
A RAPIDE-1.0 DEFINITION

OF THE

ADAGE AVIONICS SYSTEM

Walter Mann

Stanford University

Frank C. Belz and Paul Corneil

TRW Inc.

Technical Report: CSL-TR-93-585

(Program Analysis and Veri�cation Group Report No. 66)

November 1993

This research was funded by ARPA under ONR contracts N00014-92-J-1928 and N00014-
91-J-0173. Walter Mann was also funded by the Air Force O�ce of Scienti�c Research under
Grant AFOSR-91-0354.

A Rapide-1.0 De�nition

of the

ADAGE Avionics System

Walter Mann
Stanford University

Frank C. Belz and Paul Corneil
TRW Inc.

Technical Report: CSL-TR-93-585

Program Analysis and Veri�cation Group Report No. 66

November 1993

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305-4055

Abstract

We have used the Rapide prototyping-languages, developed by Stanford and TRW under the
ARPA ProtoTech Program, in a series of exercises to model an early version of IBM's ADAGE

software architecture for helicopter avionics systems. These exercises, conducted under the ARPA
Domain Speci�c Software Architectures (DSSA) Program, also assisted the evolution of the Rapide
languages. The resulting Rapide-1.0 model of the ADAGE architecture in this paper is substantially
more succinct and illuminating than the original models, developed in Rapide-0.2 and Preliminary
Rapide-1.0. All Rapide versions include these key features: interfaces, by which types of components
and their possible interactions with other components are de�ned; actions, by which the events
that can be observed or generated by such components are de�ned; and pattern-based constraints,
which de�ne properties of the computation of interacting components in terms of partially ordered
sets of events. Key features of Rapide-1.0 include services, which abstract whole communication
patterns between components; behavior rules, which provide a state-transition oriented speci�cation
of component behavior and from which computation component instances can be synthesized; and
architectures, which describe implementations of components with a particular interface, by showing
a composition of subordinate components and their interconnections. The Rapide-1.0 model is
illustrated with corresponding diagrammatic representations.

Key Words and Phrases: formal speci�cation, Rapide, avionics, architectural description

Copyright c
 1993

by

Walter Mann
Stanford University

Frank C. Belz and Paul Corneil
TRW Inc.

Contents

1 Introduction 1

1.1 Rapide : 1
1.2 ADAGE : 1
1.3 Brief History : 2
1.4 Key Aspects of the Rapide-1.0 Language : 2
1.5 Status of the Model : 3
1.6 Structure of the Document : 3

2 The Top Level 5

2.1 The Partial Top Level Interface : 6
2.2 The Partial Top Level Architecture : 9

3 Aircraft Sensors 13

3.1 The Aircraft Sensor Interface : 13
3.2 The Aircraft Sensor Architecture : 14

3.2.1 The Sensor Interface : 16

4 Data Sources 19

4.1 The Data Sources Interface : 19
4.2 The Data Sources Architecture : 20

4.2.1 The Device Driver Interface : 25
4.2.2 The Data Source Interface : 28

5 Navigation 31

5.1 The Navigation Interface : 31
5.2 The Navigation Architecture : 32

5.2.1 The Earth Model Interface : 34
5.2.2 The Atmosphere Model Interface : 34
5.2.3 The Aircraft State Vector Model Interface : 35
5.2.4 The VOR Radio Navigation Interface : 36

6 Guidance 38

6.1 The Guidance Interface : 38
6.2 The Guidance Architecture : 39

7 Lateral Guidance 40

7.1 The Lateral Guidance Interface : 40
7.2 The Lateral Guidance Architecture : 40

7.2.1 The VOR Interface : 42
7.2.2 The Direct Fixed-Point Interface : 45

iii

7.2.3 The Direct Moving-Point Interface : 48

8 Services 51

8.1 Body Motion : 51
8.2 Device Control : 51
8.3 Navigation Control : 51
8.4 Mission Objectives : 52
8.5 Error Signals : 52
8.6 Driver Sensor : 52
8.7 Source Navigation Service : 53
8.8 Aircraft State : 53

9 Common De�nitions 54

10 Acknowledgements 58

A The Original IBM ADAGE Speci�cations 59

B An Alternative Sensor-Interface Model 73

C A Uni�ed Lateral-Guidance-Type Interface 77

iv

Chapter 1

Introduction

TRW and Stanford have conducted a series of exercises using their Rapide languages to de�ne
an early version of the ADAGE software architecture for helicopter avionics systems. This report
provides a model for that de�nition.

1.1 Rapide

Rapide [LVB+93, MMM91] is a concurrent object-oriented language framework speci�cally designed
for prototyping large concurrent systems. It consists of several sublanguages, including a type lan-

guage for structuring systems into components, an executable architecture de�nition language for
allowing sets of components to be combined and connected into larger systems, and a constraint

language for specifying the behavior of components.
An initial version of the Rapide language, called Rapide-0.2, has previously been designed and

implemented [Bry92, Hsi92]. Rapide-0.2 was used in our avionics exercises mainly to study the
applicability of an execution model based on partially ordered events. Such models are actively
being pursued in several research e�orts worldwide [Fid91, SM91].

An architecture-de�nition language, �Rapide [LV93], was also designed to analyze the require-
ments for executable architecture de�nitions.

These e�orts have been combined into a �rst version of the full language, which is called Rapide-
1.0 [Tea93b, Tea93a]. Development of tools for Rapide-1.0 is currently under way. Concurrently,
preliminary investigation of a diagrammatic notation for Rapide-1.0 has begun. An initial notation,
tentatively called Graphic Rapide, has been used for the diagrams in this document. The design
and evaluation of the Rapide languages and their supporting tools is being conducted by Stanford
and TRW as part of the Advanced Research Projects Agency's ProtoTech program and an Air Force
O�ce of Scienti�c Research project on Foundations of Technology for Constructing Highly Reliable
Distributed Realtime Systems.

1.2 ADAGE

ADAGE (Avionics Domain Application Generation Environment) is an environment for developing,
specifying, and analyzing helicopter avionics software [TC93]. It is intended to be easily adaptable
and recon�gurable. The ADAGE project is being conducted by an IBM-led team in the DSSA
Program. The avionics software system architecture de�ned by IBM using the ADAGE environment
includes Flight Director, Navigation, and Guidance subsystems and a collection of Data Source

1

CHAPTER 1. INTRODUCTION 2

objects for managing data from external aircraft sensors (see �gure).

Flight
Director

Guidance

Navigation

Data
Source
Objects

Aircraft
Sensors

Aircraft
Handling
Qualities

Flight
Controls

Displays

PILOT
Error

Signals

Estimated
Aircraft

State

Measured
Aircraft

State

Aiding
Data

Device
Controls

Navigation
Controls

Mission
Objective

Raw
Aircraft
State

Aiding Data &
Device Controls

Body Motion

Control Surface/
Propulsion Commands

Manual
Control
Inputs

Displayed Flight Cues

Objectives

Status

Coupled
Control
Inputs

Display
Modes

Avionics Real World

1.3 Brief History

In May of 1992, Lou Coglianese of IBM sent to TRW a brief list of properties of a hypothesized
avionics system architecture that was (at most) a precursor to the evolving ADAGE architecture.
Lou wished to see what the expressive power of Rapide-0.2 was with respect to these properties.
The items contained in this IBM communication are given in Appendix A (page 59), along with
cross-references to the elements of the Rapide model described herein. A number of conversations
ensued to resolve some, but not all, of the ambiguities in the list of properties.

The attempt to model a system with these properties in Rapide-0.2 stimulated an extensive
analysis of Rapide-0.2 by TRW during a period in which Stanford was busily developing both a
preliminary version of Rapide 1.0 and the preliminary architecture-de�nition language, �Rapide. As
a result, several fragmentary models were constructed by TRW, none corresponding completely to
any of the versions of Rapide (none su�ced to capture all of the properties), but each correlated
strongly with one of the languages. The expected value of the exercise to IBM has never been
achieved; but the model has become a benchmark within the Stanford/TRW ProtoTech team by
which language changes are judged. It has, therefore, had a signi�cant impact on the evolution of
Rapide.

1.4 Key Aspects of the Rapide-1.0 Language

Certain key aspects of Rapide-1.0 will be illustrated in subsequent sections of this document:
To represent architectural components of a system, the primary Rapide constructs are interfaces,

for de�ning types of components, and architectures, for de�ning the structure of implementations
of the components of each type. An interface de�nes what constituents of a component are visible
to other components. A component's architecture declares other, subordinate, components (with
de�ned interfaces, and possibly also having de�ned architectures) and de�nes connections between

CHAPTER 1. INTRODUCTION 3

them. In general, an interface may be implemented by several architectures; that is, distinct com-
ponents with di�erent architectures may have the same interface (in Rapide jargon, they may be of
the same interface type). In the ADAGE model presented here, each interface is implemented by at
most one architecture.

Rapide languages are event-based; components communicate by generating and observing events.
Each type of event a component can generate or observe is determined by an action declaration in
the component's interface. Events generally represent communication and/or computation to be
realized in the �nal implementation.

Sets of action declarations in an interface may be grouped into services; services are themselves
de�ned by interfaces. Thus a related set of action declarations may be grouped into a single interface
type, which is then used in a component's interface as a service. Services reduce the complexity of
the higher-level descriptions and allow for later elaboration of the connections as requirements are
re�ned.

The behavior of components (i.e., how they respond to patterns of observed events by producing
patterns of generated events) can be de�ned using behavior rules in their interface de�nition. The
behavior rules provide a simple state-machine de�nition which describes a component's reaction
to patterns of events by describing how the component changes local states and generates further
events. Behavior rules are designed to provide enough information that tools may derive prototype
executable components of the type. Additionally, behavioral properties can be speci�ed as pattern
constraints de�ning required, permitted, and prohibited patterns of events.

1.5 Status of the Model

This report is an interim report on the partially rewritten model. It does not quite correspond to
the current Rapide-1.0: in some cases we are behind the evolution of Rapide, not having exploited
completely some powerful new features, such as type derivation, and in other cases we are ahead,
having used some features that are on the list for introduction in Rapide in the next six months
(without which the model fails to be adequately expressive). The model and the languages are
expected to merge in the next few months.

We have included two appendices to give a
avor of directions that can be taken with the
model to better take advantage of new features of Rapide. While the entire model should not be
taken as authoritative in any measure with respect to avionics system architectures (we may be
wrong on every detail that goes beyond the original properties, and some of those are probably
incorrect), the appendices are particularly \bogus" in that they have never been considered to
be valid architecturally. They exist not to explore architectural issues, but rather architecture
representation issues.

1.6 Structure of the Document

The chapters of this document are organized according to the structure of the ADAGE model.
Each constituent interface and its architecture are sections of their respective chapter. An interface
without corresponding architecture (a \leaf" interface in this \tree") is described in an appropriate
subsection. Throughout, cross-references of the form \IBM 2.1.3.4" have been inserted into portions
of our Rapide code referring to speci�c line numbers in Coglianese's speci�cation; this therefore is
the inverse of the mapping done in Appendix A, described above.

The ADAGE top-level interface and architecture are in Chapter 2. Chapters 3-6 (pages 13-38) put
forth the four components of the top-level architecture|aircraft hardware sensors and three software
components: data sources, navigation subsystem, and guidance subsystem. Lateral guidance, the
only component of the guidance architecture actually elaborated in this model, is described in
Chapter 7 (page 40). Communications services used are listed at their point of introduction but

CHAPTER 1. INTRODUCTION 4

are also collected for reference in Chapter 8 (page 51). Common type and object declarations are
collected in Chapter 9 (page 54).

Chapter 2

The Top Level

The topmost level of the ADAGE avionics, as given at the STARS '92 conference, is depicted in this
�gure (software on the left, hardware on the right). The Rapide model presented below addresses
only the part of that architecture enclosed by the heavy outline.

Flight
Director

Guidance

Navigation

Data
Source
Objects

Aircraft
Sensors

Aircraft
Handling
Qualities

Flight
Controls

Displays

PILOT
Error

Signals

Estimated
Aircraft

State

Measured
Aircraft

State

Aiding
Data

Device
Controls

Navigation
Controls

Mission
Objective

Raw
Aircraft
State

Aiding Data &
Device Controls

Body Motion

Control Surface/
Propulsion Commands

Manual
Control
Inputs

Displayed Flight Cues

Objectives

Status

Coupled
Control
Inputs

Display
Modes

Avionics Real World

Furthermore, the lowest levels of this model are only sketched in; most of the detail of the actual
architecture is elided. Finally, in the top level of the model presented below, the names of some
elements will di�er from those in the preceding diagrams, which portray an evolution of the ADAGE
system somewhat beyond that originally presented to us for modelling.

The top-level description of the Rapide model includes its interface de�nition, which describes
the model's interfaces with the rest of the ADAGE system, and its architecture, which speci�es its
internal components and their connections both with the external interfaces and with each other.
As these make their appearance, each may be correlated with elements of the preceding �gures.

5

CHAPTER 2. THE TOP LEVEL 6

2.1 The Partial Top Level Interface

Our Partial Top Level Interface shows the following external-communication interfaces, modeled by
Rapide services whose types are de�ned later in this section:

� Body Motion | a service of type Body Motion Service from outside the model to the aircraft
sensors

� Device Controls | an array of services of type Device Control Service, one for each kind of
sensor, for controlling the data sources

� Navigation Controls | a service of type Navigation Control Service, for communicating with
navigation from outside

� Mission Objectives | a service of type Mission Objectives Service which signals destination
and arming information for the guidance subsystem

� Error Signals | a service of type Error Signals Service for signals which originate in the
guidance subsystem and determine the aircraft's status, its deviation from its intended heading.

Partial_Top_Level_Interface

Device_Controls

Mission_Objectives Error_Signals

Navigation_Controls

Body_Motion

The Rapide de�nition of the Partial Top Level Interface is then

type Partial Top Level Interface is interface

Body Motion : service Body Motion Service;

Device Controls : service array(Sensor Kind) of Device Control Service;
Navigation Controls : service Navigation Controls Service;

Mission Objectives : service Mission Objectives Service;

extern

Error Signals : service Error Signals Service;

end;

CHAPTER 2. THE TOP LEVEL 7

Services (and, below, actions) in an interface to which they are providing data are located in its
public part (in which the keyword public may be omitted). Thus, a service (or action) regarded as
providing data to an external component is de�ned there and thus must be in the extern part of
any interface using it to provide the data. In the �gures, \inputs" are located in the left walls of an
interface and \outputs" in the right walls.

This model, extremely abbreviated in comparison to the full ADAGE avionics system, currently
de�nes the above arrays of services in terms of just �ve sensor kinds, given by the enumerated
elements in the Sensor Kind type below:

type Sensor Kind is enum DNS, INU, GPS, ADC, VOR end;

� DNS | Doppler Navigation System

� INU | Inertial Navigation Unit

� GPS | Global Positioning System

� ADC | Air Data Computer

� VOR | VHF Omni-Range

This list, also contained in the Common De�nitions interface (page 54) may be extended, simply
by adding further elements.

The �ve types of services (grouped together in Chapter 8, page 51) employed in the Partial
Top Level Interface are de�ned below, also as interfaces, in terms of their constituent actions. Two,
Body Motion Service and Navigation Control Service, are provided for future use but are presently
empty, as we have no requirements from IBM for them.

type Body Motion Service is interface

end;

type Device Control Service is interface

action Initialize Sensor();
action Align Sensor();

action Override Data(S : Sensor Data);
action Select Criteria(C : Selection Criteria);

action Aiding Command(B : Boolean);

end;

type Navigation Control Service is interface

end;

CHAPTER 2. THE TOP LEVEL 8

type Mission Objectives Service is interface

public

action Start Guidance(K : Lateral Guidance Kind;

D : Lateral Guidance Data);
action Stop Guidance(K : Lateral Guidance Kind);

action Arm Guidance(K : Lateral Guidance Kind;

A : Lateral Guidance Arming Data);
action Disarm Guidance(K : Lateral Guidance Kind);

action Change Guidance(K : Lateral Guidance Kind;

C : Lateral Guidance Revision Data);

extern

action Guidance Started(K : Lateral Guidance Kind);
action Guidance Stopped(K : Lateral Guidance Kind);

action Guidance Armed(K : Lateral Guidance Kind);

action Guidance Disarmed(K : Lateral Guidance Kind);

end;

type Error Signals Service is interface

action Heading Error(D : Heading Error Type);

end;

Device Control Service above, in turn, uses Sensor Data and Selection Criteria types (which
are included with other common de�nitions in Common De�nitions, Chapter 9, page 54):

type Sensor Data is record

Quality : var Sensor Data Quality; �� Initially Unusable;

Measured Aircraft State : var Raw Data; �� Initially Default Measured Aircraft State;

end record;

type Sensor Data Quality is enum Usable, Degraded, Unusable end;

type Raw Data is record

Position: var Position Type;

Velocity: var Velocity Type;
Attitude: var Attitude Type;

end record;

type Position Type is (TBD);

type Velocity Type is (TBD);

type Attitude Type is (TBD);

Default Measured Aircraft State : Raw Data; �� Initially Raw Data'(TBD);

CHAPTER 2. THE TOP LEVEL 9

type Selection Criteria is record

Option : Selection Options;

Kind : Sensor Kind;
Sensor Num : Positive;

end record;

type Selection Options is enum External, Best Available, Sensor end;

type Sensor Kind is enum DNS, INU, GPS, ADC, VOR end;

Mission Objectives Service de�nes its public actions in terms of a number of lateral-guidance
types from the Common De�nitions interface:

type Lateral Guidance Kind is enum Direct Fixed, Direct Moving, VOR end;

type Lateral Guidance Data is record

Destination : var Destination Point; �� for Direct Fixed and Direct Moving

Heading : var Heading Type; �� for Direct Moving
Speed : var Speed Type; �� for Direct Moving

Radial : var Radial Type; �� for VOR

end record;

type Lateral Guidance Arming Data is record

Destination : var Destination Point; �� for Direct Fixed and Direct Moving
Capture : var Destination Point; �� for Direct Fixed and Direct Moving

Heading : var Heading Type; �� for Direct Moving

Speed : var Speed Type; �� for Direct Moving
Radial : var Radial Type; �� for VOR

end record;

type Lateral Guidance Revision Data is record

Destination : var Destination Point; �� for Direct Moving

Heading : var Heading Type; �� for Direct Moving
Speed : var Speed Type; �� for Direct Moving

end record;

These and Error Signals Service use several types which have for now been left unde�ned in the
Rapide model: Heading Type, Speed Type, Radial Type, and Heading Error Type.

