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Abstract

This paper presents a set of new techniques for the optimization of multiple-level combinational
Boolean networks. We describe first a technique based upon the selection of appropriate multiple-
output subnetworks (consisting of so-called compatible gates) whose local functions can be op-
timized simultaneously. We then generalize the method to larger and more arbitrary subsets of
gates. Because simultaneous optimization of local functions can take place, our methods are more
powerful and general than Boolean optimization methods using don’t cares , where only single-gate
optimization can be performed. In addition, our methods represent a more efficient alternative
to optimization procedures based on Boolean relations because the problem can be modeled by
a unate covering problem instead of the more difficult binate  covering problem. The method is
implemented in program ACHILLES  and compares favorably to SIS.

Key Words and Phrases: Combinational logic synthesis, don’t care methods.

*Now with the Dipartimento di Elettronica  ed Informatica, UniversitB di Padova,  Via Gradenigo  6/A,  Padova,
Italy.

i



Copyright @ 1993

bY
Maurizio Damiani and Jerry Chih-Yuan Yang and Giovanni De Micheli



Contents

1 Introduction 1

2 Terminology 2

2.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Compatible Gates 7

3.1 Optimizing Compatible Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Finding Compatible Gates 12

5 Unate Optimization 17

5.1 Optimizing Unate Subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Implementation and Results

7 Conclusion

8 Acknowledgement

. . .
111

22

23

23
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1 Introduction

Logic synthesis has been traditionally divided into two-level and multiple-level synthesis. Two-level
synthesis has been intensely researched from theoretical and engineering perspectives, and efficient
algorithms for exact [l, 2, 3, 41 and approximate [5, 6, 71 solutions are available.

Exact optimization algorithms for multiple-level logic networks have also been considered [8].
They are, however, generally impractical even for medium-sized networks. For this reason, many
efficient approximation algorithms have been developed over the past decade. Such algorithms
can be classified according to the algebraic/Boolean type of operations they perform. Algebraic
techniques, such as factoring and kerneling, are described in [9].

As algebraic methods do not take full advantage of the properties of Boolean algebra, a spectrum
of Boolean optimization techniques has been developed in parallel. Such techniques consist mainly
of iteratively refining an initial network by identifying subnetworks to be optimized, deriving their
associated degrees of freedom (expressed by so-called don’t care conditions), and replacing such
subnetworks by simpler, optimized ones.

The independent optimization of the local function of a network, called single-gate optimiza-
tion, lies at one end of the spectrum. It has been shown [lo, II] that the degrees of freedom
associated with a single gate can be represented by a don’t care set. Once this set is obtained,
two-level synthesis algorithms can be used to optimize the subnetwork [ll].

The concurrent optimization of several local functions, called multiple-gate optimization,
lies at the other end of the spectrum. Multiple-gate optimization has been shown to offer potentially
better quality networks as compared to single-gate optimization because of the additional degrees
of freedom associated with the re-design of larger blocks of logic.

Exact methods for multiple-gate optimization, first analyzed in [12], have been shown to best



exploit the degrees of freedom. Unfortunately these methods suffer from two major disadvantages.
First, even for small subnetworks, the number of primes that have to be derived can be remarkably
large; second, given the set of primes, it entails the solution of an often complex binate  covering
problem, for which efficient algorithms are still the subject of investigation. As a result, the overall
efficiency of the method is limited, and only relatively small networks can currently be handled.

Heuristic approximations to multiple-gate optimization include the use of compatible don’t cares
[lo] which allows us to extend don’t care based optimization to multiple functions by suitably
restricting the individual don’t care sets associated with each function. Although such methods
are applicable to large networks, the restriction placed on don’t care sets reduces the degrees of
freedom and hence possibly the quality of the results.

The binate  nature of the covering problem arises essentially from the arbitrariness of the subnet-
work selected for optimization. In this paper, we develop alternative techniques for the optimization
of multiple-output subnetworks. These techniques are based upon a temporary transformation of
a network into an internally unate one, and on an accurate choice of the subnetworks to be opti-
mized. The difficult binate covering step is avoided, and yet an optimization quality superior to
don’t care -based methods with comparable efficiency is achieved because multiple local functions
can be optimized simultaneously. To this regard, first we introduce the notion of compatible
set of gates as a subset of gates whose optimization can be solved exactly by classical two-level
synthesis algorithms. We show that the simultaneous optimization of compatible gates allows us
to reach optimal solutions not achievable by conventional don’t care methods. We then leverage
upon these results and present an algorithm for the optimization of more general subnetworks in an
internally unate network. The algorithms have been implemented and tested on several benchmark
circuits, and the results in terms of literal savings as well as CPU time are very promising.

2 Terminology

Let f? denote the Boolean set (0, 1). A k-dimensional Boolean vector x= [x1,. . . , xklT is an element
of the set 0” (bold-facing is hereafter used to denote vector quantities. In particular, the symbol 1
denotes a vector whose components are all 1).

A ni-input, no-output Boolean function F is a mapping F: ana -+ Bno. We use x to denote the
set of primary inputs, and F to denote the set of primary output functions. A literal function,
or literal, is the function expressed by a variable or its complement. A cube c is the product of
some literals. A logic network is a collection of local single-output functions called gates. The set
of local functions is denoted by y(x) where yi is the variable associated with the output of each
gate gi, and in general can be expressed as a function of primary inputs. Figure 1 illustrates the
relationship of various terms.

The cofactors (or residues) of a function F with respect to a variable xi are the functions
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Figure 1: Example of a Logic Network.

