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ABSTRACT

The structure of a circuit determines how the effects of a fault can propagate and hence affects

the cost of concurrent error detection. By considering circuit structure during logic optimization,

the overall cost of a concurrently checked circuit can be minimized. This report presents a new

technique called structure-constrained logic optimization (SCLO) that optimizes a circuit under the

constraint that faults in the resulting circuit can produce only a prescribed set of errors. Using

e SCLO, circuits can be optimized for various concurrent error detection schemes allowing the

overall cost for each scheme to be compared. A technique for quickly estimating the size of a

circuit under different structural constraints is described. This technique enables rapid exploration

of the design space for concurrently checked circuits. A new method for the automated synthesis

of self-checking circuit implementations for arbitrary combinational circuits is also presented. It

consists of an algorithm that determines the best parity-check code for encoding the output of a

given circuit, and then uses SCLO to produce the functional circuit which is augmented with a

checker to form a self-checking circuit. This synthesis method provides fully automated design,

explores a larger design space than other methods, and uses simple checkers. It has been

implemented by making modifications to SIS (an updated version of MIS [Brayton 87a]), and

results for several MCNC combinational benchmark circuits are given. In most cases, a substantial

reduction in overhead compared to a duplicate-and-compare implementation is achieved.
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1. INTRODUCTION

Concurrent error detection is an increasingly important requirement in the design of systems in
which reliability and data integrity are important. As the complexity and density of VLSI continues
to increase, transient faults are becoming a greater concern &ala 881. Concurrent error detection
circuitry has the ability to detect both transient and permanent faults as well as enhance off-line
testability and reduce BIST overhead [Sedmak 791, [Gupta 921.

A measure of the effectiveness of concurrent error detection in a circuit is the error coverage
that it provides. Error coverage is defined as the percentage of the possible errors for a specified

fault class that are detected. If concurrent error detection in a circuit provides 100% error
coverage, then no fault in the specified fault class can cause an undetected error. Much research
has been done on the problem of designing circuits with concurrent error detection that provides a
certain error coverage. Many concurrent error detection schemes have been proposed that differ
widely in the types of errors that can be detected and the area overhead required.

Notice that error coverage depends on two factors: 1) the set of errors that are detected, and

2) the set of errors that can occur. While most work has centered on increasing error coverage by
improving the concurrent error detection circuitry such that more errors are detected, the focus of
this paper will be on achieving a desired error coverage by decreasing the set of errors that faults in

. a circuit can cause. As will be shown in Sec. 2, the structure of a circuit limits the types of errors
that faults can cause [Russell 7 11. This property can be utilized to design circuits with high error
coverage using low-cost concurrent error detection schemes.

When designing a concurrently checked circuit, the goal is to obtain the required error coverage

while minimizing the overall cost of the circuit. In the case where cost is defined by area, the
overall cost of a circuit is the sum of the area required by the functional circuit itself plus the area
required by the concurrent error detection circuitry. The usual design method is to use normal
logic optimization techniques to minimize the area of the functional circuit, and then choose the
lowest-cost concurrent error detection scheme capable of detecting enough of the possible errors in
the functional circuit to achieve the required error coverage. However, a concurrent error detection
scheme with less error detection capability can still achieve the required error coverage if the
functional circuit is redesigned such that the set of errors that can occur is reduced. This can often
be cost effective because the area saved by using a concurrent error detection scheme with less
error detection capability may be more than the increase in the area of the functional circuit needed
to reduce the set of errors that occur. Therefore, the circuit with the best overall cost may not use
the minimal area functional circuit, and hence may be in the portion of the design space that is not
explored by the usual design method.



In Sec. 3, a new logic optimization technique called structure-constrained logic optimization
(SCLO) is presented. SCLO does logic optimization under the constraint that faults in the resulting
circuit can produce only a prescribed set of errors. By using SCLO, it is possible to reverse the
order of design. The concurrent error detection scheme can be chosen first, and then based on the
set of detectable errors, SCLO can be used to generate the functional circuit such that the required
error coverage is obtained. The advantage of this method is that it can be used to determine the
overall cost for various concurrent error detection schemes regardless of their error detection
ability, thus allowing a larger design space to be explored.

In general, SCLO has to be done for each concurrent error detection scheme being considered
for a circuit in order to determine the overall cost for each scheme. However, a method for
estimating the overall cost without doing SCLO is described in Sec. 4. Using this method, the
computation time required for comparing the overall cost of different schemes is significantly
reduced thereby enabling faster exploration of the design space.

A special class of concurrently checked circuits that have been studied extensively are self-
checking circuits; these circuits guarantee 100% error coverage for both the functional circuit and
the concurrent error detection circuitry. In Sec. 5, self-checking circuits are defined, and a new
synthesis method for generating self-checking circuit implementations for arbitrary combinational
circuits is described. Designing efficient self-checking circuits is a difficult problem, and

. researchers have proposed several solutions. The synthesis method proposed here is completely
automated and works for any combinational circuit. It consists of an algorithm that determines the
best parity-check code for encoding the output of a given circuit, and then uses SCLO to optimize
the self-checking circuit. This synthesis method has been implemented, and the results for several
benchmark circuits are given. In most cases, a substantial reduction in overhead compared to a
duplicate-and-compare implementation is achieved.
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2. RELATIONSHIP BETWEEN CIRCUIT STRUCTURE AND ERRORS

2.1 Circuit Representation and Fault Model
A combinational logic circuit can be partitioned into maximal single-output (MSO) subcircuits,

which are single-output subcircuits that are not part of larger single-output subcircuits. Fig. 1
shows an example of a combinational logic circuit partitioned into MS0 subcircuits. The circuit
structure information that is of interest in this section is the interconnection of MS0 subcircuits.
This information can be represented by a Boolean network in which each node corresponds to a
MS0 subcircuit.

