
SPECTRAL TECHNIQUES FOR
TECHNOLOGY MAPPING

Jerry Chih-Yuan Yang
Giovanni De Micheli

Technical Report No. CSL-TR-91-498

December 1991

This research was sponsored by NSF - DARPA under grant No. MIP-87-19546, by
AT&T and DEC jointly with NSF, under a PYI Award program. We acknowledge also
support from DARPA, under contract No. J-FBI-89-101.

Spectral Techniques for Technology Mapping

Jerry Chih-Yuan Yang Giovanni De Micheli

Technical Report: CSL-TR-91-498
December 1991

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, CA 943054055.

Abstract

Technology mapping is the crucial step in logic synthesis where technology dependent optimizations
take place. The matching phase of a technology mapping algorithm is generally considered the most
computationally intensive task, because it is called on repeatedly. In this work, we investigate applications
of spectral techniques in doing matching. In particular, we present an algorithm that will detect NPN-
equivalent Boolean functions. We show that while generating the spectra for Boolean functions may be
expensive, this algorithm offers significant pruning of the search space and is simple to implement. The
algorithm is implemented as part of the Specter technology mapper, and results are compared to other
Boolean matching techniques.

Key Words and Phrases: Technology Mapping, Spectral Techniques, Hadamard Transforms, Boolean
Matching

i

copyright @ 1991
bY

Jerry Chih-Yuan Yang and Giovanni De Micheli

Contents

1 Introduction 1

2 Background 2

2.1 Hadamard Transform Properties . 2

2.2 XNPN Transformations . 3

3 NPN Matching Algorithm 5
3.1 Inversion of Output . 6

3.2 Permutation of Inputs . 7

3.3 Phase Assignment of Inputs . 8

3.4 Computational Complexity . 9

4 Results 9

5 Conclusion and Acknowledgement 10

. . .
111

Spectral Techniques for Technology Mapping

Jerry Chih-Yuan Yang Giovanni De Micheli

Computer Systems Laboratory
Department of Electrical Engineering and Computer Science

Stanford University
Stanford, CA 943054055

Abstract

Technology mapping is the crucial step in logic synthesis where technology dependent optimizations
take place. The matching phase of a technology mapping algorithm is generally considered the most
computationally intensive task, because it is called on repeatedly. In this work, we investigate applica-
tions of spectral techniques in doing matching. In particular, we present an algorithm that will detect
NPN-equivalent Boolean functions. We show that while generating the spectra for Boolean functions
may be expensive, this simple algorithm offers significant pruning of the search space. The algorithm
is implemented as part of the Specter technology mapper, and results are compared to other Boolean
matching techniques.

1 Introduction

The field of logic synthesis has been a topic of intense research in the past decade. In particular, the
technology dependent optimizations, or technology mapping, have been especially of interest. The existing
work can be categorized into two basic approaches: The rule-based approach, as done in Socrates [4]
and the algorithmic approach. There arc two classes of algorithmic approaches: the pattern-matching
approach, based on the works of Keutzer [6] and Detjens[2]; and the Boolean approach, based on the
work of Mailhot [7]. The Boolean algorithmic approach is of theoretical and practical interest because of
two main reasons: first, it enables optimizations of networks with a reduced dependency on the network
structure or topology; second, it can explore more of the optimization space by including the don’t care
conditions that are defined either intrinsically or externally in the network.

One of the critical steps in a technology mapping algorithm is the matching phase. In this phase, a
candidate network (or subnetwork) is matched against a set of library elements. In this work, we consider
Boolean matching, where two functions are compared for functional equivalence. In [7], two functions
match if they are NPN-equivalent.

1

In this work, we use the same definition of matching. We explore application of spectral techniques in
the matching phase of a technology mapping algorithm. Spectral techniques have been used extensively
in the design of threshold logic [l] and in the area of testability [5]. It is well known that spectral tech-
niques offer a powerful way to classify Boolean functions[31. However, because of their computationally
intensive nature, spectral techniques have not received as much attention in recent years.

The matching phase of technology mapping is considered to be the most computationally intensive
part of the process. The problem of matching functions using Boolean techniques has a worst-case
complexity of O(n!2”) because of the need to try all n! permutations of the input variables and 2” phase
assignments. Therefore, efficient pruning of the search space is necessary. In this work, we utilize the
classification powers of the spectrum to detect Boolean equivalence between two functions. Previously,
binary decision diagrams (BDDs) and symmetry sets were used to effectively reduce the complexity [7].
Spectral techniques also have been utilized to perform matching in [81.

