
CASE STUDY IN PROTOTYPING WITH RAPIDE:

SHARED MEMORY MULTIPROCESSOR SYSTEM

Alexandre Santoro

Technical Report: CSL-TR-93-564

(Program Analysis and Veri�cation Group Report No. 61)

March 1993

This research has been supported by the Defense Advanced Research Projects
Agency/Information Systems Technology O�ce under the O�ce of Naval Research
Grant N00014-92-J-1928 and under TRW, subcontract FZ2394LK1S-04.

Case Study in Prototyping with Rapide:

Shared Memory Multiprocessor System

Alexandre Santoro

Technical Report: CSL-TR-93-564

Program Analysis and Veri�cation Group Report No. 61

March 1993

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305-4055

Abstract

Rapide is a concurrent object-oriented language designed for prototyping distributed systems.
This paper describes the creation of such a prototype, more speci�cally a shared memory multi-
processor system. The design is presented in an evolutionary manner, starting with a simple CPU
+ memory model. The paper also presents some simulation results and shows how the partially
ordered event sets that Rapide produces can be used both for performance analysis and for an
in-depth understanding of the model's behavior.

Key Words and Phrases: prototyping, simulation, event-based modelling, formal constraints,
performance measurements

Copyright c
 1993

by

Alexandre Santoro

Contents

1 Introduction 1

2 The First System 2

3 The Second System 5

4 The Third System 8

5 Constraints 13

6 Performance Analysis 17

7 Comments 20

A Rapide-0.2 Code for Multiprocessor System 24

A.1 Memory : 24
A.2 CPU : 25
A.3 Cache : 27
A.4 Processor : 30
A.5 Bus Arbiter : 33
A.6 System : 36

B �Rapide Code for Multiprocessor System 39

B.1 CPU : 39
B.2 Memory : 41
B.3 Cache : 42
B.4 Bus Interface : 45
B.5 Processor : 47
B.6 Bus Arbiter : 49
B.7 System : 51

iii

List of Figures

2.1 Architecture of �rst system : 2
2.2 Poset for model 1 : 4

3.1 Architecture for processor design unit : 6
3.2 Architecture for model 2 : 6
3.3 Posets for model 2 : 7

4.1 Architecture for model 3 : 9
4.2 Poset for model 3 : 12

6.1 Performance analysis - system speedup : 18
6.2 Performance analysis - bus bandwidth utilization : 19

7.1 Bus access poset for Proc3 with \extra" edge : 21

B.1 New architecture for processor unit : 40

iv

List of Tables

6.1 Data for system analysis : 17
6.2 Simulation data for performance analysis : 18

v

Chapter 1

Introduction

This model is the result of the author's introduction to prototyping with Rapide-0.2. In order to
gain some \hands on" experience with the language, it was decided to attempt the modelling of
a system that was simple, but not trivial. This would provide a better understanding of Rapide's
power and shortcomings, as well as the issues involved in creating a prototype.

It was chosen to model a multiprocessor system in which several processor units, each one
consisting of a CPU and a cache, share one bus through which they access the main memory. Not
only is this a well understood system, but it also has the advantage of scalability. The prototype
could evolve slowly, starting with one CPU and the main memory, then being re�ned by the
addition of a cache, a bus arbiter and �nally by replicating the number of processors to create the
multiprocessor environment.

The following chapters attempt to describe the evolution of the system, starting from the initial
model and explaining how it changed. This will be followed by a performance analysis of the
multiprocessor model. Finally, it will present an evaluation of the prototyping experience and
comments on Rapide-0.2 and the toolset.

There are two appendixes at the end of this report. The �rst one contains contains a complete
listing of the cpl �les used for model creation. It is supposed that the reader is acquainted with
the Rapide-0.2 language. If not, reading [Bry92] and [Hsi92] is suggested. The second appendix
contains the code for the same system written in �Rapide, an architecture de�nition language.

The author would like to thank David Luckham, Doug Bryan, James Vera, Larry Augustin and
Walter Mann for their help and patience in helping the author understand Rapide and create the
model.

1

Chapter 2

The First System

In order to get things up and running as quickly as possible, the �rst system consisted of only a
CPU and main memory, as may be seen in �gure 2.1. In it, the big rectangles represent the design
units while the small ones with the rounded corners represent the associated actions. The lines
indicate connections between events. That is, each pair of rounded rectangles connected by a line
corresponds to a connect statement in the Rapide-0.2 code.

The main memory unit performs only two functions, namely read and write. When it receives
a MemRead event it fetches the data from the address supplied (stored in the array variable Mem-

Block) and returns it through a ReadEnd event. When it receives a MemWrite event it stores the
supplied data in the proper address and returns a WriteEnd event, signaling the completion of the
task. It has a simple body, described by the following `when block':

<< memory_read_cycle >>

when MemRead(?address) then

ReadEnd(MemBlock[?address]);

end when;

<< memory_write_cycle >>

when MemWrite(?address,?data) then

Figure 2.1: Architecture of �rst system

2

MemBlock[?address] := ?data;

WriteEnd;

end when;

From the system's point of view, the CPU is nothing but a black box that generates read and
write requests to the main memory. Accordingly, the CPU designed was simple, with two main
when bodies. The �rst one, triggered by an internal Execute event, generates a ReadCycle or
WriteCycle event; the second one waits for a ReadComplete or WriteComplete event before issuing
an Execute event to initiate another cycle. The code for these twowhen blocks can be found below.
An internal counter, it, has been added to the code in order to limit the number of cycles that the
CPU will issue.

<< executes_commands >>

when Execute then

it := it-1;

op := Random(2);

add := Random(10);

if op=1 then

ReadCycle(add);

end if;

if op=2 then

dt := Random(99);

WriteCycle(add,dt);

end if;

end when;

<< request_end >>

when ReadComplete(?data) or WriteComplete then

if it /= 0 then

Execute;

end if;

end when;

The �le describing the system as a whole consists of the connects between the CPU and the
memory indicated in �gure 2.1, plus a when body for initializing the CPU. In this when body
the user is asked the number of cycles that the CPU is to perform. That data is then passed to
the CPU through a StartCpu event. When the CPU receives that event it does nothing more than
store that value in it and generate an Execute event. The body for the system's when process is
shown below.

<< start_activity >>

when Start then

put("Number of memory accesses->");

get_line(AccCnt);

Proc::ExecStart(AccCnt);

end when;

3

ReadComplete

ReadEnd

MemRead

ReadCycle

Figure 2.2: Poset for model 1

Compilation and execution of the above model yields a simple partially ordered event set (poset).
A small example is shown in �gure 2.2. As can be seen, it shows the behavior of the system during
a read cycle. The CPU generates a request (ReadCycle), the main memory receives the request
(MemRead), it returns the desired data (ReadEnd) and the CPU receives it (ReadAck). The graph
is totally ordered, with only one causality edge connecting two events. This was expected since this
is not a parallel system and, therefore, cannot have two events happening simultaneously.

4

Chapter 3

The Second System

The next step in the evolution of the system was the introduction of a memory hierarchy through
the addition of a cache memory. As �gure 3.1 shows, the cache and CPU were encapsulated in one
design unit called processor. Figure 3.2 shows the architecture of the resulting system. There was
no need to modify the code for the CPU, nor for the main memory design units.

