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Abstract

We evaluate various mechanisms for data communication in large-scale shared memory multiprocessors.

Data communication involves both data transmission and synchronization, resulting in the transfer of data

between computational threads. We use simple analytical models to evaluate the communication latency for

each of the mechanisms.

The models show that e�cient and opportunistic synchronization is the most important determinant of

latency, followed by e�cient transmission. Producer-initiated mechanisms, in which data is sent by its

producer as it is produced, generally achieve lower latencies than consumer-initiated mechanisms, in which

data is retrieved as and when it is needed.
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1 Introduction

In this paper, we examine several mechanisms for data communication in shared memory multiprocessors.

Our goal is to select mechanisms which reduce the communication latency between two computational

threads. We wish to reduce this latency, since communication is often on the critical path of an application.

Other approaches, such as multithreaded processors [22], o�er mechanisms to hide latency|this will increase

the e�ciency of the multiprocessor system but may not decrease the time required to complete a particular

application.

Dally and Wills [9] cite three universal mechanisms which are required to support parallel computation:

naming, communication, and synchronization. In this paper, we will only consider shared memory multi-

processor systems, i.e., systems which support a global address space. Therefore, the naming mechanism

is �xed. The other two mechanisms, communication and synchronization, both a�ect data transfer latency

and will therefore be the focus of this study.

In the following section, we identify the parameters which characterize all data transfer mechanisms. These

include transmission and synchronization granularity, transfer initiation, load and store concurrency, and

eager transmission.

We introduce several \canonical" mechanisms which represent tradeo�s along these dimensions. We then

develop simple analytical models of data transfer latency for each mechanism. Based on the models, we will

choose mechanisms to investigate further through simulation.

2 Characterizing Transfer Mechanisms

In shared memory multiprocessors, the primary (and sometimes only) mechanism for communication is

load/store. A producer of data stores into some memory address, and the consumer of the data loads

from that address at some later time. This mechanism, coupled with synchronization, is su�cient for data

communication, but the latency associated with data transfer depends on the details of the implementation.

The use of caches and the associated cache coherence protocols have a particularly signi�cant impact.

In this section, we discuss seven parameters which characterize a data communication mechanism. These

parameters a�ect transmission and synchronization e�ciency, the overlapping of successive data transfers,

and the aggressiveness with which data is transmitted as it is produced. We believe that this is a complete

list of parameters that a�ect communication latency.

2.1 Transmission Granularity

Transmission granularity describes the amount of data that is transferred in a single network transmission.

We consider three possibilities: word, line, and block.

Word granularity occurs when each data transmission contains a single machine word (32 or 64 bits) of data.

Line granularity refers to a cache line as the unit of transfer|cache line size is determined by the architecture

or its implementation and is highly variable between machines. Finally, block granularity means that the

entire block of data to be transferred is handled in a single network transmission.

Increasing granularity generally implies increased communication e�ciency, at least in terms of latency. Each

network transmission requires some amount of header information. Increasing the amount of data associated

with the transmission decreases the relative cost of transmitting the header.

On the other hand, smaller transmission packets generally lead to better network throughput. The models

described in this paper do not account for network contention or throughput, so the results will be biased

toward mechanisms with larger transmission granularity.
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2.2 Synchronization Granularity

Data transfer between computational threads generally requires synchronization|the producer thread must

somehow signal the availability of the data to the consumer thread. Synchronization granularity determines

how much data is associated with each synchronization operation. As with communication, we consider

three granularities: word, line, and block.

With word synchronization, the presence of data is signaled for each machine word. This generally implies

some hardware support, such as full/empty bits [20], since implementing a software lock per word would

almost always be too expensive in both time and space.1 Line synchronization augments a system's cache

coherence protocol to implement a lock per cache line [10]. Block synchronization is the simplest scheme,

where a single lock signals the presence or absence of the entire block of data to be transferred. This can be

implemented as a simple spin lock, with no special hardware support.

2.3 Transfer Initiation

Communications can be described as either producer-initiated or consumer-initiated, depending on whether

the data is sent by the producer or fetched by the consumer.

In general, producer-initiated transfers should have lower latency, since they do not incur the network delay

associated with asking for the data. Also, the data can be transmitted before it is actually needed by the

consumer, which e�ectively hides the latency from the overall computation.

On the other hand, consumer-initiated transfers are more e�ective for cases in which the consumer or the

data to be transferred are not known in advance; the consumer requests data as and when it is needed.