2.2 The Partial Top Level Architecture

The four ADAGE components introduced in Chapter 1 comprise the Partial Top Level Architecture;
each is a Rapide object whose interface type is described in its own chapter later: Aircraft Sensors
(Section 3.1, page 13), Data Sources (Section 4.1, page 19), Navigation (Section 5.1, page 31), and
Guidance (Section 6.1, page 38).

CHAPTER 2. THE TOP LEVEL 10

Navigation: Navigation_Interface

Data_Sources: Data_Sources_Interface

Aircraft_Sensors: Aircraft_Sensor_Interface

Guidance: Guidance_Interface

Mission_Objectives

Error_Signals

Driver_Sensor_Connection

Partial_Top_Level_Architecture

Partial_Top_Level_Interface

Device_Controls Device_Controls

Driver_Sensor_Connection

Aircraft_State

Mission_Objectives

Error_Signals

Aircraft_State

Body_MotionBody_Motion

Navigation_ControlsNavigation_Controls

Source_Navigation_Connection

Source_Navigation_Connection

The Aircraft Sensors component of this architecture presently provides only trivial communica-
tion with the environment external to the Rapide model using the Body Motion service (which is
empty, as explained in the Partial Top Level Interface, Section 2.1). The Data Sources component
communicates externally by way of the Device Controls array of services previously introduced.
Navigation would communicate externally via the Navigation Controls service (if it also were not
empty), as explained in the previous section. The Guidance component communicates with the
external environment by way of the Mission Objectives and Error Signals services of the Partial
Top Level Interface.

Then internally there are three more connections:

� Driver Sensor Connection | a service of type Driver Sensor Services between the data sources
and the sensors, which abstracts the communication of commands and data between particular
sensors and their drivers

� Source Navigation Connection | a service from the data sources to the navigation subsystem

� Aircraft State | a service of type Aircraft State Service between the navigation and guidance
interfaces

The Rapide de�nition of this architecture declares the components and institutes their connec-
tions in the connect part:

CHAPTER 2. THE TOP LEVEL 11

architecture Partial Top Level Architecture() for Partial Top Level Interface is

Aircraft Sensors : Aircraft Sensor Interface is Aircraft Sensor Architecture;
Data Sources : Data Sources Interface is Data Sources Architecture;

Navigation : Navigation Interface is Navigation Architecture; �� IBM 2.01

Guidance : Guidance Interface is Guidance Architecture; �� IBM 3.0

connect

?K : Sensor Kind;

�� Architecture inputs to internal components:

Device Controls(?K) to Data Sources.Device Controls(?K);

Navigation Controls to Navigation.Navigation Controls;
Mission Objectives to Guidance.Mission Objectives;

�� Internal components to architecture outputs:

Guidance.Error Signals to Error Signals;

�� Connections among internal components:

Data Sources.Driver Sensor Connection to Aircraft Sensors.Driver Sensor Connection;
Data Sources.Source Navigation Connection to Navigation.Source Navigation Connection;

Navigation.Aircraft State to Guidance.Aircraft State;

end;

1Comments containing IBM are cross�references to the corresponding original speci�cations from
Lou Coglianese, as described in Section 1.6.

Since the Rapide de�nitions of the external communications services were in the previous section,

we focus on the new internal communications.
The service Driver Sensor Connection used above is declared in both Aircraft Sensor Interface

and Data Sources Interface to be of type Driver Sensor Services. Below is its Rapide de�nition,
along with Driver Sensor Service, used in de�ning the elements of Driver Sensor Services type
(both found in Section 8.6, page 52):

type Driver Sensor Services is interface

DNS DS : service array(DNS Range) of Driver Sensor Service;

INU DS : service array(INU Range) of Driver Sensor Service;

GPS DS : service array(GPS Range) of Driver Sensor Service;
ADC DS : service array(ADC Range) of Driver Sensor Service;

VOR DS : service array(VOR Range) of Driver Sensor Service;

end;

CHAPTER 2. THE TOP LEVEL 12

type Driver Sensor Service is interface

action Request Sensor Data();
action Request Init Device();

action Request Align Device();

action Aiding Data To Sensor(D : Sensor Data);

extern

action Sampled Sensor Data(R : Raw Data);
action Device Initialized();

action Device Aligned();

end;

Driver Sensor Services is composed of a separate service for each kind of sensor (Sections 2.1 and
3). Each of these services is composed of an array of Driver Sensor Service elements, one element
for each sensor actually de�ned in the architecture. For each kind of sensor, a range (found in the
Common De�nitions interface, Chapter 9) de�nes the number of sensors of that kind present in the
architecture. By convention, these ranges are from 1 through Nr of sensors of the given kind:

type DNS Range is Range(Integer, 1, 1);
type INU Range is Range(Integer, 1, 2);

type GPS Range is Range(Integer, 1, 1);

type ADC Range is Range(Integer, 1, 1);
type VOR Range is Range(Integer, 1, 1);

The service Source Navigation Connection is declared in both Data Sources Interface and in
Navigation Interface to be of type Source Navigation Service (Section 8.7, page 53):

type Source Navigation Service is interface

action Aircraft State Data(K : Sensor Kind; S : Sensor Data);

extern

action Navigation Aiding Data;

end;

Because we have no requirements from IBM for its action Navigation Aiding Data, it is presently
not used.

The service Aircraft State is declared in Navigation Interface and Guidance Interface to be of
type Aircraft State Service (Section 8.8, page 53):

type Aircraft State Service is interface

action Aircraft State Vector(V : State Vector);

action VOR Relative Navigation Output();

end;

Chapter 3

Aircraft Sensors

The Aircraft Sensor component of the Partial Top Level Architecture represents the hardware sen-
sors. Five kinds are de�ned currently: DNS (Doppler Navigation System), INU (Inertial Navigation
Unit), GPS (Global Positioning System), ADC (Air Data Computer), and VOR (VHF Omni-Range).
This list could easily be extended, by adding further elements to the Sensor Kind type in the
Common De�nitions interface (Section 9, page 54), which we saw in the Partial Top Level Interface
(Section 2.1). Each kind of sensor has a sensor array, the size of which determines the number of
sensors of that kind actually in the architecture. The range constants (from Common De�nitions,
Section 9 [page 54]) were given in the preceding Section 2.2.

3.1 The Aircraft Sensor Interface

As we have seen (Section 2.1), the service Body Motion is empty at present for lack of speci�cations
from IBM; thus it does not connect with the underlying Aircraft Sensor Architecture. The service
Driver Sensor Connection is the only constituent of the Aircraft Sensor Architecture visible outside
the Aircraft Sensor Interface.

Aircraft_Sensor_Interface

Driver_Sensor_Connection

Body_Motion

Driver Sensor Connection is a single service, of type Driver Sensor Services, whose Rapide code
was given for the Top Level Architecture (page 9) and is also found in its section of the Services
Chapter (Section 8.6, page 52). This service provides the communication path between each sensor
and its driver. (Drivers are de�ned in the Data Sources Architecture [Section 4.2, page 20] and its
Device Driver Interface [Section 4.2.1, page 25].)

13

CHAPTER 3. AIRCRAFT SENSORS 14

type Aircraft Sensor Interface is interface

Body Motion : service Body Motion Service;
Driver Sensor Connection : service Driver Sensor Services;

end;

3.2 The Aircraft Sensor Architecture

The arrays of sensors which make up this architecture are de�ned here.

Aircraft_Sensor_Architecture

Aircraft_Sensor_Interface

INU_Sensors: Sensor

GPS_Sensors: Sensor

DNS_Sensors: Sensor

ADC_Sensors: Sensor

VOR_Sensors: Sensor

DS

DS

DS

Driver_Sensor_Connection

DS

DS

Body_Motion

The connect part of this architecture de�nes the fan-out from the single Driver Sensor Connection
service to the individual sensors.

CHAPTER 3. AIRCRAFT SENSORS 15

architecture Aircraft Sensor Architecture() for Aircraft Sensor Interface is

DNS Sensors : array(DNS Range) of

Sensor(DNS Init Duration, DNS Align Duration);

INU Sensors : array(INU Range) of

Sensor(INU Init Duration, INU Align Duration);
GPS Sensors : array(GPS Range) of

Sensor(GPS Init Duration, GPS Align Duration);

ADC Sensors : array(ADC Range) of

Sensor(ADC Init Duration, ADC Align Duration);

VOR Sensors : array(VOR Range) of

Sensor(VOR Init Duration, VOR Tuning Duration);

?D : DNS Range;

?I : INU Range;
?G : GPS Range;

?A : ADC Range;

?V : VOR Range;

connect

Driver Sensor Connection.DNS DS(?D) to DNS Sensors(?D).DS;

Driver Sensor Connection.INU DS(?I) to INU Sensors(?I).DS;
Driver Sensor Connection.GPS DS(?G) to GPS Sensors(?G).DS;

Driver Sensor Connection.ADC DS(?A) to ADC Sensors(?A).DS;

Driver Sensor Connection.VOR DS(?V) to VOR Sensors(?V).DS;

end;

The following selections from the common data declarations (page 54) describe data items above:

type Sensor Kind is enum DNS, INU, GPS, ADC, VOR end;

type DNS Range is Range(Integer, 1, 1);

type INU Range is Range(Integer, 1, 2);
type GPS Range is Range(Integer, 1, 1);

type ADC Range is Range(Integer, 1, 1);

type VOR Range is Range(Integer, 1, 1);

Msec : Time is 1;

Sec : Time is 1000;
Never : Time is (TBD);

DNS Init Duration : Time is 1 � Sec;
DNS Align Duration : Time is Never;

INU Init Duration : Time is 3 � Sec;
INU Align Duration : Time is 5 � Sec;

GPS Init Duration : Time is 10 � Sec;
GPS Align Duration : Time is Never;

ADC Init Duration : Time is 1 � Sec;

CHAPTER 3. AIRCRAFT SENSORS 16

ADC Align Duration : Time is Never;

VOR Init Duration : Time is 1 � Sec;

VOR Tuning Duration : Time is 100 � Msec;

This model assumes that all sensors of a particular kind have the same initializationand alignment
properties; this may not be true of the actual ADAGE architecture. The above connection rules
mean the following: the particular sensor-driver service (selected by the appropriate Range index)
from the array of services for that kind of sensor connect to the DS service of the corresponding
particular sensor (also selected by the appropriate Range index).

The only interface type used for objects in this architecture is Sensor, the type of the sensor-array
elements. It is described in the next section.

3.2.1 The Sensor Interface

This interface type, used to de�ne the elements of the Aircraft Sensor Architecture sensor arrays,
includes a behavior, which de�nes rules for the behavior of objects of this type (that is, sensor
objects). These rules are su�ciently complete to constitute an executable prototype of such sensors.
The behavior de�nes abstract states and pattern-triggered state-transition rules. These rules consist
of two components: the trigger, a pattern which is matched against events observed by interface
objects, and the transition statement, de�ning a transition to be performed when the triggering
pattern of events is observed. The transition statement can change the state and perform events in
response to those which triggered the statement.

For example, in the code below, the �rst state-transition rule following the comments is triggered
and the states are changed when an event Request Init Device is observed via the DS service (whose
Driver Sensor Service type, with its concomitant actions, we have seen already, in Section 2.2,
page 9). If, as in the third state-transition rule, a guard (a boolean statement following where) is
present, the state is changed only if the guard is true when the event is observed. In these state
changes, the global object Clock, de�ned as follows:

Clock : Clock Pkg::Clock is Make Clock();

is used to enforce speci�ed time durations; it contains the function Now() by which one accesses the
current time with respect to that clock object. Rapide can model time with one or more clocks,

whose \ticks" have integer value.
Some sensors also require alignment before they may be used. The Sensor interface models

sensors both with and without alignment. Sensors without alignment are instantiated from this
interface by passing the constant Never as the value of formal parameter Align Duration.

The behavior de�ned here is not necessarily the behavior of sensors assumed in the actual ADAGE
architecture. Here the requirements provided by IBM were ambiguous, and we found it necessary to
disambiguate. Per IBM, sensor data Some Data are passed by DS.Sampled Sensor Data irrespective
of the initialization or alignment state of the sensor; the data will then be labeled Usable or Unusable
in the Device-Driver Interface (Section 4.2.1, page 25) according to the preparedness of the sensor.

An alternate, more modular, formulation of the sensor interface is provided in Appendix B
(page 73).

type Sensor(Init Duration, Align Duration : Integer) is interface

DS : service Driver Sensor Service;

CHAPTER 3. AIRCRAFT SENSORS 17

behavior

State : var Sensor State Type; �� Initially want (Not Initted, Not Aligned);

Actual Initialization Complete Time : var Time := Never;

Actual Alignment Complete Time : var Time := Never;

Some Data : function() return Raw Data;

begin

�� IBM 2.1.2.2, 2.2.2.2, 2.3.2.2, 2.4.2.2, 2.5.2.2, 2.6.2.2

�� IBM 2.1.2.5, 2.2.2.5, 2.3.2.5, 2.4.2.5, 2.5.2.5, 2.6.2.5
�� When an initialization request comes in for a non�initialized sensor,

�� set a parameter to the time the init should �nish. Then perform

�� Device Initialized only when the clock time equals that parameter
�� (any intervening init requests having reset its value).

DS.Request Init Device =>
State := Sensor State Type'(Initting, Not Aligned);

Actual Initialization Complete Time := Clock.Now() + Init Duration;;

Clock.Now() = Actual Initialization Complete Time and State.I = Initting =>

State.I := Initted;
Actual Initialization Complete Time := Never;

DS.Device Initialized;;

�� IBM 2.1.3.2, 2.2.3.2, 2.3.3.2, 2.4.3.2, 2.5.3.2, 2.6.3.2

�� IBM 2.1.3.3, 2.2.3.3, 2.3.3.3, 2.4.3.3, 2.5.3.3, 2.6.3.3

�� IBM 2.1.3.5, 2.2.3.5, 2.3.3.5, 2.4.3.5, 2.5.3.5, 2.6.3.5
�� Similarly for alignment if implemented:

DS.Request Align Device where (State.I = Initted and Align Duration /= Never) =>
State.A := Aligning;

Actual Alignment Complete Time := Clock.Now() + Align Duration;;

Clock.Now() = Actual Alignment Complete Time and State.A = Aligning =>

State.A := Aligned;

Actual Alignment Complete Time := Never;
DS.Device Aligned;;

DS.Request Sensor Data =>
DS.Sampled Sensor Data(Some Data());;

�� Initialization

Start =>

State := Sensor State Type'(Not Initted, Not Aligned);;
end;

Again, from Common De�nitions (Section 9, page 54), we get the record used for de�ning State
above:

CHAPTER 3. AIRCRAFT SENSORS 18

type Sensor State Type is record

I : var Init State Type; �� Initially Not Initted;

A : var Align State Type; �� Initially Not Aligned;
end record;

type Init State Type is enum Not Initted, Initting, Initted end;
type Align State Type is enum Not Aligned, Aligning, Aligned end;

Raw Data, used for de�ning Some Data above, was introduced in the Partial Top Level Interface
(Section 2.1, page 6).

Chapter 4

Data Sources

As we have seen, in terms of communication interfaces this is the most complex component of the
Partial Top Level Architecture (Section 2.2, page 9).

4.1 The Data Sources Interface

The �gure shows the interface with its communications services already seen in the Partial Top Level
Interface (Section 2.1, page 6) and Architecture.

Data_Sources_Interface

Driver_Sensor_Connection

Device_Controls

Source_Navigation_Connection

Thus the Rapide code for this interface contains nothing new to us:

19

CHAPTER 4. DATA SOURCES 20

type Data Sources Interface is interface

Device Controls : service array(Sensor Kind) of Device Control Service;

extern

Driver Sensor Connection : service Driver Sensor Services;
Source Navigation Connection : service Source Navigation Service;

end;

The Driver Sensor Connection, de�ned in the Aircraft Sensor Interface (Section 3.1, page 13),
is therefore extern here.