FX* =F(xI, . . . , xi = 1,. . . , xn) and F,: =F(xI,  . . . , xi = 0, . . . , x,). The universal quantification

or consensus of a function F with respect to a variable xi is the function V,,F = F,,F,/  . The
existential quantification or smoothing of a function F with respect to xi is defined as !l,,F =

Fx,+ Fx:. A scalar function FI contains F2 (denoted by Fl 2 F2 ) if F2 = 1 implies Fl = 1. The
containment relation holds for two vector functions if it holds component-wise.

A function F is termed positive unate in xi if F,, >F,;,  and negative unate if F,, SF,:.
Otherwise the function is termed binate in zi. A function F positive (negative) unate in a variable
xi can always be expressed without using the literal xi (xi) [13].

The desired terminal behavior of a combinational network is specified by two functions, ON(x)
and DC(x), the latter in particular representing the input combinations that either do not occur
or such that the value of some of the network outputs is regarded as irrelevant [II].

The functions ON and DC identify the set of possible terminal behaviors for the network:
specifications are met by an implementation, realizing a function F(x) if and only if F(x)=ON(x)
for every input x not in DC.

Another, equivalent, description of the set of terminal behaviors is in terms of the functions
Fmin = ON . DC’ and F,,, = ON + DC. Specifications are met by F if

F min I F I Fmczx (1)

We consider hereafter specifications directly in terms of a pair Fmin,  F,,,.

2.1 Previous Work

Most Boolean methods for multiple-level logic synthesis rely upon two-level synthesis engines. For
this reason and in order to establish some essential terminology, we first review some basic concepts
of two-level synthesis.



Two-level Synthesis

Consider the synthesis of a (single-output) network whose output y is to satisfy Eq. (l), imposing
a realization of y as a sum of cubes ck:

Fmin I Y = 2 ck L Fmax (2)
k=l

The upper bound in Eq. (2) h Id ‘fo s z an only if each cube ck satisfies the inequalityd

ck L Fmax (3)

Any such cube is termed an implicant. An implicant is termed prime if no Literal can be removed
from it without violating the inequality (3). For the purpose of logic optimization, only prime
implicants need be considered [13, 71. Each implicant ck has an associated cost wk, which depends
on the technology under consideration. For example, in PLA minimization all implicants take the
same area, and therefore have identical cost; in a multiple-level context, the number of literals can
be taken as cost measure [9]. The cost of a sum of implicants is usually taken as the sum of the
individual costs.

Once the list of primes has been built, a minimum-cost cover of Fmin is determined by solving:

N N

minimize : ~(YkWk; subject to:  Fmin  5 c akck (4)
k=l k=l

where the Boolean parameters ok are used in this context to parameterize the search space:
they are set to 1 if ck appears in the cover, and to 0 otherwise. The approach is extended easily to
the synthesis of multiple-output circuits by defining multiple-output primes [13, 71. A multiple-
output prime is a prime of the product of some components of F,,,. These components are termed
the influence set of the prime.

Branch-and-bound methods can be used to solve exactly the covering problem. Engineering
solutions have been thoroughly analyzed, for example, in [7], and have made two-level synthesis
feasible for very large problems.

Eq. (4) can be rewritten as

vXl,...,Xn 2 QkCk(x) -I I::,i,,(x)) = 1 (5)
k=l

The left-hand side of Eq. (5) pre resents a Boolean function F, of the parameters ai only; the
constraint equation (4) is therefore equivalent to

F, = 1 (6)

The conversion of Eq. (4) into Eq. (6) ’ k1s nown in the literature as Petrick’s method [13].
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Two properties of two-level synthesis are worth remarking in the context of this paper. First,
once the list of primes has been built, we are guaranteed that no solution will violate the upper
bound in Eq. (l), so that only the lower bound needs to be considered (as explicited by Eq. (4)).
Similarly, only the upper bound needs to be considered during the extraction of primes. Second, the
effect of adding/removing a cube from a partial cover of Fmin is always predictable: that partial
cover is increased/decreased. This property eases the problem of sifting the primes during the
covering step, and it is reflected by the unateness of Fol: intuitively, by switching any parameter (xi
from 0 to 1, we cannot decrease our chances of satisfying Eq. (6). These are important attributes
of the problem that need to be preserved in its generalizations.

Don’t care -based Multiple-level Optimization

Two-level optimization is the basic engine in don’t care -based multiple-level logic optimization,
where it is used to iteratively optimize single-output gates in the network.

Consider a single-output subnetwork, with local output y, to be re-synthesized. The primary
output F of the overall network can be expressed in terms of the signal y:

F = F(x, y) = y’Q t yF, = (yl t Q)(y’l + FY)

By replacing Eq. (7) in Eq. (I), it follows that y must satisfy:

(7)

F min 5 y’Fy/ t yFy L Fmax (8)

A constraint on y similar to Eq. (1) can be obtained from Eq. (8) as follows. The upper bound
in Eq. (8) holds if and only if y/F,, 5 F,,, and yF, < F,,, , i.e.

y’IFmax+Fk,;  y<FrnaxtFk

Eq. (9) can be rewritten as

FL,,Fyl 5 ~1 5 Fmax t Fb

Similarly, the lower bound holds if and only if FYI + yl 2 Fmin and F, + y’l > Fmin, i.e.

FminFyl  2~1 I Fki,  t Fy

Eq. (10) and (11) can be merged together, to obtain:

F,inFk/  + FkaxFy/  5 Yl I (Fmax  + Fk)(FLin t Fy)

Eq. (12) represents the exact degrees of freedom available in the synthesis of the signal y, and
is formally identical to Eq. (1): the value of y is undetermined corresponding to those points for
which the lower bound differs from the upper bound. Such points are the local don’t cares for y, and
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Figure 2: Boolean Relations Optimization Example.

are denoted by DC,(x). 0 nce the bounds (or, equivalently, the don’t cares ) for y are computed,
ordinary two-level synthesis algorithms can be applied.’