2.4 Load Concurrency

The load concurrency property determines whether an architecture allows for multiple load operations to be

outstanding for a single processor. If there is no load concurrency, then the processor stalls after every load

until the required data is placed in its register. (Even a load-concurrent system would stall when a register

is read, if the data has not yet been loaded.)

Most microprocessors have a limited amount of load concurrency, allowing loads to the local cache to be

pipelined. More aggressive examples include non-binding prefetch [18] and the \streaming" mechanism in

the WM architecture [23]. We would consider a vector load operation in a vector architecture [13] to be an

example of load concurrency, even though there might be only one outstanding load, since data is retrieved

in a pipelined manner (i.e., we cannot distinguish this, from a latency standpoint, from pipelined load

operations).

2.5 Store Concurrency

Analogous to load concurrency, store concurrency determines whether the architecture allows multiple out-

standing store operations from a single processor.

If multiple outstanding stores are allowed, then stores can complete in an order di�erent than the order in

which they were issued from the processor. This violates the model of sequential consistency [15], which

requires that stores are observed in the same order by all processors, and that stores are performed in the

order prescribed by the sequential program running on a each processor. A strict adherence to sequential

consistency would allow no store concurrency.

1Another approach would be to used a reserved value to denote an empty memory location.
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Trans. Load Store

Mechanism Gran. Synch. Gran. Initiation Conc. Conc. Eager Ref.

remote word block/word consumer no yes no [11]

remote-pipelined word block/word consumer yes yes no [23]

reader-local word block/word producer yes yes yes [21]

update word block/word producer no yes yes [1]

invalidate line block/line/word consumer no yes no [1, 2]

invalidate-prefetch line block/line/word consumer yes yes no [18]

deliver line block/line/word producer yes yes yes [17]

reader-copy block block consumer no yes no [16, 19]

writer-copy block block/word producer no yes no [16, 19]

message block word producer no yes no [5]

message-eager block word producer no yes yes [6, 4]

Table 1: Summary of mechanisms.

Weaker models of consistency have been proposed, however, which do allow store concurrency [2, 12]. These

models recognize that a series of writes may proceed in any order, if they do not a�ect the global view of

the computation, as long as they all complete before some global event, such as a synchronization point. A

fence operation [19] is provided, which stalls the processor until all outstanding stores have completed (i.e.,

have been acknowledged). Fence operations are inserted by the compiler or programmer as needed to insure

correct execution of the program.

In the context of this paper, which is concerned with the latency of data transfer, a weak ordering of stores

is much preferred over a model in which each store must wait on the previous one to complete. For this

reason, all the models considered here will allow store concurrency. (The reader should be aware, however,

that some commercial systems still enforce sequential consistency in hardware.)

2.6 Eager Transmission

The �nal property of data transfer mechanisms is eagerness of transmission|that is, whether transmission

of the data occurs before all of the data is produced. This is closely associated with transmission and

synchronization granularity, but is a separate issue. The distinction is especially important for block-oriented

communication mechanisms.

We refer to a mechanism as eager if transmission is started before the entire block of data is written.

Otherwise, the mechanism is called non-eager.2

3 Communication Mechanisms

Table 1 shows a collection of mechanisms which explores the space of parameters described in the previous

section. Each table entry also gives at least one reference to a proposed or existing system which imple-

ments the model. The table groups models together according to transmission granularity. Also, multiple

synchronization granularities may be associated with a model.3

2The term \lazy" is often used in contrast to \eager." Lazy, however, usually implies that an operation is delayed as long

as possible. This is not what is implied by non-eager in this case.
3This was done in lieu of giving a di�erent name to each combination of transmission and synchronization granularity.
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3.1 Word-Oriented

We �rst consider word-oriented mechanisms, in which data is communicated one word at a time. These

occur most often in systems which do not use local cache for transferring shared data.

The remote mechanism assumes that all data transfer takes place through global memory, and that the

memory is remote from both the producer and the consumer. This corresponds to the case where all

processors are equally distant from memory (e.g., the NYU Ultracomputer [11]), or the case in which the

memory location was allocated in a random memory module, unrelated to the location of either producer or

consumer.

The remote-pipelinedmechanism is an optimizationof remote in which we allow load concurrency through

pipelined load operations.

