
PAGING PERFORMANCE WITH PAGE
COLORING

William L. Lynch and M. J. Flynn

Technical Report CSL-TR-91-492

October 1991

The work described herein was supported in part by NASA under contract NAG2-248
using facilities supplied under NAG W 419.

Paging Performance with Page Coloring

bY
William L. Lynch and M. J. Flynn

Technical Report CSL-TR-91-492

October 199 1

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305-4055

Abstract

Constraining the mapping of virtual to physical addresses (page coloring)
can speed and/or simplify caches in the presence of virtual memory. For the
mapping to hold, physical memory must be partitioned into distinct colors, and
virtual pages allocated to a specific color of physical page determined by the
mapping. This paper uses and analytical model and simulation to compare the
paging effects of colored versus uncolored (conventional) page allocation, and
concludes that these effects are small.

Key Words and Phrases: Virtual Memory, Paging, Cache Memory

Copyright @ 1991

bY
William L. Lynch and M. J. Flynn

Contents

1 Introduction 1

2 Methodology 1

3 Analytical Model 2

4 Trace-Driven Simulation 3
4.1 Effective Memory Utilization . 5
4.2 Page-Fault Rate . 5

5 Conclusions 9

A Raw Simulation Results 10

. . .
111

1 Introduction
Many computers use virtual memory to provide large address spaces for exe-
cuting processes. Virtual memory requires a mapping from the virtual address
space of the software to the physical address space of the hardware. A page
fault occurs when the operating system must allocate a physical page in which
to store the virtual page.

Conventional page allocation typically approximates least-recently-used (LRU)
page replacement. The methods of approximation share the common feature of
a free list of available pages[PS85], typically maintained as FIFO queues. Nor-
mally, there is no correlation maintained between a requested allocation from
virtual memory and its placement in physical memory, as whatever physical
page is on top of the free list is used. However, page coloring [BLF90] requires a
very specific mapping between virtual and physical addresses to improve cache
performance and design. This study examines the effects of this mapping re-
quirement.

This study assumes a many-to-one function page-coloring methodology, which
can be implemented by multiple free lists (one per color). When the operat-
ing system receives a request for a mapping for a virtual address, it removes
a properly-colored physical page off that color free-list. Similarly, the operat-
ing systems adds freed pages to the proper-color free list. Thus, the difference
between uncolored and colored paging is similar to the difference between fully-
associative and set-associative cache memories, where pages are allocated within
a specific set (color) of possible pages.

The number of colors is an important parameter in this study. It is deter-
mined by the configuration of the memory system of the machine, specifically by
the relative sizes of the cache memory and the physical memory pages. More de-
tails on this determination of number of colors, and the advantages of coloring,
are available in [BLFSO].

2 Methodology
A simple analytical model and trace-driven simulation both provide methods
for studying performance differences between colored and uncolored (conven-
tional) page allocation. These differences take the form of less effective memory
utilization by thrashing on individual colors rather than a unified (uncolored)
memory; if all of the pages were allocated into a few colors (i.e., the distribution
of the pages over the colors is uneven), thrashing could occur on the heavily
allocated colors while other colors are lightly used.

Two figures of merit are effective memory utilization and page-fault rate.
Effective memory utilization measures the memory size at which a colored pag-
ing scheme would start to thrash on one color of physical memory (that is,
when that color becomes fully allocated) relative to the size at which uncolored

1

paging thrashes (that is, the entire physical memory is fully allocated). This
ratio is calculated by allocating pages until one color is fully allocated, and then
dividing the total number of pages allocated by the total number of pages, and
is necessarily less than or equal to one.

The other figure of merit, page-fault rate, is perhaps the more important
one, as it is a direct factor in the overall execution speed of the machine. Page-
fault rate is defined as the number of faults (the page is not in physical memory)
divided by the number of memory references.

This study assumes that allocated pages are not later re-allocated into dif-
ferent physical locations, and that the initial ordering of pages on the free lists
is random. These assumptions only approximate the behavior of real systems
because reallocation does happen and the collection of free pages is somewhat
orderly (e.g., proceeding around the physical memory in a clock-sweep algo-
rithm [PS85]). H owever, the effects of these assumptions are considered small.

