
THECRAMERRAOBOUNDFOR
DISCRETE-TIME EDGE POSITION
ESTIMATION

Alan Gatherer

Technical Report: CSL-TR-93-560

February 1993

This work was partially funded by the SRC Contract No. 9 l-MC-5 15 and the
National Science Foundation, NSF Contact No. MIPS 8957058.



The Cramer Rao Bound for Discrete-time Edge Position
Estimation

Alan Gatherer
Technical Report: CSL-TR-93-560

February, 1993

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, CA 943054055

Abstract

The problem of estimating the position of an edge from a series of samples often occurs in

the fields of machine vision and signal processing. It is therefore of interest to assess the

accuracy of any estimation algorithm. Previous work in this area has produced bounds for

the continuous time estimator. In this paper we derive a closed form for the minimum vari-

ance bound (or Cramer Rao bound) for estimating the position of an arbitrarily shaped

edge in white Gaussian noise for the discrete samples case. We quantify the effects of the

sampling rate, the bandwidth of the edge, the shape of the edge and the size of the observa-

tion window on the variance of the estimator. We describe a maximum likelihood estimator

and show that in practice this estimator requires fewer computations than standard correla-

tion.
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1.0 Introduction
Estimating the position of an edge from a finite number of samples of an image is a common signal

processing operation in many fields including lithographic alignment in IC fabrication [ 1 ] [6], pattern rec-

ognition and analysis [2], stereo vision [3], motion estimation [4] and aerial images [9]. It is important to

know the relative accuracy of an edge-position estimation algorithm compared to what is achievable. If the

variance of the estimation error for an edge-position estimation algorithm can be found, then it can be com-

pared to the variance of other algorithms, but this does not tell the designer if another algorithm exists, pos-

sibly undiscovered, that performs better. What is needed is a lower bound on the estimation error variance

of all possible estimation algorithms. In this paper we apply the Cramer Rao Bound (CRB) [5] to obtain a

lower bound on the estimation error variance of all unbiased edge-position estimators, from a finite num-

ber of samples of an arbitrarily-shaped edge in additive white Gaussian noise. The derivation of the CRB

uses a similar methodology as appeared in [6] where the CRB was derived for the case of pulses in noise.

In a paper recently published in PAM1 [7], a closed form expression was presented for the CRB for edge

position estimation of an edge passed through a continuous time Gaussian filter and then corrupted by

white Gaussian noise. The results presented in this paper are more general compared to [7] in three ways.

First, we use the more realistic discrete sampled data model, as all estimation algorithms are computed by

computers or digital signal processors on digitized images. Another disadvantage of using the continuous

time model is that it requires a measure of the power of the white Gaussian noise, which is difficult to

obtain due to finite bandwidth constraints. We show that the CRB becomes independent of sampling posi-

tion when the sampling rate is above the Nyquist rate of the edge. Second, our result holds for arbitrary

edge shapes so that we can quantify the degree to which some cdgcs can be more accurately estimated than

others. Third, we quantify the effect of a linitc observation window on the CRB and provide a simple rule

of thumb for finding the minimum observation window size such that the effect of the finite window size

on the CRB is kept within specified bounds.

The results contained in this paper apply to the estimation of the position of an edge in white Gaus-

sian noise when the edge shape is known (though the amplitude may be unknown), the edge is known to

occur within a certain observation window and no other features present within the window. The results we

present are applicable in situations where the presence of a single edge has been detected and a high accu-

racy estimate of its position is required. This is a more constrained problem than that presented in [8]

where an unknown number of edges are present. It has been stated [7] that the continuous time version of

the Canny edge detector, when optimized for the Gaussian edge shape [8], does not asymptotically achieve
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the CRB for the Gaussian edge shape. However, as the Canny edge detector is optimized to trade off esti-

mation error and false edge detection, one would not expect it to minimize the estimation error for the situ-

ation of a exactly one edge in noise. The minimum mean square estimation error estimator for exactly one

edge in noise is the maximum likelihood (ML) estimator. Kakarala and Hero [7] proposed an approxima-

tion to the ML estimator when the edge position was near the origin. We will show that the ML estimator

can be implemented so that it has low complexity for edge estimation and in certain cases will be of lower

complexity than standard correlation or filtering.

