
ANNA PACKAGE SPECIFICATION:
CASE STUDIES

Edited by John J. Kenne and Walter Mann
Contributions from memt
and Verification Group.

ers of the Program Analysis

Technical Report: CSL-TR-91-496
(Program Analysis and Verification Group Report No. 56)

October 1991

This reseasch has been supported by the Advanced Research Projects
Agency, Department of Defense, under contracts NOO039-82-C-0250, N00039-
84-C-0211 and N00039-91-C-0162.

Anna Package Specification:
Case Studies

Edited by John J. Kenney and Walter Mann
Contributions from members of the Program Analysis and Verification Group.

Technical Report: CSL-TR-91-496
Program Analysis and Verifica.tion Group Report No. 56

Oct,ober 1991

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Sta.nford University
Stanford, California 94305-4055

Abstract

We present specification techniques of Ada1 software, based on the Anna specification language, and
examples of Ada pa.cka.ges formally specified in Anna. A package specification for an abstract set data
type is used to illustrate the techniques and pit,falls involved in the process of software specification and
development. This specification not only exemplifies good Anna style and specification approach, but has
a secondary goal of teaching the reader how to use Anna and the associated set of Anna tools developed
at Stanford University over the past six years. Additional packages are presented which reflect a variety of
styles and approaches to specify Ada packages. The technical report thus aims to give readers a new way of
looking at the software design and development process, synthesizing fifteen years of research in the process.

Acknowledgements

The development of the examples in this technical report has taken place over the past five years. Earlier
versions of this set of examples were edited by Will Tracz and Randall Neff.

Examples have been contributed by various members of the Program Analysis and Verification Group
at Stanford. The contributors include Doug Bryan, Rob Chang, John Kenney, Chuan-Chieh Ko, David
Luckham, Neel Madha.v, Walter Mann, Geoff Mendal, Randall Neff, David Rosenblum, Sriram Sankar and
Will Tracz.

Key Words and Phrases: abstract data type, Ada, Anna, formal methods, formal specification.

‘Ada is a registed hademark of the U.S. Government (Ada Joint Program Office).

i

Copyright @ 1991

bY
Program Analysis and Verification Group

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305-4055

Contents

Preface 1

1 Introduction 3
1.1 Formal Methods . 3
1.2 Package Specifica.tion . 4
1.3 Overview . 5

2 Overview of Anna 7
2.1 Anna Formal Comments . 7

2.1.1 Virtual Ada Text . 7
2.1.2 Annotations . 8

2.2 Anna Execution Sema.ntics . 8
2.3 Anna Expressions . 8

2.3.1 Quantified Expressions . 8
2.3.2 Conditional Expressions . 9
2.3.3 State Expressions . 9
2.3.4 Initial Expressions . 10
2.3.5 Anna Operators . 10

2.4 Annotations . 11
2.4.1 Object Annotations . 11
2.4.2 Subtype Annot,ations . 11
2.4.3 Sta.tement Annotations . 12
2.4.4 Subprogram Annotations and Result Amrotations . 12
2.4.5 Axiomatic Annotations . 13
2.4.6 Context Amrotations . 14
2.4.7 Exception Annotations . 14

3 Package Specification Methodology 15
3.1 Introduction . 15
3.2 The Abstra,ct Dat,a Type, Set . 15
3.3 Ada Set Package Specificat,ion . 16
3.4 Theory Packa.ge Methodology . 17

3.4.1 Write the Ada Packa.ge . 18
3.4.2 Basic Concept Functions . 18
3.4.3 Subprogram Annotation . 19
3.4.4 Iterators . 24
3.4.5 Package Specification Analysis . 25

3.5 From Theory to Practice . 26
3.5.1 Never Raise an Exception . 26

. . .
111

3.5.2 Exceptions: IsJnSet and Is-Not-In-Set . 26
3.5.3 Exceptions: Overflow and Set-Full . 27

3.6 Conversion to Transformer Subset . 28
3.6.1 Quantifiers . 28
3.6.2 Transformable Set Package Specification . 29

4 Abstract Data Types 35
4.1 List Package. 36
4.2 Deque Package . 4 0
4.3 Tree Package . 43
4.4 Graph Package . 4 7
4.5 Map Package . 52
4.6 Rings Package. 56

5 Other Examples 61
5.1 Ba.nk ATM Packages . 62
5.2 Math Functions Package . 66
5.3 Complex Numbers Package . 72
5.4 Sorting Packa.ge . 77

6 System Examples 83
6.1 Library Book Package . 84
6.2 Petri Net Interpreter Package . 8 7
6.3 Mutual Exclusion Model Package . 91
6.4 Ada Logic Package . 95

6.4.1 Identifier Package. 95
6.4.2 Clause Package . 96
6.4.3 Database Package . 99
6.4.4 Substitution Packa.ge . 100
6.4.5 Unification Package . 103
6.4.6 Query Package . 105

iv

Preface

Anna is a language extension of Ada to include facilities for formally specifying the intended behavior of
Ada programs. It is designed to meet a perceived need to augment Ada with precise machine-processable
annotations so that well established formal methods of specification and documentation can be applied to
Ada programs. The annotations a.re well suited for different possible applications during the life cycle of a
program. Such applications include not only testing, debugging and formal verification of a finished program,
but also specification of program pa.rts during the ea.rlier sta.ges of requirements analysis and program design.

This technical report is designed t,o present specification techniques of Ada software, based on the Anna
specification language. We do this by presenting examples of Ada packages formally specified in Anna.
These examples were developed by persons with different backgrounds and levels of training. The examples,
therefore, reflect a. variety of styles and approaches to specifying Ada packages. A package specification for
an abstract set data type will be delved into in detail to illustrate the techniques and pitfalls involved in
the process of software specification and development. This specification not only exemplifies good Anna
style and specification approach, but, has a secondary goal of teaching the reader how to use Anna and the
associated set of Amla tools developed at Stanford University over the past six years. The technical report
thus aims to give readers a new way of looking at, the software design and development process, synthesizing
fifteen years of research in the process.

One motivation for this report is that there has been growing interest in Anna, and we felt it was time
to produce a library of Amla package specifications, which can be used to exemplify and teach the practical
application of Anna to real Ada software packages. It is therefore a pleasure to introduce this collection
of examples. We hope that you will experiment with these methodologies and specifications, and use them
in your Ada software development strategy. This technical report is designed to complement both the
Anna reference manual [6], and “Programming With Specifications: An Introduction to Anna” by David
Luckham [5].

Acknowledgements

The development of the examples in this technical report has taken place over the past five years. Earlier
versions of this set of examples were edited by Will Tracz and Randall Neff.

Examples have been contributed by various members of the Program Analysis and Verification Group
at Stanford. The contributors include Doug Bryan, Rob Chang, John Kenney, Chuan-Chieh Ko, David
Luckham, Neel Madhav, Walter Mann, Geoff Mendal, Randall Neff, David Rosenblum, Sriram Sankar and
Will Tracz.

Chapter 1

Introduction

Anna (ANNotat,ed Ada) [4,5,6] is a language extension of Ada[lS] to include facilities for formally specifying
the intended behavior of Ada programs. It is designed to meet a perceived need to augment Ada with precise
machine-processable annotations so that well established formal methods of specification and documentation
can be applied to Ada programs. Essentially, this language provide facilities for expressing information
about programs that is not normally part of the program text. The specifications are expressed in a machine
processable form - they can be parsed, checked for static semantic errors, and in many cases, compiled into
run-time tests. The specifications are well suited for different possible applications during the life cycle of a
program. Such applications include not only testing, debugging and formal verification of a finished program,
but also specification of program parts during the earlier stages of requirements analysis and program design.

1.1 Formal Methods
Formal methods used in developing computer systems are mathematically based techniques for describing
system properties. They provide frameworks for specifying, developing, and verifying systems in a systematic,
rather than ad hoc, ma.nner. System designers use forma,1 methods to specify a system’s desired behavioral
and structural properties. Formal methods can be used in all phases of a system’s development, and present
an opportunity to develop new techniques to improve software production.

One tangible product of applying a formal method is a formal specification. A specification serves as a
contract, a valua.ble piece of documentation, and a means of communication among a client, a specifier, and
an implementor. Formal specifications have the additional advantage over informal ones of being amenable
to machine analysis and manipulation. The greatest benefit of applying a formal method is an intangible
one, which often comes from the process of formalizing rather than from the specification. System designers
will gain a deeper understanding of t#he specified system because they have been forced to be more abstract
and precise about the desired properties. But it is not necessary to prove every property or detail about a
system; proving small things about core properties of the system will be invaluable in the future.

Consider for each system development phase, some uses of formal specifications and the formal methods
that support them.

Requirements analysis. This step clarifies the informally stated requirements, helps clear up vague ideas,
reveals contradictions (or inconsistencies), ambiguities and incompleteness.

System design. This step assists during decomposition and refinement by recording design decisions and
assumptions. An interface specification provides its clients the information needed to use the module
without knowledge of its implementation. At the sa.me time, it provides the implementor the informa-
tion needed to construct the modules without knowledge of its clients. The interface may remain the

3

4 CHAPTER 1. INTRODUCTION

same,
client.

and the implementation can be replaced, perhaps by a more efficient one, without hurting the

System verification. Verification is the process of showing that a system satisfies its specification. Verifi-
cation is impossible without a formal specification. It is important to realize that although the entire
system may never be completely verified, a. smaller, critical piece often can be.

System validation. Formal methods can aid in
to generate complete test cases.

system testing and debugging. Specifications can be used

System documentation. A specifica.tion serves as a description of the system. It communicates between
a client and a specifier, between a specifier and an implementor, and among the implementation team.
Formal methods are intended to capture the “what” rather than the “how.”

System analysis and evaluation. To learn from the experience of building a prototype system, developers
should do a critica. analysis of its functionality and performance after it has been built. In fact, much
recent work has been done in specifying a system which is already built, running, and used. Some of
these exercises revealed serious bugs in published algorithms and circuit designs. As to be expected,
most revealed unstated a.ssumptions, inconsistencies, and unintentional incompleteness in the system.

1.2 Package Specification
This technical report is designed to present specification techniques of Ada software, based on the Anna
specification language. We do this by presenting examples of Ada packages formally specified in Anna. The
examples are arranged in increasing order of complexity. These examples were developed by persons with
different backgrounds and levels of tra.ining. This in itself we hope will be useful to the reader. The examples,
therefore, reflect a variety of styles and approa.ches to specifying Ada. packages. The examples demonstrate
various annotation methodologies and features of Anna. This collection can be used both as a reference
guide for the experienced Anna programmer and as a tutorial for the novice specification programmer.

A package specification for an abstract set data type will be delved into in detail to illustrate the tech-
niques and pitfalls involved in the process of software specification and development. This specification not
only exemplifies good Anna style and specification approach, but has a secondary goal of teaching the reader
how to use Anna and the associated set of Anna tools developed at Stanford University over the past six
years. The Amia toolset includes a semanticizer, specification analyzer, and an Anna to Ada transformer,
which compiles the annotations into run-time tests. The technical report thus aims to give readers a new
way of looking at the software design a.nd development process, synthesizing fifteen years of research in the
process.

Possible uses of Amla are:

Formal Standards. The Anna packa.ge specifications provide precise, detailed, machine independent
definition of a package. Anna can be used as a formal definition for a package.

Testing and Debugging. Recognition of inconsistencies between Anna specifications and Ada programs
is automated. The Anna specifications are automatically converted into Ada checking code [14,16] by
a tool called the run-time checking transformer. The transformation therefore produces a self-checking
program which can interact with other tools (e.g. a symbolic debugger). When the transformed
program is executed on test cases, inconsistencies are automatically detected and diagnosed.

Rapid Prototyping. Anna can be used to provide a quick set of specifications for a particular problem.
These specifications would be at a higher level and simpler and less detailed than the actual Ada
code that will eventually be written. Techniques of symbolic execution and inferential analysis can be
applied to specification, to provide most of the results sought by ranid nrototypes. The Specification

1 .3 . OVERVIEW 5

Analyzer [2,9,1 l] is a tool designed for this use of Anna. Indeed, in the future, these symbolic reasoning
techniques can also be combined with partial implementations to provide more detailed prototyping.

Top Down Formal Design. Informal requirements for a package are converted into Anna specifications. -
Symbolic execution permits the testing and debugging of the specifications. The Specification Analyzer
provides support for various activities, such as development and analysis, in the transition between
informal requirements and accurate formal specifications. Formal specifications can then be used as a
guide for the manual or automatic construction of an implementation. They can also be used to guide
the decomposition of the formal specification into several component packages.

Specifying Ada packa.ges using Anna involves several techniques. One of the more important techniques
is abshdion or inform.niion hiding. Anna is used to express the behavior semantics of an Ada package in an
abstract manner. Writing Anna specifications can be thought of as a new form of programming. Different
kinds of decisions have to be made as compared to those made during traditional programming. Some of the
decisions involved are in the design of packages - the kind of data types and operations that comprise the
package; and the design of specifications that promise enough about the package to make the package useful;
while at the sa,me time not over-specifying the packa.ge, thus adversely constraining its implementation.
Other decisions to be made are the kinds of specifica.tion techniques to use - the package may be specified
either operationally or axiomatically; or the specification of a package may make use of concepts defined
in other packages. This process of re-using concepts is termed relative specification. These specification
processes are techniques of abstraction, and as yet, are in their infancy. Our examples are intended to
illustrate the choices involved in abstractions, and some simple techniques of abstraction.

However, the measures by which a program is judged are somewhat different from the measures for an
abstraction. Programs are concerned with correct behavior, economy of space, and speed. Understandability
has traditionally been a secondary consideration. Abstractions are much more concerned with understand-
ability, because their purpose is to provide guidelines and standards. The first measure is consistency, then
consequences and implications. Elegance, brevity, simplicity, delayed commitment - these are some of the
measures of abstractions. In this report, the reader is exposed to various kinds of annotations for abstract
specifications of Ada packages, and their use or misuse.

1.3 Overview
The structure of the technical report is as follows: Chapter 2 gives an overview of Anna. The reader
should be able to understand and construct straightforward Anna specifications after reading this chapter.
In Chapter 3, we design and develop a Set package. Various design issues are addressed and different
solutions are proposed. The remaining cha.pt,ers describe additional Ada packages formally specified in
Anna. Chapter 4 contains a number of abstract data. types. We continue in Chapter 5 with some simple
package specifications that are not definitions of abstra.ct data types. Finally, Chapter 6 presents four
complex examples that show the use of Anna. on la.rge, real world packages.

This set of Anna package specifications has been collected into a library which can be used to exemplify
and teach the practical application of Anna to rea.1 Ada software packa.ges. This library of specifications as
well as some implementations for them are available via anonymous ftp. We hope that you will experiment
with these methodologies and specifications, and use them in your Ada software development strategy.
Contact the Amla team at the address below for more details.

For more information a.bout the Amra la,ngua.ge and the Anna1 toolset, contact the following address:

Stanford Anna Team
Computer Systems Lab, ERL 456
Stanford University
Stanford, CA 94305

6

(415) 723-1175 (voice)
(415) 725-7398 (fax)
anna-request@anna.stanford.edu

CHAPTER 1. INTRODUCTION

Chapter 2

Overview of Anna

Anna (ANNotated Ada) [4,5,6] is a language extension of Ada to include facilities for formally specifying
the intended behavior of Ada programs. The design of Anna was initiated in 1980 by Bernd Krieg-Bruckner
and David Luckham. They were joined by Olaf Owe and Friedrich W. von Henke during the subsequent
development stages of the Anna design. The current Anna design is based on the ANSI standard version of
Ada and includes annotations for all Ada constructs except tasking.

Anna is based on first-order logic and its syntax is a straightforward extension of the Ada syntax.
Most new concepts in Anna are extensions of concepts already in Ada. For example, concepts such as scope,
visibility and overload resolution also apply to Anna constructs. Anna constructs appear as formal comments
within the Ada source text (within the Ada. comment framework). Therefore, from the point of view of Ada,
formal comments are just comments and hence Anna programs (Ada programs with Anna specifications) can
be accepted by Ada compilers and other Ada tools. 2

2.1 Anna Formal Comments
Anna defines two kinds of formal comments, which are introduced by special comment indicators in order to
distinguish them from informal comments. These formal comments are virtual Ada text, each line of which
begins with the indicator - - : , and annotations, each line of which begins with the indicator ---I .

2.1.1 Virtual Ada Text

The purpose of virtual Ada text is to define concepts used in annotations. Often the formal specifications of
a program will refer to concepts tl1a.t are not explicitly implemented as part of the program. These concepts
can be defined as virtual Ada text, declarations. Virtual Ada text may also be used to compute values that
are not computed by the actual program, but that are useful in defining the behavior of the program.

Virtual Ada text is Ada text with a few minor exceptions. That is, if all the virtual Ada text formal
comment indicators (--:) are deleted from a.n Anna progra.m, then the resulting program is a legal Ada
program (with the few minor exceptions referred to ea.rlier). However, the virtual Ada text must be such that
it does not modify the semantics of the ~rnderlying Ada program. To achieve this the following restrictions
are placed on virtual Ada text:

0 Virtual Ada text may not syntactically contain actual
enclose actual Ada statements in a virtual Ada block.

l Execution of virtual Ada text stat8ements
Ada objects.

may not change (directly or indirectly) the values of actual

Ada text. For example, it is not permitted to

2This chapter is reproduced wit,h permission from [14] copyright 1990.

8 CHAPTER 2. OVERVIEW OF ANNA

l Virtual Ada text decla.rations may not hide any actua.1 Ada dec1a.ration.s.

l Execution of virtual Ada text statements may not change the flow of control of the underlying program.
Thus reiurn, ezi2 and gofo statements within virtual Ada text can transfer control only within the -
largest enclosing virtual block or body.

A STACK package is shown below augmented with a virtual concept-LENGTH. This virtual concept can
be used to specify the operations PUSH and POP as will be described later.

package STACK is
function LENGTH return INTEGER;
procedure PUSH (E : in ELEMENT);
function POP return ELEMENT;

end STACK;

2.1.2 Annotations

Anrlotations are constraints on the underlying Ada program. They are made up of expressions which are
typically boolean-valued. The loca,tion of the annotation in the Ada program together with its syntactic
structure indicates the kind of constraints that the annotation imposes on the underlying program. Anna
provides different kinds of annotations, each associa.ted with a particular Ada construct. These are an-
notations of objects, types and subtypes, statements, and subprograms; in addition there are axiomatic
annotations of packages, propagation annotations of exceptions and context annotations of entity visibility.

In addition to Ada expressions, expressions in annotations can also contain quantified expressions, con-
ditional expressions, state expressions and Anna membership tests. Every annotation has a region of Anna
text over which it applies, called its scope. The scope of an annotation is determined by the Ada scoping and
visibility rules based on the position of the annotation in the Anna program. For example, if the annotation
occurs in the position of a. declaration, its scope extends from its position to the end of that declarative
region. Generally, amlotations constrain all observable states within their scope. An observable state is one
that results from either the elaboratlion of a declaration or by the execution of a simple statement. What
this means is that annotations do not constrain intermediate program states that occur during the execution
of simple statements.

2.2 Anna Execution Semantics
When an Anna program is executed, each observable state encountered has to satisfy all Anna constraints
whose scope includes this state. In case the program does not satisfy any one of these Anna constraints,
the predefined Anna exception ANNA-ERROR is raised at this point. This exception can be handled using
a. virtual exception ha.ndler for ANNA-ERROR or an exception handler with the others option. This facility
allows for some alnoiltrt of error recovery.

2.3 Anna Expressions

2.3.1 Quantified Expressions

Both universal and existential quantifiers can be used in Amla expressions. The quantified variables are
referred to as logical variables. Logical variables can be quantified over a range of values or over all the
values of a type. The range of quantifica,tion is also further constrained to only those values for which the
quantified expression is defined. A few examples are shown below:

2.3. ANNA EXPRESSIONS 9

for all X, Y : NATURAL => X - ((X / Y) * Y) = X mod Y
-- Note that the range of quantification for Y does not include 0.

exist X : I N T E G E R => X * X = loo

2.3.2 Conditional Expressions

Conditionul expressions are expressions which ca.n take on one of a set of values
a set of guards. An example is shown below:

depending on the values of

F(X) = if X = 0 then
1

elsif X = 1 then

else
F(X - 1) + F(X - 2)

end if

The guards are evaluated in sequence from the beginning until one of the guards evaluates to TRUE. The
value of the expression corresponding to this guard then becomes the value of the conditional expression.
If all guards evaluate to FALSE then the value of the expression in the e/se part becomes the value of the
conditional expression. All conditional expressions must contain an else part.

2.3.3 State Expressions

State expressions are useful to describe values of composite objects, especially as a result of a modification
to one of their componentNs. State expressions of arrays, records and package states are described in the
following paragraphs. A fourth form - state expressions of collections of access types - will not be dealt
with here. State expressions have the following format:

value [modijcution]
Here, value is of the composite type and modification describes a modification to one of its components. A
short form is available to describe values tha.t result from sequences of such modifications:

value [modificutionl ; modification2]
is equivalent to:

value [m.odificutionl] [modificution2]

Array and Record State Expressions

The modification of array and record state expressions have the following format:
component => expression

Examples are shown below:

STR[3 => ‘I’]
-- This expression has the value of array STR except that the third component is replaced by ‘I’.
JOHN[AGE = > 3 6 ; W I F E - N A M E => “LINDAuuuU,,“]
- - This expression has the value of record JOHN except that the components AGE and WIFE-NAME are
- - modified.

10 CHAPTER 2. OVERVIEW OF ANNA

Package States and Package State Expressions

A package state in Amla is a value that represents the state of a package. The package state is modeled as
a record whose components are the variables declared immediately within the body of the package. There
are other components that form part of the package state such as the states of nested packages, but they
will not be dealt with here. Within the package body, where the details of the package state are visible,
package state values can be used in about the same way as record values. Outside the package body, package
state values behave simila.rly to priva.te type va.lues. Anna defines two attributes of packages that are used
in conjunction with package states. If P is a package, P’STATE denotes the current state of the package P.
For notational convenience in annotations, the current state may be denoted by the package name itself; i.e.,
the attribute designator STATE may be omitted. P’TYPE denotes the implicit record type that models the
package state. Package state expressions describe the effects on the package state as a result of executing
package operations.

The modification of package state expressions takes the form of a call to a package subprogram. The
value of the expression is the value of the package state that results when the subprogram call is executed
in the specified package state. Some examples are shown below:

STACK’STATE[PUSH(El)]
- - The state of the package STACK as a result of executing PUSH(E1) on the current state of this package.
STACK[PUSH(E2); POP]
-- Here, ‘STATE has been omitted for notational convenience. This expressions denotes the state of the
-- package STACK as a result of executing PUSH(E2) fo 11owed by POP on the current state of this package

There is another useful operation on package sta.tes. The expression S. F(. . .) where S is a package state
expression a.nd F is a pa,ckage function denot,es the value F(. . .) returns if it is called when the package is in
state S. An example is shown below:

STACK[PUSH(E2)]. POP

2 .3 .4 Initial Expressions

An initial expression contains the keyword in (referred to as the modifier) followed by an expression referred
to as the modified expression. Initial expressions are constants. The value of an initial expression is the
value that the corresponding modified expression had when it was ela.borated. During elaboration the initial
expression is replaced by the value of the expression it modifies. Some examples are shown below:

in X
i n (X*+2 + Y**2)

2.3.5 Anna Operators

There are four new operators in Anna. They are the implica.tion operator, the equivalence operator, Anna
relational operators and Amla membership tests. The implication operator (->) and the equivalence operator
(C-B) have their usual meanings:

A -> B -- if A then B
A <-> B - - AifandonlyifB

The Anna relational operators feature
conjunctions of Ada relations. This is best

a syntactic short-hand to
described by an example:

express certain commonly occurring

2.4. ANNOTATIONS 11

A < B <= C

is equivalent to:

A < B and B <= C

The Anna membership test (isin) is an extension of the Ada membership test. The Ada membership test
(A in T) checks that the value A satisfies the Ada constraints on T. The Anna membership test (A isin T)
checks that the value A satisfies both the Ada and the Anna constraints on T. Anna constraints can be
placed on T using subtype annotations (described later).

2.4 Annotations

2.4.1 Object Annotations

An object annotation is a BOOLEAN expression that constrains the values of the variables occurring in this
expression throughout the scope of the annotation. Object annotations can occur in declarative regions only.
In the special case in which there are no variables in the expression, the annotation is a constant and is
therefore a constraint at the point of elaboration of the annotation. An example of this special case is an
object annotation whose expression is an initial expression. There is another kind of object annotation, the
out annotation which constra.ins only the points of exit from the scope. Some examples of object annotations
are shown below:

--I CIRCUMFERENCE = 3.14159 * DIAMETER;
This object annotation constrains the variables CIRCUMFERENCE and DIAMETER throughout the
scope of the annotation.

1 in(X > 0);
An object annotation with no variables (though S is a variable, it is within an initial expression). This
annotofzon constrains the point at which the annotation is defined.

1 out(Y = in X);
An out annotation which constrains the variable Y (on exit from the scope of the annotation) to be equal
to the value J.’ had when the annotation was elaborated.

2.4.2 Subtype Annotations

A subtype annotation is a constraint on types a.nd subtypes. Unlike object annotations, there can be only
one subtype annotation for each type or subtype definition. An example of a subtype annotation is shown
below:

type EVEN is new INTEGER;
- - 1 where X : EVEN => X mod 2 = 0;

This annotation constrains all objects X of the type EVEN to satisfy the constraint X mod 2 = 0. If the
subtype annotation contains any variables other than the logical variable (X in the above example), then
these variables are implicitly modified by in (they are replaced by their values at elaboration time). Hence
subtype annotations only constra.in the corresponding types or subtypes.

12 CHAPTER 2. OVERVIEW OF ANNA

2.4.3 Statement Annotations

There are two different kinds of statement annotations--simple statement annotations and compound state-
ment annotations.

Simple Statement Annotations

Simple
immedi

statement annotations
ately before the simple

are constraints on a single statement. This constrained statement is the one
statement annotation. The constraint imposed by the annotation has to hold

when control leaves the constrained statement-i.e., it behaves like an out annotation on the constrained
statement. If the annotation occurs at the beginning of a sequence of statements, then it constrains an
implicit null statement just before the annotation.

