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Abstract

In this paper, two hardware-controlled update-based cache coherence protocols are presented. The
paper discusses the two major disadvantages of the update protocols: inefficiency of updates and
the mismatch between the granularity of synchronization and the data transfer. The paper presents
two enhancements to the update-based protocols, a write combining scheme and a finer grain
synchronization, to overcome these disadvantages.

The results demonstrate the effectiveness of these enhancements that, when used together, allow the
update-based protocols to significantly improve the execution time of a set of scientific applications
when compared to three invalidate-based protocols.
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1 Introduction

In shared-memory multiprocessors, caches have been shown to be an effective technique to reduce
memory access latency. Unfortunately, one problem that arises in such systems is the cache
coherence problem. A memory line may be present in any of the processors’ caches; thus, to
execute programs correctly, the copies of this memory line must remain consistent. When a
processor modifies the memory line, other caches that have a copy of the line must be notified so
that their copy may be made consistent.

The two methods for maintaining consistency on a write are invalidating or updating the copies of
the memory line. Invalidating purges the copies of the line from the other caches which results in
a single copy of the line, and updating forwards the write value to the other caches, after which all
caches are consistent.

Cache coherence may be maintained through software, hardware or a combination of the two.
The majority of scalable hardware-based systems with a general interconnect use invalidations to
maintain consistency [10, 21, 9, 13]. Several of the software-based schemes use a combination of
invalidations and updates [2, 14, 11, 3, 24, 23].

This paper presents two hardware-controlled update-based cache coherence protocols: one based
on a centralized directory and the other based on a singly linked distributed directory. The
paper considers two major disadvantages of the update-based protocols and develops approaches
to overcoming them. The first disadvantage is the increased network traffic resulting from the
updates. The paper demonstrates how simple hardware combining of writes can significantly
reduce this traffic and the resulting congestion. The second problem is the mismatch between the
granularity of synchronization and data sharing. With invalidate-based protocols, coarse-grained
synchronization typically matches the inherent line-based data sharing supported by the protocol,
but in the update-based protocols this tactic does not take full advantage of the fine-grain data
updates. A finer grain (word) synchronization would allow shared data to be consumed as soon as
it is available.

The paper is organized as follows. Section 2 describes the cache coherence design space, and in
particular section 2.3 describes the two new update-based cache coherence protocols. Section 3
discusses the interaction between these update-based protocols and memory consistency models.
Next, section 4 identifies the important characteristics of the shared-memory applications and
describes the interactions between consumers and producers and the use of data prefetching.
Section 5 introduces two enhancements to the update-based protocols: finer grain synchronization
and write combining. Section 6 presents the simulated architecture, and section 7 describes the
applications under study and presents the simulated results. Finally, section 8 concludes the paper.

2 Cache coherence

Cache coherence protocols can be separated by what actions are taken on a processor write. All
protocols must guarantee that after the actions triggered by the write are completed, all caches
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in the system are consistent with each other. Copies of the memory line held by other caches
may be updated or invalidated on a write, and the memory’s copy may also be updated. Figure 1
summarizes the four possibilities which result in two classes of protocols: update-based (UP) or
invalidate-based (INV). This paper studies the fundamental performance differences between these
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Figure 1: Protocols Classes

classes of protocols.

2.1 Directory structure

To invalidate or update all copies of a memory line, the protocols must maintain a list of caches
that have a copy of each memory line. This information, which is stored in a directory entry, can
either be stored in a single, central location (centralized directory protocol) or distributed among
the caches holding a copy of the line (distributed directory protocol). In both cases, the directory
entries are distributed throughout the system with their respective memory lines. In the centralized
directory (CD) protocols, the directory entry contains a pointer to each cache that contains a copy
of the line. In the CD protocols studied in this paper, a fully mapped directory is used [19] in which
there is a single bit pointer for each cache in the system. In the distributed directory (DD) protocols,
a linked list structure is used to maintain a list of caches that have a copy of a given memory line.
The directory entry contains a pointer to the head of this list. In the Singly linked Distributed
Directory (SDD) protocol [21], a singly linked list is used to maintain the list. The Scalable
Coherence Interface (SCI) [9] distributed directory protocol uses a doubly linked list. The relative
scalability and performance of these directory schemes are a current research topic [4, 17, 25];
therefore, update-based protocols based on both directory structures are presented.

