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Abstract

Program specializers improve the speed of programs by performing some of the programs' reductions at

specialization time rather than at runtime. This specialization process can be time-consuming; one common

technique for improving the speed of the specialization of a particular program is to specialize the specializer

itself on that program, creating a custom specializer, or program generator, for that particular program.

Much research has been devoted to the problem of generating e�cient program generators, which do not

perform reductions at program generation time which could instead have been performed when the program

generator was constructed. The conventional wisdom holds that only o�ine program specializers, which

use binding time annotations, can be specialized into such e�cient program generators. This paper argues

that this is not the case, and demonstrates that the specialization of a nontrivial online program specializer

similar to the original \naive MIX" can indeed yield an e�cient program generator.

The key to our argument is that, while the use of binding time information at program generator

generation time is necessary for the construction of an e�cient custom specializer, the use of explicit binding

time approximation techniques is not. This allows us to distinguish the problem at hand (i.e., the use of

binding time information during program generator generation) from particular solutions to that problem

(i.e., o�ine specialization). We show that, given a careful choice of specializer data structures, and su�ciently

powerful specialization techniques, binding time information can be inferred and utilized without the use of

explicit binding time approximation techniques. This allows the construction of e�cient, optimizing program

generators from online program specializers.
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Introduction

A program specializer (also called a partial evaluator) transforms a program and a speci�cation

restricting the possible values of its inputs into a specialized program that operates only on those

input values satisfying the speci�cation. The specializer uses the information in the speci�cation

to perform some of the program's computations at specialization time, producing a specialized

program that performs fewer computations at runtime, and thus runs faster than the original

program.

Program specialization is useful when some of a program's inputs remain constant over several

executions of the program. If we specialize the program on those constant values, the specialized

program can be applied repeatedly to the non-constant values, allowing the cost of specialization

to be amortized across the repeated executions of the specialized program. For example, instead

of repeatedly executing an interpreter on the same program, but di�erent inputs:

result-1 := interpreter(program-1,inputs-1)

result-2 := interpreter(program-1,inputs-2)

...

result-3 := interpreter(program-1,inputs-n)

we can specialize the interpreter on the program, and use the specialized program several times.

Assuming the existence of a two-input procedure, specializer, which takes a program and a

description of its constant inputs, and produces a program specialized on those inputs, we could

instead execute the sequence

specialized-interpreter := specializer(interpreter,program-1)

result-1 := specialized-interpreter(inputs-1)

result-2 := specialized-interpreter(inputs-2)

...

result-3 := specialized-interpreter(inputs-n)

The number of executions necessary to repay the cost of specialization depends upon the degree

to which specialization improves the speed of the program, and upon the cost of running the spe-

cializer. The quality of specialization has been improved by various techniques, while the e�ciency

of specialization has been addressed primarily by means of self-application; that is, specializing the

specializer itself.1

The idea of improving the e�ciency of specialization by specializing the specializer, indepen-

dently discovered by Futamura [19] and Ershov [18], is based on the same observation we made

above. That is, if a program is executed repeatedly on a constant input, we can bene�t by special-

izing the program on that constant input, and executing the specialized program instead. In many

cases, the specializer itself is executed repeatedly on a constant input, namely the program to be

specialized. For example, an interpreter may be specialized on di�erent programs, as in

specialized-interpreter-1 := specializer(interpreter-1,program-1)

specialized-interpreter-2 := specializer(interpreter-1,program-2)

...

specialized-interpreter-n := specializer(interpreter-1,program-3)

1Several other approaches include handwriting a specializer generator [23, 28] and performing more operations

statically prior to specialization time [12]. This paper addresses only the self-application technique.
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which can be replaced by the sequence

specialized-specializer := specializer(specializer,interpreter-1)2

specialized-interpreter-1 := specialized-specializer(program-1)

specialized-interpreter-2 := specialized-specializer(program-2)

...

specialized-interpreter-3 := specialized-specializer(program-n)

which is more e�cient. This use of the specializer to improve itself is called self-application, and

the specialized specializer is often referred to as a program generator. The generation of e�cient

program generators has motivated much of the recent research in program specialization.

All that is required for self-application is that the specializer be written in the same language

as the programs it processes, so that it can treat itself as a program to be specialized. This auto-

projection property, although su�cient to allow self-application to be performed, is insu�cient to

guarantee e�cient results. That is, when the specialized specializer runs, it may perform reductions

which instead could have been performed once, when the specializer was specialized.

This desire to construct e�cient program generators motivated the invention of o�ine program

specialization[31], in which all of the specializer's reduce/residualize decisions are made prior to

specialization time, usually via an automatic prepass called Binding Time Analysis (BTA). The

results of these decisions are made available to the specializer as annotations on the source program.

Because most of the specializer's behavior3 is determined by the source program and the binding

time annotations, both of which are supplied as part of the known (constant) input when the spe-

cializer is specialized, much of the specializer's behavior can be determined (and the corresponding

reductions performed) at self-application time. In particular, the resulting program generator will

contain no code to examine the binding times of any of its inputs or to make reduce/residualize

decisions. The residual program will of course contain code to perform reductions and construct

residual expressions, but the reduce/residualize pattern will be �xed. In the case of specializing

the specializer on an interpreter, the resultant program generator bears a similarity to a compiler,

in that it makes reductions based on the \static semantics" (syntactic dispatch, static environment

lookup, static typing) [14] of the program and constructs residual code to implement the \dynamic

semantics" (dynamic typing, store operations, primitive reductions) of the program. No unneces-

sary comparisons are performed; the program generator \knows" that the information necessary

to reduce the static semantics will be present, and that the information needed to reduce the dy-

namic semantics will not be present, because that information (the \program division" of [30]) was

explicitly available when the program generator was constructed.

There is a tradeo� here between the e�ciency of the program generator and the the quality

of the programs it produces. The program generator's e�ciency depends on making all of the

specializer's reduce/residualize decisions reducible at program generator generation time, which

is accomplished by \hoisting" them out of the specializer into the BTA prepass. However, this

2Of course, we know more about the specializer's inputs than this. Not only do we know that the program to

be specialized is interpreter-1, we also know that the interpreter will be specialized with its �rst argument (the

program) known and its second arguments (the inputs) unknown. As we shall see in Section 2.1, failure to make use
of this additional information will result in an ine�cient specialized-specializer.

3This includes syntactic dispatch, environment lookup, and reduce/residualize choices, but not the actual results

of reductions, since the input values for the reductions are determined by the input values to the specializer.
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\hoisting" is, by de�nition, approximate, since some binding time information is unavailable at

the time the BTA runs [45]. Thus, specializing an o�ine specializer yields an e�cient generator

of potentially ine�cient specialized programs; making all reduce/residualize decisions at program

generator generation time means that, at program generation time, some performable reductions

may not be performed.

Online program specializers are distinguished by their willingness to make reduce/residualize

choices at specialization time. This makes them inherently slower than their o�ine counterparts,

due to the need to represent unknown values explicitly, and to make more complex decisions at

specialization time (rather than just consulting precomputed annotations). However, because the

specializer's reduce/residualize decisions are based on specialization-time information, rather than

on BTA-time approximations to specialization-time information as in o�ine specializers, better

choices can be made, resulting in smaller, faster residual programs. This desire for better residual

programs has motivated much of the research in o�ine specialization [45]. If one could construct an

e�cient program generator by specializing an online specializer, it would not be as fast as a program

generator constructed from an o�ine specializer, because it would still make some of its decisions

at program generation time. In the case of specializing the specializer on an interpreter, we would

expect the following of the resultant program generator: reductions relating to the static semantics

of the program should be performed without examination of the binding times of the program text

or interpreter data structures used to evaluate those semantics, since the static nature of those

structures should be deducible at program generator generation time, while operations relating to

the dynamic semantics may conditionally be reduced or residualized, depending on the availability

of su�cient information to reduce them. In other words, a program generator constructed from

an online specializer is an \optimizing compiler" which is willing to reduce some of the dynamic

semantics of the program, rather than an \unoptimizing compiler" which assumes that none of the

dynamic semantics will be reducible.

Both o�ine and online specializers have been successfully specialized, but, to date, only o�ine

specializers and online specializers using o�ine-style binding time approximation techniques4 have

yielded e�cient program generators. Indeed, the conventional wisdom holds that explicit binding

time approximations are essential to e�cient program generation. This paper demonstrates that,

although such methods are indeed e�ective for e�cient program generation, they are not essential.

We will demonstrate that the specialization of a nontrivial online program specializer without BTA

techniques can indeed yield an e�cient, accurate program generator. Our solution will require

not only a careful choice of specializer data structures, but also a particularly powerful specializer

to ensure that the information in those data structures is not prematurely lost (generalized) at

program generator generation time. Because of the complexity of such a specializer, we will not

demonstrate full self-application; instead, we will show that a nontrivial online program specializer

with power at least equivalent to that of MIX [31] and Schism [10] can yield an e�cient program

generator when specialized by the more powerful specializer FUSE [55, 46]. We will specialize our

small online specializer on several programs, and will evaluate the e�ciency of the results.

This paper has �ve sections. Section 1 describes a small online specializer, TINY, which will be

used in subsequent examples. In Section 2, we demonstrate a naive approach to program generator

generation, the ine�ciency of the resultant program generators, and our solution to this problem

using FUSE. The third section describes several extensions to TINY, and how they a�ect the

4The \specialization-time BTA" approach of Gl�uck has indeed yielded an e�cient, though non-optimizing, program

generator. Section 4.2 treats Gl�uck's work in more detail.
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problem of program generator generation. Section 4 describes related work in e�cient program

specialization, using both o�ine and online techniques. We conclude with several directions for

future work in online specialization.

1 TINY: A Small Online Specializer

This section describes TINY, a small but nontrivial online program specializer for a functional

subset of Scheme [41] which we will use to demonstrate the construction of online program gen-

erators. For reasons of clarity, we will �rst describe a \watered-down" version of TINY using a

denotational-semantics-like language, then describe the actual Scheme implementation. This will

allow us to use the abbreviated denotational description in many of the examples in later sections,

dropping down into the implementation only when necessary.

The version of TINY we will describe here specializes programs written in a �rst-order, func-

tional subset of Scheme. A program is expressed as a single letrec expression whose body is the

name of the goal procedure to be specialized. Both scalars and pairs are supported, but there are

no vectors, and no support for partially static structures; that is, any pair containing a dynamic is

considered to be dynamic.

1.1 Abstract Description

In this section, we will consider a fragment of TINY which partially evaluates a Scheme expression in

an environment mapping Scheme identi�ers to specialization-time values, returning a specialization-

time value. We are primarily interested in how TINY makes reduce/residualize decisions, so that

we can examine whether these decisions can be made at the time TINY is specialized. In a

�rst-order language, the interesting reduce/residualize decisions are at conditionals and primitive

applications; we will ignore (for now) how the specializer makes generalization decisions, and how

it creates, caches and re-uses specializations of user functions.