If the location of the consumer thread is known, we can allocate the shared memory at the memory module

closest to the consumer. Though this is not a di�erent mechanism from remote in the sense of requiring dif-

ferent hardware support, it represents di�erent assumptions about the communication. We call this approach

reader-local. Since the consumer load operations are local, we assume pipelined loads are available.

Finally, one cache-based mechanism should be classi�ed as word-oriented. The update mechanism relies on

an update-based cache coherence protocol [1]. Assuming that copies of the data exist in both the consumer's

and producer's caches, then each data word written by the consumer is sent to the consumer's cache, where

the cached copy is updated.

The �rst two mechanisms, remote and remote-pipelined, are consumer-initiated. Data is not delivered

to the consumer until it is fetched. The other two mechanisms, reader-local and update, are producer-

initiated. In these cases, the data is placed close to the consumer thread as it is written (and potentially

before it is needed by the consumer).

3.2 Line-Oriented

Line-oriented communications mechanisms are ones which transmit data one cache line at a time. The

mechanisms we consider are all based on caches which use an invalidate-based coherence protocol [1]. If a

cache line is written which is present in more than one cache, the writer initiates a request that invalidates

all copies in other caches. Therefore, when a thread on another processor reads the data, it will miss in its

own cache and retrieve the recently-written data from the writer's cache.

We refer to communication implemented strictly with an invalid-based coherent cache system as the inval-

idate mechanism.

Since the consumer relies on the cache miss mechanism to retrieve data from the consumer, there can be

a considerable delay between the time the data is requested and the time it is actually available to the

processor. One way to hide this latency is to use prefetch [18], in which the data is requested before it is

needed. An invalidate-based cache which employs prefetch is called the invalidate-prefetchmechanism.

A mechanism which is more directly oriented toward e�cient producer-consumer communication is the

delivermechanism, as proposed in the DASH project [17]. With this mechanism, the producer may tell the

cache to send a cache line to a particular cache, whether it has been requested or not. This should greatly

reduce the latency seen by the consumer, since the data may already be in its cache when it starts to read

the message.

The delivermechanism is obviously producer-initiated, since the producer tells when and where to send the

data (one line at a time). The invalidate and invalidate-prefetch mechanisms, on the other hand, are

consumer- initiated, since data does not move until the consumer reads it.
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3.3 Block-Oriented

Finally, we consider mechanisms in which the entire message is transmitted as a whole from producer

to consumer. These mechanisms try to make e�cient use of network resources, minimizing the overhead

associated with addresses and other packet header information.

Two such mechanisms are based on a memory-to-memory copy operation, as in the BBN Buttery system [3].

In the �rst mechanism, reader-copy, the reader (consumer) copies the message from the writer's memory

into its own as soon as it is available, e.g., immediately after synchronization. In the second, writer-copy,

the writer copies the data to the reader's memory before synchronization.

A third mechanism, which we will callmessage, hardware support for cache-to-cache delivery of messages is

provided. An example of such a mechanism is StreamLine [5], in which special memory regions are managed

by hardware as FIFO message queues, or streams. The producer writes data to a local stream, and then

issues an instruction which transmits the entire message to a stream in the consumer's cache.

Finally, we consider the message-eager mechanism, which is message with eager transmission. In this

model, data is written to the network as soon as it is produced, as in the J-Machine[7]. Intel's iWarp [4]

architecture has a similar mechanism, in which logical channels can be set up between processes in advance.

The message, message-eager, and writer-copy mechanisms are producer-initiated; the reader-copy

mechanism is consumer-initiated.

4 Evaluating the Mechanisms

Now that we have enumerated the various classes of communication and synchronization mechanisms, we

wish to evaluate them with respect to their e�ectiveness in supporting low-latency data transfer. In this

section, we develop latency models for various combinations of communication and synchronization under

rather ideal circumstances. We do not claim that these models will accurately predict performance in a real

multiprocessor system. Instead, we view the models as a way to quickly examine alternatives, so that we

may eliminate mechanisms which are likely to result in poor performance and identify the most attractive

mechanisms for further study.

4.1 Assumptions and Parameters

An N -word message is passed from process A to process B. A word is de�ned as 32 bits. Process A is charged

for writing all N words, and process B is charged for reading all N words once. Latency is measured from

the �rst write by A to the last read by B. This is not necessarily a direct measure of the communications cost

experienced by A and B, since computation may sometimes occur simultaneously with communication|e.g.,

A may be computing while B is reading.