2.2 Invalidate-based protocols

This paper compares update-based protocols with three invalidate protocols: a centralized directory
protocol (CD-INV) which is similar to DASH [10], a singly linked distributed directory protocol
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(SDD) and a doubly linked distributed directory protocol (SCI).

The invalidate protocols differ in how invalidation is performed. In the CD-INV protocol, the
invalidates can be sent out in parallel, since the directory entry contains all the necessary informa-
tion. For the distributed directory protocols, the invalidates flow down the linked list of caches;
the length of the list determines the latency of the invalidations.

The source of data for a miss reply also differs among the invalidate protocols. The CD-INV
protocol supplies the data from main memory if the memory line is clean. If the line is dirty
in another cache, the protocol uses cache-to-cache transfers to forward the data to the requesting
cache, and if the request was a read miss, the protocol writes the data back to memory. For the SDD
protocol, cache-to-cache transfer is also used, but the line’s data is not written back to memory.
The cache at the head of the linked list always supplies the data on a miss. For the SCI protocol,
the memory can supply the data until it is modified by a cache after which cache-to-cache transfers
are used. For a detailed comparison of the invalidate protocols see the work by Thapar [21].

2.3 Update-based protocols

In this section, a brief description of the centralized directory and distributed directory update
protocols is presented. Both protocols currently rely on a network that preserves order among
messages.

In a centralized directory update-based protocol (CD-UP), the directory information is used to
update the necessary caches on a write. Figure 2 shows the flow of data for a write update. In
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Figure 2: Centralized Directory Update Protocol

the figure, the processor associated with cache 0 issues a write to the cache. The cache sends
a “write” signal along with the data to the directory where the directory information is used to
determine which caches have a copy of the line. An “update” signal along with the new data is sent
to these caches and memory is updated. (The CD-UP protocol relies on multicast to send updates
to multiple caches). The directory also sends a “write acknowledgment” signal back to the writing
cache. This signal indicates the number of update acknowledgments to expect. After updating its
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copy, each updated cache sends an “update acknowledgment” signal to the writing cache. Once all
the expected “update acknowledgment” signals and the “write acknowledgment” signal have been
received, the write is considered to be performed as all caches with a copy of the line have been
updated.

For misses, the memory supplies the data if it has a valid copy; that is, if no cache has an exclusive
copy of the line. Otherwise, cache-to-cache transfer is used to forward the line to the requesting
cache, and the line is also sent back to the memory. If no other cache in the system has a copy of
a requested memory line, the requesting cache receives an exclusive copy for both read and write
misses.

The distributed directory update protocol (DD-UP) is based on the directory structure and singly
linked lists of the SDD invalidate protocol. Both read and write misses are serviced by the cache
at the head of the list, and the requesting cache becomes the new head of the list.

For a write hit, the update must begin at the head of the list of caches. If the writing cache is not
at the head of the list, it sends a “write” signal along with the data to the directory as shown in
figure 3. The directory responds by sending an “update” signal with the data to the cache at the
head of the list. This cache updates its copy and sends the update to the next cache in the linked
list of caches. Each cache in the list receives the “update” signal, updates its copy and forwards the
signal. If the cache is at the end of the list, it sends an “update acknowledge” signal to the writing
cache indicating that the update has been performed. If the writing cache is at the head of the list,
it simply sends an “update” signal with the data to the next cache in the list as described above; the
directory is not involved.
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Figure 3: Singly Linked Distribute Directory Update Protocol

3 Memory consistency models

The update protocols described in section 2.3 can implement a relaxed consistency model [8]. To
implement sequential consistency, a two-phase update protocol is required [23]. In this type of
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protocol, an update requires two phases. In the first phase, all copies of the word are marked as
pending. Any processor attempting to access the word is blocked. During the second phase, the
data is updated and the pending bit is cleared. The two-phase protocol prevents a processor from
reading the old value while another processor is able to read the new value.