2.0 Problem Statement
The problem is to estimate the position of an edge whose shape is described by a function of

unknown amplitude, corrupted by white Gaussian noise. We assume that the edge profile has been sampled

with period T and that these samples are used to obtain an unbiased estimate of the edge location. The

mathematical model is a continuous time signal

x ( t )  =  as(t-8) +n(t>, (1)
where s (. ) is the edge shape which, without loss of generality, is assumed to be of unity height, n (t) is

a white Gaussian noise process, and a and 8 are the unknown constants representing the amplitude and

position of the edge respectively. Sampling over a window of length NT gives a vector x of N samples

such that

x = ase+n, (2)
where n is a length-N vector of white Gaussian samples with variance o;, which will generally depend

.thon the sample period T and the method of sampling. The vector se is a length-N vector whose z element

iss (iT-8).

3.0 The CRB for Unbiased Estimators of Edge Position
In this paper we shall consider the CRB for two important situations in edge detection. First we

consider the case where the position and amplitude are both unknown constants with no associated proba-

bility distribution. Second we examine the case where only the position is unknown. We will highlight the

similarities and differences in these two situations.



3.1 The CRB for Unknown Nonrandom Amplitude and Position

If there are no known probability density functions for the amplitude and position then they must

be treated as unknown constants. We shall now derive the Cramer Rao Bound (CRB) for this case. The

general definition of the CRB is stated in [5]. We give it here to show the notation used in this paper.

Theorem 3.1. Consider a system whose output x has statistics deJined by an unknown, nonran-

dom, length-M parameter vector q. Iffor a given instance of x an unbiased estimate q of q is obtained,

then the variance of the estimation error (qi - qi) of the th element of q is lower bounded by the ith

element of the Mx M matrix Fe’, whose inverse is given by

F _ E p (Pw7>>)  (aln (P(xw)*-
[ 34 I&I * (3)

The partial derivative in (3) is the column vector of the derivative of p (xl q) with respect to the elements

of q . The function p (xl q) is the probability of x given q . F is called the Fisher information matrix.

By nonrandom parameters, we mean that the parameters are unknown constants and have no associated

probability density.

In our case the unknown parameter vector is q = [ 6, a) and

P(Xl4) =
1

- e x p  -

r2x0; (

(x - ase) ’ (x - as,)

20; )
.

So the log likelihood is

In (p (xl q)) = - $n (24) -
(x - as,) ’ (x - ase)

20; -

Define the vector d, = a-se, which is the sample vector of -s’ (t - 0) , then
ae

$ln (P (xl 4) ) =
(x - as,) ‘doa

2
(ST

and

(4)

(5)

(6)



$ln (P (4 4) > =
(x - aso) Ysg

2 *
OT

Defining the matrix P = [ doa, se] and noting that (x - as,) = n, we get

We ca

4 =

an (P (xl d > = o-2P*n

a!7 T ’ (8)

n now state the following theorem:

Theorem 3.2. For an edge estimation problem as described in (2) with parameter vector

[e, a] , the Fisher information matrix is

(7)

Proof: Using equations (3) and (8),

F = op4P*E [nn’] P ,

but as the noise is white, the covariance of the noise is I$, so that

F = oi2PxP.

From the definition of P, (9) follows.

To find the CRB we take the inverse of (9) to obtain

E[ (0 _ i),‘] > ~27.11sd12
a211 d,/121/ sell2 - a2 (d&J) 2

.

(9)

w-0

(11)

(12)

The inner product drse can be described as dzse = 11 dell II sell cosa, where a is the angle between the

N dimensional vectors d, and se, giving

(oT’a)2
II IId, 2sin2a  ’
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The estimation error is heavily dcpcndent on the angle bctwcen the edge shape and its derivative. The

angle between these two vectors can be thought of as defining the degree to which the amplitude being

unknown effects the position estimate.

3.2 The CRB for Known Amplitude and Unknown Position

Suppose the edge amplitude, a, is known. Then the CRB reduces to a single parameter problem:

NJ,.la) 2
=

II IIde 2

(14)
Comparing this with equation (13) we see that the CRB of the position estimate for an edge of unknown

amplitude is equal to the CRB of the estimate of a known amplitude when the angle CC is n/2. The angle

a defines the effect of the unknown amplitude on the position estimation. When a is 7~/2, knowledge of

the amplitude has no effect on the position estimation. As a decreases, the position estimation error

increases.