The cache implemented was write-through and fully associative. A fully associative cache is
one in which any data/tag combination may be stored in any position. A write-through cache is
one in which the CPU writes simultaneously to the cache and the main memory, freeing the cache
from having to monitor the bus and update the main memory itself. These cache policies simplify
considerably the cache design.

The behavior of the cache is quite simple. During a read cycle, the processor generates a
CacheRead event, furnishing the address to be read. The cache compares this with the contents
of its tag memory and if a match is found, it returns a Hit event. When no matching address is
found aMemReadReq is generated and the desired data is fetched from the main memory. When the
memory returns the requested value, the cache stores its own copy of it. The code for implementing
that is shown below.

<< read_request_processing >>

when CacheRead(?address) then

Found := 0;

for i in 1..CACHESIZE loop

if CacheMem[i].add = ?address then

Hit(CacheMem[i].dt) pause CACHEDELAY;

Found :=1;

exit;

end if;

end loop;

if Found = 0 then

MainAdd := ?address;

MemReadReq(?address) pause CACHEDELAY;

end if;

end when;

5

Figure 3.1: Architecture for processor design unit

Figure 3.2: Architecture for model 2

6

ReadCycle

Hit

ReadCycle

MemRead

ReadEnd

ReadAck

Figure 3.3: Posets for model 2

when MemReadDone(?data) then

TempAdd := GetIndex(MainAdd);

CacheMem[TempAdd].add := MainAdd;

CacheMem[TempAdd].dt := ?data;

end when;

During a write cycle there is no interaction between the cache and the main memory. Write-

Cycle events generated by the CPU are sent to both independently. The cache simply copies the
corresponding address and data to its own memory. The code for doing that is shown below.

<< write_store >>

when CacheWrite(?address,?data) then

TempAdd := GetIndex(?address);

CacheMem[TempAdd].add := ?address;

CacheMem[TempAdd].dt := ?data;

end when;

In the code for the cache presented above can be found two references to the functionGetIndex.
This function was added to the model to simplify the coding. It just returns the index to the cache
memory position containing the speci�ed address or, if one is not found, the index of a free slot.
When the address is not present and there is no free slot, GetIndex will randomly generate an
index to any position in the cache memory. The code for GetIndex can be found in the appendix,
as part of the cache design unit de�nition.

Figure 3.3 shows some reduced posets (i.e., not all events are shown) that occur when the
system is executed. The di�erence between them and the one of the �rst model is that some of the
MemRead-ReadEnd event pairs of the latter are substituted by a single Hit event, when a match is
found in the cache. Note that again, the poset is practically a straight line due to the nonexistence
of any parallelism in our model.

7

Chapter 4

The Third System

Once system 2 is up and running, the next step is to add another processor and turn it into a
multiprocessing system. To do so requires two additional modi�cations. First, since there will
be two processors trying to use the same bus, there must be some way to determine which one
gets access and when, in order to avoid contention. This requires the use of a bus arbiter and the
de�nition of a bus access protocol.

The second modi�cation is concerned with cache coherency. With two processors it is possible
for any of them to modify the data in main memory. Thus, each cache has to monitor the bus and
update its entry whenever some processor tries to write to a main memory address that the cache
has stored. Figure 4.1 shows the resulting system.

The modi�cation of the cache unit was simple. An in action, ExternWrite, was added, connected
to any write accesses to the main memory. A when body was created to treat these accesses by
checking if the cache has that address in its banks. If so, it updates its contents with the data
available in the bus. The code for this when process is shown below.

<< external_update >>

when ExternWrite(?address,?data) then

for i in 1..CACHESIZE loop

if CacheMem[i].Add = ?Address then

CacheMem[i].dt := ?data;

end if;

end loop;

end when;

The bus arbiter implements a simpli�ed version of the VME-bus protocol. Basically, each
processor has three actions associated with bus use: BusReq, BusAck and FreeBus. Whenever a
processor wants to acquire the bus, it issues a BusReq event. The Bus Arbiter receives this event
and, when the bus is free, gives control of it to the processor through the BusAck event. When the
processor has completed its use of the bus it relinquishes it through a FreeBus event.

The VME arbiter recognizes up to 4 request levels, each one indicated by a di�erent request
line. Requests in lines with lower numbers have higher priority. That is, no level i request will
be acknowledged until all pending requests of a level smaller than i have been processed. Though
at �rst this suggests that only 4 di�erent bus masters (units that want to drive the bus) can be

8

Figure 4.1: Architecture for model 3

9

connected to the system, that is not true. More than one master can share one request line by
using a daisy-chain for each level.

In this model, the arbiter was implemented by the BusControl c design unit. There are four
independent request events (BusReq1, BusReq2, BusReq3 and BusReq4), as well as four acknowl-
edge lines (BusAck1, BusAck2, BusAck3 and BusAck4). Each BusReq event generates an internal
Dispatch event that triggers the Dispatcher when body, passing the number of the request line
as a parameter. The Dispatcher determines if the bus is free or not. If the bus is free, a BusAck

event is sent to the respective processor, which can then proceed with its bus access, If the bus
is already in use, an internal Hold event that has as a parameter the number of the BusReq line
that generated the call to the dispatcher is issued. When the arbiter receives a BusRelease event
(which generates an internal Dispatch event with parameter 5) it checks if any requests are on hold
and, if they are, choses one for using the bus and generates an internal Free event. If no requests
are pending the bus remains free and the arbiter idles. The when bodies for implementing these
functions are shown below.

<< req_analysis_1 >>

when BusReq1 then

Dispatch(1);

end when;

<< gen_bus_ack >>

when Hold(?id) and Free(?id) then

case ?id is

when 1 => BusAck1;

when 2 => BusAck2;

when 3 => BusAck3;

when 4 => BusAck4;

when others => null;

end case;

end when;

<< dispatcher >>

when Dispatch(?cd) then

if BusBusy=0 and ?cd/=5 then

BusBusy := 1;

Hold(?cd);

Free(?cd);

elsif BusBusy/=0 and ?cd/=5 then

Req[?cd] := 1;

Hold(?cd);

elsif Req[1]=1 then

Req[1]:=0;

Free(1);

elsif Req[2]=1 then

Req[2]:=0;

10

Free(2);

elsif Req[3]=1 then

Req[3]:=0;

Free(3);

elsif Req[4]=1 then

Req[4]:=0;

Free(4);

else

BusBusy:=0;

end if;

end when;

At this point it was also decided to add clocking to the system. This consisted of de�ning a
global clock and adding pause statements to the CPU, the cache and the main memory. The pause
statement in the CPU was added to make it wait a random time (between 1 and 5 units) before
starting the next read or write cycle. This was a way to simulate the varying time the CPU takes
to execute di�erent instructions. For the cache, all that was done was add one unit delay between
CacheRead and Hit, to simulate the read delay found in most memories. Likewise, delays of 3 units
were introduced to ReadEnd and WriteEnd in order to simulate the slower main memory.

Compiling and executing this model results in posets like the one shown in �gure 4.2. As can
be seen, there are now two \threads," one to each processor. Edges connect the threads at BusAck
nodes, which depend on a BusReq and a BusRel in order to proceed with the bus access.