A Boolean network [Brayton 901 is a directed acyclic graph where each node corresponds to a
boolean function. Inward edges to the node indicate the inputs of the function, and outward edges
from a node indicate the fan-outs of the function. Each primary input (PI) of the circuit is
represented by a special node in the graph that does not have a corresponding boolean function. In
this paper, the special PI nodes will not be shown on Boolean network diagrams in order to
increase readability. Fig. 2a is an example of a Boolean network that represents the combinational
logic circuit in Fig. 1. The PI’s are A-H and the PO’s are W-Z. Q and P are intermediate nodes.
In a Boolean network, if a directed path exists from a node to a PO, then the PO is said to be
reachable from that node. For example, in Fig. 2a, X is reachable from P, but W is not reachable

. from P.
The fault class that concurrent error detection techniques usually targets is internal single stuck-

atfaults, which are all single stuck-at faults except those on the stems of PI’s. The reason for this
is that device operating failures are mostly caused by single point errors which are modeled well by
the stuck-at fault model. Detection of stuck-at faults on the stems of PI’s cannot be guaranteed
unless encoded inputs are used, however, if the inputs to the circuit are checked elsewhere (e.g., if
they are outputs of another concurrently checked logic block), then the only undetectable PI stem
faults would be break faults after the checker [Khodadad-Mostashiri 801. Henceforth, a “fault”
will refer to an internal stuck-at fault.



Figure 1. Example: Combinational logic circuit partitioned into MS0 subcircuits
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Figure 2. Example for circuit in Fig. 1: (a) Boolean Network; (b) Reachable Output Matrix
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Figure 3. Node 2 in Fig. 2 is collapsed: (a) Boolean Network; (b) Reachable Output Matrix

4



2.2 Possible Errors due to Faults
Any multiple fault that is confined to one MS0 subcircuit (this includes all single faults) can be

modeled at the Boolean network abstraction as changing the logic function of one node. A node
whose logic function has been changed by a fault will be referred to as a faulty node. In order for

a faulty node to cause an error at a PO, a necessary, but not sufficient, condition is that a structural
path must exist from the faulty node to the PO, i.e., the PO must be reachable from the faulty
node. If a PO is not reachable from the faulty node, then the logic value at the PO doesn’t depend
on the logic value at the output of the faulty node, so the faulty node cannot cause an error at the
PO.

DEFINITION 1: An error vector has one element for each PO, where the element is a 1 if there
exists an error at the PO, or a 0 if the PO is correct.

DEFINITION 2: The reachable output vector for node v, To,,,  has one element for each PO,
where the element is a 1 if there exists a directed path from v to the PO, or a 0 if no path exists.

LEMMA 1: Let E,, be the set of possible error vectors due to a fault that changes the logic
function of node v. Then Ev is a subset of the set of all subvectors of the reachable output vector
for node v, where vector a is said to be a subvector of vector b if a can be obtained by changing
zero or more elements in b from 1 to 0.

. - E, C, { all subvectors of ro,, }
PROOF: In order for a faulty node v to cause an error at a PO, a sensitized path must exist

from v to the PO such that if the logic value at the output of v is incorrect, the logic value at the PO
will be incorrect [Armstrong 661. In order for a sensitized path to exist from v to a PO, a structural
path must exist, thus the PO must be reachable from v. Therefore, the reachable output vector for

v indicates the possible PO’s that could be in error. For each input pattern, any combination of

these PO’s could be in error, so all subvectors of the reachable output vector for v form a superset
of the possible error vectors.

As can be seen from Lemma 1, the reachable output vectors give a bound on the set of possible
error vectors due to any multiple fault in one MS0 subcircuit. Because the reachable output
vectors depend only on the structure of the circuit, they can be determined quickly using an
algorithm such as [Unger 691 that finds the reachability matrix of a graph.

DEFINITION 3: The reachability matrix of a graph, R, is a square matrix having one row and
one column for each node. Each entry ri,]* is 1 if a directed path exists from the row i node to the

column j node, otherwise it is 0.
In this paper, a node will be defined to have a path to itself, so the diagonal entries in the

reachability matrix will be all 1’s. The reachability matrix actually contains more information than
what is needed, so it can be reduced to the reachable output matrix which is defined as follows:



DEFINITION 4: The reachable output matrix of a graph, M, is a matrix having a row for each
PO, and a column for each non-PI node. Each entry mi, J* is 1 if the row i PO is reachable from
column j node, otherwise it is 0.

The reachable output matrix can be derived from the reachability matrix by removing the PI
rows and columns, and the non-PO columns, and then taking the transpose. Note that the
reachable output vector for each node is given by its column vector in the reachable output matrix.
The reachable output matrix for the Boolean network in Fig. 2a is shown in Fig. 2b. By looking at
the column vectors, it can be seen that the worst case error would be for a fault in node P which
can cause up to three PO’s to be incorrect. The Boolean network in Fig. 3a is the same as in Fig.
2a except that node Z’s dependency on node P has been eliminated by replacing P by EF in the
logic equation for 2. The reachable output matrix for the Boolean network in Fig. 3a is shown in
Fig. 3b. Now the worst case error due to any fault can only cause up to two PO’s to be incorrect.
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3. STRUCTURE-CONSTRAINED LOGIC OPTIMIZATION (SCLO)

The normal goal of logic optimization is to minimize area without regard to the structure of the
circuit. However, as was shown in Sec. 2, the structure of a circuit determines the types of errors
that can occur, thus if concurrent error detection is a requirement, circuit structure becomes an
important consideration. The purpose of SCLO is to minimize area under structure constraints.