4.0 The CRB When Sampling Above the Edge Nyquist Rate
In general the CRB will be dependent on the sampling positions relative to 8 because at low sam-

pling rates the values of lld,l12,  //sell2 and d& are dependent on the sampling positions relative to the

edge position. This will cause the CRB to fluctuate with a periodicity equal to the sampling period. How-

ever, we will show that the CRB can be approximated by a sampling point independent expression under

the conditions that the sampling rate is sufficiently high and the edge is contained within the observation

window.



4.1 Assumptions

If an edge is contained within the window of observation, it must have finite duration and therefore

it must have infinite bandwidth. Although it is possible to define an edge so that it has infinite duration (for

example the Gaussian edge used in [7]), edges observed in real applications exhibit negligible change out-

side of a finite region. Physical constraints will also keep most of the energy of the edge within a finite fre-

quency region. Therefore for sufficiently high sampling rate the aliasing effect that occurs will be small.

We will assume that the energy of the aliasing spectrum is less than E times the energy of the edge. The

function s (t) only changes over a finite region. Therefore we will define the start of the edge as the fur-

thest right point that has all values to the left of it exactly equal to zero. The end of the edge is similarly

defined to be the left most point that has all values to the right of it exactly equal to unity. Without loss of

generality, we will define s (t) such that the center of the edge is at the origin, the start of the edge occurs

at a distance of L, to the left of center and the end of the edge occurs at a distance of L, to the right of cen-

ter. The position of the edge 8 will be measured from half a sample past the last sample on the right of the

observation window (see Figure 1). As the edge is contained within the observation window, this will make

the position negative. The function that equals s (t) in the region t E [-L,,L,] and is zero otherwise will

be defined as 13; (t) .
Figure 1. Conventions for edge position and size.

Last sample

 = 0 hereObservation Window



4.2 The Equivalence of Sums and Integrals

The power theorem [lo] is a generalization of Parseval’s theorem and relates inner products in

time to those in frequency. Its continuous time form is

co 00

J
h(t)g(t)*dt = jH(f)G*(f)df, (15)

--oo --oo
where H (j) and G U, are the Fourier transforms of two real functions h (t) and g (t) respectively. For

brevity we will adopt the bracket notation for integrals of products of functions, so that

(kg) = Ih(r)gW%
--M

and equation (15) is equivalent to

The discrete-time power theorem is
0% g> = W, G)

(16)

(17)

00 112

c h,gX = I iCf)&f)df, W3)i=-03 -l/2

where fi (f) and G (R are the discrete-time Fourier transforms of the sample sequences of h (t) and

g (t), denoted by hi and gi respectively. For sampling period T, we define there to be “&-small aliasing

effect” on H m when

co

J

1/2T

J llwl II@= J IIH 0 l12df * (19)

1/2T -1l2T

This definition is motivated by the fact that aliasing is the sum of multiple overlapping spectrum samples.

It is therefore the area under the magnitude response above f = 1/2T that determines the aliasing rather

than the power above f = l/X With sampling period T,

where

al,(f) = c I+;)
i=-m,i#O

7

w-0

(21)



and there are identical definitions for G (j) . The spectrums aH (f) and (xc; (j) are the aliasing spectrum.

Assuming (19) holds then

1/2T

< 4E2
J II H 0 II*@-.

-1/2T

In the same manner from (19) we obtain

M
/ \ 1/2T

II H 0 ll*@ 1 J< E* IIH cf) II*@.
-1/2T

Similarly, with E-small aliasing effect on G (f)

1/2T 1/2T

J p,cf)~/*~w~*  J IIWI  II*Q
-1/2T -1/2T

and

00

(J
1/2T

II G VJ II*&
1/2T 1 J< e* II G 0 II*@

-1/2T

(22)

(23)

(24)

(2%

From (1 S), (20) and (21) and a change of variables WC obtain

C higi = kl’iT (HCf)G”(f) +H(f)a,f) +G”(f)a,i(f) +CtH(j)a&))df, (26)
i=-- -1/2T

and from (22), (24), (26) and the Cauchy-Schwartz inequality we obtain the inequality