11

ReadCycle

BusReq1

BusAck1

MemRead

ReadEnd

FreeBus

ReadCycle

BusReq2

BusAck2

MemRead

ReadEnd

FreeBus

Figure 4.2: Poset for model 3

12

Chapter 5

Constraints

Constraints are dealt with in a separate chapter because they are not part of the model per se.
Instead, they are a mechanism provided by Rapide-0.2 through which one can check a model and
guarantee that it is behaving according to speci�cation. In this chapter, each design unit will be
analyzed separately and its proper behavior determined. The corresponding constraints will then
be de�ned.

The �rst unit to be studied is the CPU. As has been said previously, from the system's point of
view it is just a black box that creates read and write requests. Thus, to ensure its proper behavior,
all that is necessary is to guarantee that it completes a read or write cycle before starting a second
one. This leads to the following two constraints:

<< complete_read >>

when ReadCycle(?address) then

ReadComplete(?data)

before Execute;

<< complete_write >>

when WriteCycle(?address,?data) then

WriteComplete

before Execute;

For the cache, only constraints related to read events will be built since cache writes do not
generate any event other than storing the data in the memory. Thus, there will be two constraints.
The �rst one checks that a CacheRead is really processed (by generating either aHit orMemReadReq

event) and not ignored. The second one checks that when a read to the main memory is issued
the cache will receive the result before processing anything else. The code for these constraints is
shown below.

<< check_read_processed >>

when CacheRead(?add1) then

Hit(?dt1) or MemReadReq(?add1)

before CacheRead(?add2) or CacheWrite(?add2,?dt2);

13

<< check_read_complete >>

when MemReadReq(?add1) then

MemReadDone(?dt1)

before CacheRead(?add2) or CacheWrite(?add2,?dt2);

The main memory, like the CPU, is the simplest one to build constraints for. One must check
only that it does not process a cycle before having completed the previous one. The code for that
is:

<< check_read >>

when MemRead(?add1) then

ReadEnd(?dt1)

before MemRead(?add2) or MemWrite(?add2,?dt2);

<< check_write >>

when MemWrite(?add1,?dt1) then

WriteEnd

before MemRead(?add2) or MemWrite(?add2,?dt2);

The bus arbiter is concerned with avoiding con
icts and deadlocks in the bus access mechanism.
Thus, it should have constraints to guarantee that no two processors are using the bus at the same
time. It should also guarantee that no processor which did not request the bus is getting a BusAck
event (which would cause deadlock, since that unit would never release the bus). Finally, it should
guarantee that the priority mechanism is being respected.

The �rst is guaranteed by ensuring that there is always a BusRel between any two BusAck

events. The second is guaranteed by declaring that no BusAck should happen that is not preceded
by the proper request. Priorities are guaranteed by making sure that once there is a BusReq at one
level, no BusAck of higher level is issued before that one is treated. The code for these constraints
is shown below.

<< free_bus_check >>

when BusAck1 or BusAck2 or BusAck3 or BusAck4 then

BusRelease

before BusAck1 or BusAck2 or BusAck3 or BusAck4;

<< bus_req_check >>

not BusAck1 before BusReq1;

not BusAck2 before BusReq2;

not BusAck3 before BusReq3;

not BusAck4 before BusReq4;

<< priority_1 >>

when BusReq1 then

BusAck1

before BusAck2 or BusAck3 or BusAck4;

14

<< priority_2 >>

when BusReq2 then

BusAck2

before BusAck3 or BusAck4;

<< priority_3 >>

when BusReq3 then

BusAck3

before BusAck4;

In the processor unit several constraints have to be veri�ed, some dealing with the memory
access, others dealing with the bus protocol. For example, a processor should not release a bus it
never acquired, and it should own the bus before issuing any write or read request. On the other
hand, it should not release the bus before it has completed the memory access cycle it requested.
These conditions are re
ected in the constraints shown below.

<< guarantee_release >>

when BusReq then

BusAck

before FreeBus;

<< guarantee_mem_access >>

when BusAck then

WriteAck or ReadAck(?data)

before FreeBus;

<< bus_permission_for_write >>

when CpuChip::WriteCycle(?address,?data) then

BusAck

before WriteReq(?address,?data);

<< bus_permission_for_read >>

when CacheChip::MemReadReq(?address) then

BusAck

before ReadReq(?address);

Finally, there is the system level. Most of the system's behavior is already being veri�ed by
constraints on its components, so not much needs to be done at this level. The only part of the
behavior that could not be checked at a lower level was cache coherency, mainly because it involves
the interaction of several units at the system level.

Unfortunately, checking cache coherence is not trivial, because Rapide-0.2's constraint language
does not have access to the data and events inside a design unit, and because there is no way to
express patterns of the form \the last A causally preceding B." To overcome these problems the
code had to be modi�ed.

15

The �rst modi�cation had to with detecting cache hits. The only events that the processor
sends to the system are requests for the bus and memory read and write events. There is no event
visible at the system level that indicates the occurrence of a ReadCycle followed by a Hit. Thus it
was necessary to add two new out actions to the processor design unit, IntHit and IntReadCycle,
and connect the internal Hit and ReadCycle actions to them. This way each internal event would
generate an equivalent external one visible to the system.

Second, a property variable, LastVal, was de�ned and a when body created at system level to
act as a shadow memory. This when body is triggered by any write to main memory and stores
in Lastval(address) the same data that is stored in main memory. Thus, Lastval(address) always
contains an exact copy of the respective main memory address, but visible to the system. This
when body is shown below.

<< memory_monitor >>

when ProcBoard[?id]::Writereq(?address,?data) then

LastVal(?address) := ?data;

end when;

For the constraint itself, basically it has to state that whenever there is a ReadCycle followed
by a Hit, the data returned by the latter event should be the same as the one currently in the main
memory. In order to match each IntReadCycle to the corresponding IntHit, it was necessary to
use the fact that these two events must di�er exactly by one time unit, the cache hit delay. The
constraint can thus be expressed as:

<< cache_coherency_check >>

not ProcBoard[?id]::IntReadCycle(?address,?t1)=>

ProcBoard[?id]::IntHit(?data,?t2)

where

?data /= LastVal(?address) and ?t2-?t1=1;

16

Chapter 6

Performance Analysis

De�ning, compiling and running a model in Rapide-0.2 results in a poset, which can be represented
as a directed acyclic graph. The �rst use of such a graph is to verify the correctness of the model, by
checking its behavior and any possible constraint violations. The poset, though, does not furnish
only causality information, but also timing, making it possible to also use it for performance
analysis.

To collect data for such an analysis, three distinct models were compiled, di�ering only in the
number of processors. Proc1, Proc2 and Proc3 had each, respectively, one, two and three processors.
The compiled models were then run, with the number of cycles per processor in Proc1, Proc2 and
Proc3 set to 240, 120 and 80 respectively. The resulting posets, representing the simulation of
systems in which the same total work load is shared between di�erent number of processors was
analyzed. All the data was obtained by counting events and looking at time stamps. The relevant
collected data is shown in table 6.1.

The �rst, simplest performance data that can be obtained is the speedup of the model as more
processors are added. Speedup is de�ned as the ratio between \execution time with one processor"
and \execution time with n processors." In this case,

Speedup =
ET1

ETn

where ETn stands for the execution time of the system with n processors. The execution time can
be obtained directly from the posets. They were 1389, 771 and 678 for Proc1, Proc2 and Proc3,
which leads to speedups of 1.00, 1.80 and 2.05 respectively. The results can be seen in graphical
form in �gure 6.1.