4.2 The Data Sources Architecture

This architecture declares the data sources and drivers for each sensor and establishes their connec-
tions.

CHAPTER 4. DATA SOURCES 21

Data_Sources_Architecture

INU_Data_Source:

Data_Sources_Interface

INU_Drivers: Device_Driver

Sampled_Data

Aiding_Data

Aiding_Data

Sampled_Data

Device_Driver

Sampled_Data

Aiding_Data

Aiding_Data

Sampled_Data

GPS_Drivers:

GPS_Data_Source:

Device_Driver

Sampled_Data

Aiding_Data

Aiding_Data

Sampled_Data

DNS_Drivers:

DNS_Data_Source: Data_Source_Interface

Data_Source_Interface

Data_Source_Interface

A/C_State_Data

A/C_State_Data

A/C_State_Data

Device_Driver

Sampled_Data

Aiding_Data

Aiding_Data

Sampled_Data

Data_Source_Interface

A/C_State_Data

Device_Driver

Aiding_Data

Aiding_Data

Sampled_Data

Data_Source_Interface

A/C_State_Data

ADC_Data_Source:

VOR_Data_Source:

VOR_Drivers:

ADC_Drivers:

Device_Controls

Device_Controls

Device_Controls

Device_Controls

Device_Controls

Device_Controls

Device_Controls

Device_Controls

Device_Controls

DS

DS

DS

Driver_Sensor_Connection

DS

DS

Device_Controls

Source_Navigation_Connection

Sampled_Data

Device_Controls

The input service is a previously introduced (Section 2.1) array, Device Controls, which de�nes
the control events for the device drivers and controls selection criteria and aiding data.

CHAPTER 4. DATA SOURCES 22

For each kind of sensor, the architecture de�nes an array of device drivers, each an interface
of type Device Driver (Section 4.2.1, page 25), and one data source of type Data Source Interface
(Section 4.2.2, page 28). The communication services for each driver are fanned in to the single
service Driver Sensor Connection. Data from all data sources are fanned in to the single action
Aircraft State Data of the service Source Navigation Connection. Both of these are familiar by
now (Section 2.2, page 9).

Aiding data sent from some data sources to drivers are represented by the last two internal
connections, between the components involved.

architecture Data Sources Architecture() for Data Sources Interface is

�� IBM 2.4
DNS Drivers : array(DNS Range) of

Device Driver(DNS First Sample, DNS Sampling Interval,

DNS Aiding Interval, DNS Align Duration);
DNS Data Source :

Data Source Interface(DNS Range, DNS, DNS First Sample,

DNS Sampling Interval, DNS Aiding Interval);

�� IBM 2.1, 2.2

INU Drivers : array(INU Range) of

Device Driver(INU First Sample, INU Sampling Interval,

INU Aiding Interval, INU Align Duration);

INU Data Source :
Data Source Interface(INU Range, INU, INU First Sample,

INU Sampling Interval, INU Aiding Interval);

�� IBM 2.3

GPS Drivers : array(GPS Range) of

Device Driver(GPS First Sample, GPS Sampling Interval,
GPS Aiding Interval, GPS Align Duration);

GPS Data Source :
Data Source Interface(GPS Range, GPS, GPS First Sample,

GPS Sampling Interval, GPS Aiding Interval);

�� IBM 2.5

ADC Drivers : array(ADC Range) of

Device Driver(ADC First Sample, ADC Sampling Interval,
ADC Aiding Interval, ADC Align Duration);

ADC Data Source :

Data Source Interface(ADC Range, ADC, ADC First Sample,
ADC Sampling Interval, ADC Aiding Interval);

�� IBM 2.6
VOR Drivers : array(VOR Range) of

Device Driver(VOR First Sample, VOR Sampling Interval,

VOR Aiding Interval, VOR Tuning Duration);
VOR Data Source :

Data Source Interface(VOR Range, VOR, VOR First Sample,

VOR Sampling Interval, VOR Aiding Interval);

?D : DNS Range;

?I : INU Range;
?G : GPS Range;

CHAPTER 4. DATA SOURCES 23

?A : ADC Range;
?V : VOR Range;

?S : Sensor Data;

connect

�� Service connections:

�� Architecture inputs to internal components:

for DR : DNS Range generate

Device Controls(DNS) to DNS Drivers(DR).Device Controls;

for IR : INS Range generate

Device Controls(INU) to INU Drivers(IR).Device Controls;
for GR : GNS Range generate

Device Controls(GPS) to GPS Drivers(GR).Device Controls;

for AR : ANS Range generate

Device Controls(ADC) to ADC Drivers(AR).Device Controls;

for VR : VNS Range generate

Device Controls(VOR) to VOR Drivers(VR).Device Controls;

Device Controls(DNS) to DNS Data Source.Device Controls;
Device Controls(INU) to INU Data Source.Device Controls;

Device Controls(GPS) to GPS Data Source.Device Controls;

Device Controls(ADC) to ADC Data Source.Device Controls;
Device Controls(VOR) to VOR Data Source.Device Controls;

�� Internal components to architecture outputs:

DNS Drivers(?D).DS to Driver Sensor Connection.DNS DS(?D);
INU Drivers(?I).DS to Driver Sensor Connection.INU DS(?I);

GPS Drivers(?G).DS to Driver Sensor Connection.GPS DS(?G);

ADC Drivers(?A).DS to Driver Sensor Connection.ADC DS(?A);
VOR Drivers(?V).DS to Driver Sensor Connection.VOR DS(?V);

DNS Data Source.Aircraft State Data(?S) to

Source Navigation Connection.Aircraft State Data(DNS, ?S);

INU Data Source.Aircraft State Data(?S) to

Source Navigation Connection.Aircraft State Data(INU, ?S);
GPS Data Source.Aircraft State Data(?S) to

Source Navigation Connection.Aircraft State Data(GPS, ?S);

ADC Data Source.Aircraft State Data(?S) to

Source Navigation Connection.Aircraft State Data(ADC, ?S);

VOR Data Source.Aircraft State Data(?S) to

Source Navigation Connection.Aircraft State Data(VOR, ?S);

�� IBM 2.9.1.1, 2.7.1.1, 2.8.1.1, 2.10.1.1, 2.11.1.1
�� Connections among internal components:

DNS Drivers(?D).Sampled Data(?S) to DNS Data Source.Sampled Data(?S, ?D);
INU Drivers(?I).Sampled Data(?S) to INU Data Source.Sampled Data(?S, ?I);

CHAPTER 4. DATA SOURCES 24

GPS Drivers(?G).Sampled Data(?S) to GPS Data Source.Sampled Data(?S, ?G);
ADC Drivers(?A).Sampled Data(?S) to ADC Data Source.Sampled Data(?S, ?A);

VOR Drivers(?V).Sampled Data(?S) to VOR Data Source.Sampled Data(?S, ?V);

for IR : INS Range generate

DNS Data Source.Aiding Data(?S) to INU Drivers(IR).Aiding Data;

for GR : GNS Range generate

INU Data Source.Aiding Data(?S) to GPS Drivers(GR).Aiding Data;

end;

The following declarations from the common data declarations (page 54) describe data items
above:

type Sensor Kind is enum DNS, INU, GPS, ADC, VOR end;

type DNS Range is Range(Integer, 1, 1); �� IBM 2.4

type INU Range is Range(Integer, 1, 2); �� IBM 2.1, 2.2
type GPS Range is Range(Integer, 1, 1); �� IBM 2.3

type ADC Range is Range(Integer, 1, 1); �� IBM 2.5

type VOR Range is Range(Integer, 1, 1); �� IBM 2.6

Msec : Time is 1;

Sec : Time is 1000;
Never : Time is (TBD);

DNS Align Duration : Time is Never; �� IBM 2.4.3.5
DNS First Sample : Time is (TBD);

DNS Sampling Interval : Time is 125 � Msec; �� IBM 2.4.1.1

DNS Aiding Interval : Time is DNS Sampling Interval; �� IBM 2.4.4

INU Align Duration : Time is 5 � Sec; �� IBM 2.1.3.5, 2.2.3.5

INU First Sample : Time is (TBD);
INU Sampling Interval : Time is 50 � Msec; �� IBM 2.1.1.1, 2.2.1.1

INU Aiding Interval : Time is INU Sampling Interval; �� IBM 2.1.4, 2.2.4

GPS Align Duration : Time is Never; �� IBM 2.3.3.5

GPS First Sample : Time is (TBD);

GPS Sampling Interval : Time is 1000 � Msec; �� IBM 2.3.1.1
GPS Aiding Interval : Time is Never; �� IBM 2.5.4

ADC Align Duration : Time is Never; �� IBM 2.5.3.5
ADC First Sample : Time is (TBD);

ADC Sampling Interval : Time is 200 � Msec; �� IBM 2.5.1.1

ADC Aiding Interval : Time is Never; �� IBM 2.5.4

VOR Tuning Duration : Time is 100 � Msec; �� IBM 2.6.3.1

VOR First Sample : Time is (TBD);

VOR Sampling Interval : Time is 50 � Msec; �� IBM 2.6.1.1

VOR Aiding Interval : Time is Never; �� IBM 2.6.4

CHAPTER 4. DATA SOURCES 25

4.2.1 The Device Driver Interface

The Device Driver Interface maintains the status of the sensor it controls. It uses the previously
described (Sections 2.1 and 2.2, pages 6 and 9) interfaces Device Control Service (Section 8.2,
page 51) and Driver Sensor Service (Section 8.6, page 52). To control the sensor (to request ini-
tialization or alignment, for example), it essentially relays the commands it receives by means of
the Device Controls service. Via service DS, of type Driver Sensor Service, it receives and stores
data from the sensor; it periodically outputs the data and (using the sensor's state of readiness) the
data's usability, in a Sampled Data event (see Data Sources Architecture �gure, page 21). If the
device driver receives aiding data, these are sent to the sensor by triggering o� either Aiding Data
or Sampled Sensor Data events, whichever are observed more often.

type Device Driver(First Sample Interval, Sampling Interval, Aiding Interval, Align Duration :

Time) is interface

action Aiding Data(S : Sensor Data);

Device Controls : service Device Control Service;

extern

DS : service Driver Sensor Service;
action Sampled Data(S : Sensor Data);

behavior

?R : Raw Data;
?S : Sensor Data;

?T : Time;

State : var Sensor State Type; �� Initially (Not Initted, Not Aligned);

Latest Device Data : var Sensor Data; �� Initially (Unusable, Default Aircraft State);
Latest Aiding Data : var Sensor Data;

�� Maintain device state and control initialization/alignment of device:

begin

Start =>

State := Sensor State Type'(Not Initted, Not Aligned);

Latest Device Data := Sensor Data'(Unusable, Default Aircraft State);

�� IBM 2.1.2.2, 2.2.2.2, 2.3.2.2, 2.4.2.2, 2.5.2.2, 2.6.2.2

�� IBM 2.1.2.4, 2.2.2.4, 2.3.2.4, 2.4.2.4, 2.5.2.4, 2.6.2.4
Device Controls.Initialize Sensor =>

State := Sensor State Type'(Initting, Not Aligned);

Latest Device Data.Quality := Unusable;
DS.Request Init Device;;

DS.Device Initialized =>
State.I := Initted;;

DS.Device Initialized where Align Duration = Never =>
Latest Device Data.Quality := Usable;;

CHAPTER 4. DATA SOURCES 26

�� IBM 2.1.3.2, 2.2.3.2, 2.3.3.2, 2.4.3.2, 2.5.3.2, 2.6.3.2

�� IBM 2.1.3.3, 2.2.3.3, 2.3.3.3, 2.4.3.3, 2.5.3.3, 2.6.3.3

�� IBM 2.1.3.4, 2.2.3.4, 2.3.3.4, 2.4.3.4, 2.5.3.4, 2.6.3.4
Device Controls.Align Sensor where (State.I = Initted and Align Duration /= Never) =>

State.A := Aligning;

Latest Device Data.Quality := Unusable;
DS.Request Align Device;;

DS.Device Aligned =>
State.A := Aligned;

Latest Device Data.Quality := Usable;;

�� Sample and pass on the latest Sensor data; if no latest, reuse old data:

Start =>
Next Data Time := Clock.Now() + First Sample Interval;;

Clock.Now() = Next Data Time =>
Next Data Time := Clock.Now() + Sampling Interval;

DS.Request Sensor Data;;

DS.Sampled Sensor Data(?R) =>

Latest Device Data.Measured Aircraft State := ?R;
Sampled Data(Latest Device Data);;

�� Aiding�data support:

�� Save most recent aiding data:
Aiding Data(?S) =>

Latest Aiding Data := ?S;;

�� IBM 2.1.4.1, 2.2.4.1, 2.3.4.1, 2.4.4.1, 2.5.4.1, 2.6.4.1

�� Send aiding data to sensor at maximum of Aiding and Sampling rates:

((Aiding Data where Aiding Interval < Sampling Interval) or

(DS.Sampled Sensor Data where Aiding Interval >= Sampling Interval))

where (State.I = Initted and (State.A = Aligned or Align Duration = Never)

and Aiding Interval /= Never) =>
DS.Aiding Data To Sensor(Latest Aiding Data);;

�� IBM 2.1.2.3, 2.2.2.3, 2.3.2.3, 2.4.2.3, 2.5.2.3, 2.6.2.3

constraint

�� IBM 2.1.2.1, 2.2.2.1, 2.3.2.1, 2.4.2.1, 2.5.2.1, 2.6.2.1
�� IBM 2.1.3.1, 2.2.3.1, 2.3.3.1, 2.4.3.1, 2.5.3.1, 2.6.3.1

�� DS.Sampled Sensor Data arrives every Sampling Interval.

match Periodic(DS.Sampled Sensor Data, ?T, Sampling Interval);

�� Aiding Data arrives every Aiding Interval.

match Periodic(Aiding Data, ?T, Aiding Interval);

end;

CHAPTER 4. DATA SOURCES 27

This interface uses the Sensor State Type, Sensor Data, and Raw Data types we saw in the
top-level interface:

type Sensor State Type is record

I : var Init State Type; �� Initially Not Initted;

A : var Align State Type; �� Initially Not Aligned;

end record;

type Init State Type is enum Not Initted, Initting, Initted end;

type Align State Type is enum Not Aligned, Aligning, Aligned end;

type Sensor Data is record

Quality : var Sensor Data Quality; �� Initially Unusable;
Measured Aircraft State : var Raw Data; �� Initially Default Measured Aircraft State;

end record;

type Sensor Data Quality is enum Usable, Degraded, Unusable end;

type Raw Data is record

Position: var Position Type;

Velocity: var Velocity Type;
Attitude: var Attitude Type;

end record;

type Position Type is (TBD);

type Velocity Type is (TBD);

type Attitude Type is (TBD);

Default Measured Aircraft State : Raw Data; �� Initially Raw Data'(TBD);

and the Clock object, described in Section 3.2.1. To require the sensor and aiding data to arrive at
speci�c rates, the constraints use the pattern macro Periodic, another item in the Common De�nitions
interface (Section 9, page 54):

pattern Periodic(pattern P; Occurs, Period : Time) is

At(P, Occurs, Clock) �>

Periodic(P, Occurs+Period, Period);

This pattern macro takes as parameters a pattern expression and two expressions of type Time.
The body of the macro is a pattern expression consisting of two sub-patterns: At(P, Occurs, Clock),
matched by a computation all of whose elements match P at time Occurs with respect to clock Clock,
followed in the partially ordered computation by Periodic(P, Occurs+Period, Period), a recursive
call which depends on matching the At.

Thus, an instance of Periodic will match an ordered sequence of matches of P, beginning at
time Occurs and occurring at intervals of width Period. In the instances shown above, the unbound
placeholder ?T is passed as the value of Occurs, meaning the start time is irrelevant.

Finally, this and the next interface employ two common data elements:

Next Data Time : var Time;

Next Aiding Data Time : var Time;

CHAPTER 4. DATA SOURCES 28

4.2.2 The Data Source Interface

The state-transition rules of the Data Source Interface specify the frequency with which source data
are generated and how those data are related to input from the device drivers associated with that
source, from external-override data, and from functions which determine the best available quality
of data.

