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Abstract

Asynchronous pipelines control the flow of tokens through a sequence of logical stages
based on the status of local completion detectors. As in a synchronously clocked circuit, the
design of self-timed pipelines can trade off between achieving low latency and high
throughput. However, there are more degrees of freedom because of the variances in specific
latch and function block styles, and the possibility of varying both the number of latches
between function blocks and their connections to the completion detectors. This report
demonstrates the utility of a graph-based methodology for analyzing the timing dependencies
and uses it to make comparisons of different configurations. It is shown that the extremes for
high throughput and low latency differ significantly, the placement of the completion
detectors influences timing as much as adding an additional latch, and the choice as to
whether precharged  or static logic is best is dependent on the cost in complexity of the
completion detectors.
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I. Introduction

Self-timed systems [SEITSO] avoid the need for distributing global clocks and eliminate the
performance loss from added margins necessary to account for clock-skew and worst-case conditions.
Self-timing can refer both to the use of an on-chip clock generator [SANT89] providing an internal
clock for synchronous blocks, or to systems such as those this report will consider which use local
control communication between fully asynchronous blocks [MULL63]. A spectrum of possibilities
exists for asynchronous design, ranging from utilizing carefully crafted matched delays [SUTH89] to
completely delay-insensitive circuits [UDDI86],[EBER88]. Whereas delay-insensitive circuits have the
same logical functionality for arbitrary delays in both gates and their interconnecting wires, circuits
which satisfy the weaker property of correct operation for arbitrary gate delays but allow isochronic
forks [MART861 in the interconnecting wires are called speed-independent. While actual delays may
vary due to fabrication variations, voltage, temperature, or data dependencies, the philosophy behind
delay-insensitive or speed-independent design is that by constructing a circuit which will be logically
correct for any delay values, the resultant design will be more robust and the designer need not acquire
all the information and specifications affecting the actual delays. However, to the extent that delay
information is available, the designer can use it to optimize nominal performance in choosing between
design alternatives, sizing transistors, and making local exceptions to a purely speed-independent
design approach. This report will therefore analyze performance based on symbolic component delays,
even though the delays would not affect the logical correctness of the circuit operation.

This report specifically addresses building deterministic pipelines which pass a sequence of data
tokens through a succession of stages as shown in Figure 1. In contrast to a synchronous pipeline
where the stages are all controlled by a global clock, a self-timed pipeline uses completion detectors
along the datapath to generate local signals controlling the flow of tokens. Pipelines are useful where a
sequence of data must pass through the same series of functional operations, as for example, in digital
signal processing mENG88]. Rings are a particular subset of pipelines where tokens are circulated
from the output back to the input by self-timing [GREE87] without needing to wait for more external
inputs as suggested in Figure 2. Such iterating rings are useful in implementing recursive operations
such as for the evaluation of arithmetic functions wLL87].

d-b Control

Figure 1: Overall structure of a pipeline is a linear sequence of stages



Figure 2: A self-timed ring is a loop of stages containing one or multiple tokens flowing
around without intervention from external control except during initialization.

Both synchronous and asynchronous pipelines compose each stage by a function block with
some number of latches. The performance depends on the relative timings and ordering of the
components, as has been analyzed in [RAO85] for the synchronous case with registers. Good re-
timing algorithms have been developed for increasing performance in synchronous systems by
changing the number and location of registers [LEIS86]. The present report will characterize the
performance of a range of possible configurations for self-timed pipelines with varying styles of
function blocks and latches, varying numbers of latches per stage, and varying connection ordering to
the completion detectors. Unlike the work in [MENG89] which synthesizes particular control
arrangements based on assuming function block evaluation dominates all other delays, this report
analyzes various configurations in terms of variables for the delays of each component.

Section II in this report describes the datapath signaling convention and the specific types of
function blocks and latches to be considered. After defining the variables used to represent the
component delays and measures of performance, Section III introduces the analysis method and the
construction of two types of marked directed graphs [COMM71],[MURA77] used to determine the
pipeline cycle time. Section IV explores the family of possible configurations of function blocks,
latches, and completion detectors and analyzes the performance of each configuration. The comparisons
are simplified by a set of standard assumptions, and Section V summarizes the resultant equations by a
table displaying their coefficients. This section also constructs tables giving the latency, throughput,
and occupancy of the different configurations for cases with specific bounds on the component delays.
Section VI makes observations about the results and discusses the conclusions of this work for
applications in self-timed pipeline and iterative ring design.

II. Datapath, Function Block, and Latch styles

Each stage in the pipelines to be considered in this report will consist of one function block and
zero to several latches. Between the stages, a datapath conveys information on a unidirectional bus,
and control wires may traverse in both directions. Every data token which is transmitted on a datapath
must convey its presence with some completion indicating method, either encoded within the datapath
itself, or bundled alongside of it on a separate wire.