Boolean Relations-based Multiple-level Optimization

Don’t care -based methods allow the optimization of only one single-output subnetwork at a time.
It has been shown in [12]  that this strategy may potentially produce lower-quality results with
respect to a more general approach attempting the simultaneous optimization of multiple-output
subnetworks.

IJet Y = [Yl,Y2,“‘, ym] denote the outputs of a subnetwork, to be re-synthesized, and let F(x, y)
denote the network outputs, expressed in terms of the variables yi. From equation(l), the functional
constraints on y are expressed by

Frndn L F(x,  Y) 5 Fmax (13)

An equation like Eq. (13) describes a Boolean Relation2. The synthesis problem consists
of finding a minimum-cost realization of yl,. . . , ym such that Eq. (13) holds. An exact solution
algorithm, targeting two-level realizations, is presented in [12].  We illustrate the additional diffi-
culties of the covering step with respect to the ordinary two-level synthesis process by means of the
following example.

Example 1 Consider the optimization of gates gl and g2,  with outputs y1 and y2, in the circuit  of
Figure 2. Assuming no external don’t care conditions, Fmin  = Fmaz  = a’b’ + (ac + bd) $ (a’c’ + a’b’),
while F = y1 $ y2 + a’b’. Eq. (13) then takes the form:

a’b’ + (ac + bd) $ ( a’c’ + a’b’) < y1 $ y2 + a’b’

5 a’b’ + (ac + bd) $ (a’c’ + a’b’)

lIn practice, y is re-synthesized bY taking advantage  also of the other  internal signals available in the network.

Implicants  and primes are in this context  expressed  in terms  of primary  inputs  and other  network  variables.
2An alternative  formulation  of a Boolean  Relation  is by means of a characteristic  equation: R(x, y) = 1, where

R is a Boolean  function.  It could be shown  that  the two formulations  are equivalent.
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By the symmetry of the network with respect to y1 and y2, cubes a’c’, ac, bd, a’b’ would be listed
as implicants for both y1 and ~2. Consider constructing now a cover for y1 and y2 from such
implicants. An initial partial cover, for example obtained by requiring the cover of the minterm
abed  of Fmin, may consist of the cube ac assigned to yl. Consider now adding bd to y2, in order
to cover the minterm abc’d of Fmin. Corresponding to the minterm abed, now y1 $ y2 = 0 while
Fmin = 1; that is, the lower bound of Eq. (13) is violated. Similarly, with the input assignment
a = 0, b = 1, c = 0, d = 1, the network output changed from the correct value 0 to 1, while Fmar  = 0.
Thus, also the upper bound is violated.

Contrary to the case of unate covering problems, where the addition of an implicant to a partial
cover can never cause the violation of any junctional constraints, here the addition of a single cube
has caused the violation of both bounds in Eq. (13). 0

There are two difficulties in solving a Boolean relation: First, when trying to express Eq. (13)
in a form similar to Eq. (12), the upper and lower bounds on each yi may depend on other variables
yj. This results in a binate covering step. Fast binate covering solvers are the subject of ongoing
research [ 141; nevertheless, the binate nature of the covering step reflects an intrinsic complexity
which is not found in the unate case. In particular, as shown in the previous example, the effect of
adding / removing a prime to a partial solution is no longer trivially predictable, and both bounds
in Eq. (13) may be violated by the addition of a single cube. As a consequence, branch-and-
bound solvers may (and usually do) undergo many more backtracks than with a unate problem of
comparable size, resulting in a substantially increased CPU time.

3 Compatible Gates

The analysis of Boolean relations points out that binate problems arise because of the generally
binate dependence of F on the variables yi. We introduce the notion of compatible gates in order
to perform multiple-gate optimization while avoiding the binate covering problem. In the rest of
the paper, given a network output expression F(x, y), x is the set of input variables and y is the
set of gate outputs to be optimized. This relationship is shown in Figure 3.

Definition 1 In a Boolean network, let Pj = pj(xl,.  . .,x~)  and q = q(xl,.  . .,x~), where j =

L% * . .m, be junctions that do not depend on yl,. . . , ym. A subset of gates S = (gl,.  . . , gm>  with
outputs y1 . . . ym and junctions is said to be compatible if the network input-output bebnvior F
can be expressed as:

F=eYjPj+q
j=l

(14)

modulo a phase change in the variables yj or F.



Figure 3: Network with Selected Gates

‘X,>
24nD91

Figure 4: Gates gl and g2 are compatible.

As shown in Sect. (3.1) below, compatible gates can be optimized jointly without solving binate
covering problems. Intuitively, compatible gates are selected such that their optimization can only
affect the outputs in a monotonic or unate way, and thereby forcing the covering problem to be
unate.

Example 2 Consider the two-output circuit in Figure 4. Gates gl and g2 are compatible because
F and H can be written as

F = Cxl + x3 t xk)yl + (Xl + X!J  + X3)Y2

H = OYl t oy2 t ((x1 t x3 + x:)(x1 + 2; + x3))'

The compatibility of a set S of gates is a Boolean property. In order to ascertain it, one would
have to verify that all network outputs can indeed be expressed as in Definition (3). This task
is potentially very CPU-intensive. In Section 4, we present algorithms for constructing subsets of
compatible gates from the network topology only.
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3.1 Optimizing Compatible Gates

The functional constraints for a set of compatible gates can be obtained by replacing Eq. (14) into
Eq. (13). From Eq. (14) we obtain:

F min <~Yjpj+q<F,,,
j=l

(15)

Eq. (15) can be solved using steps similar to that of two-level optimization. In particular, the
optimization steps consist of implicnnt extraction and the covering steps.