In most cases, the simple statement annotation is a constraint that has to hold whenever control passes
the point where the annota.tion is located. However, when the preceding statement transfers control to some
other location (as is the case wit,h goto, return and exit statements) then the constraint has to hold just
before control is transferred by this sta.tement. An example is given below:

I := 2;
while (I <= N) loop

if A(I - 1) > A(I) then
EXCHANGE(A(I - 1), A(I));

end if;
- - I A(I) >= A(I - 1);

-- This constraint has to hold after the execution of the preceding if statement.
I := I + 1;

end loop;

Compound Statement Amlotations

Compound statement annotations are constraints on compound sta.tements. The constrained statement
occurs immediately after the compound statement annotation. The annotation is bound to the statement
by the keyword with and constrains all observa,ble sta.tes in the compound statement-i.e., it behaves like
an object annotation on the constrained statement. The nrevious examnle is shown below once again with
a compound statement annotation included:

I := 2;
--I with 1 < I <= N + 1;

-- Tha’s constraint must hold at all observable states within the following while loop.
while I <= N loop

if A(I - 1) > A(I) then
EXCHANGE(A(I - 1), A(I));

end if;
- - A(I) >= A(I - 1);

I := I + 1;
end loop;

2.4.4 Subprogram Annotations and Result Annotations

Subprogram unnotuiions are used to describe the beha,vior of subprograms. They are bound to the Ada sub-
program specification by the keyword where. They are useful in describing the input-output specifications
of the subprogram. Result annotuiions are constraints on the return values of functions. A result annotation

2.4. ANNOTATIONS 13

must occur immediately within a function, but its location is otherwise not restricted. It can be in the
place of an object annotation, a statement annotation, or a subprogram annotation. Result annotations are
distinguished by the keyword return and they constrain all return statements within their scope. A few

les of subprogram annotations and result annota.tions are shown below:

procedure EXCHANGE (X, Y : in out INTEGER);
where

out(X = in Y),
out(Y = in X);

-- On output the value of X is the input value of I’ and vice-versa.

procedure PUSH (E : in ELEMENT);
-- where

out(LENGTH = in LENGTH + 1);
- - This procedure is from the STACIi package shown earlier, In addition to illustrating subprogram
- - annotations, this also shows how virtual functions can be used for annotation purposes. The
- - above annotation says that the execution of PUSH causes the the value of LENGTH to increase
- - b y 1 .

function SQRT(X: FLOAT) return FLOAT;

/
where

- - return Y : FLOAT => Y + Y = X;
-- The value Y returned hrl S’ORT is such that its square is equal to the input parameter X.

2.4.5 Axiomatic Annotations

Axiomatic annotations (or packa.ge axioms) are constra.ints on package operations. They must occur in the
package visible part. They are characterized by the keyword axiom followed by a sequence of BOOLEAN
expressions which are usually quantified with respect to types defined in the package. Axiomatic annotations
are promises which can be assumed wherever the package is visible; and they are also constraints on the
implementation of the pa.ckage. Algebraic specifications of abstract data types can be written as axiomatic
annotations. The STACK package shown earlier is specified axiomatically in the following example:

package STACK is
function LENGTH return INTEGER;
procedure PUSH (E : in ELEMENT);

- - I where
- - I out(LENGTH = in LENGTH + 1);

function POP return ELEMENT;
- -
- - I

where
out(LENGTH = i n L E N G T H - 1);

- - 1 axiom for all S : STACK; E : ELEMENT =>
S[PUSH(E); POP] = S,

- - S[PUSH(E)].POP = E;
-- The above two constraints have to be satisfied by all implementations of this package, and therefore
- - can be assumed uhcrfwv- the pcrckcrge is viciblc.
end STACK;

14 e CHAPTER 2. OVERVIEW OF ANNA

2.4.6 Context Annotations
A context annotation constrains the use of global variables within a program unit. Context annotations take
the form of the keyword limited followed by a list of zero or more variables. It constrains the occurrences
of variables declared outside of its scope (the program unit)-only those outside variables that are listed in
the annotation may occur (be used) within its scope. A context annotation on the stack package mentioned
earlier is shown below:

-- I limited to INTEGER, ELEMENT;
package STACK is

end STACK;

2.4.7 Exception Annotations
Exception annotations (or propagation annota.tions) specify the exceptional behavior of program units. There
are two different kinds of exception annotations-strong propagation annotations, which specify the condi-
tions under which certain exceptions should be propagated (outside the scope of the annotation); and weak
propagation annotations, which specify what happens when an exception is actually propagated.

Strong Propagation Annotations

Strong propagation annotations specify the conditions under which exceptions should be propagated. The
conditions are with respect to the initial state of the scope of the annotation. If the conditions are satisfied,
the scope of the annotation must be exited by propagating the specified exception. Again, examples follow
with respect to the stack example:

package STACK is
---I function LENGTH return INTEGER;

UNDERFLOW : exception;
. . .
function POP return ELEMENT;

- - I where LENGTH = 0 => raise UNDERFLOW;
-- If LENGTH is 0 when POP starts execution, then it must terminate by propagating the
- - excep t ion UNDERFLOW.

. . .
end STACK;

Weak Propagation Annotations

Weak propagation annotations specify what happens when an exception is propagated. It specifies conditions
that must be satisfied if the scope of the annotation is exited by propagating one of the specified exceptions.
An example is shown below:

procedure EXCHANGE(X, Y : in out INTEGER);

I where raise CONSTRAINT-ERROR => X = in X and Y = in Y;
- - If the exception CONSTRAINT-ERROR is propagated out of the procedure EXCHANGE, then
- - the p)nrametPrs Y nnrl Y remrrrn unchnn~~ed.

Chapter 3

Package Specification Methodology

3.1 Introduction
The major goal of this chapter is to illustrate an Anna formal specification of an Ada set package visible part.
The example is designed to simply show a methodology of Anna specification, not the details of Anna. The
methodology starts with an English description of the requirements of a set package specification, transitions
through the Ada visible package specification, and concludes with an Anna formal specification. This is a
methodology for completely specifying the behavior of Ada packages. In many cases, it is not necessary or
desirable to completely specify a pa.ckage; instead proving important properties of small pieces of a system
can be critical. However, we will explore this methodology by delving into some details to illustrate the
techniques and pitfalls involved in the process of Anna specification and development.

A secondary goal of this chapter is to teach the reader how to use the associated set of Anna tools
developed at Stanford University over the past six years. This chapter aims to give readers a new way
of looking at the Anna specification design and development process, synthesizing around fifteen years of
research in the process.

The next section gives the natmural language requirements and a normal Ada package specification. The
third section presents a methodology for theoretically annotating this package along with the results of
applying the Anna Specification Analyzer to the specification. The fourth section transitions this specification
from a theoretical one to a pra,ctical one; a specification which can be used to check an implementation. This
chapter concludes with a discussion of methods to keep as much of the specification as possible within the
current Anna Transformer’s subset.

3.2 The Abstract Data Type, Set
A set is a collection of elements drawn from a class of objects called the base type. This collection may
not contain any duplicate elements. Thus, a set can be represented as an unordered collection of unique
elements. A variable of type Set may represent either none, any, some, or all of the values in its base type.
The elements of a set can not be selected individually. Instead, the membership operation Is-In is used to
test for an element’s presence or absence. If a, set does not have any elements, it is said to be empty, and is
denoted by the em&-se2. The number of elements in a set is called its cardinaldy.

An element can be inserted into a. set, thereby making that element a member of the resulting set. The
set can be modified again by removing that element from the set. These operations will be called Add and
Remove respectively. Two sets are equal if and only if they have the same elements as members.

The set L is a szlbse2 of a set R if every member of L is a member of R; this will be written L <= R.
Additionally, if L is not equal to R, then L is a proper subset of R, and is denoted L < R. Subset and
proper subset have complementary relational operations of .sllnPrsei and proper superset, written L >= R

15

16 CHAPTER 3. PACKAGE SPECIFICATION METHODOLOGY

and L > R. The union, L + R, is the set whose members belong either to L or to R (or both), and their
intersection, L * R, is the set whose members belong to both L and R. The set difference, L - R, is the set
of members of L which are not in R. Finally, the symmetric diflerence of L and R, denoted L/R, is defined
by the previous operations as (L - R) + (R - L).

Typical implementation strategies include linked lists and bit vectors. The two strategies have different
properties, some of which limit the usefulness of the approach but benefit the implementor. Set packages
implemented using linked lists have no specific maximum cardinality, however there is some uncertainty as
to when the system can allocate new links during phases of its computation. This uncertainty may permit
unpredictable behavior in concurrent applications. Anna can annotate these uncertainties, making them
explicit in the specification.

Sets packages implemented using bit vectors have a constant maximum cardinality, which typically equals
the machine word size. This restricts the usefulness of this approach, since the sets must be small. However,
it is very useful and prwlictahl P since it, (lops not, IWP dynamic heap allocation.

3.3 Ada Set Package Specification

This section presents a.n Ada package specification for the set abstract data type. The package is generic
and forms a template from which many analogous pa.ckages can be produced without duplication of effort.
It is a simple Ada package specification, written in a popular coding style, i.e. with very few informal
comments. Ada package specifications were designed to separate the syntactic and type semantic definition
of the interface from the actual implementation of the package body, and there is no way to define the
behavioral features of the interface except with informal comments in a natural language.

generic
type Base is private;

package SET-Ada is
type Set is limited private;
function Is-In (E : in Base; S : in Set) return Boolean;

-- Membership: Returns true if the element is a member of the set.
function Cardinality (S : in Set) return Counber;

-- Returns the current number of elements in the set.
function “=‘I (L, R : in Set) return Boolean;

-- Equality: Returns true if the two given sets have the same state.
procedure Copy (S : in Set; TX : in out Set);

- - Copies the members of the S set over to TX

function Is-Empty (S : in Set) return Boolean;
-- Return true i f the set contains no elements.

function Empty-Set, return Set;
-- Returns a set which contains no elements as members.

procedure Clear (S : in out Set);
- - Remove all the elements (if any) from the set

function ‘I<=” (L, R : in Set) return Boolean;
-- Subset: Returns true if the first set is a subset of the second set.

function “<‘I (L, R : in Set) return Boolean;
- - Proper Subset: Returns true if the first set is a proper subset of the second set.

function “+” (S : in Set,; E : in Base) return Set;
-- Add: Insert an element as a member of the set.

procedure Add (E : in Base; S : in out Set);
-- Insert an element as a member of the set.

procedure Union (L, R : in Set; TX : in out Set);
- - Returns a set containin,g the elements that are members of the first set or the second set.

3 . 4 . THEORYPACKAGEMETHODOLOGY 17

function ‘I-” (S : in Set; E : in Base) return Set;
-- Remove: Returns a set without the element as a member of the set.

procedure Remove (E : in Base; S : in out Set);
- - Returns a set without the element as a member of the set.

procedure Difference (L, R : in Set; TX : in out Set);
- - Returns a set containing the elements that are members of the first set and not members of

-- the second set.
procedure Symmetric-Difference (L, R : in Set; TX : in out Set);

- - Given two sets, form a set containing the elements that are members of the first set and are
- - not members of the second set and the elements that are members of the second set and are
- - not members of the first set.

procedure Intersection (L, R : in Set; TX : in out Set);
- - Given two sets, form a set containing the elements that are members of the first set and are
-- members of the second set.

private
-- to be defined later

end SET-Ada;

Even with the informal comments, it is apparent that the Ada package specification does not fully
capture the meaning of the subprograms. The specification does capture the information hiding and data
encapsulation semantics of this abstraction. It hides the structure of the types Set and Base by making
them private types, and it enca.psulates all of the subprograms associated with these two types in one place.
However, it does not specify many properties which really define the meaning of the subprograms. Questions
about the implementation of the package body include: Are there any exceptions propagated from the body?
Is there a limit to the number of elements in a set? And if there is, what happen when this limit is exceeded?
Will the procedure Remove blow up if the element is not in the set.7 We will use Anna to answer these
questions as well as to constrain the behavior of the package body to match our assumptions; for example,
that the function Empty-Set must return a set which has no elements as members.

Notice that we have presented the opera.tions Add and Remove in two ways, each as a function and as
a procedure. In the case of functions, the returned set is is the product of the given parameters, which are
left unchanged. However for the procedures, the last parameter is changed and is denoted in out Set. This
would reduce the copying of element#s from one set to another which may occur in function based operations.
We use this difference between procedure based operations and function based operations to show a slightly
different style of Anna subprogram specification.

3.4 Theory Package Methodology
This section presents a methodology of writing Anna specifications for Ada package specifications. The exact
details of the methodology will depend on what the package will implement as well as the experience of the
individual doing the specification. Specifications may consist of:

l a collection of subprograms.

l an abstract data type, with values stored in the private or limited types.

l an abstract data object, with values stored in t,he package state.

l a generic a.bstract data type.

l a generic abst,ract data object.

l a combina.tion of the above.

18 CHAPTER 3. PACKAGE SPECIFICATION METHODOLOGY

In particular, we will continue with our specification of a set package, a generic abstract data type. We
consider the specification of the other package types to be a simple extension to the method we will present.

While the specification methodology is presented in basically a straight line fashion, there are implied
feedback loops. Writing a subprogram annotation or axiom may require jumping back to define a new virtual
function, a new exception, or a new enumeration literal before continuing.

3.4.1 Write the Ada Package

We have just performed the first step in our development methodology: write the Ada package visible part.
This part remains basically unchanged throughout; we just make extensions and reorderings to it. The
ordering of the declarations in the package visible pa.rt is normally loose - the only Ada restriction is that
a type or subtype must be declared (perhaps incompletely) before being referenced in another (sub)type or
subprogram declaration. Exception declarations can be placed anywhere since they are not referenced in
any other Ada declaration.

Adding Anna specifications will place additional restrictions on the ordering of the Ada declarations. The
annotations must occur after the definitions of all of the entities that are used in the annotations. Notably,
this now restricts the placement of exception declarations, since they must now appear before any reference
in propagation annotations.

The suggested order of the declarations in the package visible part is:

l (sub)types, constants, and objects

0 exceptions

l virtual basic concept functions

l visible basic concept functions

l amlotated virtual functions

l annotated visible subprograms

l package initial axioms

l package axioms

l package private part

3.4.2 Basic Concept Functions
We will now develop a set of functions of a set package that capture the intrinsic features of the abstract
data type, called basic concepts. These basic concepts will be used to specify the other subprograms. For
example, the basic concepts of a set packa,ge could be membership, equality, cardinality, and overflowed.
The basic concepts will be written as virtual or visible functions. The virtual functions are only visible
in annotations in the package visible part (and for future anrlotations in the package body). The virtual
functions can be compared to peepholes into the hidden data structures in the package body.

Virtual functions make internal package conditions available for use in the subprogram annotations. This
is very importa.nt when the original requirements define a hidden internal condition that can change the
behavior of a subprogram. In the set package requirements, the condition that the system may overflow
upon an Add if more heap memory allocation is not possible. The system running out of memory is an
internal condition that ma.y affect a change in the visible subprograms, and is therefore a basic concept. A
virtual function, Overfiowed, is required to make the internal condition visible.

The basic concept functions are intrinsic to the abstract data type and can not be directly annotated by
out-state or result annotations. They do not change the package state of the package; they only report on

3 . 4 . THEORYPACI~AGEMETHODOLOGY 19

internal package data or conditions. A basic concept function can be annotated with object annotations (for
input or pre-conditions), or strong and weak propaga,tion annotations (for exceptions). This is because a
function which has a result annotation is specified using other concepts. Such functions can not be understood
fully unless the concepts on which they are specified are fully understood.

A recursive result annotation is specified in terms of another subprogram, which is in turn specified in
terms of the original subprogram. Recursive result annotations are not allowed, as they present a major
technical problem for the Anna toolset. The Anna transformer introduces checking calls, which upon exe-
cution will form a cycle and recurse infinitely. Therefore, subprograms should be stratified to eliminate the
possibility of infinite recursion.

In general, the set of basic concepts should be as small as possible without complicating the package
specification. We define one set of concepts to be smaller than another if and only if it is a subset of the
other. Furthermore, a given specification may not have a unique minimal set of basic concepts. We are
simply trying to keep the number of basic concepts small. This is because we are assuming that that we
understand the basic concept and thus can use it to understand other subprograms.

In the case of the set pa.ckage, we may consider Is-In and Equality to be basic concepts. If we leave both
unspecified, they will both be basic. However, we define equality using Is-In, and then only Is-In will be
basic. Thus, the general rule of thumb would imply that the only basic concept needed is Is-In. Since the
subprogram Is-In is taken as a basic concept, we define the equality relation on sets based on our concept of
membership.

- Basic Concept Functions
-*. function Overflowed return Boolean;

function Is-In (E : in Base; S : in Set) return Boolean;
function Cardinality (S : in Set,) return Natural;

-- Nonbasic Concept Function
function “z” (L, R : in Set) return Boolean;

I where
- - l return for all E : Base => Is-In(E, L) <-> Is-In(E, R) ;

-- The annotation states that the equali ty relation returns true if and only if euery element
- - which is a member of L is also a member of R and every element which is not a member of
-- L is not a member of R.
- - By Anna semantic rules, this annotation holds trivially for undefined ualues of Base.

3.4.3 Subprogram Annotation

For each visible subprogram in the package, the following questions should be answered by the requirements
and converted into Anna subprogram annotations. If the answer is not in the requirements, this may indicate
a, missing or incorrect requirement. Each subprogram annotation must specify all of the changes that the
subprogram will make to the package state (if possible).

Package State Conditions What constraints on the package state must be true when the subprogram
is called? Use: Object Annotations

In Parameters What are the constraints on the in and in out parameters (other than normal Ada
type constraints)? Use: Object Annotations

Exceptions What package defined exceptions are propagated by this subprogram? What predefined Ada
exceptions are explicitly propagated by this subprogram? How has the resulting package state changed
after each exception is propagated? Use: St rong Propaga t ion Anno ta t i ons and W e a k P r o p a g a t i o n
Annotations (reserved word raise)

20 CHAPTER 3. PACh’AGE SPECIFICATION METHODOLOGY

Function Result What is the result of the function? Use: Result Annotation (reserved word return)

Out Parameters Wha.t are the returned
(reserved word out)

values of out and in out parameters? Use: Out Annotations

Package State Changes
normally? Use: Out A

What are the changes to the package state when the subprogram returns
nnotations and / or Result Annotations (reserved words out and return)

Is-Empty, Empty-Set and Clear

Let’s examine empty sets in more detail, with respect to the annotation topics that a good subprogram
specification should address. The annotations on empty sets, below, constrain a set to be empty when the
set has no elements as members. This informal explanation specifies most of the semantics of empty sets,
excluding the semantics of exceptions raised. We will delay this discussion of exceptional behavior until later
in this chapter.

The function Is-Empty is easily formally specified by checking every possible base object and make sure
it is not a member of the given set. The function result is simply a universal quantification over the domain
of elements in the base, derived directly from the informal description. There are no package state changes.

We continue similarly with the specification of Empty-Set and Clear. The other subprograms can reuse
the specification for Is-Empty, as shown below. An interesting point is the choice of making Empty-Set a
function or a constant. Both declarations can be used, and they have the same external semantics, because
the value returned by the function will be a constant. However, as a function it gives us an opportunity to
use both a subprogram and axiomatic annotations.

Also, we would like to specify the default initial value of a set. The initial package axioms define the
package state immediately after the package body has been elaborated. The initial axioms should define the
initial result values for all of the basic concept functions, both virtual and visible. The axioms should also
define the initial values of all private and limited private type objects. Used here, the Anna attribute ‘Initial
is an attribute of any private type which denotes the default initial value of objects of the type.
defines every set to be initially equal to the Empty-Set, where this equality is not defined yet!

function Is-Empty (S : in Set) return Boolean;
- -

I
where

- - return for all E : Base => not Is-In(E, S);
-- Returns true if there are no elements in the set.

function Empty-Set, return Set;
- -

I
where

- - return S : Set, => Is-Empty{ S);
-- Returns a set which must be empty.

procedure Clear (S : in out Set);
- -

I
where

- - out(Is-Empty(S)):
-- After complet ion thr IY /l/r-ned set mtrst be empty.

- - axiom
Is-Empty (Set’Initial),

- - for all E : Base => not Is-In(E, Empty-Set);
-- Appropriate whether Empty-Set is a function or a constant.

Subset and Proper Subset

The axiom

The abstraction defines L to be a subset of R if every element which is member of L is also a member of R.
This is easily expressed in Anna as an implication expression. The subset annotation states that L <= R if
and only if every element which is a member of L is also a member of R.

3.4. THEORY PACKAGE METHODOLOGY 21

The abstraction defines the L to be a proper subset of R if L is a subset of R and additionally L is not
equal to R. This formal definition uses two previously defined concepts in the abstraction to define another.
In Anna, we do an ana.logous formal definition. Since we have already defined in Anna the specification of
equality and subset, we can use them to specify proper subset. This is expressed as a conjunction of L being
the subset of R and L being not equa.1 to R.

function I’<=” (L, R : in Set) return Boolean;
- - l where
- - return for all E : Base => Is-In(E, L) -> Is-In(E, R) ;

- - Return True if the first set is a subset of the second set.
function “<” (L, R : in Set) return Boolean;

where
- - return (L <= R) and L /= R;

-- Rctllrn TrvIe if the first set is a proper subset of the second set.

Add and Union

The operations Add and Union are very similar; in fa.ct one can think of Add as an overloading of Union, where
the element being added is a singleton set. Union takes two sets and forms a set containing the elements that
are members of the first set or the second set. The annotation for Union states that every element which is a
member of the returned set, TX, is either a member of the given set L or a member of the given set R. For
the Add operation the set being returned, the out-value of S, has every member of the in-value of S plus
the new element, E. This annotation implies that if the new element E is already a member of set S, then
S does not change.

------ I
-- I---- I
-- I---- I

function “+” (S : in Set; E : in Base) return Set;
where

return R : Set =>
for all A : Base =>

(Is-In(A, S) or A = E) <-> Is-In(A, R);
-- Insert an element as a member of the set.

procedure Add (E : in Base; S : in out Set);
where

out (for all A : Base =>
(Is-In(A, in S) or A = E) <-> Is-In(A, S));

- - Insert an element as a member of the set.
procedure Union (L, R : in Set; TX : in out Set);

where
out(for all E : Base =>

(Is-In(E, L) o r Is-In(E, R)) <-> Is-In(E, T X)) ;
-- Returns a set containing the elements that are members of the first set or the second set.

Remove and Set Difference

The operation Remove modifies the set making the element no longer in the set. The operation Set Difference
forms a set containing the elements that are members of the first set and not members of the second set.

These annotations are about the same length as Add and Union. We want to reuse our previous anno-
tations to derive new annotations, which are shorter than they would be otherwise. Here we introduce the
style of arranging the subprograms in strata. Formally, the subprograms are stratified if whenever there is
a subprogram specification for p that uses anot8her subprogram Q, there is no path in the dependency graph

22 CHAPTER 3. PACKAGE SPECIFICATION METHODOLOGY

from Q to p. Intuitively, a subprogram’s specification can only use a subprogram that lies in a lower stratum.
Basic concepts are always placed in the lowest stratum.

We will exemplify this process by doubly specifying the operations Remove and Set Difference. The first
specification will be similar to the previous specifications using the basic concepts. The second
will reuse any previous specifications of subprograms, creating a stratified set of subprograms.

specification

-- l-- I--
-- I-- I

-- I
-- I

--
--

function
where

I, _ II (s : in Set; E : in Base) return Set;

return R : Set =>
(for all A : Base =>

(Is-In(A, S) aud uot A = E) <-> Is-In(A, R))
and (S = R + E);

- - Remove: Returns a set without the element as a member of t& set.
procedure Remove (E : in Base; S : in out Set);

where
out(for all A : Base =>

(Is-In(A, in S) and not A = E) <-> Is-In(A, S)) ,
out(S = “-‘I(in S, E));
- - Returns a set without the element as a member of the set.

procedure Difference (L, R : in Set; TX : in out Set);
where

out(for all E : Base =>
(Is-In(E, L) o r Is-In(E, R)) <-> IsJn(E, T X)) ,

out(TX = L + R);
- - Returns a set contuining the elements that are members of the first set and not members of

-- the second set.

The strata so far are:
Stratum 1: The basic concept functions: Is-In, Overflow, and Cardinality.
Stratum 2: Equality, Is-Empty, Subset, Add, and Union
Stratum 3: Empty-Set, Clear, Proper Subset, Remove and Set Difference

Intersection and Symmetric Difference

Intersection returns a set containing the elements tha,t are members of the first set and are members of the
second set. The first annotation states that an element E is a member of the L * R, if and only if E is a
member of L and a member of R. The second part of this annotation describes the resulting set as equivalent
to a combination of previously defined functions. Symmetric difference is specified similarly.

procedure Intersection (L, R : in Set; TX : in out Set);
- - l where

out(for all E : Base =>
- - (Is-In(E, L) aud Is-In(E, R)) <-> Is-In(E, T X)) ,
- - I out(TX = (L + R) - (S - T) - (T - S));

- - Given two sets, form a set containing the elements that are members of the first set and are
-- members of the second set.

3.4. THEORYPACKAGEMETHODOLOGY 23

- -
- -

procedure Symmetric-Difference (L, R : in Set;
TX : in out Set);

where

- - I

out(for all E : Base =>
(Is-In(E, L) xor Is-In(E, R)) <-> Is-In(E, TX)),

- - l out(TX = (L - R) + (R - L));
- - Given two sets, form a set containing the elements that are members of the first set and are

- - not members of the second set and the elements that are members of the second set and are
-- not members of the first set.

Cardinalit y

The cardinality of a set is the number of elements which are currently members of the set. The specification
for cardinality is much different from previous specifications. This specification must in some sense “count”
the number of elements in a set. This specification begins with a base case, for the Empty-Set, and then
specifies the inductive step. The base case is very simple, since we just need to state that the cardinality of
the Empty-Set is zero.

The inductive step assumes the cardinality for a set, T, is known. Then we notice that set S is equal
to adding element E, which is not a member of T, to set T. The cardinality for S is simply one more
than the cardinality of set T. Now, we can specify the inductive step two ways. We can use only the basic
concept functions, or we can use higher stratum subprograms. Also, we can specify Cardinality with either
subprogram annotations or with pa.ckage axioms. Tlrc>rtl is of course no problem wit,11 “over-specifying” with
all of these specifications, as presented below.