3 Analytical Model
The first method of analysis is an analytical model of the behavior of colored
page allocation. The analytical model assumes that allocated virtual pages are
randomly and uniformly distributed over all of the colored free lists.

A complicated analysis is required to determine the effective memory utiliza-
tion. This analysis covers the case where the first colored free list fills up (the
presumption being that thrashing is beginning on that free list), and determines
the expected number of pages that have been allocated until that point.

This analysis is similar to the Birthday Surprise problem [KN67]. Calculat-
ing the expected number of pages allocated until any one colored free list is full
gives

where

E(c, k) =
J

m [Sk (t/c)lcestdt,
0

k

Sk(Z) = c S/j!,
j=O

c is the number of colors (free lists), and Ic is the number of available pages of
each color (length of each free list). Thus, the effective memory utilization is
given by the expected number of pages allocated until one free list is full divided
by the total number of pages available (the number of pages which would be
allocated before a single color system was full),

Me* = J% k,
ck ’

Unfortunately, the approximations given [KN67] to E(c, k) are valid only for
c + 00, and are inappropriate for this paging interpretation of the problem.

2

However, numerical integration provides good approximate answers, which are
validated with a few thousand simulator runs of the model (pages were allocated
randomly over the colored free lists until one was full).

2 1.00

i 095
E *
.z 0.90
8
g 0.85

0.80

0.70

0.65

n 2K

t \I
0.6OJ

1
I
2

I
4

I
8

! I I
16 32 64

Number of Colors

Figure 1: Modelled Effective Memory Utilization

Figure 1 shows the results of the numerical integration. As expected, the
effective memory utilization falls as the number of colors increases. For a typical
page size of 4 KB, these curves are for physical memory sizes of 8 MB through
64 MB. For either large memories or small numbers of colors, (organizations with
many pages per free list) the modelled effective memory utilization is reasonable,
staying above 90% for a variety of common configurations.

4 Trace-Driven Simulation
Trace-driven simulation checked the validity of the model’s assumption of ran-
dom requests for colors. An already existing simulator was modified to produce
the desired information when fed address traces. In the simulator, in contrast
to the model, pages can be allocated, freed through LRU replacement, and re-
allocated. The pages are, however, always allocated to the same color (i.e., the
coloring function does not change).

To simulate paging systems such as this, address traces which touch many
pages are required. Fortunately, some long traces from DECWRL [BKLW89]

3

Unique
Name Description Pages

(4KB)
sor Fortran implementation of sparse-matrix succes- 12416

sive overrelaxation algorithm
t r e e Compiled Scheme building trees and searching for 4518

the largest element
t v Pascal timing verifier analyzing MultiTitan CPU 5771
lin Circuit analysis program 1158
m u l t multiprogramming workload (make, grr router, 12480

magic design rule checker, tree, xld, and con-
tinuous interactive shell commands)

Table 1: Simulation Traces

2 1.00

g 0.95

z 0.90

*g 0.85
e
W 0.80I

0.75 1 n lin
0

0.70
mutt

a
\
\ .

\ ‘<
\

b
0.65 - -

0.60 - -

0.55 - -

0.50 -
1

Solid Lines -- Simulation
Dashed Lines -- Model

I I J
2 4 8

\
\

\
\

\
‘t

J I I
16 32 64

Number of Colors

Figure 2: Simulated Effective Memory Utilization

were available to us. Technical limitations of the existing simulator limited
simulations of the traces to between 1 and 1.5 billion references per trace. These
traces were generated on a Titan, a 32-bit RISC machine running a version of
Ultrix, and comprise several benchmarks [BKLW89]. Table 1 presents pertinent
information about the traces. To effect a worst-case study, multrequests were
not PID hashed, and thus a large number of processes all had stack, instruction,
and data segments starting in pages of the same color.

Simulations provide results for both effective memory utilization, and page-
fault rate. Page-fault rate results can also be gained through analytical mod-
els [Smi78], but their accuracy is unclear.

4.1 Effective Memory Utilization
Figure 2 presents the simulated effective-memory results. The analytical model
was also evaluated for each benchmark using the number of pages in the program
as the equivalent memory size, and the figure 2 also presents the model results
for each benchmark size.