Implicant Extraction

Assuming that q 5 F,,, , the upper bound of Eq. (15) h Id ‘fo s z an only if for each product yjpjd
the inequality

Yj Pj L Fmm

is verified, i.e. if and only if

yjl I Frnar +pi; j  =  l , . . . , m (16)

or, equivalently,

where Fmaz ,j is the product of all the components of F,,, + pi. A cube c can thus appear in a
two-level expression of yj if and only if c 5 Fm,z,j. As this constraint is identical to Eq. (3), the
prime-extraction strategies [13, 71 of ordinary two-level synthesis can be used.

Example 3 Consider the optimization problem for gates gl and g2 in Fig. (4).
From Example (1),

P l  =  (Xl t  x3 t  xi)'

P2 = (xltx;+x3)~

We assume no external don’t care set. Consequently, Fmin = F,,, = x1x2xg+x2x3x,+x~x~(x3tx~~.
The Karnaugh maps of Fmin and F,,, are shown in Fig. (Sa), along with those of p1 and p2. Fig.
(5b) shows the maps of Fmaz,l  = Fmaz  + pi and Fmar,2  = F,,, + pb, used for the extraction of the
primes of y1 and y2, respectively. The list of all multiple-output primes is given in Table (1). Note
that primes 1 through 5 can be used by both y1 and y2. q
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c2

c3

c4

c5

c6

c7

c8

c9

Primes

22x4

x1x2x$

222;

x’1 x;x;

xix’2

x/1x4

Influence sets
Yl, Y2

Y19 Y2

Yl, Y2

Yl, Y2

Yl, Y2

Y2

Y2

Yl

Yl

Table 1: Multiple-output primes for Example (3).

Covering Step

Let N indicate the number of primes. For example, in the problem of Example (3), N = 9. We
then impose a sum-of-products representation associated with each variable yj:

k=l

with the only restriction that CXjk  = 0 if Yj is not in the influence set of ck. Since the upper bound
of Eq. (15) is now satisfied by construction (i.e. by implicant computation), the minimization of

Yl,-a-7 ym can be formulated as a minimum-cost covering problem
m N

Fmin I q + C x ajkckpj (19)
j=l k=l

whose similarity with Eq. (4) is evident, the products Cjk Pj now playing the role of the primes of
two-level synthesis.

Example 4 In the optimization problem of Example (3), we are to solve the covering problem

Fm i n < PlYl + P2Y2

Using the set of primes found in Example (3), y1 and y2 are expressed by

Yl = %,A +  ~1,2Cz +  a1,3c3 +  Ql,4C4 +  a1,5c5+

%,8C8 + %,9C9

Y2 =  Q2,lCl +  Q2,2c2 + &2,3c3  t  &2,4c4 t  %+5+

cu2,6c6  t a2,7c7

10



Fmin  ,Fm,,x

F maxi = Fm,qx + ~1’ Fmax2 = Fmax+ ~2’

04

F Fmax2maxi

Figure  5 :  (a ) :  Maps  of  Fmin, Fmac,pl,pz.  (b )  Maps of Fmaz,lT  Fmar,2 and of the product

F Fmaz,2-maz,l Primes of y1 and y2 are shown in the maps of Fmaz,l  and Fmaz,2,  respectively.

map of Fnaaz,lFmaz,2 shows the primes common to y1 and Y2.

p2

The

Yl y2 bin

Figure 6: A minimum-cost solution for the covering of Fmin .

The optimum solution has cost 6 and is given by y1 = x:x;  + ~2x4; y2 = x2x;, corresponding to
the assignments

al,1  =  aI,2 =  al,3 =  aI,5 =  al,9 =  0; al,4 =  al,8 =  1

cY2,1  = Cky2,2  = CY2,3  = CY2,4  = CX2,5  = Q12,7  = 0; Ct2,6  = 1

The initial cost, in terms of literals, was 12. The solution corresponds to the cover shown in
Fig. (6),  and resulting in the circuit of Fig. (7). 0

It is worth contrasting, in the above example, the role of y1 and y2 in covering Fmin. Before
optimization, ply1 covered the minterms x~x~x;x&, x~x~x&x~,  ~1~2~3x4  of Fmin, while p2y2  covered

11



Figure 7: Network resulting from the simultaneous optimization of compatible gates gl and g2.

“i-
%-
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x1x2\

0 0

01

11

10

00 01 11 10 x1x
- - - -

. .
. . . . . . . . ..a..

0 ;- -i 0
. . . . . . . . . . . . . .
il ;1 i
: . . . . . . , . . . . . .

,/ 0
. . _ . _ . , . . . . . .

0 0 00
.

Yl y2

Figure 8: Don’t care conditions associated with y1 and y 2: only 1 literal can be removed.

I I I I21x22324,  x;x;x3x&,  x;x2x3x4,  x:x/22324. After optimization, yl and y2 essentially “switched role”
in the cover: p2 y2 is now used for covering x1 x2xhx&, x1x2x$x4,  while pl y1 covers all other minterms.

In the general case, the possibility for any of yl,. . . , ym to cover a minterm of Fmin is evident
from Eq. (15). Standard single-gate optimization methods based on don’t cares [II] regard the
optimization of each gate gl, . . . , g, as separate problems, and therefore this degree of freedom is
not used. For example, in the circuit of Fig. (4), the optimization of gl is distinct from that of
g2.  The don’t care conditions associated to (say) y1 are those minterms for which either pl = 0
or such that p2y2 = 1, and are shown in the map of Fig. (8), 1a on with the initial cover. It cang
immediately be verified that yl can only be optimized into x1x2x; •l- ~2x4,  saving only one literal.