We present an algorithm of detecting two NPN-equivalent Boolean functions based on comparing
their spectra. This method is shown to be effective for libraries with elements of limited number of
inputs (inputs less than 10). The rest of this paper is organized as follows. Section 2 gives background
definitions for spectra and their operations. In Section 3, we define XNPN-equivalent class operations.
Section 4 presents a matching algorithm for NPN functions. Results and concluding remarks are contained
in Section 5.

2 Background

Various orthogonal transformations can be used to transform one Boolean function into an unique repre-
sentation in the spectral domain. Many of such transforms are surveyed by Hurst et. al. [5]. In particular,
the Hadamard transform is susceptable for computing purposes because a fast transform exists (much
like the butterfly algorithm for the Fourier Transform) [5].

2.1 Hadamard Transform Properties

The Hadamard transform is an orthogonal matrix with the following recursive definition.

Let z be the output truth table of an n variable Boolean function F. To obtain the desired spectral domain
representation, an initial recoding of z to vector y is performed. We first apply a recoding transformation
t : B + Bt to every entry in the truth table vector Z, where B = (0, l}, Bt = { 1, -1). Then, each
element in vector ?/ is yi = t (zi) = 1 - 22;.

3

The spectrum s, a vector with 2” elements, is calculated by

Tn. y = s

Vector s has the property that CfI,’ si = f2”.
As an example, a Boolean function of 3 variables (n = 3) generates a Hadamard spectrum with the

following coefficients. The indices indicate the order of the coefficients.

I Ts12 s3 s13 s23 s123

Each coefficient in the spectrum gives some global information about the Boolean function. The
indices of a coefficient represent which input variables the coefficient correlates to. In the general case,
for a given F, there is one zeroth order coefficient SO. This term reflects the correlation of F to a constant
value. This term is computed by num~false~minterms - num-true-minterms, where false minterms
are 0 truth table entries, and true minterms are 1 truth table entries. Thus, if the function is a constant
one, then se = -2”. There are n primary first order coefficients, ~1, . . . , Sn. These coefficients show
the likeness between F and input variable 2;. The orders of coefficients increase up to nth order. For
higher order coefficients, the coefficient correlates to the exclusive or of all the input variables specified
in the index. For example, s;jk is a third order coefficient, showing the correlation between F and
x; $ xj $ xk. For any given coefficient and its indices, the coefficient is numerically equal to

(c agreements between F and function formed by the exclusive-or of the indices) - (c disagreements
between F and function formed by the exclusive-or of the indices)

The number of coefficients in the kth order is For a function of n inputs, there are

CL0 ;() = 2” coefficients.

It can be verified that Tn is orthogonal and Hermetian. Therefore, its inverse can be easily computed.
The inverse of T” is found by

n -
[T 1 ’ = l/2”. [T”]

Given a spectrum s, the coded Boolean domain truth-vector y can be recovered by 1/2nTn . s = y.
Vector z can be obtained directly from y by applying the inverse of the recoding procedure done initially.
Manipulations between spectral and Boolean domains are easy since forward and inverse operations
involve multiplication of the same transform. Computation of the Hadamard Transform is accomplished
by a fast algorithm. The algorithm is illustrated in Figure 1 [S]. The number of computations required is
O(n -2”).

~6 s6

Figure 1: Hadamard Fast Transform Algorithm for 3-input Functions

2.2 XNPN Transformations

There are five transformations defined for the Hadamard transform to classify Boolean functions. Each
of these transformations corresponds to an operation in the truth-table domain. We define the class of
Boolean functions that are closed under these five transformations to be XNPN equivalent. In the paper
by Edwards [31, the same classification is termed disjointly translationally equivalent. Proof of these
operation being closed in a class of Boolean functions can be found in [11. The transformations are:

1. Permutation of any two input x; and xj. In the spectrum domain, all coefficients containing i are
swapped with those containing j;

s; is swapped with sj
S& is swapped with sjk

. . .

2. Negation of any input variable x;. In the spectrum domain, any coefficient containing i is negated;
namely,

s; is replaced with -s;
s;k is replaced with -*sik

. . .

4

3. Negation of output variable. This involves negation of all 2 n coefficients

4. Replace any variable x; into a network with xi $ xj.

S; is swapped with sij
s;k is swapped with Sijk

. . .

5. Replace output f(X) with f(x) $2;.

s; is swapped with SO
sij is swapped with S;

sijk k swapped with Sik
. . .