Encoding completion into the data itself is usually implemented by passing each bit on a dual-
monotonic pair [SEIT80] with the convention shown in Table 1, but higher order group-encodings are

,

also possible [WILL87]. Sometimes, for small n, a simple l-of-n unary encoding on n wires is
appropriate.
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Table 1: A dual-monotonic pair uses a simple encoding to convey both the value and
completion-indication for a signal A on two wires, AT and AF

A disadvantage of embedded completion is the greater number of wires necessary. However,
passing a complete datapath using embedded completion on dual-monotonic pairs has the advantage of
being delay-insensitive; whereas, the use of a bundled completion signal must assume congruence in
the delays of the data bus wires. Furthermore, the silicon area penalty does not necessarily imply a
speed penalty since logic blocks can obtain either polarity of the input signal by using the appropriate
wire from dual-monotonic pair; hence, signal inversions are free.

Completion detectors will tap off of the data bus at different points in different pipeline
configurations. Since they need to detect both when all of the signals in a datapath are finished
evaluating and when they are all finished resetting, completion detectors are usually formed by a tree of
standard Muller C-elements [SEIT80] whose output is the state of the inputs when they were last the
same. Though the data bus may be any number of bits wide and may contain more than one field, this
report is not concerned with the details of combining the completion signals to form a single completion
signal for the whole datapath and this task is abstracted into the “completion detector.” However,
particular applications where the datapath varies in width at different points within a pipeline stage may
find significant interplay between the structure of the completion detector and the choice of where to
place it along the pipeline. For example, the structure of the problem in [WILL871  allowed choosing to
place a completion detector on a three wire unary encoded datapath  instead of across a 48-bit  dual-
montonic pair datapath, saving significant delay and complexity.

In order to provide inputs to a datapath completion detector, each bit slice of the function blocks
must embed its individual completion status on its output wires, even if only single-ended data is
passed on to the next function block. For that reason, this report requires all function blocks to
generate dual-monotonic outputs. Four styles of function blocks taking dual-monotonic inputs and
generating outputs as dual-monotonic pairs with embedded completion are contrasted in Figure 3 for the
implementation of a simple AND gate. The four styles are static logic, direct logic, semi-controlled
precharge logic, and full-controlled precharge logic. Static logic and direct logic have the same pull-
down tree and neither requires a precharge control input. However, the direct logic pull-up tree requires
all its inputs to reset before resetting its output; whereas, the static logic pull-up tree is always the dual
of its pull-down tree. By holding its outputs until all its inputs have reset, the timing of direct logic is
more similar to controlled-precharge logic. Furthermore, by verifying that all of its inputs have reset
before resetting its outputs, direct logic has the same abstracted dependencies as a C-element. Thus,
configurations using direct logic function blocks can be delay-insensitive whereas static logic will, in
general, not verify the arrival of both rising and falling transitions on its input signals.

Both semi-controlled and full-controlled precharge logic styles take a precharge control input.
This input is also the logical inverse of enable, because the blocks must have precharge removed before *
the outputs can be enabled to transition to an evaluate state. The only difference between the semi-
controlled and full-controlled precharge styles is the presence of the bottom transistor in the full-
controlled style which prevents fighting if precharge is ever active concurrently with valid data inputs.
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Figure 3: Four possible Function block styles to generate dual-monotonic outputs:
Static logic, Direct Logic, Semi-controlled Precharge Logic, Full-Controlled Precharge Logic
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Fighting can occur, for example, in the later gates of a precharged stage which is internally composed
of several serial domino gates w&h their precharge controls tied together. Because the later gates in the
chain would not have their data inputs reset until the earlier gates had finished resetting, semi-controlled
precharge logic would ripple reset data serially through the gates instead of allowing the gates to reset in
parallel as they do with full-controlled precharge logic. Ratioing of semi-controlled precharge logic
could also achieve parallel resetting of internal domino chains, but at the expense of large precharge
transistors. The advantages of semi-controlled precharge logic are that it has fewer transistors, faster
evaluate transitions due to shorter pull-down stacks, and lower loading of the precharge control input.

Both controlled precharged function blocks have a significant property not possessed by direct
or static logic: after valid input data has returned to reset but before the precharge control is asserted,
the block will “hold” valid outputs and this can provide the function of a latch without adding any
additional transistors.