Multilevel logic optimization improves circuit area by restructuring and minimizing the logic
represented by a Boolean network. After the Boolean network is optimized, technology mapping
is done to translate the boolean functions into primitive cells belonging to a specified target library.
Commonly used technology mapping procedures, such as tree-mapping [Keutzer 871,
[Detjens 871, follow the structure of the Boolean network such that the structure of the mapped
circuit corresponds to the structure of the Boolean network. Therefore, by constraining the
structure of the Boolean network, the structure of the mapped circuit can be constrained. In
SCLO, restrictions are placed on the normal restructuring operations to ensure that the resulting
circuit will satisfy the structural constraints.

3.1 Constraint Specification
The constraints for SCLO are specified as a set of reachable output vectors that each non-PI

. node in the Boolean network is allowed to have; this set is called the reachable output set (ROS).
If the circuit has n PO’s, then there are 2n possible reachable output vectors for each node, so the
ROS can contain some subset of these vectors. If the ROS contains only the weight-l vectors,
then each non-PI node can have a path to only one output, which corresponds to having a circuit
structure in which no logic is shared between outputs. By adding more vectors to the ROS, the
constraints on the structure of the circuit can be relaxed allowing more logic sharing. If all possible
vectors are included in the ROS, then any circuit structure can be used, which corresponds to
normal unconstrained logic optimization.

3.2 Constraints on Restructuring Operations
Given the ROS and the initial multilevel logic equations, SCLO optimizes the logic under the

constraint that the reachable output vector for each non-PI node is contained in the ROS.
Multilevel logic optimization involves using operations that attempt to restructure the logic in order
to reduce its size. SCLO can be accomplished by requiring that the initial logic equations satisfy
the constraints, and then constraining the restructuring operations so that they never cause nodes to
violate the constraints. Two restructuring operations that can cause a node to violate the constraints
are resubstitution and extraction [Brayton 901.



3.2.1 Constraints on Resubstitution
Resubstitution is an operation where some node a, which is divisible (see Def. 5 below) by

another node b, is rewritten as a function of node b, thus creating an arc from node b to node a.
Since resubstitution adds an arc to the graph, it may create a path such that node b’s reachable
output vector is no longer in the ROS, thus violating the constraints. Therefore, in SCLO,
resubstitution can be performed between two nodes only if the resulting arc does not violate the
constraints.

DEFINITION  S: Node a is algebraicazly  divisible by node b if an algebraic expression
(minimal sum of products) for a is such that a = kb + r where kb is an algebraic product in which

k and b have no input variables in common. Note that (W + x)(-y + z) = wy + wz + xy + xz is an

algebraic product, but (X + y)(x + z) =x+xy+xz+yzand(x+y)(y’+z)=xy’+xz+yzarenot
[ Brayton 901.

Because of computational costs, algebraic division is preferred to boolean division in
resubstitution operations. Fig. 4a shows a Boolean network in which node Q is algebraically
divisible by node P. The dashed arrow indicates the new arc that would be added if resubstitution
of P into Q is performed. In order to check if this resubstitution would violate the constraints, the
new reachable output vector for P needs to be determined. From the reachable output matrix,
which is shown in Fig. 4b, the current reachable output vectors for Q and P can be found by taking

. their column vectors. If the arc is added, P will be able to reach every PO that Q can reach in
addition to all the PO’s that P can already reach. Thus, the new reachable output vector for P will
be equal to the logical OR of its current reachable output vector and Q’s reachable output vector.
This calculation is shown in Fig. 4c. If this new reachable output vector is in the ROS, then the
resubstitution can be done, otherwise it cannot be done.

In the general case, in order for node b to be an algebraic divisor of node a, every variable that
is used in the logic expression for b must also be used in the logic expression for a, thus any fan-in
(inward arc) to node b must also be a fan-in to node a, hence any node that has a directed path to
node b must also have a directed path to node a. Therefore, adding an arc from node b to node a
would only change the reachable output vector of node b, so resubstitution of node b into node a
can be performed in SCLO as long as the new reachable output vector for node b is in the ROS.
This is formally stated as follows:

CONSTRAINT: Resubstitution of node b into node a can only be done if the following is true:
(ro, v rob) E ROS

Implementing constrained resubstitution is relatively easy. Various filters are generally used to
reduce the number of node pairs for which resubstitution is attempted [Brayton 87a]. So, this
constraint can simply be added as an additional filter.
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Figure 4. Resubstitution Example: (a) Boolean Network; (b) Reachable Output Matrix;
(c) Calculation of New Reachable Output Vector for Node P

3.2.2 Constraints on Extraction
Extraction is an operation in which common subexpressions from a set of nodes are used to

create intermediate nodes. These intermediate nodes are then used as inputs to the original nodes,
thereby reducing the overall literal count. A newly created intermediate node may fan out in such a
way that its reachable output vector is not in the ROS, thus violating the constraints. Therefore, in
SCLO, extraction must be done in such a way that it doesn’t create an intermediate node that

violates the constraints.
An intermediate node is created by extracting a common subexpression from a set of nodes.

The intermediate node will have an arc to each node in the set of nodes from which it was
extracted, and therefore can reach any PO that any node in the set can reach. So, the reachable
output vector for an intermediate node is equal to the logical OR of the reachable output vectors of
the set of nodes from which it was extracted. Therefore, common subexpressions can only be
extracted from a set of nodes if the logical OR of the reachable output vectors for each node in the
set is in the ROS. This is formally stated as follows:

CONSTRAINT: A common subexpression from a set of nodes (vl,v2,...,vn) can only be
extracted if the following is true: ( rovl v rov2 v . . . v rev,, ) E ROS

In order to implement constrained extraction, the process of selecting common subexpressions
to extract needs to be modified. In MIS [Brayton 87a], the two types of subexpressions that are
considered for extraction are kernels and cubes. Rectangle covering can be used to find either the

optimal common kernels or optimal common cubes to extract. In cube extraction, the cube-literal

matrix is formed with one row for each term in the disjunctive form of each function and one

9
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Figure 5. Cube-Literal Matrix Example: (a) Functions; (b) Cube-Literal Matrix;
(c) Prime Rectangles

column for each different literal, see example in Fig. 5. Rectangles in the cube-literal matrix
correspond to common cubes. The “value” of a rectangle is defined as the number of literals that
would be saved if it is extracted. A heuristic procedure for finding the optimal common cubes is to
extract the “best” rectangle, substitute it into the expressions, update the cube-literal matrix, and
then reapply the procedure [Brayton 901. Kernel extraction is very similar, except that the co-
kernel cube matrix is used instead of the cube-literal matrix (see [Brayton 87b] for more details).