The sequential consistency model requires the writing processor to stall until the first phase of
the update completes. The latency of this first phase will determine the resulting impact of the
two-phase update protocol on the execution time of the application. It is interesting to note that
the first phase does not require the actual data; and therefore, it may be issued earlier. Future work
will study the performance of the update protocols using stronger memory consistency models and
the two-phase update.

The scientific applications under study use a relaxed consistency model [8].

4 Data sharing in parallel applications

In this section, the types of shared objects in shared-memory applications are examined. First,
previous classification schemes are examined, and then these classifications are refined to be more
readily applicable to the current study. Finally, a brief discussion of typical producer and consumer
interactions and the impact of data prefetching is presented.

4.1 Classification of data objects

The types of shared-data objects have been classified into the following types: code and read-only,
migratory, mostly read, frequently read and written, and synchronization objects [22]. Since the
main difference between update and invalidate protocols is what happens on a write, these types are
subdivided here by the frequency of writes. Code, read-only and mostly read objects will have little
impact on the relative performance of the protocols. But migratory, frequently read and written,
and synchronization objects will significantly impact the overall performance of the application.
The scientific applications currently under study consist of a large number of frequently read and
written objects and high-contention synchronization semaphores.

Frequently read and written objects and synchronization objects, especially semaphores, can be
further classified by the number of consumers reading each object and by the line utilization, which
is the fraction of each memory line that is modified by the producer. The number of consumers
determines the number of invalidates or updates required and general contention for the object. The
line utilization gives a general measure of the data transfer efficiency of the protocols. The higher
the line utilization, the more efficient the line-sized transfers of the invalidate protocols are. As the
line utilization decreases, single-word updates become more efficient. The line utilization measure
is similar to the comparison metrics used in other evaluations of update-based and invalidate-based
protocols [24, 7]. As will be shown in section 7, these classifications are a good predictor of the
resulting performance of the cache coherence protocols.

Currently, none of these applications have migratory data. Applications with migratory data may
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significantly increase the number of updates required in an update-based protocol. These updates
would create significant network congestion, but simple counters may be used to replace lines that
receive a sequence of updates without any intervening reads. The replacement of lines should
reduce the number of unnecessary updates. Future work will study the impact of migratory data
on update-based protocols in greater detail.

4.2 Producer and consumer interactions

In a relaxed consistency model, a binary semaphore can be used to synchronize the production
and consumption of shared data. Under this type of coarse grain (block) synchronization, the
synchronization and transfer of data can be divided into the basic operations shown in figure 4.
The producer computes the data, writes the results to a shared buffer, and then uses a “fence”
instruction to stall the processor until all the writes have been performed. Once the writes have
been performed, the semaphore is set. Consuming nodes wait for the semaphore to be set before
attempting to access the shared data.

Write Set Semaphore
Producer

Consumer
ReadWait on Semaphore

Fence

Synchronization Latency Read Latency

Work

Fence LatencyWrite Latency

Figure 4: Block Synchronization

The performance of each protocol is dependent on how efficiently it can execute each of the
components shown in the figure: the write, fence, synchronization and read latency. The write
latency is simply the time to “issue” or send the writes to the write buffer. The fence latency is the
latency until all writes have been performed. In the invalidate protocols,a write is considered to have
been performed when the cache receives exclusive ownership of the line. For the update protocols,
a write is considered to be performed when all necessary updates have been acknowledged. The
synchronization latency is the time a consumer waits for the desired semaphore to be set; and
finally, the read latency is the time to read the data once the semaphore has been set. The discussion
of the results in section 7 will rely heavily on these latency components.

4.3 Effects of data prefetch

Data prefetch can be used to hide a portion of the data miss latency in a typical producer and
consumer interaction [12]. In the invalidate-based protocols, a write prefetch can hide a portion of
the producer’s fence latency by issuing write requests early and overlapping multiple requests as
shown in figure 5. The write prefetch allows the write miss latency to be overlapped with useful
work.
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Figure 5: Block Synchronization with Prefetch

A read prefetch can also be used to reduce the consumer’s read miss latency, but the prefetches
should be issued after reaching the synchronization point. If the prefetches are issued earlier, two
scenarios are possible. In the first case, the producer has not yet written the data. In this case,
the prefetched lines will be later invalidated, and the work done to prefetch and invalidate the
lines will be wasted. In the second case, the producer has completed writing the data before the
consumer’s prefetch is received. In this case, the prefetch will obtain the proper data, but the time
saved compared to prefetching after the synchronization point will be minimal since the producer
would have also set the semaphore and the consumer’s read of the semaphore would find it set. The
latency saved by prefetching early is small compared to the high cost of invalidated prefetches. In
all simulated cases, prefetching before the synchronization point never resulted in a faster execution
than prefetching after the synchronization point for the invalidate protocols.