Using (23), (25) and the Cauchy-Schwartz inequality we obtain

1
1/2T 1/2T

J W.fd?jldf-~ J 1/2T

7 J II G m u*df J IIH o II*C (28)
-1/‘2T -1/2T -1/2T

Finally, combining (27) and (28) we obtain

Co
c lWhigi - T J HV)G*Cf)d

i=-00 -00
4 < (4~+6~*)/c(l) . (2%

Informally, (29) implies that for sampling rate high enough so that there is &-small aliasing on G (j) and

H (f), then

00

C higi = f JHmG*~)df+o(&)e (30)
i=-00 --oo

The edge is of finite duration, therefore we can assume that it is completely contained within the

observation window. If there is &-small aliasing of the derivative then, adopting the bracket notation as in

(17), we obtain

II IIde * =  c s’(iT-Cl)* =  $s’,s’)(l+O(~)).
i=-03

If there is also &-small aliasing of the derivative then

(31)

*dose = $ s(iT-6) (-s’(iT-8)) = -&((s’,S)+O(&/m). (32)
i=-co

Applying (30) to the calculation of 11 s0 II* is not as straightforward as for II dell2 because the non-

zero portion of the waveform is not contained within the window but instead is unity out to infinity on the

upside of the edge. However, because of the way the origin was defined in Section 4.1, reflection of the

window about the origin produces a pulse that has the same Nyquist rate as the edge and whose samples

are those of the edge repeated twice. Therefore the sum of the pulse samples squared is equal to 211 sell *.

The integral of the left half of the pulse squared can be divided into two parts. The first is the integral over

the edge region. This integral is the power in s (t) . The second is the integral over the region of unit

amplitude which has length 101  - L, . Hence
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II II 2Se = &i)-Ls+pp (1+0(E)). (33)

Combining (31), (32) and (33) we obtain

llq/*p~ll*  - (&se)* = 1T ( (s’, s’) ( (i, S)- L, + Icy) - (s’, i)*) ( 1 + 0 (E) ) (34)

From equations (12), (33) and (34), for &-small aliasing of the edge and its derivative and with the edge

contained within the observation window the CRB for unknown amplitude can be written as

CRB =
TC$/ a2

(S, s’)
(l+OW 9 (35)

wT sf) ( 1 - (s’, s’) ((S, S)- L, + pl)

The angle a is defined by

cos*a =
(S, s’)

w, ~7 ( 6, + L, + pi)
(36)

which defines a only in terms of the edge shape and 8. Similarly from (14) and (31) the CRB for known

amplitude can be written as

CRB =
TC$/ lZ*
(“> (1 +OW). (37)s ) s

In what follows we shall omit the ( 1 + 0 (E) ) for brevity and will say the CRB is approximately equal

when it is equal 0 (E) .

4.3 The CRB for an Edge in Isolation

If we assume that the edge is isolated near the center of a large observation window then 101 >> L, . We

shall also assume that the observation window is large enough so that 101 >> (s, s”) (Note that it is possible

for (s”, s) >> L, if there is significant overshoot). Therefore it follows that

Equation reduces (35) to

(s,s)-LLs+lel  -181. (38)

CRB =
TC+ a*

( (s’, ~1)  - lel-l (S, f)*) ’
(39)
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Using the Cauchy-Schwartz inequality, (37), and 101  >> (& s), we obtain

lel-l (St, 3;>2 I lel-l (St, d)(i, i)

a (s’, s’)

Hence

TO&J2
CRB=(S’.. (41)

and the CRB for unknown amplitude becomes approximately equal to (37), the CRB for known amplitude.

The angle a in this case is guaranteed to be close to n/2 because the uncertainty about the amplitude of

the edge does not effect the position estimate, as the long tail of constant amplitude allows the amplitude to

be estimated accurately within the data window.