A procedure for finding the best rectangle for extraction is to find all the prime rectangles,
compares their value, and then chooses the best one [Rude11  891. A prime rectangZe is a rectangle
that is not contained in another rectangle. Since any non-prime rectangle is a subrectangle of some
prime rectangle, it will always have a smaller value than the prime rectangle that it is contained in.
Thus, only prime rectangles need to be considered.

In SCLO, some rectangles cannot be extracted because they would result in intermediate nodes
which violate the constraints. In order to check if a rectangle can be extracted, the set of nodes it
intersects must be determined. The set of nodes that a rectangle intersects is equal to the union of
the nodes corresponding to the rows covered by the rectangle, see example in Fig. 5. A rectangle
can only be extracted if the logical OR of the reachable output vectors for each node it intersects is
contained in the ROS, otherwise it violates the constraints.

In SCLO, the previously described procedure for finding the best rectangle to extract is
modified so that it finds the best rectangle that satisfies the constraints. An algorithm for doing this
is shown in Table 1. All the prime rectangles are found and compared as before. However, if the
best prime rectangle doesn’t satisfy the constraints, then it must be replaced by the best
subrectangle contained in it which does satisfy the constraints. Then this subrectangle is compared

10



Table 1. Algorithm for Selecting Best Rectangle that Satisfies Constraints

SELECT-BEST-RECTANGLE (matrix):
rect-set = FINDPRIMEJUXTS(matrix)
best-rect = MAXJMSJE~RECI’(rect~set)
while ( best-rect doesn’t satisfy constraints ) {

rect-set = rect set - best-rect-
rect-set = rect-set u FIND-BEST-SUBRECT(best-rect)
best-rect = W&VALUE_RECT(rect-set)

1
return (best-ret t)

FIND-BEST-SUBRECT (rect):
node set = 0
for each row r in rect {

node-set = node-set u NODE(r)
node-weight[NODE(r)] += VALUE(r)

1
camp-graph = create compatibility graph for node-set
mm clique set = find maximum weight clique in comp_graph- -
subrect = 0
for each row r in rect {

if ( NODE(r) E max-clique set )_ -
subrect = subrect u r

1
retum(subrect)

with the other prime rectangles, and the best one is chosen. This process continues until either a
prime rectangle which satisfies the constraints is chosen, or one of the replacement subrectangles is
chosen. Finding the best subrectangle can be done using the compatibility graph for the nodes that
are intersected by the prime rectangle. Two nodes are compatible if the logical OR of their
reachable output vectors is contained in the ROS. Each node in the compatibility graph is assigned
a weight based on the relative number of literals that would be saved if the node is used, so the
maximum weight clique in the compatibility graph indicates the best subrectangle. A clique is a
maximal complete subgraph [Bron 7 11.
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a a’ b b’ c d e Prime Rectanales: Value
(W) b'cd 0 0 0 1 1 1 0 ((rows),(cW~
(X) acde 1 0 0 0 1 1 1 cd: ((1,2,3,4,5),(5,6)} 3
(Y) abed 1 0 1 0 1 1 0 ad: {(2,3),(1,5,W 1
(Z) bcde 0 0 1 0 1 1 1 bed: {(W),(3,5,6)) 1
(Z) a'cd 0 1 0 0 1 1 0 de: {(W,(56,7)1 1

Constraints: Comoatibilitv Graoh for cd:

(row v rox) E ROS (rox v ro+ ROS
(To,,,, v roy)E ROS (rox v roZ)E ROS
(row v roz) E ROS (ray v roz) 4 ROS

Maximum Weight Clique is W,X,Z * Best Subrectangle: ((1,2,4,5),(5,6)}

Figure 6. Example of Finding Best Rectangle that Satisfies ROS Constraints

. - Fig. 6 shows an example of finding the best rectangle to extract from a cube-literal matrix. The
best prime rectangle is cd, but this rectangle violates the constraints because it intersects both Y and
Z. In the compatibility graph for cd, node Z is weighted with twice the value of the other nodes
because cd is used twice in Z but only once in the other nodes The maximum weight clique in the
graph is W&Z. So, the best subrectangle contains all rows in the original prime rectangle for cd
that intersect W,X,Z. This subrectangle has a value of 2 which is more than all the other prime
rectangles in the matrix. Therefore, it is the best rectangle which satisfies the constraints.

3.3 Application to Concurrent Error Detection
As was shown in Sec. 2, the set of possible error vectors in a circuit is bound by the reachable

output vectors for each node in the corresponding Boolean network. Therefore, since the ROS
constrains the reachable output vectors for each node, the ROS can be used to constrain the set of
possible error vectors in a circuit. So, if a concurrent error detection scheme is to be used for a

circuit, then the ROS can be chosen such that SCLO will generate a circuit in which faults produce
only detectable errors. For example, if a concurrent error detection scheme that is capable of
detecting 1 or 2 bit errors is used, then by putting only weight-l and weight-2 vectors in the ROS,
the circuit structure is constrained such that non-PI nodes have paths to only one or two outputs.
Thus, any fault in a non-PI node can only produce a 1 or 2 bit error at the PO’s, which would be
detected.
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4. ESTIMATING STRUCTURE-CONSTRAINED CIRCUIT SIZE

Choosing the best concurrent error detection scheme requires knowing the size of the
functional circuit for each scheme. This involves doing SCLO with the appropriate ROS for each
scheme. In order to reduce the computation time required to evaluate various concurrent error

detection schemes, a method for estimating the size of the functional circuit without doing SCLO is
presented in this section.