In the update-based protocols, read prefetches can be used not only to hide read miss latency behind
useful work, but they also can be used to induce prefetches. If the prefetch is issued before the
data is written by the producer, the consumer’s cache will be updated when the data is written. The
prefetch allows the consumers to express an early interest in the data.

5 Update protocol enhancements

The update-based protocols have two basic disadvantages when using block synchronization and
prefetching. The first is the mismatch between the granularity of synchronization and data transfer,
and the second disadvantage is the inefficiency of the word updates. This section presents two
enhancements to the update-based protocols that address these shortcomings.
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5.1 Word synchronization

When using an update-based protocol, block synchronization prevents the consumer from using
data until the synchronization point is reached, even though the desired data may already be in
the consumer’s cache as the result of an update. A finer grain synchronization, such as word
synchronization, would allow the consumer to proceed as soon as the data is available, as shown
in figure 6.

Producer

Consumer

Work/Write

Read

Read/Sync Latency

Line A

Read Prefetch
Line B

Figure 6: Word Synchronization

Word synchronization combines the synchronization and data transfer into a single operation. This
combination eliminates the explicit synchronization and fence latencies and update acknowledg-
ments.

Word synchronization may be implemented in hardware or software. In a hardware implementation,
each data word has a valid bit associated with it [18]. The valid bit is initialized to invalid, and when
the producer writes the data, the valid bit is set. The consumer spins on the valid bit waiting for it
to become valid. For a software implementation, an unused bit pattern may be used to represent
an invalid word. For example, in a floating point application, a not-a-number, NaN, code could
be used to represent an invalid number, and in a pointer based application, a null pointer could be
used to represent an invalid pointer.

All applications currently under study use a software-based scheme. The data is initialized to an
invalid value, and the data reads are encapsulated within a while loop. The loop waits for the data
to become valid (not invalid). In iterative applications, the producer is required to clear the data,
by setting each word to an invalid value, between iterations. The use of dual buffering prevents
any data races in these applications.

Invalidate-based protocols may see performance improvements from the finer grain synchronization
as well, but the possibility of significant line bouncing or thrashing makes word synchronization
extremely unstable. For example, if the consumers all read the first word of data before the producer
writes it, the producer will be forced to invalidate each consumer’s copy before writing the word.
Once the word is written, all the consumers will reread the line and begin consuming the first
data word. Each consumer read between producer writes will result in an invalidate and reread
of the line. In a worst case scenario, the consumers may attempt to read each data word before it
is written, which will force the line to be transferred back and forth between the consumers and
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the producer for each word! The resulting increase in network traffic and latency can significantly
increase the total execution time. This effect is similar to that of false sharing with invalidate-based
protocols.

5.2 Write combining (grouping)

Write combining can be used to combine, or group, single writes into larger, more efficient update
packets to reduce congestion and latency. To simplify the required hardware, the combining is
limited to the write buffer and to sequential writes to the same memory line.

The combining scheme requires the addition of a single bit per word in the write buffer as shown
in figure 7. As new writes are inserted into the write buffer, the line address is compared with the
line address of the last word entered into the write buffer. If the addresses match, the additional
bit is set to 1 indicating that the write is to be grouped with the previous write. If the addresses do
not match, the bit is set to 0 indicating a new group. As the cache processes the writes from the
write buffer, it consumes all writes in a group. For example, in figure 7 the write buffer contains
three groups of writes. The first write group contains 2 words, the second, a single word and the
last group contains 3 words. Any new writes could still be combined with the last group.
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{{Grouped Writes
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Write Buffer
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Figure 7: Hardware Combining Scheme

To improve combining of writes with modest temporal locality, write groups are delayed in the
write buffer. The write group at the head of the write buffer is sent to the cache only if a new
uncombinable write arrives from the processor, the write buffer fills or the delay counter expires.