- - I
---- I
-- I- - l
- - I

- - l

function Cardinality (S : in Set) return Natural;
where

return N : Natural =>
if S = Empty-Set, theu

- - B a s e C a s e
N = O

else
- - Induc t ive S tep
(exist T : Set; E : Base =>

(Is-In(E, S) and not Is-In(E, T) and S = T + E) and
(for all L : Base =>

E /= L -> (Is-In(L, S) <-> Is-In(L, T))) a n d t h e n
N = Cardinality(T) + 1)

end if;
- - Returns the current number of elements in the set.

24 CHAPTER 3. PACKAGE SPECIFICATION METHODOLOGY

-- I axiom for all S, T : Set =>
- - B a s e C a s e :

- - Cardinality(Empty-Set) = 0,
- - Inductive Step, using only Is-In:

- - (exist E : Base =>
- - Is-In(E, S) and not Is-In(E, T) and
- - (for all L : Base => E /= L ->
- - (Is-In(L, S) <-> Is-I@, T))))
- - -> Cardinality(S) = Cardinality(T) + 1,

- - Inductive Step, using Is-In and Add:
- - (exist E : Base =>

not Is-In(E, T) and S = T + E)
-> Cardinality(S) = Cardinality(T) + 1;

3.4.4 Iterators

Iterators permit a sequence of statements to be executed zero or more times on all parts of an object. An
iterator must permit non-destructive “visit” to each part of the object. Basically, an iterator is manifest as
an operation (or set of operations) that is exported from a component specification. We can view an iterator
as another object that traverses the structure of the encapsulated object.

For simple unencapsulated types such as arra,ys, a for loop that indexes each component of the array is
an iterator. However, for the set abstraction, we do not have an index on which to base a loop. Typically,
the using program will need to loop, performing a sequence of statements or operations, on each element of
a set.

The set package therefore provides enumeration functions for sets. Each time the enumeration function
is called, it returns the “next” component. Obviously, the iterator must remember which elements have
already been returned. It can use the state of the sets package or define an iterator type to do this.

Booch[l] describes two iterators that reflect two different approaches to iteration. This difference is how
much of the abstraction we want to expose outside the encapsulation. In the active approach, we expose
the iterator as a collection of primitive operations, but in the passive approach, we export only a single
operation.

Active Iterator

An active iterator is an abstract data type with the following four operations: 1) an initializer which associates
the iterator with a set; 2) a value function which returns the current element in the set denoted by the iterator;
3) a increment procedure which advances the iterator to the next element in the set; 4) a finished function
that returns true if the iterator has visited all of the members of the set.

We introduce the virtual function Set-Of to return the set associateQ with the iterator. In this way we
can map from an iterator to a set, to check tha.t it is popping off the correct value.

type Iterator is limited private;
--*. function Set-Of (It : in Iterator) return Set;

procedure Initialize (It : in out, Iterator; S : in Set);
- - l where
- - l out(Set-Of(It) = S);

function Value-Of(It : in Iterator) return Base;
- - l where

return E : Base => Is-In(E, Set-Of(It));
procedure Get-Next(It : in out, Iterator);

- - l where not Is-Empty(Set-Of(It)),
- - I out(Set-Of(It) = Set-Of(in It) - Value-Of(in It));

3.4. THEORY PACKAGE METHODOLOGY 25

function Is-Done (It : in Iterator) return Boolean;
- -

I
where

- - return Is-Empty(Set-Of(It));
- - I ax iom Is-Done(Iterator’Initial);

Iteration works as follows. Suppose we want to enumerate the elements of some set A-Set. First we
initialize the iteration to A-Set. Then we call Get-Next repeatedly, getting a new member of A-Set from
Value-Of. We loop until Is-Done becauses true. Is-Done becomes true only after all the elements of A-Set
have been visited. For example:

I : Iterator; A-Set : Set;

procedure Visit (E : in Base);
. . .
Initialize(I , A-Set);
while not Is-Done(I) loop

Visit(Value-Of(I));
Get-Next(I);

end loop;

Passive Iterator

This is an interesting subprogram to a.ttempt to specify. Since the in and out states are equivalent with
respect to our observable state, nothing can be specified. Therefore, passive iterators are not within the
concepts specifiable using this methodology.

generic
with procedure Process(E : in Base; Continue : out Boolean);

procedure Iterate (S : in Set);

3.4.5 Package Specification Analysis

Now that we have an Anna specification that includes formal subprogram and axiomatic specifications, we
would like to perform a critical analysis to determine the correctness and the completeness of our spec-
ifications. That is, we would like to make sure that it will constrain an implementation in the way we
intended.

The Anna Package Specification Analyzer of the Anna-I Toolset [lo], is a tool for analyzing and debugging
the visible part of Anna packa.ge specifications. It uses logica, deduction embedded in a user interface that
allows symbolic execution of subprograms based on their specifications, and analysis of how these executions
affect the state of the package and its environment.

While in general the Specification Analyzer understands axiomatic specifications, some forms of axioms
are difficult to use in resolution theorem provers. Some transformations of annotations to equivalent alter-
native forms may be required to test an Anna packa,ge satisfactorily.

For instance, recall the axioms defined for the Cardinality subprogram, using Is-In and “+“:

-- I axiom for all S, T : Set =>
- -

I

Cardinality(Empty-Set) = 0,
- - (exist E : Base =>
- - not Is-In(E, T) and S = T + E)
- - I -> Cardinality(S) = Cardinality(T) + 1;

26 CHAPTER 3. PACKAGE SPECIFICATION METHODOLOGY

Given a specific set S, which has been built through various calls to subprograms in the set package, it
is difficult to deduce automatically from the above axiom what the cardinality of S is; in general, a prover
would have to iterate over all possible sets, for values of the quantified variable T, and all possible Base
values, for values of E.

However, and equivalent axiom can be written, based on the fact that every set has been built through
calls to the set constructors:

-- I axiom for all S : Set; E : Base =>
- -

I
Cardinality(Empty-Set) = 0,

- - Cardinality(S + E) =
if Is-In(E, S) then Cardinality(S)
else Cardinality(S) + 1 end if,

Cardinality(S - E) =
if Is-In(E, S) then Cardinality(S) - 1
else Cardinality(S) end if;

Every set is equiva,lent to an expression consisting of the constructors that built it, such as:

((Empty-Set + El) + E2) - El

The Specification Analyzer is able to determine what constructor expression a
to, and determine its cardinality by “deconstructing” the set based on the above

particular
axioms.

set is equivalent

3.5 From Theory to Practice
Looking back over our specifications, we realize that we have really created a theory about sets. But if we
really wanted to use this as an a.ct#ual Ada package, a number of things are missing.

One thing missing is exception handling. The annotations presented so far do not constrain the sub-
programs during exceptional situations. To specify these cases, we must examine each subprogram in turn.
In doing so, we notice that some subprograms should never raise exceptions, while others should raise a
exception given certa.in inputs, and still others may ra.ise several exceptions, each one for a different reason.

3.5.1 Never Raise an Exception

Some subprograms are guaranteed never to raise an exception. For example, all of the basic concepts should
not raise any exceptions. The Anna con.&ruct for specifying this is very simple. The subprograms annotations
for cardinality, equality, subset and proper subset are extended just like Is-In is extended below.

- -
function Is-In (E : in Base; S : in Set) return Boolean;

where raise others => False;
-- No exceptions are rcnised by this function.

3.5.2 Exceptions: Is-In-Set and Is-Not-In-Set

Another typical exceptional situation is when we try to add an element into a set, but the element is already
a member of the set. This situation is in conflict with the style of Union which does nothing when there
are duplicate elements in its input sets. However, we reject Union’s approach, choosing instead to apply the
more primitive semantics. In this way, we differentiate Add from the semantics of Union. Thus, when we
try to add an element which is alrea.dy a member of the set, the exception Is-In-Set shall be raised. Also,
only this exception can be ra.ised by the subprogram. Therefore, if any exception is raised by Add, then

3.5. FROM THEORY TO PRACTICE 27

the element must be a member of the given Set, thus implying that the exception IsJnSet must have been
raised.

Is-In-Set : exception

---- I
--
-- l
---- I--
--I

function “+” (S : in Set; E : in Base) return Set;
where Is-In(E, S) => raise Is-In-Set,

raise others => Is-In(E, S);
- - Only the exception Is-In-Set can be raised, and it is raised when the element to be added .
-- is already in the given set.
return R : Set =>

for all A : Base => (Is-In(A, S) or A = E) <-> Is-In(A, R);
procedure Add (E : in Base; S : in out Set);

where Is-In(E, S) => raise Is-In-Set,
raise others => Is-In(E, S);

out(for all A : Base => (Is-In(A, in S) or A = E) <-> Is-In(A, S));
procedure Union (L, R : in Set; TX : in out Set);

where raise others => False;
out(for all E : Base => (Is-In(E, L) or Is-In(E, R)) <-> Is-In(E, TX)) ;

A similar argument holds for Remove and Set Difference. If the element to be removed is not a member
of the given set, then raise the exception Is-NotJnSet. Additionally, if an exception is raised, then the
element is not a member of the given set, thereby implying that the exception IsJotJnSet was raised.

3.5.3 Exceptions: Overflow and Set-Full

Any operation which returns a set may raise one of the two exceptions, Overflow or Set-Full. The Overflow
exception is raised whenever the system has exhausted its memory and can no longer allocate more memory
for the set. To properly specify this exception, we need to introduce a new basic concept to tell us when
the memory has run out. We introduce an Anna virtual function Overflowed to return true if and only if the
memory of the system has run out. This exception can occur in every subprogram which extends a set.

Notice that Overflow is a property of the state of the machine. We may have a situation where a particular
variable of type Set can not contain any more elements. Here we assume that some implementations of this
abstraction will constrain the maximum size of a variable of type Set. This constraint limits the number of
elements that can be members of a set at one time. We introduce the virtual function Is-Full which returns
true if and only if the given set, can not contain any more new members. This can only happen in Add and
Union.

For Add it is fairly simple to understand exactly when the exception Set-Full is raised. We raise the
exception Set-Full when the given set is full and the element to be added to it is not already a member.
However, Union is slightly more difficult to specify exactly. Since we don’t know how big the created set will
be until we evaluate it, we can’t exactly tell if it will be too big. Here we will introduce a further assumption
that the limit on the maximum cardinality of a set is a constant for all sets.

Overflow, Set-Full : exception

* function Overflowed return Boolean;
- - i where raise others => False,

-- Returns true if the system has run out of memory.
--+

--i
function Maximum-Cardinality return Natural;

where raise others => False,
-- Returns the maximum cardinali ty of any set .
-- This assumes the maximum cardinal&y is a finite and constant for all sets.

28

--:
- -

- -
- -

-- I- -

- - /- -

l

-- I- -

-- I

-- --I
- -

C H A P T E R 3 . Prl (‘I\. 1 C l ? SPl?‘C’lF‘I(‘4 T/ON METHODOLOGY

function Is-Full (S : in Set) return Boolean;
where raise others => False,

return Cardinality(S) = Maximum-Cardinality;
-- Return true if the set can not contain any more elements.

function “+” (S : in Set; E : in Base) return Set;
where Is-In(E, S) => raise Is-In-Set,

Is-Full(S) and not Is-In(E, S) => raise Set-Full,
Overflowed and not (Is-Full(S) or Is-In(E, S)) => raise Overflow,
raise others => Is-Full(S) or Is-In(E, S) or Overflowed,

return R : Set =>
for all A : Base =>

(Is-In(A, S) or A = E) <-> Is-In(A, R);
procedure Union (L, R : in Set; TX : in out Set);

where Cardinality(L) + Cardinality(R)
- Cardinality(L*R) > Maximum-Cardinality => raise Set-Full,

not (Cardinality(L) + Cardinality(R)
- Cardinality(L*R) > Maximum-Cardinality) a n d

Overflowed => raise Overflow,
out(for all E : Base =>

(Is-In(E, L) o r Is-In(E, R)) <-> Is-In(E, TX)) ;

Suppose we want to define an alternative semantics for a different kind of set, one in which the individual
sets have no size limit, but you still might run out of heap space. We can use axioms to “tune” a particular
implementation’s memory management.

- - I axiom for all S : Set => not Is-Full(S);
- - I axiom exist State : Set’Type => State.Overflowed;

3.6 Conversion to Transformer Subset
We have now finished our Anna “theoretical” specification of the set package. We call it theoretical because
we have used constructs which are not currently supported by the Anna Transformer in the Anna-I toolset.
If we wish to use the current toolset to provide a self-checking implementation of the package, we must
modify these constructs.

3.6.1 Quantifiers

The main problem is the use of quantifiers. We have used universal and existential quantifiers to traverse the
domain of the elements making assertions about the membership of each element in a set. It is important
to note that the only reason we have the quantifiers is to test some property based upon membership in one
or more sets.

We notice that the quantifier can be replaced by an iterator, if the iterator iterates through all elements
in one or more sets, testing for the property. An abstract loop on an iterator for a set really does four things:
1) it can select an arbitrary element, 2) it can remove an element from the set, and 3) it can tell when we
have visited all of the elements of the set. We notice that the last case is just when the resulting set is empty.
Thus, we would like to introduce three new basic functions that can fulfill these requirements. We re-declare
Is-Empty, this time without an annotation. Additionally, we declare two new functions, An-Element and
Sub. Sub should not be confused with either Remove subprogram. Sub never raises an exception, while
Remove sometimes does. Also, these new subprograms are very similar in concept to the active iterator. In
some sense, t,his is also why they are ba.sic concepts. Since it is very difficult to express the semantics of an

3.6. CONVERSION TO TRANSFORMER SUBSET 29

active iterator and stay within the checkable subset, we also can not express these new basic concepts more
fundamentally.

function Is-Empty (S : in Set) return Boolean;
- - Returns true if the given set has no members.

--: function An-Element (S : in Set) return Base;
- - where not Is-Empty(S),-- When called, S must not be empty.
- - l raise others => False;

- - Returns an arbitrary item in the set.
---I function Sub (S : in Set; E : in Base) return Set;
- - I where raise others => False;

- - Remove an item as a member of the set, if it is one.

We create a new lowest stratum and place Is-Empty, An-Element, and Sub in this stratum. Now, since
we have introduced three new basic concept functions, we compare them to our old basic concept function
Is-In. We not,ice that we can specify Is-In with the specifications of the new basic concepts functions.

- -
function Is-In (E : in Base; S : in Set) return Boolean;

- - I
where raise others => False,

return (not Is-Empty(S)) and then
((An-Element(S) = E) or else

- - (Is-In(E, Sub(S, An-Element(S)))));

We should go back and examine all of the subprograms amlotations which used universal or existential
quantification, and see if we can respecify them with our new basic concept functions. For example, equality
and cardinality:

---- I---- I
----I--

function “=” (L, R : in Set) return Boolean;
where raise others => False,

return if Is-Empty(L) then Is-Empty(R)
else Is-In(An-Element(R), T) and then

Sub(L, An-Element(L)) = Sub(R, An-Element(L)),
end if;

function Cardinality (S : in Set) return Natural;
where raise others => False,

return if Is-Empty(L) then 0
else 1 + Cardinality(Sub(S, An-Element(S)))
end if;

Finally, we add labels to our formal annotations, such as <<Anno-Label>>. Named annotations are
useful in debugging[3].

3.6.2 Transformable Set Package Specification

- - Description:
- - An Anna specification of a set package which is within the transformer subset
- - Author:
- - J o h n J . Kenney
- - Source:
- - Set~Simmple~Sequential~ Unbounded-Unmanaged-Iterator
- - S o f t w a r e C o m p o n e n t s W i t h A d a , G r a d y Booth

30 C H A P T E R 3 . P A C K A G E S P E C I F I C A T I O N M E T H O D O L O G Y

generic
type Base is private;

package Set-Package is
type Set is lilnited private;

Item-Is-In-Set,
Item~Is~Not~In~Set,
Overflow : exception;

- - Basic Concept Functions
- - The nex t four func t ions , Overf lowed, Is-Empty, Sub and An-Element, are the basic concepts used in
- - this package specification.

--:--

---- I
--:

function Overflowed return Boolean;
<<Overflowed-Spec>>
where raise others => false;

- - Returns true if the system has run out of memory.

function Is-Empty (S : in Set) return Boolean;
<<Is-Empty-Spec>>
where raise others => false;

-- Returns true if the given set has no members.

function Sub (S : in Set; E : in Base) return Set;
<<Remove-Fn-Spec>>
where raise others => false;

- - Remove an item as a member of the set, if it is one.

function An-Element (S : in Set) return Base;
< <An-Element-Spec> >
where Is-Empty(S) => raise Item~Is~Not~In~Set,

raise others = > Is-Empty(S);
- - Returns an arbitrary item in the set.

- - Selectors

function Is-In (E : in Base; S : in Set) return Boolean;
<<Is-InSpec> >
where raise others => false,

return (not Is-Empty(S)) and then
((An-Element(S) = E) or else

(Is-In(E, Sub(S, An-Element(S)))));
-- Returns true if the given item is a member of the set.

function Cardinality (S : in Set,) return Natural;
- -

I

<<Cardinality-Spec>>
- - where raise others => false,
- -

I
return if Is-Empty(S) then 0

- - else 1 + Cardinality(Sub(S, An-Element(S)))
- - end if;

-- Return the current number of items in the set.

3.6. CONVERSION TO TRANSFORMER SUBSET 31

function “=I’ (S, T : in Set) return Boolean;
- - <<Equal-Symbol-Spec>>
- - l where raise others => false,
- -

- - l
return i f (Is-Empty(S)) then Is-Empty(T)

else Is-In(An-Element(S), T) and then
- -

- - I
Sub(S, An-Element(S)) = Sub(T, An-Element(S))
end if;

- - Returns true if the two given sets have the same state.

function “<=‘I (S, T : in Set) return Boolean;

- - I <<Subset-Spec>>
- -

- - I

where raise others => false,
return Is-Empty(S) or else

- - (Is-In(An-Element(S), T) and then
Sub(S, An-Element(S)) <= T);

-- Return true if the first set is a subset of the second.

function I’<” (S, T : in Set) return Boolean;
- - <<Proper-Subset-Spec>>
- - where raise others => false,
- - return (S <= T) and then S /= T;

- - Return true if the first set is a proper subset of the second set.

- - C o n s t r u c t o r s

function Empty-Set return Set;
- - < <Empty-Set-Spec> >

where raise others => false,
return S : Se t => Is-Empty(S);

-- Returns true if the given set has no members.

procedure Copy (From : in Set; TX: in out Set);
- -

I
<<Copy-Spec>>

- - where Overflowed => raise Overflow,
- - l raise others => Overflowed,
- - I out(From = T X);

- - Copy the items from one set to another.

function “-” (S : in Set; E : in Base) return Set;
- - < < Remove-Fn-Spec> >
- - where not Is-In(E, S) => raise Item~Is~Not~In~Set,
- - raise others => not Is-In(E, S),

return Sub(S, E);
-- Remove an item as a member of the set, if it is one.

function “+” (S : in Set,; E : in Base) return Set;
- -

I
<<Add-Fn-Spec>>

- - where Is-In(E, S) => raise Item-Is-In-Set,
--I Overflowed and not Is-In(E, S) => raise Overflow,
- - l raise others => Is-In(E, S) or Overflowed,
- - l return R : Set, => (S = R - E) and IsJn(E, R) ;

-- Insert an item as a member of the set.

32

-- I- -
- -
-- I
-- I

- -
-- I
- -
-- l

--:
- -

-- I- -

-- --I

-- I

- -
-- l

--
-- I
-- I

CHAPTER 3. PACKA GE SPECIFICATION METHODOLOGY

procedure Add (E : in Base; S : in out Set);
<<Add-Spec>>
where Is-In(E, S) => raise Item-Is-In-Set,

Overflowed and not Is-In(E, S) => raise Overflow,
raise others => Is-In(E, S) or Overflowed,

out(S = “+“(in S, E));
- - Insert an item as a member of the set.

procedure Remove (E : in Base; S : in out Set);
<<Remove-Spec>>
where not Is-In(E, S) => raise Item~Is~Not~In~Set,

raise others = > uot Is-In(E, S) ,
out(S = in S - E);

- - Remove an item as u member of the set, if it is one. This is fully described in the axioms with
- - respect to add.

function ‘I+” (L, R : in Set) returu Set;
<<Union-FnSpec>>
where raise others => false,

return S : Set =>
if (Is-Empty(L)) then S = R
elsi f (Is-Empty(R)) theu S = L
elsi f (Is-In(An-Element(L), R)) then

S = (L - An-Element(L)) + R
else S = (L - An-Element(L)) + (R + An-Element(L))
cud if;

- - Given two sets, form a set containing the items that are members of the first set or the second
- - set.

procedure Union (L, R : in Set; TX : in out Set);
< <Union-Spec> >
where Overflowed => raise Overflow,

out(TX = L + R);
- - Given two sets, form a set containing the items that are members of the first set or the second
- - set.

function “-” (L, R : in Set) returu Set;
< < Difference-Fn-Spec> >
where Overflowed => raise Overflow,

raise others => Overflowed,
return S : Set =>

i f Is-Empty(R) then S = L
elsi f (Is-In(An-Element(R), L)) then

s = (L - An-Element(R)) - (R - An-Element(R))
else S = L - (R - An-Element(R))
cud if;

3.6. CONVERSION TO TRANSFORMER SUBSET 33

procedure Difference (L, R : in Set; TX : in out Set);
- - l < <DifferenceSpec>>
- -

I

where Overflowed => raise Overflow,
- - raise others => Overflowed,
- - l out(TX = L - R);

- - Given two sets, form a set containing the items that are members of the first set and not members
- - of the second set.

--: function “*” (L, R : in Set) return Set;
- -

I
< <Int8ersection-Fn-Spec> >

- - where Overflowed => raise Overflow,
- - raise others => Overflowed,
- - return if (Is-Empty(L)) theu Empty-Set
- -

I
elsif (Is-In(An-Element(L), R)) then

- - “ + ” (“*I’(L - An-Element(L), R), An-Element(L))
- - l else (L - An-Element(L)) * R
- - l end if;

procedure Intersection (L, R : in Set; TX : in out Set);
- -

I

< <Intersection-Spec> >
- - where Overflowed => raise Overflow,

raise others => Overflowed,
out(TX = “*“(L, R));

- - Given two sets, form a set containing the items that are members of the first set and the second
- - s e t .

procedure Clear (S : in out Set);
- - <<Clear-Spec>>
- - where raise others => false,
- - o u t (Is-Empty(S));
- - - - Remove all the items (if any) from the set and make the set empty.

Iterators

- - Passive Iterutors
generic

with procedure Process (E : in Base;
Cont inue : out Boolean);

procedure Iterate (S : in Set);

- - Ac t i ve I t e ra tors
type Iterator is limited private;
Iterator-Error : exception;

function Set-Of (it : iii Iterator) return Set;

procedure Initialize (it : in out Iterator; S : in Set);
I <<Initialize-Spec>>

I

where
out(S = Set-Of(it));

34 CHAPTER 3. PACKAGE SPECTFICATION METHODOLOGY

function Value-Of (it : in Iterator) return Base;
- - < <Value-Of-Spec> >
- - where not Is-Empty(Set-Of(it)),
- - l return E : Base => Is-In(E, Set-Of(it));

procedure Get-Next (it : in out Iterator);
- -

- - I
<<Get-Next-Spec>>
where not Is-Empty(Set-Of(it)),

- - out(Set-Of(it) = Set-Of (it) - Value-Of(it));

function Is-Done (it : in Iterator) return Boolean;
<<Is-Done-Spec>>
where

return Is-Empty(Set-Of(it));

axiom for all E : Base => not Is-In(E, Empty-Set);
axiom Set’Initial = Empty-Set;
axiom for all S, T : Set =>

Cardinality(Empty-Set) = 0,
--
- -
- - l

I- -

--I

(exist E : Base =>
Is-In(E, S) and
not Is-In(E, T) and
(for all L : Base =>

E /= L --> (Is-In(L, S) <--> Is-In(L, T))))
--> Cardinality(S) = Cardinality(T) + 1;

private
type Set-Ret;
type Set-Ptr is access Set-Ret;
type Set is new Set-Ptr;
type Iterator-Ret;
type Iterator is access Iterator-Ret;

end Set,-Package;

Chapter 4

Abstract Data Types

This chapter contains a number of abstract data types (ADTs), specified as Ada packages and annotated
with Anna. Each abstract data type is implemented as a package that exports a private type, and a set of
operations on tha,t type. Typically, the package implements a common software data structure such as sets,
linked lists, binary trees, rings, maps, graphs, etc.

The Ada subprograms specified in the following examples are organized according to the classification
proposed by Parnas[l2] (and used by Grady Booch[l]). Functions and procedures that make up a package
interface fall into three categories:

l Selectors - operations which access, but do not modify an abstract data type.

l Constructors - opera.tions which access and modify an abstract data type.

l Iterators - operations which sequentially enumerate the components of an abstract data type.

While annotating Ada package specifications, the basic concept function, which is often a selector but occa-
sionally a constructor, may be used. These functions may be virtual or visible functions that are chosen not
to be annotated. They serve as primitive functions upon which the annotations of other operations in the
specification may be described. They serve as the basic concepts that are used to explain the semantics of
the remaining operations.

35

36 CHAPTER 4. ABSTRACT DATA TYPES

4.1 List Package

-- Package Name:
- - List (generic)
- - Description:
- - A list is a sequence of zero or more items in which items can be added and removed from any position
- - such that a strict linear ordering is maintained.
-- Author:
- - J o h n J . Iienney
-- Source:
-- Software Components With Ada, Grady Booth
- - List-Single- Unbounded- Unmanaged

generic
type Item is private;

package List-Package is
type List is private;
Null-List : constant List;

Overflow,
-- This exception is raised if any of the routines below try to allocate more heap memory than
- - available.

Out-Of-Range : except ion;
-- This exception is raised if any of the routines below try to access a list item that does not
- - e x i s t .

- - Bas ic Concep t Func t ions

The next two functions, Length-Of and Get-Item, are
ification. They are a complete observer basis for Lists.

the basic concepts used in this package spec-

function Length-Of (The-List : in List) return Natural;
- - l where raise others => False;

-- Return the current number of items in the list.

---I

--I
- -

function Get-Item (The-List : in List;
Position : in Positive) return Item;

where Position <= Length-Of(The-List);
-- Return a copy of the Nth item in the list.
-- This virtual function assumes that the given list has at least Position number of items.

- - Selectors

function Is-Null (The-List : in List) return Boolean;
where raise others => False,

return (Length-Of(The-List) = 0);
- - Return True if the list is a sequence of zero items.