4.4 The CRB for an Edge Not in Isolation

For the inequality (41) to be tight, we require that the edge is in isolation so that 101 >> L, and

181 D (& s). The “much greater than” symbol is not a practical guide to how big the observation window

should be. If the edge whose position is to be estimated is close to other features then the size of the obser-

vation window will be limited and therefore the edge may not be in isolation. To minimize computation

time, the window should be made as small as possible without effecting the accuracy of the result. There-

fore in this section we examine the effect of finite window size on the CRB. We shall write (35) as follows

CRB =
Tog.1 a*

(s’, s’) (1 - (cos2ii) ye) ’

where

cos*ii  =
(s’, S)

(s’, s’)(i, S)

(42)

(43)

and therefore & is the angle between s (t) and s’ (t) , and is only dependent on the edge shape. The term

(44)



is an edge power dependent  term that is monotonically decreasing in 101 and defines the region over which

the angle a has any effect on the CRB. Both ‘ye and & terms are edge-shape dependent but a simple upper

bound on the CRB can be derived by noting that cos*& I 1. Therefore comparing (41) and (42), we get

CRB isolation ’ CRB  ’ CRB isolation (45)

where CRB isolation is the CRB with an infinitely large window. To guarantee that the fractional increase

in the CRB due to finite window size is less than l/p, the window must extend beyond the edge by p

times the energy of the edge (this can be shown by referring to the definitions of L, and 101 in Figure 1).

The above result is a simple, general formula for calculating an upper bound on the CRB irrespec-

tive of the edge shape. For a given edge shape a more accurate bound can be derived. As an example, we

calculated the terms in (42) for the ramp edge shown in Figure 2. Note that there is slope discontinuity at

the ends of the ramp edge. However, the ramp shape can be altered by an arbitrarily small amount within

an arbitrary small region about the ramp edge to obtain a continuous derivative while all quantities of inter-

est change by an arbitrarily small fraction. For the ramp edge we obtain cos?x = 3/4 and

ye = 2L,/ (3 181  - L,) . This implies that for the ramp edge, to guarantee that the fractional increase in

the CRB due to finite window size is less than 1 /p, the window must extend beyond the edge by

(p - l/ 3) /4 times the width of the edge. So for a less than 2% increase in the CRB due to finite window

size, the window must extend past the edge by at least 12.42 times the length of the edge.

Figure 2. A ramp edge.

D
Observation Window 0 = () here
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5.0 Maximum Likelihood Edge Estimation
The additive noise is assumed to be white Gaussian and therefore the Maximum Likelihood (ML)

estimate is also the minimum mean-squared estimate [ 111.  For the purposes of verifying the CRB results

we can use ML as a tool since ML estimation comes very close to the CRB for high SNR. We shall briefly

describe the ML estimation method for the problem at hand.

5.1 Maximum Likelihood for Unknown Amplitude

The minimum mean-squared error estimates are the values and ii that minimize the function

fm a> = II- asoIl*.

Because this function is quadratic in a, there is a closed form solution for 2 given 6 :

(46)

s;xfj=-
II II 2’%I

Substituting (47) back into (46) gives

w
f(e) = I-=* x

( 1II II%

2
*= X

*
we

( 1
I--* x,

II II%I

(47)

(48)

where I is the identity matrix. The ML estimate 6 is therefore the minimum of a nonlinear, scalar function.

Minimization can be performed using Newton’s method  [ 121. As x is independent of 8, minimizing f( 0)

is equivalent to maximizing the function

f(e) = $ 2

( 1II II (49)

which can be done to the nearest sample by standard correlation.

We now present a comparison of the ML mean-squared error versus the CRB for edge position

estimation. Estimation of the ML mean-squared error is obtained by averaging the estimation error of 9000

simulation runs of a ML estimator. The ramp edge shown in Figure 2 was simulated with sampling period

T equal to 1, the half edge width L, equal to 10, the amplitude a equal to 1 and the noise power of equal

to 0.0001. An example of this edge is shown in Figure 3. The small aliasing condition of Section 4.2 holds

13



in this case with the power in the aliasing being less than -5OdB compared to the signal power in the

sampling bandwidth. The CRB for the ramp edge in Figure 2 can be shown to be

CRBramp =
Tot/a*

For the ramp edge in Figure 3 the CRB becomes

CRB,,, = 2 x 1o-3
15 *

’ - 3181  - 10

Figure 3. Ramp Edge with noise used in the numerical example.