Some data sources generate aiding data for another device driver. The Data Source Interface
implements both aiding and non-aiding data sources; no aiding data are produced if the interface
is instantiated with Never as the value of the Aiding Interval parameter (e.g., for GPS, ADC, and
VOR) in Common De�nitions (Section 9, page 54).

type Data Source Interface(type Sensor Range;

Kind : Sensor Kind;

First Sample Interval, Sampling Interval, Aiding Interval : Time)
is interface

Device Controls : service Device Control Service;
action Sampled Data(S : Sensor Data; Sensor : Sensor Range);

extern

action Aircraft State Data(S : Sensor Data);

action Aiding Data(S : Sensor Data);

behavior

?S : Sensor Data;

?R : Sensor Range;

?C : Selection Criteria;
?B : Boolean;

Generates Aiding Data : var Boolean := (Aiding Interval /= Never);
Produce Aiding Data : var Boolean := False;

Latest Selection Criteria : var Selection Criteria;
Latest Data Source Data : var Sensor Data; �� Initially (Unusable, Default Aircraft State)

begin

Start =>
Latest Data Source Data := Sensor Data'(Unusable, Default Aircraft State);;

�� IBM 2.7.1.3, 2.8.1.3, 2.9.1.3, 2.10.1.3, 2.11.1.3
Device Controls.Select Criteria(?C) =>

Latest Selection Criteria := ?C;;

�� IBM 2.7.1.7, 2.8.1.7, 2.9.1.7, 2.10.1.7, 2.11.1.7

�� Output data�source data every interval:

Start =>

Next Data Time := Clock.Now() + First Sample Interval;;

Aircraft State Data =>

Next Data Time := Clock.Now() + Sampling Interval;;

CHAPTER 4. DATA SOURCES 29

Clock.Now() = Next Data Time =>

Aircraft State Data(Latest Data Source Data);;

�� Once the data are output, if selection criterion is set to Best Available,

�� re�initialize the latest data to Unusable:

Aircraft State Data where Clock.Now() > Next Data Time
and Latest Selection Criteria.Option = Best Available =>

Latest Data Source Data.Quality := Unusable;;

�� IBM 2.7.1.6, 2.8.1.6, 2.9.1.6, 2.10.1.6, 2.11.1.6

�� If selection criterion is Best Available, maintain and use best

�� available data:
(Sampled Data(?S, ?R) or Device Controls.Override Data(?S))

where Latest Selection Criteria.Option = Best Available

and ?S.Quality > Latest Data Source Data.Quality =>
Latest Data Source Data := ?S;;

�� IBM 2.7.1.2, 2.8.1.2, 2.9.1.2, 2.10.1.2, 2.11.1.2
�� IBM 2.7.1.5, 2.8.1.5, 2.9.1.5, 2.10.1.5, 2.11.1.5

�� If selection criterion is External, maintain and use latest override data:
Device Controls.Override Data(?S)

where Latest Selection Criteria.Option = External =>

Latest Data Source Data := ?S;;

�� IBM 2.7.1.4, 2.8.1.4, 2.9.1.4, 2.10.1.4, 2.11.1.4

�� If selection criterion is one of the sensors, output whenever data
�� come from it:

Sampled Data(?S, ?R)

where Latest Selection Criteria = Selection Criteria'(Sensor, Kind, ?R) =>
Latest Data Source Data := ?S;;

�� Aiding data behavior:

�� IBM 2.7.2.1, 2.8.2.1, 2.9.2.1, 2.10.2.1, 2.11.2.1
Device Controls.Aiding Command(?B) where Generates Aiding Data =>

Produce Aiding Data := ?B;

Aiding Data(Latest Data Source Data) where ?B or empty where not ?B;;

�� IBM 2.7.2.2, 2.8.2.2, 2.9.2.2, 2.10.2.2, 2.11.2.2

Aiding Data where (Generates Aiding Data and Produce Aiding Data) =>
Next Aiding Data Time := Clock.Now() + Aiding Interval;;

Clock.Now() = Next Aiding Data Time =>
Aiding Data(Latest Data Source Data);;

end;

The selection criteria used to initialize Selection Criteria also come from Common De�nitions,
referenced earlier in this chapter:

Default Selection Criteria : Selection Criteria is Selection Criteria'(Best Available, INU, 1);

CHAPTER 4. DATA SOURCES 30

This interface uses Device Control Service, Sensor Data, Selection Criteria, and Sensor Kind
types, all seen before (Section 2.1, page 6). The service is repeated here:

type Device Control Service is interface

action Initialize Sensor();

action Align Sensor();

action Override Data(S : Sensor Data);

action Select Criteria(C : Selection Criteria);
action Aiding Command(B : Boolean);

end;

The Clock object, used for keeping time, was described in Section 3.2.1.

Chapter 5

Navigation

Three internal models of the aircraft and its environment | the Earth Model, the Atmosphere
Model, and the Aircraft State Vector Model | and the VOR Radio Navigation component, which
�lters raw VOR sensor data, comprise Navigation.

5.1 The Navigation Interface

The interface is de�ned by its two communication channels, described before (Section 2.2, page 9).
Input arrives from the data sources and is communicated to Guidance via the Aircraft State service.

Navigation_Interface

Aircraft_State

Navigation_Controls

Source_Navigation_Connection

type Navigation Interface is interface

Source Navigation Connection : service Source Navigation Service;
Navigation Controls : service Navigation Control Service;

extern

Aircraft State : service Aircraft State Service;

end;

31

CHAPTER 5. NAVIGATION 32

5.2 The Navigation Architecture

The relationship of the relatively simple interface and rich internal architecture is shown in the
�gure.

Navigation_Architecture

Navigation_Interface

Earth_Model: Earth_Model_Interface

Atmosphere_Model: Atmosphere_Model_Interface

Aircraft_State_Vector_Model_Interface

INU_Data Earth_Model_Output

Earth_Model_Output

Atmosphere_Model_Output

Atmosphere_Model_Output

Aircraft_State_Vector

Aircraft_State_Vector

ADC_Data

VOR_Relative_Navigation: VOR_Relative_Navigation_Interface

Aircraft_State_Vector

VOR_Data VOR_Relative_Navigation_Output

INU_Data

GPS_Data
DNS_Data

ADC_Data

Aircraft_State

Estimated_Wind_Data_Output

Aircraft_State_Vector_Model:

Navigation_Controls

Source_Navigation_Connection

Internal elements of the architecture are the three internal models of the aircraft and its envi-
ronment:

� The Earth Model (Section 5.2.1, page 34)

� The Atmosphere Model (Section 5.2.2, page 34)

� The Aircraft State Vector Model (Section 5.2.3, page 35)

and the VOR Radio Navigation component (Section 5.2.4, page 36). All of these components
use input from the data sources and together produce a single Aircraft State service (of type

CHAPTER 5. NAVIGATION 33

Aircraft State Service [Section 8.8, page 53]), which we saw in the Partial Top Level Architecture
(Section 2.2, page 9).

Additionally, internal connections pass data from the Earth Model and Atmosphere Model to
the Aircraft State Vector Model and from the Aircraft State Vector Model to the Atmosphere Model
and the VOR Radio Navigation component.

architecture Navigation Architecture() for Navigation Interface is

Earth Model : Earth Model Interface; �� IBM 2.12.0

Atmosphere Model : Atmosphere Model Interface; �� IBM 2.12.1
Aircraft State Vector Model : Aircraft State Vector Model Interface; �� IBM 2.12.2

VOR Relative Navigation : VOR Relative Navigation Interface; �� IBM 2.13

?S : Sensor Data;

connect

�� Architecture inputs to internal components:

Source Navigation Connection.Aircraft State Data(INU, ?S) to

Earth Model.INU Data(?S), Aircraft State Vector Model.INU Data(?S);

Source Navigation Connection.Aircraft State Data(DNS, ?S) to

Aircraft State Vector Model.DNS Data(?S);

Source Navigation Connection.Aircraft State Data(GPS, ?S) to

Aircraft State Vector Model.GPS Data(?S);

Source Navigation Connection.Aircraft State Data(ADC, ?S) to

Aircraft State Vector Model.ADC Data(?S), Atmosphere Model.ADC Data(?S);

Source Navigation Connection.Aircraft State Data(VOR, ?S) to

VOR Relative Navigation.VOR Data(?S);

�� Internal components to architecture outputs:

Aircraft State Vector Model.Aircraft State Vector to

Aircraft State.Aircraft State Vector;

VOR Relative Navigation.VOR Relative Navigation Output to

Aircraft State.VOR Relative Navigation Output;

�� Connections among internal components:

Earth Model.Earth Model Output to

Aircraft State Vector Model.Earth Model Output;

Atmosphere Model.Atmosphere Model Output to

Aircraft State Vector Model.Atmosphere Model Output;

Aircraft State Vector Model.Aircraft State Vector to

Atmosphere Model.Aircraft State Vector,

CHAPTER 5. NAVIGATION 34

VOR Relative Navigation.Aircraft State Vector;

end;

The interfaces which represent the four internal components of the Navigation Architecture are
described in the next four subsections.

5.2.1 The Earth Model Interface

The Earth Model uses information from the INU data source to produce an event which represents
the computation of the model. In later versions, this event would be expanded and elaborated, as
more detail of the model emerges.

type Earth Model Interface is interface

action INU Data(D : Sensor Data);

extern

action Earth Model Output();

behavior

begin

INU Data => Earth Model Output;; �� IBM 2.12.0.1

end;

5.2.2 The Atmosphere Model Interface

The Atmosphere Model uses input from the ADC data source as well as the Aircraft State Vector
Model and produces events representing the Atmosphere Model computation and estimated wind
data. Estimated wind data are currently unused.

type Atmosphere Model Interface is interface

action ADC Data(S : Sensor Data);

action Aircraft State Vector(V : State Vector);

extern

action Atmosphere Model Output();

action Estimated Wind Data Output(); { { Currently unused

behavior

begin

ADC Data => Atmosphere Model Output;; �� IBM 2.12.1.1

ADC Data and Aircraft State Vector => Estimated Wind Data Output;; �� IBM 2.12.1.2

end;

CHAPTER 5. NAVIGATION 35

This and the next model use the State Vector record, whose Sensor Data Quality type was given
in the Partial Top Level Interface (Section 2.1, page 6):

type var State Vector is record

Quality : Sensor Data Quality;

Vector : State Vector Info;

end record;

5.2.3 The Aircraft State Vector Model Interface

The Aircraft State Vector Model uses data from four data sources | the DNS, INU, GPS, and ADC
(but not the VOR directly) | and from the Earth and Atmosphere models. It produces a single
data representation of the state of the aircraft.

For the state vector to be usable, updated data must have been received from all input sources.
This is modeled using the Data Updated array; only if every element of this array is True will the
Aircraft State Vector event include usable data.

type Aircraft State Vector Model Interface is interface

action DNS Data(S : Sensor Data);

action INU Data(S : Sensor Data);

action GPS Data(S : Sensor Data);
action ADC Data(S : Sensor Data);

action Earth Model Output();

action Atmosphere Model Output();

extern

action Aircraft State Vector(V : State Vector);

behavior

�� Expandable to later implementations of data sources:

type Input Kind is enum DNS In, INU In, GPS In, ADC In,
Earth Model In, Atmosphere Model In end;

type Updated Vector is array(Input Kind) of Boolean;
Data Updated : var Updated Vector;

?K : Input Kind;

DNS Data => Data Updated(DNS In) := True;; �� IBM 2.12.2.3

INU Data => Data Updated(INU In) := True;; �� IBM 2.12.2.1
GPS Data => Data Updated(GPS In) := True;; �� IBM 2.12.2.2

ADC Data => Data Updated(ADC In) := True;; �� IBM 2.12.2.4

Earth Model Output => Data Updated(Earth Model In) := True;; �� IBM 2.12.2.5

Atmosphere Model Output => Data Updated(Atmosphere Model In) := True;;

�� IBM 2.12.2.6

function All Elements Updated() return Boolean is

begin

for I : Input Kind do

if not Data Updated(I) then

return False; �� IBM 2.12.2.8

CHAPTER 5. NAVIGATION 36

end if ;
end loop;

return True;

end function;

�� Shorthand for the computation that turns sensor inputs into real ASV output:

function Calculate Vector Value() return State Vector is

Some Value : var State Vector; �� Represents some function on vector inputs

begin

if not All Elements Updated() then

Some Value.Quality := Unusable; �� IBM 2.12.2.9

end if ;

return Some Value;
end function;

begin

Start =>

Data Updated := Updated Vector'(others => False);
Next Data Time := Clock.Now() + Initial ASV Time;;

Clock.Now() = Next Data Time =>

Aircraft State Vector(Calculate Vector Value());;

Aircraft State Vector =>

Data Updated(?K) := False;;

Next Data Time := Clock.Now() + ASV Interval;;

end;

This model uses three times from Common De�nitions (Section 9, page 54):

ASV Interval : Time is 50 � Msec;

Initial ASV Time : Time is (TBD);

Next Data Time : var Time;

5.2.4 The VOR Radio Navigation Interface

The VOR Radio Navigation component uses input from both the VOR data source and the Air-
craft State Vector Model and produces �ltered VOR data. As with other components of the nav-
igational architecture, details of this output are omitted; the output is represented by the event
VOR Relative Navigation Output.

CHAPTER 5. NAVIGATION 37

type VOR Relative Navigation Interface is interface

action Aircraft State Vector();
action VOR Data(S : Sensor Data);

extern

action VOR Relative Navigation Output();

behavior

begin

Aircraft State Vector and VOR Data => VOR Relative Navigation Output;; �� IBM 2.13

end;

Chapter 6

Guidance

This component of the Partial Top Level Architecture is relatively simple itself but contains an
architectural component of some complexity (Section 7).

6.1 The Guidance Interface

Inputs to the Guidance Interface are two services: Aircraft State, which contains the current location
and status of the aircraft, and Mission Objectives, which manages enabling and disabling of all
kinds of guidance. Output is the Error Signals service, which gives the heading errors between the
aircraft's current status and its desired destination.

Guidance_Interface

Mission_Objectives

Aircraft_State

Error_Signals

All three communication services have appeared in previous sections, the �rst being Partial Top
Level Interface and Architecture (pages 6-9).

type Guidance Interface is interface

Aircraft State : service Aircraft State Service;

Mission Objectives : service Mission Objectives Service;

extern

Error Signals : service Error Signals Service;

end;

38

CHAPTER 6. GUIDANCE 39

6.2 The Guidance Architecture

Although there are various kinds of guidance, IBM provided us with de�nitions for Lateral Guidance
only. Thus the only component of this architecture currently is Lateral Guidance (Section 7), and
the services are connected directly between the interface and this component.

Guidance_Interface

Guidance_Architecture

Lateral_Guidance: Lateral_Guidance_Interface

Mission_Objectives

Aircraft_State

Error_Signals

Aircraft_State

Mission_Objectives

Error_Signals

architecture Guidance Architecture() for Guidance Interface is

Lateral Guidance : Lateral Guidance Interface

is Lateral Guidance Architecture;

connect

�� Service connections:

Aircraft State to Lateral Guidance.Aircraft State;

Mission Objectives to Lateral Guidance.Mission Objectives;

Lateral Guidance.Error Signals to Error Signals;

end;

Chapter 7

Lateral Guidance

Lateral Guidance has the same interface services as the Guidance architecture itself.

7.1 The Lateral Guidance Interface

Therefore, we have seen all the services of this interface before.

Lateral_Guidance_Interface

Mission_Objectives

Aircraft_State

Error_Signals

type Lateral Guidance Interface is interface

Aircraft State : service Aircraft State Service;
Mission Objectives : service Mission Objectives Service;

extern

Error Signals : service Error Signals Service;

end;

7.2 The Lateral Guidance Architecture

Lateral Guidance has three modes, described in successive subsections below: VOR (Section 7.2.1,
page 42), Direct Fixed-Point (Section 7.2.2, page 45), and Direct Moving-Point (Section 7.2.3,
page 48).

40

CHAPTER 7. LATERAL GUIDANCE 41

Lateral_Guidance_Interface

Lateral_Guidance_Architecture

VOR: VOR_Interface

Direct_Moving_Point: Direct_Moving_Point_Interface

Direct_Fixed_Point: Direct_Fixed_Point_Interface

Mission_Objectives

Mission_Objectives

Mission_Objectives

Aircraft_State

Error_Signals

Error_Signals

Error_Signals

Error_Signals

Mission_Objectives

Aircraft_State_Vector

Aircraft_State_Vector

Aircraft_State

Each mode exploits Mission Objectives to determine when its state is to change and uses the
Aircraft State in generating heading errors of the Error Signals service, although Direct Fixed-Point
and Moving-Point modes utilize only the Aircraft State Vector action of Aircraft State.

architecture Lateral Guidance Architecture() for Lateral Guidance Interface is

VOR : VOR Interface;
Direct Fixed Point : Direct Fixed Point Interface;

Direct Moving Point : Direct Moving Point Interface;

connect

�� Service connections:

Mission Objectives to

VOR.Mission Objectives,
Direct Fixed Point.Mission Objectives,

Direct Moving Point.Mission Objectives;

Aircraft State to VOR.Aircraft State;

Aircraft State.Aircraft State Vector to

Direct Fixed Point.Aircraft State Vector,

CHAPTER 7. LATERAL GUIDANCE 42

Direct Moving Point.Aircraft State Vector;

VOR.Error Signals, Direct Fixed Point.Error Signals,

Direct Moving Point.Error Signals to Error Signals;

end;

7.2.1 The VOR Interface

All three guidance behaviors have several state-transition rules which de�ne conditions under which
that guidance is started and stopped or is armed and disarmed.

A mode must stop itself when another mode is started. This is implemented by allowing all
modes to observe the controlling signals of the other modes. Thus a mode which has been started
will stop itself when it observes a Guidance Started event not intended for that mode.