For brevity, our description will be couched in a denotational-semantics-like language similar to

that used in [6], with double brackets around Scheme syntactic objects. Injection and projection

functions for sum domains will be omitted. Of course, the real specializer is written in Scheme and

operates on (preprocessed) Scheme programs.

TINY represents each specialization-time values as a pe-value (an element of the domain PE-

Value), as shown in Figure 1. Static values (those known at specialization time) are represented

as Scheme values, while dynamic values (those unknown at specialization time) are represented as

source language expressions. In the latter case, the expression will compute the runtime value(s)

of the specialization-time value. We assume the existence of some helper functions for looking up

identi�ers in an environment and for coercing values to constant expressions. The fragment of TINY

shown in Figure 2 partially evaluates expressions. The function PE takes a Scheme expression and

an environment mapping each Scheme identi�er to a pe-value, and returns a pe-value.

TINY's online nature can easily be seen in the code for processing if expressions. After partially

evaluating the test expression, e1, the specializer tests the resultant pe-value, p1, to see if it is a

value (i.e., static). If the value is static, it is used to partially evaluate one of the two arms;

otherwise, both arms are partially evaluated and a residual if expression is returned. Similarly,

the code for processing car and cdr expressions tests the pe-values obtained by partially evaluating

the argument expressions. If we construct a program generator by specializing TINY, we would
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Domains

e 2 Exp expressions (source and residual)

x 2 Id identi�ers

v 2 Val scheme denotable values

p 2 PEVal = Val + Exp specialization-time values

env 2 Env = Var ! PEVal specialization-time environments

Valuation Functions

PE : Exp ! Env ! PEVal partially evaluate an expression

lookup : Id ! Env ! PEVal look up an identi�er

resid : PEVal ! Exp coerce a value to an expression

car : Val ! Val primitive

cons : Val ! Val ! Val primitive
...

Figure 1: Domains and Valuation Functions for TINY

PE [[(quote v)]] env = v

PE [[x]] env = lookup[[x]] env

PE [[(if e1 e2 e3)]] env = let p1 = PE [[e1]] env in

p1 2Val !

(p1 = true ! PE [[e2]] env, PE [[e3]] env),

let p2 = PE [[e2]] env

p3 = PE [[e3]] env

in [[(if p1 (resid p2) (resid p3))]]

PE [[(car e1)]] env = let p1 = PE [[e1]] env in

p1 2Val ! (car p1), [[(car p1)]]

PE [[(cons e1 e2)]] env = let p1 = PE [[e1]] env

p2 = PE [[e2]] env

in (p1 2Val) ^ (p2 2Val) !

(cons p1 p2),

[[(cons (resid p2) (resid p3))]]
...

resid p = p 2Val ! [[(quote p)]], p

Figure 2: Fragment of TINY
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like to eliminate not only the syntactic dispatch on the �rst argument of PE, but also as many of

these (p 2Val) tests as possible. This elimination is the topic of Section 2.

1.2 Implementation Description

The abstract description of TINY omits details relating to concrete data representations, function

application, construction and caching of function specializations, and termination. Because these

details a�ect program generator generation, we address them brie
y here.

1.2.1 Data Representations

TINY represents source and residual expressions as abstract syntax trees, which are uninteresting

relative to our discussion. The choice of a representation for specialization-time values, namely

the pe-values, is important. The type PEVal is a disjoint union of Scheme values and expressions;

one obvious way to implement it is with a tagged record, namely either (static <value>) or

(dynamic <expression>). Many online specializers, such as the one of [7] and the simple online

partial evaluation semantics of [15] capitalize on a relationship between expressions and values,

namely, that constant expressions of the form (quote <value>) are capable of representing values.

Thus, they can omit the tag, and can check the \static-ness" of a value merely by checking to

see if it is a pair whose car is the symbol quote. We will see later (c.f. Section 2.2.1) that this

optimization makes e�cient program generator generation far more di�cult; thus, TINY does not

use it.

(We're still being a bit dishonest here: TINY doesn't actually implement a pe-value as a tag

followed by a value or a residual code expression, it implements it as a tag followed by a value

and a residual code expression, similar to the symbolic value objects of FUSE [54, 55]. This is

necessary if partially static values are to be allowed, since the description of the value (e.g., a pair

whose car is 4 and and whose cdr is unknown) may not be deducible from its residual code (e.g.,

(cdr (foo x))). Since this additional mechanism is necessary only for code generation, and not

for making reductions, we can, without loss of generality, ignore it for the remainder of the paper.

We presented it here only so that the descriptions of partially static encodings in Section 3.2, which

also omit code generation details, won't seem strange.)

1.2.2 Function Application

The description in Figure 2 doesn't describe the treatment of user functions. Basically, all that needs

to be done is to add an extra parameter representing a set of (function name; function de�nition)

pairs to the semantics, and to have the semantic function implementing function application look

up the function name in this set. After the appropriate formal/actual bindings are added to the

environment, the unfolded/specialized body can be constructed via a recursive invocation of the

specializer (i.e., a call to the valuation function PE of Figure 2).

1.2.3 Specialization

TINY is a polyvariant program point specializer [8, 30]; that is, it constructs specializations of

certain program points (in this case, user function applications) and caches them for potential re-

use at other program points (function applications with equivalent argument vectors). TINY builds
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specializations in a depth-�rst manner; it does this by adding a single-threaded cache parameter to

the semantics, and posting \pending" and \completed" entries to the cache for each specialization

before and after it is completed, respectively.5. When the specialization process is complete, the

cache will contain de�nitions for the specialization of the goal function, and any specialization

it may (transitively) invoke. The code generator uses these de�nitions to construct the residual

program.

1.2.4 Termination

In order to terminate, TINY needs to build a �nite number of specializations, each of �nite size. The

latter can be achieved by limiting the amount of unfolding performed, while the former requires that

specializations be constructed only on a �nite number of di�erent argument vectors. Most online

specializers implement these restrictions using a combination of static annotations (�niteness asser-

tions and argument abstraction) and dynamic reasoning (call stacks, induction detection, argument

generalization, and explicit �lters). TINY uses static annotations for both types of restrictions.

Each user function is tagged with a 
ag specifying whether it is to be unfolded or specialized, while

each formal parameter is tagged with a 
ag specifying whether it should be abstracted to \dynamic"

before specialization is performed. Since much of the power of online specialization derives from

its use of online generalization rather than static argument abstraction [45, 46] this might make

TINY appear overly simplistic. This is not the case, as adding online termination mechanisms

(at least simple ones) does not appreciably increase the di�culty in obtaining an e�cient program

generator. In Section 3.1, we will show that is is the case.

1.3 Example

In this section, we show two examples of TINY in action. The �rst example shows the specialization

of a very small fragment of a hypothetical interpreter, which is rather small and unrealistic, but

will be useful later as an example for program generator generation. Our second example shows

the specialization of an interpreter for a small imperative language.

1.3.1 Interpreter fragment example

Consider an interpreter for a small imperative language which maintains a store represented as

two parallel lists: names, which holds a list of the identi�ers in the program being interpreted, and

values, which holds a list of the values bound to those identi�ers. Assume that the interpreter

contains an expression of the form (cons (car names) (car values)); this might be part of a

routine to construct an association list representation of the store to be used as the �nal output of

the interpreter. (The expression (cons (car names) (car values)) is a standard example; we

are following the treatment of [7, 6, 20]. The real purpose of such an expression is irrelevant; all

that is important is that the binding times of names and values di�er at the time the interpreter

is specialized.)

When the interpreter is specialized on a known program but unknown arguments, the list names,

which is derived from the program, will be static, but the the list values, which is derived from the

arguments, will be dynamic. Thus, the specializer will generate a residual constant expression for

5For a more formal description of a single-threaded cache, see [15].
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(lambda (names values) (cons (car names) (car values)))

Figure 3: A fragment of a hypothetical interpreter

(car names), and residual primitive operations for (car values) and (cons (car names) (car

values)).

Rather than examining the entire interpreter, we will abstract this small fragment into a separate

program (Figure 3). We can use TINY to specialize this program on names=(a b c) and values

unknown by executing the form

(tiny fragment-program (list (make-static-peval '(a b c))

(make-dynamic-peval)))

TINY returns a residual program expressed as a cache; after simple postprocessing (not including

dead parameter removal or arity raising), we obtain

(lambda (names values) (cons 'a (car values)))

which is what we expected. We will return to this example in Section 2, where we will generate a

program generator for this fragment by specializing TINY on the fragment and unknown inputs.

1.3.2 MP interpreter example

In this paper, we are not particularly concerned with the e�ciency of the specializations con-

structed by TINY; Instead, we will concern ourselves with the e�ciency of the specialization process

itself, and the gains to be obtained by program generator generation. However, we would like to

show that TINY is indeed a realistic program specializer. To this end, we will show the operation

of TINY on an interpreter for a small imperative language.

The MP language [50] is a small imperative language with if and while control structures,

which has become the \canonical" interpreter example for specializers. Figure 4 shows an interpreter

for this language; it traverses the MP program's commands and expressions in a straightforward

recursive-descent manner, while passing a single-threaded representation of the program's store.

Because TINY doesn't handle partially static structures, the interpreter represents the store as two

parallel lists, one (static) list for the names, and another (potentially dynamic) list for the values.

When we specialize the MP interpreter on a known program and an unknown input, we expect

that all reductions depending solely on the static data (i.e., on the program text) will be performed.