The circuit that results from doing unconstrained logic optimization will be referred to as the
unconstrained circuit, and the circuit that results from doing SCLO will be referred to as the
constrained circuit. The size of the constrained circuit can be estimated by determining which
nodes in the unconstrained circuit have reachable output vectors that are not in the ROS. If a node
in the unconstrained circuit violates the constraints, it can be replicated in such a way that each
copy will satisfy the constraints. Consider the unconstrained circuit shown in Fig. 7. If the all l’s
vector is not contained in the ROS, then nodes P and Q violate the constraints. In Fig. 8, these
two nodes have been replicated so that each copy satisfies the constraints, i.e., none of the nodes
can reach all the PO’s.

By determining the number of extra copies of each node in the unconstrained circuit that are
needed to satisfy the constraints, an upper bound on the size of the constrained circuit can be

- computed. In the worst case, the constrained circuit could be generated by replicating nodes in the
unconstrained circuit, and its size would then be equal to the size of the unconstrained circuit plus
the size of the extra nodes, where size is defined as the factored form literal count. However, since
SCLO takes the constraints into consideration when deciding how to restructure the circuit, it will
usually generate a smaller circuit. The size of the constrained circuit is bounded as follows:

unconstrained size 5 constrained size I unconstrained size + size of extra nodes
Extra copies of a node in the unconstrained circuit are needed if the reachable output vector for

the node is not contained in the ROS. When a node is replicated, the PO’s that it reaches can be
distributed among the copies. For example, if a node that can reach three PO’s is triplicated, each
copy need only reach one PO. If a node’s reachable output vector is not in the ROS, it must be
replicated enough times so that each copy has a reachable output vector that is in the ROS, and the
logical OR of the reachable output vectors for all the copies equals the node’s original reachable
output vector. Based on this requirement, an algorithm can be written to scan through each node in
the unconstrained circuit and determine how many extra copies are needed to satisfy the constraints
imposed by the ROS. By summing the sizes of these extra nodes, the worst case size of the
constrained circuit can be computed without doing SCLO. The worst case size gives a relative
measure of the area complexity for different structural constraints. This value, or some fraction of
it, can be used as an estimate of the constrained circuit size.
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5. SYNTHESIS OF SELF-CHECKING CIRCUITS

The synthesis techniques described in this paper can also be used in the automated synthesis of
self-checking circuit implementations for arbitrary combinational circuits. In this section, a new
synthesis method is presented. It consists of an algorithm that determines the best parity-check
code for encoding the outputs of a given circuit, and then uses SCLO to produce the functional
circuit which is augmented with a checker to form a self-checking circuit implementation.

5.1 Definitions
The goal of a self-checking circuit is called the totaZZy self-checking (TSC) goal, which is to

detect the first error that occurs due to any fault in a specified fault class [Smith 781. The general
structure of a self-checking circuit is shown in Fig. 9. The output of the functional circuit is
encoded such that if an error occurs, it will produce a non-codeword. A totaZZy  self-checking
(7X) checker is used to monitor the output of the functional circuit and indicate an error if a
non-codeword appears or if a fault occurs in the checker itself. One way to achieve the TSC goal
is if the functional circuit is both fault secure and self-testing and its output is checked by a TSC
checker [Anderson 7 11. However, as was shown in [Smith 781, the self-testing requirement can
be relaxed if the functional circuit is strongly fault secure (SFS). [Smith 781 also introduced the

. concept of path fault secure (PFS) circuits, and showed that it is a subclass of SFS circuits. PFS
circuits can be defined using the terms described in Sec. 2; this is done in Def. 9.

DEFINITION 6: A circuit is fault-secure if for every fault in a specified fault class, the circuit
never produces an incorrect codeword output for any codeword input.

DEFINITION 7: A circuit is self-testing if for every fault in a specified fault class, the circuit
produces a non-codeword output for at least one codeword input.

DEFINITION 8: A circuit is strongZy fault-secure (SFS) if for each fault in a specified fault
class, one of the following is true:

(i) the circuit is fault secure and self-testing, or
(ii) the circuit is fault secure and remains SFS in the presence of the fault

A SFS circuit remains fault secure until it becomes self-testing, thus no sequence of faults can
cause an undetected error.

DEFINITION 9: A circuit is path fault secure (PFS) if for each fault in a specified fault class,
each of the possible errors determined from the structural paths, i.e., reachable output vectors (by
way of Lemma l), must produce non-codewords.
Assuming no fault can add a structural path, a PFS circuit remains fault secure in the presence of
any faults and therefore is SFS.
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Figure 9. General Structure of a Self-Checking Circuit

outputs
4 4

av
inputs a Function 0

0 Logic 0 a TSC
. Checker

error indication

Figure 10. General Structure of a Self-Checking Circuit using a Systematic Code

In Sec. 2, it was shown how the set of errors due to internal single stuck-at faults depends on
the reachable output vectors of the nodes in the circuit. Based on this dependence, a circuit whose
output is encoded such that each possible error causes only non-codewords is PFS for internal
single stuck-at faults. As was shown in [Smith 781, PFS circuits that are checked by a TSC
checker achieve the TSC goal regardless of what input patterns are applied to the circuit during
normal operation. This property is important because it eliminates the need to consider the
operating input patterns in the design process.