A second set of data that can be obtained from the posets is cache performance. It is trivial to
count the number of ReadCycle events generated by each processor, as well as the number of Hit

MODEL ET MEM READS HITS

Proc1 1389 199 105 41
Proc2 771 185 131 55
Proc3 678 204 119 36

Table 6.1: Data for system analysis

17

SYSTEM SPEEDUP

0.00

0.50

1.00

1.50

2.00

2.50

Proc1 Proc2 Proc3

Figure 6.1: Performance analysis - system speedup

MODEL SPEED. BAND. HIT

Proc1 1.00 42.98 39.05
Proc2 1.80 71.98 41.98
Proc3 2.05 90.27 30.25

Table 6.2: Simulation data for performance analysis

events of their corresponding caches. The hit ration is then given by:

HitRatio = 100 �
COUNTHits

COUNTReadCycles

Proc1, Proc2 and Proc3 had Hit counts of 41, 55, and 36 respectively. Their ReadCycle counts were
of 105,131 and 119, which results in Hit Ratios of 39.05%, 41.98% and 30.25%. Note that these
ratios are close to the expected value of 40% (dictated by the cache's size of 4 entries, the main
memory's size of 10 entries and the fact that the read addresses are generated randomly).

Finally, the utilization of the bus bandwidth can also be measured. By bandwidth utilization
we mean the ratio of the time that the Bus was actually used to the total execution time. This can
be expressed as

utilization = 100 �
3 � (COUNTMemRead+ COUNTMemWrite)

ETn

The factor of three multiplying the total number of read and write events is the duration of one
such cycle (i.e. the main memory delay). From the data in the test run the resulting bandwidth
for each system was 42.98%, 71.98% and 90.27%. This data is shown graphically in �gure 6.2.

Table 6.2 summarizes the results presented in this chapter.

18

BUS BANDWIDTH
UTILIZATION

0.00

20.00

40.00

60.00

80.00

100.00

Proc1 Proc2 Proc3

Figure 6.2: Performance analysis - bus bandwidth utilization

19

Chapter 7

Comments

As a tool for prototyping and modelling systems Rapide-0.2 has many strong points. First of all,
event based modelling is fast. With a programming language such as C, one would have to worry
about how to, for example, indicate a Hit to the processor. Variables would have to be de�ned, set
at the appropriate points and tested. In Rapide-0.2 all that is necessary is to de�ne the event Hit,
specify the proper connections and the work is done. Whoever is using the system is freed from
worrying about several implementation details, making the modelling job proceed at a much faster
pace.

Another exciting aspect of the language is the constraint concept. De�ning the constraints and
coding it is simple job and the resulting posets make verifying the behavior of the model trivial.
One does not have to spend long hours looking through linear traces to check if the events happened
in the correct order and for the correct reason.

The main advantage of Rapide-0.2, though, is its use of posets. By indicating the causality
relation between events they provide much more information than can be gotten from a simple
linear trace, and this information has several uses. As will be seen below, this information aids in
debugging and provides a much better understanding of the system.

Together with the constraints and the generated Inconsistent events, the causality relations
provide a powerful and e�cient mechanism for tracing the execution and debugging the code. By
providing at the same time the �nal event sequence and information about how one got there, it
practically eliminates the need to step through an execution in order to �nd out what went wrong.

The greatest strength of causality relations, though, is in helping one to understand the system.
By tracing back through the graph one can visually identify which of many possible units generated
an observed event (such as which processor generated the BusRelease signal). This extra informa-
tion simpli�es the analysis of the system by facilitating the task of grouping events according to
the components who caused them.

Another good point of causality relations is that they provide a better, more thorough under-
standing of the system. For example, examine �gure 7.1. It shows a poset of the system with 3
processors when processor 1 has gained control of the bus, while processors 2 and 3 wait. When
processor 1 releases the bus, processor 2 is granted access.

The edge between BusReq3 and BusAck2 was totally unexpected. After all, why should the
fact that processor 3 requested the bus have anything to do with processor 2 getting it? BusAck2

would occur anyway, even if BusReq3 had never happened. It certainly didn't depend on it!

20

ReadCycle

ReadCycle

ReadCycle

BusReq2

BusReadAck

BusReq1

BusAck1

BusAck2

BusReq3

FreeBus

BusRead

Figure 7.1: Bus access poset for Proc3 with \extra" edge

21

This extra edge made the author think he had coded the bus arbiter incorrectly, so he rewrote it.
No matter how he changed the code, if the system was working correctly (i.e., no constraints were
violated), that edge always appeared. This made the author sit down and think about why that
edge kept appearing, He had envisioned the arbiter as being mostly a combinational circuit, with
one
ip-
op to indicate the state of the bus as being in use or not. Any bus requests would propagate
through the combinational circuit and the proper acknowledgement would be sent when the bus
was free. Since this would imply that an acknowledgment depended only on who requested the bus
and who was releasing it, the extra edge made no sense. It turns out that such an implementation
would lead to race conditions were two or more requests to arrive simultaneously. The author's
vision of how the arbiter was to be implemented was wrong.

The only feasible implementation of the arbiter would be as a state machine, polling each request
line at a time and using that to decide what to do. In this case the extra edge would make sense,
because BusReq3 had to be processed before FreeBus (it occurred earlier in time) and any event
generated by the latter (BusAck2, would then depend on the former. Thus, the presence of the
\extra" edge clari�ed for the author what the structure of the arbiter should be like, giving him a
deeper understanding of the system.

As a prototyping tool, though, Rapide-0.2 is still not perfect. First of all, it needs a more
powerful constraint language. The need to create new events, change interfaces and add when

bodies just so that the cache coherence constraint could be de�ned was unsettling. Access to the
data internal to a design unit and more powerful pattern constructs would be more than welcome.

There were also some minor inconveniences in the language, but nothing that one would not
expect in an experimental one. The author missed the ability to de�ne global constants. Another
concept he missed was the one of \exclusive events" for triggering when bodies (i.e., once an event
triggers one when body it cannot be used to trigger another).

As for supporting tools. the partial order browser proved to be a powerful instrument in
analyzing posets. Some support tools were missing, though, mainly one to count how many time
each type of event occurred in the simulation. An even more interesting tool would have been
some sort of architecture editor, a graphical interface that would enable the user to de�ne connect
statements by drawing lines between rectangles, rather than having to go through the process of
typing it in as connect statements.

These are not major problems and some of them have even been dealt with in Rapide-1.0. The
author's main concern, though, is that Rapide is not part of the usual design cycle. That is, once
the model is up and running the user has to start again from scratch in building the real system
in whatever language (s)he is going to use. This discourages the lazy user from using Rapide and
going directly to the �nal language, despite all of Rapide's advantages in ease of use and speed.

In short, Rapide is a powerful and fast tool for generating models of systems. It is fast because
it uses event processing, and powerful because of the causality and timing information provided by
the posets. With a more complete accompanying toolset and when it is made part of the design
cycle by enabling the user to attach routines written in other programming languages to it, it will
be a superb tool for system prototyping and development.

22

Bibliography

[Bry92] Doug Bryan. Rapide{0.2 language and tool-set overview. Technical Note CSL{TN{92{387,
Computer Systems Lab, Stanford University, February 1992.