We assume a cut-through [8, 14] communications network, which is consistent with current research and

production machines. The network has average distance �D, and we assume that every packet that is sent

through the network travels �D hops. The network is pipelined and is clocked at the same rate as the

processor|a pipeline depth parameter, p, denotes the number of clock cycles per hop. Each network channel

is W bits wide. We model no contention in the network.

A memory request or acknowledge contains a target (t bits) and zero or more (32-bit) words of data. The

origin is not included, since some networks can mutate the target en route to obtain the origin.

We assume that the memory at each processing site is interleaved, so that, after an initial delay (M cycles),

data with consecutive memory addresses can be accessed at a rate of one word per processor cycle. Concurrent

fetches to local memory are allowed in every model. Store concurrency is also assumed in every model.
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parameter default description

N 8 message size (words)
�D 10 average network distance (hops)

p 4 network pipeline depth

t 32 size of target address (bits)

W 32 network channel width (bits)

M 4 memory access time, in processor cycles

B 4 cache line size (words)

T (k) | cycles to transmit k words =
�
t

W

�
p �D +

�
32k

W

�

S(k) | cycles to inject k words into the network =
�
t

W

�
+

�
32k

W

�

Table 2: Model parameters and defaults.

In systems with cache, we do not charge for any directory lookup or modi�cation operations|each cache

line \knows" about all the other caches which contain copies of its data. The details of directory lookup

vary considerably among directory-based protocols; by ignoring this overhead, the models reect a protocol-

independent lower bound on the latency of cache-based transfers. Further, we assume in�nite, fully asso-

ciative caches, and we assume that only the caches associated with processors A and B may contain the

message data.

We also assume a load-through cache, in which a cache line is always returned in such a way that the word

within the line that satis�es the miss will be returned �rst; the other words of the line follow in wrap-around

fashion. The �rst word is presented to the processor immediately, so the processor may continue execution

while the remaining words are being loaded into cache. This assumption is favorable toward synchronization

latency, since the synchronization variable is accessed as quickly as possible.

Finally, we assume a dual-ported cache, in the sense that the cache allows simultaneous access (to di�er-

ent memory addresses) from the network and the processor. This would be an aggressive implementation

strategy, probably requiring duplication or interleaving of cache memory, but it is feasible. This and many

of the other assumptions are biased toward an optimistic model of performance; by looking at best-case

performance, we believe that we can better distinguish among di�erent models. Simulations and more

implementation-driven models will be needed to accurately predict performance.

Table 2 shows the parameters used in the models, most of which have been described above. The equations

for communications latency are also shown. The transit time, T (k), is the number of cycles required to

transmit k words of data (plus a target address) through the network. Injection time, S(k), is the number

of cycles used by the cache to place k words into the network; this speci�es the rate at which the cache can

transmit data.

4.2 Word-Oriented Communication

First, we consider the word-oriented communication mechanisms: remote, remote-pipelined, reader-

local, and update. The latency models for these mechanisms, with block synchronization, are shown in

�gure 1. Also shown in the �gure is the latency experience by a PRAM model, also using block synchro-

nization. The non-varying parameters are set according to the defaults in table 2.

The remote mechanism is clearly the worst performer of this group. The latency associated with fetching

each word from across the network, without the opportunity for overlap, results in a large overall latency.

The remote-pipelined model demonstrates how merely allowing multiple loads can greatly reduce the

e�ective latency.

The reader-local and update mechanism are nearly equivalent in this model. Since writes are overlapped,

the main di�erence in the two models is that the reader process loads data from cache in the update case,

rather than its local memory. Local memory is slower than cache, but the interleaved memory assumption

6
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Figure 2: Word comm, word synch: Latency vs. message size.

means that data can be read at one work per cycle in both cases. The result is that there is little di�erence

in performance.

Figure 2 shows the same mechanisms when word-oriented synchronization is used. All of the latencies are

dramatically reduced, but their relative performance stays much the same. Remote-pipelined is not far

behind the other two. In fact, because the memory bandwidth is the same for cache, local, and remote

memories in the model, there is only a �xed o�set due to the cost of accessing the �rst data word.

4.3 Line-Oriented Communication

The line-oriented communications mechanisms (invalidate, invalidate-prefetch, and deliver) are shown

in �gure 3, using the defaults from table 2.

The invalidate mechanism is the poorest performer. As the message size becomes larger than the cache

line (4 words, in this case), then the network latency involved with fetching the message one line at a time

dominates.