In a systematic code, codewords are constructed by appending check bits to the normal output

bits. Using a systematic code in a self-checking circuit has the advantage that no decoding is
needed to get the normal outputs. Fig. 10 shows the general structure of a self-checking circuit
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that uses a systematic code. The circuit has three parts: function logic, check logic, and checker.

The function logic generates the normal outputs, the check logic generates the check bits, and the
checker determines if they form a codeword.

A parity-check code is a code in which each check bit is a parity check for a group of output
bits. Each group of outputs that is checked by a check bit is called aparity  group, and corresponds
to a row in the parity check matrix H [Pradhan 861. Both single-bit parity and duplication are
parity-check codes. Table 2 shows the parity check matrix H for a circuit with three outputs
Zl,Z2,Z3, encoded with single-bit parity and with duplication. In single-bit parity, there is one
parity group which contains all the outputs. In duplication of a circuit with n outputs, there are n
parity groups each containing one of the outputs.

Table 2. H Matrix for circuit with three outputs: (a) Single-Bit Parity Code; (b) Duplication Code.

(a) W

Group ZI 22 23 cl Group ZI Z2 23 cl c2 c3
I 1 1 1 1 I 1 0 0 1 0 0

2 0 1 0 0 1.0
3 0 0 1 0 0 1

. -

5.2 Previous Work
Several methods for the design of self-checking circuits for arbitrary combinational circuits

have been proposed. The simplest method is to duplicate the functional logic and use a two-rail
checker (equality checker). This is commonly used, but requires more than 100% overhead.
Another simple and commonly used method is conventional parity prediction in which a single
parity check bit is generated [Khodadad-Mostashiry 791. The check logic and checker are small,
but severe restrictions are placed on the structure of the functional circuit since only errors that
affect an odd number of PO’s can be detected. An extended parity checking method capable of
detecting errors affecting an even number of PO’s was proposed in [Ko 781, and a generalized
parity prediction checker for any parity-check code was described in [Fujiwara 871.

In [Jha 913, a synthesis method is proposed in which the functional circuit is optimized using a
MIS script with only algebraic operations such that the resulting circuit can be transformed so that
it has inverters only at the PI’s. The outputs can then be encoded with a Berger code, which is an
optimal systematic all-unidirectional error-detecting code, so that the circuit is self-checking for all
internal single stuck-at faults. One drawback is that the checker required for a Berger code tends to
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be large. However, in the case where the functional circuit produces only a small subset of all
possible output patterns, a separable code with fewer check bits than a Berger code may be used.

In [De 921, two synthesis methods are described. The first uses a Berger code and is essentially
the same as [Jha 911. The second uses a parity-check code and is similar to the method proposed in
this paper. The functional circuit outputs are partitioned to form logic blocks in such a way that
logic sharing within each block is maximized. The parity functions for the necessary check bits are
generated and form another logic block. MIS is then used to optimize each logic block separately
thereby restricting the circuit structure such that no logic is shared between each logic block. A
TSC checker for the appropriate parity-check code is added to form a self-checking circuit.

The synthesis method proposed here offers several advances over the previously proposed
methods. It automatically selects the best parity-check code for encoding the outputs of a given
functional circuit such that the overall area is minimized, and then performs SCLO to generate an
optimized PFS circuit that is augmented with a TSC checker to produce a self-checking circuit.
Whereas [De 921 only considers logic sharing when choosing the parity-check code, the algorithm
given here considers the size of the parity functions and the size of checker as well as logic sharing
when choosing the parity-check code, thereby minimizing the size of the overall circuit instead of
just the size of the function logic. By using SCLO to generate a PFS circuit, the whole circuit is
synthesized together allowing additional logic sharing opportunities to be explored, thus producing

. a better result. Also, since a parity-check code is used, the checker is usually smaller than the
checker required for a Berger code.

5.3 Selecting Parity-Check Code I
The procedure for the proposed synthesis method is to first select a parity-check code for

encoding the outputs of the functional circuit. Then the logic equations for the check bits used in
the selected code are computed. These logic equations are then combined with the functional logic
equations and synthesized under the constraint that the resulting circuit is PFS with respect to the
selected code. The PFS circuit is then augmented with a TSC checker for the selected code to
produce a self-checking circuit. Since each step of the synthesis process is affected by the selected
code, selecting the best code is very important.

Given a functional circuit, selecting a parity-check code involves choosing the number of parity
groups (i.e. check bits), and then assigning the outputs to the parity groups. It is very rare that
placing an output in more than one parity group will reduce the overall size of the circuit, thus only
codes in which each output is in exactly one parity group are considered. Therefore, selecting the
code requires partitioning the outputs into parity groups.

A parity-check code can detect any error in which an odd number of output bits in any parity
group are incorrect. If the structure of the circuit is such that each node in the circuit can only reach
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at most one output in each parity group, then the circuit is PFS because no fault can cause an

undetectable error. So, there exists a tradeoff between the number of parity groups and the
constraints on the structure of the function logic when generating a PFS circuit. Single bit parity
and duplication are the two extreme cases. In single bit parity, there is one parity group, so the

check logic and checker are small, but no logic can be shared between outputs, so the function
logic may be large. In duplication, there is one parity group for each output, so the check logic and
checker may be large, but there are no constraints on the structure of the function logic. By
reducing the number of parity groups, the size of the check logic and checker decreases, but the
additional structural constraints may increase the size of the function logic. The goal is to select the
code that minimizes the overall size of the circuit.