[Hsi92] Alexander Hsieh. Rapide-0.2 examples. Technical Report CSL{TR{92{510, Computer
Systems Lab, Stanford University, February 1992.

23

Appendix A

Rapide-0.2 Code for Multiprocessor

System

This appendix contains the complete Rapide-0.2 code for all the design units making up system 3.
Each design unit is speci�ed in one independent �le.

A.1 Memory

design memory_c is clocked

in action MemRead(address : integer);

in action MemWrite(address : integer; data: integer);

out action ReadEnd(data : integer);

out action WriteEnd;

end memory_c;

design body memory_c is

MEMDELAY : constant integer := 3;

MemBlock : array [1..10] of integer;

?address : integer;

?data : integer;

?add1 : integer;

?add2 : integer;

?dt1 : integer;

?dt2 : integer;

-- CONSTRAINTS

24

-- complete read cycle

<< check_read >>

when MemRead(?add1) then

ReadEnd(?dt1)

before MemRead(?add2) or MemWrite(?add2,?dt2);

-- complete write cycle

<< check_write >>

when MemWrite(?add1,?dt1) then

WriteEnd

before MemRead(?add2) or MemWrite(?add2,?dt2);

begin

<< memory_read_cycle >>

when MemRead(?address) then

ReadEnd(MemBlock[?address]) pause MEMDELAY;

end when;

<< memory_write_cycle >>

when MemWrite(?address,?data) then

MemBlock[?address] := ?data;

WriteEnd pause MEMDELAY;

end when;

end memory_c;

A.2 CPU

design cpu_c is clocked

out action ReadCycle(address : integer);

out action WriteCycle(address : integer; data : integer);

in action ReadComplete(data : integer);

in action WriteComplete;

in action ExecStart(count : integer);

end cpu_c;

design body cpu_c is

add : integer;

dt : integer;

op : integer;

25

it : integer;

?data : integer;

?count : integer;

?address : integer;

action Execute;

-- CONSTRAINTS

-- check that a read finishes before starting another cycle

<< complete_read >>

when ReadCycle(?address) then

ReadComplete(?data)

before Execute;

-- check that a write finishes before starting another cycle

<< complete_write >>

when WriteCycle(?address,?data) then

WriteComplete

before Execute;

begin

<< start_cpu >>

when ExecStart(?count) then

it := ?count;

Execute;

end when;

<< executes_commands >>

when Execute then

it := it-1;

op := Random(2);

add := Random(10);

if op=1 then

ReadCycle(add);

end if;

if op=2 then

dt := Random(99);

WriteCycle(add,dt);

end if;

end when;

26

<< request_end >>

when ReadComplete(?data) or WriteComplete then

if it /= 0 then

Execute pause Random(5);

end if;

end when;

end cpu_c;

A.3 Cache

design cache_r is clocked

in action CacheRead (address:integer);

in action cacheWrite (address:integer; data:integer);

in action ExternWrite (address:integer; data:integer);

in action MemReadDone (data:integer);

out action Hit (data:integer);

out action MemReadReq (address:integer);

end cache_r;

design body cache_r is

-- constant declarations

CACHEDELAY : constant integer := 1;

CACHESIZE : constant integer := 4;

-- type declarations

type cacheitem is record

add : integer;

dt : integer;

end record;

-- variable declarations

CacheMem : array [1..CACHESIZE] of cacheitem;

TempAdd : integer;

MainAdd : integer;

27

Found : integer;

-- placeholder declarations

?address : integer;

?data : integer;

?add1 : integer;

?add2 : integer;

?dt1 : integer;

?dt2 : integer;

-- CONSTRAINTS

-- checks that a read is executed

<< check_read_processed >>

when CacheRead(?add1) then

Hit(?dt1) or MemReadReq(?add1)

before CacheRead(?add2) or CacheWrite(?add2,?dt2);

-- checks that it got requested data before receiving

-- another request

<< check_read_complete >>

when MemReadReq(?add1) then

MemReadDone(?dt1)

before CacheRead(?add2) or CacheWrite(?add2,?dt2);

-- function definition

function GetIndex(ReqAdd:integer) return integer is

begin

for i in 1..CACHESIZE loop

if CacheMem[i].add = ReqAdd then

return i;

end if;

end loop;

for i in 1..CACHESIZE loop

if CacheMem[i].add = 0 then

return i;

end if;

end loop;

return Random(CACHESIZE);

end GetIndex;

28

begin

-- initialization block

when Start then

for i in 1..CACHESIZE loop

CacheMem[i].add := 0;

end loop;

end when;

-- read control block:

<< read_request_processing >>

when CacheRead(?address) then

Found := 0;

for i in 1..CACHESIZE loop

if CacheMem[i].add = ?address then

Hit(CacheMem[i].dt) pause CACHEDELAY;

Found :=1;

exit;

end if;

end loop;

if Found = 0 then

MainAdd := ?address;

MemReadReq(?address) pause CACHEDELAY;

end if;

end when;

-- memory read control block:

when MemReadDone(?data) then

TempAdd := GetIndex(MainAdd);

CacheMem[TempAdd].add := MainAdd;

CacheMem[TempAdd].dt := ?data;

end when;

-- write control block:

<< write_store >>

when CacheWrite(?address,?data) then

TempAdd := GetIndex(?address);

CacheMem[TempAdd].add := ?address;

CacheMem[TempAdd].dt := ?data;

end when;

<< external_update >>

when ExternWrite(?address,?data) then

for i in 1..CACHESIZE loop

29

if CacheMem[i].Add = ?Address then

CacheMem[i].dt := ?data;

end if;

end loop;

end when;

end cache_r;

A.4 Processor

with cpu_c, cache_r;

design processor_r is clocked

out action ReadReq (address:integer);

out action WriteReq (address:integer; data:integer);

out action BusReq;

out action FreeBus;

out action IntHit (data:integer);

out action IntReadCycle(address:integer);

in action ReadAck (data:integer);

in action WriteAck;

in action StartCpu(count:integer);

in action BusAck;

in action ExtProcWrite(address:integer; data:integer);

end processor_r;

design body processor_r is

-- variable declarations

CpuChip : cpu_c;

CacheChip : cache_r;

BusUse : protected boolean;

ReqType : integer;

t_add : integer;

t_data : integer;

?address : integer;

?data : integer;

30

?count : integer;

-- connection declarations

connect CpuChip::ReadCycle(?address) with

CacheChip::CacheRead(?address);

IntReadCycle(?address);

end connect;

connect CpuChip::WriteCycle(?address,?data) with

CacheChip::CacheWrite(?address,?data);

end connect;

connect CacheChip::Hit(?data) with

CpuChip::ReadComplete(?data);

IntHit(?data);

end connect;

-- incredible list of constraints

<< guarantee_release >>

when BusReq then

BusAck

before FreeBus;

<< guarantee_mem_access >>

when BusAck then

WriteAck or ReadAck(?data)

before FreeBus;

<< bus_permission_for_write >>

when CpuChip::WriteCycle(?address,?data) then

BusAck

before WriteReq(?address,?data);

<< bus_permission_for_read >>

when CacheChip::MemReadReq(?address) then

BusAck

before ReadReq(?address);

begin

when StartCpu(?count) then

CpuChip::ExecStart(?count);

31

BusUse := false;

ReqType := 0;

end when;