For small messages, deliver shows the lowest latency. When synchronization occurs, the message already

resides in the reader's cache, so it does not have to be fetched. (The producer writes and transmits the data

�rst, then waits for the invalidates caused by the writes to be acknowledged. When all acknowledges are

received, the lock is written|by the time the consumer cache sees the invalidate from the synchronization

write, all the deliver operations should have been completed.)

There is, however, some overhead associated with issuing the deliver command after each cache line is written.
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These instructions are issued by the writing process, before synchronization, and are therefore visible in the

overall latency. The invalidate-prefetchmechanism, on the other hand, overlaps prefetch instructions with

the fetching of data { the latency of all but the �rst line fetch is hidden. This di�erence in overhead becomes

signi�cant for messages greater then 64 words (16 cache lines).

The latencies shown in �gure 3 assume a cache line size of four words (16 bytes). Larger cache lines tend to

improve performance, since data is transmitted more e�ciently in larger blocks. Figure 4 shows the latency

for various message sizes, assuming a 32-word (128-byte) cache line. There is no longer a crossover between

invalidate-prefetch and deliver, because the deliver overhead has been reduced by a factor of four.

Figures 5 and 6 show the performance for di�erent line sizes, assuming a message size of 8 and 32 words,

respectively. As in the earlier �gures, the performance of invalidate and invalidate-prefetch are identical

when the message �ts within a cache line. The deliver mechanism favors larger cache lines, since an extra

instruction is required to initiate the deliver after every cache line. If the line size is too large, however,

performance would degrade, because the entire cache line must be written to the network before the invalidate

associated with writing the lock can be sent. This degradation is not observed here, because the time to

receive the acknowledgements is larger than the time to write the line to the network.

Figures 7{9 show the latencies of the line-oriented mechanisms when word-oriented synchronization is used.

The invalidate-prefetch model shown here assumes perfect prefetching. With word synchronization, it

can be detrimental to prefetch the entire message, since the latter part of the message may not have been

written before it is fetched. If empty or partially-empty lines are prefetched, then they will have to be

fetched again when the consuming process tries to read the empty words. If, however, a programmer (or

compiler) knows about the network latency between the consumer and producer, prefetches can be staggered
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Figure 7: Line comm, word synch: Latency vs. message size.
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Figure 8: Line comm, word synch: Latency vs. cache line size, 8-word message.
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Figure 9: Line comm, word synch: Latency vs. cache line size, 32-word message.
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Figure 10: Line comm, line synch: Latency vs. message size.

in time to increase the likelihood of fetching data that has, in fact, been written. The model assumes that

this strategy is used perfectly, and that no line has to be re-fetched. This would be di�cult in practice|

the most conservative strategy is to prefetch only a line at a time, which degenerates into the invalidate

strategy.

The invalidate mechanism also has a risk of fetching empty or partially empty lines. With the default

parameters, however, the latency of the fetch request is larger than the time required to write the entire line,

so the producer is able to keep ahead of the consumer. Using word synchronization dramatically reduces

the invalidate latency, but the cost of fetching only a single line at a time dominates for larger messages,

making this mechanism much worse than the other two.

The deliver mechanism performs very well, especially for small messages. It out-performs invalidate-

prefetch because of its producer-driven nature|the data is transmitted as soon as it is written and is

consumed as soon as it arrives. For large cache lines, invalidate-prefetch and deliver have essentially the

same performance, except for messages smaller than a cache line.

Figures 8-9 show the e�ects of various line sizes on latency. The deliver retains is advantage across varying

line sizes, but the curve now shows a pronounced local minimum. There is a tradeo� between the overhead

associated with smaller cache lines and the bene�t of transmitting the data earlier (and thus being able to

consume the data earlier). The optimal line size appears to be around four or eight words, depending on the

message size.

For the line-oriented mechanisms, we can also consider line-oriented synchronization, shown in �gure 10.

(The latency for word-oriented synchronization is used for the para model, since the e�ective \line size" for

a PRAM is one.)
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Figure 11: Block comm, block synch: Latency vs. message size.

The deliver performance with line synchronization is the same as for word synchronization. In both cases,

the line is transmitted when the producer has �nished writing it, and the data may be consumed as soon as

it arrives.

Invalidate-prefetch is similar to deliver if a prefetch_with_lock instruction can be used to prefetch

all lines at the beginning of the transaction. The prefetch requests are queued at the writing processor;

when each lock is released by the writer, the data and the lock are sent to the consumer. The di�erence

between the two models is that invalidate-prefetch requires the consumer to ask for the data before it can

be transmitted.