The don’t cares for y2 are also shown in Fig. (8). No optimization is possible in this case.
Note also that the optimization result is (in this particular example) independent from the order
in which gl and g2 are optimized. Unlike the compatible gates case, it is impossible for the covers
of y1 and y2 to “switch” role in covering Fmin.

4 Finding Compatible Gates

In this section, we describe an algorithm for finding compatible gates based on network topology.

12



(b)

Figure 9: Internally Unate Example: (a) Network not internally unate due to gate gi; (b) Internally
unate network after duplication (Duplicated gates are shaded).

Definition 2 A network is termed unate with respect to a gate g if all reconvergent paths from
g have the same parity of inversions. A network is internally unate if it is unate with respect
to each of its gates. All paths from g to a primary output Zi in an internally unate network have
parity ri, which is defined to be the parity of g with respect to xi.

In the subsequent analysis, we make the assumption that the network is first transformed into
its equivalent NOR-only form. In this case, the parity of a path is simply the parity of the path
length.

In defining Equation (14) for compatible gates, it is evident that the dependency of F on

Yl,**‘, ym must be unate. In order to increase the chances of finding sets of compatible gates, it is
thus convenient to transform a network into an internally unate one. This is done by duplicating
those gates whose fanouts contain reconvergent paths with different inversion parity. The resulting
network is therefore at most twice the size of the original one. In practice, the increase is smaller.

Example 5 Given a logic network shown in Figure (9.a). The network is not internally unate
because the reconvergent paths from gate gi to the output y do not have the same parity of inversions.
We duplicate gate gi and its fan-in cone into gi, shown by the shaded gates in Figure (9.b). Now
gates gi and gi are unate since there are no reconvergent paths from these gates. The network is
now internally unate. The increase in size is in the number of gates in the fan-in cone of gate gi.

13



Theorem (4.1) below provides a sufficient conditions for a set S of gates to be compatible.
Without loss of generality, the theorem is stated in terms of networks with one primary output.
The following auxiliary definitions are required:

Definition 3 The fanout gate set and fanout edge set of a gate g, indicated by FO(g) and
FOE(g), respectively, are the set of gates and interconnections contained in at least one path from
g to the primary output.

The fanout gate set and fanout edge set of a set of gates S = {gI,  . . . , gm}, indicated by
FO(S) and FOE(S), respectively, are:

FO(S)  = fi FO(gi); F O E ( S )  =  fi FOE(gJ (20)
i=l i=l

Theorem 4.1 In a NO R-only, single-output network, let S = {gl,.  . . ,g,> be a set of gates all with
parity r, and not in each others’ janout.  Let yl, . . . , ym denote their respective outputs. Assume
that for all gates in FO(S) with parity r has at most one interconnection in FOE(S),

The outputs of all gates in the network can then be expressed by equations in the form of Eq,

(l-4) ..

F=eYjPj+q
j=l

Namely, the output of each gate g in the network can be expressed by one of the following two rules:

Rule 1: for gates of even parity,
m

g = Qg  + CPjgYj
j=l

Rule 2: for gates of odd parity,

(21)

Consequently, S is a set of compatible gates,

Proof:
Assume the network gates to be sorted topologically, so that each gate precedes its fanout

gates in the ordered list. Let NGATES denote the total number of gates. We prove the above
proposition inductively, by showing that if it holds for the first r - 1 gates, then it must hold for
the rth gate, r = 1,. . ., NGATES.

Consider the first gate, gl. If gl E S, its output is simply yl, which can be obtained from Eq.
(al), by setting qgl = O,plgI  = l,pjgI = 0;j = 2,. . . , m. If gl does not belong to S, by the properties
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of topological ordering, its inputs can only be among the primary inputs, and consequently its
output is still expressed by Eq. (21), by setting pjgl = 0.

Consider now the rth gate, g,. Again, if g,. E S, the output is expressed by a single variable

in {Yl,***,Ym)7 and therefore it satisfies the proposition. If g, does not belong to S, we note that
all its inputs are either primary inputs or gates g,! , r’ < r, for which the proposition is true by the
inductive assumption. We distinguish two cases:

1. g,. is of even parity. Consequently, all its inputs have odd parity, and only one of them is a
function of the internal variables yi . For simplicity, let go denote the output that (possibly)
depends on yl,...,ym. The output of g,. is then expressed by

((eo + flPjg0Y,)’ + C
j=l ga EFQ,)

qg,)’ = qgr + gpjgFyj
j=l

where

%lr = Qgo rI d, ; Pjgr = Pjgo  n qi,

2. g,. is of odd parity, and consequently all its inputs are from gates of even parity and are
expressed by Eq. (21); there oref the output of g, is expressed by

where

By induction, the output of each gate (in particular, each primary output) is expressed by Eq.
(21) or (22); there ore, the gates in S are compatible.f 11

It can also be verified that in a multiple-output network, the gates of a set S are compatible if
and only if Property 1) or 2) of Theorem (4.1) hold with respect to each output.

Example 6 In the internally unate, NOR-only network of Figure 10, consider the set S = {gl, g2,  g4}.
All gates ojS are ojodd parity and not in each other’s janout.  Moreover, FO(S) = (g5,g7,g8,gg,g~o,g11rg12)
and for all gates in FO(S) of odd parity (namely, g8~gg~g10)~  there is only one input interconnec-
tion that belongs to FOE(S). S th en represents a compatible set by rule (1) of Theorem (4.1).