<< bus_control_write_request >>

when CpuChip::WriteCycle(?address,?data) then

ReqType := 1;

t_add := ?address;

t_data := ?data;

BusReq;

end when;

<< bus_control_read_request >>

when cacheChip::MemReadReq(?address) then

ReqType := 2;

t_add := ?address;

BusReq;

end when;

<< perform_access >>

when BusAck then

BusUse := true;

if ReqType=1 then

WriteReq(t_add,t_data);

elsif reqType=2 then

readReq(t_add);

end if;

end when;

<< end_read_access >>

when ReadAck(?data) then

if BusUse = true then

BusUse := false;

FreeBus;

CacheChip::MemReadDone(?data);

CpuChip::ReadComplete(?data);

end if;

end when;

<< end_write_access >>

when WriteAck then

if BusUse = true then

BusUse := false;

FreeBus;

32

CpuChip::WriteComplete;

end if;

end when;

-- This block propagates an external write event to the cache

<< extern_write_propagate >>

when ExtProcWrite(?address,?data) then

if BusUse = false then

CacheChip::ExternWrite(?address,?data);

end if;

end when;

end processor_r;

A.5 Bus Arbiter

design BusControl_c is clocked

in action BusReq1;

in action BusReq2;

in action BusReq3;

in action BusReq4;

in action BusRelease;

out action BusAck1;

out action BusAck2;

out action BusAck3;

out action BusAck4;

end BusControl_c;

design body BusControl_c is

BusBusy : integer;

Req : array [1..4] of integer;

action Dispatch(code:integer);

action Hold(code:integer);

action Free(code:integer);

?cd : integer;

?id : integer;

33

-- incredible list of constraints

-- checks for free bus before new grant

<< free_bus_check >>

when BusAck1 or BusAck2 or BusAck3 or BusAck4 then

BusRelease

before BusAck1 or BusAck2 or BusAck3 or BusAck4;

-- checks if there was a request before receiving permission

<< bus_req_check >>

not BusAck1 before BusReq1;

not BusAck2 before BusReq2;

not BusAck3 before BusReq3;

not BusAck4 before BusReq4;

-- checks if priorities are being respected

<< priority_1 >>

when BusReq1 then

BusAck1

before BusAck2 or BusAck3 or BusAck4;

<< priority_2 >>

when BusReq2 then

BusAck2

before BusAck3 or BusAck4;

<< priority_3 >>

when BusReq3 then

BusAck3

before BusAck4;

begin

<< initializations >>

when Start then

BusBusy := 0;

for i in 1..4 loop

Req[i] := 0;

end loop;

end when;

<< req_analysis_1 >>

when BusReq1 then

Dispatch(1);

34

end when;

<< req_analysis_2 >>

when BusReq2 then

Dispatch(2);

end when;

<< req_analysis_3 >>

when BusReq3 then

Dispatch(3);

end when;

<< req_analysis_4 >>

when BusReq4 then

Dispatch(4);

end when;

<< bus_release >>

when BusRelease then

Dispatch(5);

end when;

<< gen_bus_ack >>

when Hold(?id) and Free(?id) then

case ?id is

when 1 => BusAck1;

when 2 => BusAck2;

when 3 => BusAck3;

when 4 => BusAck4;

when others => null;

end case;

end when;

<< dispatcher >>

when Dispatch(?cd) then

if BusBusy=0 and ?cd/=5 then

BusBusy := 1;

Hold(?cd);

Free(?cd);

elsif BusBusy/=0 and ?cd/=5 then

Req[?cd] := 1;

Hold(?cd);

elsif Req[1]=1 then

Req[1]:=0;

35

Free(1);

elsif Req[2]=1 then

Req[2]:=0;

Free(2);

elsif Req[3]=1 then

Req[3]:=0;

Free(3);

elsif Req[4]=1 then

Req[4]:=0;

Free(4);

else

BusBusy:=0;

end if;

end when;

end BusControl_c;

A.6 System

with processor_r, memory_c, buscontrol_c;

design sys3_r is global clocked

end sys3_r;

design body sys3_r is

MEMSIZE : constant integer := 10;

MemBoard : memory_c;

ProcBoard : array [1..2] of processor_r;

BusMaster : BusControl_c;

AccCnt : integer;

?address : integer;

?data : integer;

?id : integer;

?t1,?t2 : time;

property LastVal(integer) : integer := 0;

-- CONNECTION DECLARATIONS

-- generic connections

36

<< connect_read_request >>

connect ProcBoard[?id]::ReadReq(?address) with

MemBoard::MemRead(?address);

end connect;

<< connect_read_ack >>

connect MemBoard::ReadEnd(?data) with

ProcBoard[1]::ReadAck(?data);

ProcBoard[2]::ReadAck(?data);

end connect;

<< connect_write_req >>

connect ProcBoard[?id]::WriteReq(?address,?data) with

MemBoard::MemWrite(?address,?data);

ProcBoard[1]::ExtProcWrite(?address,?data);

ProcBoard[2]::ExtProcWrite(?address,?data);

end connect;

<< connect_write_ack >>

connect MemBoard::WriteEnd with

ProcBoard[1]::WriteAck;

ProcBoard[2]::WriteAck;

end connect;

connect ProcBoard[?id]::FreeBus with

BusMaster::BusRelease;

end connect;

connect ProcBoard[1]::BusReq with

BusMaster::BusReq1;

end connect;

connect BusMaster::BusAck1 with

ProcBoard[1]::BusAck;

end connect;

connect ProcBoard[2]::BusReq with

BusMaster::BusReq2;

end connect;

connect BusMaster::BusAck2 with

ProcBoard[2]::BusAck;

37

end connect;

-- CONSTRAINT DECLARATIONS

-- cache coherency constraint

<< cache_coherency_check >>

not ProcBoard[?id]::IntReadCycle(?address,?t1)=>

ProcBoard[?id]::IntHit(?data,?t2)

where

?data /= LastVal(?address) and ?t2-?t1=1;

begin

<< start_activity >>

when Start then

put("Number of memory accesses->");

get_line(AccCnt);

ProcBoard[1]::StartCPU(AccCnt);

ProcBoard[2]::StartCPU(AccCnt);

end when;

-- monitoring for cache coherency check

<< memory_monitor >>

when ProcBoard[?id]::Writereq(?address,?data) then

LastVal(?address) := ?data;

end when;

end sys3_r;

38

Appendix B

�Rapide Code for Multiprocessor

System

During the design of this model, it was decided to also code it in �Rapide, an architecture description
language (ADL). In doing this, there were two goals in mind. First, it was a check to see if the
model could be easily coded in an architecture description language. Second, to see if any extra
insight could be gained by using such a language.

As it turns out, �Rapide did furnish such an insight, due to its separation of architecture and
behavior. In the original Rapide-0.2 model each processor consisted of a CPU and a cache, with the
bus interface being provided by conditions on the with constructs. When using �Rapide it became
obvious that such conditions constituted a new unit, the bus interface, which was responsible for
all communication between the CPU/cache combination and the outside world. Thus, in this new
model, the processors consists of three units, as can be seen in �gure B.1.

The rest of this appendix contains the actual code for the multiprocessor system model.