Explicit latches to be used in a self-timed pipeline can be constructed either as a traditional flow-
latch or by using a C-element for each bit to make a “C-latch” [GREE88] as illustrated in Figure 4. The
flow-latch passes the value of its data signal, D, to its output, Y, when its enable signal, E, is high, and
keeps the output unchanged when the enable is low. The examples in this report will predominantly
use the symmetric C-latch which passes a high data signal to its output when the enable is high, and a
passes a low data signal when the enable is low, and otherwise leaves the output is unchanged. The C-
latch is therefore delay-insensitive because it verifies that it has received a new transition on both data
and control before changing its output. Conversely, the ordinary flow-latch is not delay-insensitive
because there is no way to detect that the latch has indeed transitioned to the “holding” state when the
enable is low. An additional advantage of the C-latch is its ability to function simultaneously as part of
the control handshaking and as the datapath, whereas a flow-latch will always require control from a
separate C-element in the handshaking logic.

Because of the asymmetry introduced by the “hold or pass” functionality of flow-latches or the
edge triggering of registers (pairs of flow-latches), the proper control for self-timed pipelines using
these structures may require “generalized” or asymmetric C-elements such as in Figure 5 which will be
denoted by the symbol G. A generalized C-element [BURN871 has separate inputs triggering the
rising and falling output transitions rather than using the same inputs for both transitions as in an
ordinary C-element,

PC A$jc

A

B
C Y

E

Figure 4: CMOS implementations of a C-element (or C-latch) and a standard flow latch.
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Figure 5: A “Generalized C-element” may have different signals triggering the rise and fall of the
output. This figure shows a Generalized C-element with one input on the top to trigger the

rising output transition, and two inputs on the bottom required for the falling transition.

III. Analysis technique using Dependency Graphs

Having defined the components composing each stage, it is now necessary to define the
variables that describe the performance of the pipeline. Like the minimum clock period for a
synchronous pipeline, let P denote the minimum cycle time for an asynchronous pipeline. P is
determined, just as in the synchronous case, by the slowest stage. The throughput, T, is the reciprocal
of P, and is the rate at which the input and output must respectively deliver and consume tokens to
keep the pipeline flowing at its maximum capacity. In a synchronous pipeline, the delay from the
output of one stage to the output of the next, or the per-stage latency, is equal to the clock period;
whereas, in an asynchronous pipeline, it is an independent quantity which will be denoted by L. The
total function latency is the sum of L through. all of the stages necessary to accomplish the desired
function. Both synchronous and asynchronous pipelines can, of course, trade off total latency and
throughput by changing the number of stages, N, into which the overall function is broken, but this
report is concerned with the further choices available in pipeline configuration after the choice of N has
been fixed.

In order to determine the cycle time, P , of a pipeline built out of a particular configuration of
components in each stage, it is necessary to analyze the dependencies of the required sequence of
transitions. These dependencies can be drawn in a marked directed graph where the nodes of the graph
correspond to specific rising or falling transitions of circuit components, and the edges represent the
dependencies of each transition on the outputs of other components. The delay of each transition is
represented by a value attached to the corresponding node in the graph. These graphs will be called
“Dependency Graphs” because of the similarly named graphs used in analyzing the cycle time of
synchronous systems [RAOU]. Dependency Graphs are also similar to the signal transition graphs of
[MENG89] and [CHU86], but differ by representing transitions on nodes instead of edges.

For an example to illustrate the construction of a Dependency Graph, Figure 6 shows the
schematic of a simple stage style, both singly and arranged in a pipeline. The components of each stage
instance are subscripted with an instance index. This stage style, denoted by the name PCO, uses a
precharged function block controlled by a C-element which merges the “request” signal from the
preceding stage with the “finished” signal from the following stage. The completion detector labelled D
has a bubble on its output meaning that it will go low when there is evaluated data on its input bus, and
high when the input bus is reset. A full completion detector uses a tree of C-elements to combine the
outputs of a NOR gate on each dual montonoic pair in the databus.

The operation of the pipeline is intuitively straightforward from the control wire connections; the
precharged block in each stage will reset when the data tokenlit was holding has been used by the
following stage, and when the preceding stage has finished resetting. Likewise, the precharged block
will evaluate when there is valid data available from the preceding stage, and the following stage has
completed resetting providing a new destination for the data token. Because the precharged function
block and C-elements are symmetric for rising and falling transitions, the completion of every transition
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is verified and the configuration is speed-independent for any value of component delays. Thus, the
pipeline will operate correctly even if the stages along the pipeline do not have the same delays.

Dependency graphs to determine the cycle time are constructed by examining the schematic for
both the rising and falling transitions of each component. For a component like a C-element which has
symmetric dependencies for rising and falling transitions, its portion of the Dependency Graph will
likewise be symmetric. A segment of the Dependency Graph for the PC0 pipeline configuration is
shown in Figure 7. Only a segment large enough to show the repeating pattern of the graph is drawn.
The up-arrows (‘l’) and down-arrows (J-) in each name distinguish the rising and falling transitions of
the components. The Dependency Graph, as thus constructed, is a simplification of the more general
timed Petri-net description of asynchronous components [RAMC74].  Since the pipelines under
consideration are deterministic, the Petri-net is decision-free and can therefore be equally well
represented by such a marked graph.