When VOR is armed and the aircraft reaches the current radial passed in by Mission Objectives,
the mode starts itself by performing its own in-action. Connection rules of the parent cause this event
to be visible to other guidance modes, and they will disable themselves if necessary, as just described.
The pattern constraints below express the \liveness" properties of the original speci�cation.

type VOR Interface is interface

Aircraft State : service Aircraft State Service;

Mission Objectives : service Mission Objectives Service;

extern

Error Signals : service Error Signals Service;

behavior

?V : State Vector;

?D : Lateral Guidance Data;
?M : Lateral Guidance Kind;

?A : Lateral Guidance Arming Data;

State : var Guidance State Type; �� Initially (False, False);

Radial, Arm Radial : var Radial Type;

Actual Start Time, Actual Stop Time : var Time := Never;

Actual Arm Time, Actual Disarm Time : var Time := Never;

�� Future duration functions to return the times needed to perform respective tasks:

function Start Duration() return Time is

begin return TBD;

end function;

function Stop Duration() return Time is

begin return TBD;
end function;

CHAPTER 7. LATERAL GUIDANCE 43

function Arm Duration() return Time is

begin return TBD;

end function;

function Disarm Duration() return Time is

begin return TBD;
end function;

�� Represents computation of current heading error:
function Current Heading Error() return Heading Error Type is

begin return TBD;

end function;

�� Represents computation of current radial:

function Current Radial() return Radial Type is

begin return TBD;

end function;

begin

Start =>

State := Guidance State Type'(False, False);

�� IBM 3.3.1. Output heading error if Aircraft State Vector is

�� usable and state is started:
Aircraft State.Aircraft State Vector(?V) where

?V.Quality = Usable and State.Started =>

Actual Start Time := Never;
Error Signals.Heading Error(Current Heading Error());;

�� Placeholder for saving VOR data and using in output of the heading errors above:
Aircraft State.VOR Relative Navigation Output => empty;;

�� Behaviors to start and stop guidance:

�� IBM 3.3.2. Start if explicitly started, unless interrupted by another start event:

Mission Objectives.Start Guidance(VOR, ?D) =>
Radial := ?D.Radial;

Actual Start Time := Clock.Now() + Start Duration();;

Clock.Now() = Actual Start Time =>

Mission Objectives.Guidance Started(VOR);

State.Started := True;;

�� IBM 3.3.9. Start when arrive at radial:

Aircraft State.Aircraft State Vector(?V) where

?V.Quality = Usable and State.Armed and Current Radial() = Arm Radial =>

State.Armed := False;

Actual Arm Time := Never;
Mission Objectives.Start Guidance(VOR, Arm Radial);;

�� IBM 3.3.4, 3.3.5. Stop if explicitly stopped:
Mission Objectives.Stop Guidance(VOR) =>

CHAPTER 7. LATERAL GUIDANCE 44

Actual Stop Time := Clock.Now() + Stop Duration();;

Clock.Now() = Actual Stop Time =>

Actual Stop Time := Never;
State.Started := False;

Mission Objectives.Guidance Stopped(VOR);;

�� IBM 3.3.6, 3.3.7. Stop immediately if Aircraft State Vector is unusable or another

�� guidance mode is started:

(Aircraft State.Aircraft State Vector(?V) where ?V.Quality = Unusable) or

(Mission Objectives.Guidance Started(?M) where ?M /= VOR and State.Started) =>

State.Started := False;;

�� IBM 3.3.8, 3.3.10. Behaviors to arm and disarm guidance:

�� Arm within Max Arm Time, unless interrupted by another arm event:
Mission Objectives.Arm Guidance(VOR, ?A) =>

Arm Radial := ?A.Radial;

Actual Arm Time := Clock.Now() + Arm Duration();;

Clock.Now() = Actual Arm Time =>
State.Armed := True;

Mission Objectives.Guidance Armed(VOR);;

Mission Objectives.Disarm Guidance(VOR) =>

Actual Disarm Time := Clock.Now() + Disarm Duration();;

Clock.Now() = Actual Disarm Time =>

State.Armed := False;

Mission Objectives.Guidance Disarmed(VOR);;

constraint

not match (Tick where

Clock.Now() > Actual Start Time and Actual Start Time /= Never or

Clock.Now() > Actual Stop Time and Actual Stop Time /= Never or

Clock.Now() > Actual Arm Time and Actual Arm Time /= Never);

end;

This makes use of several types found in Common De�nitions (Section 9) | (1) various lateral-
guidance types introduced in Partial Top Level Interface (Section 2.1), (2) a Radial Type and a
Heading Error Type (each yet to be de�ned), and (3) Guidance State Type:

type Guidance State Type is record

Started, Armed : Boolean is false;

end record;

and three times de�ned in terms of Msec:

CHAPTER 7. LATERAL GUIDANCE 45

Max Start Time : Time is 100 � Msec;

Max Stop Time : Time is 50 � Msec;

Max Arm Time : Time is 100 � Msec;

Msec : Time is 1;

The Clock object, used for timing, was described in Section 3.2.1. Clock's function Now() is
called explicitly in behavior patterns to fetch the current time with respect to Clock.

The pattern constraint at the end of VOR Interface succinctly speci�es the protocol which the
interface must follow. It constrains only events of the actions mentioned. In this constraint, only
Tick events are constrained; Disarm Guidance events, inter alia, are not mentioned and thus not
constrained.

The constraint checks that the guidance starting, stopping, and arming events occur within the
time allotted for them. It is read as follows: allow no ticks of the timing clock being used (values
of Clock.Now()) beyond the time set for starting, stopping, or arming this guidance mode unless
that time is set to Never. In other words, signal a constraint error if the start, stop, or arm time
has passed without the occurrence of the associated guidance event, which would have set the time
indicator for that event back to its initial value of Never.

7.2.2 The Direct Fixed-Point Interface

Direct Fixed-Point and Moving-Point guidance modes are like VOR guidance, except that they
calculate error headings using capture radius: when the mode is armed and the aircraft enters the
capture radius of the current destination, the mode starts itself.

type Direct Fixed Point Interface is interface

action Aircraft State Vector(V : State Vector);

Mission Objectives : service Mission Objectives Service;

extern

Error Signals : service Error Signals Service;

behavior

?V : State Vector;

?D : Lateral Guidance Data;

?M : Lateral Guidance Kind;
?A : Lateral Guidance Arming Data;

State : var Guidance State Type; �� Initially (False, False);

Destination, Arm Destination, Arm Capture Point : var Destination Point;

Actual Start Time, Actual Stop Time : var Time := Never;

Actual Arm Time, Actual Disarm Time : var Time := Never;

�� Future duration functions to return the times needed to perform respective tasks:

function Start Duration() return Time is

begin return TBD;

CHAPTER 7. LATERAL GUIDANCE 46

end function;

function Stop Duration() return Time is

begin return TBD;
end function;

function Arm Duration() return Time is

begin return TBD;

end function;

function Disarm Duration() return Time is

begin return TBD;

end function;

�� Represents computation of current heading error:

function Current Heading Error() return Heading Error Type is

begin return TBD;

end function;

�� Represents computation of current location:

function Current Location() return Destination Point is

begin return TBD;

end function;

begin

Start =>

State := Guidance State Type'(False, False);

�� Output heading error if Aircraft State Vector is usable,

�� state is started, and aircraft is outside capture radius:

Aircraft State Vector(?V) where

(?V.Quality = Usable and State.Started

and Current Location() � Destination >= Capture Radius) =>

Actual Start Time := Never;
Error Signals.Heading Error(Current Heading Error());;

�� Behaviors to start and stop guidance:

�� IBM 3.1.2, IBM 3.1.3. Start if explicitly started, unless
�� interrupted by another start event:

Mission Objectives.Start Guidance(Direct Fixed, ?D) =>

Destination := ?D.Destination;
Actual Start Time := Clock.Now() + Start Duration();;

Clock.Now() = Actual Start Time =>
Mission Objectives.Guidance Started(Direct Fixed);

State.Started := True;;

�� IBM 3.1.10. Start when enter capture radius of arming capture point:

Aircraft State Vector(?V) where

(?V.Quality = Usable and State.Armed
and Current Location() � Arm Capture Point < Capture Radius) =>

CHAPTER 7. LATERAL GUIDANCE 47

State.Armed := False;
Mission Objectives.Start Guidance(Direct Fixed, Arm Destination);;

�� IBM 3.1.4, IBM 3.1.5. Stop if explicitly stopped, regardless of
�� additional Stop Guidance events:

Mission Objectives.Stop Guidance(Direct Fixed) =>

Actual Stop Time := Clock.Now() + Stop Duration();;

Clock.Now() = Actual Stop Time =>

Actual Stop Time := Never;
Mission Objectives.Guidance Stopped(Direct Fixed);

State.Started := False;;

�� IBM 3.1.6, 3.1.7, 3.1.8. Stop immediately if Aircraft State Vector is unusable,

�� another guidance mode is started, or aircraft has entered the capture radius:

(Aircraft State Vector(?V) where ?V.Quality = Unusable) or

(Aircraft State Vector(?V) where (?V.Quality = Usable and State.Started

and Current Location() � Destination < Capture Radius)) or

Mission Objectives.Guidance Started(?M) where

?M /= Direct Fixed and State.Started =>

State.Started := False;;

�� IBM 3.1.9. Behaviors to arm and disarm guidance:

�� IBM 3.1.11. Arm within Max Arm Time, unless interrupted by another arm event:

Mission Objectives.Arm Guidance(Direct Fixed, ?A) =>

Arm Destination := ?A.Destination;
Arm Capture Point := ?A.Capture;

Actual Arm Time := Clock.Now() + Arm Duration();;

Clock.Now() = Actual Arm Time =>

Actual Arm Time := Never;

Mission Objectives.Guidance Armed(Direct Fixed);
State.Armed := True;;

Mission Objectives.Disarm Guidance(Direct Fixed) =>
Actual Disarm Time := Clock.Now() + Disarm Duration();;

Clock.Now() = Actual Disarm Time =>
Mission Objectives.Guidance Disarmed(Direct Fixed);

State.Armed := False;;

constraint

not match (Tick where

Clock.Now() > Actual Start Time and Actual Start Time /= Never or

Clock.Now() > Actual Stop Time and Actual Stop Time /= Never or

Clock.Now() > Actual Arm Time and Actual Arm Time /= Never);

end;

Except for a to-be-de�ned Capture Radius type, the types and constraints are the same as for
the VOR interface, Section 7.2.1 above.

CHAPTER 7. LATERAL GUIDANCE 48

7.2.3 The Direct Moving-Point Interface

Direct Moving-Point guidance is similar to Direct Fixed-Point guidance, but the Start Guidance
event now also includes the destination speed and heading, and a change of state may result from
observing the command Change Guidance (also with destination, speed, and heading).

type Direct Moving Point Interface is interface

action Aircraft State Vector(V : State Vector);
Mission Objectives : service Mission Objectives Service;

extern

Error Signals : service Error Signals Service;

behavior

?R : Lateral Guidance Revision Data;
?V : State Vector;

?D : Lateral Guidance Data;
?M : Lateral Guidance Kind;

?A : Lateral Guidance Arming Data;

State : var Guidance State Type; �� Initially (False, False);

Destination, Arm Destination, Arm Capture Point : var Destination Point;
Destination Speed : var Speed Type;

Destination Heading : var Heading Type;

Actual Start Time, Actual Stop Time : var Time := Never;

Actual Arm Time, Actual Disarm Time : var Time := Never;

�� Future duration functions to return the times needed to perform respective tasks:

function Start Duration() return Time is

begin return TBD;

end function;

function Stop Duration() return Time is

begin return TBD;

end function;

function Arm Duration() return Time is

begin return TBD;
end function;

function Disarm Duration() return Time is

begin return TBD;

end function;

�� Represents computation of current heading error:

function Current Heading Error() return Heading Error Type is

begin return TBD;
end function;

CHAPTER 7. LATERAL GUIDANCE 49

�� Represents computation of current location:

function Current Location() return Destination Point is

begin return TBD;
end function;

begin

Start =>
State := Guidance State Type'(False, False);

�� IBM 3.2.2. Change state of destination:
Mission Objectives.Change Guidance(Direct Moving, ?R) =>

Destination := ?R.Destination;

Destination Speed := ?R.Speed;
Destination Heading := ?R.Heading;;

�� Output heading error if Aircraft State Vector is usable,
�� state is started, and aircraft is outside capture radius:

Aircraft State Vector(?V) where

(?V.Quality = Usable and State.Started

and Current Location() � Destination >= Capture Radius) =>

Actual Start Time := Never;
Error Signals.Heading Error(Current Heading Error());;

�� Behaviors to start and stop guidance:

�� IBM 3.2.1. Start within Max Start Time if explicitly started
�� unless interrupted by another start event:

Mission Objectives.Start Guidance(Direct Moving, ?D) =>

Destination := ?D.Destination;
Destination Speed := ?D.Speed;

Destination Heading := ?D.Heading;

Actual Start Time := Clock.Now() + Start Duration();;

Clock.Now() = Actual Start Time =>

Mission Objectives.Guidance Started(Direct Moving);
State.Started := True;;

�� Start when enter capture radius of arming capture point:
Aircraft State Vector(?V) where

(?V.Quality = Usable and State.Armed

and Current Location() � Arm Capture Point < Capture Radius) =>
State.Armed := False;

Mission Objectives.Start Guidance(Direct Moving, Arm Destination);;

�� Stop within Max Stop Time, regardless of additional Stop Guidance events:

Mission Objectives.Stop Guidance(Direct Moving) =>

Actual Stop Time := Clock.Now() + Stop Duration();;

Clock.Now() = Actual Stop Time =>

Actual Stop Time := Never;
Mission Objectives.Guidance Stopped(Direct Moving);

CHAPTER 7. LATERAL GUIDANCE 50

State.Started := False;;

�� Stop immediately if Aircraft State Vector is unusable, another

�� guidance mode is started, or aircraft has entered the capture radius:
(Aircraft State Vector(?V) where ?V.Quality = Unusable) or

(Aircraft State Vector(?V) where (?V.Quality = Usable and State.Started

and Current Location() � Destination < Capture Radius)) or

Mission Objectives.Guidance Started(?M) where

?M /= Direct Moving and State.Started =>

State.Started := False;;

�� Behaviors to arm and disarm guidance:

�� Arm within Max Arm Time, unless interrupted by another arm event:

Mission Objectives.Arm Guidance(Direct Moving, ?A) =>

Arm Destination := ?A.Destination;
Arm Capture Point := ?A.Capture;

Actual Arm Time := Clock.Now() + Arm Duration();;

Clock.Now() = Actual Arm Time =>

Actual Arm Time := Never;
Mission Objectives.Guidance Armed(Direct Moving);

State.Armed := True;;

Mission Objectives.Disarm Guidance(Direct Moving) =>

Actual Disarm Time := Clock.Now() + Disarm Duration();;

Clock.Now() = Actual Disarm Time =>

Mission Objectives.Guidance Disarmed(Direct Moving);

State.Armed := False;;

constraint

not match (Tick where

Clock.Now() > Actual Start Time and Actual Start Time /= Never or

Clock.Now() > Actual Stop Time and Actual Stop Time /= Never or

Clock.Now() > Actual Arm Time and Actual Arm Time /= Never);

�� IBM 3.2.3. Require change�guidance event to cause the following heading�error report:

observe Mission Objectives.Change Guidance(Direct Moving) < Error Signals.Heading Error

match Mission Objectives.Change Guidance �> Error Signals.Heading Error;
end;

In addition to the types used in the VOR and Direct Fixed Point interfaces above (Sections 7.2.1
and 7.2.2), Direct Moving Point Interface also uses Heading Type and Speed Type, each yet to be
de�ned.

The �rst constraint is identical to that for Direct Fixed-Point guidance. The last constraint uses
causality to represent that the data from a Change Guidance event must be used in generating the
next Heading Error: every Heading Error which follows a Change Guidance event in time (<) must
also be caused by that event (� >).

Chapter 8

Services

Services are interfaces which encapsulate sets of action declarations shared by other interfaces. They
allow a higher degree of data abstraction and are easily altered as communication requirements are
re�ned. The Rapide code for each service used in the ADAGE avionics example is given in its section
below.