With the exception of mult, the benchmarks have less page-fault degradation
due to coloring (i.e., are closer to 1 M,R) the larger they are, and (again except
for mult) stay above 90% Meff over the entire range shown. The exception is
mult, which, as described earlier, actually is a large number of small programs,
and thus has worse than uniform-random distribution of pages (i.e., some colors
with many pages, some colors nearly empty).

The difference between simulated memory utilization of the benchmarks and
that predicted by the analytical model indicates the color-distribution of pages
not a uniform-random distribution, as assumed by the model. The assumption
of random color requests is very pessimistic because typical allocation patterns
tend to request pages somewhat sequentially in each of the text, data, and
stack segments, resulting in request pattern closer to round-robin than random
for each segment, and a controlled and even distribution of pages per color.

4.2 Page-Fault Rate
While effective memory utilization is a reasonable measure for relating colored
page allocation to uncolored page allocation,’ page fault rate is the significant
measure. Page fault rate, while difficult to model accurately, can be easily sim-
ulated, so simulations were run to garner page-fault rates. Figures 3-7 present
these page-fault rate results. (Note that in these page-fault rate graphs, a lower
page-fault rate indicates better performance, as opposed to the effective memory
utilization graphs, where a higher effective-memory utilization was better.)

Figures 3-7 give the page-fault rates for main memory sizes from 4 MB to
64 MB, and from 1 to 64 colors. These page-fault rates are plotted relative to
the uncolored (l-color) page-fault rate for each memory size (hence all l-color
memory sizes show relative fault rate 1). Tables 3-6 in Appendix A present the

5

3 1.30- Main Memory

2 1.25 -- Size A (MB) 64
5

1.20 --
0 32

& + 16
5 1.15 -- x 8

$ 1.10 -- 0 * 4 2
-3j 1.05 -- 0 1

g 1.00 -k I
0.95 --
0.90 --

I
0.85 --
0.80 --
0.75 -f

1
]
2

I
4

I I I
16 32 64

Number of Colors

Figure 3: Page-Fault Rate - sor

3 1.30 Main Memory

2 1.25 Size A (MB) 64
3 0 32
& 1.20 + 16

0.95 - -
0.90 - -
0.85 - -
0.80 - -
0.75 - I I I 1 I I

1 2 4 8 16 32 64
Number of Colors

Figure 4: Page-Fault Rate - tree

6

0.95 - -

0.90 - -

0.85 - -
0.80 - -
0.75 -f

1
I I I

16 32 64
Number of Colors

Figure 5: Page-Fault Rate - tv

Q) 1.30
2 1.25
3
g 1.20

Main Memory

Size A (MB) 64
0 32
+ 16

2 1.00 -1
0.95 --
0.90 --
0.85 --
0.80 --
0.75 - I

1 2 4 8 16 32 64

1.15 - - x 8

$ l.lO--
m 4
0 2

1.05 0- - 1

1.00 -1
0.95 - -
0.90 - -
0.85 - -
0.80 - -
0.75 - I

1 2 4 8 16 32 64
Number of Colors

Figure 6: Page-Fault Rate - lin .

7

Q) 1.30 Main Memory

3 1.25 Size A (MB) 64
3 0 32
g 1.20 + 16

0.95
0.90
0.85
0.80
0.75 -I I I ! 1 I

1 2 4 8 16 32 64
Number of Colors

Figure 7: Page-Fault Rate - mult

same results in a non-relative tabular form. The 1 MB, 2 MB, and 4 B memory
systems are included for completeness, but note that machines of this size are
too small to effectively run benchmarks of the size used here.

The results clearly show that page-fault rates are not affected much by the
number of colors. At most, the effect is pronounced only for one memory size
per benchmark (e.g., 16 MB sor). Surprisingly, the results with significant
effect were often advantageous (i.e., a lower page-fault rate), as in sor16 MB,
and lin2 MB.

It might be expected that the page-fault rate would rise as the number of
colors rose and the memory became fragmented into smaller and smaller sec-
tions. This unexpected reduction in page-fault rate results from the frequently
sequential access nature of programs of this size. Most of the pages accessed are
on the heap and belong to large data structures, which programs typically access
by sweeping through them. This sweeping access pattern causes the pathologi-
cal behavior of fully-associative LRU replacement policies, where n + 1 elements
accessed in rotation in n slots always fault, while set-associativity causes some
elements to remain and not fault.