(50)

(51)

0.8 -

0.6 -
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0

.0.2
- 1 0 0 - 9 0 -80 - 7 0 -60 -50 4 0 - 3 0 - 2 0 - 1 0 0

Sample position relative to right-hand side

To perform the ML estimation, it was first assumed that the cost function (48) was minimized using a mod-

ified Newton’s method similar to that described in [ 131. The details of this algorithm are given in Appendix

A. The resulting ML mean-squared error is plotted for varying edge position 8 in Figure 4. Notice that the

ML estimate comes close to achieving the CRB so that the CRB is a tight bound on the minimum estima-

tion error variance. The CRB decreases as the edge position moves away from the edge of the observation

window. The CRB for this edge in isolation is also shown in Figure 4. The CRB can be used to make an

14



informed trade off bctwecn complexity and performance of the ML estimate. If a rough estimate of the

position is obtained by some low complexity method then, using the CRB, a second window can be chosen

around this estimate that is just large enough to obtain the ML estimate at the required accuracy therefore

minimizing the computational complexity of the ML estimate.

Figure 4. ML estimation, unknown amplitude compared to the CRB versus edge position.

2

t
CRB in &ok&on

1.5 I I , I I
-45 -40 -35 -30 -25 -20

Position of edge as defined in Figure 1

-15

5.2 Maximum Likelihood for Known Amplitude

If the amplitude is known then the cost function changes accordingly. From equation (46) the func-

tion to be maximized is now

fW 2= XXSe - a s(T)  ,211 II (52)

which can be maximized using Newton’s method (details given in Appendix B). We repcat the experiment

from Section 5.1 for the known amplitude case with the results shown in Figure 5. The performance now

almost achieves the CRB in isolation independently  of the position of the edge, as was expected. Though

the algorithm’s performance dips below the CRB at one point this well within the limits of experimental

error.
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Figure 5. ML estimation, known amplitude compared to the CRB versus edge position.
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5.3 Computational Complexity of ML

In the examples presented in Sections 5.1 and 5.2 the Newton’s algorithm was iterated 10 times. In

our simulations the quadratic nature of the convergence of Newtons algorithm generally produces conver-

gence in less than 10 iterations from starting states separated from the actual position by less than 200 sam-

ples. Therefore, for our example we assume that the ML converges in 10 steps when the edge is contained

within a window of 256 samples. Appendix A and Appendix B discuss the computational complexity of

these algorithms. For the known amplitude case, each iteration requires less than 22 multiply-accumulates

(see Appendix B) so the ML estimation completes in 220 multiply-accumulates. Standard, nearest sample

correlation requires two FFTs, one vector multiply, and a peak search. Even not counting the search this

requires 4352 multiply-accumulates for a vector of length 256 samples. Therefore ML not only provides a

more accurate estimate but also is much lower computational complexity. In order for Newton’s algorithm

to converge, independently of the position, the error surface defined by (49) and (52) must have only one

local minimum. This is true for the case of a ramp edge and can be examined for an arbitrary edge shape by

plotting

fW.=, 6

16
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in the region 8 E [ 6 - 2L,, 6 + X,] . If the error surface has several peaks than the Newton’s algorithm

will have to be repeated over a coarse grid of initial conditions.

6.0 Summary
The CRB is a minimum variance bound on an unbiased estimator. We applied the CRB to edge

estimation of an edge with unknown amplitude and position from discrete samples and found that the min-

imum variance in the edge position estimate is dependent on the sampling period, the SNR, the power in

the derivative of the samples, and the angle a between the edge and its derivative. The CRB is therefore

generally dependent on sampling position with respect to the edge. However, we showed that provided the

sampling rate was above the Nyquist rate of the edge, the discrete sums in the CRB can be replaced by

integrals over the continuous-time edge shape and its derivative, which allows us to describe the CRB

without reference to the sampling position.

The angle a moves monotonically towards n/2 as the edge moves away from the end of the

observation window on the upside of the edge, so that the CRB becomes constant and minimum when the

edge is isolated in the middle of an infinitely large observation window. For sampling above the Nyquist

rate the effect of the edge shape on the CRB of an isolated edge is constant regardless of the sampling rate

or position (equation (41)). A similar result has only been shown for continuous-time estimators of a Gaus-

sian edge (see [7]) which does not commonly occur in practice.

Practical edge position estimation algorithms use a finite window size to estimate the edge posi-

tion. We derived a bound on the increase in the CRB due to finite window size for any edge shape (equa-

tion (45)) and noted that the fractional increase in the CRB due to finite window size can be kept below a

factor of l/p if the observation window extended by p times the edge width. These results allow design-

ers of edge position estimators to intelligently choose the observation window size to keep the computation

costs down while ensuring minimal effect of the finite window size on the estimation accuracy.