8.1 Body Motion

type Body Motion Service is interface

end;

8.2 Device Control

type Device Control Service is interface

action Initialize Sensor();

action Align Sensor();

action Override Data(S : Sensor Data);

action Select Criteria(C : Selection Criteria);

action Aiding Command(B : Boolean);

end;

8.3 Navigation Control

type Navigation Control Service is interface

end;

51

CHAPTER 8. SERVICES 52

8.4 Mission Objectives

type Mission Objectives Service is interface

public

action Start Guidance(K : Lateral Guidance Kind;
D : Lateral Guidance Data);

action Stop Guidance(K : Lateral Guidance Kind);

action Arm Guidance(K : Lateral Guidance Kind;
A : Lateral Guidance Arming Data);

action Disarm Guidance(K : Lateral Guidance Kind);

action Change Guidance(K : Lateral Guidance Kind;
C : Lateral Guidance Revision Data);

extern

action Guidance Started(K : Lateral Guidance Kind);

action Guidance Stopped(K : Lateral Guidance Kind);

action Guidance Armed(K : Lateral Guidance Kind);
action Guidance Disarmed(K : Lateral Guidance Kind);

end;

8.5 Error Signals

type Error Signals Service is interface

action Heading Error(D : Heading Error Type);

end;

8.6 Driver Sensor

type Driver Sensor Service is interface

action Request Sensor Data();
action Request Init Device();

action Request Align Device();

action Aiding Data To Sensor(D : Sensor Data);

extern

action Sampled Sensor Data(R : Raw Data);
action Device Initialized();

action Device Aligned();

end;

CHAPTER 8. SERVICES 53

type Driver Sensor Services is interface

DNS DS : service array(DNS Range) of Driver Sensor Service;
INU DS : service array(INU Range) of Driver Sensor Service;

GPS DS : service array(GPS Range) of Driver Sensor Service;

ADC DS : service array(ADC Range) of Driver Sensor Service;
VOR DS : service array(VOR Range) of Driver Sensor Service;

end;

8.7 Source Navigation Service

type Source Navigation Service is interface

action Aircraft State Data(K : Sensor Kind; S : Sensor Data);

extern

action Navigation Aiding Data;

end;

8.8 Aircraft State

type Aircraft State Service is interface

action Aircraft State Vector(V : State Vector);
action VOR Relative Navigation Output();

end;

Chapter 9

Common De�nitions

This interface collects data-type, function, and constant de�nitions used throughout the ADAGE
avionics example.

Clock : Clock Pkg::Clock is Make Clock();

type Common De�nitions is interface

�� Types for sensor data:

type Sensor Data Quality is enum Usable, Degraded, Unusable end;

type Position Type is (TBD);

type Velocity Type is (TBD);

type Attitude Type is (TBD);

type Raw Data is record

Position : var Position Type;
Velocity : var Velocity Type;

Attitude : var Attitude Type;

end record;

Default Aircraft State : Raw Data is Raw Data'(TBD);

type Sensor Data is record

Quality : var Sensor Data Quality; �� Initially Unusable;

Measured Aircraft State : var Raw Data; �� Initially Default Aircraft State;
end record;

�� Types for the sensor state:

type Init State Type is enum Not Initted, Initting, Initted end;
type Align State Type is enum Not Aligned, Aligning, Aligned end;

type Sensor State Type is record

I : var Init State Type; �� Initially Not Initted;

A : var Align State Type; �� Initially Not Aligned;

end record;

54

CHAPTER 9. COMMON DEFINITIONS 55

�� Types for selection criteria:

type Selection Options is enum External, Best Available, Sensor end;

�� Types for the various kinds of sensors:

type Sensor Kind is enum DNS, INU, GPS, ADC, VOR end;

type Selection Criteria is record

Option : var Selection Options;

Kind : var Sensor Kind;
Sensor Num : var Positive;

end record;

Default Selection Criteria : Selection Criteria is Selection Criteria'(Best Available, INU, 1);

type State Vector Info is (TBD);

type State Vector is record

Quality : var Sensor Data Quality;

Vector : var State Vector Info;

end record;

type DNS Range is Range(Integer, 1, 1); �� IBM 2.4

type INU Range is Range(Integer, 1, 2); �� IBM 2.1, 2.2
type GPS Range is Range(Integer, 1, 1); �� IBM 2.3

type ADC Range is Range(Integer, 1, 1); �� IBM 2.5

type VOR Range is Range(Integer, 1, 1); �� IBM 2.6

Msec : Time is 1;

Sec : Time is 1000;
Never : Time is (TBD);

DNS Init Duration : Time is 1 � Sec; �� IBM 2.4.2.5
DNS Align Duration : Time is Never; �� IBM 2.4.3.5

DNS First Sample : Time is (TBD);

DNS Sampling Interval : Time is 125 � Msec; �� IBM 2.4.1.1
DNS Aiding Interval : Time is DNS Sampling Interval; �� IBM 2.4.4

INU Init Duration : Time is 3 � Sec; �� IBM 2.1.2.5, 2.2.2.5
INU Align Duration : Time is 5 � Sec; �� IBM 2.1.3.5, 2.2.3.5

INU First Sample : Time is (TBD);

INU Sampling Interval : Time is 50 � Msec; �� IBM 2.1.1.1, 2.2.1.1
INU Aiding Interval : Time is INU Sampling Interval; �� IBM 2.1.4, 2.2.4

GPS Init Duration : Time is 10 � Sec; �� IBM 2.3.2.5
GPS Align Duration : Time is Never; �� IBM 2.3.3.5

GPS First Sample : Time is (TBD);

GPS Sampling Interval : Time is 1000 � Msec; �� IBM 2.3.1.1
GPS Aiding Interval : Time is Never; �� IBM 2.5.4

ADC Init Duration : Time is 1 � Sec; �� IBM 2.5.2.5
ADC Align Duration : Time is Never; �� IBM 2.5.3.5

CHAPTER 9. COMMON DEFINITIONS 56

ADC First Sample : Time is (TBD);
ADC Sampling Interval : Time is 200 � Msec; �� IBM 2.5.1.1

ADC Aiding Interval : Time is Never; �� IBM 2.5.4

VOR Init Duration : Time is 1 � Sec; �� IBM 2.6.2.5

VOR Tuning Duration : Time is 100 � Msec; �� IBM 2.6.3.5

VOR First Sample : Time is (TBD);
VOR Sampling Interval : Time is 50 � Msec; �� IBM 2.6.1.1

VOR Aiding Interval : Time is Never; �� IBM 2.6.4

ASV Interval : Time is 50 � Msec;

Initial ASV Time : Time is (TBD);

Next Data Time : var Time;

Next Aiding Data Time : var Time;

�� Types for guidance data:

Capture Radius : Distance Type is (TBD);

Max Start Time : Time is 100 � Msec; �� IBM 3.1.3, 3.3.3
Max Stop Time : Time is 50 � Msec; �� IBM 3.1.5, 3.3.5

Max Arm Time : Time is 100 � Msec; �� IBM 3.1.11, 3.3.10

type Heading Type is (TBD);

type Speed Type is (TBD);

type Radial Type is (TBD);
type Heading Error Type is (TBD);

type Destination Point is (TBD);
type Distance Type is (TBD);

function < (D1, D2 : Distance Type) return Boolean;
function Distance(D1, D2 : Destination Point) return Distance Type;

type Lateral Guidance Kind is enum Direct Fixed, Direct Moving, VOR end;

type Lateral Guidance Data is record

Destination : var Destination Point; �� for Direct Fixed and Direct Moving
Heading : var Heading Type; �� for Direct Moving

Speed : var Speed Type; �� for Direct Moving

Radial : var Radial Type; �� for VOR
end record;

type Lateral Guidance Arming Data is record

Destination : var Destination Point; �� for Direct Fixed and Direct Moving

Capture : var Destination Point; �� for Direct Fixed and Direct Moving

Heading : var Heading Type; �� for Direct Moving
Speed : var Speed Type; �� for Direct Moving

Radial : var Radial Type; �� for VOR

end record;

type Lateral Guidance Revision Data is record

Destination : var Destination Point; �� for Direct Moving
Heading : var Heading Type; �� for Direct Moving

CHAPTER 9. COMMON DEFINITIONS 57

Speed : var Speed Type; �� for Direct Moving
end record;

�� Types for guidance state:

type Guidance State Type is record

Started, Armed : var Boolean; �� Initially False;

end record;

constraint

�� This pattern macro is used to de�ne the intervals at which
�� certain events are to be produced:

pattern Periodic(pattern P; Occurs, Period : Time) is

At(P, Occurs, Clock) �>

Periodic(P, Occurs+Period, Period);

end;

Chapter 10

Acknowledgements

We wish to recognize the contributions of Allen Adams (TRW) to previous versions of the sensor
model and the contributions of Lou Coglianese (IBM), who answered innumerable questions that
Allen posed. Neither, of course, is in any way responsible for any errors that may exist herein.

We also acknowledge the countless interactions with the entire Rapide team at Stanford, led by
Prof. David C. Luckham.

58

Appendix A

The Original IBM ADAGE

Speci�cations

Following is an enumeration of the features of the ADAGE avionics system as described in IBM
document ADAGE-IBM-92-10 from Louis H. Coglianese to TRW, 15 May 1992. To the right of
each feature is a cross-reference to the section of the present document in which this Rapide model
establishes that feature.

The reader can gain insight into the way behaviors are represented in Rapide's pattern language
by comparing the Rapide behaviors in the sections referenced in the following tables with the
corresponding IBM natural-language English speci�cations in the �rst column of the tables.

IBM Memo: This paper:

Paragr. Subject or Feature No. Sect. Compilation Unit Component

1.0 Common De�nitions

1.1 Sensor data 9 Common De�nitions Sensor Data
1.1 Quality (either Usable, De-

graded, or Unusable)
9 Common De�nitions Sensor Data Quality1

1.1 Position, velocity, attitude 9 Common De�nitions Raw Data
1.2 Functional data 9 Data Sources Interface action

Source Navigation Connection
1.3 Selection criteria

(EXTERNAL,
BEST AVAILABLE, or
one of the sensors)

9 Common De�nitions Selection Options

2.0 Navigation 2.2 Partial Top Level Architecture Navigation

1The IBM memo listed but did not use the quality \Degraded".

59

APPENDIX A. THE ORIGINAL IBM ADAGE SPECIFICATIONS 60

IBM Memo: This paper:

Paragr. Subject or Feature No. Sect. Compilation Unit Component

2.1 INU-1 Device Driver 4.2 Data Sources Architecture INU Drivers

2.1.1 General

2.1.1.1 Sample and output INU-1 sensor
data

4.2.1 Device Driver

2.1.1.1 20-Hz INU-1 sensor data rate 9 Common De�nitions INU Sampling Interval
2.1.1.2 Report output sensor-data qual-

ity as Usable or Unusable
4.2.1 Device Driver

2.1.1.3 Sensor data initial value
Unusable

9 Common De�nitions Sensor Data Quality

2.1.2 Initialization

2.1.2.1 Accept commands to initialize
INU-1 any time

4.2.1,
3.2.1

Device Driver, Sensor No constraints on
Initialize Sensor means
it can occur any time

2.1.2.2 Start INU-1 initialization before
the next sampling interval

4.2.1,
3.2.1

Device Driver, Sensor Begins immediately

2.1.2.3 Output aiding data only after
INU-1 has been initialized

4.2.1 Device Driver behavior

2.1.2.4 Mark as Unusable output
sensor data sampled during
initialization

4.2.1 Device Driver behavior

2.1.2.5 INU-1 initialization takes 3
seconds

9,
3.2.1

Common De�nitions, Sensor INU Init Duration

2.1.3 Device-Speci�c Controls

2.1.3.1 Accept commands to align INU-
1 any time

4.2.1,
3.2.1

Device Driver, Sensor Align Sensor command
may be observed any
time

2.1.3.2 Start INU-1 alignment before the
next sampling interval

4.2.1,
3.2.1

Device Driver, Sensor Begins immediately

2.1.3.3 Start alignment only after initial-
ization is complete

4.2.1 Device Driver constraint

2.1.3.4 Mark as Unusable output sensor
data sampled during alignment

4.2.1 Device Driver behavior

2.1.3.5 INU-1 alignment takes 5 seconds 9,
3.2.1

Common De�nitions, Sensor INU Align Duration

2.1.4 Aiding Data

2.1.4.1 Aiding data sent to INU-1 at
the maximum of the sampling
rate (see 2.1.1.1) and the rate at
which aiding data arrives

4.2.1 Device Driver behavior

2.1.4.2 Aiding data not sent during
initialization

4.2.1 Device Driver behavior: aiding
data sent only after
initialization

2.1.4.3 Output aiding data only after
alignment is complete

4.2.1 Device Driver behavior

2.1.4.4 Identical to 2.1.3.4 above 4.2.1 Device Driver behavior

2.1.4.5 Aiding data not sent during
alignment

4.2.1 Device Driver behavior: see 2.1.4.3
above

APPENDIX A. THE ORIGINAL IBM ADAGE SPECIFICATIONS 61

IBM Memo: This paper:

Paragr. Subject or Feature No. Sect. Compilation Unit Component

2.2 INU-2 Device Driver 4.2 Data Sources Architecture INU Drivers

2.2.1 General

2.2.1.1 Sample and output INU-2 sensor
data

4.2.1 Device Driver

2.2.1.1 20-Hz INU-2 sensor data rate 9 Common De�nitions INU Sampling Interval
2.2.1.2 Report output sensor-data qual-

ity as Usable or Unusable
4.2.1 Device Driver

2.2.1.3 Sensor data initial value
Unusable

9 Common De�nitions Sensor Data Quality

2.2.2 Initialization

2.2.2.1 Accept commands to initialize
INU-2 any time

4.2.1,
3.2.1

Device Driver, Sensor No constraints on
Initialize Sensor means
it can occur any time

2.2.2.2 Start INU-2 initialization before
the next sampling interval

4.2.1,
3.2.1

Device Driver, Sensor Begins immediately

2.2.2.3 Output aiding data only after
INU-2 has been initialized

4.2.1 Device Driver behavior

2.2.2.4 Mark as Unusable output
sensor data sampled during
initialization

4.2.1 Device Driver behavior

2.2.2.5 INU-2 initialization takes 3
seconds

9,
3.2.1

Common De�nitions, Sensor INU Init Duration

2.2.3 Device-Speci�c Controls

2.2.3.1 Accept commands to align INU-
2 any time

4.2.1,
3.2.1

Device Driver, Sensor Align Sensor command
may be observed any
time

2.2.3.2 Start INU-2 alignment before the
next sampling interval

4.2.1,
3.2.1

Device Driver, Sensor Begins immediately

2.2.3.3 Start alignment only after initial-
ization is complete

4.2.1 Device Driver constraint

2.2.3.4 Mark as Unusable output sensor
data sampled during alignment

4.2.1 Device Driver behavior

2.2.3.5 INU-2 alignment takes 5 seconds 9,
3.2.1

Common De�nitions, Sensor INU Align Duration

2.2.4 Aiding Data

2.2.4.1 Aiding data sent to INU-2 at
the maximum of the sampling
rate (see 2.2.1.1) and the rate at
which aiding data arrives

4.2.1 Device Driver behavior

2.2.4.2 Aiding data not sent during
initialization

4.2.1 Device Driver behavior: aiding
data sent only after
initialization

2.2.4.3 Output aiding data only after
alignment is complete

4.2.1 Device Driver behavior

2.2.4.4 Identical to 2.2.3.4 above 4.2.1 Device Driver behavior

2.2.4.5 Aiding data not sent during
alignment

4.2.1 Device Driver behavior: see 2.2.4.3
above

APPENDIX A. THE ORIGINAL IBM ADAGE SPECIFICATIONS 62

IBM Memo: This paper:

Paragr. Subject or Feature No. Sect. Compilation Unit Component

2.3 GPS Device Driver 4.2 Data Sources Architecture GPS Drivers

2.3.1 General

2.3.1.1 Sample and output GPS sensor
data

4.2.1 Device Driver

2.3.1.1 1-Hz GPS sensor data rate 9 Common De�nitions GPS Sampling Interval
2.3.1.2 Report output sensor-data qual-

ity as Usable or Unusable
4.2.1 Device Driver

2.3.1.3 Sensor data initial value
Unusable

9 Common De�nitions Sensor Data Quality

2.3.2 Initialization

2.3.2.1 Accept commands to initialize
GPS any time

4.2.1,
3.2.1

Device Driver, Sensor No constraints on
Initialize Sensor means
it can occur any time

2.3.2.2 Start GPS initialization before
the next sampling interval

4.2.1,
3.2.1

Device Driver, Sensor Begins immediately

2.3.2.3 Output aiding data only after
GPS has been initialized

4.2.1 Device Driver behavior

2.3.2.4 Mark as Unusable output
sensor data sampled during
initialization

4.2.1 Device Driver behavior

2.3.2.5 GPS initialization takes 10
seconds

9,
3.2.1

Common De�nitions, Sensor GPS Init Duration

2.3.3 Device-Speci�c Controls

2.3.3 GPS alignment is not de�ned 9,
3.2.1

Common De�nitions, Sensor GPS Align Duration =
Never

2.3.4 Aiding Data

2.3.4.1 Aiding data sent to GPS at the
maximum of the sampling rate
(see 2.3.1.1) and the rate at
which aiding data arrives

4.2.1 Device Driver behavior

2.3.4.2 Aiding data not sent during
initialization

4.2.1 Device Driver behavior: aiding
data sent only after
initialization

2.3.4.3 Output aiding data only after
alignment is complete

4.2.1 Device Driver behavior

2.3.4.4 Identical to 2.3.3.4 above 4.2.1 Device Driver behavior

2.3.4.5 Aiding data not sent during
alignment

4.2.1 Device Driver behavior: see 2.3.4.3
above

APPENDIX A. THE ORIGINAL IBM ADAGE SPECIFICATIONS 63

IBM Memo: This paper:

Paragr. Subject or Feature No. Sect. Compilation Unit Component

2.4 DNS Device Driver 4.2 Data Sources Architecture DNS Drivers

2.4.1 General

2.4.1.1 Sample and output DNS sensor
data

4.2.1 Device Driver

2.4.1.1 8-Hz DNS sensor data rate 9 Common De�nitions DNS Sampling Interval
2.4.1.2 Report output sensor-data qual-

ity as Usable or Unusable
4.2.1 Device Driver

2.4.1.3 Sensor data initial value
Unusable

9 Common De�nitions Sensor Data Quality

2.4.2 Initialization

2.4.2.1 Accept commands to initialize
DNS any time

4.2.1,
3.2.1

Device Driver, Sensor No constraints on
Initialize Sensor means
it can occur any time

2.4.2.2 Start DNS initialization before
the next sampling interval

4.2.1,
3.2.1

Device Driver, Sensor Begins immediately

2.4.2.3 Output aiding data only after
DNS has been initialized

4.2.1 Device Driver behavior

2.4.2.4 Mark as Unusable output
sensor data sampled during
initialization

4.2.1 Device Driver behavior

2.4.2.5 DNS initialization takes 1 second 9,
3.2.1

Common De�nitions, Sensor DNS Init Duration

2.4.3 Device-Speci�c Controls

2.4.3 DNS alignment is unde�ned 9,
3.2.1

Common De�nitions, Sensor DNS Align Duration =
Never

2.4.4 Aiding Data

2.4.4.1 Aiding data sent to DNS at the
maximum of the sampling rate
(see 2.4.1.1) and the rate at
which aiding data arrives

4.2.1 Device Driver behavior

2.4.4.2 Aiding data not sent during
initialization

4.2.1 Device Driver behavior: aiding
data sent only after
initialization

2.4.4.3 Output aiding data only after
alignment is complete

4.2.1 Device Driver behavior

2.4.4.4 Identical to 2.4.3.4 above 4.2.1 Device Driver behavior

2.4.4.5 Aiding data not sent during
alignment

4.2.1 Device Driver behavior: see 2.4.4.3
above

APPENDIX A. THE ORIGINAL IBM ADAGE SPECIFICATIONS 64

IBM Memo: This paper:

Paragr. Subject or Feature No. Sect. Compilation Unit Component

2.5 ADC Device Driver 4.2 Data Sources Architecture ADC Drivers

2.5.1 General

2.5.1.1 Sample and output ADC sensor
data

4.2.1 Device Driver

2.5.1.1 5-Hz ADC sensor data rate 9 Common De�nitions ADC Sampling Interval
2.5.1.2 Report output sensor-data qual-

ity as Usable or Unusable
4.2.1 Device Driver

2.5.1.3 Sensor data initial value
Unusable

9 Common De�nitions Sensor Data Quality

2.5.2 Initialization

2.5.2.1 Accept commands to initialize
ADC any time

4.2.1,
3.2.1

Device Driver, Sensor No constraints on
Initialize Sensor means
it can occur any time

2.5.2.2 Start ADC initialization before
the next sampling interval

4.2.1,
3.2.1

Device Driver, Sensor Begins immediately

2.5.2.3 Output aiding data only after
ADC has been initialized

4.2.1 Device Driver behavior

2.5.2.4 Mark as Unusable output
sensor data sampled during
initialization

4.2.1 Device Driver behavior

2.5.2.5 ADC initialization takes 1
second

9,
3.2.1

Common De�nitions, Sensor ADC Init Duration

2.5.3 Device-Speci�c Controls

2.5.3 ADC alignment is unde�ned 9,
3.2.1

Common De�nitions, Sensor ADC Align Duration
= Never

2.5.4 Aiding Data

2.5.4.1 Aiding data sent to ADC at
the maximum of the sampling
rate (see 2.5.1.1) and the rate at
which aiding data arrives

4.2.1 Device Driver behavior

2.5.4.2 Aiding data not sent during
initialization

4.2.1 Device Driver behavior: aiding
data sent only after
initialization

2.5.4.3 Output aiding data only after
alignment is complete

4.2.1 Device Driver behavior

2.5.4.4 Identical to 2.5.3.4 above 4.2.1 Device Driver behavior

2.5.4.5 Aiding data not sent during
alignment

4.2.1 Device Driver behavior: see 2.5.4.3
above

APPENDIX A. THE ORIGINAL IBM ADAGE SPECIFICATIONS 65

IBM Memo: This paper:

Paragr. Subject or Feature No. Sect. Compilation Unit Component

2.6 VOR Device Driver 4.2 Data Sources Architecture VOR Drivers

2.6.1 General

2.6.1.1 Sample and output VOR sensor
data

4.2.1 Device Driver

2.6.1.1 10-Hz VOR sensor data rate 9 Common De�nitions VOR Sampling Interval
2.6.1.2 Report output sensor-data qual-

ity as Usable or Unusable
4.2.1 Device Driver

2.6.1.3 Sensor data initial value
Unusable

9 Common De�nitions Sensor Data Quality

2.6.2 Initialization

2.6.2.1 Accept commands to initialize
VOR any time

4.2.1,
3.2.1

Device Driver, Sensor No constraints on
Initialize Sensor means
it can occur any time

2.6.2.2 Start VOR initialization before
the next sampling interval

4.2.1,
3.2.1

Device Driver, Sensor Begins immediately

2.6.2.3 Output aiding data only after
VOR has been initialized

4.2.1 Device Driver behavior

2.6.2.4 Mark as Unusable output
sensor data sampled during
initialization

4.2.1 Device Driver behavior

2.6.2.5 VOR initialization takes 1
second

9,
3.2.1

Common De�nitions, Sensor VOR Init Duration

2.6.3 Device-Speci�c Controls

2.6.3.1 Accept commands to tune VOR
any time

| Modelled like sensor alignment |

2.6.3.2 Start VOR tuning before the
next sampling interval

4.2.1,
3.2.1

Device Driver, Sensor Begins immediately

2.6.3.3 Start tuning only after initializa-
tion is complete

4.2.1 Device Driver constraint

2.6.3.4 Mark as Unusable output sensor
data sampled during tuning

4.2.1 Device Driver behavior

2.6.3.5 VOR tuning takes 0.1 seconds 9,

3.2.1

Common De�nitions, Sensor VOR Tuning Duration

= 0.1

2.6.4 Aiding Data

2.6.4.1 Aiding data sent to VOR at
the maximum of the sampling
rate (see 2.6.1.1) and the rate at
which aiding data arrives

4.2.1 Device Driver behavior

2.6.4.2 Aiding data not sent during
initialization

4.2.1 Device Driver behavior: aiding
data sent only after
initialization

2.6.4.3 Output aiding data only after
alignment is complete

4.2.1 Device Driver behavior

2.6.4.4 Identical to 2.6.3.4 above 4.2.1 Device Driver behavior

2.6.4.5 Aiding data not sent during
alignment

4.2.1 Device Driver behavior: see 2.6.4.3
above

APPENDIX A. THE ORIGINAL IBM ADAGE SPECIFICATIONS 66

IBM Memo: This paper:

Paragr. Subject or Feature No. Sect. Compilation Unit Component

2.7 INU Functional-Data Source 4.2 Data Sources Architecture INU Data Source

2.7.1 General

2.7.1.1 Accept data from both INU-1
and INU-2 device drivers

4.2 Data Sources Architecture Connections among in-
ternal components

2.7.1.2 Accept override data from exter-
nal source at any time

4.2.2 Data Source Interface behavior

2.7.1.3 Accept selection criteria from ex-
ternal source at any time

4.2.2 Data Source Interface behavior

2.7.1.4 Output sensor data from INU-1
or INU-2 when selection criterion
is that sensor

4.2.2 Data Source Interface behavior

2.7.1.5 Output sensor data from exter-
nal override when selection crite-
rion is External

4.2.2 Data Source Interface behavior

2.7.1.6 Output sensor data from best-
quality source when selection cri-
terion is Best Available

4.2.2 Data Source Interface behavior

2.7.1.7 Output sensor data at the same
rate as the INUs produce output

4.2.2 Data Source Interface behavior

2.7.2 Aiding

2.7.2.1 Accept commands to start or
stop aiding data

4.2 Data Source Interface behavior

2.7.2.2 Outputs functional sensor data
to the GPS device driver

4.2 Data Sources Architecture Connections among in-
ternal components

2.7.2.2 Outputs functional sensor data
at the rate it is produced

4.2.2 Data Source Interface behavior

APPENDIX A. THE ORIGINAL IBM ADAGE SPECIFICATIONS 67

IBM Memo: This paper:

Paragr. Subject or Feature No. Sect. Compilation Unit Component

2.8 GPS Functional-Data Source 4.2 Data Sources Architecture GPS Data Source

2.8.1 General

2.8.1.1 Accept data from GPS device
driver

4.2 Data Sources Architecture Connections among in-
ternal components

2.8.1.2 Accept override data from exter-
nal source at any time

4.2.2 Data Source Interface behavior

2.8.1.3 Accept selection criteria from ex-
ternal source at any time

4.2.2 Data Source Interface behavior

2.8.1.4 Output sensor data from GPS
when selection criterion is that
sensor

4.2.2 Data Source Interface behavior

2.8.1.5 Output sensor data from exter-
nal override when selection crite-
rion is External

4.2.2 Data Source Interface behavior

2.8.1.6 Output sensor data from best-
quality source when selection cri-
terion is Best Available

4.2.2 Data Source Interface behavior

2.8.1.7 Output sensor data at the same
rate as the GPS produces output

4.2.2 Data Source Interface behavior

2.8.2 Aiding

2.8.2.1,
2.8.2.2

No aiding data 4.2.2 Data Source Interface behavior:
Generates Aiding Data
= False

APPENDIX A. THE ORIGINAL IBM ADAGE SPECIFICATIONS 68

IBM Memo: This paper:

Paragr. Subject or Feature No. Sect. Compilation Unit Component

2.9 DNS Functional-Data Source 4.2 Data Sources Architecture DNS Data Source

2.9.1 General

2.9.1.1 Accept data from DNS device
driver

4.2 Data Sources Architecture Connections among in-
ternal components

2.9.1.2 Accept override data from exter-
nal source at any time

4.2.2 Data Source Interface behavior

2.9.1.3 Accept selection criteria from ex-
ternal source at any time

4.2.2 Data Source Interface behavior

2.9.1.4 Output sensor data from DNS
when selection criterion is that
sensor

4.2.2 Data Source Interface behavior

2.9.1.5 Output sensor data from exter-
nal override when selection crite-
rion is External

4.2.2 Data Source Interface behavior

2.9.1.6 Output sensor data from best-
quality source when selection cri-
terion is Best Available

4.2.2 Data Source Interface behavior

2.9.1.7 Output sensor data at the same
rate as the DNS produces output

4.2.2 Data Source Interface behavior

2.9.2 Aiding

2.9.2.1 Accept commands to start or
stop aiding data

4.2.2 Data Source Interface behavior

2.9.2.2 Outputs functional sensor data
to either or both INU device
drivers

4.2 Data Sources Architecture Connections among in-
ternal components

2.9.2.2 Outputs functional sensor data
at the rate it is produced

4.2.2 Data Source Interface behavior

APPENDIX A. THE ORIGINAL IBM ADAGE SPECIFICATIONS 69

IBM Memo: This paper:

Paragr. Subject or Feature No. Sect. Compilation Unit Component

2.10 ADC Functional-Data Source 4.2 Data Sources Architecture ADC Data Source

2.10.1 General

2.10.1.1 Accept data from ADC device
driver

4.2 Data Sources Architecture Connections among in-
ternal components

2.10.1.2 Accept override data from exter-
nal source at any time

4.2.2 Data Source Interface behavior

2.10.1.3 Accept selection criteria from ex-
ternal source at any time

4.2.2 Data Source Interface behavior

2.10.1.4 Output sensor data from ADC
when selection criterion is that
sensor

4.2.2 Data Source Interface behavior

2.10.1.5 Output sensor data from exter-
nal override when selection crite-
rion is External

4.2.2 Data Source Interface behavior

2.10.1.6 Output sensor data from best-
quality source when selection cri-
terion is Best Available

4.2.2 Data Source Interface behavior

2.10.1.7 Output sensor data at the same
rate as the ADC produces output

4.2.2 Data Source Interface behavior

2.10.2 Aiding

2.10.2.1,
2.10.2.2

No aiding data 4.2.2 Data Source Interface behavior:
Generates Aiding Data
= False

2.11 VOR Functional-Data Source 4.2 Data Sources Architecture VOR Data Source

2.11.1 General

2.11.1.1 Accept data from VOR device
driver

4.2 Data Sources Architecture Connections among in-
ternal components

2.11.1.2 Accept override data from exter-
nal source at any time

4.2.2 Data Source Interface behavior

2.11.1.3 Accept selection criteria from ex-
ternal source at any time

4.2.2 Data Source Interface behavior

2.11.1.4 Output sensor data from VOR

when selection criterion is that
sensor

4.2.2 Data Source Interface behavior

2.11.1.5 Output sensor data from exter-
nal override when selection crite-
rion is External

4.2.2 Data Source Interface behavior

2.11.1.6 Output sensor data from best-
quality source when selection cri-
terion is Best Available

4.2.2 Data Source Interface behavior

2.11.1.7 Output sensor data at the same
rate as the VOR produces output

4.2.2 Data Source Interface behavior

2.11.2 Aiding

2.11.2.1,
2.11.2.2

No aiding data 4.2.2 Data Source Interface behavior:
Generates Aiding Data
= False

APPENDIX A. THE ORIGINAL IBM ADAGE SPECIFICATIONS 70

IBM Memo: This paper:

Paragr. Subject or Feature No. Sect. Compilation Unit Component

2.12.0 Earth Model 5.2 Navigation Architecture Earth Model

2.12.0.1 Output earth-based data
using INU functional data
when produced

5.2.1 Earth Model Interface behavior

2.12.1 Atmosphere Model 5.2 Navigation Architecture Atmosphere Model

2.12.1.1 Output atmosphere-based
data using ADC
functional data when
produced

5.2.2 Atmosphere Model Interface behavior

2.12.1.2 Output estimated
wind data using ADC
functional data when
produced

5.2.2 Atmosphere Model Interface behavior

2.12.2 Aircraft State Vector
Model

5.2 Navigation Architecture Aircraft State Vector Model

2.12.2.1 Accept functional data
from INU at rate
produced

5.2.3 Aircraft State Vector Model Interface behavior

2.12.2.2 Accept functional data
from GPS at rate
produced

5.2.3 Aircraft State Vector Model Interface behavior

2.12.2.3 Accept functional data
from DNS at rate
produced

5.2.3 Aircraft State Vector Model Interface behavior

2.12.2.4 Accept functional data
from ADC at rate
produced

5.2.3 Aircraft State Vector Model Interface behavior

2.12.2.5 Accept earth-based data
from earth model at rate
produced

5.2.3 Aircraft State Vector Model Interface behavior

2.12.2.6 Accept atmosphere-based
data from atmosphere
model at rate produced

5.2.3 Aircraft State Vector Model Interface behavior

2.12.2.7 Compute and output
aircraft-state vector at 20
Hz

9 Common De�nitions ASV Interval

2.12.2.8 Run only after all data
have been updated

5.2.3 Aircraft State Vector Model Interface behavior: function
All Elements Updated

2.12.2.9 Mark vector unusable if
no functional data sources
are usable

5.2.3 Aircraft State Vector Model Interface behavior: function
Calculate Vector Value

2.13 VOR Radio Navigation 5.2 Navigation Architecture VOR Relative Navigation

2.13.1 Output �ltered VOR data
using VOR functional
data when produced

5.2.4 VOR Relative Navigation Interface behavior

APPENDIX A. THE ORIGINAL IBM ADAGE SPECIFICATIONS 71

IBM Memo: This paper:

Paragr. Subject or Feature No. Sect. Compilation Unit Component

3.0 Guidance 2.2 Partial Top Level Architecture Guidance

3.1 Direct Lateral Fixed Point
Guidance

7.2 Lateral Guidance Architecture Direct Fixed Point

3.1.1 Output heading errors when
usable aircraft-state vector
produced

7.2.2 Direct Fixed Point Interface behavior:
Current Heading Error

3.1.2 Accept commands to start Direct
Lateral Fixed Point Guidance,
including destination point, at
any time

7.2.2 Direct Fixed Point Interface behavior: Destination

3.1.3 Start outputting heading er-
rors within 0.1 seconds of start
command

9,
7.2.2

Common De�nitions,
Direct Fixed Point Interface

constraint:
Max Start Time = 100
msec

3.1.4 Accept commands to stop Direct
Lateral Fixed Point Guidance at
any time

7.2.2 Direct Fixed Point Interface behavior

3.1.5 Stop outputting heading errors
within 0.05 seconds of start
command

9,
7.2.2

Common De�nitions,
Direct Fixed Point Interface

constraint:
Max Start Time = 50
msec

3.1.6 Stop outputting heading errors
when aircraft-state vector be-
comes unusable

7.2.2 Direct Fixed Point Interface behavior: stop
condition

3.1.7 Stop outputting heading er-
rors whenever another lateral-
guidance mode starts

7.2.2 Direct Fixed Point Interface behavior: stop
condition

3.1.8 Stop outputting heading errors
when aircraft arrived within cap-
ture radius of destination

7.2.2 Direct Fixed Point Interface behavior: stop
condition

3.1.9 Accept commands to arm Direct
Lateral Fixed Point Guidance,
including destination point and
capture point, at any time