Thus, all syntactic dispatch should be eliminated, while store operations should be implemented

as open-coded tuple operations. This is exactly what happens; if we specialize an MP program to

compare the lengths of two lists:
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(letrec
((mp (lambda (program input)

(let ((parms (cdr (cadr program)))
(vars (cdr (caddr program)))
(main-block (cadddr program)))

(mp-command main-block (init-names parms vars) (init-vals parms vars input)))))

(init-names (lambda (parms vars)
(if (null? parms)

(if (null? vars)
'()
(cons (car vars) (init-names parms (cdr vars))))

(cons (car parms) (init-names (cdr parms) vars)))))

(init-vals (lambda (parms vars input)
(if (null? parms)

(if (null? vars)
'()
(cons '() (init-vals parms (cdr vars) input)))

(cons (car input) (init-vals (cdr parms) vars (cdr input))))))

(mp-command (lambda (com names vals)
(let ((token (car com)) (rest (cdr com)))
(cond
((eq? token ':=)
(let ((new-value (mp-exp (cadr rest) names vals)))
(update names vals (car rest) new-value)))

((eq? token 'if)
(if (mp-exp (car rest) names vals)

(mp-command (cadr rest) names vals)
(mp-command (caddr rest) names vals)))

((eq? token 'while) (mp-while com names vals))
((eq? token 'begin)
(mp-begin rest names vals))))))

(mp-begin (lambda (coms names vals)
(if (null? coms)

vals
(mp-begin (cdr coms) names (mp-command (car coms) names vals)))))

(mp-while (lambda (com names vals)
(if (mp-exp (cadr com) names vals)

(mp-while com names (mp-command (caddr com) names vals))
vals)))

(mp-exp (lambda (exp names vals)
(if (symbol? exp)

(lookup exp names vals)
(let ((token (car exp))

(rest (cdr exp)))
(cond ((eq? token 'quote) (car rest))

((eq? token 'car) (car (mp-exp (car rest) names vals)))
((eq? token 'cdr) (cdr (mp-exp (car rest) names vals)))
((eq? token 'atom) (not (pair? (mp-exp (car rest) names vals))))
((eq? token 'cons)
(cons (mp-exp (car rest) names vals)

(mp-exp (cadr rest) names vals)))
((eq? token 'equal)
(equal? (mp-exp (car rest) names vals)

(mp-exp (cadr rest) names vals))))))))

(update (lambda (names vals var val)
(let ((binding (car names)))
(if (eq? binding var)

(cons val (cdr vals))
(cons (car vals) (update (cdr names) (cdr vals) var val))))))

(lookup (lambda (var names vals)
(let ((binding (car names)))
(if (eq? binding var)

(car vals)
(lookup var (cdr names) (cdr vals)))))))

mp)

Figure 4: Interpreter for MP
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(letrec

((mp-while3

(lambda

(vals)

(if

(caddr vals)

(mp-while3

(cond

((car vals)

(if

(cadr vals)

(cons (cdar vals) (let ((T44 (cdr vals))) (cons (cdar T44) (cdr T44))))

(cons

(car vals)

(let ((T68 (cdr vals))) (list* (car T68) '() 'a (cdddr T68))))))

((cadr vals)

(cons

(car vals)

(let ((T93 (cdr vals))) (list* (car T93) '() 'b (cdddr T93)))))

(else

(cons

(car vals)

(let ((T119 (cdr vals))) (list* (car T119) '() 'ab (cdddr T119)))))))

vals)))

(mp2

(lambda

(input)

(mp-while3

(let

((T22 (list* (car input) (cadr input) '(() ()))))

(cons

(car T22)

(let ((T23 (cdr T22))) (list* (car T23) '#T (cddr T23)))))))))

mp2)

Figure 5: Specialized MP interpreter obtained using TINY
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(program (pars a b) (dec flag out)

(begin

(:= flag '#t)

(while flag

(if a

(if b

(begin (:= a (cdr a))

(:= b (cdr b)))

(begin (:= out 'a)

(:= flag '())))

(if b

(begin (:= out 'b) (:= flag '()))

(begin (:= out 'ab) (:= flag '())))))))

we obtain a specialized interpreter containing only operations pertaining to the values of the identi-

�ers in the program (Figure 5); all syntax and name list comparison operations have been reduced.

Under interpreted MIT Scheme, executing the specialized interpreter is approximately 6 times faster

than executing the original interpreter on the comparison program. Larger MP programs (or larger

inputs to them) produce better speedups. In this paper, we are not particularly concerned with the

bene�ts of specializing interpreters, which are well understood. From now on, we will concentrate

only on the e�ciency of specializations of TINY, rather than on specializations constructed by

TINY.

2 Program Generator Generation

Having described our simple online partial evaluator, we now turn our attention to producing

program generators by specializing it. As we shall soon see (c.f. Section 2.2), TINY is insu�ciently

powerful to produce an e�cient program generator when self-applied; constructing an e�cient

program generator from TINY will require the use of a more powerful specializer. By the end of

this section, we will know powerful that specializer must be; for now, we assume the existence of

a procedure specialize, which takes as arguments the Scheme program to be specialized, and

the argument values on which it is to be specialized. To avoid concerning ourselves with this

(hypothetical) specializer's representations, we will assume (for now) that, for input purposes, it

uses ordinary Scheme values for static values, and <dynamic> for dynamic values.

We begin by demonstrating the specialization of TINY on a known program and a completely

unknown input speci�cation. We will see that, because this approach fails to specify the binding

times of the elements of the input speci�cation, it generates an overly general program generator.

The remainder of this section will describe how the binding time information can be represented

and maintained, and will give several examples of the generation of e�cient program generators

from TINY.

2.1 The problem of excessive generality

We will begin by considering the interpreter fragment from Section 1.3. We can accomplish this by

specializing TINY on the interpreter fragment and a dynamic6 argument list, as in

6In this instance, \dynamic" means unknown at program generator generation time, not at program generation

time. That is, the specializer used to specialize TINY knows nothing about the value passed as TINY's second actual
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PE(cons (car names) (car values)) env = let p01 = let p1 = lookupnames env in

p1 2Val ! (car p1), [[(car p1)]]

p02 = let p2 = lookupvalues env in

p2 2Val ! (car p2), [[(car p2)]]

in (p01 2Val) ^ (p02 2Val) !

(cons p01 p02),

let p001 = p01 2Val ! [[(quote p01)]], p
0

1

p002 = p02 2Val ! [[(quote p02)]], p
0

2

in [[(cons p001 p002)]]

Figure 6: Fragment of overly general program generator constructed from TINY

(specialize tiny-program fragment-program <dynamic>).

Consider what happens as TINY is specialized. At best, the specializer can execute all of those

operations in TINY's implementation which depend solely on its program input, and on constants

in TINY itself. Referring to the description of Figure 2, we can see that the syntax dispatch (all

matching of arguments in [[]] brackets) can be eliminated. Also, if specialize implements partially

static structures (or if TINY's implementation maintains the specialization-time environment as

two lists, one for the names and one for the values) environment accesses can be reduced to �xed

chains of tuple accesses (allowing for other optimizations such as arity raising). However, none of

the static/dynamic tests (i.e., those of the form p1 2Val) or any of the primitive operations (i.e.,

(p1= true), (car p1), or (cdr p1)) can be reduced. Of the semantic parameters omitted in Figure 2,

the table of function de�nitions is available, and thus user function lookups can be reduced, but the

specialization cache is dynamic, and thus all cache lookups remain residual. An abstract fragment

of the resultant program generator is shown in Figure 6. To indicate calls to a specialized version of

a semantic function, we subscript the function name with the argument on which it was specialized.

Code of this form is obtained when TINY is self-applied; using a more powerful specializer

to specialize TINY on this program does not provide any additional improvement because the

necessary binding time information is simply not available.

The program generator of Figure 6 is similar to that obtained by the DIKU researchers [7, 6]

when self-applying a simple online specializer on an interpreter. We can view a program generator

constructed from an interpreter as a \compiler," since it maps a program written in the language

implemented by the interpreter (perhaps a small imperative language; let's call it L) into the

language used to implement the interpreter (Scheme).7 Unfortunately, our program generator isn't

a very e�cient compiler; it's overly general. In particular, it doesn't know that, at compilation

time, the program input will always be static, and the data input will always be dynamic. That is,

both

parameter.
7Of course, this isn't really the case. Much of the complexity of \real" compilers lies in dealing with resource

allocation issues, such as register allocation, memory management, and the like, which have not been addressed by

interpreter-based program generation techniques because it's di�cult to expose such issues in an interpreter.
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(program-generator L-program <dynamic>)

and

(program-generator <dynamic> L-inputs)

are perfectly legal invocations of the program generator. The �rst takes an L-program and returns

a Scheme program which maps a list of inputs to the L-program into the output of the L-program;

this is what we commonly think of as compilation. The second takes a list of inputs and returns

a Scheme program which takes an L-program and applies it to those inputs; this isn't particularly

useful since very few (if any) expressions in the interpreter depend on the inputs alone, meaning that

the program returned by the program generator is unlikely to be faster than the original interpreter

for L. Indeed, our program generator is not a compiler, but instead a specializer specialized on a

particular program (the interpreter) but not on any particular argument vector for that program.

Thus, the program generator must, by de�nition, be prepared to accept any argument vector, be

its elements static or dynamic.

In other words, we got what we asked for; we just asked for the wrong thing. How can we

remedy this situation? The answer is that if we want the program generator to have, \built-in,"

certain assumptions about the binding times of the arguments to the interpreter, we must provide

that binding time information to TINY at the time the program generator is constructed. We know

of two ways of providing this information:

1. As binding time annotations on the L-interpreter: the L-interpreter is augmented with

a set of annotations which specify the binding times of each expression in the interpreter;

the specializer uses these to make its reduce/residualize decisions. Since the interpreter

source (and its binding time annotations) are available when the specializer is specialized, all

computations depending solely on the binding time annotations are reduced, and the resultant

program generator contains no binding time computations whatsoever. This is the major

rationale behind the development of o�ine specialization techniques [31, 7, 6, 38]. O�ine

specialization solves the generality problem with relatively little added mechanism in the

specializer (indeed, o�ine specializers are usually smaller than their online counterparts, since

specialization-time values no longer need be tagged). Unfortunately, the need to compute the

binding time annotations prior to specialization time introduces certain inaccuracies and

makes certain optimizations di�cult, if not impossible [45].

2. As part of the arguments on which TINY specializes the L-interpreter: instead of

specifying <dynamic> as the type of TINY's second argument (the argument vector to the

L-interpreter), specify the binding time of each argument, leaving the values dynamic. That

is, instead of executing

(specialize tiny-program fragment-program <dynamic>).

to construct the program generator, instead use8

8Note that make-static-peval and make-dynamic-peval are abstractions speci�c to TINY, not to specialize.

We are embedding the meta-value <dynamic>, which is an abstraction of specialize, in the value slot of a TINY

pe-value.
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(define names (make-static-peval <dynamic>))

(define values (make-dynamic-peval))

(specialize tiny-program fragment-program (list names values))

which indicates that the names argument to fragment will be static and the values argument

will be dynamic at program generation time (when the specialized version of TINY runs). At

program generator generation time (when specialize runs), we don't know what the static

value of the names argument to fragment is ; we only know that it's static. Thus, the pe-value

on which TINY is specialized contains a tag of static but a value of <dynamic>. In e�ect,

the values on which TINY is symbolically executed by specialize mirror those on which

TINY was executed in the invocation of TINY on fragment-program on page 8, except that

the value attribute of the i.e., pe-value representing the static �rst argument (i.e., '(a b c))

has been replaced by an attribute which is dynamic at program generator generation time,

but which will be known when the specialized version of TINY runs (i.e., <dynamic>).