Similarly, the set S = (g3, g4) is compatible by rule (l), as in this caSe FO(S) = (g6,g7,glO,gl2},

and the gates of FO(S) with even parity (namely, g6 and 97) have only one input interconnection
in FOE(S) .

Other compatible sets are, for example, (gl, gIo) (by rule (1)) and (g5, g7) (by rule (2)).
It is worth noting that some gates (in this case, g4) can appear in more compatible sets. q

15



i2

Figure 10: Example of Compatible Gates.

Theorem (4.1) also provides a technique for constructing a set of compatible gates directly
from the network topology, starting from a “seed” gate g and a parameter (rule) that specifies
the desired criterion of Theorem (4.1) (either 1 or 2) to be checked during the construction. The
algorithm is as follows:

COMPATIBLES(g,  rule)
label-f anout(g, FO);

s = {d;
for(i = 0; i 5 NGATES; i + +) {

if ((is-labeled  = FALSE) & (parity(gi)  = parity(g))) {
label-f anout  TMP);
compatible = df s-check(gi,  parity(g), rule)
if( compatible) {

label-f anout(gi,  FO);
s = s u {gi};

1

COMPATIBLES starts by labeling “FO” the fanout cone of g, as no gates in that cone can belong
to a compatible set containing g. Labeled gates represents elements of the set FO(S).  All gates gi
that are not yet labeled and have the correct parity are then examined for insertion in S. To this
purpose, the fanout of g; that is not already in FO(S) is temporarily labeled “TMP”, and then
visited by dfs,check in order to check the satisfaction of rule. The procedure dfs,check performs
a depth-first traversal on gate gi. The traversal returns 0 whenever gates already in FO(S)  are
reached, or a violation of rule is detected. Otherwise, if the traversal reaches the primary outputs,
then 1 is returned indicating that gi is compatible. If gi is compatible, it becomes part of S and its
fanout is merged with FO(S).
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Example 7 Refer again to Figure(l0)  for this example. Consider constructing a set of compatible

gates around gl, using rule (1). Gates g,, gg, gg,  gll,  g12  are labeled first, because they belong to

FO(sl).  Th f; te rs unlabeled gate is therefore g2. The depth-first scan of its fanout  reaches g5 first,
which has parity opposite to gl. The check of the fanin  of g5 is therefore not needed. Gates g7
and 910 are then reached. In particular, since g10 has the same parity as g,, its fanin is checked to
verify that there is indeed only one interconnection (in this case, (g7, glO))  to gates in S. df s-check
returns in this case a value TRUE for the compatibility of g2 to gl. 0

5 Unate Optimization

In the previous section we showed that in the case of compatible gates, the functional constraints
expressed by Eq. (13) can be reduced to an upper bound (expressed by Eq. (17)) on the individual
variables y; and by a global covering constraint, expressed by Eq. (19). These could be solved by a
two-step procedure similar to that of two-level optimization. We now generalize this result to the
optimization of arbitrary subsets S of unate gates.

5.1 Optimizing Unate Subsets

Assume, for the sake of simplicity, that F is positive unate with respect to {yi, . . . , y,}. We can
perform optimization on the subset of unate gates in a style that is totally analogous to compatible
gates by dividing it into implicant extraction and covering steps.

Implicant Extraction

In this step, for each yi to be optimized, a set of maximal functions is extracted. In particular, the
maximal functions of each each yi can be expressed as Eq. (23), which is similar to Eq. (17).

yi LGmax,j;  .I -*- I,...,m (23)

From Eq. (23), appropriate implicants can then be extracted.
Intuitively, the maximal functions are the largest functions that can be used while satisfying the

bound F 5 F,,,. Therefore, they represent the upper bounds on yi. We introduce the following
definition:

Definition 4 A set of local functions

iGmax,l(X),  Gmax,2(x),  . . * 7 Gmax,m(x)}

is said to be maximal if

F(x,  Gmax,l(x),  Gmax,2(x),  - * - 7 Gmax,m(x))  5 Fmax(x) VX (24)

and the inequality (24) is violated when any Gma,,j is replaced by a larger function F > Gma,,j.
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The idea behind the notion of maximal

4j 5 Fmax,j  7 we are guaranteed that the
functions is that by substituting each yj by any function
upper bound

F(x,  41(x),  - ’ -7 4m(x))  F Fmax(x) (25)

will not be violated. The conditions

therefore represent sufficient  conditions for this bound to hold.
The following theorem provides means for finding a set of maximal functions. It also shows that

computing such functions has complexity comparable with computing ordinary don’t care sets.

Theorem 5.1 Let us consider a network with a totally ordered set of gates. Let S = {gl, . . . , gm>
be a set of unate gates. The set of maximal functions, as defined by Eq. (24),  with respect to a set
of unate gates S can be obtained by:

G max,j = yj + DCj (26)

where yj denotes the output function of gj in the unoptimized network. DCj represents the don’t care
set associated with gj calculated with the following rule: the output functions for gates gl, . . . , gj-1
are set to Gmax,k,  k = 1,. . . , j - 1, and the output functions for gates gj, . . . , g,, are set to yk; k =
j,...,m .

Proof: The proof is divided into two parts. First, it is shown that the bounds Gmax,j = yj + DCj
satisfy Eq. (24). It is then shown, by contradiction, that these bounds are indeed maximal.