The notion of a NPN-equivalence class can be defined as follows. An NPN equivalent class of
Boolean functions is a set of functions that is closed under the first three transformations.

In other words, if two Boolean functions belong to the same NPN-equivalent class, then we can
implement one function from the other by adding inverters to some inputs, and/or permuting some
inputs, and/or negating the output.

In addition, when considering XNPN equivalence, one function can also be derived by another in the
same class with additional exclusive-or gates. Clearly, functions belonging to a given NPN-equivalent
class are a subset of the functions belonging to the same XNPN-equivalence class. Therefore, XNPN
operations can classify a broader class of equivalence functions.

Using these operations, a given spectrum can be transformed into a canonic form. The canonic
form of a spectrum is obtained by repeated application of the above operations to obtain an XNPN
representation of the original spectrum with the following property. The first n + 1 coefficient values,
from So . ..Sn. are arranged in decreasing magnitude order, where the magnitude of SO is the largest in
the entire spectrum. These coefficients are made positive.

The canonic form can be used to uniquely identify an XNPN class. The conciseness of this clas-
sification technique is significant. For n 5 4, all 65,536 Boolean functions are contained in 8 canonic
classes [5].

3 NPN Matching Algorithm

Operations 4 and 5 in the previous section can be used to move coefficients across orders. In the truth-
table domain, these operations correspond to adding exclusive-ors to the inputs or outputs. We do not
consider using these two operations in this work because of the complexity that the exlusive-or gates add

5

to the resulting network. Therefore, a Boolean match in the context of this paper is defined as follows:
Given a library function L and Boolean function F, a match exists if L and F are NPN-equivalent.

Two functions F and L are XNPN-equivalent, and therefore NPN-equivalent, if the corresponding
spectra SF and SL are equal, modulo a permutation and complementation of their coefficients.

Note that none of the NPN operations can change the order of a coefficient. From the previous section,
only the operations involving the exclusive-ors can translate a coefficient to a different order. Therefore,
two functions are NPN-equivalent if the corresponding spectra are equal modulo complementation and
permutation of the coefficients within the same order.

Another observation is that the sequence in which the NPN transformations are performed is irrelevant.
The transformations are completely independent from one another. Performing one transformation will
not affect the results of other transformations. In this matching algorithm, negation of the output is tried
first. Then, permutations of inputs are performed, with the negation of inputs done as the last step.

During matching, only one spectrum is being modified. The idea is to manipulate the spectrum of the
library element until it equals the spectrum being matched. The changes made to the library spectrum
can then be added to implement the desired function. The algorithm does not distinguish between the
two spectra. Figure 2 demonstrates the matching algorithm. The procedure for matching two spectra
with n variables is as follows.

spectrummatch(s 1, ~2)

c-graph = generate-NPN,compatibility-graph(s 1, ~2);
if (~10 and s& differ in sign) then

negate each term in s 1;
generate-possibleinput-orderings(cgraph);
for each input ordering do begin

for each input variable sl i do
if (sli and ~2; differ in sign) then

negate all sl terms with i in coefficient;
if (sli equals ~2; for all i) then

return (input ordering, phase assignment);
end
return (no match found);

Figure 2: Spectrum Matching Algorithm

3.1 Inversion of Output

No possible NPN operations can change the magnitude of the zeroth order coefficient. Therefore, if the
magnitude of the zeroth-order coefficient of the two spectra is different, then the two functions cannot be
NPN-equivalent, and matching is aborted. If the magnitude matches but the sign differs, then the sign
of the zeroth order coefficient needs to be changed. To do so, all 2” coefficients must be negated. This
operation corresponds to the negation of the output.

A special case occurs when the zeroth order coefficient is 0. In this case, the functions are matched
first without output inversion. If that fails, then matching is done with output inversion.

This extra overhead does not occur often since spectra with 0 as its zeroth order coefficient usually
represent functions with an equal number of true minterms and false minterms (e.g. multiplexer-s and
exclusive-or gates). With xors, a match will be found when comparing the input coefficients since
negating an input is equal to negating the output. For multiplexers, similar input reorder and inversion
will result in matches without having to negate output.

3.2 Permutation of Inputs

An NPN compatibility graph for first order coefficients is constructed. The graph is bipartite, defined to
be G(S, T, E), where S and T are sets of vertices; S U T = V, and S n T = 8. ISI = ITI = n. Each
set of vertices corresponds to a set of first order coefficients of a spectrum. Each vertex represents one
coefficient. An edge e E E between s E S and t E T exists if the magnitudes of the corresponding
coefficients are equal.