Data
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1 Function 1 m
Block
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Function

Block
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Function
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Figure 6: Schematic for stage style PC0 and a short pipeline composed using that configuration.
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Figure 7: A portion of the Dependency Graph for the PC0 configuration style pipeline.

As the pipeline processes successive data tokens, the components in each stage will go through
a series of transitions and return to the same “state” as defined by the output values of each component.
Tracing this sequence of transitions in the Dependency Graph shows cycles. Because the graph is
“timed” by the delays at each node, positive-length cycles do not indicate impossible situations, but
rather the sum of the node delay values around a cycle is a lower bound on the period required for the
components to go through the sequence of transitions to process a successive token. Only if the sum
were zero would there be a problemetic  “dependency loop” akin to having a loop with no registers in
the synchronous case.

Since each transition can fre only when all of its predecessors in the Dependency Graph have
executed their specified transitions, all of the cycles through a node are lower bounds on the cycle time
before this node can fire again. The actual cycle time will therefore be the sum of the delays of the
longest cycle. The correct construction of each stage guarantees that all of the components in a stage
will cycle at the same rate since every transition is part of some cycle in the Dependency graph. Thus,
the longest simple cycle in the complete Dependency Graph gives the minimum cycle time of the
pipeline as a whole. These results were proved in [RAMA80] for decision-free Petri-nets and the
proofs for the Dependency Graph formulation would be analogous. As long as the input to the pipeline
can supply tokens at that rate, the self-timed pipeline operates with cycle time, P, equal to the minimum
cycle time determined by the Dependency graph.

For any specific pipeline configuration, the structure of the Dependency Graph repeats after
each stage and this can be used to make the representation more compact. When the stages are identical
and thus the delay values also repeat, the Dependency graph can be folded together to make a “Folded
Dependency Graph,” or simply “Folded Graph.” An example of a Folded Graph is shown in Figure 8
for pipeline conguration type PCO. The nodes in the Folded Graph represent the transition delays as
before but it is not necessary to subscript them with a particular stage index since the node represents
that transition in all stages. Rather, each edge in the Folded Graph is annotated with an integer weight
giving the offset in stage indices to which that dependency refers. Dependencies between components
in the same stage thus have a weight of zero. Cycles in the Folded Graph whose edge weights sum to
zero correspond to the cycles in the original Dependency Graph and thus the zero-weight cycle with the
largest sum of node delay values gives the cycle time P. Like it was only necessary to examine simple
cycles in the Dependency graph, it is not necessary to examine cycles in the Folded graph which pass
through the same node more than once with the same cumulative edge weight.

For the particular example drawn in Figure 6, any zero-weight cycle must be the concatenation
of the sequence F 7. D J . Cl. FJ . Dt . CT which has edge weight -2 with two more trips through
adjoining loops with edge weight +l. Since it is required to find the longest cycles, the self-cycles on
the F T and F J nodes can be ignored because they are always shorter than the DJ . CT. F T and
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D~.C~.Fpycles. Therefore the following cycles are the possibilities for the longest zero-weight
cycles:

FT.DJ.CJ.FJ.DT.CT.FT.DJ.CT.FT.DJ.CT
FT.DJ.CJ..F&.DT.CJ.FJ.D~C~.FT.DJ,.C~
F~DJ.C~.FJ.D~CJ.FJ.DT.CJ.FJ.D~.C~

+l

cs
1

cr O >fT O > D\l

u+l

Figure 8: The Dependency Graph for the PC0 configuration style pipeline can be folded
together if the stages are identical to make the Folded Graph shown here.

The Folded Graph gives the same information as the original Dependency Graph but in a more
compact form where symmetry is easier to see graphically. Either graph can be used for the analysis of
a pipeline with identical stages. If the stages are not identical, then it should be emphasized that the full
Dependency Graph needs to be drawn because the delay terms from the different stages need to be
distinguished. The longest cycles in the full Depenency Graph will be the ones through the slowest
stage and will hence correctly determine the limiting cycle time for the entire pipeline.