4.1. L I S T P A C K A G E

function Head-Of (The-List : in List) return Item;

37

---- I-- I
--*--:--:---- I-- I---- I--

-- l------ l-- l

- -
- - I
--l- - l- - l

where Is-Null(The-List) => raise Out-Of-Range,
raise others => Is-Null(The-List),

return Get-Item(The-List, 1);
- - Return the first item from the sequence of items in a given list.

function Equal (Left, Right : in List;
IndxL, IndxR: in Positive;
Len : in Natural) return Boolean;

where (Len > 0) -> (IndxL+Len-1 <= Length-Of(Left) and
IndxR+Len-1 <= Length-Of(Right)),

return
(Len = 0) or else
(Get-Item(Left, IndxL) = Get-Item(Right, IndxR) and then

Equal(Left, Right, IndxL+l, IndxR+l, Len-l));
-- Return True if the two lists have the items in the same sequence for the given length.

function Tail-Of (The-List : in List) return List;
where Is-Null(The-List) => raise Out-Of-Range,

raise others => Is-Null(The-List),
return T : List =>

Length-Of(T) = Length-Of(The-List) - 1 and then
Equal(The-List, T, 2, 1, Length-Of(T));

-- Return the list denoting the tail of a given list.

function Is-Equal (Left, Right : in List) return Boolean;
where raise others => False,

return Length-Of(Left) = Length-Of(Right) and then
(Length-Of (Left) = 0 or else

(Head-Of(Left) = Head-Of(Right) and
Is-Equal(Tail-Of(Left), Tail-Of(Right))));

-- Return True if the two lists have the same state.

- - C o n s t r u c t o r s

-- Now, I wil l only use the Head-Of and Tail-Of functions
- - g r a m s .

to formally define the rest of the

function Append (The-Item : in Item;
--: To The List- - : in List) return List;

/

where
- - return New-List : List =>
- - (Head-Of(New-List) = The-Item) and
- - (Is-Equal(Tail-Of(New-List), To-The-List));

-- Append an Item to the beginning of a list.

38 CHAPTER 4. ABSTRACT DATA TYPES

---I

------ I---- I--

--
--/

--

--
--
--
-- l

-- I

-- l- - l

- - I- -
- - I- -
-4

function Append (The-List : in List;
To-The-List : in List) return List;

where
return

if Is-Null(The-List) then To-The-List
else Append(Head-Of (The-List),

Append(Tail-Of(The-List), To-The-List))
end if;

-- Append one list to the beginning of another list.

procedure Construct (The-Item : in Item;
And-The-List : in out List);

where raise Overflow,
out(Is-Equal(And-The-List, Append(The-Item, in And-The-List))),
out(Head-Of(And-The-List) = The-Item),
out(Tail-Of(And-The-List) = in And-The-List);

-- Add an item to the head of a list.

procedure Set-Head (Of-The-List : in out List;
To-The-Item : in Item);

where Is-Null(Of-The-List) => raise Out-Of-Range,
raise others => Is-Null(Of-The-List),

out(Head-Of(Of-The-List) = To-The-Item),
out(Tail-Of(Of-The-List) = in Tail-Of(Of-The-List)),
out(Is-Equal(Tail-Of(Of-The-List), in Tail-Of(Of-The-List)));

~- Set the value of the head of the list to the given item.

procedure Copy (From-The-List : in List;
To-The-List : in out List);

where raise Overflow,
out(Is-Equal(From-The-List, To-The-List));

-- Copy the i tems from one l ist to another. Notice how this specification does not capture all
-- the meaning of Copy.

procedure Clear (The-List : in out List);
where raise others => False,

out(Is-Null(The-List));
-- Remove al l the i tems (if any) from the list and make the list null.

procedure Swap-Tail (Of-The-List : in out List;
And-The-List : in out List);

where Is-Null(Of-The-List) => raise Out-Of-Range,
raise others => Is-Null(Of-The-List),

out(Tail-Of(Of-The-List) = in And-The-List),
out(Is-Equal(Tail-Of(Of-The-List), in And-The-List)),
out(And-The-List = in Tail-Of(Of-The-List));

- - l&change the tail o f one lint trlith ano ther l i s t . We should never lose track of any part of
‘ ttl,f- 1 ‘ list.

4.1. L I S T PACh’AGE 39

private
type Node;
type Node-Pointer is access Node;

---I function No-Cycles (The-List : in Node-Pointer) return Boolean;
- - Check that The-List does not have a cycle in it.

- -

type List is record
Head : Node-Pointer := null;

end record;
where L : List => No-Cycles(L.Head);
- - No list has a cycle in its list of nodes.

Null-List : constant List := List’(Head => null);
end List-Package;

- - Commentary:

-- Implicit in this package specificat,ion is t,he concept structural sharing. Structural sharing occurs whenever
- - two or more names denote the same item or set of items. In general, it is dangerous to permit structural
- - sharing, since modification of an object via one name may have the unexpected side effect of altering the
- - object denoted by another name. For example, if A and B share the same list object, calling Clear with
- - the name A has the side effect of clearing the object that B denotes. B is thus placed into an inconsistent
- - state, as it now denotes a nonexistent object.

-- By declaring the type List as a private type, it is implicitly exporting the predefined operation of assign-
- - ment. The assignment operation has the same semantics as our structural sharing. But we also need the
- - semantics of Copy, where the items are duplicates, since a list is a polylithic component. Therefore, we
- - must provide both Copy and Share semantics and make sure that assignment always has Share seman-
- - tics, and also provide the copying semantics with the explicit constructor Copy. Thus, operations which
- - return lists may have two interpretat,ions, one in which the items are duplicate copies, and another in
- - which the items are structurally shared.

- - We specify these concepts in Anna by using the predefined operation equality on lists for structural sharing
-- semantics and defining a virtual function Is-Equal for copy semantics. Notice that in our specifications
- - we mainly check that t,he heads of lists are structurally shared, while copies are verified recursively using
-- Is-Equal. The recursive function checks as a base case that the heads of the two lists have the same
- - value, and inductively (recursively) checks that the tails of the lists have the same values. Our definitions
- - are limited in that two structurally shared lists will also be Is-Equal, since their values are the same.

-- The private part of the specificat,ion is really a part of the implementation. Here we hint at what the
- - implementation of list,s could be like. We can use Anna to specify important concepts very nicely, i.e.
- - that linked lists do not, have cycles in them.

40 CHAPTER 4. ABSTRACT DATA TYPES

4.2 Deque Package

-- Package Name:
- - Deque (generic)
- - Description:
-- This package implements deques - bidirectional queues manipulated either at front or back.
-- Author:
- - S r i r a m S a n k a r
-- Source:
- - Software Components in Ah by Grcrclc/ Bnoch

generic
type Item is private;

package Deque is
type Deque is limited private;
type Location is (Front, Back);

- - - - - - - - E X C E P T I O N S
Overflow,
Underflow : exception;

- - - - - - - - B A S I C F U N C T I O N
function Length (D : Deque) return Natural;

- - I where raise others => False;

- - - - - - - - S E L E C T O R S
function Empty (D : in Deque) return Boolean;

where return Length(D) = 0;--

-- I

- - l
--:
- -
- -
- - I- -
- -
- -
- - I- -
- - /- - I- - l
--:

function Front-Of (D : in Deque) return lt,em;
where Empty(D) => raise Underflow;

function Back-Of (D : in Deque) return Item;
where Empty(D) => raise Underflow;

function Add (1 : Item; D : Deque; L : Location) return Deque;
where raise others => False,

return Q : Deque =>
(Length(Q) = Length(D) + 1) and
(if Empty(D) then

Front-Of(Q) = Back-Of(Q) and
Front-Of(Q) = 1

elsif L = Front then
Front-Of(Q) = 1

else
Back-Of(D) = 1

end if);

function Pop (D : Deque; L : Location) return Deque;
where raise others => False,

return Q : Deque =>
Length(Q) = Length(D) - 1;

4.2’. DEQUE P A C K A G E 41

function Equal (Left, Right : in Deque) return Boolean;
where

return (if (Empty(Left) or Empty(Right)) then
- - I Empty(Left) and Empty(Right)
- -

I

else
- - Front-Of(Left) = Front-Of(Right) and
- - I Equal(Pop(Left, Front), Pop(Right, Front))
- - l end if) ;

_- ------ C O N S T R U C T O R S
procedure Clear (D : in out Deque);

- - l where raise others => False,
- - l out(Empty(D));

procedure Add (I : Item; D : in out Deque; L : Location);
- -

I
where raise Overflow => D = in D,

- - out(D = Add(I, in D, L));

procedure Pop (D : in out Deque; L : Location);
- -

I
w h e r e Empty(D) = > raise Underflow,

- - raise Underflow = > D = in D,
- - I out (D = Pop(D, L));

procedure Copy (From : in Deque; Into : in out Deque);
- - where raise Overflow => Into = in Into,
- - l ollt (Equal (From, Into));

-- I axiom
- - for all D:Deque; 1:Item =>
- -

I
Pop(Add(I, D, Front), Front) = D,

- - Pop(Add(I, D, Back), Back) = D,
- -

/

if Empty(D) then
- - Pop(Add(I, D, Back), Front) = D
- - I else
- - l Pop(Add(I, D, Back), Front) =
- - l Add(I, Pop(D, Front), Back)
- -

I
end if,

- - if Empty(D) then
- - l Pop(Add(I, D, Front), Back) = D
- - l else
- - I Pop(Add(I, D, Front), Back) =
- - l Add(I, Pop(D, Back), Front)
- - l end if;

private
type Deque-Header;
type Deque is access Deque-Header;

end Deque;

- - Observations:
-- We have two interesting points: 1) the introduction of the virtual selectors, Add and Pop, and 2) the
- - recursive definition of the equalit,y operator, Equal.

42 CHAPTER 4. ABSTRACT DATA TYPES

-- The virtual selectors, Add and Pop, are introduced because functions are cleaner to specify than pro-
- - cedures. Add and Pop are exported as procedures to reduce the copying of the limited private deque
- - type. The semantics of Add and Pop are defined to “remember” all of the previous Adds and Pops. An

Add or Pop function would have to return a new deque, which remembers all of the Adds and Pops of- -
- - the source deques, by allocating a large structure. An Add or Pop procedure is able to reuse the source
-- deque’s memory, and does not have to allocate.

-- These virtual functions are not completely specified by their subprogram annotations. A complete
- - subprogram annotation would have to explicitly iterate through the deque type, limiting the method by
- - which the deque may remember its previous history. Completing the specification by using axioms is an
-- additional way of specifying this history.

-- The recursive definition of the equality operator, Equal, uses the functions Empty and Front as the base
-- cases and the virtual function Pop as the inductive step. It tests that either both deques have nothing,
- - or they have the same items at the front and after popping off those front items, the rest of the deques
- - are also the same.

4.3. T R E E P A C K A G E 43

4.3 Tree Package

Package Name:
Tree (generic)

Description:
This package manipulates an arbitrary tree. The specification combines the notion of a node and a tree;

a node is viewed as being the root of the subtree. Thus, the formal specification has no node type, but it
is implicitly available in the Tree type.
A tree is a collection of nodes that can have an arbitrary number of references to other nodes; there

can be no cycles or short-circuit references, and for every two nodes there exists a unique simple path
connecting them. Each node can have an arbitrary number of children.
Author:

John Iienney
Source:
Software Components in Ada by Grady Booth

generic
type Item is private;

package Tree-Package is
type Tree is limited private;
type Tree-List is limited private;

- - A tree-list would preferably be a subtype of a list type derived from the instantiation of a
-- list package (with Tree as its formal generic parameter). However, Ada rules don’t allow
-- such a parameter to be an incomplete type.

Overflow : exception;
Tree-Is-Null : exception;

- - Bas ic Concep t Func t ions

--: function The-Heap-Is-Exhausted return Boolean;

--: function Length-Of (T : in Tree-List) return Natural;

---I function Get-Item (T : in Tree-List; N : in Positive) return Tree;
I where 1 <= N <= Length-Of(T);

function Is-Null (T : in Tree) return Boolean;
- - l where raise others => False;

function Value-Of (T : in Tree) return Item;
where Is-Null(T) => raise Tree-Is-Null,

raise others => Is-Null(T);

function Parent-Of (T : in Tree) return Tree;
- - where Is-Null(T) = > raise Tree-Is-Null,
- - l raise others => Is-Null(T);

44 CHAPTER 4. ABSTRACT DATA TYPES

- - Selectors

--:---- I
--*
-- 1--

--
-- I

---- I-- I-- l-- l- -
- - I- - I

---- I-- I

--

function Is-Member (T : in Tree; S : in Tree-List) return Boolean;
where raise others => False,

return exist N : 1 . . LengUl-Of(S) = > Get-Item(S, N) = T ;

function Children-Of (T : in Tree) return Tree-List;
where raise others => False,

return S : Tree-List = >
(for all D : Tree =>

Is-Member(D, S) <-> (P arent-Of(D) = T or Is-Null(D)));

function Degree (T : in Tree) return Natural;
where return Length-Of (Children-Of(T));

function Is-Leaf (T : in Tree) return Boolean;
where return Length-Of(Children-Of(T)) = 0;

function Is-Interior (T : in Tree) return Boolean;
where return Length-Of(Children-Of(T)) /= 0;

function Child-Of (T : in Tree; N : in Positive) return Tree;
where Degree(T) < N => raise Tree-Is-Null,

return Get-Item(Children-Of(T), N);

function “=‘I (Left, Right : in Tree) return Boolean;
where raise others => False,

return if (Is-Null(Left) or Is-Null(Right)) then
Is-Null(Left) a n d Is-Null(Right)

else Value-Of(Left) = Value-Of(Right) and then
Degree(Left) = Degree(Right) and then

(for all N : Natural range 1 . . Degree(Left) =>
Child-Of (Left, N) = Child-Of (Right, N))

end if;

function Is-Ancestor (Tl, T2 : in Tree) return Boolean;
where

return (Parent-Of(T2) = Tl) or else
(exist T3 : Tree => Parent-Of(T2) = T3 and Is-Ancestor(T1, T3));

function Is-Descendent (Tl, T2 : in Tree) return Boolean;
where return Is-Ancestor(T2, Tl);

- - Cons t ruc tors

- -

procedure Clear (T : in out Tree);
where raise others => False,

out(Is-Null(T));

4 . 3 . T R E E P A C K A G E 4 5

procedure Construct (The-Item : in Item;

---- I---- I---- I---- I

l- -
--i- - l

- -
- - I- - I- -
- - I- - I- -
- - I- - l- - I

- -

And-The-Tree : in out Tree;
Number-Of-Children : in Natural;
On-The-Child : in Natural);

where The-Heap-Is-Exhausted => raise Overflow,
raise others => The-Heap-Is-Exhausted,

out(Value-Of(And-The-Tree) = The-Item),
out(Degree(And-The-Tree) = Number-Of-Children),
out(for all N : Natural range 1 . . Number-Of-Children =>

if (N = On-The-Child) then
Child-Of (And-The-Tree, N) = in And-The-Tree

else Is-Null(Child-Of(And-The-Tree, N))
end if);

- - Add an item at the root of the tree, created with the given degree; the original tree becomes
- - the given child of the new node. Number-Of-Children specifies the number of children to
- - be created. Construct must permit the creation of nodes with no children.

procedure Set-Item (T : in out Tree; I : in Item);
where raise others => False,

out(Value-Of (T) = I),
out(Degree(T) = in(Degree(T))),
out(Children-Of(T) = in(Children-Of(T)));

- - Set the value of the root of the tree to the given item.

procedure Swap-Child (The-Child : iii Positive;
Of-The-Tree : in out Tree;
And-The-Tree : in out Tree);

where Degree(Of-The-Tree) < The-Child => raise Tree-Is-Null,
Degree(Of-The-Tree) >= The-Child and
The-Heap-Is-Exhausted => raise Overflow,
raise others => Degree(Of-The-Tree) < The-Child or

The-Heap-Is-Exhausted,
out(Child-Of(Of-The-Tree, The-Child) = in And-The-Tree),
out(And-The-Tree = Child-Of(in Of-The-Tree, The-Child)),
out(for all N : Positive range 1 . . Degree(Of-The-Tree) =>

N /= The-Child -> Child-Of(Of-The-Tree, N)
= Child-Of (in Of-The-Tree, N));

- - Exchange the given child of one tree with another entire tree.

procedure Copy (From : in Tree; TX : in out Tree);
where raise Overflow => not The-Heap-Is-Exhausted,

out(T X = From);

-- axiom
- -
- - I

for all S : Tree-Package’Type; Tl, T2 : Tree; N : Positive =>
S [Copy(T1, T2); Clear(T2)].Is_Null(Tl) -> Is-Null(Tl),

- - I
S [Swap-Child(N, Tl, T2); Clear(T2)].

Is-Null(Child-Of (Tl , N)) - > Is_Null(T2),
- - l S [Swap-Child(N, Tl, T2); Clear(T2)].
- - l Is-Null(Child-Of (Tl, N)) - > Is-Null(T2);

46 CHAPTER 4. ABSTRACT DATA TYPES

private
type Tree-Ret;
type Tree is access Tree-Ret;
Null-Tree : constant Tree := null;

--* type Tree-List-Ret;
type Tree-List is access Tree-List-Ret;

end Tree-Package;

- - Commentary:

-- This package specifies the behavior of arbitrary trees. A reader who only has an informal description may
- - read an Ada specification and be unsure if leaf nodes of arbitrary trees may be null. This specification
- - specifies in the constructors that they may.

-- Successor Package State annotations are used in the axioms to specify completely the semantics of copy.
- - The axioms specify the results of applying sequences of operations on trees (e.g. the result of a Copy
- - followed by a Clear). The Copy procedure is intended to make a new copy of the given tree; that is, the
- - two trees do not become aliases for the same underlying structure, but a duplicate physical representation
- - is generated. The “no sharing” axiom requires (using successor package states) that when we copy Tl
- - to T2 and then make T2 null, the only way that Tl can be null is if T2 was originally null.

4.4. GRAPH PACKAGE 4 7

4.4 Graph Package

Package Name:
Graph (generic)

Description:
This is a generic graph package. A graph is a collection that includes a set of vertices and a set of

arcs. A vertex, aka a node, forms the basic structural element of the graph. An arc, aka an edge, is a
connection between two vertices.

The graph is directed, where the order of endpoints of an arc is important. The graph is also labeled,
where each vertex and arc has an associated item or attribute. Thus, arcs and vertices have values (items).
Author:

Walter Mann, John Iienney, and Rob Chang
Source:
Software Components in Ada by Grady Booth

generic
type Item is private; -- the value of a vertex.
type Attribute is private; -- the value of an arc.

package Graph-Package is

type Graph is limited private;
-- a collection that includes a set of vertices and a set of arcs.

type Vertex is private;
-- aka a node, forms the basic structural element of the graph.

type Arc is private;
- - aka an edge, is a connection between two vertices.

Null-Vertex : constant Vertex;
Null-Arc : constant Arc;

-- - - - - - - E X C E P T I O N S

Overflow
Vertex-Is-Null
Vertex-Is-Not-In-Graph
Vertex-Has-References
Arc-Is-Null
Arc-Is-Not-In-Graph

: exception;
: exception;
: exception;
: exception;
: exception;
: exception;

-- - - - - - - B A S I C F U N C T I O N S

function Number-Of-Vertices-In (The-Graph : Graph) return Natural;

function Number-Of-Arcs-In (The-Graph : Graph) return Natural;

function Number-Of-Arcs-From (The-Vertex : Vertex) return Natural;

function Number-Of-Arcs-To (The-Vertex : Vertex) return Natural;

function Is-A-Member (The-Vertex : Vertex;
Of-The-Graph : Graph) return Boolean;

48

--
---- I
---- l

- -
- -

- - l

I

- -

- - I

CHAPTER 4. ABSTRACT DATA TYPES

function Is-A-Member (The-Arc : Arc;
Of The Graph- - : Graph) return Boolean;

function “=‘I(Graphl, Graph2 : Graph) return Boolean;

- - - - S E L E C T O R S

function Is-Empty (The-Graph : Graph) return Boolean;
where

return Number-Of-Vertices-In(The-Graph) = 0;

function Is-Null (The-Vertex : Vertex) return Boolean;
where

return The-Vertex = Null-Vertex;
-- Return true if the object does not denote any vertex.

function Is-Null (The-Arc : Arc) return Boolean;
where

return The-Arc = Null-Arc;
- - Return true if the object does not denote any arc.

function Item-Of (The-Vertex : Vertex) return Item;
where Is-Null(The-Vertex) => raise Vertex-Is-Null;

- - Return the item from the designated vertex.

function Attribute-Of (The-Arc : Arc) return Attribute;
where Is-Null(The-Arc) => raise Arc-Is-Null;

-- Return the attribute from the designated arc.

function Source-Of (The-Arc : Arc) return Vertex;
where Is-Null(The-A rc) => raise Arc-Is-Null;

function Destination-Of (The-Arc : Arc) return Vertex;
where Is-Null(The-A rc) => raise Arc-Is-Null;

-- ------ C O N S T R U C T O R S

procedure Clear (The-Graph : in out Graph);
- - l where
- - l out(Number-Of-Vertices-In(The-Graph) = 0);

procedure Add (The-Vertex : in out Vertex;
With-The-Item : in Item;
To-The-Graph : in out Graph);

- -

/
where raise Overflow,

- - out(Number-Of-Vertices-In(To-The-Graph)
- - = in Number-Of-Vertices-In(To-The-Graph) + 1),
- - out(Is-A-Member(The-Vertex, To-The-Graph)),
- - out(Item-Of(The-Vertex) = Wit,h-The-Item);

4.4. GRAPH PA (‘Ii-AGE 49

-- l- -
- - I- - I- -
- - I- -
- - I- - I

- -
- - i

- - I- -
- - I- -
- - I
- -
- - I- - l- -
- - I

- -
- - I- - I- -
- -
- - l- -
- - I- - I

procedure Remove (The-Vertex : in out Vertex;
From-The-Graph : in out Graph);

where Is-Null(The-Vertex) => raise Vertex-Is-Null,
Number-Of-Arcs-To(The-Vertex) /= 0 => raise Vertex-Has-References,
not Is-A-Member(The-Vertex, From-The-Graph)

=> raise Vertex-Is-Not-In-Graph,
out(Number-Of-Arcs-From(in The-Vertex) = 0),
out(not Is-A-Member(in The-Vertex, From-The-Graph)),
out(Is-Null(The-Vertex)),
out(Number-Of-Vertices-In(From-The-Graph)

= in Number-Of-Vertices-In(From-The-Graph) - 1);
-- Destroy the designated vertex in the graph.

procedure Set-Item (Of-The-Vertex : in out Vertex;
To-The-Item : in Item);

where Is-Null(Of-The-Vertex) => raise Vertex-Is-Null,
out(Item-Of(Of-The-Vertex) = To-The-Item);

-- Set the value of the designated vertex to the given item.

procedure Create (The-Arc : in out Arc;
With-The-Attribute : in Attribute;
From-The-Vertex : in out Vertex;
To-The-Vertex : in Vertex;
In-The-Graph : in out Graph);

where Is-Null(From-The-Vertex) or Is-Null(To-The-Vertex)
=> raise Vertex-Is-Null,

not Is-A-Member(From-The-Vertex, In-The-Graph) or
not Is-A-Member(To-The-Vertex, In-The-Graph)

=> raise Vertex-Is-Not-In-Graph,
out(Attribute-Of(The-A rc) = With-The-Attribute),
out(Source-Of(The-Arc) = From-The-Vertex),
out(Destination-Of(Th e-Arc) = To-The-Vertex),
out (Number-Of-Arcs-To (To-The-Vertex)

= Number-Of-Arcs-To (To-The-Vertex) + 1),
out(Number-Of-Arcs-From(From-The-Vertex)

= in Number-Of-Arcs-From(From-The-Vertex) + 1);

procedure Destroy (The-Arc : in out Arc;
In-The-Graph : in out Graph);

where Is-Null(The-Arc) => raise Arc-Is-Null,
not Is-A-Member{ The-Arc, In-The-Graph)

=> raise Arc-Is-Not-In-Graph,
out(Number-Of-Arcs-In(In-The-Graph)

= in Number-Of-Arcs-In(In-The-Graph) - 1),
out(not Is-A-Member(in The-Arc, In-The-Graph)),
out(The-Arc = Null-Arc),
out(Number-Of-Arcs-To(in Destination- Of(The-Arc))

1 in Number-Of-Arcs-To(Destinat,ion Of(The-Arc)) - 1);
- - Remove the given arc in the graph.

50 CHAPTER 4. ABSTRACT DATA TYPES

procedure Set-Attribute (Of-the-Arc : in out Arc;
To-The-Attribute : in Attribute);

- - l where Is-Null(Of-The-Arc) => raise Arc-Is-Null,
- - l out(Attribute-Of(Of-the-Arc) = To-The-Attribute);

-- Set the value of the designated arc to the given name.

- -
- -

procedure Copy (From-The-Graph : in Graph;
To The Graph : in out- - Graph);

where
out(From-The-Graph = To-The-Graph);

generic
with procedure Process (V : in Vertex; Continue : out Boolean);

procedure Iterate-Vertices (Over-The-Graph : in Graph);

generic
with procedure Process (A : in Arc; Continue : out Boolean);

procedure Iterate-Arcs (Over-The-Graph : in Graph);

generic
with procedure Process (A : in Arc; Continue : out Boolean);

procedure Reiterate (Over-The-Vertex : in Vertex);

- - ------AXIOM?

-- iaxiom-- Number-Of-Vertices-In (Graph’Initial) = 0,
- - Number-Of-Arcs-In (Graph’Initial) = 0,
- - Number-Of-Arcs-From (Vertex’Initial) = 0,

Number-Of-Arcs-To (Vertex’Initial) = 0;
- - for all V : Vertex => not Is-A-Member (V, Graph’Initial),
- - I for all A : Arc => not Is-A-Member (A, Graph’Initial);

private

type Vertex-Node;
type Vertex is access Vertex-Node;
Null-Vertex : constant Vertex := null;

type Arc-Node;
type Arc is access Arc-Node;
Null-Arc : constant Arc := null;

type Graph-Node;
type Graph is access Graph-Node;

end Graph-Package;

4.4. GRAPH PACKAGE 51

- - Commentary:
- - In subprograms, it is often the case that a few properties of the state change, but many do not. For
- - example, in subprogram Add, when adding a vertex to a graph, the only changes to values of functions
- - on the graph are that the number of vertices in the graph is incremented, and the given vertex becomes a
- - member of the graph. All other vertices and arcs in the graph remain unchanged. Rather than specifying
- - all properties of the state which do not change, the designer can apply a “frame axiom,” which states
- - that whatever has not been explicitly expressed to change remains unchanged. However, it is common
- - to express other information about invariance in the package axioms.