This solution also produces the desired result, but without the conceptual overhead or ac-

curacy limitations of binding time annotations. It does, however, require signi�cant addi-

tional complexity in the specializer used to construct the program generator (our hypothet-

ical specialize), relative to TINY or to o�ine specializers.9 The remainder of this section

describes these additional requirements on the specializer.

2.2 Program generator generation without binding time approximations

The second solution to the problem of an excessively general program generator worked by spec-

ifying the binding times of the pe-values passed to TINY, but leaving the values of the pe-values

unspeci�ed. This, in and of itself, is not su�cient to assure that the resultant program generator

will contain no unnecessary binding-time-related reductions. There are two issues which must be

addressed:

� Representing the binding time information, and

� Preserving the binding time information

We will deal with each of these issues in turn.

2.2.1 Representing binding time information

The essence of our method is that TINY's pe-value objects represent both a binding time and a

value or residual code expression. By embedding a (specializer specialization time) dynamic value

inside a (specialization time) pe-value, we can communicate the binding time information attribute

of the pe-value without being forced to specify the value/expression attribute.

One consequence of this encoding scheme is that the specializer (specialize) used to construct

the program generator must be able to represent partially static values. That is, it must be able

to represent a TINY pe-value of the form (static <dynamic>) (i.e., a list whose �rst element is

the symbol static and whose second element is unknown). Without partially static structures,

9If self-application is desired, then these complexity requirements also apply to the specializer being specialized.
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specialize would represent such a pe-value as <dynamic>, at which point the binding time infor-

mation would be lost, and we would once again obtain an overly general program generator. It

might at �rst appear that we could use a binding time separation technique, similar to the parallel

name/value lists used to represent stores in interpreters. That is, we could separate the tag and

value/expression �elds of a pe-value into two separate values, so that the dynamic nature of the

values at program generator generation time won't pollute the static tags. This is, in e�ect, what is

performed by o�ine partial evaluation strategies, which separate binding time tags from the input

values, attaching them to the program instead.

The problem with such a \separation" approach is that it only works if all of the binding time

tags are static; as soon as a single binding time tag becomes <dynamic> at program generator

generation time under a non-partially-static specializer, the entire binding time environment will

be seen as dynamic, and all binding-time-related reductions will be delayed until program genera-

tion time. Since some binding times cannot be fully determined until the specialized TINY runs

(e.g., values returned out of static conditionals with one dynamic arm, values produced by online

generalization, values returned from primitives which perform algebraic optimizations, etc; see [45]

for more detailed examples), some of the program generator generation-time representations of pe-

values will indeed have dynamic binding time tags. Gl�uck's \online BTA" strategy [20] avoids this

problem by calculating binding time tags only from other binding time tags. Since all such calcu-

lations are, by de�nition, static, and thus performable at program generator generation time, the

resultant program generator will contain no residual binding time reductions. The cost, however,

is the same as that of o�ine BTA; binding times calculated using only knowledge of other binding

times (and not of specialization-time values) are necessarily conservative and inaccurate. Program

generators constructed in this manner will be unable to make certain optimizations because they

will incorporate overly general binding time assumptions.

Thus, we see that, in order build e�cient program generators from true online specializers like

TINY, the \outer" specializer specialize must handle partially static structures.

Another representation problem has to do with TINY's choice of a specialization-time repre-

sentation for runtime values, pe-values. At program generator generation time, we distinguish four

di�erent categories of pe-values:

1. Known binding time, known value/expression,

2. Known binding time, unknown value/expression,

3. Unknown binding time, known value/expression, and

4. Unknown binding time, unknown value/expression

Choices (1) and (4) are both easy to implement, since in (1), the pe-value is completely static, and

can be easily represented, while in (4), the pe-value can be represented by <dynamic>. Choice (3)

is unrealistic, since (at least in the non-partially-static version of TINY) the value/expression is

su�cient to allow the binding time to be deduced. The problem, then, is how to represent pe-values

with known binding times but unknown value/expression �elds.

Recall that, in Section 1.2.1, we noted that a pe-value is a disjoint union of a value and ex-

pression, which has several possible representations. TINY uses a representation which separates

the union tag from the value/expression �eld; this allows us to provide a static tag and a dynamic

value/expression. An alternate representation used in some specializers optimizes space usage by
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using constant expressions of the form (quote <value>) to denote static values. Thus, a static pe-

value is denoted by a quote expression, while a dynamic pe-value is denoted by a variable, if, let,

or call expression. Unfortunately, this allows us to denote, at program generator generation time,

a static pe-value with a dynamic value (i.e., (quote <dynamic>) but does not allow us to denote a

dynamic pe-value with an unknown residual code expression, because the dynamic binding time can-

not be distinguished from the expression. To handle this encoding, the outer specializer specialize

would have to be able to denote either negations (i.e., not (quote <value>)) or disjoint unions

(i.e., <dynamic-symbol> or (if . <dynamic>) or (let . <dynamic>) or (call . <dynamic>));

such technology is not presently available. Thus, we will use the (<tag> <value/expression>)

encoding of TINY, which requires only that specialize handle partially static structures.

2.2.2 Preserving binding time information

The representational details described in the previous subsection, namely the use of a

(<tag> <value/expression>) encoding for TINY pe-values, and the handling of partially static

structures in specialize, are su�cient to generate e�cient program generators for many programs,

including the interpreter fragment of Section 1.3.1. However, without additional mechanisms in

specialize, some programs will still lead to ine�cient program generators. The problem arises

when specialize builds a residual loop; if the usual strategy of returning <dynamic> out of all

calls to residual procedures is used, binding time information will be lost at that point. Consider

the append program:

(define (append a b)

(if (null? a)

b

(cons (car a) (append (cdr a) b))))

Suppose that we specialize TINY on this program, with a known to be static (but with unknown

value) and b known to be a particular static value. During program generator generation, TINY will

attempt to unfold the append procedure repeatedly on its static �rst argument. Since the value

of that argument is unknown, specialize will build a specialized version of TINY's unfolding

procedure, specialized on the append procedure and an environment where a and b are bound to

values with static binding times. This specialized unfolder will contain a recursive call to itself;

which, for the program generator to be e�cient, must be shown to return a static value. Otherwise,

the program generator will contain code for the case where the return value is dynamic, even though

it will always be static. Figure 7 shows examples of program generators for append obtained with

and without return value reasoning in specialize. Note that this is not a problem for o�ine

specializers because (an approximation to) the binding time of append's return value is computed

prior to specialization; the reduce/residualize decision for cons is made by consulting this binding

time annotation rather than the return value of the specialized unfolder.

Of course, it is unlikely that anyone would choose to build a program generator for append.

However, similar recursive procedures appear frequently in realistic programs like interpreters.

For example, the procedure init-names in the MP interpreter of Figure 4 constructs the list of

identi�ers in the store by recursively traversing a portion of the source program which is static, but

with an unknown value, at program generator generation time. This reduces to the same problem

as the append example above.
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PE(append a b) env = let p = lookupa env in

(null? p) ! (1 2),

let env0 = updatea env (cdr p) in

let p0 = PE(append a b) env
0) in

(p' 2Val) ! (cons (car p) p0 ),

[[(cons (car p) p0)]]

Program generator fragment obtained without return value reasoning

PE(append a b) env = let p = lookupa env in

(null? p) ! (1 2),

let env0 = updatea env (cdr p) in

(cons (car p) (PE(append a b) env
0))

Program generator fragment obtained with return value reasoning

Figure 7: Results of specializing TINY on the append program with and without return value

reasoning in specialize. At program generator generation time, append's �rst argument is known

to be static, but with a dynamic value; its second argument is known to be the static list '(1 2).
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PE(cons (car names) (car values)) env = let p1 = lookupnames env in

p2 = lookupvalues env in

in [[(cons (quote (car p1)) (car p2))]]

Figure 8: Fragment of an e�cient program generator constructed from TINY

;;; executes in an environment where T14 is bound to the pe-value for "names"

;;; (cadr T14) returns the value slot of this pe-value

;;; thus (caadr T14) returns the car of "names"

;;; note that no binding time tags are examined

(list '(dynamic ()) ; build a dynamic pe-value

(list 'code-prim-call ; which is a call

'(code-identifier cons) ; to the primop cons

(cons (list 'code-constant (caadr T14)) ; on a constant (car names)

'((code-prim-call (code-identifier car) ; and a call to car

((code-identifier values))))))) ; on identifier values

Figure 9: The fragment of Figure 8, expressed as a Scheme program

Thus, our hypothetical specializer specialize must be able to infer information about static

portions of values returned by calls to specialized procedures.10 When we consider more powerful

versions of TINY (c.f. Section 3), we will need corresponding improvements in the information

preservation mechanisms of specialize.

2.2.3 Example

Thus, we have seen that specialize must handle partially static structures and must be able

to infer information about static portions of values returned by calls to specialized procedures. The

online specializer FUSE [55, 46] meets both of these requirements, so we can use it to specialize

TINY.

Now that we have the tools we need, we can demonstrate the generation of an e�cient program

generator for the interpreter fragment of Figure 3, obtained by specializing the online specializer

TINY with the online specializer FUSE.11 Executing the forms

(define names (make-static-peval <dynamic>)

(define values (make-dynamic-peval))

(specialize tiny-program fragment-program (list names values))

10If TINY were written in a truly tail-recursive style, such as continuation-passing style, specializewould not have

to reason about return values, but would instead have to reason about static subparts of arguments to continuations

with multiple call sites, which is a problem of similar di�culty. See [46, 44] for examples.
11What's important here is that TINY is online; it doesn't matter whether the specializer used to specialize it is

online or o�ine, as long as it is su�ciently powerful. However, we do believe that the criteria for specialize are

easier to achieve using online techniques.
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returns an e�cient program generator which has, \built-in," not only the syntactic dispatch and

static environment lookup, but also the binding times of names and values. An abstract version

of a fragment of this program generator is shown in Figure 8; the corresponding Scheme code

from the actual program generator is shown in Figure 9. The e�ciency of this program generator is

comparable to that of one produced by specializing an o�ine specializer on the same fragment [7, 6],

with the exception of an additional tagging operation to inject the returned residual code fragment

into a dynamic pe-value.

2.3 Examples

In this section, we give several examples of program generators constructed by specializing TINY

on inputs with known binding times, and analyze their performance relative to \naive" program

generators constructed on inputs with unknown binding times. The text of these program genera-

tors is large and fairly uninteresting, so we will instead describe the program generators in terms

their sizes, speeds, and the number of binding time comparisons they perform.