IV. Analysis of specific configurations

Though an actual implementation may have different function blocks in the stages composed
together into a pipeline, this report will, for simplicity, make comparisions of pipelines composed of
identical stages. After defining the notation, this section will  write the exact equation for cycle time for
each pipeline configuration to be considered, and then simplify the equation by applying a set of
standard assumptions likely to be true, at least approximately, in real implementations. The
configurations will be grouped in “families” based on their basic control format, where the family is
composed of members with zero, one, two, or three additional latches per stage. The starting
configuration for this section will be the speed-independent configuration family PC, a precharged
function block controlled by a C-element which was used as the example in the Section III. A specific
delay assumption will enable the formation of configuration family PS which does not require a C-
element in the control. Next considered will be a transformation of the precharged function block into
either the delay-insensitive CF or FC configurations which use a direct function block either followed
or preceded by a latch, respectively. Finally, an alteration of the latch type to flow latches and registers
will be examined in the PL family.
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The nodes in a Dependency Graph represent the delays of particular transitions. These delays
will be written in the equations by subscripting a lowercase t
capital letter abbreviating the block type as follows:

which signifies propagation time with a

F Function blocks
D completion Detectors
C C-elements or C-latches
L flow Latches
R Register (pair of flow latches)
G Generalized C-elements

If an up-arrow (T) or down-arrow (J) is specified after the block type, then the term refers specifically
to the delay of the rising or falling transition. If no arrow is specified, then the delay refers to both
transition directions.

For simplifying the equations, the following relationships are defined as the standard
assumptions:

fD = tDT = to1 (Completion detectors delays are equal and symmetric)
fc = tCT = tc1 (C-element delays are equal and symmetric)
tL = tLT = tLJ (Latch delays are equal and symmetric)
tL = tRT = fRJ (Registers have same delay from enable to output as latches)
t = fL = tR (Registers and latches have same delay as C-elements)
t = tGT = tG1 (Generalized C-element delays are equal to C-elements)
fF1 <= tFt (Function resetting is no worse than evaluation)
fC <= t& (C-element delays are no worse than function resetting)

Section III described the analysis methodology using the PC0 pipeline configuration shown in
Figure 6 as an example. The control in this configuration enforces that it functions correctly as a
pipeline for processing a stream of data tokens separated by reset “spacer” tokens and keeping the
tokens separated. The C-element in each stage will enable the function block for evaluation when the
inputs are valid and the following stage’s outputs are finished resetting. After the stage has evaluated,
the function block holds its outputs, until finally when its inputs have reset and when the outputs of the
following function block have finished evaluating, the C-element in the control will precharge the
function block. Thus, the PC0 pipeline works correctly without any explicit latches because each of
the precharged logic blocks is used as a latch “for free” to hold its output data during the interval after it
has evaluated but before it is precharged again.

Unfortunately, the per stage latency, L = fFT + tcr +fD$ of the PC0 configuration includes
the completion detector delay in the forward serial path because it must detect valid inputs before
enabling the precharge block. The longest paths in the Folded Graph for the PC0 configuration, shotin
in Figure 8, were enumerated in Section III and their maximum indicates that the configuration has a
cycle time of:

p = tFT + tFJ + tDT + tDJ + tCT + tCJ + 2 max (fFT+ tCT + tDT, ‘FJ+tC.l+t&
which under the standard assumptions reduces to

P = 3tFT + tFJ + 4tC + 4tD.

Extending the precharged function block configurations by adding C-latches can reduce the cycle
time. Configuration PC1 imposes a latch between the precharged function blocks as shown in the stage
schematic in Figure 9. A second completion detector is also added of each stage to detect the status at
the output of the C-latch and use this as the input to the control C-element.
per-stage latency L =

Configuration PC1 has a
tFT + 2 tcT+tDT  because of the added propagation time through the C-latch.

IO
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Figure 9: Schematic for stage style PC1

Analyzing the cycles in its Folded Graph shown in Figure 10 determine that a pipeline composed of
identical stages in this configuration has a cycle time of:

P = tCT + tC& + tDT + tDJ  + lllaX [ tFT + tFJ + ma( tDT  + 2tCT, tDJ + 2tCJ,

tDT + t0.l. + tCT + tCs. 1,
2tcT + tDJ+ 2tF, 2tcJ + tDT + 2tFJ ]

which under the standard assumptions reduces to P = 4tC + 3tD + lSMX ( 2tFt , tFT + t/Q + tD ).

+1
+I

Figure 10: The Folded Dependency Graph for the PC1 configuration pipeline
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Figure 11: Schematic for stage style PC2

Configuration PC2 contains one more additional latch between the precharged function blocks as
illustrated in Figure 11. Its per-stage latency is L = tFT + 3tcT + tD1,  and it has an even better cycle
time of:

P = tFT  + tFJ + tCT + tCJ + tDT + tDJ  + llXiX [ 2tCT + tDJ,  2tCJ + tDT,

tCT + ‘CL + tDT + tDJ 1
which reduces under the standard assumptions to P = tFT + tF1 + 4tc + 4tD.

Because the C-element in the control of each stage in the PC pipeline configuration family
explicitly enables the function block evaluation only after valid data is present on the inputs, this
configuration works either with datapaths having embedded completion or with those having only a
bundled completion signal. The C-element in the control will assure that the pipeline is speed-
independent for both types of datapath. Further, the precharged function blocks can have either full-
controlled precharge or a semi-controlled precharge because the control C-element will not apply the
precharge signal until the inputs have reset. This means, of course, that even though the analysis in the
previous paragraphs specified the timing which would result from a pipeline of identical stages, the
pipeline would work correctly for any composition of individual stage reset or evaluation delays.