The delay counter is currently initialized to 5 cycles, and is reset every time a new write is grouped
with the last write. These conditions guarantee that each write group is visible to new, possibly
combinable writes for a minimum of 5 cycles (a tight read, modify and write cycle).

Since writes often exhibit high spatial and temporal locality, combining at the write buffer can
effectively group writes. If the spatial locality of the writes is low, then the single word updates
will be more efficient than the line transfers of the invalidate protocols, and combining is not
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necessary. If the temporal locality is low, then the single word updates will not congest the system
as they will be sufficiently spaced in time.

The combining scheme presented here is only one of many possible schemes. Any scheme that
is able to combine writes with high temporal and spatial locality without introducing significant
latency will work just as well.

6 Simulated architecture

The simulated architecture consists of 64 sites arranged in an 8 by 8 mesh. Each site consists of a
processor-memory element (PME) as shown in figure 8.

... ...... ...

Cache

Superscalar
100 MHz Procesor

... ...... ...

Directory/Memory

Request Bus - 100 MHz

... ...... ...

Request
Network

Reply
Network

Request         ReplyRequest         Reply

...

Write Buffer (16 Words)

128 Word Queues

Static RAM directory:
     10 ns acces time
Sync DRAM memory:
     30 ns access time
     60 ns page miss penalty
     10 ns per word

Cache:
  Fully associative 
  Infinite size
  10 ns access time
  16 word lines

Reply Bus - 100 MHz

Figure 8: PME Architecture

The processor is a 32 bit, 100 MHz superscalar processor that is assumed to be load and store
limited, and the cache is fully associative cache with infinite size. An infinite size cache is used
to separate the effects of a limited cache size and the actions required by the cache coherence
protocols. The effects of replacements will be examined in future work. The cache has a single
cycle access time, a line size of 16 words and is connected to the network and memory by a
100 Mhz, 32 bit bus. Each memory module consists of a single bank of 100 Mhz synchronous
DRAMs supporting page mode operation. The SDRAM have 30 ns access time for a page access
with a page miss penalty of an additional 60 ns. The directory consists of a 10 ns access time
SRAM for all protocols.
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Each PME is connected to both a reply and request network to avoid deadlock. Request-reply
deadlock is avoided by guaranteeing that replies will eventually be consumed at their destination.
Request-request and reply-reply deadlock requires a timeout to break the deadlock [20]. The
network is order preserving with static, wormhole routing [5] and multicast. Multicast is only used
by the CD protocols when there are multiple caches to update or invalidate.

7 Results

7.1 Description of applications

To compare the cache coherence protocols, a set of applications must be specified which represent an
important domain for large scale shared-memory multiprocessors. One such domain is the scientific
and engineering domain. The applications studied here include a simple, iterative partial differential
equation solver (PDE) and three different methods of factorizing a matrix into triangular matrices:
a multifrontal solver (MF)1, sparse Cholesky factorization (SPCF), and LU decomposition.

As described in section 4, the important characteristics of these applications for this study are the
number of consumers per block and the line utilization. These are summarized in table 1.

Benchmark MF PDE SPCF LU
Data Set 1kx1k 32x32 1138x1138 64x64
Data Blocks 332 1120 1138 2016
Block Size 78.5 8 1.80 31.5
Consumers 1 1 1.89 31.5
Line Util. % 85.0 50.0 11.2 80.1

Table 1: Benchmark Characteristics

In all four applications, the producer’s data blocks are allocated at the producer’s local memory.
In the SPCF, LU and MF applications, the processes are allocated to processors using a wrap-
mapping, where column or node i is assigned to processor i modulo P where P is the total number
of processors. In the PDE application, the processes are randomly allocated to processors to
simulate a more complicated mesh of application elements.

The Care/Simple simulation environment was used to simulate the performance of the applica-
tions [16]. The simulations were execution driven rather than trace driven.