2.3.1 The tests

We tested our program generator generation method on three programs: the append program, a

regular expression matcher, and the MP interpreter. We constructed a program generator for each

of these programs by using FUSE to specialize TINY on that program, and on the binding time

values of its inputs. We ran the resultant program generators on one or more actual inputs, and

compared the runtime with that of running TINY on the programs and their inputs directly. The

example suites were:

� append: The program generator was constructed by specializing TINY on the append pro-

gram, a static12 �rst input, and a dynamic second input. The program generator was executed

on two inputs:

{ append(1): �rst argument = '()

{ append(2): �rst argument = '(1 2 3 4 5 6)

� matcher: The program generator was constructed by specializing TINY on the regular

expression matcher program, a static pattern, and a dynamic input stream. The program

generator was executed on one input:

{ matcher: pattern = a(b+ c)�d

� interpreter: The program generator was constructed by specializing TINY on the MP in-

terpreter, a static program and a dynamic input. The program generator was executed on

two inputs:

{ interpreter(1): program = comparison program (c.f. Page 11)

{ interpreter(2): program = exponentiation program (c.f. [6])

12We mean, known to be static, but with value unknown until program generation time.
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2.4 Results

Before we continue, we should note that the specialized programs obtained by direct specialization,

execution of an e�cient program generator, and execution of a naive program generator were

identical, modulo renaming of identi�ers. This renaming arises because TINY uses a side-e�ecting

operation, gensym, to create identi�ers, and FUSE does not guarantee that the e�ect of such

operations will be identical in the source program (TINY) and the residual program (the program

generators). If TINY were purely functional, the specialized programs obtained by all three means

would be, by de�nition, identical.

The program generators produced for the append and matcher examples contained no residual

binding time tests outside of the cache lookup routine, which must compare binding time tags

because it is comparing tagged values.13 The program generator produced for the MP interpreter

does contain binding time checks for operations depending on values in the store (in Figure 4, all

code depending on the formal parameter vals) because it cannot be shown at program generation

time that this value is dynamic. If the MP program being interpreted doesn't declare any input

variables (i.e., it computes a constant value), then its store will be static even if its input is

dynamic. Thus, the generated program generator is willing to make reductions based on known

values in the store even though the entire store might not be static.14 These tests can be eliminated

by manually inserting generalization operations, but their elimination does not signi�cantly alter

the performance of the program generator.

A comparison of the speed of the specializer and our program generators is shown in Figure 10.

The speedup ratios, ranging from 3.5 to 20.9,15 are competitive with those reported by other work

on program generator generation [31, 6, 38].

These �gures describe bene�ts due to the use of a program generator, but do not indicate how

much of this bene�t is due to the use of an e�cient program generator. To determine this, we con-

structed naive program generators from TINY by specializing it on completely (program generator

generation time) dynamic arguments, and compared the performance and size of the resultant pro-

gram generators with the e�cient program generators constructed above. The results (Figure 11)

show that the naive program generators are slower than their e�cient counterparts, but are still

signi�cantly faster than direct specialization. Of the speedup obtained over direct specialization,

0-46% is traceable to the incorporation of binding time information (and the elimination of binding

time reductions). The size ratios are more striking: the naive program generators are 2-37 times

larger than the e�cient program generators. These numbers are larger than those reported in [6],

presumably because Similix factors out primitives into abstract data types (which results in oper-

13In a polyvariant online specializer, the cache entries for di�erent specializations of the same procedure may have
di�erent binding time signatures; thus, the cache lookup code must compare those signatures, which are not available

until program generation time (since the cache contents are dynamic at program generator generation time). This

tagging problem does not occur in o�ine specializers, even those with polyvariant BTA, because all polyvariance with
respect to binding time signatures has been expressed via duplication at BTA time. When specializing any particular

call site, the specializer (program generator) need only consult a cache, all of whose keys have binding time signatures

known to be equivalent to the signature of the arguments at the call site. Thus, no tag checks are required.
14This makes a lot more sense if the specializer handles partially static structures; TINY will only be able to

perform such \optimization" reductions when the entire store is static.
15This wide variance can be accounted for by noting that only some portion of the program generator's runtime

depends on its inputs; for small inputs, the overhead of cache manipulations, etc, which cannot be optimized to the

same degree as syntactic dispatch, will dominate. For example, as the static input to the program generator for

append increases in length, the amount of time spent in the (highly optimized) unfolding procedure increases.

20



program time to specialize time to specialize speedup

using TINY using program generator

append(1) 14 4.0 3.5

append(2) 143 7.3 19.6

matcher 401 71.0 5.6

interpreter(1) 2449 119.0 20.6

interpreter(2) 4346 208.0 20.9

Figure 10: Speedups due to program generator generation, for various examples. All times are

given in msec, and were obtained under interpreted MIT Scheme 7.1.3 on a NeXT workstation.

The times given are the average over 10 runs, and are elapsed times (no garbage collection took

place). The corresponding times for compiled MIT Scheme are 5-35 times faster, with somewhat

lower (approx. 30% lower) speedup �gures, presumably due to constant folding, inlining, and other

partial evaluation optimizations present in the compiler. Timings include only specialization, not

pre- or postprocessing.

program time (naive) time (e�cient) speedup

append(1) 4.1 4.0 1.0

append(2) 13.3 7.3 1.8

matcher 98.3 70.8 1.4

Comparison of execution times or naive and e�cient program generators

program size (naive) size (e�cient) size ratio

append 1071 428 2.5

matcher 32983 874 37.7

Comparison of sizes of naive and e�cient program generators.

Figure 11: Comparison of execution times and sizes of naive and e�cient program generators. We

were unable to construct a naive program generator for the MP interpreter within a 32MB heap;

thus, no data are provided for this case. Times are in msec, while sizes are in conses.
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ations like peval-car or car in the program generator), while FUSE beta-substitutes the entire

bodies of TINY's primitives. The naive program generators also took correspondingly longer to

generate: specialization of TINY with FUSE took 1.2-5.9 times longer, and code generation up to

81 times longer (due to ine�ciencies in the current implementation of the FUSE code generator).

Large program generators can cause other problems with the underlying virtual machine; e.g., we

were unable to compile the naive program generator for the matcher, which contained a 7000-line

procedure, in a 32MB heap.

Thus, we see the bene�ts of restricting the generality of program generators by providing binding

time information at program generator generation time.

3 Extensions

The program specializer TINY used in the experiments of Sections 2 and 2.3 is very simple. In

this section, we describe several classes of extensions to TINY, and how they a�ect the di�culty

of producing e�cient program generators by specializing TINY. We begin (Section 3.1) by adding

online generalization, then partially static structures (Section 3.2). Section 3.3 treats two other

mechanisms, induction detection and �xpoint iteration, used in online specializers, while Section 3.4

summarizes the di�culties in specializing online specializers, and what is needed to solve them.

3.1 Online Generalization

As described in Section 1, TINY uses an o�ine strategy for limiting unfolding and for limiting

the number of specializations constructed: procedures are explicitly annotated as unfoldable or

specializable, and parameters are explicitly annotated as whether they should be abstracted to

\dynamic" before specialization is performed.

In [45], we argued that one of the main strengths of online program specializers is their ability to

perform generalization operations online. Specializers with such a mechanism discard information

only when necessary to achieve termination, retaining static values which are common to multiple

call sites sharing the same specialization. Thus, it would be desirable if such mechanisms did not

have adverse e�ects on the generation of program generators.

We extended TINY to perform online generalization as follows. Each formal parameter of each

user function de�nition is annotated according to whether it is guaranteed to assume only a �nite

number of values at specialization time (such annotations can be computed o�ine, as in [26]).

The specializer maintains a stack of active procedure invocations; if it detects a recursive call

with identical �nite arguments, it builds a specialization on the generalization of the argument

vectors of the initial and recursive calls; otherwise, it unfolds the call. For e�ciency's sake (i.e.,

to reduce the size of the stack, and the cost of traversing it at specialization time) we also add

an annotation to calls which will always be unfoldable (this can also be computed statically; any

nonrecursive procedures, or procedures whose recursion is controlled by �nite parameters, can

always be unfolded). Because TINY doesn't implement partially static structures, the output of

generalization is almost always \dynamic," so there is less to be gained by online generalization

than in partially static/higher-order specializers like FUSE; the point here was to determine if this

stack mechanism adversely e�ected the specialization of TINY. Thus, the specializations produced

by the version of TINY with online generalization are not appreciably faster than those produced

by the version using o�ine abstraction techniques.
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When we specialized the enhanced TINY on the MP interpreter, we still obtained an e�cient

program generator. Unlike the program generators constructed from the original TINY, this pro-

gram generator contains specialized unfolding and specialized specialization procedures for some of

the procedures in the MP interpreter, namely those not annotated as unfoldable. The specialized

specialization procedures incorporate all binding time operations on parameters marked as �nite

(i.e., the program generator performs no tests which will always take only one branch at program

generation time) but do contain residual binding time tests for parameters computed via generaliza-

tion (because the binding times of these parameters are not known until program generation time).

This is exactly what we want: statically determinable (i.e., determinable at program generator

generation time) operations have been incorporated into the program generator, while operations

which cannot be (accurately) performed until program generation time (such as generalization and

operations depending on the outputs of generalization) are performed by the program generator.

The version of TINY with online generalization is slower than the version of TINY with static

generalization annotations: in the case of the MP interpreter, specialization took 1.9-2.2 times

longer, depending on the program being specialized. This ratio carried over into the program

generators; the program generator with online generalization was 1.8-2.1 times slower. The speedup

due to the use of a program generator instead of direct specialization remained almost unchanged

when online generalization was introduced.

Thus, we do not believe that online generalization is an obstacle to the generation of e�cient

program generators, with some caveats. The outputs of the generalization routine are, naturally,

unknown at program generator generation time, so both the generalizer and operations depending

on the output of the generalizer are left residual in the program generator. The key to constructing

an e�cient program specializer with online generalization lies in determining, at program generator

generation time, which parameters are liable to be generalized and which aren't. TINY accom-

plishes this using static �niteness annotations: anything promised to be �nite won't be generalized.

Without such a static scheme, the outer specializer specialize would have to implement complex

mechanisms such as equality constraints in order to prove that certain parameters to the general-

izer would be guaranteed to be equal at program generation time, allowing the incorporation of the

parameters' binding times into the program generator. Thus, we see that o�ine methods are useful

even in the case of online specialization, particularly with respect to termination. This stands to

reason|we are not arguing that all operations are best performed online, merely that performing

some operations (such as binding time and generalization operations) online has bene�ts [45] and

does not adversely a�ect the e�ciency of program generation.

3.2 Partially Static Structures

TINY does not implement partially static structures; that is, a pair containing one static value

and one dynamic value at specialization time is treated as a completely dynamic value. In some

cases, partially static structures can be \teased apart" into static and dynamic components either

manually or automatically [38, 16], but this is not always possible. Thus, TINY's lack of partially

static structures is a limitation.