-- This package provides an equality operator on the type Graph, which is used in annotating subprogram
- - Copy. It is not further specified, but by Anna rules it must obey the implicit equality axioms: reflexivity,
- - symmetry, transitivity, substitution for functions, and independence of the package state. These axioms
- - are adequate to insure that two “equal” Graphs behave identically in terms of visible functions of the
- - package.

-- One advantage of a formal specification is that it is often easy to extend the package with other subpro-
- - grams which operate on graphs; the extensions have straightforward specifications in terms of the basic
- - concepts already defined. For example, a new Boolean function Pat,h, which returns True if there is a
-- path of arcs between two vertices, is easy to specify in Anna:

function Path(From-Vertex, To-Vertex : in Vertex) return Boolean;
-- 1 where
- -

I
return From-Vertex = To-Vertex or else

- - (exist V : Vertex; A : Arc =>
- -

I

Source-Of (A) = From-Vertex and
- - Destination-Of(A) = V and
- - l Path(V,To-Vertex));

52 CHAPTER 4. ABSTRACT DATA TYPES

4.5 Map Package

- Description
- - A map is a function on elements of one type, called the domain, yielding elements of a second type, called
- - range. In other words, a map m from Domain-Set to Range-Set exists if for each x in Domain-Set we
- - can specify a unique element in Range-Set, which I denote m*x. It is helpful to think of m as a rule
- - which assigns to each element x in Domain-Set a unique element m*x in Range-Set. The element m*x
- - is usually called the value of m at x. The important points are that the map m is defined if for every x in
-- Domain-Set there exists a m*x, and that there is just one such element for each x.

Formally, we can view the value of a map as an unordered collection of ordered pairs consisting of an
- - e l e m e n t of t h e d o m a i n and an element of the range. The domain and the range are typically diflerent
-- types, although they may be the same type. Each ordered pair thus denotes the binding of two elements.
- - F o r e v e r y e l e m e n t of t h e d o m a i n , there can exist no more than one element of the range. The inverse
-- does not hold; every element of the range can be associated with zero or more elements of the domain.
-- Author:
- - David S. Rosenblum, Rob Chang, and John Iienney.
-- - Source:
- - Software Components in Ada by Grady Booth.

generic
type Domain is private;
type Ranges is private;
Number-Of-Buckets : in Positive;
with function Hash-Of (The-Domain : in Domain) return Positive;

--I for all D : Domain => Hash-Of(D) <= Number-Of-Buckets;
package Map-Package is

type Map is limited private;
--: type Pair is limited private;

Domain-Is-Not-Bound,
- - There does not currently exist a binding for the given element of the domain.

Multiple-Binding,
-- There already exists a binding for the given element of the domain.

Overflow : exception;
The map cannot grow large enough to complete the desired operation.

- * function Domain-Of (The-Pair : in Pair) return Domain;
- - i where raise others => False;

- * function Ranges-Of (The-Pair : in Pair) return Ranges;
- - i where raise others => False;

function Extent-Of (The-Map : in Map) return Natural;
I where raise others => False;

--- Rettrsrr the current number- of ordered pairs in the map.

function Is-Empt,y (The-Map : Map) return Boolean;
--I where raise others => False,
- - I return Extent-Of(The-Map) = 0;

-- Return True if the map contains no ordered pairs.

4.5 . MAP PACKAGE 53

procedure Clear (The-Map : in out Map);
- - where raise others => False,
- - out(Is-Empty(The-Map));

- - Remove all the ordered pairs (if any) from the map and make the map empty.

* function A-Pair-Of (The-Map : in Map) return Pair;
where not Is-Empty(The-Map),

raise others => False;

: function “-” (The-Domain : in Domain;
In-The-Map : in Map) return Map;

- - i where raise others => False,
- - return New-Map : Map =>
- - not exist Any-Pair : Pair =>
- - (Any-Pair = A-Pair-Of(New-Map)) and
- - l (Domain-Of(Any-Pair) = The-Domain);

function Is-Bound (The-Domain : in Domain;
In-The-Map : in Map) return Boolean;

- - where raise others => False,
- -

I
return (not Is-Empty(In-The-Map)) and then

- - (The-Domain = Domain-Of (A-Pair-Of(In-The-Map)) or else

- - I
Is-Bound(The-Domain,

“-‘I(Domain-Of(A-Pair-Of(In-The-Map)), In-The-Map)));
-- Return True if there is on elcwent of the rccuge corresponding tn thP rriuen elpmpnt of the
- - d o m a i n i n t h e m a p .

function Defined (The-Map : in Map) return Boolean;
- - where raise others => False,

- - I return for all The-Domain : Domain => Is-Bound(The-Domain, The-Map);

--: function “*” (In-The-Map : in Map;
--*

i
The-Domain : in Domain) return Ranges;

- - where not Is-Bound(The-Domain, In-The-Map) => raise Domain-Is-Not-Bound,
- - l raise others => not Is-Bound(The-Domain, In-The-Map),
- - return
- - I if (The-Domain = Domain-Of(A-Pair-Of(In-The-Map))) then
- -
- - I

Ranges-Of (A-Pair-Of (In-The-Map))
else

- -

I
‘I*“(“-‘I(Domain-Of(A-Pair-Of(In-The-Map)), In-The-Map), The-Domain

- - end if;

function Range-Of (The-Domain : in Domain;
In-The-Map : in Map) return Ranges;

- -

I
where not Is-Bound(The-Domain, In-The-Map)

- - => raise Domain-Is-Not-Bound,
- - l raise others => not Is-Bound(The-Domain, In-The-Map),
- - l return In-The-Map * The-Domain;

-- Return an element of the range corresponding to the given element of the domain in the
- - m a p .

54 CHAPTER 4. ABSTRACT DATA TYPES

procedure Bind (The-Domain : iii Domain;
And-The-Range : in Ranges;
In-The-Map : in out Map);

-
- - /

where Is-Bound(The-Domain, In-The-Map) => raise Multiple-Binding,
raise Overflow,

- -

- - I
out(Is-Bound(The-Domain, In-The-Map)),
out(And-The-Range = In-The-Map * The-Domain);
-- Add an ordered pair consisting of an element of the domain and an element of the range to
- - the map.

procedure Unbind (The-Domain : in Domain;
In-The-Map : in out Map 1;

where not Is-Bound(The-Domain, In-The-Map) => raise Domain-Is-Not-Bound,
raise others => not Is-Bound(The-Domain, In-The-Map),

out(not Is-Bound(The-Domain, In-The-Map));
-- Remove the ordered pair for a given element of the domain from the map.

function ‘I<=” (Left,, Right : in Map) return Boolean;
where raise others => False,

--
- -
- -
- -
- - I
- - l
- -
- - I

return
if Is-Empty(Left) then True
else

Is-Bound(Domain-Of(A-Pair-Of(Left)), Right) and then
(Left * Domain-Of(A-Pair-Of(Left))

= Right * Domain-Of(A-Pair-Of(Left,))) and then
“.=Y ‘I- “(Domain-Of(A-Pair-Of(Left \j T,eft 1 Right)

end if;

function “=” (Left, Right : in Map) return Boolean;
- - where raise others => False,
- - return (Left <= Right) and then (Right <= Left);

procedure Copy (From-The-Map : in Map;
To-The-Map : in out Map);

- - l where raise Overflow,
- - l out(To-The-Map = From-The-Map);

-- Copy the ordered pairs from one map to another map.

function Is-Surjection (The-Map : Map) return Boolean;
- where

- - return
- - for all R : Ranges =>
- - I exist D : Domain => The-Map * D = R ;

- - The map from Domain to Ranges is a surjection if every R in Ranges is a value The-Map*D
- - for at least one D in the Domain.

function Is-Injection (The-Map : Map) return Boolean;
- where

-4 return
- - for all Dl, D2 : Domain =>
- - D l /= D2 -> T h e - M a p * Dl /= T h e - M a p * D2;

- - The map from Domain to Ranges is an injection if every R in Ranges is a value The-Map *D
-- for at most one D in the Domain.

4 . 5 . M A P P A C K A G E 5 5

function Is-Bijection (The-Map : Map) return Boolean;
- where

- - return Is-Surjection(The-Map) and Is-Injection(The-Map);
- - The map from Domain to Ranges is a bijection if it is both a surjection and an injection,
- - that is, if every R in Ranges is a value The-Alop*D for exactly one D in the Domain.

- - [axiom
- - I E x t e n t - O f (Map’Initial) = 0 ,
-- 1 for all D : Domain = > n o t Is-Bound(D , Map’Initial);

private
type M ap_Rec;
type Map is access Map-Ret;

-: type Pair-Ret;
-: type Pair is access Pair-Ret;

end M ap_Package;

- - Commentary:
- - This package uses the virtual function A-Pair-Of to refer to an arbitrary Pair element of a Map. In this
- - way, later functions can be defined by recursively examining and removing each element of the map.

56 CHAPTER 4. ABSTRACT DATA TYPES

4.6 Rings Package

Package Name:
Rings (generic)

Description:
This package provides Ring manipulation procedures such as marking items in a ring, insertion, and

deletion of items, copying of Rings and rotation. A ring is a circular bufler where the current “top” can
rotate in either direction.
Author:
Randall Nefl

Source:
Software Components in Ada by Grady Booth

generic
type Item is private;

package Rings is
type Ring is limited private;

-- a sequence of zero or more items arranged in a circular fashion.
type Direction is (Forward, Backward);

E X C E P T I O N S
Overflow : exception;

-- The ring cannot grow large enough to complete the desired operation.
Underflow : exception;

-- The ring is already empty.
Rotate-Error : exception;

-- There is nothing in the ring to rotate.

- - - - - - - - B A S I C F U N C T I O N S
--* function Mark-Is (The-Ring : in Ring) return Natural;
--i where raise others => False;

-- returns the value of the Mark as an index to the Ring

function Extent-Of (The-Ring : in Ring) return Natural;
where raise others => False;

- - returns the current number of Items in a ring.

function Index (The-Ring : in Ring; I : in Positive) return Item;
where I <= Extent-Of(The-Ring),

raise others => False;
- - returns the I’th Item stored in the ring.

- - - - - - S E L E C T O R S
function Is-Empty (The-Ring : in Ring) return Boolean;

--I where raise others => False,
- - l return Extent-Of(The-Ring) = 0;

4 .6 . RINGS PACKAGE 57

function Is-Equal (Left, Right : in Ring) return Boolean;
-- 1 where raise others => False,
- - return Extent-Of(Left) = Extent-Of(Right) and then
- - Mark-Is(Left) = Mark-Is(Right) and then
- - (for all I : 1 . . Extent-Of(Left) =>

Index(Left, I) = Index(Right, I));

function Top-Of (The-Ring : in Ring) return Item;
-- 1 where
- - Is-Empty(The-Ring) => raise Underflow,

return Index(The-Ring, 1);

function At-Mark (The-Ring : in Ring) return Boolean;
-- 1 where raise others => False,
- - return if Extent-Of(The-Ring) = 0 then

Mark-Is(The-Ring) = 0
- - else
- - Mark-Is(The-Ring) = 1
- - I cud if;

C O N S T R U C T O R S
procedure Copy (From-The-Ring : in Ring;

To-The-Ring : in out Ring);
-- 1 where raise Overflow,
- - out(Is-Equal(From-The-Ring, To-The-Ring));

procedure Clear (The-Ring : in out Ring);
-- I where raise others => False,

I out(Is-Empty(The-Ring));

procedure Insert (The-Item : Item; In-The-Ring : in out Ring);
-- I where raise Overflow,

out(Ext,ent-Of(In-The-Ring) = Extent-Of(in In-The-Ring) +1),
- - out(Top-Of(In-The-Ring) = The-Item),
- - l out(Mark-Is(In-The-Ring) = Mark-Is(in In-The-Ring) + 1),
- - out(for all I : 2 . . Extent-Of (In-The-Ring) =>
- - l Index(In-The-Ring, I) = Index(in In-The-Ring, I - l));

procedure Pop (The-Ring : in out Ring);
--I where Is-Empty(The-Ring) => raise Underflow,
- - out(Extent-Of(The-Ring) = Ext,ent-Of(in The-Ring) -1),
- - out(if Mark-Is(in The-Ring) = 1 theu

Mark-Is(The-Ring) = 1
- - else
- -

I
Mark-Is(The-Ring) = Mark-Is(in The-Ring) -1

- - cud i f),
- - out(for all I : 1 . . Extent-Of(The-Ring) =>
- - l Index(The-Ring, I) = Index(in The-Ring, I+ 1));

58

--:
- -
- -

-- l
-- l

--:

-- i- -
- -
-- I
-- I
-- l
-- l
-- l
-- l

- -
-- I

-- I- -
-- I
-- l

-- l- -
- -

- -

- -

CHAPTER 4. ABSTRACT DATA TYPES

function Shift (Top : in Positive;
Dist,ance : iii Integer;
Extent : iii Positive) return Positive;

where raise others => False,
return

if (Top - Distance) mod Extent = 0 then
Extent

else
(Top - Distance) mod Extent

end if;

function Rotate (The-Ring : in Ring;
Distance : in Integer) return Ring;

where not Is-Empty(The-Ring),
return New-Ring : Ring =>

(Extent-Of(New-Ring) = Ext.ent-Of (The-Ring)) and then
(for all I : 1 . . Extent-Of(The-Ring) =>

Index(New-Ring, I)
= Index(The-Ring, Shift(I, Distance, Extent-Of(The-Ring))))

and then
(Mark-Is(New-Ring)

= Shift,(Mark-Is(The-Ring), Dist,ance, Extent-Of(The-Ring)));

procedure Rotate (The-Ring : in opt Ring;
In-The-Direction : in Direction);

where Is-Empty(The-Ring) => raise Rotate-Error,
out(The-Ring = if In-The-Direction = Forward then

Rotat,e(in The-Ring, 1)
else

Rot,ate(in The-Ring, -1)
end if);

procedure Mark (The-Ring : in out Ring);
where raise others => False,

out(if Is-Empty(The-Ring) then
Mark-Is(The-Ring) = 0

else
Mark-Is(The-Ring) = 1

end if);

procedure Rotate-To-Mark (The-Ring : in out Ring);
where raise others => False,

out(The-Ring = Rotate(in The-Ring, in Mark-Is(The-Ring) - 1));

------ITERATORS
generic

with procedure Process (The-Item : in Item;
Continue : out Boolean);

procedure Iterate (Over- The -Ring : Ring);

i

4 .6 . RINGS PACKAGE

-- ------AAIOMS
- - axiom
- - I for all Pack : Rings’Type;
- - Rl, R2 : Ring;
- - I 11, 12 : Item =>
- -
- - I

Pack [Insert(11, Rl); Pop(Rl)] = Pack,
Pack [Rotate(RI, Forward); Rotate(Rl, Backward)] = Pack,

- - Pack [Rotate(Rl, Backward); Rotate(Rl, Forward)] = Pack,
- -

I
P a c k [Mark(Rl)].At-Mark(Rl),

- - Pack [Rotate-To-Mark(Rl)].At-Mark(RI),
- -

I
Pack [Insert(11, Rl); Mark(Rl); Rotate(RI, Forward);

- - Rotate-To-Mark(Rl)].Top-Of(Rl) = 11,
Pack [Insert(11, Rl); Mark(Rl); Rotate(RI, Backward);

Rotate-To-Mark(Rl)].Top-Of(RI) = 11;

private
type Node;
type Structure is access Node;
type Ring is record

The-Top : Structure;
The-Mark : Structure;

end record;
end Rings;

-- Commentary:
-- One feature of this package specification is the use of the virtual Index function. It abstracts the Ring
- - as an array that can be indexed. Individual elements can be read from any part of the ring within the
- - annotations. Elements are numbered starting at 1; the index 0 is returned for empty Rings. Similarly,
- - the virtual function Mark-Is returns the index number of the element that is currently ‘marked’ within
- - the Ring. The index 0 is used for the location of the Mark in an empty Ring.

-- We also define a general, virtual concept of rotating rings. Using the virtual Rotate function, rings can
-- be rotated by any integer value (where positive numbers correspond to forward shift, and negative to
-- backward shift). The virtual function Shift captures the algebraic expression denoting shifting index
-- values modulo the ring size. Then the visible Rotate and Rotate-To-Mark procedures are simple to
- - specify.

59

-- Many of t,he axioms given are not strictly necessary. For instance, the axiom
Pack [Mark(RI)].At-Mark(Rl)

-- can be logically deduced from the subprogram annotations for Mark and At-Mark. However, this kind
-- of redundancy is very useful as an extra check that the designer understands the implications of the
- - specification.

CHAPTER 4. ABSTRACT DATA TYPES

I
I

Chapter 5

Other Examples

This chapter contains some simple package specifications that are not definitions of abstract data types. This
chapter shows Anna being used to amlotate ot,her kinds of packages, including packages that use Floating
point numbers. The exa.mples are:

l A Bank Automatic Teller Ma.chine

l Math Functions Package

l Complex Number Package

l Generic Sort Package

62 C H A P T E R 5 . O T H E R E X A M P L E S

5.1 Bank ATM Packages

-- Package Name:
- - A T M - U t i l i t i e s
- - Description:
- - Encapsulates types needed to support an Automatic Teller machine system.
-- Author:
- - J o h n Kenney a n d W a l t e r M a n n

package ATM-Utilities is

type Dollars-Type is delta 0.001 range -1~000~000.0 . . 1~000~000.0;

subtype PosiGve-Dollars-Type is
Dollars-Type range 0.0 . . Dollars-Type’Last;

type Check-Status-Type is (Not-Yet-Received, Being-Verified, Stopped, Cleared);

type Account-Type is (Checking, Savings, Loan);

type Check-Number-Type is new Positive;

type Account-Array is array (Account-Type) of Positive-Dollars-Type;

type Check-Status-Array is array (Check-Number-Type range <>)
of Check-Status-Type;

type Check-Amount-Array is array (Check-Number-Type range <>)
of Positive-Dollars-Type;

type Account-State(Max-Check : Check-Number-Type) is record
- - Max-Check is the highest numbered check that has been issued to the customer.

Acct-Balances : Account-Array;
-- Balances of accounts at start of ATM session.

Check-Status : Check-Status-Array(1 . . Max-Check);
- - Status of all known checks at start of ATM session.

Check-Amount : Check-Amount-Array(1 . . Max-Check);
- - Amount of all received checks at start of ATM session.

Line-Of-Credit : Positive-Dollars-Type;
-- Maximum amount a customer can borrow from his Loan account.

end record;

- - I
where State : Account-State =>

State.Acct-Balances(Loan) < = State.Line-Of-Credit;
- - This type represents the state of a customer’s accounts; it should describe completely the account
- - information which a customer has access to.

end ATM-Utilities;

5.1. BANK ATM PACKAGES 63

Package Name:
A TM-Session

Description:
This generic package operates as a ‘shell” invoked when a customer has correctly inserted his card and

given his code. It provides a user-interface of options to manipulate a single account. The account infor-
mation is derived from the generic formal parameter Acct-State; presumably this package is instantiated
with that customer’s account information, and the updated state will be saved when the session terminates.
Author:

John It’enney, Walter Mann, and Doug Bryan

with ATM-UtiliGes; use ATM-Utilities;
generic

Acct-State : in out ATM-Utilitjies.AccountBState;
package ATM-Session is

-- ------ E X C E P T I O N S

Unknown-Check
Invalid-Withdraw
Invalid-Transfer
Check-Already-Cleared

: exception;
: exception;
: exception;
: exception;

-- - - - - - - B A S I C F U N C T I O N S

function Amount-In (Account : in Account-Type) return Dollars-Type;

function Status-Of (Check : in Check-Number-Type)
return Check-Sbatns-Type;

function Amount-Of (Check : in Check-Number-Type)
return Positive-Dollars-Type;

-- 1 where Status-Of(Check) = Not-Yet-Received => raise Unknown-Check;

- - - - - - S U B P R O G R A M S

: function Net-Worth return Dollars-Type;
~ 1 where

I return Amount-In(Checking) + Amount-In(Savings) - Amount-In(Loan);

procedure Stop-Payment (Check : in Check-Number-Type);
- - 1 where Status-Of(Check) = Cleared => raise Check-Already-Cleared,
- - I out(Status-Of(Check) = Stopped);

procedure Deposit (N-Dollars : in Positive-Dollars-Type;
Into-Account : in out Account-Type);

- - 1 where
- -
- - /

out(Amount,-In(Into-Account)
= if Int30-Account = Loan then

- - I
Amoun t-In(in In to_Accoun t) - N-Dollars

else
Amount-In(in Into-Account) + N-Dollars

end if);

64 CHAPTER 5 . OTHER EXAMPLES

procedure Withdraw (N-Dollars : in Positive-Dollars-Type;
From-Account : in out Account-Type);

- -] where (From-Account = Loan and then
- -
- - I

Amount-In(Loan) + N-Dollars > Acct-State.Line-Of-Credit) or else
(From-Account isin Checking . . Savings and then

- - l N-Dollars > Amount-In(FromAccount))
- -

I
=> raise Invalid-Withdraw,

- - out(Amount-In(From-Account)
- - l = if From-Account = Loan then
- -
- - I

Amoun t-In(in From-Account) + N-Dollars
else

I

Amount-In(in From-Account) - N-Dollars
- - end if);

procedure Transfer (N-Dollars : in Positive-Dollars-Type;
From-Account : in out Account-Type;
To-Account : in out Account-Type);

-- I where (From-Account = Loan and then
- - Amount-In(Loan) + N-Dollars > Acct-State.Line-Of-Credit) or
- - I (From-Account isin Checking . . Savings and then

N-Dollars > Amount-In(From-Account))
=> raise Invalid-Withdraw,

- - From-Account = To-Account => raise Invalid-Transfer,
- - out(ATM-Session =
- - in ATM-Session[Withdraw(N-Dollars, From-Account) ;

Deposit(N-Dollars, To-Account)]);

else

__ _----- A X I O M S

-- l axiom

/
for all Account : Account-Type;

- - Check : Check-Number-Type =>
- - ATM-Session’Init,ial.Amount-In(Account) = i n Acct-State.Acct-Balances(Account),
- - ATM-Session’Initial.Status_Of (Check) = in Acct-State.Check-Status(Check),

ATMSession’Initial.Amount-Of (Check) = in Acct-State.Check-Amount(Check);

end ATM-Session;

Commentary:
The above packages are two pieces of a larger banking system. We can think of the system as follows.
There is a large central database of customer account information, connected to some number of auto-
matic teller machines. When a customer uses an ATM, if he has correctly inserted his card and entered
his code, a user-interface is instantiated for the ATM session that follows. The customer’s account is
locked, and the account information is sent to the user-interface. By using the ATM functions, the
customer changes the state of his account. When the session ends, the updated state is copied back into
the central database and is unlocked.

5.1. BANh’ ATM PACKAGES 65

-- Accounts are defined in the package ATM-Utilities. Every customer is assumed to have one savings
- - account, one checking account, and a “loan” account with a certain line of credit which he can borrow
- - against (since account definitions are completely encapsulated in this package, this is an easy assumption
- - to change). The state consists of: balances in each of the customer accounts, status of all the checks he
- - has been issued, the values of checks which have been received by the bank, and the current line-of-credit
-- limit on his loan account. A type annobation insures that the loan account balance never exceeds the
- - customer’s credit limit.

.-- An instance of package ATM-Session exists for the duration of a single customer session. It is instantiated
- - with the current state of the customer’s accounts; the axioms define the relationship between the initial
- - value of this generic formal parameter, and the initial values of the observer functions.

ATM-Session provides all of the standard ATM user functions. An interesting aspect of this specification
is that we are able to define explicitly the difference between a loan account and the other account
kinds. Though both loan accounts and savings accounts have positive-valued balances, a savings balance
represents the amount of money a customer has, whereas a loan balance represents the amount of money
he owes. This means that, for example, a deposit to a loan account is fundamentally different from a
deposit t,o a savings account. The difference is simply and explicitly stated. Also, note that subprogram
Transfer is defined in terms of Withdrawal and Deposit; its out-annotation specifies that the state of a
customer’s accounts after a Transfer of money from one account to another is equivalent to what the
state would be if he had withdrawn the money from the source account, and then deposited it in the
destination account.

66 C H A P T E R 5 . O T H E R E X A M P L E S

5.2 Math Functions Package

-- Package Name:
- - Math Functions (generic)
- - Description:
- - This package defines commonly used math functions for floating point numbers, such as trigonometric
- - and logarithmic functions.
-- Author:
- - Doug Bryan, Chuan-Chieh Iio

package Floatming-Point)-Math-Functions is

Pi : corrstarrt : = 3.14159-2653589793-23846_26433_83279_50288;
E : constant := 2.71828~18284~59045~23536_02874_71352_66250;

- - : Max-Delta : coxrstarrt Float := 2.0 / (10.0 ** Float’Digits);

subtype Amplitude is Float range -1.0 . . 1.0;

subtype Reciprocal-Amplitude is Float;
-- 1 where
- - 1 x: Reciprocal-Amplitude = > X <= -1.0 or X >= 1.0;

subtype Angle-l is Float, range -0.5 * Pi . . 0.5 * Pi;

subtype Angle-2 is Float range 0.0 . . Pi;

-- ----- E X C E P T I O N S

Math-Functions-Error : exception;

-- ----- P R E D E F I N E D S U B P R O G R A M S

-- function ‘I=” (Left, Right : Float) return Boolean;
-- function ‘I/=” (Left, Right : Float) return Boolean;
- - function ‘I< ” (Left, Right : Float) return Boolean;
-- function “<=” (Left,, Right : Float) return Boolean;
- - function “> ” (Left, Right : Float) return Boolean;
-- function “>=“ (Left, Right : Float) return Boolean;

-- function ‘I+” (Right : Float) return Float;
-- function “-“ (Right : Float) return Float;
-- function ‘labs” (Right : Float) return Float;

-- function ‘I+”
-- function ‘I-”
- - function “*”
-- function ‘I/”

(Left, Right : Float) return Float;
(Left, Right : Float) return Float;
(Left,, Right : Float) return Float;
(Left, Right : Float) return Float;

-- function ‘I**” (Left : Float; Right : Int,eger) return Float;

5.2. MATH FUNCTIONS PACKAGE

- - -----SSBPROGRAAfS

-- Define equality over floating point numbers, taking into account round-ofi error.
--: function Equal (Left, Right : Float) return Boolean;
-- 1 where
- - I return abs(Left - Right) / Left < 5.0 * Float(Max-Delta);

- - : generic
--* with function F (X : Float,; I : Integer) return Float;
--*. function Summation-Of-F (X : Float;
--: Beginning-At : Integer) return Float;

-- 1 where
- - return (if Equal(F(X, Beginning-At), 0.0) then
- -

I
F(X, Beginning-At)

- - else
- - F(X, Beginning-At) + Summation-Of-F(X, Beginning-At + 1)
- - I end if);

function Factorial (N : Natural) return Natural;
-- 1 where
- -
- - I

return (if N > 0 then N * Factorial(N - 1)
else 1
end if);

-- : function Sin-Summation-Component (X : Float;
I : Integer) return Float;

- - I where
- - return ((-1.0) ** I * x ** (2 * I + 1)
- - / Float(Factorial(2 * I + 1))) ;

-- : function Sin-Series is
--*. new Summation-Of-F (F => Sin-Summation-Component);

--: function CosSummation-Component (X : Float;
--* I : Integer) return Float;

where
return ((-1.0) ** I * X ** (2 * I) / Float(Factorial(2 *

function Cos-Series is

I)));

9new Summation-Of-F (F => Cos-Summation-Component)

function Log-Summation-Component (X : Float;
.