Each first order coefficient represents an input of the function. Thus, the edges correspond to possible
locations where a given variable can be permuted. Note that this graph is concerned with possible
permutations only; and phase assignment of the variables is dealt with later. Every vertex in S and
T must have an edge incident upon it. This is an obvious requirement, since very coefficient must be
matched. Therefore, the matching process aborts if there is an unmatched vertex in either S or T.

Matching the first order coefficients represents only a necessary condition. When a first order coef-
ficient is modified, coefficients in the higher orders containing the corresponding index are modified as
well. For example, suppose s1 is swapped with ~2. Then, in subsequent higher orders, every occurrence
of 1 in the indices of the coefficients is replaced by 2, and vice versa. This is illustrated by the permu-
tation transformation in Section 2. Since we limit ourselves to the use of the first three transformations
only, higher order coefficients are changed only by manipulation of the first order coefficients. The higher
order coefficients must be checked for magnitude equality in order for a permutation to be valid.

Let us establish the bound on the number of permutations for matching two n variable functions.
Each permutation represents a possible ordering of the input variables. Let m be the number of distinct
magnitudes in the first order coefficients. Let Si, 1 5 i 5 m be the set that contains all coefficient with

L = xl x2’ + x2 x3’

I== yl’y3’+ y2’y3 Compatibility Graph
S T

s12 4 -4

s13 0 -4

s23 4 0

Possible Permutations
Yl Y2 Y3

1. x2 xl x3
~123 0 0 2. x2 x3 xl

Figure 3: Compatibility Graph for Matching 2 3-input Functions

magnitude Mi. The number of permutations is

P= filS;l!
i=l

Note that m and all (Si I must be the same for both spectra, since an one-to-one match betwen S and T
is required. Also note that CE1 ISi I = n. In the best case, if m = n, then each IS; I = 1 and P = 1.
This case occurs when all first order coefficients are unique; and therefore there is only one possible
input ordering that can be tried. In the worst case, if m = 1, then each IS; I = n and P = n!. This
case corresponds to all first order coefficients having the same magnitude; therefore each variable can
possibly permute to all other positions. In practice, most spectra have m 2 2. This reduces the number
of permutations that have to be compared.

For example, in Figure 3, the spectra for SL and SF are shown. The corresponding compatibility
graph for the first order coefficients is also shown, annotated by input variables. Assuming that set S
is being permuted, the possible permutations are enumerated. Note that the number of permutations for
this example is P = 2! - l! = 2. The first ordering of switching x 1 and x2, along with inverting x3, will
result in a match of L with F.

When an input ordering is generated from the compatibility graph, it is checked for a possible match.
The step consists of traversing the spectrum coefficients, performing the permutation invariant operation
(Section 2.2). This operation requires swapping 2n-2 pairs of coefficients.

8

3.3 Phase Assignment of Inputs

While performing permutation for a given input ordering, we perform the phase assignment of the input
variables at the same time. For a given input ordering, the coefficient (representing an input variable) is
checked against the corresponding coefficient in the other spectrum. At this stage of the algorithm, the
magnitudes of these two coefficients are the same as guaranteed by the compatibility graph. If the signs
of coefficients are different, then the spectrum being modified performs the negation of input invariant
operation on the input in question. This operation requires changing the sign of 2 n-1 coefficients.

If there are no first order coefficient with the value zero, then a linear traversal of each input can
guarantee correct phase assignment. Thus, a worst case n input negation operations need to be performed.

A special case occurs when there are first order coefficients equal to 0. In this case, a linear traversal
will not guarantee correct phase assignment since the coefficient can take on both on and off phases. The
number of input negation operations that need to be performed now becomes (n - m)2m, where m is
the number of 0 first-order coefficients.

Lastly, the modified spectrum is compared term-wise against the spectrum to be matched. If the
spectra are equal in both magnitude and sign, then a match is found. This step entails 2” comparisons,
where n is the number of inputs.

3.4 Computational Complexity

Since only NPN invariant operations have been performed on the spectrum, the resultant spectrum can only
be an NPN-equivalent function of the original spectrum. By simple book-keeping, the input permutations
and phase assignments are easily obtained.