As we shall see, adding partially static structures to TINY while retaining the ability to produce

e�cient program generators strains the limits of current specialization technology. We will describe

two possible encodings of partially static structures in TINY, and how they a�ect the specialization

of TINY.
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(define (init-store names values)

(if (null? names)

'()

(cons (cons (car names) (car values))

(init-store (cdr names) (cdr values)))))

Figure 12: Code to initialize a store represented as an association list

3.2.1 Two-tag encoding

Our �rst encoding scheme retains the structure of the existing TINY encoding, but changes its

interpretation. Pe-values are still represented as tagged values with the tags static and dynamic,

but the value slot of a static pe-value must either be an atomic Scheme value or a Scheme pair

containing two pe-values (instead of two Scheme values, as before). The encoding of dynamic values

is unchanged. Thus, a partially static value is simply a static pair containing a dynamic element. No

information about completely static values is maintained, as it is not useful in performing reductions

(the code generator will �nd completely static subtrees and generate quote expressions for them,

instead of chains of cons primitives). The primitive application, cache lookup, and �niteness

annotation mechanisms are changed to accommodate this new representation, but, overall, TINY

isn't changed much.

This small change to TINY makes the generation of e�cient program generators tremen-

dously di�cult; to maintain binding time information encoded in this form, the outer specializer,

specialize, must be able to infer and maintain information about disjoint unions and recursive

data types. Consider the function init-store (Figure 12), which takes a list of names and a list of

values and constructs an association list mapping each name to the corresponding values. Assume

that we wish to construct a program generator for an interpreter containing this function, where

names is derived from the interpreter's program input, which is known to be static at program gen-

erator generation time, while values is derived from interpreter's data input, which is known to be

dynamic at program generator generation time. We would expect the program generator to contain

a residual loop to construct the store initialization code, and we would expect that the residual

loop would be known to return a list of unknown length, but where each element was known to

be a pair whose car is known to be static, and whose cdr is known to be dynamic. This would

allow later operations involving the names in the store to be reduced (i.e., the program generator

contains specialized code to perform these reductions), while operations involving the values would

be residualized (without a prior examination of their binding times).

Thus, at program generator generation time, specializemust be able to represent the following

types:16

16We will use identi�ers, parentheses, and periods to denote specialize's representations of Scheme objects, while

angle brackets and alternate constructions of the form [<a> | <b>] will denote meta-objects of specialize. Thus,
<t> ::= [() | ((1 . 2) . <t>)] denotes a list of unknown length consisting of pairs whose car is 1 and whose

cdr is 2. The special meta-objects <dynamic> and <atom> denote values not known at the time specialize runs; in

addition, <atom> is constrained to denote only atomic Scheme values.
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� A completely static pe-value; that is, the tag is static and if the value is a pair, both the

car and cdr are also completely static pe-values.

<t1> ::= (static [() | (<t1> . <t1>)])

� A pe-value with tag static and whose value is either the empty list or a pair. If the value is

a pair, its car is a pe-value with tag static and a value which is a pair of a static pe-value

with unknown atomic value, and a dynamic pe-value, and the recursive type.

<t2> ::= (static [() |

((static ((static <atom>) . (dynamic <dynamic>))) . <t2>)])

� A pe-value with tag dynamic.

<t3> ::= (dynamic <dynamic>)

The third type is simple, but the �rst two are rather complex. Indeed, we know of no program

specializer capable of inferring (or even representing) such types; even FUSE only maintains infor-

mation about types whose size17 is known at specialization time, reverting to the type <dynamic>

for any specialization-time value which might denote arbitrarily large values at runtime. Inferring

recursive types is very di�cult, because specialize must choose when to collapse a chain of dis-

joint unions into a recursive type, and must be able to compare and generalize such types. This

is di�cult because the \collapsing" operation can be done in di�erent ways, with di�erent results;

such di�culties are standard when analyzing pointer data structures [9, 24]. Existing approaches

to this problem in the pointer analysis community have used either k-bounded approximations,

which limit the size of nonrecursive type descriptors, or methods based on limiting each program

expression to returning a single type descriptor. This latter approach is also used by the partially

static binding time analyses of Mogensen (one binding time grammar production per program

point in [38]) and Consel (one type descriptor per cons point in [10]), and in the monovariant type

evaluator of [58].

Such approaches work well for analyzing an existing program, because the identity of the ex-

pressions in the program can be used as \anchor points" to perform least upper bounding and

build recursions (as is done in [29, 37, 11]). In the case of an online specializer, which must infer

the type of residual code as it is being constructed, we lose this ability to use the identity of code

expressions; during the iterative type analysis process, several residual code expressions may cor-

respond to a single program point in the source program. To achieve termination (i.e., to avoid

in�nite disjoint unions) some of these code expressions (and their types) must be collapsed together,

but we can't just collapse together all instances of a source program point as this would yield a

purely monovariant specialization. The problem, then, lies in deciding when and how to collapse,

or generalize.

Consel's polyvariant partially static BTA [10] operates by keeping all nonrecursive invocations

of a procedure distinct, but collapsing recursive call sites together with initial call sites; this works

�ne for BTA, but will not work for online specialization, as it precludes unfolding of recursive

procedures. Aiken and Murphy's type analyzer [1, 39] appears to use a similar method. Mogensen's

17By \size," we mean \number of cons cells contained." Even numeric types can become arbitrarily large at

runtime, but they are still scalars; there is no need for recursive type descriptors to describe bignums.
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higher-order partially static polyvariant binding time analysis [38] is for a typed language, and uses

(user- or inferencer-provided) declarations when deciding what recursive types to construct.

One promising approach is the two-stage partial evaluation framework of Katz [34], in which

a polyvariant analysis phase computes type information which is then utilized by a separate code

generation phase. This o�ers the possibility that the polyvariant analysis phase could make use of

the identity of source program expressions (possibly tagged with some form of instance counter) for

building recursive types, without being confused by the construction of multiple residual instances

of single program points due to �xpoint iteration and unfolding.

Thus, given the current state of the art, we are unable to construct the �rst two types listed

above at program generator generation time. The consequences of this are disastrous, as we are

able to accurately represent only dynamic pe-values, and static pe-values of known size. All static

or partially static pe-values of unknown (at program generator generation time) size end up being

represented as <dynamic>, which contains no binding time information whatsoever. In the case

of the interpreter fragment of Figure 12, all binding time information about the parameter names

and about the value returned by init-store is lost. Thus, the resultant program generator will

not know that the list of names is static, or that store lookup can be performed statically|indeed,

even syntactic dispatch will perform needless binding time comparisons. The program generator

will be almost as slow (and large) as a naively generated program generator.

This bodes ill for the self-application of specializers like FUSE, which uses a symbolic value

encoding similar to the two-tag encoding described in this section. Successful specialization of such

specializers appears to require either a change of encoding, or new and more powerful specialization

techniques.

3.2.2 Three-tag encoding

In this section, we consider a di�erent encoding of partially static structures, this time using three

tag values. The tags static and dynamic are interpreted as before: static denotes a completely

static value, and is followed by a Scheme value, while dynamic denotes a completely dynamic value ,

and is followed by a residual code expression. We add a new tag, static-pair, which is followed by

a pair of pe-values, rather than Scheme values, denoting a pair whose subcomponents are denoted

by the corresponding pe-values.18 Thus, (static-pair ((static 1) . (dynamic (foo x))))

denotes a pair whose car is 1 and whose cdr is unknown, but can be constructed by the code (foo

x).

Compared with the two-tag encoding of Section 3.2.1, this encoding requires slightly more mech-

anism in the program specializer (TINY) because the cons primitive must consult the binding times

of its inputs to decide how to tag its output (instead of just always tagging it static). Similarly,

the code for comparing argument vectors in the cache (and, in the case of online generalization, the

stack) must be able to traverse static and partially static pair structures in parallel. However, we

will see that this added cost allows more e�cient program generators to be generated using existing

technology.

Consider the init-store code of Figure 12. At program generator generation time, specialize

must be able to represent the following types:

18Of course, a partially static value must also contain the appropriate residual code fragment for constructing the

value at runtime. Since this attribute is immaterial to our discussion, we will ignore it.
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� A completely static pe-value; that is, the tag is static.

<t1> ::= (static <dynamic>)

� A pe-value which is either the empty list or a partially static pair whose car is a partially

static pair with static car and dynamic cdr, and whose cdr is the recursive type.

<t2> ::= [(static ()) |

(static-pair ((static <dynamic>) . (dynamic <dynamic>)) . <t2>)]

� A completely dynamic pe-value; that is, the tag is dynamic.

<t3> ::= (dynamic <dynamic>)

Both the �rst and third types are easy for specialize to represent, as it knows the size of

all static parts (i.e., both are tuples of length 2). The second type still requires recursive type

inference, which is beyond the current state of the art.

Thus, when TINY is specialized on an interpreter containing a call to init-store, the resul-

tant program generator will not contain any binding time comparisons for names or values (or

for any syntactic dispatch operations) but will contain needless binding time comparisons in the

store lookup routine, because specialize lost the information about the structure of the store

(i.e., an association list with static cars). All binding time operations for completely static or

completely dynamic operations are reduced at program generator generation time, but such op-

erations on partially static structures (or their components) are performed online in the program

generator. This is signi�cantly better than the results obtained with the two-tag encoding, which

couldn't even optimize out operations on completely static structures, but not as good as could be

obtained with a more powerful version of specialize. Specializing this version of TINY on the

MP interpreter using FUSE yielded speedup �gures of 11.4-12.0, depending on the MP program

being specialized. Because binding time operations on partially static structures are not performed

at program generator generation time, this program generator still performs unnecessary binding

time manipulations on the store; removing these manipulations would achieve better speedups.

This is an instance of a common phenomenon in partial evaluation, namely the extreme sen-

sitivity of the specializer to changes in the representations used by the problem being specialized.

Indeed, the use of a less e�cient representation (such as the three-tag encoding here) can often

lead to more e�cient specializations if the extra work (in this case, having TINY's cons primitive

consult the binding time tags of its arguments to determine the tag for its result) is performable

at specialization time.

3.3 Other Online Mechanisms

In addition to binding time tests in primitives, and generalization, some specializers perform other

operations online, such as induction detection [55] and �xpoint iteration [56, 46]. These operations,

not present in TINY but present in some versions of FUSE, signi�cantly complicate the task of

producing e�cient program generators. In this section, we will brie
y describe these mechanisms,

and explain why present specialization technology cannot handle them.
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3.3.1 Induction Detection

Some online specializers such as FUSE [55] and Mixtus [47, 48] make unfold/specialize decisions

automatically during specialization. This is usually a two-step process: (1) a recursive call is de-

tected (using a specialization-time call stack), then (2) the specializer decides whether the recursive

call poses a risk of nontermination. If there is no risk, the call is unfolded; otherwise, its arguments

are generalized with those of the prior call, and a specialization is constructed on the resulting

argument vector.