If bounds are available on some of the relative stage delays, then another stage style is possible
which overcomes the poor latency characteristic of the PC family. Specifically, if it can be assumed
that the resetting of each stage’s neighboring stages are no slower than their evaluation, then the inputs
to the C-element in the control will always come in a known order. Since the output of a C-element is
always equal to the value of the input which last changed to be the same as the other input, an assumed
ordering of the inputs makes the C-element redundant, and it can be just replaced with a wire from the
input which is assumed to come last for both rising and falling transitions. The style formed by this
transformation is called PS. Figure 12 shows the simplest stage in this family, PSO, which directly
concatenates precharged function blocks, and has no C-elements at all. Its per-stage latency is L = tFT,
and the maximum of the delays of all the zero-weight cyclic paths in the Folded graph in Figure 13
determine the cycle time:

P=tFT+tFJ +tDT+tDJ +2m=(tFT,t’J )
which under the standard assumptions reduces to P = 3tFt + tFJ + 2tD.

1 2
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Figure 12: Schematic for stage style HO and a short pipeline composed using that configuration.

Figure 13: The Folded Dependency Graph for the PSO configuration pipeline
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Figure 14: Schematic for stage style PSl

Configuration PSl adds one latch between the precharged function blocks and is shown in
Figure 14. Its per-stage latency is L = tFT + tcT, and analyzing the cycles in its Folded Graph shown
in Figure 15 determine it has a cycle time of:

p = tDT +tDJ + m3.x [ tFT + tFJ + mm( 2tCT ,2tCJ, ‘CT+tCJ),

tcT +Q + 2 mm OFT 9 ~FJ > 1
which under the standard assumptions reduces to P = 2tFT + 2tc + 2tD.

Figure 15: The Folded Dependency Graph for the PSl configuration pipeline

Configuration PS2 contains two latches between the precharged function blocks and is shown
in Figure 15. Its per-stage latency is L = tFT + 2tcT,  and it has an even better cycle time of:

P = tDT + tDJ + ma.X [ tFT + 2tCT + tCJ, tFJ + 2tC& + tCT,

tFT + fFJ + 2 ~-WC @CT, tCJ.) 1
which under the standard assumptions reduces to P = ti;r + tFJ + 2tc + 2tD.

Configuration PS3 contains three latches between the precharged function blocks and is shown
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in Figure 16. Its per-stage latency is L = tFT + 3tFT, and it has cycle time:
p = tDT +tDl + mm [ ma&T , tF1) + tCT + tCJ + mix @CT, tcl),

3 maX(tCT,  tCJ) + n-h (tCT, t&v
tFT + tF1 + 2 max (tCT, t& 1

which under the standard assumptions reduces to the same cycle time as the previous case, P = fFT +
tF1 + 2tC + 2tD.

It should be emphasized that while the PC configuration family worked correctly for either
bundled or embedded completion datapaths, the PS family requires embedded completion because the
function blocks may be enabled for evaluation before valid data actually arrives. But in addtion to the
improvement of not adding the C-element delays for the bundled signal, using embedded completion
signals has the additional advantage of allowing the individual bits of a bus to begin evaluation
individually as soon as their own inputs have arrived without having to wait for all of the bits in the
bus.

Both the PC and PS families illustrate the clear tradeoff between latency and throughput, but
they also illustrate an additional feature not relevant in synchronous pipelines: the dependence on the
relative sizes of fFT and fF& . If the precharge time is about equal to the evaluation time of the function
blocks, then adding a second latch does not help, but if tF1 CC tFT then a second latch helps
significantly. Adding a third latch helps neither the throughput nor the latency and therefore has no
advantage.

There are two different ways to substitue a direct function block for a precharged function
block, and they differ significantly in perfromance. For an analogous analysis, both substitutions will
replace the precharged function block with a direct function block together with a C-latch, but the
difference is as to whether the latch comes before or after the direct function block as illustrated in
Figure 16. If the precharged function block of the PS family is replaced by a direct function block
preceded by a latch, then the resultant configuration is called CF. The simplest member of this family,
CFO, is shown in Figure 17. The operation of the pipeline is straightforward from the control wire
connections; the latch in each stage will reset when the data token it was holding has passed down the
pipe and is no longer needed. A token is known to be no longer needed when it has passed through the
second function block following a latch. Observe that only waiting for the token to pass through the
function block immediately after a latch would not verify that the token had passed through the latch
following that function block. Because the direct function blocks and C-elements are symmetric for
rising and falling transitions, this control connection also correctly enables a latch to accept new valid
data only when the successor is verified to have reset. The CF family will therefore be delay-insensitive
for any delay values of the components without requiring the stages along the pipeline to be identical.
The CFO configuration has a per-stage latency of L =tF + CT, and the maximum of the delays of all
the zero-weight cyclic paths in the Folded graph shown in Figure 18 determines the cycle time:

P = tFT + tF1 + tDT + tD1 + tCT + ‘Cl + 2 maX (‘FT+ tCT , tFl+tCl )
which under the standard assumptions reduces to P = 3tFT +tFl + 4tc + 2tD.
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Figure 17: Schematic for stage style CFO and a short pipeline composed using that configuration.
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Figure 18: The Folded Dependency Graph for the CFO configuration pipeline

Configuration CFl imposes an additional latch between the direct function blocks. Its per-stage
latency is L = fFT + 2 tcT, and analyzing the cycles in its Folded Graph show that this configuration
has a cycle time of:

p = tDT +tDJ + mx’t 1 tFT + tFJ + tcT + tCJ + maX( 2tCT, 2tCJ , tCT+tCJ),
ACT + tci + 2 ma UFT + ACT I qq + tc~) 1

which under the standard assumptions reduces to P = 2tFT + 4tc + 2tD.
Configuration CF2 contains three latches between the direct function blocks. Its per-stage
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latency is L = tFT + 3tCT, and it has an even better Cycle time Of:
P = tDT+  tDJ +MZiX [ tFT + 3tCT + tcl, tF1 + 3tCl + tCT,

tFT +tFl  + tCT + tC1 + 2 max (tCT, tC1) 1
which under the standard assumptions reduces to P = tFT + tF1 + 4tc + 2tD.

Configuration CF3 contains four latches between the direct function blocks. Its per-stage -
latency  is L = tFT + &CT, and it has cycle time:

p = tDT + tD& + mm [ max ( tFT, tF1) + tCT + tC1 + 2 max @CT,  ‘Cl),

3 max @CT,  tcl)  +tin(tCT,  t&,

tFT + tF1 + tCT + tCl + 2 max (tCT,  k-1)  1

which under the standard assumptions reduces to the same cycle time as the previous case,
P = tFT + tFJ + 4tC + 2tD.

Comparing the latency and throughput for the CFO, CFl, and CF2 configurations to those
determined previously for the PSO, PSl, and PS2 configurations, it is seen that they differ only in
the obvious way that tF is replaced by tc + tF .

One of the basic operations in retiming synchronous circuits is to move registers from one side
of a function block to the other which can change the timing and performance without changing the total
number of registers. In the CF configuration family each direct function block was preceded by a latch
and followed by a completion detector. If the latches are “pushed” to the other side of the function
blocks then the pipeline will be resequenced so that each direct function block is preceded by a
completion detector and followed by a latch. The family thus created is called FC and maintains the
property of being delay-insensitive for correct logical operation. The formation of the FC family could
equivalently be described as the other transformation of the PS family, where a direct function block
followed by a C-latch is substituted for each precharged function block

“Ihe FCO configuration shown in Figure 19 has a per-stage latency of L = tFT + tcT, and the
maximum of the delays of all the zero-weight cyclic paths in the Folded graph shown in Figure 20
determines the cycle time:

p = tDT +tDl + max [ fF T +tF 1 + tCT + tcs. + m=d 2tCT ,2tCs. 7 tCT + t&v
tCT + tC1 + 2 max (tF T + tCT 7 tF 1+ tcl) 1

which under the standard assumptions reduces to P = 2tF T + 4tc + 2tD.
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Figure 19: Schematic for stage style FCO and a short pipeline composed using that configuration.

Figure 20: The Folded Dependency Graph for the FCO configuration pipeline

The FCO example shows the per-stage latency, L, of the members of the FC family will be the
same as for the CF family; however, the cycle time, P, for any specific delay values will be improved.
The FCO cycle time has, in fact, the same coefficients as obtained for the CFl configuration even
though FCO has one fewer latch per stage. Likewise, FCl and FC2 will have cycle times
corresponding to those found for CF2 and CF3. So, in the FC family where the latches follow the
function blocks, if the precharge time of the function blocks is about equal to the reset time, then using
FCl is no better than FCO, but if tF1 << tFT then FCl is an improvement. The FC2 and FC3
configurations provide no further improvement.
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The PC configuration family will be the base for transforming the latch used from the C-latch to
the flow-latch or register structure more commonly used in synchronous circuits. Since flow latches
and registers do not actively reset their outputs but rely on the function block to reset, only the full-
controlled precharged logic block makes sense and substitution of these types of latches with the other
function block types will not be considered.