The overall complexity of the matching algorithm is, in the worst case, 0 (n! -2 “) for an n variable
functions. The most dominating operation is finding permutations of input ordering. Even though the
problem is intractable, a few significant savings are possible. First, the worst case does not occur fre-
quently. As indicated above, in most spectra, the number of distinct magnitudes in first order coefficients
is greater than 2. Secondly, the algorithm dynamically traverses the possible permutations, and terminates
as soon as a match is found. Most Boolean functions have some symmetry variables [7], therefore there
will generally be more than one match in the set of input orderings. The detection of the first match is
sufficient since the remaining matches are only symmetrical variants. Third, it is noted that most of the
complexity lies in traversing 2” spectrum coefficients. The regularity of the spectra size offers simple
data structure (i.e. array or bit vector) and data objects (i.e. integers). The simplicity of computations
lends to very fast computer operations (i.e. bitwise arithmetic operations and comparisons).

4 Results

The algorithm described above have been implemented as part of the specter technology mapper. A
subset of the benchmarks from the 1991 MCNC suite have been mapped. The results are shown in
Figure 1 for the LSI standard cell library, and in Figure 2 for the Actel library. The results mapped with
spectral matching are listed under Specter.

Because ceres and specter only differ in the matching algorithm, the differences in results should not
be significant. However, because the two matching algorithms return different ordering of inputs, the
covering step may generate different results.

For the benchmarks listed, specter mappings cost more in both area and runtime. However, for LSI
library, the difference is less than 3%. This is not significant, and can be attributed to implementation
details. However, the runtimes for specter are much higher, as expected. At depth 3 l, specter matching
algorithm is fairly competitive. As the depth increases, the number of inputs to the candidate circuit
increases as well. Since the spectral algorithm is exponentially sensitive to size of inputs, the runtime at
higher depth is signifcantly slower. For depth of 5, specter is 25% slower than ceres. This illustrates the
exponential nature of the algorithm.

For the Actel library, the difference in area is more significant. For a depth of 5, the resulting mapping
cost differs by 6%. This again can be attributed to the different orderings returned by matching algorithms,
and the nature of the library. Actel library elements are functionally more complex, often leading to more
matches. Thus, selecting the one with best input ordering often can make large differences. The runtimes
for specter are much more comparable at depth of 5, although for depth of 3, there is a 14% difference.

5 Conclusion and Acknowledgement

A first step towards applying spectral techniques to Boolean matching has been illustrated. In particular,
a spectral matching algorithm based on the Hadamard transform for determining the NPN-equivalence of
two functions is presented. We have shown that the algorithm offers significant pruning of the exponential
search space, and uses fast operations and simple data structures. The results implemented in specter

offer encouraging results.
The authors would like to thank Frederic Mailhot for his insights and many helpful discussions. This

research was sponsored by NSF-ARPA, under grant No. MIP 8719546 and, by AT&T and DEC jointly
with NSF, under a PYI Award program. We acknowledge also support from ARPA, under contract No.
J-FBI-89-101

‘For a definition of depth, see [7]

10

References

[l] M. L. Dertouzos. Threshold Logic: A Synthesis Approach. M.I.T. Press, Cambridge, Massachusetts,
1965.

[2] E. Detjens and G. Gannot and R.L. Rudell and A. Sangiovanni-Vincentelli and A.R. Wang Technology
Mapping in MIS In Proceedings of ICCAD, pages 116-119, Santa Clara, November 1987.

[3] C. R. Edwards. Application of Radkmacher-Wakh Transform to Boolean Function Classijkation and
Threshold Logic Synthesis. IEEE Transactions on Computers, pages 48-62, January 1975.

[4] D. Gregory and K. Bartlett and A. de Geus and G. Hachtel SOCRATES: A System for Automatically
Synthesizing and Optimizing Combinational Logic In Proceedings of 23rd DAC, pages 79-85, June
1986.

[5] S. L. Hurst, D. M. Miller, and J. C. Muzio. Spectral Techniques in Digital Logic. Academic Press,
New York, New York, 1985.

[6] K. Keutzer DAGON: Technology Binding and Local Optimization by DAG Matching In Proceedings
of 24th DAC, pages 341-347, June 1987.

[7] E Mailhot Technology Mapping for VLSI Circuits Exploiting Boolean Properties and Operations
Ph.D. Dissertation, Stanford University, December 199 1

[8] E. Pitty A Critique of the GATEMAP Logic Synthesis System In Logic and Architecture Synthesis
and Silicon Compilers, pages 65-84.