The next four sections describe the simulation results for the four applications studied. This
discussion begins by examining applications with a single consumer and modest to high line
utilization: MF and PDE. Next, the impact of a small number of consumers will be examined by

1The MF application has two distinct phases of operation [15]. Initially, the application exhibits large amounts of
parallelism in the computation of independent submatrices. As the computation continues, the number of independent
submatrices decreases at which time each submatrix can be computed using a parallel LU technique. This study of the
MF application studies only the first phase of this computation.
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studying the SPCF application, and finally, the impact of both high line utilization and multiple
consumers is examined in the LU application. For each application, a graph of the relative execution
time of each protocol compared to the base CD-INV invalidate-based protocol is presented. On
each graph, four differences are labeled (one set for each update protocol). Difference BS represents
the difference in the update-based and CD-INV protocol using block synchronization without write
buffer combining, and difference BS-C represents the improvement in the update protocols when
write buffer combining is added. Difference WS represents the improvement in the update protocols
using word synchronization, and difference WS-C represents the improvement from the addition
of write buffer combining to word synchronization.

7.2 MF application

For the block synchronization case without combining, the CD-UP protocol increases execution
time by 26% compared to the CD-INV protocol, and the DD-UP protocol has similar performance
to the CD-INV protocol as shown by difference BS in figure 9. The update protocols were able to
reduce the read latency by updating the consumers’ caches, but because of the high line utilization
of the application, these single word updates were very inefficient compared to the line transfers
of the invalidate protocols. These inefficient updates increased the congestion in the system which
resulted in longer fence and synchronization latencies.
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With the addition of combining, the efficiency of the updates improved, and the congestion de-
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creased. The combining improved the execution time of the CD-UP and DD-UP protocols by 29%
and 5% respectively as shown by difference BS-C in figure 9. Combining was more effective in the
CD-UP protocol as the larger update packets reduced the average overhead of each memory update.
The update protocols were now able to outperform the CD-INV protocol by a slight margin.

With single word updates significantly congesting the system, word synchronization was able
to hide only a small portion of the update latency which resulted in a minor improvement of
the execution time for the update protocols as indicated by difference WS in figure 9. Word
synchronization improved the performance of the CD-UP protocol by 13% and the performance of
the DD-UP protocol by 8%.

The use of both word synchronization and combining allowed the update protocols to improve
performance by 25% and 6% for the CD-UP and DD-UP protocols respectively compared to the
non-combining case as shown by difference WS-C in figure 9. As in the block synchronization
case, combining reduced the congestion, which decreased the write latency compared to the word
synchronization case without combining.

Overall, the update protocols with the enhancements were able to outperform the invalidate pro-
tocols. For the CD-UP protocol, the block synchronization case with combining performed better
than the word synchronization case improving the performance of the application by 10% compared
to the CD-INV protocol. For the DD-UP protocol, the performance of the word synchronization
case was slightly better than the block synchronization case with combining improving the execu-
tion time by 9% compared to the CD-INV protocol. The use of both word synchronization and
combining allowed the update protocols to improve performance of the application by 18% and
14% for the CD-UP and DD-UP protocols respectively compared to the CD-INV protocol.

7.3 PDE application

The update protocols using block synchronization were able to decrease the total execution time of
the PDE application by 3% and 20% compared to the CD-INV protocol for the CD-UP and DD-UP
protocols respectively as shown by difference BS in figure 10. The main source of the improvement
was a reduction in the synchronization latency resulting from the update of the semaphores. The
update of the shared data also reduced the read latency, but the overall impact was small since the
invalidate protocols were able to effectively prefetch the necessary data.

Combining was able to group the 8 data writes destined for each neighboring node into single,
efficient update packets. These fewer, larger packets reduced the overhead and congestion in the
network and at the caches. This reduction in congestion resulted in a decrease in the fence latency
which in turn reduced the synchronization latency. The sum of these latency reductions resulted
in an improvement in the execution time of 36% and 21% for the CD-UP and DD-UP protocols
respectively compared to the non-combining case as shown by difference BS-C in figure 10.