A variety of mechanisms are used for (2); for example, some versions of FUSE generalize only if

there is an an intervening dynamic conditional between the initial and recursive calls, thus executing

all non-speculative loops (even in�nite ones) at specialization time. Another common mechanism is

induction detection, which works as follows. The specializer assigns a partial order to all elements

of the domain of argument vectors, and unfolds a recursive call only when the recursive call's

argument vector is strictly smaller (in the partial order) than the prior call's argument vector.

This detects and unfolds static induction, such as cdr-ing down a list of known length, or counting

down from some number to zero (this only works if a \natural number" type is provided; otherwise,

we wouldn't know that the induction is �nite at specialization time). Of course, it misses many

cases where the iteration space, though bounded, doesn't map monotonically to the partial order

(consider a list-valued argument which shrinks by two pairs, grows by one, shrinks by two, etc).

However, without help from the programmer in the form of annotations, we cannot hope to detect

all such inductions (thus the use of �niteness annotations in some versions of FUSE).

The use of such an induction technique complicates the task of program generator generation

because of the need to decide the domain comparisons at program generator generation time.

Consider the procedures mp-command, mp-begin, and mp-exp in the interpreter of Figure 4; the

syntactic arguments (com and exp) always strictly decrease on recursive calls, so the specializer will

unfold such calls. However, at program generator generation time, only the static nature of these

arguments is known; the values are not. When a simple outer specializer specialize evaluates the

unfold/residualize decision procedure on (mp-exp (car rest) names value), it knows that (car

rest) is bound to a value with tag static, but it doesn't know that the value is strictly smaller

than the prior value, exp; it just sees (static <dynamic>) as the value for both pe-values. This

means that the comparison is not decidable at program generator generation time, so specialized

procedures for both specialization and unfolding are constructed. This increases the size of the

program generator, but does not signi�cantly a�ect its speed. Avoiding this case requires that

specialize perform inductive reasoning about dynamic values; it would have to notice that the

dynamic value in the recursive pe-value is derived from the dynamic value in the initial pe-value

using a string of car and cdr operations, which means the new value is smaller. It is possible that

o�ine induction analyses such as that of Sestoft [51] could be adapted for this purpose.

However, using this information to make TINY's unfold/specialize decisions at program gener-

ator generation time could be di�cult; just because specialize knows that one list is shorter than

another doesn't mean that it can fully evaluate TINY's decision procedure. Because the absolute

lengths of the lists are unknown (only relative information is available), the body of the comparison

loop (and the null? tests contained in the body) cannot be unfolded. Instead, specialize must

perform theorem proving, using the relative length information to show that, no matter how many

iterations the comparison loop performs, its result will always be the same (this can be done by

propagating information from the tests of dynamic conditionals (null? tests) into the arms, which
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is not performed by most existing specializers). A simpler solution relies on explicit re
ection [52]

in the form of an upcall (i.e., instead of explicitly implementing the \shorter" predicate on lists in

TINY, make it a primitive in specialize, which simply checks to see if one of the lists is derived

from the other). However, this would be a less versatile technique; we believe that the results of

any reasoning in a specializer such as specialize should be usable for improving any program,

not just special programs containing upcalls.

Some cases are even worse. When specialize encounters the decision procedure on the recur-

sive call to mp-while in mp-while, it will build specialized unfolding and specialization procedures.

The specialization procedure will be invoked on the generalization of the current and prior argu-

ments to mp-while. Though we can see that the syntactic argument, com, is identical in both

calls, specialize cannot, and thus builds a specialization routine which doesn't know that the

binding time of com is static, leading to needless binding time comparisons not only in the special-

ization routine for mp-while, but also in the unfolding/specialization routines for any procedures

it invokes, such as mp-command and mp-exp. In short, all knowledge of the static binding time of

syntactic arguments is lost, and the program generator is as ine�cient (slow and large) as a naively

generated one. Avoiding this requires that specialize infer and maintain information about the

equality of dynamic values, so that when TINY does an eq? or equal? check on the (dynamic)

Scheme value �elds of the two static pe-values, specialize will return true instead of residualizing

the decision. Existing specializers do not perform such reasoning, though there is hope that they

eventually will, because any specializer hoping to perform well on imperative programs with pointer

structures must have such an equality analysis to handle aliasing.

For now, the construction of e�cient program generators from specializers using online gen-

eralization mechanisms requires that we have some static means of identifying those arguments

which cannot possibly be raised to dynamic via generalization, such as those arguments marked

with \�nite" annotations in TINY. O�ine specializers, which by their very nature are prohibited

from using online induction analyses, satisfy this restriction trivially, but are of course unable to

bene�t from such analyses.

3.3.2 Fixpoint Iteration

Another mechanism by which online specializers gain accuracy advantages over their o�ine coun-

terparts is via �xpoint iteration analyses such as those described in [46]. For example, FUSE can

determine that any number of functional updates to a store represented as an association list will

preserve the \shape" of the store|that is, the cars will remain unchanged. This is important

because it avoids unnecessary searching in programs constructed by specializing interpreters (for a

more thorough exposition, see Section 2.1 of [46]).

Unfortunately, such analyses encounter problems similar to those faced by specializers with

induction detection and online generalization. The problem is that the inner specializer (TINY)

decides the equality of two static specialization-time values (for example, the values of parallel

keys in two di�erent association lists) by executing the Scheme procedure equal?, which cannot

be evaluated at program generator generation time, as only the binding times (and not the values)

are available. In fact, the two keys will be equal no matter what values are provided at program

generation time; their equality is a property of the interpreter, independent of the program on which

it is specialized. Making TINY's mechanism work would require that the outer specializer keep

track of equality relations between dynamic values, so that the equality tests used for generalization
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� Basic online PE

{ partially static structures in specialize

{ return value computations in specialize

{ explicit tag values in TINY or disjoint union types in specialize

� Online Generalization

{ static indication of \ungeneralizable" values in TINY (i.e., �niteness analysis) or equality

reasoning in specialize

� Partially Static Structures

{ recursive types in specialize

� Induction Detection

{ size reasoning in specialize

{ propagation of information from tests of dynamic conditionals into arms in specialize

or primitives for size predicates used in TINY.

� Fixpoint Iteration

{ equality reasoning in specialize

Figure 13: Online features and mechanisms for specializing them

and termination of �xpoint iteration would be decidable at program generator generation time.

This might well be a fruitful area for future research even in the domain of o�ine specializers,

because the static reasoning needed to prove that the shape of a store doesn't change, given only

the source text of the interpreter (but not of the program being interpreted) could just as easily

be performed at BTA time as at program generator generation time. If such an analysis could be

provided, then the �xpoint iterations themselves might become unnecessary|the analysis could

prove that the names in the store would remain unchanged across iterations instead of having

to rediscover this fact for each di�erent set of names (Of course, if we wish to preserve as much

information as possible about the values in the store, online generalization is still necessary, because

the behavior of the values is determined by the program text, not just the interpreter text. Similarly,

an interpreter for a language like BASIC, where the store can potentially grow during a loop due

to automatic initialization of undeclared identi�ers, requires online methods because the equality

of store shapes on recursive calls is not provable given the interpreter text alone).

3.4 Summary

Figure 13 summarizes our discussion of the features of online specializers and the mechanisms

needed to produce e�cient program generators from specializers with such features. Each feature

is listed, along with the necessary mechanisms. Together, FUSE and TINY meet these constraints
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for the �rst two features, online specialization and online generalization. By choosing appropriate

of representations, we achieved some success for partially static structures. Full e�ciency with

partially static structures, induction detection, or �xpoint iteration will require new specialization

technology.

We should also note that Figure 13 should probably include a line for side e�ects. Many online

mechanisms can be implemented far more e�ciently using side e�ects (indeed, FUSE makes very

heavy use of side e�ects to data structures), but if side e�ects are used, then specialize must be

prepared to reason about them. Existing techniques, which basically residualize all side-e�ecting

or side-e�ect-detecting computations, will not be su�cient if binding times are represented using

side-e�ectable data structures (contrast this with the o�ine case, where binding time information

is retained no matter how the specializer handles side e�ects).

4 Related Work

This section describes related work on program specialization, with an emphasis on techniques for

constructing e�cient program generators.

4.1 O�ine Specialization

O�ine specialization and Binding Time Analysis were developed speci�cally to solve the problem

of generating e�cient program generators. The �rst o�ine specializer, MIX [31, 32] did not handle

partially static structures and used explicit unfolding annotations, but was e�ciently self-applicable.

Subsequent research has produced increasingly powerful o�ine specializers, which handle partially

static structures [38, 10], higher-order functions [38, 6, 11, 21], global side e�ects [6], and issues of

code duplication and termination [51, 6].

The accuracy of o�ine specializers has been improved through the development of more accurate

binding time analyses, such as the polyvariant BTA [10, 38], and facet analysis [15], which allows

BTA to make use of known properties of unknown values. Other accuracy improvements have been

achieved via program transformation, both manually [6] and automatically [38, 16, 13, 27].

In all of the above, e�ciency was realized by self-application of the specializer. The usefulness of

explicit binding time computations in realizing self-application is described in [7, 6, 30]. Even in the

o�ine world, e�ciency methods other than self-application have been used, including the factoring

out of computations depending on binding time information (as opposed to only factoring out the

binding time computations themselves) [12] and handwriting a program generator generator [28].

Work continues on all of these fronts; however, we do not believe that any current o�ine

specializer is su�ciently powerful to produce an e�cient program generator from TINY.

4.2 Online Specialization

The earliest program specializers [33, 3, 23] used online methods. None were suitable for pro-

gram generator generation, though handwritten program generator generators such as REDCOM-

PILE [23] were used. Subsequent work on online specialization has focused primarily on accu-

racy [49, 22, 55, 45, 46, 43, 34, 48] and applications [4, 5, 2, 57] rather than on e�ciency.

A notable exception to this is the work of Gl�uck, whose online specializer, V-Mix [20], has

been used to generate e�cient program generators via self-application. Gl�uck's work makes the
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same observation as our Section 2.1, namely, that the problem of excessive generality in program

generators can be solved without static binding time annotations by encoding the binding times

in the arguments passed to the inner specializer. His \metasystem transition" formulation of self-

application is very similar to the formulation we gave in Choice 2 on page 13.