11

Circuit

9symml
Cl355
Cl908
C2670
c3540
C432
c5315
C880
alu2
alu4

apex6
apex7

bl
cc
cht

CM163
cmb
cu

decod
example2

f51m
frgl
k2
1a.l

pair
rot
xl
x3

Total

T depth 3
Icost

220
428
597
892
1245
218

2055
319
591
1036
687
288
14
75

313
50
53
74
48
355
249
605

23 14
182

1781
1154
1693
1406

time
7.8
12.3
18.0
37.4
51.3
7.0

107.4
12.3
29.2
56.0
26.9
10.3
0.6
2.1
12.7
1.5
1.9
2.4
1.2

11.5
11.8
33.4
165.8
5.9

92.5
68.2
136.5
84.6

1 de1
cost
220
410
590
884
1206
218

2049
315
577
1012
687
283
14
75
253
48
49
73
48
349
248
605
2318
166

1644
1132
1684
1327

h 5
time
28.1
24.9
43.2
84.7
124.8
20.7

206.7
30.1
107.6
178.1
51.7
22.0
1.2
3.4

27.8
2.8
6.7
5.7
1.2

22.5
52.0
161.3
502.1
17.7

183.6
150.7
432

144.6

T cost time
214 7.8
404 12.1
609 18.0
860 35.1
1240 52.3
218 6.9
2032 102.3
315 11.0
590 26.6
1023 50.9
687 24.2
284 9.3
14 0.5
76 1.9

313 11.4
50 1.3
51 1.8
74 2.1
48 1.1
366 10
252 10.8
605 30.1

2322 149.0
177 5.7

1729 84.0
1139 65.8
1691 111.4
1342 62.2

de1
cost
214
404
596
852
1201
218

2005
310
567
1008
687
268
14
76

222
48
50
72
48
349
248
605

2326
155

1576
1093
1659
1150

18942 981.6 18484 2637.9 18725 905.6 18021
1.012 1.084 1.026 1.256 1.00 1.00 1.00

Specter Ceres
h5

time
2 6 . 6

21.6
36.4
80.0
114.0
18.9

185.4
27.8
91.0
153.8
47.1
18.7
1.0
2.8

25.6
2.7
5.0
4.5
1.1
19

45.9
128

292.3
11.8

144.5
144.3
338.8
111.1

2099.7
1.00-

Table 1: LSI Library Mapping Results, Specter vs. Ceres

12

Circuit

9symml
Cl355
C 1908
c2670
c3540
C432

c5315
C880
alu2
alu4

apex6
apex7

bl
cc
cht

CM163
cmb
cu

decod
example2

f51m
frgl
k2
lal

pair
rot
xl
x3

Total

depth 3
cost time
107 8.0
180 12.3
317 17.4
410 34.4
699 50.2
118 6.8

1019 93.5
200 11.3
336 27.8
576 49.7
409 24.5
154 9.5
7 0.5

41 2.2
161 11.5
25 1.4
27 2.0
34 2.3
26 2.1
181 10.6
136 11.6
283 32.8
1182 155.5
96 6.1

924 91.0
596 61.2
853 127.3
721 75.4

de1
cost
106
180
304
396
665
115

1002
190
331
566
407
152

7
40
132
21
27
34
26
174
135
279
1182

91
823
570
837
669

h5
time
25.7
22.8
37.5
72.0
105.9
18.3

169.2
24.6
79.2
132.9
52.2
18.4
0.9
3.0

23.4
2.9
4.6
4.3
1.1

18.6
37.7
4.7

262.9
11.8
144

135.4
303.4
130.4

depth 3 de
cost I time cost
97 7.3 96 2 4 . 3
178 11.9 178 23.0
281 15.9 274 37.5
403 31.2 372 68.0
649 45.7 624 100.5
115 6.4 108 17.9
906 83.4 872 160.6
195 10.4 181 23.1
335 23.8 321 74.9
576 44.5 552 126.3
401 21.9 398 40
149 8.4 141 17.0

6 0.4 6 0.9
34 1.9 33 0.8
161 10.5 125 22.3
24 1.3 20 2.8
26 1.7 26 4.3
34 2.1 32 4.0
26 1.0 26 1.0
179 9.7 164 17.8
137 10.3 133 36.6
283 28.7 280 100.9
1179 135.3 1179 238.8
95 5.5 77 10.4

914 78.2 761 130.9
576 52.3 540 124.9
844 105.7 829 278
671 64.5 560 111.2

9818 938.9 9461 1847.8 9474 819.9 8908
1.038 1.145 1.062 1.027 1.00 1 .oo 1.00

Specter Ceres

1798.6
1.00-

Table 2: Actel Library Mapping Results, Specter vs. Ceres

13