Even these unlikely cases where the page-fault rate decreases with increasing
numbers of colors are rare results in these simulations. If the 1 MB, 2 MB, and
4 MB physical memory sizes are disregarded as unreasonable for benchmarks of

8

this size, only 4 of 20 combinations of benchmarks and physical-memory sizes
changed by more than 1% from the l-color (conventional) to 64-color case. Of
those 4, 2 had increased fault rates (tv, S%, and mult, 12% increases at 64-
colors) and 2 had decreased fault rates (lin, 30%, and sor, 13% decreases at
64 colors).

Other than very few cases with significant deviation in page-fault rates, the
change in page-fault rate with the number of colors was less than 1% for the
region simulated.

5 Conclusions
This paper presents an analytical model demonstrating the effective memory uti-
lization of colored paging. The model, while pessimistic, does provide the right
form for the effective memory utilization curves, and “random simulations” of
the model validate its accuracy under the random allocation assumption. How-
ever, this assumption of uniformly-distributed color requests is very pessimistic
compared to typical allocation patterns, which generally tend to request pages
sequentially resulting a more even distribution of pages per color than a random
request pattern.

This view of program behavior is supported by simulations results, where the
page-fault rate does not noticeably increase as the number of colors increased.
Just as often, the benchmarks studied show improved (decreased) page-fault
rates with increased coloring. Far more likely than either direction of change in
page-fault rates, however, is for the page-fault rate not to change significantly.
Therefore, the basic conclusion of this study is that over a broad range of ma-
chine configurations the use of colored paging has no deleterious performance
effects through extra paging activity.

A Raw Simulation Results
This appendix presents tabular results of page-fault rate for simulations of each
of the benchmarks sor, tree, tv, lin, and mult. The page size for these
simulations is 4KB. Large numbers of colors perform significantly worse for the
small memory sizes as the number of pages per free lists becomes small (for
example, 1 MB memory, 64 colors gives a mere 4 pages of each color). Memory
sizes of 1 MB, 2 MB, and 4 MB are presented here only for completeness, as
they are not appropriately-sized machines for these problems.

Table 2: Page-Fault Rate (X 10e6) - sor

Memory Number of Colors
Size (MB) 1 2 4 8 16 32 6 4

1 122.79 122.80 122.53 121.97 127.19 142.35 161.25

Table 3: Page-Fault Rate (x 10B6) - tree

10

Table 4: Page-Fault Rate (x 10e6) - tv

3 2 0.94 0.94 0.94 0.94 0.94 0.94 0.94
64 0.94 0.94 0.94 0.94 0.94 0.94 0.94

Table 5: Page-Fault Rate (x 10e6) - lin

I

32 10.09 10.09 10.09 10.10 10.10 10.11 10.12
64 9.73 9.73 9.73 9.73 9.73 9.73 9.73

Table 6: Page-Fault Rate (x 10m6) - mult

11

References
[BKLW89] Anita Borg, R. E. Kessler, Georgia Lazana, and David W. Wall.

Long Address Traces from RISC Machines: Generation and Analy-
sis. WRL Research Report 89/14, Digital Equipment Corporation,
September 1989.

[BLFSO]

[KN67]

[PS85]

[Smi78]

Brian K. Bray, William L. Lynch, and M. J. Flynn. Page Allocation
to Reduce Access Time of Physical Caches. Technical Report CSL-
TR-90-454, Stanford University, November 1990.

M. S. Klamkin and D. J. Newman. Extensions of the Birthday
Surprise. Journal of Combinatorial Theory, 31279-282, 1967.

James L. Peterson and Abraham Silberschatz. Operu-ting System
Concepts. Computer Science. Addison-Wesley, Reading, MA, 1985.

Alan J. Smith. A Comparative Study of Set Associative Mem-
ory Mapping Algorithms and Their Use for Cache and Main Mem-
ory. IEEE Transactions on Software Engineering, SE-4(2):121-130,
March 1978.

12

