time for a single stage by the number of stages, add the precharge time per
cycle, and multiply the result by the number of cycles. The total number of cycles is equal
t o  (56/(bits/iteration)  +  l(rounding). Table 5 shows the latencies of various radix dividers.

Stages 1 Avg. Cycle time 1 Num. Cycles 1 Total Latency
2.56ns 29 74.2ns
4.42ns 1 5 66.3ns
6.28ns 11 69. Ins
8.14ns 8 65.lns
13.7ns 5 68.6ns

Table 5: Latencies for varying number of stages

These numbers demonstrate that the highest performance can be achieved by staging
four radix-4 dividers together to form a radix-256 divider that generates 8 quotient bits per
iteration. Additionally, the corresponding cycle time is of the order of modern processor
cycle times.

11
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Model C y c l e s  C y c l e  T i m e  L a t e n c y
SuperSparc 9 20ns 180ns

Snake 1 5 10ns 150ns
Oberman-Quach 8 8.14ns 65.lns

Table 6: Performance comparison

The contributions of the variolrs  phases of the division process in the above numbers
can be seen in figure 7.

6 Comparison

To provide some quantitative reference, table 6 compares the performance of the divider
presented in this study with two other competitive dividers:

It should be noted that both the SuperSparc and Snake are fabricated in 0.8~  processes,
while simulations presented in this study were for a typical 1~ process. If the circuit was
fabricated in a 0.8~  process, it is estimated that the total latency would be reduced by
about 20%, totalling 52ns. If it were fabricated in a 0.35~  process, total latency could be
reduced by up to lOO%,  yielding a latency of under 33ns.

7 Conclusions

In this study, current divider technology has been analyzed. By using optimizations on a
conventional SRT topology, a high-performance divider was designed. The combination of
logic encoding to reduce the latency for conversion and table look-up with circuit style and
implementation optimizations yielded a performance advantage over a conventional SRT di-
vider. The other two divider topologies analyzed yield a slight performance advantage over
the presented divider, but at nearly double the hardware and complexity. When compared
with the conventional SRT scheme, the Oberman-Quach divider realizes a similar perfor-
mance advantage, but at a reduced hardware cost. By staging four such radix-4 dividers
to form a radix-256 divider, the precharge  time of the domino circuit can be amortized
in such a way that a minimum overall latency can be achieved for a full double-precision
divide. Thus, when all of the topologies presented are mapped into a faster circuit style,
the performance advantage of any one scheme is minimized, and the focus shifts to the
desirability of increased hardware and complexity.
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