Despite these similarities, however, V-Mix and this work di�er appreciably in the encoding

and preservation of binding time information. In particular, V-Mix uses a con�guration analysis

(described as a \BTA at specialization time") to make reduce/residualize decisions and to com-

pute static/dynamic approximations of function results at specialization time (Bondorf outlines a

similar approach in [6], p. 34). We would expect such a system to be self-applicable, since, just

as in the o�ine case, all reduce/residualize decisions are made by a process that refers only to the

program text and statically available information (binding times), so there is no danger of losing

this information at program generator generation time. Unfortunately, such methods share many

of the same drawbacks as purely o�ine methods [45]. For example, binding time approximations

to function results computed using only binding time approximations to parameters are overly

general|many functions in a program will be given a dynamic return approximation when they

might actually return a static value when unfolded at program generation time. Indeed, V-Mix's

inability to compute an \unknown" binding time approximation means that all binding time op-

erations will be resolved at program generator generation time, yielding a program generator with

no online binding time operations even when such operations are necessary to achieve an accurate

result.

Indeed, it would appear that the results of con�guration analysis could be duplicated by a

su�ciently accurate polyvariant binding time analysis. The primary bene�t of online specialization

in V-Mix appears to be the simplicity with which it achieves polyvariance with respect to binding

times, not the accuracy of the (essentially o�ine) program generators it produces. In all fairness,

we should note that Gl�uck's work dealt primarily with multiple self-application, in which several

levels of specialization were performed, yielding a curried residual program in which each of the �rst

n � 1 arguments produced a new residual program which was then applied to the next argument

(application to the nth argument computed the �nal result). For this application, the \online BTA"

approach worked well, with far less memory consumption than the �xpoint computations used by

the outer specializer specialize in our examples.

5 Future Work

In this section, we describe several frontiers for future work in the generation of program generators

from online specializers.

5.1 Self Application

Although we have demonstrated the specialization of a nontrivial specializer into an e�cient pro-

gram generator, the two specializers (the specializer, specialize, and the specializee, TINY) were

not the same. This is important if we wish to speed up the process of program generator genera-

tion via specialization (i.e., if we specialize the specializer specializing itself, producing a program

generator generator, often called a \compiler compiler" in the literature [19, 18, 31]), or if we wish

to perform multiple self-application [20] to achieve several levels of currying. It appears as though

self-application is achievable only with specializers at particular levels of complexity, where the
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specializer is simultaneously su�ciently powerful to specialize itself, while being su�ciently simple

to be specialized by itself. In the o�ine paradigm, where the specializer itself performs fairly simple

computations directed by static annotations, self-application can be achieved at a relatively low

level of complexity.

Unfortunately, this does not appear to be the case for online specializers. Specializing the rather

simple specializer TINY required not only partially static structures, but also �xpoint iteration.19

Specializing a partial evaluator which implements partially static structures require the inference

of recursive data types, while �xpoint iteration appears to require inductive reasoning. That is,

we have yet to implement mechanisms su�cient to specialize all of the information preservation

mechanisms in FUSE, let alone the mechanisms necessary to specialize these as-yet-unwritten mech-

anisms. More research is required to locate the level of functionality at which closure is achieved,

and to determine how to implement such functionality e�ciently.

5.2 Encoding Issues

Online specializers necessarily incur an overhead due to the need to represent both static values (all

Scheme datatypes) as well as dynamic values using a single universal datatype. O�ine specializers

for untyped languages can avoid this need for encoding because they have no need to encode

dynamic values, and can thus inherit the representation of static values from the underlying virtual

machine. Launchbury's lazy encoding technique for typed languages [36] reduces encoding overhead

for completely static values, but appears to be of less use for partially static values, because, under

online methods, the entire spine from the root of a partially static structure to each of its dynamic

leaves must be fully encoded at the time the structure is created (how else could dynamic data

be distinguished from static values?). This is not a problem in o�ine systems like Launchbury's

because there is no need to encode dynamic values|the specializer determines dynamic-ness from

binding time annotations, not from values.

This encoding has not been a problem to date; specializers such as FUSE, though slower than

their o�ine counterparts, operate at acceptable speeds. Users have been willing to pay the time

cost in exchange for the improved accuracy. However, program generator generation brings three

encoding problems to light:

First, the outer specializer is forced to partially evaluate all of the inner specializer's encoding

and decoding operations (indeed, this is how binding times are deduced). This has large costs in

both space and time due to the quadratic explosion in the size of the representations of values;

i.e., if a specializer executes k instructions per instruction in the program being specialized, then

program generator generation takes time k2. Gl�uck [20] also notes such growth. For small k, as in

o�ine specializers, this is not a problem, but for larger k (compared with o�ine specializers, online

specializers may execute 5-50 times as many instructions per simulated instruction) this growth

becomes unacceptable (i.e., if specialization is 5 times slower, program generator generation may

be 25 times slower). For example, specializing TINY on the MP interpreter with FUSE required 7

minutes and a 32 megabyte heap.

Second, the generated program generator often encodes values unnecessarily; i.e., the program

generator inherits the encoding used by the specializer it was generated from, and encodes (tags)

values with binding time information even when those binding times are never examined. Of

19This stands to reason because most abstract interpretation-based binding time analyses also require �xpoint

computations.
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course, any value which might reach a binding time test must be tagged, but current arity rais-

ing [42] techniques are insu�ciently powerful to remove all \dead" tags. In particular, current

arity raisers eliminate only static portions of parameter values, without removing static portions

of returned values. CPS-converting [53] programs will take care of the problem of returned values,

but may require a fairly sophisticated dead-code analysis in addition to any complexities added

by the higher-order nature of CPS code. Worse yet, if the specializer is written to return tagged

values at top level (i.e., FUSE returns a residual program containing, among other things, encoded

values), then the program generator must do the same, reducing the number of \dead" tags. It

is likely that tag optimization techniques for dynamically typed languages [25, 40] could provide

signi�cant improvements here, not only for the specialization of specializers, but the specialization

of interpreters for dynamically typed languages as well.

Finally, as we saw in Sections 1.2.1 and 2.2.1, the need to represent values with known binding

times and unknown values at program generator generation times constrains the encoding scheme

of the inner specializer. In particular, the need to store the binding time and value in separate tuple

slots (as opposed to using a distinguished value such as quote to indicate static values), enlarges

the encoding of values, leading to higher space consumption both at specialization time and at

program generation time.

5.3 Accurate BTA

Another potential direction for research in program generator generation is the use of binding

time analysis techniques which do not force the specializer into overly general behavior. That is,

when two abstract \static" values are generalized, the result should be \unknown binding time"

rather than \dynamic." Only decisions involving expressions with \static" and \dynamic" binding

time annotations would be performed at BTA time; decisions involving expressions annotated as

\unknown binding time" would be delayed until specialization time, as in online specialization.20

Consel describes such a binding time lattice in [10] but expresses concerns over the pollution of entire

expressions due to a single subexpression having an unknown binding time. Bondorf's Treemix [6]

uses such an analysis, but its e�ectiveness is not described.

The motivation behind such methods is twofold. First, it could eliminate the need for encoding

values which only reach expressions with known binding times, such as the program in the inter-

preter example or the pattern in the regular expression example, both of which are known to be

static. Second, program generator generation would be simpli�ed: all program generator gener-

ation time knowledge of binding times could be provided through the binding time annotations,

eliminating the need for the more complex mechanisms of Section 2.2.

However, this approach does have some di�culties. For a specializer like FUSE, which can

represent typed unknown values, the choice of binding time domain may be di�cult; it may be

possible to adapt the facet analysis of [15] for this purpose. A highly polyvariant analysis would be

required; otherwise, the binding times of several variants would be collapsed into one, forcing greater

numbers of binding-time-related reductions to be delayed until program generation time. The use

of a binding time analysis for online specialization is also complicated by the need to approximate

the specializer's termination mechanism at BTA time. Unlike o�ine specializers, which rely on

20The di�erence between this approach and traditional o�ine specialization lies in the fact that, in o�ine systems,

all binding times must be computed at BTA time, and all reduce/residualize decisions must be completely dictated

by the results of the BTA. Thus, a system with an \accurate BTA" would be an (optimized) online specializer.

34



binding time annotations to perform abstraction of arguments (i.e., lift specialization-time-in�nite

static values such as \counters" to dynamic), online specializers perform generalization of pairs of

argument values at specialization time [45]. Since the values are unavailable at BTA time, it is not

possible to determine if the generalization of two static values will be static, meaning that, under a

naive BTA, all static arguments to recursive procedures would be raised to the \unknown binding

time" value, losing the two bene�ts described in the previous paragraph. Finally, there is some

question as to the bene�ts to be gained, since online specializers spend a higher proportion of their

e�ort on operations which cannot be optimized given knowledge of binding times, such as recursion

detection, generalization, and other information preservation mechanisms.

5.4 Ine�cient Program Generators

The motivation for the use of binding time information at program generator generation time is

to increase the e�ciency of the resultant program generator by avoiding unnecessary reductions at

program generation time. Ine�cient program generators, which take advantage of the static values

available at program generator generation time (e.g., perform syntactic dispatch and environment

lookup operations at program generator generation time) but do not make use of binding time

information, are both larger and slower than their e�cient counterparts. However, preliminary

experiments conducted by the authors suggest that the loss in speed may not be particularly large;

even ine�cient program generators are signi�cantly faster than general specializers when it comes

to program generation. This suggests that if we could control the size of ine�cient program gener-

ators, we could construct acceptably e�cient program generators without the di�culties inherent

in making use of binding time information.

Conclusion

We have shown that, given a careful encoding of specialization-time values and a su�ciently pow-

erful specializer, we can construct an e�cient program generator from a simple yet nontrivial

online program specializer. We believe this to be the �rst published instance of e�cient program

generator generator from an online program specializer without the use of binding time approx-

imation techniques. This result is signi�cant because it allows for the automatic construction of

program generators which make online reduce/residualize decision, enabling, for example, opti-

mizing \compilers." It is also a demonstration of the power of online specialization techniques,

since the information preservation mechanisms used to achieve e�cient program generation, are,

at present, implemented only in an online specializer. Unlike binding time approximations, which

address only the specialization of specializers, the information preservation techniques used here

and in [46] improve the specialization of many programs, not just the specializer TINY. Finally, our

result may be of interest to the logic programming community, where, in contrast to the functional

programming community, most program specializers use online methods [17, 48, 35].

Nonetheless, this result is unlikely to lead to the widespread proliferation of online-specializer-

based program generators. The most obvious reason is that, although we can successfully specialize

small specializers such as TINY, we have not developed methods su�ciently powerful to specialize

state-of-the-art specializers such as FUSE [55] (c.f. Section 3). This forces the user into a choice

between e�ciency and accuracy of specialization; given that the primary motivation for using online

techniques is accuracy, we expect that most users would prefer the slower, more powerful, and as-
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yet-unspecializable systems. As we suggested before in [45], we believe that the future of program

specialization lies in a mixture of online and o�ine approaches, in which the additional costs of

online specialization are paid only when necessary. We leave this to future research.
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