5.3.1 Estimating Circuit Size
The exact solution to the problem of selecting the optimal code for a circuit requires adding the

appropriate check bit equations to the function equations and doing SCLO for each possible code to
compare the resulting circuit sizes. Since the number of possible codes is exponential in the
number of outputs, heuristics are needed. The size of the circuit is equal to the sum of the sizes of
the function logic, the check logic, and the checker. The size of the checker depends only on the
number of parity groups, so it can easily be determined. The size of the function logic can be

. estimated using the method described in Sec. 4 with the appropriate ROS for each code. The size
of the check logic, however, is difficult to estimate. An exact computation requires generating the
check bit equations by taking the sum modulo-2 of the logic equations for the outputs in each parity
group, and then doing multilevel logic optimization. The computation time required for this is
obviously not practical.

While it is difficult to estimate the absolute size of the check logic for each code, the relative
sizes for two codes can be approximated. If one code can be generated from another code by
merging two parity groups, then the difference in the sizes of the check logic for the two codes can
be approximated using only node minimization (two-level minimization of a node). Consider the

case where code B is generated by merging two parity groups, corresponding to check bits cl and
~2, in code A. The change in the size of the check logic can be approximated by comparing the
factored form literal count of cl and c2 with (cl 0 ~2) after node minimization:

check logic size (A) - check logic size (B) = lits(cl) + lits(c2)  - lits(cl 0 ~2)

This approximation neglects the effect of global restructuring operations that would be performed
in multilevel logic optimization. Since the only difference between the check logic for code A and
code B is that two nodes were combined, this approximation gives a reasonable prediction of the
change in size.
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5.3.2 Algorithm
A greedy algorithm for selecting an optimal parity-check code for a circuit is given in Table 3.

It begins with the duplication code in which each output is in its own parity group. Using the
estimation techniques that have been described, it computes the change in circuit size (literal
savings) if any two parity groups were merged. The pair that would give the largest reduction in
size is merged, and the process is repeated for the resulting code. Parity groups continue to be
merged until the size of the circuit can no longer be reduced by merging groups.

When computing the literal savings from merging some pair of parity groups, three factors are
considered: 1) reduction in the size of check logic due to combining two parity functions into one
(parity-reduce), 2) reduction in the size of checker due to eliminating one input (chk reduce), and-
3) increase in the size of function logic due to added structural constraints because of the decrease
in error detection ability (weight * shared). The sum of the first two factors minus the third gives

the net reduction in size (savings).
In estimating the effect of the structural constraints on the size of the function logic, a fraction

(weight) of the literals shared between the two merged groups (shared) is used. When two parity
groups are merged, logic can no longer be shared between the outputs in each group for the
reasons that were explained in Sec. 4. However, this is an upper bound on the loss because SCLO
will likely restructure the circuit in such a way that other logic sharing is possible, thereby

. compensating for some of the loss. So weight is a parameter that is used to estimate the actual loss
in logic sharing as a fraction of the worst case loss. For most circuits, weight=OS has been found

to give good results. In general, the synthesis process can be repeated for a few different values of
weight, and the best result can be used.

The algorithm starts with the duplication code which has n parity groups where n is the number
of outputs in the circuit. It then considers all codes with n-l parity groups and greedily chooses
the optimal one. Then it considers all codes with n-2 parity groups that can be generated by
merging two parity groups in the optimal code for n-l parity groups and greedily chooses the best
one. This process continues until the selected code for n-i parity groups is better than any of the
codes with n-i- 1 parity groups that are considered. All codes with n or n- 1 parity groups are
considered, so if the optimal code has n or n-l parity groups, it is guaranteed to be found. Only a
subset of the codes with fewer than n-l parity groups are considered. This subset is generated
using the heuristic of greedily merging groups to minimize parity functions. Thus, a solution is
obtained using only O(n2Zog2n)  operations, where each operation requires computing the exclusive

OR of two nodes and simplifying it. These operations can be done fairly quickly in MIS thereby
making the algorithm practical for circuits with a reasonable number of outputs.
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Table 3. Algorithm for Selecting Parity-Check Code

SELECT-PARITY-CHECK-CODE (funct-logic, weight):
n = NUM-PO(funct_Iogic)
for i = 1 to n {

grOUpi= { i }
ci = NETWORK-GET-PO-NODE(@nct-Zogic,  i)

1
groups = { 1,2,...,n }
optf unct-logic = unconstrained logic optimization of funct-logic
for each unordered pair (i,j) where i, j E groups and i f j {

*sharedi,] = LITSJWIARED(optf unct-logic, groupi, groupi)
Ci,j = NODE-XOR(Ci, Cj)
Ci,j = NODE-SIMPLIFY(Ci,j)
par@-reducei,j  = LITS(ci) + LITS(cj) - LITS(ci,j)
savingsi,j  = pariv-reducei,j + chk_reduce - weight * sharedi,j

1
while ( MAX(savingsi,j) > 0 ) {

grOUpi=grOUpi VgrOUpj

Ci = Ci,j

groups = groups - ( j 1
for each k E groups where k f j

SaVingSj, k = - 00
for each k E groups where k f i {

sharedi, k = LITS-SHARED(optf unct-logic, groupi, groupk)
Ci, k = NODE-XOR(ci,  Ck)
Ci, k = NODE-SIMPLIFY (Ci, k)
parity-reducei,  k = LITS(Ci) + LITS(Ck) - LITS(Ci, k)
savingsi, k = parity-reducei,  k + chk reduce - weight * sharedi, k-

1
1
row=0
for each i E groups {

row = row+1
for col = 1 to n

if(coZ E grOUpi)
&w,ca1= 1

else
&w,col = 0

1
return (H)
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5.4 Generating Self-Checking Circuit
Once the parity-check code has been selected, the next step of the synthesis method is to

generate the actual circuit. The check bit equations are added to the function logic equations, and
based on the parity-check code, the appropriate ROS for a PFS structure is determined. SCLO is

then performed to produce a PFS circuit. Logic sharing between the function logic and check logic
is considered as long as the PFS property is maintained. Therefore, even for a duplication code,
SCLO may produce better results than doing logic optimization on the function logic and check
logic separately.