B.1 CPU

interface cpu is

out action ReadCycle(address : integer);

out action WriteCycle(address : integer; data : integer);

in action ReadComplete(data : integer);

in action WriteComplete;

in action ExecStart(count : integer);

behavior

add : integer;

dt : integer;

op : integer;

it : integer;

39

Figure B.1: New architecture for processor unit

40

?data : integer;

?count : integer;

?address : integer;

action Execute(cycle : integer);

-- loads in number of iterations and triggers first execution

ExecStart(?count) => it := ?count;

Execute(Random(2)); ;

-- generates a read cycle

Execute(?data) where ?data=1 => it := it-1;

add := Random(10);

ReadCycle(add);;

-- generates a write cycle

Execute(?data) where ?data=2 => it := it-1;

add := Random(10);

dt := Random(99);

WriteCycle(add,dt);;

-- waits for a random amount of time upon memory access completion

-- and then starts another cycle

(ReadComplete(?data) or WriteComplete) where it/=0 =>

Execute(Random(2)) pause Random(5);;

constraints

(Execute(?count) -> ((ReadCycle(?address)->ReadComplete(?data)) or

(WriteCycle(?address,?data)->WriteComplete)))*<

end cpu;

B.2 Memory

-- This interface describes the main memory unit, which behaves like any

-- decent memory should. It accepts reads and writes and performs the

-- desired operation.

interface memoryc

41

in action MemRead(address : integer);

in action MemWrite(address : integer; data: integer);

out action ReadEnd(data : integer);

out action WriteEnd;

behavior

MEMDELAY : constant integer := 3;

MEMSIZE : constant integer := 10;

MemBlock : array [1..MEMSIZE] of integer;

?add1 : integer;

?add2 : integer;

?dt1 : integer;

?dt2 : integer;

-- received a read request, return data

MemRead(?add1) => Read ReadEnd(MemBlock[?add1]) pause MEMDELAY;;

-- received a write request, store data and return an acknowledgement

MemWrite(?add1,?dt1) => MemBlock[?add1] := ?dt1;

WriteEnd pause MEMDELAY;;

constraint

(

(MemRead(?add1)->ReadEnd(?dt1)) or (MemWrite(?add1,?dt1)->WriteEnd)

)*<

end memoryc;

B.3 Cache

-- This file contains the description of the processor cache we are

-- trying to implement. At this moment it is going to be full

-- associative and write-through.

interface cache is

in action CacheRead (address:integer);

in action cacheWrite (address:integer; data:integer);

in action ExternWrite (address:integer; data:integer);

42

in action MemReadDone (data:integer);

out action Hit (data:integer);

out action MemReadReq (address:integer);

behavior

-- constant declarations

CACHEDELAY : constant integer := 1;

CACHESIZE : constant integer := 4;

SPAN : constant range 1..CACHESIZE

-- type declarations

type cacheitem is record

add : integer;

dt : integer;

end record;

action IntWrite(address:integer,dt:integer,i:integer);

action IntRead(address:integer,i:integer);

-- variable declarations

CacheMem : array [1..CACHESIZE] of cacheitem;

TempAdd : integer;

MainAdd : integer;

Found : integer;

-- placeholder declarations

?address : integer;

?data : integer;

?add1 : integer;

?add2 : integer;

?dt1 : integer;

?dt2 : integer;

?i : integer;

-- function definition

function GetIndex(ReqAdd:integer) return integer is

begin

43

for i in 1..CACHESIZE loop

if CacheMem[i].add = ReqAdd then

return i;

end if;

end loop;

for i in 1..CACHESIZE loop

if CacheMem[i].add = 0 then

return i;

end if;

end loop;

return Random(CACHESIZE);

end GetIndex;

-- initialization, fill cache with zeros

Start =>

CacheMem[1..MEMSIZE].add := 0;;

-- the next few blocks perform a search through the cache for the

-- requested read data. It performs a loop through three parts, an ini-

-- tialization part, a loop search and an end.

-- loop initialization

CacheRead(?address) =>

IntRead(?address,1);;

-- loop search, no hit yet

IntRead(?address,?i) where(?i<=CACHESIZE and CacheMem[?i].add/=?address) =>

IntRead(?address,?i+1);;

-- loop search, found a hit

IntRead(?address,?i) where(?i<=CACHESIZE and CacheMem[?i].add=?address) =>

Hit(CacheMem[?i].dt) pause CACHEDELAY;;

-- end of loop search, no hit, generate a memory read request

IntRead(?address,?i) where ?i>CACHESIZE =>

MainAdd := ?address;

MemReadReq(?address) pause CACHEDELAY;;

-- read complete, store data in cache

MemReadDone(?data) =>

TempAdd := GetIndex(MainAdd);

CacheMem[TempAdd].add := MainAdd;

CacheMem[TempAdd].dt := ?data;;

44

-- write requested, store data in cache

CacheWrite(?address,?data) =>

TempAdd := GetIndex(?address);

CacheMem[TempAdd].add := ?address;

CacheMem[TempAdd].dt := ?data;;

-- someone is writing to main memory. Update it if you have the

-- address stored somewhere. Again we use the loop structure

-- initialize loop

ExternWrite(?address,?data) =>

IntWrite(?address,?data,1);

-- loop search, no hit

IntWrite(?address,?data,?i) where (?i<=CACHESIZE and CacheMem[?i]/=?address) =>

IntWrite(?address,?data,?i+1);;

-- loop search with hit

IntWrite(?address,?data,?i) where (?i<=CACHESIZE and CacheMem[?i]=?address) =>

CacheMem[?i].dt := ?data;;

constraint

(

(CacheRead(?add1) -> (Hit(?dt1)) or

(CacheRead(?add1) -> MemReadReq(?add1) -> MemReadDone(?dt1)) or

(CacheWrite(?add1,?dt1))

)*<

end cache;

B.4 Bus Interface

interface busint is

out action BusRead (address:integer);

out action BusWrite (address:integer; data:integer);

out action BusReq;

out action FreeBus;

out action ReadAck(data:integer);

out action WriteAck;

45

in action BusReadAck (data:integer);

in action BusWriteAck;

in action BusAck;

in action CpuRead(address:integer);

in action CpuWrite(address:integer,data:integer);

behavior

-- variable declarations

action IntAck(tp:integer,bu:boolean,data:integer);

action WantBus(tp:integer,add:integer,data:integer);

BusUse : boolean := false;;

?address : integer;

?data : integer;

?count : integer;

-- issues bus request when CPU wants to write

CpuWrite(?address,?data) =>

WantBus(1,?address,?data);

BusReq;;

-- issues bus request when CPU wants to read

CpuRead(?address) =>

WantBus(2,?address,0);

BusReq;;

-- waits until it receives a bus it requested and issues a write

-- to main memory

WantBus(?tp,?address,?data) and BusAck where ?tp=1 =>

BusUse := true;

BusWrite(/address,?data);;

-- waits until it receives a bus it requested and issues a read

-- to main memory

WantBus(?tp,?address,?data) and BusAck where ?tp=2 =>

BusUse := true;

BusRead(?address);;

-- a read event has bee received, send it to be processed along with the

-- current state of the bus (if this processor owns it or not)

ReadAck(?data) =>

46

IntAck(2,BusUse,?data);

-- a write event has bee received, send it to be processed along with the

-- current state of the bus (if this processor owns it or not)

WriteAck(?data) =>

IntAck(1,BusUse,0);

-- received the read requested, release the bus and send the data to

-- the CPU

IntAck(?tp,?bu,?data) where (?tp=2 and ?bu=true) =>

BusUse:=false;