The improvement in execution time of the update protocols using word synchronization was
minimal compared to the block synchronization case without combining as shown by difference
WS in figure 10. In this iterative application, the producer was required to clear the data between
iterations. This extra traffic limited the improvement in performance from word synchronization.
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Figure 10: Relative Execution Time for PDE

As in the block synchronization case, combining was able to combine all writes destined for each
consumer into a single update packet. The resulting synchronization and read latency was reduced
to half of that of the update protocol using block synchronization. This reduction in latency along
with the elimination of the fence latency reduced the execution times of the update protocols by
47% and 35% for the CD-UP and DD-UP protocols respectively as shown by difference WS-C in
figure 10.

Overall, the update protocols were able to significantly improve the execution time of this iterative
application. The update protocols performed well in the block synchronization case, and the
addition of combining to the block synchronization case improved the execution time by about
35%. The use of word synchronization and combining allowed the update protocols to improve the
execution time by 51% and 53% for the CD-UP and DD-UP protocols compared to the CD-INV
protocol.

The difference between the CD-UP and DD-UP protocols arises from the difference in the path of
the updates. In the CD-UP protocol, updates are sent to the directory where they are forwarded to
the consumer. In the DD-UP protocol, the path of the update depends on the producer’s position in
the cache list. If the producer is at the head of the list, the update is sent directly to the consumer,
but if the producer is not at the head of the list, the update must be sent to the directory first and
then forwarded to the consumer at the head of the list. In this particular application, each update
required an average of 1.5 update hops indicating that the producer’s cache was at the head of the
list half the time. The reduction in update hops allowed the DD-UP protocol to perform slightly
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better than CD-UP for the non-combining cases. When combining is introduced, the reduction in
congestion reduced the cost of the extra half hop which minimized the difference in performance.

7.4 SPCF application

When using block synchronization, the CD-UP and DD-UP protocols were able to reduce the total
execution time of the SPCF application by 22% and 3% respectively compared to the base CD-INV
protocol as shown by difference BS in figure 11. The main source of this reduction was a decrease
in the synchronization latency which accounted for a significant portion of the execution time. The
reduction in read latency was minimal as the invalidate protocols were able to use prefetch to hide
a large portion of the read latency.
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Figure 11: Relative Execution Time for SPCF

Since the application has a low line utilization, the combining scheme had little opportunity for
combining. In both update protocols, the combined update packet contained an average of only
two words, which resulted in an improvement of the execution time for both protocols of only a
few percent as shown by difference BS-C in figure 11.

In this application, word synchronization allowed for the elimination of the costly explicit synchro-
nization. With each consumer only consuming a fraction of the data produced by each producer,
the cost of an explicit synchronization semaphore was large. As a result of the elimination of
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this explicit synchronization and the fence operations, the execution time of the CD-UP protocol
decreased by 39% and the execution time of the DD-UP protocol decreased by 42% as shown by
difference WS in figure 11.

The use of combining with word synchronization had a negligible impact on execution time for both
protocols as shown by difference WS-C in figure 11. For the DD-UP protocol, the extra latency
introduced by the combining scheme actually increased the total execution time as very few writes
were combined. For both protocols, the early consumption permitted by word synchronization was
able to hide a majority of the latency of subsequent updates.

The difference between the CD-UP and DD-UP protocol was due to the increased latency introduced
by the longer sharing lists of caches in the DD-UP protocol. On the average, the list of caches
was only 2.3 caches long, but the maximum reached 10 caches. The longer list increased the fence
latency as updates were required to traverse the entire list before being acknowledged, and the
synchronization latency also increased as caches at the end of the list had to wait longer before
receiving updates.

7.5 LU application

For the LU application with a high line utilization and a large number of consumers, the single
word updates were extremely inefficient. The updates created significant congestion in the system,
and the large number of consumers increased the fence latency since each update had to be
acknowledged. The resulting execution times of the update protocols using block synchronization
were over twice that of the CD-INV protocol as shown by difference BS in figure 12.

The high line utilization allowed for ample combining. The fewer, larger combined update packets
decreased the fence and synchronization latencies. The resulting improvement in performance
for the update protocols is shown by difference BS-C in figure 12. For the CD-UP protocol,
the resulting reduction in execution time was significant indicating that congestion dominated the
execution time in this case. But for the DD-UP protocol, these reductions did little to improve the
execution time indicating that the latency from the longer list of caches dominated the execution
time.