We showed by simulation that the CRB is a tight bound on the Maximum Likelihood (ML) estima-

tor for both the known and unknown amplitude cases. The ML estimator presented therefore comes very

close to the minimum possible estimation error. Despite this level of accuracy, its computational complex-

ity is very low. The known amplitude estimator was two orders of magnitude faster than standard correla-

tion in the example presented.
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Appendix A- A Modified Newton’s Method for Unknown Amplitude
The cost function to be minimized for the ML estimation is from (48)

f@> = II rl12 (54)
where

Newton’s method [ 123 is an iterative procedure that produces a sequence of estimates { bl, b2, . . . } that

converges quadratically to 8. The iteration is

6k + l

First we make some definitions.

*
WeA = k7
II II%I

b se=-
II II

2 ’
%I

Note that Ah = 0 and AA = A. The first derivative of A is, after some algebraic work

A’ = -Adeb*- (Adoh*)
*

so that

(56)

(57)

(58)

(59)

fW = -2x*AA’x

= -2x*Adeb*x
. (60)

An approximation to the second derivative f' (8) is obtained by assuming that r is small, so that all

terms containing r can be deleted. Therefore
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f' (e) z 2?-5-~

= 2x*A’A ‘x

= 2 (rxdeb*bdzr + x*bdzAd,6x)

E 2xXbd;Adobx.

Rewriting (59) and (60) without A and b gives

-;f w
(X’Se)=
II II

2 ( (x*&j -
(x*S(j) (dzse)

II II
2se se 1

(61)

(62)

and

2

I;f w
(x*Sfj)

( N

2 (drSej2=
II II

2 II IIde -
II II

2se se I
. (63)

The complexity of this algorithm is not as great as it may first appear. In a digital system the algo-

rithm will search over a fine grid of points rather than a continuous line. The grid spacing will be the reso-

lution desired. There is no point in making the grid spacing smaller than about the square root of the CRB

as the system cannot achieve this resolution anyway. Suppose there are K grid points per sample. It is only

necessary to store K values of 11 de112, dzse and 11 gelI (de ne in Section 5.0) as these numbers willfi d

repeat with period of one sample spacing. The power in the edge II su II2 is then easily found from (33).

Because the derivative has 2L,/T nonzero values, the computational complexity of the inner product

between the derivative and the data is not a function of the size of the observation window but only

requires 2&/T multiply-accumulates. Because a portion of the vector Se remains constant at 1 recalcula-

tion of the inner product is not necessary in this region. A portion of Se is zero and calculation of the inner

product in this region is unnecessary. If the vector is divided  up into three regions, zero, one and the edge,

then the inner product in the zero region is zero, the inner product in the one region changes by the sum of

the samples between &+ 1 and ekY and the inner product in the edge region requires 2&/T multiply-

accumulates. All required values for Se and de can be stored in K vectors of length 2&/T. Therefore,

the total number of operations required for one iteration is 4&/T multiply-accumulates and A additions

for the inner products, where A is the integer truncation of &+ t - &, and seven multiplies and three

19



additions are required for the update. After the first few iterations the algorithm will get within a few sam-

ples of the answer and the value of A will be small from then on so that the computational complexity per

iteration will be dominated by the 4&/T multiply-accumulates.

Appendix B- A Modified Newtons Method for Known Amplitude
The cost function to be minimized for the ML estimator with known amplitude is from (52)

fW @v
Newton’s method [ 121 is an iterative procedure described in Appendix A. It remains to find the first and

second derivatives of (63). This much simpler than for the unknown amplitude case. It is simple to check

that

fW = (X - Use) ‘de. (65)

An approximation to the second derivative is obtained by assuming that x - as0 is small so that all terms

containing it can be deleted. Therefore

f’ (0) z -2all dell2 , w-5)

so that

f (0) * de cdibe)
-fT=” - -alldell II d4l2 *

(67)

The iteration can be performed to a resolution of T/K by storing the K scalars associated with the second

term on the right-hand side of (66) and the K length 2&/T vectors associated with the inner product in

the first term on the right-hand side of (66). The calculation therefore requires only 2L,/T multiply accu-

mulate operations to perform the inner product in the first term on the right-hand side of (66) and then two

additions to complete the update.
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