The invalidate model shows the same performance as with word synchronization. One advantage of line

synchronization, however, for both invalidate and invalidate-prefetch is that a line will never be delivered

empty or partially full. With word synchronization, an empty or partially-full line may need to be re-fetched,

which greatly increases latency. Therefore, the worst-case performance of word synchronization is worse than

line synchronization for the consumer-initiated protocols.

4.4 Block-Oriented Communication

Finally, we consider the block-oriented mechanisms: reader-copy, writer-copy,message, and message-

eager.

The performance of the �rst two using block synchronization is shown in �gure 11; the other two are inherently

word-synchronized. The writer-copy model performs better than reader-copy, because it eliminates the
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Figure 12: Block comm, word synch: Latency vs. message size.

network latency required to fetch the message from the writer's memory. In the writer-copy case, once the

reader observes that the synchronization lock has been written, it reads the message directly from its local

memory.

Figure 12 shows the e�ect of word-oriented synchronization on the block-oriented mechanisms. Themessage-

eager mechanism shows a dramatic advantage over the other two. It takes full advantage of word synchro-

nization by transmitting each word as soon as it is written; the other two must wait for the entire message

to be written before transmitting.

It is also interesting to note how close message and writer-copy are. The StreamLine mechanism [5],

a proposed implementation of the message model, is much more complex than a block copy, yet there

is little apparent advantage in latency. There are other issues, however, such as bu�er management and

synchronization, which would bene�t from StreamLine in a full application.

The reader-copy mechanism is not shown, because the synchronization model does not make sense in

that situation. The reader cannot request that the message be sent until it knows that the message has

been written. Therefore, unless a mechanism is set up to queue read requests, reader-copy implies block

synchronization.
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Figure 13: Block synchronization: Latency vs. message size.

4.5 Overall Comparison

Figures 13 and 14 show the lowest latency mechanisms, using block and word synchronization, respectively.

For block synchronization, writer-copy shows the best performance, due to its e�cient block-oriented

transmission. Deliver and update are both less e�cient, since data is transmitted a line or word at a time,

and each transmission incurs some network overhead (address, packet header, and so forth).

For small messages, the producer-initiated mechanisms perform best, but invalidate-prefetch eventually

catches up and surpasses the others with su�ciently large messages. The producer-initiated schemes must

have transmitted all of the data before they can perform the synchronization operation|with invalidate-

prefetch, the producer need only issue invalidates before synchronizing. This allows the consumer to be

signaled earlier and to begin fetching and reading the data. Eventually the early synchronization overcomes

the additional fetch latency, and invalidate-prefetch wins.

Figure 14 shows the performance of mechanisms which use word synchronization. The range on the graph

is the same as in �gure 13, so that the reader may easily compare the performance of word and block

synchronization mechanisms.

The di�erence in performance among the word-synchronized mechanisms stem from e�cient communication

and eager transmission. Message performs better than update because of block transmission. Deliver

and message-eager perform progressively better than message because of eager transmission: in deliver,

each line is transmitted as it is written; in message-eager, each word is transmitted as soon as possible.

Invalidate-prefetch with line synchronization is also shown on the graph. (Line synchronization is more
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realistic than the perfect prefetching assumption used with the word model.) As in the block synchro-

nization case, consumer-initiated invalidate-prefetch starts o� with a larger overhead, due to the latency

associated with the �rst consumer fetch. For large enough messages, however, the early synchronization and

transmission wins out over the non-eager update and message mechanisms.

4.6 Summary

The results of this study should not be surprising, because they illustrate concepts that are well known to

computer system architects:

1. Producer-initiated communication results in low latency, because data is sent where it is needed before

it is needed.

2. E�cient, opportunistic (eager) synchronization is the most important mechanism to reduce data trans-

fer latency.

3. E�cient, block-oriented communication is important in reducing data transfer latency.4

4. Prefetch and pipelined loads and stores are very e�ective at reducing observed latency.

While all of these mechanisms have been explored before, this study provides some insight into which

mechanisms are the most e�ective. There are many shortcomings of the simple models used here, and we

do not assert that the models accurately predict performance in a real system on a real application. The

models are useful, however, in pointing toward mechanisms that are most interesting to investigate. Future

simulation studies will concentrate on the deliver,message, and message-eager mechanisms.
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