To prove the first part, suppose that maximal functions for the variables yl, . . . , yj-1 have
already been computed. They are such that

F(x,Grnax,~,...,Grnax,j-~,yj~y?~j+1,...,yrn)  L Fmax

The constraint equation on yj can then be expressed by:

Fmin  I F(x,Grnax,1,...,G,,ax,j-1,yi,yj+l,...,yrn)  < Fmax

where gj satisfies
yj . DC; 5 yj 5 yj + DCj

where DCj is the don’t care set associated to yj, under the theorem’s assumptions. It is then
guaranteed that

F(x,Gmax,1,...,Gmax,j-l,Grnax,j,Yj+l,...,Yrn)  5 Fmax

for j = 1, . . . , m.
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To prove maximality, it is sufficient to show that Gmax,j cannot be replaced by any larger
function. Suppose, by contradiction, that a different bound F can be used, such that for some
input combination ~0 we have Gmax,j(xo)  = 0 but Fj(xo) = 1. Notice that Gmaa,j(xo) = 0 implies
that yj(xo) = 0 and DC(x0)  = 0. Corresponding to x0, it must then be

F(xo,  Gmax,l(Xo),  * * * 9 Gmax,j-1(X0),  yj(xo),  * - * ym(xo))  = 0

F(xo, Gmar,l(XO), . * *,Gmar,j-1(X0), 1, * * gym) = 1

and

Fmax(x0)  = 0

(or otherwise a change in the value of yj could not affect the F and result in DCj(xo)  = 0.) If a
larger bound Fj could be used, this would mean that we could replace yj by a function 4j such
that, in particular, +j(xo) = 1, and all functions ~1,. . . , yj-1 by Gmax,l, . . . , Gmax,j-i.  But in this
case, we would have F(xo, Gmax,l  (x0),  . . . , Gmax,j -1(x0), 1,. ..ym(xo)) = 1 while Gmax(XO)  = 0 ,
violating the specifications. 11

Note that the computation of each maximal function corresponds to finding the local don’t care
for the associated vertex. Therefore, the maximal functions computation has the same complexity
as computing the don’t care conditions for each gate.

This theorem states that the maximal function for vertex i depends on the maximal functions
already calculated (j < i). This means that unlike the case of compatible gates, the maximal
function for a given vertex may be not unique.

Example 8 For the network of Fig. (ll), assuming no external don’t care conditions, we find the
maximal functions for ~1, ~2, and ~3. The DC,, terms correspond to the observability don’t care at
yj, computed using the F,,, of the previous gates.

Yl = v-+4; y2 = x$(x4 t X2); y3 = x$52  t x:x;

Maximal functions derived by Theorem (5.1) are :

Gmar,1 =  w&x, t  D C , ,  =  x;x,  + (x$ + x4)xix;

Gmax,2 = XL(X4  + X2) t  DC,,(y, = Gmax,l)
= x4 + X$X; t XlXl, + X3X2
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x4

It3

x2

xl

Figure 11: Network for Example (8).

Gmax,3 = ‘$X/2  t X/,X2 t DCy3(yl = Gmax,ly ~2 = Gmax,2)
= +2tx;x; +x42$

cl

Covering Step

Eq. (23) allows us to find a set of multiple-output primes for yl, . . . , ym. The covering step then
consists of finding a minimum-cost sum such that the lower bound of Eq. (13) holds.

We now present a reduction for transforming the covering step to the one presented for com-
patible gates. We first illustrate the reduction bv means of an example.

Example 9 In Fig. (1 l), consider the combination of inputs x resulting in Fmin(x)  = 1. To each
such combination we can associate the set of values of yl, y2, y3 such that F(x, y) = 1. For instance,
for the entry x1x2x3x4  = 1001, it must be Fx,x;x;x, (y) = y1 + y2y3 = 1. Let us now denote with
G(y) the left-hand side of this constraint, i.e. G(y) = y1 + ~2~3. Notice that G(y) is unate in each
yj and changes depending on the combination of values currently selected for x1, x2, x3, x4.

Any constraint G(y) = 1 can be represented in a canonical form:

G(Y) = (G,:,;,; + y1 -I- y2 + Y3)Gy:y;yJ -I- Yl t y2)

. . . (G ' + ydGylyzy3 = 1YlY2Y3

which, in turn, is equivalent to the 8 constraints

GY:Y:Y:+ Ylt y2t y3 = 1

GY:Y:Y3+ y1t y2 = 1
. . .
G -t-YlYZYa Y3 =1
G

Yly2y3
= 1

(27)
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By introducing an auxiliary variable zj for each yj, we can rewrite Eq. (27)  as:

G(z)++, t 4~2 t 4~3 = 1 v h,z2,23

or, equivalently,
G’(z) I z;y1 + z;y2 + zAy3

In this particular example, we get

Czltz2Z3)'  5 ziyl t zky2 t .Jy3

Example (9) hs ows a transformation that converts the covering problem of arbitrary unate gates
into a form that is similar to optimization of compatible gates, i.e. Eq. (15).

More generally, corresponding to each combination x such that F,a,(x) = 1, the constraint
F(x, y) = 1 can be re-expressed as

J+,z) t z;y1 + 4y2 + . . . + zkyrn = 1

The resulting covering problem to find the minimum-cost solution is analogous to the compatible
gates case. The transformation is formalized in the following theorem:

Theorem 5.2 Given F(x), let y be a set of unate gates with respect to F. Let z = [zl,.  . . , zm]
denote m auxiliary Boolean variables. The lower bound of Eq. (13) holds if and only if

F min L F(x,z)  t eyj(zil)  VZ
j=l

Proof:
We first show by contradiction that

F(x,Y)  I F(X,Z)  + FYj(Z:l)

(28)

j=l

Eq. (29) can be violated only by a combination x0, yo, z. such that one component of F(xo,  yo)
takes value 1, the same component of F(xo,zo) takes value 0, and the rightmost term of Eq. (29)
takes value zero. In any such combination, there must be at least one value yi,o = 1 and zi,o = 0
(or otherwise, by the unateness of F, we would have F(xo,  yo) 5 F(xo, ~0)).