Iii where
I : Integer) return Float;

- - l return -((-X) ** (I + 1) / Float’(1 + 1));

67

-- : function Log-Series is
--* n e w Summat,ion-Of-F (F = > Log-Summat,ion-Component);

I

CHAPTER 5 . OTHER EXAMPLES68

function Sqrt (X : Float) return Float;
- - 1 where

X < 0.0 => raise Math-Functions-Error,
- - return Y : Float => Equal(X, Y * Y);

function Sin (X : Float) return Amplit.ude;
-- 1 where
- -

- - /
return

Y : Amplitude =>
exist N : Integer =>

- - (-0.5 * Pi <= X + Float(N) * Pi <= 0.5 * Pi) and
- - I (Equal(Y, Sin-Series(X + Float(N) * Pi, 0)));

function Cos (X : Float) return Amplitude;
-- 1 where
--I return
- - Y : Amplitude =>
- -

- - I
exist N : Integer =>

(-0.5 + Pi <= X + Float(N) * Pi <= 0.5 * Pi) and
- - l (Equal(Y, Cos-Series(X + Float(N) * Pi, 0)));

function Tan (X : Float) return Float;
-- I where Cos(X) = 0.0 => raise Math-Functions-Error,
- - return Y : Float => Equal(Y, Sin(X) / Cos(X));

function Set (X : Float) return Reciprocal-Amplitude;
where Cos(X) = 0.0 => raise Math-Funct,ions-Error,

return Y : Reciprocal-Amplitude => Equal(Y, 1.0 / Cos(X));

function Csc (X : Float) return Reciprocal-Amplitude;
where Sin(X) = 0.0 => raise Math-Functions-Error,

return Y : Reciprocal-Amplitude => Equal(Y, 1.0 / Sin(X));

function Cot (X : Float) return Float;
where Sin(X) = 0.0 => raise Math-Functions-Error,

return Y : Float => Equal(Y, Cos(X) / Sin(X));

function Arc-Sin (X : Amplitude) return Angle-l;
where

return Z : Angle- l => Equal(X, Sin(Z));

function Arc-Cos (X : Amplitude) return Angle-:!;
-- 1 where
- - l return Z : Angle-2 => Equal(X, Cos(Z));

function Arc-Tan (X : Float) return Angle-l;
- - 1 where
- - l return Z : Angle- l => Equal(X, Tan(Z));

function Arc-Set (X : Reciprocal-Amplitude) return Angle-Z;
~- 1 where

I return Z : Angle-2 => Equal(X, Sec(Z));

5.2. MATH FUNCTIONS PACh’AGE

function Arc-Csc (X : Reciprocal-Amplitude) return Angle-l;
-- 1 where
- - return Z : A n g l e - l => Equal(X , Csc(Z));

function Arc-Cot (X : Float) return Angle-Z;
1 where
I return Z : Ang le -2 => Equal(X , Cot,(Z));

function Log (X : Float) return Float;
1 where X <= 0.0 => raise Mat,h-Functions-Error,
I return Y : Float =>

- - exist N : Integer =>
(2.0 / (E + 1.0)

- -

- - i
< = X / E**N
<= 2.0 * E / (E + 1.0)) and

- - (Equal(Y , Log-S eries(X / E ** N - 1.0, 0)));

function Exp (X : Float) return Float;
-- 1 where
- - l return Y : Float => Equal(X, Lod y 1);

function ‘I**” (X, Y : Float,) return Float;
-- 1 where X < 0.0 = > raise Math-Functions-Error,
- - return Z : Float =>
- - I Equal(Z, (if X = 0.0 then 0.0
- - l else Exp(Y + Log(X))
- - l end if)) ;

- - ------AXIOMS

- -
- - I

axiom
for all A, B, X : Float;

- - Y : Angle-l;
- - I Z : Angle-:!;
- - U : Amplitude;
- - I V : Reciprocal-Amplitude;
- - K : Integer =>
- - I

Equal (Tan(X),
Equal (Csc(X),
Equal (Set(X),
Equal (Cot(X),

Equal (1.0,

Equal (Cos (-X),
Equal (Sin (-X),
Equal (Tan (-X),

Equal (Sin(X),
Equal (Cos(X),
Equal (Tan(X),

Sin(X) / Cos(X)),
1.0 / Sin(X)),
1.0 / Cos(X)),
1.0 / Tan(Z)),

Sin(X)**2 + Cos(X)**Z),

cos (X)),
- Sin (X)),
- Tan W)),

Sin (X + Pi * (2.0 * Float(K)))),
Cos (X + Pi * (2.0 * Float(K)))),
Tan (X + Pi * (1.0 * Float(K)))),

69

70

- - l
- - I

- -- - I
- -
- -

- -

- -- - /

- -
- -
- - I

I

- - I

- -- - I

- -- - I
- - I
- - l

- -- - I

- - I- -
- - I
- - I
- - l

- -- - I

CHAPTER 5 . OTHER EXAMPLES

Equal (1.0, Set(X)**:! - Tan(X)**2),
Equal (1.0, Csc(X)**2 - Cot(X)**2),

Equal (Sin(A + B), Sin(A)*Cos(B)+Cos(A)*Sin(B)),
Equal (Sin(A - B) , Sin(A)*Cos(B)-Cos(A)*Sin(B)),
Equal (Cos(A + B), Cos(A)*Cos(B)-Sin(A)*Sin(B)),
Equal (Cos(A - B), Cos(A)*Cos(B)+Sin(A)*Sin(B)),
Equal (Tan(A + B), (Tan(A)+Tan(B))/(l.O-Tan(A)*Tan(B))),
Equal (Tan(A - B), (Tan(A)-Tan(B))/(l.O+Tan(A)*Tan(B))),

Equal (Sin(2.0 * A), 2.0 * Sin(A) * Cos(A)),
Equal (Cos(2.0 * A), Cos(A)**2 - Sin(A)**2),

Equal (Sin(0.5 * A)**2,
Equal (Cos(O.5 + A)t*2,

0.5 * (1 .0 - Cos(A))),
0.5 * (1 .0 + Cos(A))),

Equal (Arc-Sin (Sin (Y)) , Y) ,
Equal (Arc-Cos (Cos (Z)) , Z) ,
Equal (Arc-Tan (Tan (Y)) , Y) ,
Equal (Arc-Csc (Csc (Y)) , Y) ,
Equal (Arc-Set (Set (Z)) , Z) ,
Equal (Arc-Cot (Cot (Z)) , Z) ,

Equal(Pi / 2.0, abs (Arc-Tan(X) + Arc-Cot (X))),
Equal(Arc-Csc(V), Arc-Sin (1.0/V)),
Equal(Arc-Set(V), Arc-Cos (1.0/v)),
Equal(Arc-Cot(X), Arc-Tan (1.0/x)),
Equal(Pi / 2.0, Arc-Sec(V) + Arc-Csc(V)),
Equal(Arc-Sin (-U), - Arc-Sin (U)),
Equal(Arc-Cos (-U), Pi - Arc-Cos (U)),
Equal(Arc-Tan (-X), - Arc-Tan (X)),
Equal{ Arc-Csc (-V), - Arc-Csc (V)),
Equal{ Arc-Set (- V) , P i - Arc-Set (V)) ,
Equal(Arc-Cot (-X), Pi - Arc-Cot (X)),

Ew-4 Lo~(ExP(X)), X),
Equal(ExP(Lo~(X)), X),

Equal(X ** (A + B),X ** A * X ** B),
Equal((A * B) ** X,A ** X * B ** X),
Equal(X ** 0.5, Sq4U
Equal(X ** (- A) , 1.0 / X ++ A);

end Floating-Point,-Math-Functions;

- - Commentary:

-- An inherent problem of specifying packages which use floating point numbers is accounting for round-
- - off errors in results. In function result annotations, the returnconstruct implies the predefined “=”
- - relationship between the return4 vallle and the result expression. So, for example, if the Tan function
- - were annotated as follows:

5.2. MATH FUNCTIONS PACKAGE 71

function Tan (X : Float) return Float;
--I where Cos(X) = 0.0 => raise Math-Functions-Error,
- - returu Sin(X) / Cos(X);

-- It is implied that the returned result must be exactly equal to the calculated value of:

Sin(X) / Cos(X).

- - More than likely, this is too restrictive.
-- The Anna specification accounts for this problem by defining Equal, an approximate equality function
- - for floating-point numbers. All result annotations and axioms are defined using that function, except
- - where one argument is the floating-point constant 0.0. It is assumed that there is an exact representation
- - for 0.0, and so we may use the predefined equality when it is involved.

72 CHAPTER 5 . OTHER EXAMPLES

5.3 Complex Numbers Package

-- Package Name:
- - C o m p l e x N u m b e r s
- - Description:
- - This package implements complex numbers. It defines both operations and relations over complex num-
- - bers, as well as input/output facilities.
- - Dependency:
- - M a t h - F u n c t i o n s P a c k a g e
-- Author:
- C h u a n - C h i e h Iio

with Text-IO,
Floating-Point-Math-Functions;

package Complex-Numbers is

package FPMF renaxnes Floatming-Point-Mat,h-Functions;

type Complex is lhnited private;

I : constant Complex;

- - - - - - - - E X C E P T I O N S
Order-Not-Defined : exception;

-- This exception is raised when ordering is not defined for complex numbers.

- - - - - - - - B A S I C F U N C T I O N
-- Return the real part of a complex number.

function Re (Z : Complex) return Float;

-- Return the imaginary part of a complex number.
function Im (Z : Complex) return Float;

- - - - - - - - S U B P R O G R A M S
function Cons (X, Y : Float) return Complex;

- - I where
- - l return Z : Complex => FPMF.Equal(X, Re(Z)) and

FPMF.Equal(Y, Im(Z));

function “=” (U, V : Complex) return Boolean;

/
where

- - return FPMF.Equal(Re(U), Re(V)) and then
- - FPMF.Equal(Im(U), Im(V));

function “>” (U, v : Complex) return Boolean;
- -

I
where Im(U) /= 0.0 or Im(V) /= 0.0 => raise Order-Not-Defined,

- - return Re(U) > Re(V);

5.3. COMPLEX NUMBERS PACh’AGE 73

---- I---4---- I
-- /

----I-- l

I

--
------ I
--l

- - l- - l- - l- - l

- - l- -
--I
- - /- - I

function ‘I>=” (u, v : Complex) return Boolean;
where U /= V and (Im(U) /= 0.0 or Im(V) /= 0.0)

= > raise Order-Not-Defined,
return

if (Im(U) = 0.0 and Im(V) = 0.0) then
Re(U) >= Re(V)

else
u = v

end if;

function ‘I<” (U, V : Complex) return Boolean;
where Im(U) /= 0.0 or Im(V) /= 0.0 => raise Order-Not-Defined,

return V > U;

function ‘I<=” (u, v : Complex) return Boolean;
where U /= V and (Im(U) /= 0.0 or Im(V) /= 0.0)

= > raise Order-Not-Defined,
return V >= U;

function “abs” (Z : Complex) return Float;
where return FPMF.Sqrt(Re(Z) * Re(Z) + Im(Z) * Im(Z));

function “+” (u, v : Complex) return Complex;
where

return Z : Complex =>
FPMF.Equal(Re(Z), Re(U) + Re(V)) and
FPMF.Equal(Im(Z), h(U) + Im(V));

function ” - ” (U : Complex) return Complex;

return Z : Complex =>
FPMF.Equal(Re(Z), - Re(U)) and
FPMF.Equal(Im(Z), - h(U));

function ‘I-” (U, V : Complex) return Complex;

return Z : Complex =>
FPMF.Equal(Re(Z), Re(U) - Re(V)) and
FPMF.Equal(Im(Z), Im(U) - Im(V));

function ‘I*” (U, V : Complex) return Complex;
where

return Z : Complex = >
FPMF.Equal(Re(Z), Re(U) * Re(V) - Im(U) + Im(V)) and
FPMF.Equal(Im(Z), Im(U) * Re(V) + Re(U) * Im(V));

function “/” (u, v : Complex) return Complex;
where

return Z : Complex = >
FPMF.Equal(Re(Z), “/“(Re(U) * Re(V) + Im(U) * Im(V),

abs V * abs V)) and
FPMF.Equal(Im(Z), “/“(Im(U) * Re(V) - Re(U) * Im(V),

abs V * abs V));

74

-- I

-- I- -
-- I

-- I- -

-- --I- -

-- /

- -

- -
- -
- -

-- I

- -
- -
- -
- -

- -

- -

-- /- -

function Arg (Z : Complex) return Float;
where

CHAPTER 5 . OTHER EXAMPLES

return X : Float = >
if Re(Z) > 0.0 then

if Im(Z) >= 0.0 then
FPMF.Equal(X, FPMF.Arc-Tau(Im(Z) / Re(Z)))

else
FPMF.Equal(X, FPMF.Arc-Tan(Im(Z) / Re(Z))

+ 2.0 * FPMF.PI)
end if

elsif Re(Z) = 0.0 then
if Im(Z) > 0.0 then

FPMF.Equal(X, FPMF.PI / 2.0)
elsif Im(Z) = 0.0 then

x = 0.0
else

FPMF.Equal(X, 3.0 * FPMF.PI / 2.0)
end if

else
FPMF.Equal(X, FPMF.Arc-Tan(Im(Z) / Re(Z)) + FPMF.PI)

end if;

function “**‘I (Z : Complex; X : Integer) return Complex;
where

return W : Complex = >
if X > 0 then

FPMF.Equal(Re(W), ((abs Z)**X)*FPMF.Cos(Float(X)*Arg(Z))) and
FPMF.Equal(Im(W), ((abs Z)+tX)*FPMF.Sin(Float(X)*Arg(Z)))

elsif X = 0 then
W = Cons(l.0, 0.0)

else
FPMF.Equal(Re(W), ((abs Z)**X)/EPMF.Cos(Float(X)*Arg(Z))) and
FPMF.Equal(Im(W), ((abs Z)**X)/FPMF.Sin(Float(X)*Arg(Z)))

end if;

function “**” (Z : Complex; X : Float) return Complex;
where

return W : Complex = >
if X > 0.0 then

FPMF.Equal(Re(W), FPMF.“+*“((abs Z),X)
+FPMF.Cos(X*Arg(Z))) and

FPMF.Equal(Im(W), FPMF.“*+“((abs Z),X)
*FPMF.Sin(X*Arg(Z)))

elsif X = 0.0 then
W = Cons (1.0, 0.0)

else
FPMF.Equal(Re(W), FPMF. “*+“((abs Z),X)/FPMF.Cos(X*Arg(Z))) and
FPMF.Equal(Im(W), FPMF. “**“((abs Z),X)/FPMF.Sin(X*Arg(Z)))

end if;

5.3. COMPLEX NUMBERS PACKAGE 75

-- Input procedures for complex numbers
procedure Get (File : in Text-IO.File-Type;

Z : out Complex;
\Vidt,h : in Text-IO.Field := 0);

procedure Get (Z
Width

: out Complex;
: in Text-IO.Field := 0);

- - Output procedures for complex numbers
Default-Fore : Text-IO.Field := 2;
Default-Aft : Text-IO.Field := Float,‘Digits-1;
Default-Exp : Text-IO.Field := 3;

procedure Put (File : in Text-IO.File-Type;
Z : in Complex;
Fore : in Text-IO.Field := Default-Fore;
Aft : in Text-IO.Field := Default-Aft;
Exp : in Text-IO.Field := Default-Exp);

procedure Put (Z
Fore
Aft
EXP

: in Complex;
: in Text,-IO.Field := Default-Fore;
: in Text-IO.Field := Default-Aft;
: in Text-IO.Field := Default-Exp);

-- - - - - - - A ,Y I O MS
--

/
axiom

- - for all U, V : Complex; X, Y : Float; M, N : Integer =>
I * I * u = -u,

- - / 1 = Cons(0.0, 1.0),
I * I = Cons(-1.0, 0.0),

u >= v
u <= v

<->
<-->

U > V or U = V,
U < V or U = V,

-- l
- -

- - I
- - l

0.0 <= Arg(U) < 2.0 + FPMF.PI,
abs U >= abs (Re(U)),
abs U >= abs (Im(U)),
u + (-V) = u - v,

“=” (U ** (M + N), U ** M * U ** N),
- - ‘l=” ((U * V) ** M, U ** M * V ** M),

‘(=‘I (U ** 2, u * U),
“=I’ (U *+ (- M) , Cons (1.0, 0.0) / U ** M),

- - I “=‘I (U ** (X + Y), u ** x * u ** Y),
- - l “=” ((U * V) ** x, u ** x * v ** X),
- - ‘(=I’ (U ** 2.0, u * U),t,- - I = ” (U * * (-X), Cons (1.0, 0.0) / U ** X),

76 CHAPTER 5 . OTHER l?XAMPLES

--I
--

/- -
- - l

II = ” (U, Cons (abs U, 0.0)
* Cons(FPMF.Cos (Arg (U)), FPMF.Sin (Arg (U)))),

‘I=” (U * v, Cons(abs U * abs V, 0.0)
* Cons(FPMF.Cos (Arg(U) + Arg(V)),

FPMF.Sin (Arg(U) + Arg(V))));

- - - - - - - - P R I V A T E
private

type Complex is record
R, 1 : Float;

end record;

I : constant Complex := (0.0, 1.0);
exrd Complex-Numbers;

- - Coniinentary:
- - In re-using the Math-Functions package to define complex numbers, we also want to re-use the approx-
- - imate Equal function defined there. Even though Equal was defined as virtual, it is still visible to other
- - packages inside annotations.
- - Note also that the input-output routines are not annotated at all. If the predefined package Text-IO
- - were annotat,ed with the appropriate concept,s, annotations of Get and Put for complex numbers might
-- be possible.

5.4. SORTING PACKAGE 77

5.4 Sorting Package

-- Package Name:
- - A n n a - S o r t - U t i l i t i e s

- - Description:
- - Anna-Sort-Util i t ies is a generic sorting package. The Sort subprograms will sort a one dimensional
- - array of any component type that supports assignment, equality, and inequality (private types) indexed by
-- discrete type components. The default linear order is ascending order but may be overridden by the user.
- - The default sort algorithm, Quicksort (non-recursive), may also be overridden.

-- Note that the component type can be a record type. The Sort subprograms are not restricted to simple data
- - types. If records are to be sorted, then the formal generic subprogram parameter “< ” must be specified with
-- by a l inear order, e.g. , a function provided as an actual generic subprogram parameter at instantiation.

Note also that the component type can be an access type (which can point to other objects, improving sort
- - eficiency). I f access types are to be sorted, then the formal generic subprogram parameter “<” must be
- - specified by a linear order. Since access types can be sorted, the Sort routine below can be used to sort
- - limited types and unconstrained types (designated by an access type).

For data in which equality does not truly apply (i.e., real types) one can use the Equal function
an equality operation, Hence, one can decide that two numbers are “close enough” to be equal.

to specify

- - The number of comparisons and exchanges made to sort the array can be returned. These numbers should
- - give some indication on how much work was actually performed by the sorting algorithms. These numbers
- - can also be used to compare the relative eficiency of the sorting algorithms.

-- This package can be used to sort data on external devices. The user should use this package to sort a
- - subset of the external data, then use a merge operation on all sorted subsets. For example, if the system
- - can only hoEd 1000 components in RAM, but you need to sort 3000 components, bring in components #l-
- - 1000 and sort them using this routine, and then write them to a file. Next do the same with components
-- #lOOl-2000, and finally with components #2001-3000. Now merge the three sorted files using a merge
- - package.

- - One of the Sort subprograms is a function which can be used to sort an array and test it against another
- - in an inline expression. This can be useful when comparing the contents of two arrays which may be equal,
- - but not at the identical indices. This will be most useful for comparing the equality of sets implemented
- - a s a r r a y s .

-- Other Sort subprograms allow the user to maintain the original state of the array by returning a new
- - array that is sorted. These subprograms will be useful in cases where sorting is required, but the original
- - (unsorted) data must be preserved.

- - Author:
- - Geofl Mendal

with SYSTEM; -- predefined package SYSTEM

generic
type Component-Type is private; -- type of the data components
type Index-Type is (<>); -- type of array index

78 CHAPTER 5 . OTHER ESAMPLES

-- The following generic formal type is required due to Ada’s strong typing requirements. The SORT
-- subprograms cannot handle anonymous array types. This type will match any unconstrained array
-- type definition (so that array slices can be sorted too).

type Array-Type is array (Index-Type range <>) of Component-Type;

- - The following formal subprogram parameter defaults to the predefined “‘< ” operator which will sort
-- one-dimensional arrays of the type Component-Type in ascending order (by default). If composite
-- or access types are to be sorted, a selector function must be specified.

with function “<I’ (Left, Right : in Component-Type)
return Boolean is <>;

-- The following formal subprogram parameter defaults to the predefined ‘I= ” operator. If user-defined
- - equality is desired, one can write an equality function and specify it here.

with function Equal (Left, Right: in Component-Type)
return Boolean is ‘I=“;

- - The annotations below formatly specify assumptions about the above generic formals that must be
- - satisfied in order to perform correct sorting. These are the axioms of partial order, equality, and
- - associated relations.

--I for all X, Y, Z : Component-Type =>
1 (not (X < X)) and
1 ((X < Y) and (Y < Z) -> (X < Z)) and

I Equal (X, X) and
I (Equal (X, Y) -> Equal (Y, X)) and
I (Equal (X, Y) and Equal (Y, Z) - > Equal (X, Z)) and

--I (Equal (X, Y) and (X < Z) -> (Y < Z)) and
--I (Equal (X, Y) and (Z < X) -> (Z < Y)) and
--I (Equal (X, Y) xor (X < Y) xor (Y < X));

package Anna-Sort-Utilities is

- - Users can specify the type of sorting algorithm they want by specifying an enumeration literal from
- - the type below. The default algorithm, Quicksort (non-recursive), generally performs best.

-- One note about stabil i ty of the algorithms: only the Bubble Sorts and Insertion Sort are stable
- - algorithms. Thus, they are the only algorithms that preserve the ordering of equal components without
- - use of a selector function. In all cases, a selector function may be specified to introduce stability into
-- the sorting algorithms.

type Sort-Algorithm-Type is (Quicksort, Recursive-Quicksort, Bsort,
Bubble-Sort, Bubble-Sort-with-Quick-Exit, Selection-Sort, Heapsort,
Insertsion-Sort, Merge-Sort);

- - Q u i c k s o r t : O(NlogN). Is most eficient when used with large, unsorted arrays. Uses an explicit stack
-- to maintain state and partitions. Instable. This is the default algorithm.

5 .4 . SORTING PACKAGE 79

- - Recursive-Quicksort: O(NlogN). Is most eficient when used with large, unsorted
- - nature may introduce significant memory overhead for very large arrays. Instable.

arrays. Recursive

- - B s o r t : O (N l o g N) . IY most efficient when used with large arrays that are already sorted, partially
-- sorted, or sorted in reverse. Recursive. Instable,

- - B u b b l e - S o r t : O(N**,?). Is most efficient when used with small arrays that are almost already sorted.
-- Non-recursive. Brute force. Low memory requirements. Stable.

- - Bubble~Sort~with~Quick~Exit: O(N**2). Is most eficient when used with small arrays that are
- - almost already sorted. Non-recursive. Same as bubble sort above except brute force is limited. Stable.

- - S e l e c t i o n - S o r t : O(N**Z). Is most eficient when used with small arrays in which the Component-Type
- - is a record type. Non-recursive. Brute force. Instable.

-- Heapsort: O(NlogN). Is most eficient when
-- low memory requirements. Instable.

used with large, unsorted arrays. Non-recursive. Very

- - I n s e r t i o n - S o r t : O(N**2). Is most eficient when used with small arrays that are almost already
-- sorted. Non- recursive. Brute force. Stable.

- - M e r g e - S o r t : O(NlogN). Is most eficient when used with medium-large arrays. Non-recursive. In-
- - stable. Uses an auxiliary array to perform merging.