For a complete self-checking circuit, a TSC checker needs to be added to the optimized PFS
circuit. TSC parity checkers [Khakbaz 821 can be used to check each parity group, and then a TSC
two-rail checker [Hughes 841 can be used to combine the error indication signals. If too few
output codewords occur during normal operation to satisfy the self-testing requirement of the
checkers, modifications such as those suggested in [Fujiwara 871 can be used. An example of a
parity-check code is given in Table 4, and the block diagram for a complete self-checking circuit
using this code is shown in Fig. 11. The check bits are cl,c2,c3, and the normal circuit outputs are
the Zi’s.

Table 4. Example: H Matrix for Parity-Check Code

Group Z1 22 23 z4 25 z6 cl c2 c3
I 1 0 1 0 0 0 1 0 0
2 01a011010
3 0 0 0 1 0 0 0 0 1

inputs\\

ICl II I Parit

Circuit

outputs

TSC
2-Rail

- error
_ indication

Figure 11. Block Diagram of Self-Checking Circuit Using Code in Table 4
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5.5 Results for MCNC Benchmark Circuits
The synthesis method has been implemented by making modifications to SIS 1.1 (an updated

version of MIS). The code selection algorithm was added, and the restructuring algorithms were
extended to handle structural constraints so that SCLO could be performed. Self-checking circuits
were generated for some of the MCNC combinational benchmark circuits [Yang 9 l] and then placed
and routed using the TimberwolfSC 4.2~ standard cell package [Sechen 86,871. The circuits were
optimized using the script file script.boolean included with the SIS source code. Results are
shown in Table 5. Literal counts are given in terms of factored form literals and layout areas are
given in units of 1000 h*, where h is the minimum size in a technology. Under the first major

heading, information about each circuit is given: number of PI’s, number of PO’s, literal count after

normal unconstrained logic optimization, and layout area for the optimized circuit (with no
concurrent error detection). Under the second and third major headings, results for the duplication
method and the synthesis method are given: number of check bits, literal count for the circuit, literal
count for the checker, total literal count for the self-checking circuit, layout area for the self-checking
circuit, and the percentage of area overhead required which is computed as shown below.

% Area Overhead =
(self - checking layout area) - (normal layout area) x loo

(normal layout area)

For the circuits where the number of check bits that are used in the parity-check code chosen by the
’ synthesis method is equal to the number of PO’s, the duplication code was selected. Where the
number of check bits is equal to one, single-bit parity prediction was selected. For most circuits,
something between duplication and single-bit parity prediction turned out to be best. In most cases,

the synthesis method provides a significant reduction in the amount of overhead required compared
to duplication.

Table 5. Results for MCNC Benchmark Circuits

Circuit Duplication Method Synthesis Method
opt layout chk ckt chkr total layout ovrhd chk c k t  chkr total layout ovrhd

Name PI PO lits area bits lits lits lits area % bits lits lits lits area %
5xpl 7 10 121 334 10 242 72 314 989 196 3 217 44 261 797 139
alu2 10 6 441 1717 6 882 40 922 3602 110 5 796 36 832 3146 83
alu4 14 8 800 3298 8 1600 56 1656 6796 106 8 1600 56 1656 6796 106
b12 15 9 87 284 9 174 64 238 727 156 4 150 44 194 613 116
bw 5 28 217 752 28 434 216 650 2566 241 8 302 136 438 1066 42
clip 9 5 157 462 5 314 32 346 1131 145 3 310 24 334 1084 135
cmb 16 4 52 153 8 104 24 128 414 171 2 64 16 80 206 35
cu 14 11 53 181 11 106 80 186 537 197 1 83 40 123 356 97
f51ml 8 8 130 385 8 260 56 314 923 140 2 218 32 250 677 76
misexl 8 7 54 154 7 108 48 156 403 162 3 96 32 128 355 131
misex2 25 18 104 372 18 208 136 344 1166 213 2 202 72 278 935 151
pcle 19 9 69 229 9 138 64 202 659 188 3 156 40 196 523 128
rd73 7 3 81 236 3 162 16 178 511 116 3 162 16 178 511 116
sao2 10 4 149 431 4 298 24 322 1076 150 1 268 12 280 785 82
term1 34 10 179 617 10 358 72 430 1542 150 7 326 60 386 1211 96
ttt2 24 21 191 630 21 382 160 542 1977 220 9 374 112 486 1707 171
x2 10 7 51 144 7 102 48 150 433 201 2 79 28 107 279 94
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6. SUMMARY AND CONCLUSIONS

A new synthesis technique called structure-constrained logic optimization (SCLO) was
proposed for minimizing area under the constraint that the set of PO’s that each node in the circuit
can reach is contained in a specified reachable output set (ROS). It was shown that the ROS places
a limit on the types of errors that a fault can cause. By using the appropriate ROS, SCLO can be

used to optimize circuits for various concurrent error detection schemes such that a particular error
coverage is achieved. A method for estimating the size of structure-constrained circuits without
actually doing SCLO was described. Using this method, the design space for a concurrently
checked circuit can be rapidly explored. This technique forms the basis of a new method for
automated synthesis of self-checking circuit implementations for arbitrary combinational circuits.
This new synthesis method consists of an algorithm that selects the best parity-check code for
encoding the outputs of a given circuit, and then uses SCLO to produce a path fault secure circuit
that is augmented with TSC parity and two-rail checkers to produce a self-checking circuit. The
advantages of this new synthesis method are: 1) provides fully automated design, 2) explores

more of the design-space than other methods, and 3) uses simple checkers. Results were shown
that suggest that this method can significantly reduce the area overhead required for self-checking

. circuits.
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