The addition of word synchronization eliminated the fence latency and allowed consumption of
early data words to hide the update latency of subsequent words. In the CD-UP protocol, the
early consumption helped to hide a large portion of the congested update latency and improve the
performance of the protocol improved by 39% as shown by difference WS in figure 12. For the
DD-UP protocol, the word synchronization improved the performance by 57%, and the elimination
of the fence latency reduced the performance impact of the longer lists of caches. Caches began
consuming data as soon as it arrived. Caches at the end of the list only experienced a long wait for
the first word of the data to arrive; the subsequent words followed closely behind the first.

The use of combining with word synchronization improved performance even more. Combining
improved the performance of the update protocols by 65% and 66% for the CD-UP and DD-UP
protocols respectively as shown by difference WS-C in figure 12. In both protocols, the combining
decreased congestion in the network and caches. In the CD-UP protocol, the larger update packets
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Figure 12: Relative Execution Time for LU

reduced the average memory update latency, as the memory access overhead per word decreased
with increasing update packet size.

8 Summary and conclusions

The relative performance of the update protocols was dependent on the line utilization and the
number of consumers. Figure 13 summarizes these characteristics for the applications that were
studied.

The line utilization determined the efficiency of the updates. In the applications with a low line
utilization, the updates were more efficient than the line transfers of the invalidate protocols, but
as the line utilization increased the efficiency of the updates decreased. These inefficient updates
tended to congest the network, caches and memories. Combining was introduced to address this
problem.

Combining was able to group single updates into larger update packets, which improved the
efficiency of the updates and decreased congestion. This improvement in efficiency was dependent
on the line utilization as indicated in figure 13. When the line utilization was low, the possibility
of combining was small, but as the line utilization increased the combining scheme was able to
combine a significant number of updates. These new update packets were as efficient as the line
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Figure 13: Application Space

transfers of the invalidate protocols, even for the applications with line utilizations approaching
100%. The improvement in the execution time of the update protocols when combining was added
ranged from 5% to 61% for the block synchronization case; the improvement was largest for the
applications with the highest line utilization.

Word synchronization eliminated the explicit synchronization semaphores from the applications
and allowed the consumers to begin consuming the data as soon as possible. The elimination
of the semaphores removed the need for update acknowledgements and for the fence operation.
In applications with few consumers, this had little impact on performance, but as the number of
consumers increased, the impact of the elimination of the update acknowledgements increased,
especially in the DD-UP protocol. In this protocol, the latency of the update acknowledgements and
the fence operation was dependent on the number of the consumers, which determined the length
of the list of caches that each update had to traverse before being acknowledged. The improvement
in execution time of the update protocols ranged from 10% to 40% for the CD-UP protocol and
from no improvement to over 50% for the DD-UP protocol for the block synchronization case.

The use of both enhancements allowed the update protocols to significantly improve the perfor-
mance of the applications when compared to the CD-INV protocol; the improvements in execution
times ranged from about 15% to over 50%. The applications with both high line utilization and a
larger number of consumers benefited the most from the enhancements. Even in applications with
high line utilization and a single consumer, which tend to favor the invalidate protocols, the update
protocol was able to improve the execution time.

With both enhancements, the difference between the CD-UP and DD-UP protocols was small.
Combining improved the performance of the CD-UP more than the DD-UP protocol, as the overhead
of updating each memory word decreased with the larger packet size. Word synchronization had
the largest impact on the DD-UP protocol. It eliminated the need for update acknowledgments
which reduced the impact of the length of the sharing list on the performance of the protocol. The



19

choice of which update protocol to use will be dependent on other issues such as the scalability of
the directory structure.

Overall, this paper has demonstrated that the performance of the applications studied here can be
significantly improved by update-based protocols. The efficiency of the updates, which became a
problem in applications with higher line utilization, could be improved by combining. The use of
a finer grain (word) synchronization was shown to be effective in improving performance by both
eliminating the congestion and latency of explicit synchronization and update acknowledgments
and by hiding the update latency behind consumption of earlier data words. Together, these latency
reduction and hiding techniques allow the update protocols to significantly improve the execution
time of the applications studied when compared to the three invalidate-based protocols examined.
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