- - The following type declaration should be used to specify the instrumentation analysis results that can
-- be returned by the Sort subprograms below. -1 is only returned if an overflow in calculations has
- - occurred. The Sort subprograms will still sort the array if an overflow in instrumentation analysis
-- data calculations occurs.

type Performance-Instrumentation-Type is range -1 . . SYSTEM.MAX-INT;

The following exception is raised during execution of the Sort
parameters, if these two arrays are not of the same length.

subprograms which take two arrays as

Sort-Arrays-Length-Mismatch : exception;

-- The following virtual functions define the semantics of sorting.
--: function “+” (L : in Index-Type; R : in Integer)
---I return Index-Type;

--: function “-‘I (L : in Index-Type; R : in Integer)
return Index-Type;

-- : function Ordered (A : in Array-Type) return Boolean;
- - where return

((A’Length <= 1) or else
- - (((A(A’First) < A(A’First + 1)) or
- - (Equal(A(A’First), A(A’First + 1)))) and
- - l Ordered(A (A’First+l . . A’Last))));

80 C H A P T E R 5 . O T H E R E X A M P L E S

--: function Permutation (A, B : in Array-Type) return Boolean;
- - where A’Length = B’Length,

return
(A’Length = 0) or else

- -
I

(exist I : B’Range = >
- - Equal(A(A’First), B(I)) and
- -

/
Permutation(A (A’First + 1 . . A’Last),

- - B(B’First . . I - 1) &
- - B(I + 1 . . B’Last)));

---I function Stable-Algorithm (A : in Array-Type) return Boolean;

-- The following procedure will sort a one dimensional array of components. It can sort in ascend-
- - kg/descending order or any user-defined order. It can sort components of any type that support
- - equality, inequality, and assignment (private types). The array indices can be of any discrete type.
-- The number of comparisons and exchanges can also be returned.

procedure Sort (
Sort-Array : in out Array-Type;
Number-of-Comparisons,
N u m b e r - o f - E x c h a n g e s : out Performance-Instrumentation-Type;
Sort-Algorit,hm : in Sort-Algorithm-Type := Quicksort);
-- 1 where
- - raise Sort-Arrays-Length-Mismatch => False,
- - / out Number-of-Comparisons’Defined,
- -

- - I

out Number-of_Exchanges’Defined,
out Ordered (Sort-Array),

- -

- - I

out Permut,ation (in Sort-Array, Sort-Array),
out Stable-Algorit,hm (in Sort-Array);

-- The following overloading
- - data are required.

of procedure Sort should be specified when no instrumentation analysis

procedure Sort (
Sort-Array : in out Array-Type;
Sort-Algorithm : in Sort-Algorithm-Type := Quicksort);
- - 1 where

I raise Sort~Arrays~Length~Mismatch => False,

--/
out Ordered (Sort-Array),
out Permutation (in Sort-Array, Sort-Array),
out St,able-Algorithm (in Sort-Array);

5 .4 . SORTING PACKAGE 81

- - T h e following overloading of procedure Sort should
- - and instrumentation analysis results are required.

be used when the original data must be preserved

procedure Sort (
Unsorted-Array : iii Array-Type;
Sorted-Array out Array-Type;
Number-of-Comparisons,
Number -o f -Exchanges : out Performance-Instrumentation-Type;
Sort-Algorithm : iii Sort-Algorithm-Type := Quicksort);
- - 1 where
- -

I

Unsorted-Array’Length /= Sorted-Array’Length = >
- - raise Sort-Arrays-Length-Mismatch,
- - l out Number-of_Comparisons’Defined,
- -

I
out Number-of-Exchanges’Defined,

- - out Ordered (Sorted-Array),
out Permutation (Unsorted-Array, Sorted-Array),

- - I out Stable-Algorithm (Unsorted-Array);

-- The following overloading of procedure Sort should be
-- and no instrumentation analysis results are required.

used when the original data must be preserved

procedure Sort (
Unsorted-Array : in Array-Type;
Sorted-Array : out Array-Type;
Sort-Algorithm : iii Sort-Algorithm-Type := Quicksort);
- - 1 where
- - Unsorted-Array’Length /= Sorted-Array’Length = >
- -

- - I
raise Sort-Arrays-Lengt,h_Mismatch,

out Ordered (Sorted-Array),

- - I
out Permutation (Unsorted-Array, Sorted-Array),
out Stable-Algorithm (Unsorted-Array);

The following
expression.

overloading of function Sort should be used when sorting is required in an

function Sort (
Sort-Array : in Array-Type;
Sort-Algorithm : in Sort-Algorithm-Type := Quicksort)
return Array-Type;
- - 1 where
- - raise Sort-Arrays-Length-Mismatch => False,
- - return A : Array-Type =>
- -
- - /

Ordered (A) aud
Permutation (Sort-Array, A) and

- - l St.able-Algorithm (Sort-Array);

cud Anna-Sort-Ut,ilities;

CHAPTER 5 . OTHER EXAMPLES

Chapter 6

System Examples

This chapter presents four complex examples of Anna package specification. These are included to show the
use of Anna on large, real world packages, and to suggest possible extensions of Anna for handling complex
examples. The examples also illustrat,e more complex specifica.tion methodologies. Examples include:

l Library Package - A model of a, book library. The library package uses the set package to simplify the
specification.

l Petri Nets Package

l Mutual Exclusion - A model of a two task mutual exclusion problem; it uses the Petri Nets package.

l Ada Logic Interface - A collection of packa.ges that define an Ada interface to a general purpose logic
packa.ge.

83

84 CHAPTER 6 . SYSTEM EXAMPLES

6.1 Library Book Package

-- Package Name:
- - L i b r a r y
- - Description:
- - This package implements a library management system.
- - Dependency:
- - S e t - P a c k a g e
-- Author:

David Luckham
-- Source:
- - Problem Set for the 4th International Workshop on Software ACM SIGSOFT Software
- - Engineering Notes, Vol 11,

with Set-Package;

package Library is

type Book-Ret is private;
type Book is access Book-Ret;

package Set-Of-Books is new Set-Package(Book);
type Book-Set is new Set-Of-Books.Set;

--*. use Set-Of-Books;

type Password is limited private;

type User-Kinds is (Staff, Borrower);
type Status is (Available, Checked-Out, Not,-Available);

subtype User is String(1 . . 255);
subtype Author is String(1 . . 255);
subtype Title is String(1 . . 255);
subtype Subject is String(1 . . 255);

Book-Limit : constant Positive := Positive’Last,;

- - - - - - - - E X C E P T I O N S

Unavailable
Book-Available
Staff-Password-Required
Incorrect-Password
Limit-Exceeded

: exception;
: exception;
: exception;
: exception;
: exception;

-- ------ V I R T UA L C O N C E P T S

function Library-Books return Book-Set;

package Set-Of-Authors is new Set-Package(Author);
type Author-Set is new Set-Of-Authors.Set :

- : use Set-Of-Authors;

6.1. LIBRARY BOOK PACKAGE

- - A t t r ibu tes o f Books

85

-: function Last-Borrower (B : Book) return User;

--: function Status-Of (B : Book) return Status;
- -
- - I

where
return S : Status =>

- - l not Is-In(B, Library-Books) -> S = Not-Available;

- * function Borrower (B : Book) return User;
- -
- - 1

where Is-In(B, Library-Books),
Status-Of(B) = Available => raise Book-Available,

- - l r e turn Last-Borrower(B);

- - A t t r ibu te o f User

--* function Borrowed (U : User) return Book-Set;
- -

i
where

- - return S : Book-Set =>
for all B : Book =>

Is-In(B, S) <-> (Status-Of(B) = Checked-Out and then
- - l Borrower(B) = U);

-- Attributes of Passwords (User-Kind, User)
--*. function User-Kind (P : Password) return User-Kinds;

--: function User-Of (P : Password) return User;

-- ------SUBPROGRAMS

function Author-Of (B : Book) return Author-Set;
- - where Is-In(B, Library-Books);

function Title-Of (B : Book) return Title;
- - where Is-Iu(B, Library-Books);

function Subject-Of (B : Book) return Subject;
- - where Is-In(B, Library-Books);

procedure Check-Out8 (B : Book; U : User; P : Password);
- -

I

where
- - User-Kind(P) /= Staff => raise Staff-Password-Required,
- - Status-Of(B) /= Available => raise Unavailable,
- - / Cardinality(Borrowed(U)) >= Book-Limit => raise Limit-Exceeded,

out(Status-Of(B) = Checked-Out),
out(Last-Borrower(B) = TJ),

- - ont(Borrowed(U) = iu Borrowed(U) + B);

procedure Return-Book (B : Book; U : User; P : Password);
where Status-Of(B) = Checked-Out,

- - User-Kind(P) /= Staff => raise St,aff-Password-Required,
- -

- - I
out(Status-Of(B) = Available),
out(Borrowed(U) = in Borrowed(U) - B);

86 CHAPTER 6 . SYSTEM EXAMPLES

procedure Add (B : Book; P : Password);
- -

I
where

- - User-Kind(P) /= Staff => raise Staff-Password-Required,
- - orrt(Status-Of(B) = Available),
- - out(Library Books = in Library-Books + B);- -

procedure Remove (B : Book; P : Password);
- - l where
- -

I

User-Kind(P) /= Staff => raise Staff-Password-Required,
- - out(Status-Of(B) = Not-Available),
- - l out(Library-Books = in Library-Books - B);

function Retrieve-Subject (S : Subject) return Book-Set;

/

where
- - return BS : Book-Set =>
- - I for all B : Book =>
- - l Is-In(B, BS) <-> Subject-Of (B) = S;

function Retrieve-Author (A : Author) return Book-Set;
- - where

return BS : Book-Set =>
- - for all B : Book =>
- - Is-111(B, BS) <-> Is-In(A, Author-Of(B));

function Retrieve (S : User; P : Password) return Book-Set;
where User-Kind(P) /= Staff or User-Of(P) /= S =>

- - raise Incorrect-Password,
return BS : Book -Set => BS = Borrowed(S);

function Retrieve (B : Book; P : Password) return User;
- - where User-Kind(P) /= Staff => raise Staff-Password-Required,
- - l return Last-Borrower(B);

A X I O M S

-- axiom
- -
- - I

for all St : Library’Type; B : Book; U : User =>
Is-In(B, St.Library-Books) ->

(St.Status-Of(B) = Available or
St.St,atus-Of(B) = Checked -Out),

- - Cardinality(St.Borrowed(U)) <= Book-Limit;

private

type Book-Impl;
type Book-Ret is access Book-Impl;

type Password-Ret;
type Password is access Password-Ret;

end Library;

6.2 . PETRI NET INTERPRETER PACKAGE 87

6.2 Petri Net Interpreter Package

-- Package Name:
- - Petri Net Intc,rpreter (generic)

- - Description:
- - Generic package for defining and manipulating Petri-Nets.
-- PETRI-NET-INTERPRETER provides an abstract set of Petri Net manipulation routines. The state
-- of the package is simply the current state of the input Petri Net. The terminology is from Peterson’s
-- article in “Computing Surveys”, Vol. 9, No. 3, September, 1977.

.

- - Basic terminology:
- - P l a c e s * N o d e s
- - Transitions c, Events
- - M a r k i n g s u T o k e n s

--
--
--
--
--
--

A Petri Net is a theoretical model of distributed processing and control systems. A Petri Net is comprised
of a collection of places and transitions; transitions may be defined by listing their input places and output
places. Each place may have an arbitrary number of markings. A graphical representation of Petri Nets
uses circles for places, lines for transitions, input constraints represented by edges directed from places
to transitions and output constraints represented by edges directed from transitions to places. Thus, a
directed path in a graphical representation of a Petri Net visits an alternating sequence of places and
transition. The state or configuration of a Petri Net may be described by specifying the set of places,
transitions and current set of markings. Only the placement of markings may change as the Petri Net is
manipulated.

- - P e t r i Nets are executed on a selected transition; execution is defined formally below and is considered
- - b e a n atomic operation. Also of interest is the reachability of one configuration from another.

to

-- Author:
- - D a v i d S . Rosenblum

generic

-- The generic formal part of this package represents a single Petri Net which is executed and maintained.
-- A discrete Place-Type and Transition-Type are specified, and Transitions are specified as sets of input
-- and output Places obtainable from functions. Finally, the initial configuration of the input net is supplied
-- by a function which specifies the initial number of tokens at each place.

type Place-Type i s (<>);
type Transition-Type is (<>);

- Transitions are defined in terms of sets of places:

type Set is limited private;
with function Is-Member (P : in Place-Type; S : in Set \ return Boolean;
with function Is-Empty (S : in Set) return Boolean;

-- I < < Minimum-Expectations > >
--I for all S : Set =>
- - Is-Empty(S) <-> (for all P : Place-Type => uot Is-Member(P, S));

88 CHAPTER 6 . SYSTEM EXAMPLES

- - Following are functions defining the structure of the net. Since Set is a limited type, the following two
-- functions may be called only when the call appears as an actual parameter of some other subprogram
- - with an in mode formal parameter of type Set.

with function Inputs-Of (T : in Transit,ion-Type) return Set;

-- I << Inputs-Substitutivity >>
---I fo r a l l Tl, T 2 : Transition-Type =>
- - (Tl = T2) -> (Inputs-Of (Tl) = Inputs-Of (T2));

with function Outputs-Of (T : in Transition-Type) return Set;

1 << Outputs-Substitutivity >>
111 for all Tl, T2 : Transition-Type =>
- - (Tl = T2) -> (Outputs-Of (Tl) = Outputs-Of (T2));

- - F u n c t i o n defyning the initial configuration of the input net:

with function Initial-Tokens-At (P : in Place-Type) return Natural;

-- I < < Weak-Connectivity-Constraints >>
- - I f o r a l l T : Transition-Type = >

I
III

not (Is-Empty (Inputs-Of (T)) or Is-Empty (Outputs-Of (T))),
for all P : Place-Type =>

- - (exist T : Transition-Type =>
Is-Member (P, Input,s-Of (T)) or Is-Member (P, Outputs-Of (T)));

package Petri-Net-Interpreter is

- - - - - - E X C E P T I O N S

Unreachable : exception;

- - - - S U B P R O G R A M S

function Tokens-At (P : in Place-Type) return Natural;
-- I where for all P : Place-Type =>
- - Petri-Net-Int,erpreter’Initial.Tokens-At (P)

= Initial-Tokens-At (P),
out (Petri-Net-InterpreterState = in Petri-Net-InterpreterState);

-- A basic function returning current number of markings at place P.

function Enabled (T : in Transition-Type) return Boolean;
- - 1 where
- - l return for all P : Place-Type =>
- -

I

Is-Member (P, Inputs-Of (T)) -> Tokens-At (P) > 0,
- - o u t (Petri-Net-Interpreter’Statc = i n Petri-Net-Interpreter’State);

6.2 . PETRI NET INTERPRETER PACKAGE

procedure Execute (T : in Transition-Type);
--] where not Enabled (T) => raise Unreachable,
- -

- - /
raise Unreachable => Petri-Net-InterpreterState

= in Petri-Net-InterpreterState,
- -
- - I

out (for all P : Place-Type =>
Tokens-At (P) =

- - l if (Is-Member (P, Inputs-Of (T)) and
--I Is-Member (P, Outputs-Of (T))) then
- - l in Petri-Net-Interpreter.Tokens-At (P)
- - l elsif (Is-Member (P, Inputs-Of (T))) then

- - I in Petri-Net-Interpreter.Tokens_At (P) - 1
- - I elsif (Is-Member (P, Outputs-Of (T))) then
- - l in Petri-Net-Interpreter.Tokens_At (P) + 1
- -

I

else
- - in Petri-Net-Interpreter.Tokens_At (P)
- - l end if);

Actual state type introduced for reachability queries:

type Petri-Net-State is limited private;

function ‘I=” (Left, Right : Pet,ri-Net-State) return Boolean;

Primitive state constructors:

function Initial-State return Petri-Net-State;
1 where
I out (Petri-Net-InterpreterState = in Petri-Net-Interpreter’state);

function Current-State return Petri-Net-St)ate;
1 where
I out (Petri-Net-InterpreterState = in Petri-Net-InterpreterState);

generic
with function St,ate-Tokens-At (P : Place-Type) return Natural;

I << Token-Substitutivity >>
II] for al l Pl, P2 : Place-Type =>
- - (Pl = P2) -> (State-Tokens-At (Pl) = State-Tokens-At (P2));

function Equivalent-State return Petri-Net-State;
- - 1 where

-4

out (Petri-Net-InterpreterState = in Petri-Net-InterpreterState),
return P : Petri-Net-State =>

for all S : Petri-Net-Interpreter’Type =>
- - S.Current-State = P ->
- - (for all Pl : Place-Type => S.Tokens-At (Pl) = State-Tokens-At (Pl));

function Reachable (Target, From : in Petri-Net-State) return Boolean;
- - 1 where
- - return exist T : Transition-Type; Sp : Petri-Net-Interpreter’Type =>

I

Sp.Current-State = From and then
- - (Sp [Execute (T)].C urrent-Stat,e = Target or else
- - l Reachable (Target, Sp [Execute (T)].Current-State));

89

90 CHAPTER 6 . SYSTEM EXAMPLES

-- - - - - - - A X I O M S

--I
-- l
-- I---- I------ I--
----I---- I

axiom
for all T : Transition-Type;

P : Place-Type;
Sl, s2, s3 : Petri-Net-State;
PNl, PN2 : Petri-Net-Interpreter’Type =>

Reachable (S2, Sl) and Reachable (S3, S2) -> Reachable (S3, Sl),
PNl.Initial-State = PN2.Initial-State,
PNl.Current-State = PN2.Current-State <-> PNl = PN2,
PNl.Current-State = PNl.InitialState <-> PNl = Petri-Net-Interpreter’Initial,
Initial-Tokens-At (P) = 0 and

not Is-Member (P, Outputs-Of (T)) ->
(not exist S4 : Petri-Net-State;

PN5 : Petri-Net-Interpreter’Type =>
PN5.Current-State = S4 and
PN5.Tokens-At (P) > 0 and
Reachable (S4, Initial-State));

private
type Petri-Net-State is array (Place-Type) of Natural;

end Petri-Net-Interpreter;

- - Commentary:
-- This package defines an abstract type representing the state of the petri net. It is defined so that an
-- actual user of the package can compare two states of a petri net. The predefined Anna package state
-- type is not adequate for use in this case because it is not visible to actual code which uses the package.
-- Note that the package assumes the petri net type has already been completely defined and a petri net
-- has been built. These definiGons would reside in another package, such as the mutual exclusion example
-- which follows.

6.3. MUTUAL EXCLUSION MODEL PACKAGE

6.3 Mutual Exclusion Model Package

-- Package Name:
- - Mutua l Exc lus ion Mode l
- - Description:
- - Mutual Exclusion Model is a package which builds a petri net model of the mutual exclusion problem
- - with two processes. Axioms are gkven which specify a valid model of the mutual exclusion problem.
- - Dependency:
- - Packages Set-Package, Petri-Net-Interpreter.
-- Author:
- - D a v i d S . R o s e n b l u m

with Set-Package,
Petri-Net-Interpreter;

package Mutual-Exclusion-Model is

type Mutex-Places is (Process-l-Safe-Region,
Process 1- -Critical-Region,
Process 2- -Safe-Region,
Process-2-Critical-Region,
Semaphore);

type MutexTransitions is (Process-l-Safe-To-Critical,
Process-l-Critical-To-Safe,
Process-2-Safe-To-Critical,
Process-2-Critical-To-Safe);

package Mutex-Place-Sets is new Set-Package(Mutex-Places);
use Mutex-Place-Sets;

-- ------SUBPROGRAMS

function Initial-Tokens-At (P : Mutex-Places) return Natural;
- - where
- -

I
return

- -
I

if P = Process 1- -Safe-Region or P = Process 2- -Safe-Region or P = Semaphore
- - then 1
- - l else 0
- - l end if;

91

92 CHAPTER 6 . SYSTEM EXAMPLES

-------------- I--
--I------ I-- I-- l--I-- l
----I--
--
-- l
--I- -
- - I
-- I

function Inputs-Of (Mt : in Mutex-Transitions) return Mutex-Place-Sets.Set;
where

return S : Mutex-Place-Sets.Set = >
if Mt = Process 1 then- -Safe-To-Critical

Is-In (Process-l-Safe-Region, S) and
not Is-In (Process-l-CriGcal-Region, S) and
not Is-In (Process-2-Safe-Region, S) and
11ot Is-In (Process-2-Crit,ical-Region, S) and
Is-In (Semaphore, S)

elsif Mt = Process-l-Critical-To-Safe then
not Is-In (Process 1- -Safe-Region, S) and
Is-In (Process-l-Critical-Region, S) and
not Is-In (Process_2_Safe_Region, S) and
not Is-In (Process 2- -Critical-Region, S) and
not Is-In (Semaphore, S)

elsif Mt = Process 2 Safe-To-Critical then- -
not Is-In (Process 1- -Safe-Region, S) and
not Is-In (Process 1- -Critical-Region, S) and
Is-In (Process 2- -Safe-Region, S) and
not Is-In (Process 2- -Critical-Region, S) and
Is-In (Semaphore, S)

e l se - - Mt = P r o c e s s 2- - Cr i t i ca l -To-Safe
11ot Is-In (Process 1 Safe-Region, S) and- -
not Is-In (Process-l-Critical-Region, S) and
not Is-In (Process 2 Safe-Region, S) and- -
Is-In (Process- _2 Critical-Region, S) and
not Is-In (Semaphore, S)

end if;

6.3. MUTUAL EXCLUSION MODEL PACKAGE 93

-- I-- I
-------- I-- I- -
- -
- -
- -
- -
- - /- -
- -

- - I- - I- - l- -
- - I- - I- -
- - I- - I

-- I

function Outputs-Of (Mt : in MutexTransitions) return Mutex-Place-Sets.Set;
where

return S : Mutex-PlaceSets.Set = >
if Mt = Process 1 Safe-To-Critical then- -

not Is-In (Process 1 Safe-Region, S) and- -
Is-In (Process 1 Critical-Region, S) and- -
not Is-In (Process 2 Safe-Region,- - S) and
not Is-In (Process_2_Critical_Region, S) and
not Is-In (Semaphore, S)

elsif M t = Process-l-Critical-To-Safe then
Is-In (Process-l-Safe-Region, S) and
not Is-In (Process-l-Critical-Region, S) and
not Is-In (Process-2-Safe-Region, S) and
not Is-In (Process_2_Critical_Region, S) and
Is-In (Semaphore, S)

elsif Mt = Process 2 Safe-To-Critical then- -
not Is-In (Process-l-Safe-Region, S) and
not Is-In (Process 1 Critical-Region, S) and- -
not Is-In (Process 2 Safe-Region, S) and- -
Is-In (Process_2_Critical_Region, S) and
not Is-In (Semaphore, S)

else - - Mt = Process 2- - Cr i t i ca l -To-Safe
not Is-In (Process-l-Safe-Region, S) and
not Is-In (Process-l-Critical-Region, S) and
Is-In (Process 2 Safe-Region, S) and- -
not Is-In (Process_2_Critical_Region, S) and
Is-In (Semaphore, S)

end if;

package Mutex-Net-Interpreter is
new Petri-Net-Interpreter (Mutex-Places,

MutexTransitions,
Mutex-Place-Sets.Set,
Mutex-Place-Sets.Is-In,
Mutex-Place-Sets.Is-Empty,
Inputs-Of,
Outputs~of,
Initial-Tokens-At);

use Mutex-Net-Interpreter;

function Unprotected-State 1 Tokens (P- - : Mutex-Places) return Natural;
where

-- l
- - l
-- --I

return
if P = Process 1- -Critical-Region or P = Process 2-- Critical-Region
then 1
else 0
end if;

function Unprotected-Statseel is
new Equivalent-State (Unprotected-Statme-l-Tokens);

94 CHAPTER 6 . SYSTEM EXAMPLES

function Unprotected-State-2-Tokens (P : Mutex-Places) return Natural;-- l where

--I
- -
- - I
- - I
- - I

return
if P = Process 1- -Safe-Region or P = Process 2 Critical-Region or- -

P = Semaphore
then 1
else 0
end if;

function Unprotect,ed-State-2 is
new Equivalent-State (Unprotected-State-2-Tokens);

function Unprotected-State-3-Tokens (P : Mutex-Places) return Natural;
- -
- - I

where
return

- -

I- -

- - I

if P = Process 1- -Critical-Region o r P = Process-2-Safe-Region o r
P = Semaphore

then 1
else 0

- - end if;

function Unprotected-State-3 is
new Equivalent-State (Unprotected-State-3~Tokens);

-- : function Initial-State is
--*. n e w Equivalent-St#ate (Init,ial-Tokens-At);

-- ------AAIOMS

----I axiom
for all M : Mut,ual-Exclusion-Problem’Type;

s : Mutex-Net-Interpreter’Type;
- - I P : Mutex-Places =>
- - l 0 < = Mutex-Net-Interpreter.Tokens_At (P) < = 1 ,

- - I Initial-State = Mutex-Net-Interpreter.Initial_State,
- - not Reachable (Unprotected-State-l, Initial-State),
- - I not Reachable (Unprotected-state-2, Initial-State),
- - I not Reachable (Unprotected-State-3, Initial-State);

end Mutual-Exclusion-Model;

6.4. ADA LOGIC PACKAGE 95

6.4 Ada Logic Package
The following example [8] is an example of a set of packa,ges which define a software concept too complex
to be effectively represented by a single package. Starting with some basic data types, the author builds a -
hierarchy of concepts, each using one or more of the previously defined concepts, such that a complex theory
(in this case the semantics of logic programming) can be specified with surprising ease.

Basing the description on a hierarchy lends itself to a specific method of annotation. First, individual
subprograms are given propagation annotations, which define restrictions on the actual parameters passed to
a subprogram. Then Anna axioms, usually a series of universally quantified equations, describe the semantics
of subprograms in the package.

Two kinds of packages are used in this set. The first defines new abstract data types and operations on
them. The second defines no new types, but does define concepts in terms of existing abstract data types.

Data type packages define one or more abstract data types; usually the types are private, since oper-
ations on them are independent of a specific implementation. The operations consist of constructors (or
subprograms which build objects of the type) and selectors (subprograms which allow the user to examine
objects of the type). For these packa.ges, axioms specify the semantics of selector functions in terms of
the constructor functions. For example, in the List-Package, Length and Get-Item are defined in terms of
Create and Append. Identifier-Package, List-Packa.ge, and Clause-Package are examples of abstract data
type packa.ges.

Concept packages define subprograms which use previously defined data types to describe complex con-
cepts. For example, Query-Package uses data types like Clauses and Lists-Of-Clauses, and the concept of
Unification, to describe SLD, or Prolog-like resolution. Functions that support these advanced concepts are
defined in this set of packages, by highly recursive axioms describing the concept in terms of simpler concept
packages. Unification-Package and Query-Package are examples of this kind of package.

Substitution-Package combines the two kinds, botch defining a new structure. t,he Substitut3ion, and a new
concept, Applying the Substitut,ion t,o a (Ylxll~e.

6.4.1 Identifier Package

-- Package Name:
- - Iden t i f i e r -Package
- - Description:
- - This package defines various types of identifiers.
- - Dependency:

I I 4zyir..
- - Neel M a d h a v

package IDENTIFIER-PACKAGE is

type Identifier is private;

-- Identifiers are the basic building blocks of a clause. They can be constants, variables or integers.