7.2.2 Direct Fixed Point Interface behavior: Destination,
Capture Radius

3.1.10 Start outputting heading errors
within whenever armed and ar-
rived within the capture radius
of capture point

7.2.2 Direct Fixed Point Interface behavior: start
condition

3.1.11 Start estimating distance to cap-
ture point within 0.1 seconds of
arm command

9,
7.2.2

Common De�nitions,
Direct Fixed Point Interface

constraint:
Max Arm Time = 100
msec

APPENDIX A. THE ORIGINAL IBM ADAGE SPECIFICATIONS 72

IBM Memo: This paper:

Paragr. Subject or Feature No. Sect. Compilation Unit Component

3.2 Direct Lateral Moving Point
Guidance

7.2 Lateral Guidance Architecture Direct Moving Point

3.2.1 Accept commands to start
Direct Lateral Moving Point
Guidance, including destination
point, speed, and heading

7.2.3 Direct Moving Point Interface behavior: Destination,
Destination Speed,
Destination Heading

3.2.2 Accept commands to change des-
tination point, speed, and head-
ing, at any time

7.2.3 Direct Moving Point Interface behavior: change state

3.2.3 Start outputting heading er-
rors within 0.1 seconds of start
command

9,
7.2.3

Common De�nitions,
Direct Moving Point Interface

Last constraint

3.3 VOR Lateral Guidance 7.2 Lateral Guidance Architecture VOR

3.3.1 Output heading errors when
usable aircraft-state vector
produced

7.2.1 VOR Interface behavior:
Current Heading Error

3.3.2 Accept commands to start VOR
Lateral Guidance, including ra-
dial, at any time

7.2.1 VOR Interface behavior: Radial

3.3.3 Start outputting heading er-
rors within 0.1 seconds of start
command

9,
7.2.1

Common De�nitions,
VOR Interface

constraint:
Max Start Time = 100
msec

3.3.4 Accept commands to stop VOR
Lateral Guidance at any time

7.2.1 VOR Interface behavior

3.3.5 Stop outputting heading errors
within 0.05 seconds of stop
command

9,
7.2.1

Common De�nitions,
VOR Interface

constraint:
Max Start Time = 50
msec

3.3.6 Stop outputting heading errors
when aircraft-state vector be-
comes unusable

7.2.1 VOR Interface behavior: stop
condition

3.3.7 Stop outputting heading er-
rors whenever another lateral-
guidance mode starts

7.2.1 VOR Interface behavior: stop
condition

3.3.8 Accept commands to arm VOR
Lateral Guidance, including
radial

7.2.1 VOR Interface behavior: Radial

3.3.9 Start outputting heading errors
within whenever armed and ar-
rived at the radial

7.2.1 VOR Interface behavior: start
condition

3.3.10 Start estimating distance to cap-
ture point within 0.1 seconds of
arm command

9,
7.2.1

Common De�nitions,
VOR Interface

constraint:
Max Arm Time = 100
msec

Appendix B

An Alternative Sensor-Interface

Model

The omnibus de�nition of a sensor as described originally in Section 3.2.1 (page 16) may be de-
composed, using Rapide's inheritability properties, so as to allow modular production of both basic,
initializable, alignable, and complete sensors, the last having both initializing and aligning actions
along with their proper logical/temporal relationships.

Here we are assuming a feature of Rapide which we hope will be present in the future in some
form but does not currently exist: having one include inherit all components of one type into
another with the various parts of the inherited type incorporated into the respective corresponding
parts of the inheriting type. (This now requires a separate include in each part, which inherits
components only from its parent's corresponding part.)

The exercise consists in creating some eight types so that combinations of them may be included
into others to fabricate all desired sensor behaviors with no redundant code. Each type thus contains
just the right subset of sensor properties, so that, this \sensor kit" can, for example, build the full
initializable and alignable sensor as well as, say, an initializable-only sensor. The three basic units
and what they contain are as follows:

� Simplest Sensor Service | only the two actions of sensor-sampling request and sampled-data
return

� Simplest Sensor Declarations | instantiations of the simplest-sensor service and its data

� Simplest Sensor | the sensor-sampling construct itself

type Simplest Sensor Service is interface

action Request();

extern

action Sampled(R : Raw Data);

end;

type Simplest Sensor Declarations is interface

73

APPENDIX B. AN ALTERNATIVE SENSOR-INTERFACE MODEL 74

Sensor Data : service Simplest Sensor Service;

behavior

Some Data : Raw Data;

end;

type Simplest Sensor is interface

include Simplest Sensor Declarations;

behavior

begin

�� When sensor�data Request event is detected, pass some data via

�� sensor�data Sampled event:

Sensor Data.Request => Sensor Data.Sampled(Some Data);;

end;

We then introduce the general concept of a \serviceable" sensor | one which may be initialized,
aligned, or anything else the designer might need. The four nested boxes embodying this concept
are the following:

� Serviceable Sensor Service | analogously to the Simplest Sensor Service, only two actions:
the service request and noti�cation that the service is complete

� Serviceable Sensor Declarations | the entities needed for the service and initial values for two
of them

� Serviceable Sensor Task | the tidy execution of the requested task itself, with protection
against multiple requests during task execution

� Serviceable Sensor | the sensor sampling and data return, conditional upon this task having
been properly concluded (the Serviceable Sensor being included into instantiations of initial-
izable or alignable sensors with appropriate replaces)

type Serviceable Sensor Service is interface

action Request();

extern

action Complete();

end;

type Serviceable Sensor Declarations is interface

APPENDIX B. AN ALTERNATIVE SENSOR-INTERFACE MODEL 75

Task : service Serviceable Sensor Service;

behavior

Task State Type is enum (Not Done, Doing, Done) end;

Task State : var Task State Type := Not Done;

Task Complete Time : var Time := Never;

end;

type Serviceable Sensor Task(Task Duration : Time) is interface

include Serviceable Sensor Declarations;

behavior

begin

�� When task is requested, set Task Complete Time to the time task should
�� �nish. Perform Complete only if Task Complete Time has not been

�� overwritten to another value by a later request for the same task.

Task.Request where Task State = Not Done =>

Task State := Doing;
Task Complete Time := Clock + Task Duration;;

Clock = Task Complete Time and Task State = Doing =>
Task Complete Time := Never;

Task State := Done;

Task.Complete;;

end;

type Serviceable Sensor(Task Duration : Time) is interface

include Simplest Sensor Declarations;
include Serviceable Sensor Declarations;

behavior

begin

�� Pass data upon request if task is done:

Sensor Data.Request where (Task State = Done) =>
Sensor Data.Sampled(Sample Data);;

end;

Finally, we may now construct the full sensor with the prescribed logical/temporal relationship
between initialization and alignment (not hitherto speci�ed, of course) prior to sensor sampling.

type Full Sensor(Init Duration, Align Duration : Time) is interface

APPENDIX B. AN ALTERNATIVE SENSOR-INTERFACE MODEL 76

�� Import sensor data and service actions:

include Simplest Sensor Declarations;

�� Import initializable�sensor declarations and initialization task:

include Serviceable Sensor Task(Init Duration)

replace

Task by Init,

Task State by Init State,

Task State Type by Init State Type,
Task Complete Time by Init Complete Time,

�� Import alignable�sensor declarations:
include Serviceable Sensor Task(Align Duration)

replace

Task by Align,
Task State by Align State,

Task State Type by Align State Type,

Task Complete Time by Align Complete Time,

behavior

begin

Init.Request where Align State /= Not Done =>

Align State := Not Done;

Align.Request where Align State = Not Done and Init State = Done =>

Align State := Doing;
Align.Complete at Clock + Align Duration;;

Align.Complete where Align State = Doing =>
Align State := Done;

Align.Complete;;

Sensor Data.Request where Init State = Done and Align State = Done =>

Sensor Data.Sampled(Some Data);;

constraint

�� The protocol followed by the sensor:
match

(Init.Done^(<+) < Align.Done^(<+) where Align Duration /= Never

or null where Align Duration = Never)^(<�);

end;

Appendix C

A Uni�ed Lateral-Guidance-Type

Interface

Among the three lateral-guidance interfaces (Sections 7.2.1-7.2.3, pages 42-48), so much of the
Rapide code is identical that it is tempting to try to construct a single guidance interface in which
the di�erences are selected by guidance type:

type Guidance Mode Interface Generator(Guidance Kind : Lateral Guidance Kind)

is interface

Aircraft State : service Aircraft State Service;

Mission Objectives : service Mission Objectives Service;

extern

Error Signals : service Error Signals Service;

behavior

?V : State Vector;

?D : Lateral Guidance Data;

?M : Lateral Guidance Kind;
?A : Lateral Guidance Arming Data;

State : var Guidance State Type; �� Initially (False, False);

Radial, Arm Radial : var Radial Type;

Destination, Arm Destination, Arm Capture Point : var Destination Point;
Destination Speed : var Speed Type;

Destination Heading : var Heading Type;

Actual Start Time, Actual Stop Time : var Time := Never;

Actual Arm Time, Actual Disarm Time : var Time := Never;

�� Future duration functions to return the times needed to perform respective tasks:

function Start Duration() return Time is

begin return TBD;

77

APPENDIX C. A UNIFIED LATERAL-GUIDANCE-TYPE INTERFACE 78

end function;

function Stop Duration() return Time is

begin return TBD;
end function;

function Arm Duration() return Time is

begin return TBD;

end function;

function Disarm Duration() return Time is

begin return TBD;

end function;

�� Represents computation of current heading error:

function Current Heading Error() return Heading Error Type is

begin return TBD;

end function;

�� Represents computation of current radial:

function Current Radial() return Radial Type is

begin return TBD;

end function;

�� Represents computation of current location:

function Current Location() return Destination Point is

begin return TBD;
end function;

begin

Start =>
State := Guidance State Type'(False, False);

�� Output heading error if Aircraft State Vector is usable and state is started:
Aircraft State.Aircraft State Vector(?V) where

?V.Quality = Usable and State.Started and

if Guidance Kind = VOR then

True

elsif (Guidance Kind = Direct Fixed or Guidance Kind = Direct Moving) then

(Current Location() � Destination >= Capture Radius)
else False

end if =>

Actual Start Time := Never;
Error Signals.Heading Error(Current Heading Error());;

�� Behaviors to start and stop guidance:

�� Start if explicitly started and begin outputting heading errors
�� within Max Start Time, unless interrupted by another start event:

Mission Objectives.Start Guidance(Guidance Kind, ?D) =>

if Guidance Kind = VOR then

Radial := ?D.Radial;

APPENDIX C. A UNIFIED LATERAL-GUIDANCE-TYPE INTERFACE 79

elsif Guidance Kind = Direct Fixed or Guidance Kind = Direct Moving then

Destination := ?D.Destination;

end if

if Guidance Kind = Direct Moving then

Destination Speed := ?D.Speed;

Destination Heading := ?D.Heading;

end if

Actual Start Time := Clock.Now() + Start Duration();;

Clock.Now() = Actual Start Time =>
Mission Objectives.Guidance Started(Guidance Kind);

State.Started := True;;

�� Start when arrive at start condition:

Aircraft State.Aircraft State Vector(?V) where

?V.Quality = Usable and State.Armed and

if Guidance Kind = VOR then

(Current Radial() = Arm Radial)

elsif (Guidance Kind = Direct Fixed or Guidance Kind = Direct Moving) then

(Current Location() � Arm Capture Point < Capture Radius)

else False
end if =>

State.Armed := False;

if Guidance Kind = VOR then

Mission Objectives.Start Guidance(Guidance Kind, Arm Radial);

elsif (Guidance Kind = Direct Fixed or Guidance Kind = Direct Moving) then

Mission Objectives.Start Guidance(Guidance Kind, Arm Destination);
end if ;;

�� Stop within Max Stop Time, regardless of additional Stop Guidance events:
Mission Objectives.Stop Guidance(Guidance Kind) =>

Actual Stop Time := Clock.Now() + Stop Duration();;

Clock.Now() = Actual Stop Time =>

Actual Stop Time := Never;

Mission Objectives.Guidance Stopped(Guidance Kind);
State.Started := False;;

�� Stop immediately if Aircraft State Vector is unusable or if another guidance mode is
�� started or, if direct��xed or direct�moving, aircraft has entered the capture radius:

(Aircraft State.Aircraft State Vector(?V) where ?V.Quality = Unusable or

(if (Guidance Kind = Direct Fixed or Guidance Kind = Direct Moving) then

?V.Quality = Usable and State.Started and

(Current Location() � Destination < Capture Radius)

else False
end if))

or Mission Objectives.Guidance Started(?M) where

?M /= Guidance Kind and State.Started =>
State.Started := False;;

�� Behaviors to arm and disarm guidance:

�� Arm within Max Arm Time, unless interrupted by another arm event:

Mission Objectives.Arm Guidance(Guidance Kind, ?A) =>
if Guidance Kind = VOR then

APPENDIX C. A UNIFIED LATERAL-GUIDANCE-TYPE INTERFACE 80

Arm Radial := ?A.Radial;
elsif (Guidance Kind = Direct Fixed or Guidance Kind = Direct Moving) then

Arm Destination := ?A.Destination;

Arm Capture Point := ?A.Capture;
end if

Actual Arm Time := Clock.Now() + Arm Duration();;

Clock.Now() = Actual Arm Time =>

Actual Arm Time := Never;

Mission Objectives.Guidance Armed(Guidance Kind);
State.Armed := True;;

Mission Objectives.Disarm Guidance(Guidance Kind) =>
Actual Disarm Time := Clock.Now() + Disarm Duration();;

Clock.Now() = Actual Disarm Time =>
Mission Objectives.Guidance Disarmed(Guidance Kind);

State.Armed := False;;

constraint

not match (Tick where

Clock.Now() > Actual Start Time and Actual Start Time /= Never or

Clock.Now() > Actual Stop Time and Actual Stop Time /= Never or

Clock.Now() > Actual Arm Time and Actual Arm Time /= Never);

end;

type VOR Interface is interface

include Guidance Mode Interface Generator(VOR, Radial);

behavior

begin

�� Placeholder for saving VOR data and using in output of the heading errors:
Aircraft State.VOR Relative Navigation Output => empty;;

end interface;

type Direct Fixed Point Interface is interface

include Guidance Mode Interface Generator(Direct Fixed, Destination);

end interface;

type Direct Moving Point Interface is interface

include Guidance Mode Interface Generator(Direct Moving, Destination);

APPENDIX C. A UNIFIED LATERAL-GUIDANCE-TYPE INTERFACE 81

behavior

?R : Lateral Guidance Revision Data;

begin

�� Change state of destination:
Mission Objectives.Change Guidance(Direct Moving, ?R) =>

Destination := ?R.Destination;

Destination Speed := ?R.Speed;
Destination Heading := ?R.Heading;;

constraint

�� Require change�guidance event to cause the following heading�error report:

observe Mission Objectives.Change Guidance(Direct Moving) < Error Signals.Heading Error
match Mission Objectives.Change Guidance �> Error Signals.Heading Error;

end interface;

Whereas VOR guidance uses the complete Aircraft State while Direct Fixed-Point and Moving-
Point modes need only the Aircraft State Vector from Aircraft State Service, for further simplicity
Guidance Mode Interface uses the complete Aircraft State for all three modes.

Bibliography

[Bry92] Doug Bryan. Rapide{0.2 language and tool-set overview. Technical Note CSL{TN{92{
387, Computer Systems Lab, Stanford University, February 1992.

[Fid91] Colin J. Fidge. Logical time in distributed systems. Computer, 24(8):28{33, August 1991.

[Hsi92] Alexander Hsieh. Rapide-0.2 examples. Technical Report CSL{TR{92{510, Computer
Systems Lab, Stanford University, February 1992.

[LV93] David C. Luckham and James Vera. Event based concepts and language for system
architecture. In Proceedings of the Workshop on Studies of Software Design, May 1993.

[LVB+93] David C. Luckham, James Vera, Doug Bryan, Larry Augustin, and Frank Belz. Partial
orderings of event sets and their application to prototyping concurrent, timed systems.
Journal of Systems and Software, 21(3):253{265, June 1993.

[MMM91] John Mitchell, Sigurd Meldal, and Neel Madhav. An extension of standard ML modules
with subtyping and inheritance. In Proceedings of the ACM conference on POPL 1991.
ACM Press, January 1991. Also Stanford University Computer Systems Laboratory
Technical Report No. CSL{TR{91{472.

[SM91] Reinhard Schwarz and Friedemann Mattern. Detecting causal relationships in distributed
computations: In search of the holy grail. Technical Report 215/91, University of Kaiser-
slautern, November 1991.

[TC93] W. Tracz and L. Coglianese. An adaptable software architecture for integrated avionics.
In Proceedings of NAECON 93, pages 1161{1168, Dayton, Ohio, May 1993. IEEE.

[Tea93a] Rapide Design Team. The Rapide-1 Executable Language Reference Manual. Program
Analysis and Veri�cation Group, Computer Systems Lab., Stanford University, version 1
edition, March 1993.

[Tea93b] Rapide Design Team. The Rapide-1 Types Reference Manual. Program Analysis and
Veri�cation Group, Computer Systems Lab., Stanford University, version 1 edition, March
1993.

82