FreeBus;

ReadAck(?data);;

-- received the write requested, release the bus and send the data to

-- the CPU

IntAck(?tp,?bu,?data) where (?tp=1 and ?bu=true) =>

BusUse := false;

FreeBus;

WriteAck;;

constraints

(

(CpuWrite(?add,?dt) -> BusReq -> BusAck -> BusWrite(?add,?dt) ->

BusWriteAck -> FreeBus -> WriteAck) or

(CpuRead(?add) -> BusReq -> BusAck -> BusRead(?add) ->

BusReadAck(?dt) -> FreeBus -> WriteAck(?dt))

)*<

end busint;

B.5 Processor

-- This file describes the processor board of our computer, consisting

-- of the CPU, the cache and the bus interface.

interface processor is

out action ReadReq (address:integer);

out action WriteReq (address:integer; data:integer);

out action BusReq;

out action FreeBus;

out action IntHit (data:integer);

47

out action IntReadCycle(address:integer);

in action ReadAck (data:integer);

in action WriteAck;

in action StartCpu(count:integer);

in action BusAck;

in action ExtProcWrite(address:integer; data:integer);

behavior

?add,?dt : integer;

constraints

(

(BusReq -> BusAck -> ReadReq(?add) -> ReadAck(?dt) -> FreeBus) or

(BusReq -> BusAck -> WriteReq(?add,?dt) -> WriteAck -> FreeBus)

)*<

end processor

with cpu, cache, busint;

architecture ProcArch

for Processor is

P : cpu;

M : cache;

C : busint;

?address : integer;

?data : integer;

?count : integer;

connections

P.ReadCycle(?address) = M.CacheRead(?address);

P.ReadCycle(?address) = IntReadCycle(?address);

P.WriteCycle(?address,?data) = M.CacheWrite(?address,?data);

P.WriteCycle(?address,?data) = C.CpuWrite(?address,?data);

(M.Hit(?data) or C.ReadAck(?data)) => P.ReadComplete(?data);

M.Hit(?data) = IntHit(?data);

M.MemReadReq(?address) = C.CpuRead(?address);

C.BusRead(?address) = ReadReq(?address);

48

C.BusWrite(?address,?data) = WriteReq(?address,?data);

C.BusReq = BusReq;

C.FreeBus = FreeBus;

C.ReadAck(?data) = M.MemReadDone(?data);

C.WriteAck = P.WriteComplete;

StartCpu(?count) = P.ExecStart(?count);

ReadAck(?data) = C.BusReadAck(?data);

WriteAck = C.BusWriteAck;

BusAck = C.BusAck;

ExtProcWrite(?address,?data) = M.ExternWrite(?address,?data);

end ProcArch

B.6 Bus Arbiter

-- This interface describes the bus arbiter unit, responsible for coor-

-- dinating the access to the data bus by requesting processors. A VME-

-- like protocol is implemented, with priority given to requests on

-- lines with lower numbers

interface BusControl is

in action BusReq1;

in action BusReq2;

in action BusReq3;

in action BusReq4;

in action BusRelease;

out action BusAck1;

out action BusAck2;

out action BusAck3;

out action BusAck4;

behavior

action IntBus(id:integer, state:boolean);

action Release(cd:integer);

BusFree : integer;

Req : array [1..4] of integer;

code : integer;

?id, ?st, ?cd : integer;

49

-- translates Bus Request into an internal event with information

-- about current bus state (free or not)

BusReq1 => IntBus(1,BusFree);;

BusReq2 => IntBus(2,BusFree);;

BusReq3 => IntBus(3,BusFree);;

BusReq4 => IntBus(4,BusFree);;

-- adds request to the waiting list if bus is not free

IntBus(?id,?st) where ?st=false => Req[?id]:=1;;

-- gives the bus to whomever requested it if it was free

IntBus(?id,?st) where (?id=1 and ?st=true) => BusFree=false; BusAck1;;

IntBus(?id,?st) where (?id=2 and ?st=true) => BusFree=false; BusAck2;;

IntBus(?id,?st) where (?id=3 and ?st=true) => BusFree=false; BusAck3;;

IntBus(?id,?st) where (?id=4 and ?st=true) => BusFree=false; BusAck4;;

-- has received a bus release signal, now sets the code according to

-- the waiting events. This code is used to determine who next gets

-- access to the bus and uses a system that gives priority to requests

-- with smaller numbers

BusRelease => code := Req[1]*8+Req[2]*4+Req[3]*2+Req[4];

Release(code);;

-- no one requested the line, set status of bus to free

Release(?cd) where ?cd=0 => BusFree=true;;

-- someone wants to use the line, find out who(according to the code)

-- and give her the proper permission

Release(?cd) where (?cd>=8 and ?cd<16) => Req[1]:=0; BusAck1;;

Release(?cd) where (?cd>=4 and ?cd<8) => Req[2]:=0; BusAck2;;

Release(?cd) where (?cd>=2 and ?cd<4) => Req[3]:=0; BusAck3;;

Release(?cd) where (?cd>=1 and ?cd<2) => Req[4]:=0; BusAck4;;

constraints

not (BusAck1<BusReq1)

not (BusAck2<BusReq2)

not (BusAck3<BusReq3)

not (BusAck4<BusReq4)

((BusAck1 or BusAck2 or BusAck3 or BusAck4) -> BusRelease)*<

(BusReq1 -> BusAck1)*<

(BusReq2 -> BusAck2)*<

50

(BusReq3 -> BusAck3)*<

(BusReq4 -> BusAck4)*<

end BusControl;

B.7 System

-- architecture of the computer system. It consists of two processors

-- sharing a main memory block, plus a bus arbiter used to solve bus

-- access conflicts.

with processor, memoryc, buscontrol;

architecture system is

MEMSIZE : constant integer := 10;

Mem : memoryc;

P : array [1..2] of processor;

Arbiter : BusControl;

AccCnt : integer;

?address : integer;

?data : integer;

?id : integer;

?t1,?t2 : time;

LastVal : array [1..MEMSIZE] of integer;

connections

P[?id].ReadReq(?address) = Mem.MemRead(?address);

P[?id].WriteReq(?address,?data) = Mem.MemWrite(?address,?data);

P[?id].WriteReq(?address,?data) = P[1].ExtProcWrite(?address,?data);

P[?id].WriteReq(?address,?data) = P[2].ExtProcWrite(?address,?data);

P[?id].WriteReq(?address,?data) => LastVal(?address):=?data;

Mem.WriteEnd = P[?id].WriteAck;

Mem.ReadEnd(?data) = P[?id].ReadAck(?data);

P[?id].FreeBus = Arbiter.BusRelease;

P[1].BusReq = Arbiter.BusReq1;

51

P[2].BusReq = Arbiter.BusReq2;

Arbiter.BusAck1 = P[1].BusAck;

Arbiter.BusAck2 = P[2].BusAck;

Start => put("Number of memory accesses->");

get_line(AccCnt);

ProcBoard[1]::StartCPU(AccCnt);

ProcBoard[2]::StartCPU(AccCnt);;

constraints

not (P[?id].IntReadCycle(?address,?t1) -> P[?id].IntHit(?data,?t2))

where ?data /= LastVal(?address) and ?t2-?t1=1;

end system;

52