-- These are mutually exclusive classes. Constants act as predicates of arbitrary arity, but the
-- pre-defined predicates have fixed aritys.

function Integer-Ident,ifier (id : Identifier) return Boolean;

function Constant-Identifier (id : Identifier) return Boolean;
- - I where
- - I return (not Integer-Identifier(id));

96 CHAPTER 6 . SYSTEM EXAMPLES

function Variable-Identifier (id : Identifier) return Boolean;
- - l where
- - l return (not Constant-Identifier(id) and not Integer-Identifier(id));

- -
function Built-in-Predicate (id : Identifier) return Boolean;

where Constant-Identifier(id);

function Built-in_Arity (id : Identifier) return Natural;

I where Built-in-Predicate(id);

- - T h e above subprogram annotations constrain the various
- - a n d the built-in-predicates to be constants of fixed arity.

classes of identifiers to be mutually exclusive

-- The above functions and Equality are a complete set of observers for identifiers.

function Build-Ident,ifier (s : String) return Identifier;
- - B u i l d Ident’fi2- er is the only generator for identifiers.

private
type Identifier-Ret;
type Identifier is access Iden tifier_Rec;

end IDENTIFIER-PACKAGE;

- - Commentary:
-- For specific implementations, axioms would also be given to list ,111 the built-in predicates and their
-- arities, e.g.:

- - iaxiom- - Built-In-Predicate(Build-Identifier(“equal”)),
- - Built,-In-Arity(Build-Identifier(“equal”)) = 2;
- - Perhaps the author has overcommitted himself by providing only one generator; this implies that integers,
- - variables, and constants are dist,inguishable by their string representations, which restricts the generality
- - of the specification. Further, exactly how string structure determines what subclass of Identifier would
- - be built is not annotated (in one implementation of this specification which supports Prolog, Variables
-- and Constants are distinguishable because a Constant identifier begins with a capital letter). A better
- - design might be to have three generator functions, Build-Integer, Build-Variable, and Build-Constant,
- - to abstract out the properties that determine an Identifier’s subclass.

6.4.2 Clause Package

-- Package Name:
- - C l a u s e - P a c k a g e
-- Description:
- - This package defines and provides operations on clauses. There are two types of clauses: facts and rules.
-- Facts are literals like: p(tl, . . . , tn), where p is a predicate and tl . . tn are terms. Rules are of the
- - form : al,. . . ,an :- bl,. . . bm. The symbol :- has a s tandard interpretat ion: is implied by. Commas
- - stand for and’s above, and the a’s and b’s are facts.
- - Dependency:
- - L i s t and Iden t i f i e r pazkages.
- - Author:
- - N e e l M a d h a v

6.4. ADA LOGIC PACKAGE

with LIST, IDENTIFIER-PACKAGE; use IDENTIFIER-PACKAGE;

package CLAUSE-PACKAGE is

type Clause-Ret is limited private;
type Clause is access Clause-Ret;

function Equal (Cl, C2 : Clause) return Boolean;
-- Is Cl structurally equal to C2 ? Variables with diflerent names are treated differently.

procedure Copy (from : in Clause; into : in out Clause);
-- Replicate the clause Cl and return it .

NO-SONS : exception;
-- This exception is raised by Build-Fact if the predicate is not of the appropriate type.

ATTR-ERROR : exception;
-- Raised in various situations where an inappropriate attribute of a node is assigned or queried.

function Is-Rule (C : Clause) return Boolean;
-- Is the clause a rule? If not, it must be a fact.

package SON-LIST-PACKAGE is new LIST (Item => Clause);
use SON-LIST-PACKAGE;

type List-Of-Facts is new SON-LIST-PACKAGE.List;
- - 1 where L : List-Of-Facts =>
--I (for all N : 1 . . Length-Of(L) => not Is-Rule(Get-Item(L,N)));

No-Facts : constant List-Of-Facts
:= List-Of-Facts(SON~LIST~PACI<AGE.Null~List);

- - T h e L i s t - O f - Facst d ta a-structure is used to hold a list of facts. It stands for a conjunction of
-- those facts when it is the head or tail of a rule. It stands for a list of sons, in order, when it
-- acts as a son-l is t of a fact.

function Get-Identifier (C : Clause) return Identifier;
- - I where Is-Rule(C) => raise ATTR-ERROR;

-- For a fact of the form p(tl, . . . , tn) this returns p.

function Get-Son-List(C : Clause) return List-Of-Facts;
--I where Is-Rule(C) => raise ATTR-ERROR;

-- For a fact of the form p(tl, . . . , tn) this returns the list tl, . . . , tn.

97

- - Ge t - Iden t i f i e r and Ge t -Son-L i s t are a complete set of observer functions on facts.

98 CHAPTER 6 . SYSTEM EXAMPLES

function Build-Fact (ID : Identifier;
Sons : List-Of-Facts := No-Facts) return Clause;

- - 1 where
- - (Integer-Identifier(ID) or Variable-Ident,ifier(ID)) and
- - (Length-Of(Sons) > 0) => raise NO-SONS,
- - I (Built-In-Predicate(ID) and then
- - l (Built-In-Arity (ID) /= Length-Of (Sons))) => raise ATTR-ERROR;

- - Given a predicate symbol ID and a list Sons of facts, this function returns the fact ID(Sons). _
- - Variables and integers cannot have Sons and the built-indredicates have fixed aritys.

Build-Fact forms a complete generator basis for facts.

function Get-Head (C : Clause) return List-Of-Facts;
I where not Is-Rule(C) => raise ATTR-ERROR;

-- Given the rule list1 :- list2, this function returns the list listl.

function Get-Tail (C : Clause) return List,-Of-Facts;
1 where not Is-Rule(C) => raise ATTR-ERROR;

-- Given the rule list1 :- list2, this function returns the list list2.

The functions Get-Head and Get-Tail together with Is-Rule and the observers on facts form a complete
observer basis for Rule (and Clause).

function Build-Rule (Head, Tail : List-Of-Facts) return Clause;
-- Given lists of facts Head and Tail, this function returns the rule Head :- Tail.

Build-Rule together with Build-Fact is a complete generator basis for Rule (and clauses).

The following axioms describe the eflect the generators have on the observers.

- - laxiom
-- I for all Cl, C2 : Clause; Ll, L2 : List-Of-Facts; ID : Identifier =>

- - Build-Fact builds facts and Build-Rule builds rules.

--I not Is-Rule(Build-Fact(ID, Ll)),
- - l Is-Rule(Build-Rule(Ll, L2)),

- - Get-Identifier(Build-Fact(ID, Ll)) = ID,
- - Get-Son-List(Build-Fact(ID, Ll)) = Ll,

- - Get-Head(Build-Rule(Ll, L2)) = Ll,
- - GetTail(Build-Rule(Ll, L2)) = L2,

- - Equal(C1, C 2) ifl al l bo servers return the same values.
- - l Equal(C1, C2) <-> (Is-Rule(C1) = Is-Rule(C2)) and then
- - l ((Is-Rule(C1) ->
- - l (Get-Head(C1) = Get-Head(C2)) and
- - I (Get-Tail(Cl) = Get-Tail(C2))) and
- -

I
(not Is-Rule(C1) ->

- - (Get,-Identifier(C1) = Get-Identifier(C2)) and
- - l (Get-Son-List(C1) = Get-Son-List(C2))));

6.4. ADA LOGIC PACKAGE 99

private

type Clause-Record;
type Clause-Ret is access Clause-Record;

end CLAUSE-PACKAGE;

- - Commentary:
-- For a specific implementation, some axioms would be added to reflect the capabilities of the underlying
-- support, such as:

. .

- - ax iom
- - l for all C : Clause => Length(Get-Head(C)) = 1;

-- to restrict Rules to be Horn clauses.

6.4.3 Database Package

Package Name:
Database_package

Description:
This package defines a database of Cda.uses.

Dependency:
List and Clause packages.

Author:
NeeE Madhav

with CLAUSE-PACKAGE, LIST;
use CLAUSE-PACKAGE;

package DATABASE-PACKAGE is

package DB-PACKAGE is new LIST (Item => Clause);
type List-of-Clauses is new DB-PACKAGE.List;

No-Clauses : constant List-of-Clauses
:= List-of-Clauses(DB-PACKAGE.Null-List);

end DATABASE-PACKAGE;

- - Commentary:
-- This package captures the meaning of a logic database, and uses only previously defined data structures;
- - very little specification is needed. What might be annotated here are certain natural restrictions on logical
-- databases, e.g. that Integers and Variables may not, be asserted as true. This can be accomplished by
-- adding a simple axiom:

-- I axiom
for all L : List-Of-Clauses; P : Positive =>

n o t Coust,ant-Identifier(Get-Identifier(Get-Item(L , P)));

100 CHAPTER 6 . SYSTEM EXAMPLES

6.4.4 Substitution Package

-- Package Name:
- - Substitution-Package
- - Description:
- - This package defines data-structures which represent substitutions. Substitutions are lists of variable-
- - clause bindings. All free variables in a successful query get bound to clauses as a part of the search for a
- - substitution.
- - Dependency:
- - List, clause and identifier packages.
-- Author:
- - N e e l M a d h a v

with CLAUSE-PACKAGE, IDENTIFIER-PACKAGE, LIST;
use CLAUSE-PACKAGE, IDENTIFIER-PACKAGE;

package SUBSTITUTION-PACKAGE is

type Binding-Ret is private;
type Binding is access Binding-Ret;

-- A Binding is a pair Variable-Clause. The Clause is considered to be bound to the variable.

BINDING-ERROR : exception;
-- This exception is raised when an attempt is made to bind a Clause to a non-variable identifier or an
- - attempt is made to access a Binding that does not exist.

function Get-Variable (B : Binding) return Identifier;
-- What is the Variable bound by BP

function Get-Binding (B : Binding) return Clause;
-- What is the Clause bound by B?

function Set-Binding (X : Identifier; C : Clause) return Binding;
- - I where not Variable-Identifier(X) or Is-Rule(C) => raise BINDING-ERROR;

-- Create a Binding which binds C to X.

package ANS-PACKAGE is new LIST (Binding);
use ANS-PACKAGE;

type Substitut,ion is xlew ANS-PACI\A(: I,‘ I,ist,;

No-Bindings : Substitution;
- - A list of bindings makes a substitution.

function Apply (A : Substitution; C : Clause) return Clause;
-- 1 where Is-Rule(C) => raise BINDING-ERROR;

- - Apply the substitution A to C.

-- : function Apply-Binding (B : Binding; C : Clause) return Clause;
-- Apply the binding B to C.

6.4. ADA LOGIC PACKAGE

---I function Apply-Binding (B : Binding;
L : List-Of-Facts) return List-Of-Facts;

-- Apply for a l is t of facts.

function Apply (A : Substitution;
L : List-Of-Facts) return List-Of-Facts;

- - A p p l y for a list of f a c t s .

-- axiom------ I---- I

l---- /
---- I--
--
--l

- - I- -
- - I- - l- - l

--I
- -
- - I

- - I- -
- -

for all B : Binding; ID : Identifier; C : Clause;
L : List-Of-Facts; A : Substit,ution = >

Get-Variable(Set-Binding(ID,C)) = ID ,
Equal(Get-Binding(Set-Binding(ID,C)), C),

-- The axioms below describe substitutions.

-- Applying a single substitution to a Clause.

Equal(Apply-Binding(B,C),
if (Variable-Iden tifier(Get-Iden tifier(C))) then

if (Get-Variable(B) = Get-Identifier(C)) then
Get-Binding(B)

else C
end if

elsif (Constant-Identifier(Get_Identifier(C))) then
Build-Facqet-Identifier(C),

Apply-Bindiug(B , Get,Son-List(C)))
else C
end if),

-- Applying a single substitution to a list of clauses.

Apply-Binding(B,L) =
if CLAUSE-PACKAGE.“=” (L, No-Facts) then L
else Append(Apply-Binding(B, Head-Of(L)),

Apply-Binding(B, Tail-Of(L)))
end if,

-- Applying a list of 8ub8titution8 to a clause.

if (A = No-Bindings) then C
else Apply (Tail-Of (A), Apply-Binding(Head-Of (A),C))
end if),

-- Applying a list of SUbStitUtiOnS to a l is t of clauses.

Apply(A,L) = if CLAUSE-PACKAGE.“=” (L, No-Facts) then L
else Append(Apply(A, Head-Of(L)), Apply(A, Tail-Of(L)))
end if;

101

CHAPTER 6 . SYSTEM EXAMPLES102

private

type Binding-Record;
type Binding-Ret is access Binding-Record;

end SUBSTITUTION-PACKAGE;

- - Commentary:
-- There is a drawback to the recursive specification of this package. Recursion defines an order of sub-
- - stitution, whereas in canonical substitution all variables are assumed to be substituted simultaneously.
-- This is not a problem if further restrictions are added which make order of substitution irrelevant.
-- First, no variable can be substituted twice. Or, in the language of our abstract data types, no Identifier
- - can appear as the variable part of a Binding more than once in a Substitution. One way to annotate this
- - is as a type annotation for Substitution:

type Substitution is new Ans-Package.List,;
-- [where S : Substitution =>
- - for all Pl, P2 : Positive =>
- - / P I /= P 2 ->

Get-Variable(Get-Item(S , Pl)) /= Get-Variable(Get-Item(S , P 2));

-- The second restriction is more difficult: No variable which is to be substituted can occur in the clause
- - part of any other binding in the substitution. This requires another virtual subprogram to capture the
- - concept of “occurring in.” For the purpose of brevity, we will restrict our new function to testing the
- - occurrence of a variable in an arbitrary clause:

--: function Occurs-In (V : Identifier; C : Clause) return Boolean;
-- 1 where in Variable-Iden t,ifier(V),
- - l return
- - l if Variable-Identifier(Get-Identifier(C)) then

V = Get-Identifier(C)
elsif Constant-Identifier(Get-Identifier(C)) then

exist P : Positive =>
Occurs-In(V, Get-Item(Get-Son-List(C), P))

else - - Integer-Identijier(Get-Identifier(C))
False

end if;

6.4. ADA LOGIC PACKAGE 103

-- Now to add the second restriction, we use another type annotation:
---I where S : Substitution =>
- - for all PI, P2 : Positive =>
- - P I /= P 2 ->
- -

- - I

not Occurs-In(Get-Variable(Get-Item(S, Pl)),
Get-Binding(Get-Item(S , P 2)));

6.4.5 Unification Package

-- Package Name:
- - Unification Package
- - Description:
- - This package defines the concept of unification of Clauses.
- - Dependency:
- - Clause, identifier and substitution packages.
- - Author:
- - Neel M a d h a v

with CLAUSE-PACKAGE, IDENTIFIER-PACKAGE, SUBSTITUTION-PACKAGE;
use CLAUSE-PACKAGE, IDENTIFIER-PACKAGE, SUBSTITUTION-PACKAGE;

package UNIFICATION-PACKAGE is

UNIFY-ERROR : exception;
-- This exception is raised if a rule is given an an argument to unify or an attempt is made to get the
- - unifier of two non-unifiable clauses.

function Unify (Cl, C2 : Clause) return Boolean;
- - I where Is-Rule(C l) or Is-Rule(C2) => raise UNIFY-ERROR;

- - Can C l and C2 be uni f ied?

function Unifier (Cl, C2 : Clause) return Substitution;
-- I where not Unify(Cl, C2) => raise UNIFY-ERROR;

-- What is the most general unifier for Cl and CZ?

function Unify-list) (Ll, L2 : List,-of-Facts) return Substitution;
-- Returns Unifier of two lists of facts.

-- axiomI

-- The general unification algorithm is outlined below.
--I for all Cl, C2 : Clause;
- - l IDl, ID2 : Identifier;
- - l Ll, L2 : List-of-Facts =>

104 CHAPTER 6 . SYSTEM EXAMPLES

--
--
-- I- -

- -
- -
- - I- - I- - l- -
- -
- - l
- - I

--
-- I- - l- - l---- I
--
--
--

-- l

- - D e f i n i t i o n of Unify.
(Get-Identifier(C1) = ID1 and Get-Identifier(C2) = ID2)

-> Unify(C l , C 2)
= if Variable-Identifier(ID1) then True

elsif Variable-Identifier(ID2) then True
elsif Integer-Iden tifier(ID 1) then

Integer-Identifier(ID2) and ID1 = ID2
elsif Integer-Identifier(ID2) then False
elsif ID1 /= ID2 then False
else

(Get-Son-List((C1) = Ll and Get-Son-List(C2) = L2)
-> if Length-of(L1) = Length-of(L2) then

for all N : 1 . . Length-of(L1) =>
Unify(Get-Item(Ll, N), Get-Item(L 2 , N))

else False
end if

end if,

- - D e f i n i t i o n of Unifier.
(Get-Identifier(C1) = ID1 and Get-Identifier(C2) = ID2)

-> Unifier(C l , C2)
= if Variable-Iden tifier(ID 1) then

Append(Set-Binding(ID1, C2), No-Bindings)
elsif Variable-Iden tifier(ID2) then

Append(Set-Binding(ID2, Cl), No-Bindings)
elsif Integer-Identifier(ID1) then

No-Bindings
else

Unify-List(Get-Son-List(Cl), Get-Son-List(C2))
end if,

6.4. ADA LOGIC PACKAGE 105

-- Definition of Unify-List in terms of Unifier.
- -

I
Unify-List(Ll, L2)

- - = if Ll = No-Facts then
- - No-Bindings

else
- - Append(Unifier(Head-Of(Ll), Head-Of(L2)),
- - Unify-List(Tail-Of(Ll), Tail-Of(L2)))
- - end if;
end UNIFICATION-PACKAGE;

- - Commentary:
-- In the axiom for Unifier, because of the propagat,ion annotation for the Unifier function, we can assume
-- that Unify(C1, C2) is true, which makes the given axiom slightly cleaner.

6.4.6 Query Package

-- Package Name:
- - Q u e r y - P a c k a g e
- - Description:
- - This package defines the concept of querying clauses.
-- Dependency:
- - Clause, Database, Identifier, Substition and Unification packages.
-- Author:
- - N e e l M a d h a v

with CLAUSE-PACKAGE, IDENTIFIER-PACKAGE, SUBSTITUTION-PACKAGE,
UNIFICATION-PACKAGE, DATABASE-PACKAGE;

use CLAUSE-PACKAGE, IDENTIFIER-PACKAGE, SUBSTITUTION-PACKAGE,
UNIFICATION-PACKAGE, DATABASE-PACKAGE;

package QUERY-PACKAGE is

QUERY-ERROR : exception;
-- This exception is raised if a rule is given as an argument to QUERY or an attempt is made to find
- an answer substi tution for a failed query.

function Query (C : Clause; L : List-of-Clauses) return Boolean;
--I where Is-Rule(C) => raise QUERY-ERROR;

- - Does C follow from L?

function Query-Answer (C : Clause;
L : List-of-Clauses) return Substitution;

--I where not Query(C,L) => raise QUERY-ERROR;
- - What are the bindings of variables in C which make the query true?

-- :function Query-List (Q : List-of-Facts;
L : List-of-Clauses) return Boolean;

-- The variable bindings of list Q.

106 CHAPTER 6 . SYSTEM EXAMPLES

- - :function Query-Answer (Q : List-of-Facts;
--: L : List-of-Clauses) return Substitution;
-- I where not Query-List(Q,L) => raise QUERY-ERROR;

- - What are the bindings of variables in Q which make the query true?

- - :function Sublist (L l , L2 : List-of-Facts) return Boolean;
- - Returns True if Ll is a sublist of L2.

-- :function Remove-Sublist (Ll, L2 : List-of-Facts) return List-of-Facts;
-- Remove elements of Ll from L2.

-- :function Delete-Item(L : List-of-Facts; N : Natural) return List-of-Facts;
--I where in (N <= Length-of(L)),
- - return if N = 0 then L

elsif N = 1 then TAIL-OF(L)
else Append(Head-of(L), Delete-Item(Tail-of(L), N-l))

- - I end if;

-- axiom

-- The constraints on Query are outl ined below.

- - for all C : Clause;
- - L : List-of-Clauses;
- - N : Natural;
- - IDl, ID2 : Identifier;
- - Fl, F2 : List-of-Facts =>

-- Sublists are defined here.

I Sublist(No-Facts, Fl),
- -

/

Subl ist (Append(C, Fl), F2) =
- - (exist N : Natural =>

--I Unify(C, Get-Item(F2, N)) and
- - l Sublist(Fl, Delete-Item(F2, N))),

- - I Remove-Sublist,(No-Facts, Fl) = Fl ,
Remove-Sublist(Append(C, Fl), F2) =

if Unify(C, Get-Item(F2, 1)) then
Remove-Sublist(Fl, Tail-of(F2))

else Remove-Sublist
(Fl, Append(Get-Item(F 2 , 1),

Remove-Sublist(Append(C, No-Facts),
Tail-Of (F2))))

end if,

6.4. A D A L O G I C PACh’AGE 107

-- l- -
- -
--
-------- I---- I-- I

Query-List(Fl, L) =
if Is-Equal(Fl, No-Facts) then True
else exist N : Natural =>

(Sublist(Get-Head(Get-Item(L, N)), Fl) and
Query-List(Append(Apply(

Unify-List (Get-Head(Get-Item(L, N)), Fl),
Remove-Sublist(Get-Head(Get-Item(L, N)), Fl)),

APPLY (

end if,

Unify-List (Get-Head(Get-Item(L, N)) , Fl),
Get-Tail(Get-Item(L , N)))), L))

-- I Quev(C, L) = Q uery-List(Append(C, No-Facts), L),

---- I----I---- I-- I---- I----I
-- I-- I

Query-Answer(Fl, L) =
if Is-Equal(L, No-Clauses) then

No Bindings-
elsif exist M : Natural =>

Sublist(Get-Head(Get-Item(L, N)), Fl) then
Append(Un i fy -L i s t (Get-Head(Get-Item(L , N)), F l),

Query-Answer(Append(Apply(
Unify-List (Get-Head(Get-Item(L, N)), Fl),
Remove-Sublist(Get-Head(Get-Item(L, N)), Fl)),

APPLY (
Unify-List,(Get-Head(Get-Item(L , N)), Fl),
GetTail(Get-Item(L , N)))), L))

else No-Bindings
end if;

end QUERY-PACKAGE;

- - Commentary:
- - In this package we reap the benefits of a hierarchically defined package set. With the help of previous
- - packages and three virtual functions, Prolog-like resolution with substitution can be defined in a single,
-- reasonably compact axiom.

Bibliography

[l] G. Booth. Software Engineering with Ada. Benjamin/Cummins, 1987. 2nd Edition.

[2] D. C. Luckham and W. Mann. Methodology for using specification analysis to debug formal specifics
tions. In preparation.

[3] D. C. Luckham, S. Sankar, and S. Takahashi. Two dimensional pinpointing: An application of for-
mal specification to debugging packa,ges. IEEE Software, 8(1):74-84, January 1991. (Also Stanford
University Technical Report No. CSL-TR-89-379.).

[4] D. C. Luckham and F. W. von Henke. An overview of Anna, a specification language for Ada. IEEE
Software, 2(2):9-23, March 1985.

[5] David C. Luckham. Programming with Specifications: An Introduction to ANNA, A Lunguuge for
Specifying Ada Programs. Texts and Monographs in Computer Science. Springer-Verlag, October, 1990.

[6] David C. Luckham, Friedrich W. von Henke, Bernd Krieg-Briickner, and Olaf Owe. ANNA, A Language
for Annotating Ada Programs, volume 260 of Lecture Notes in Computer Science. Springer-Verlag, 1987.

[7] N. Madhav and S. Sankar. Application of formal specification to software maintenance. In Proceedings
of the Conference on Software Maintenance, pages 230-241. IEEE Computer Society Press, November
1990.

[8] Neel Madhav. An ada-prolog system. In International Conference on Computing and Information,
pages 340-344, Niagara Falls, Canada., May 1990. (Also Stanford University, Computer Systems Lab
technical report CSL-TR-90-437. PAVG technical Report No. 49).

[9] W. Mann. Representation of an Anna subset in predicate logic for specification analysis. Unpublished
Technical Report.

[lo] Geoffrey 0. Mendal. The Annu-I User’s Guide and Installation Manual. Stanford University, Computer
Systems Lab, ERL 456, Stanford, California, release 3C edition, August 1990.

[ll] R. Neff. Ada/A nnu Package Specification Analysis. PhD thesis, Stanford University, December 1989.
Also Stanford University Computer Systems Laboratory Technical Report No. CSL-TR-89-406.

[la] D. L. Parnas. A technique for software module specification with examples. Communications of the
ACM, 15(5):330-336, May 1972.

[13] D. S. Rosenblum, S. Sankar, and D. C. Luckham. Concurrent runtime checking of annotated Ada
progra.ms. In Proceedings of fh,e 6th Conference on Foundations of Software Technology and Theoret-
ical Computer Science, pages 10-35. Springer-Verlag - Lecture Notes in Computer Science No. 241,
December 1986. (Also Stanford Universit.y Computer Systems Laboratory Technical Report No. 86-312).

108

BIBLIOGRAPHY 109

[14] S. Sankar. Automatic Runtime Consistency Checking and Debugging of Formally Specified Programs.
PhD thesis, Stanford University, August 1989. Also Stanford University Department of Computer
Science Technical Report No. STAN-CS-89-1282, and Computer Systems Laboratory Technical Report
No. CSL-TR-89-391.

[15] S. Sankar. A note on the detection of an Ada compiler bug while debugging an Anna program. ACM
SIGPLAN Notices, 24(6):23-31, 1989.

[16] S. Sankar and M. Mandal. Concurrent runtime monitoring of formally specified programs. Technical
Report 90-425, Computer Systems Laboratory, Stanford University, 1990. Also submitted to IEEE
Computer.

[17] S. Sankar and D. S. Rosenblum. The complete transformation methodology for sequential runtime check-
ing of an Anna subset. Technical Report 86-301, Computer Systems Laboratory, Stanford University,
June 1986. (Program Analysis and Verification Group Report 30).

[18] S. Sankar, D. S. Rosenblum, and R. B. Neff. An implementation of Anna. In Ada in Use: Proceedings
of the Ada International Conference, Paris, pages 285-296. Cambridge University Press, May 1985.

[19] US D p te ar ment of Defense, US Government Printing Office. Th,e Ada Programming Language Reference
Manual, February 1983. ANSI/MIL-STD-1815A-1983.