But if there exists an index i such that yi,o = 1, xi,o = 0, then the rightmost term of Eq. (29)
takes value 1, and the right-hand side of the inequality holds, a contradiction.

Therefore, Fmin (x) 5 F(x, y) together with Eq. (29) implies

Fmin(x) I F(X,Z) t F y,(z:l)

j=l
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To complete the proof, it must now be shown that Fmi,(x) 5 F(x, z) + Cj”=, yj(xil), VZ implies
Fmin(x) I F(X, Y>- SUPP ose, by contradiction, that this is not true. There exists then a value
x0, y. such that some component of Fmin (x) takes value 1, F(xo, yo) takes value 0, but Fmin(xo)  5
F(xo, z) + Cy=, yj,o(,$l), Vz. In this case, it must be F(xo, Z) + Cj”=, yj,o(~~l) = 1, regardless of
z. But this implies that, for z = yo, F(xo,z)  = 1, i.e. F(xo, yo) = 1, a contradiction. I]

Eq. (28) has the same format of Eq. (15), with q and pj being replaced by F(x, z) and ~$1,
respectively. Theorem (5.2) thus allows us to reduce the covering step to the one used for compatible

gates. Theorems (5.1) and (5.2) show that the algorithms presented in Section 3 can be used to
optimize arbitrary sets of gates with the same parity, without being restricted to sets of compatible

gates only.

6 Implementation and Results

The implementation of the algorithms presented in Sections 3 and 5 is as follows. The original
networks are first transformed into a unate, NOR-only description. All internal functions are
represented using BDDs [15]. For each unoptimized gate gi, the following heuristic is used. First,
we try to find a set of compatible gates for gi, called S,. In the case where not enough compatible
gates can be found, we find a set of gates that are unate with respect to gi, called S,.

In the case where S, is optimized, we use Eq. (14) to extract the functions pj and q. In
particular, q is computed by setting yj to 0. The functions pj are then computed by setting yj to
1, with yi; i # j stuck-at 0.

In the case of optimizing arbitrary unate network S,, Theorem (5.1) is used to determine
the maximal functions for each yj. Note that optimizing S, is preferable because for a set of m
compatible gates, m + 1 computations for pj and q are needed to obtain all the required don’t cares
. For S,, two computations (with yj stuck-at-0 and stuck-at-l) are required for the extraction of
the don’t care set of each variable yj, resulting in a total of 2m computations.

A set of primes for the gate outputs is then constructed. Because of the large possible set of
primes, we limit our prime selection to single-literal primes only. The BDD of F(x, z) is then built,
and the covering problem solved. Networks are then iteratively optimized until no improvement
occurs, and eventually folded back to a binate form. The algorithms presented in this paper
were implemented in C program called ACHILLES, and tested against a set of MCNC synthesis
benchmarks.

Table (2) provides a comparison of ACHILLES with SIS using script.rugged. The column Initial
Stat. lists the network statistics before optimization, where Int. is number of internal interconnec-
tions and gates is the gate count. The column Interconn. shows number of interconnections after
optimization. The gates column compares final gate counts. Literal column shows the final literals
in factored form. The results in the table show that ACHILLES performs better than SIS for all
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Circuit Int. Gates
cm85a 108 63
cm162a 113 60

Pm1 130 60
Ssymml 375 152

alu2 924 262
alu4 1682 521

apex6 1141 745
c499 945 530
C880 797 458

,C1908 936 489

Initial Stat. T Interconn.
Achilles SIS

67 77
99 102
67 78

288 325
366 570
902 1128

1009 1315
913 945
643 731
828 891

Literals(f ac>
Achilles SIS

42 46
47 49
47 52

163 186
303 362
612 703
687 743
505 552
355 409
518 542

Achilles
Gates

SIS
31 34
41 52
31 36
88 101

215 231
420 487
589 639
498 530
295 342
445 482

Achilles
CPU time

SIS
1.5 1.2
1.8 1.3
1.6 1.3

108.4 64.2
309.7 403.0

1612.6 1718.5
115.1 30.3
202.1 133.6
340.6 30.7
422.1 138.8

Table 2: Optimization Results. Runtimes are in seconds on DEC5000/240.

figures of merits. In particular, ACHILLES does 11% better than SIS in factored literals.
Note that script.rugged was chosen because it is the most robust script of the SIS script suite, and

it matches closely to our type of optimization. Our objective was to compare optimization results
based only on Boolean operations, namely compatible gates versus don’t cares . The script.rugged
calls full-simplify[ 161, w ic computes observability don’t cares to optimize the network.h’ h

The table shows that the ACHILLES runtimes are competitive with that of SIS. In this im-
plementation, we are more interested in the quality of the optimization than the efficiency of the
algorithms, therefore an exact covering solver is used. We can improve the runtime in the future
by substituting a faster heuristic or approximate solvers (such as used in ESPRESSO [7]).

7 Conclusion

In this paper we presented a comparative analysis of approaches to multi-level logic optimization,
and described new algorithms for simultaneous multiple-gate optimization. The algorithms are
based on the notion of compatible gates and unate networks. We identify the main advantage
of the present approach over previous solutions in its capability of exact minimization -of suitable
multiple-output networks, by means of traditional two-level optimization algorithms. Experimental
results show an improvement of 11% over existing methods.
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