Configuration PLl is illustrated in Figure 21 and corresponds to replacing the C-latch in PC1
with a flow latch and modifying the control appropriately with generalized C-elements to provide the
asymmetric control to the flow-latch. The control is asymmetric because it must pass when its inputs
are reset and its successor is evaluated, but can block as soon as its outputs are evaluated. The function
block itself can enable evaluation when its latch outputs are reset, but must wait before resetting until
its inputs are reset and the latch is blocked. Configuration PLl has a per-stage latency L = tFT + t,y ,
and a cycle time of:

p = tFT + tLT + fL& + tDT + tD1 + tGAT
+ max [ tFT + tGBT 9 tF1 +tGAl + tGsl 7 fF1 + tL1 + tGer]

which under the standard assumptions reduces to P = 2tfq + 2tL + 2tc + 2tD. This cycle time is
similar to that for PCl, but with the deletion of the extra 2tD for requiring the detection of completion
within the forward path.

 

Pre-
charged
Function

Block

Figure 21: Schematic for stage style PLl.

Replacing the C-latches in configuration PC2 with flow latches paired together to make a register yields
configuration PL2 which is illustrated in Figure 22. It has per-stage latency L = tF + tRT , and a
cycle time under the standard assumptions of P = fFT + fFJ + 4tc + 2fD which is similar to the P
for PC2, but with the deletion of the extra 2fD for requiring the detection of completion within the
forward path. So, the timing dependencies of the other latch types as used in the PL family are similar
to those found for the PC family, but without being speed-independent.
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Figure 22: Schematic for stage style PL2.

Figure 23: The Folded Dependency Graph for the PL2 configuration pipeline
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V. Summary of Latency and Throughput Comparisons

The equations derived in the previous sections giving latency and throughput under the standard
assumptions were all in terms of four variables: Tut, ?FJ, fc, and Q. To clearly compare the different
configurations, Table 2 summarizes the equations for the cycle time and per-stage latency by showing-- . - - _ __the pxffic:ienQ of these four variables.

Config C l a s s Cycle Time Coefficients Latency Coefficients
tFt *F3- *c *D *Ft *CT *DT

II PCO i SI i
. I I I I I

3 I 1 I 4 I 4 I 1 I 1 I 1i . . . 1CT i 3 I A I A I 1 I 2 ’ 1

PC2
PC3
PSO
PSl
PS2
PS3
CFO
CFl
CF2

CF3
FCO
FCl
FC2
PLl
PL2

SI 1 1 4 4
SI 1 1 4 4

I 1 I 1 I 4 I 2

i

I I

I 2 I 0
1 I 3 I 0
1 I 1 I 0
1 I 2 I 0

Table 2 : Coefficients of delay equations under standard assumptions

Under many cases, it may be possible to make further simplifying assumptions to compare the
different configurations. Table 3 shows the results of applying the simplifications at the tops of its
columns to the coefficients previously summarized in Table 2. The numbers for both latency and
throughput are normalized by t’t, the function block evaluation time. Since all the numbers represent
delays, the smaller numbers are always better. The first two columns of Table 3 give the latency and
throughput assuming that tF&=tc  =tD = 0 which is nearly the case in the extreme of large function
blocks which are composed internally of several precharged domino stages. Since the stages evaluate
in series but reset in parallel, the reset time will be much less than the evaluate time, and could
justifiably be approximated as being zero. The table is not filled in for the static logic cases in these
columns because these assumptions would not apply in those cases. The middle two columns in
Table 2 are for the case of tc = tD = 0 while tFJ = tFt which would be appropriate for large
function blocks where the reset time is comparable to the evaluate time. The last two columns are
for the case of tFJ=tc =tD =tFt which would be an appropriate assumption for very small function
blocks where both the function blocks and the latches were all just a gate delay. Real applications
would, of course, have throughput and latency somewhere between the extremes listed in this table.
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Pipeline
Conflg
Style
PC0
PC1
PC2
PC3
PSO
PSl
PS2
PS3
CFO
CFl
CF2
CF3
FCO
FCl
FC2
PLl
PL2

tc =tD =o *c =*D =tFr

I I I I -- I

2 I 1 121 i I101 4

1 1 1 I 2 I 1 3 I

Table 3 : Cycle Time and Latency under further simplifications
(Normalized to tFT, the function block evaluate delay)

VI. Dynamic and Static Spreads, and Flow Rates

Together the latency and throughput determine the number of stages over which each token
“spreads” in an asynchronous pipeline. If the input supplies tokens as fast as the pipeline consumes
them and the output takes tokens as fast as the pipeline supplies them, then in the steady state the input
and output rates will match and the number of tokens in an N stage pipeline will be NLT = NLIP. The
dynamic spread in stages between tokens in the flowing pipeline can therefore be defined as D=P/L.
The reciprocal of the dynamic spread, 0, is the dynamic occupancy or “utilization” of the pipeline.
This tells how effectively the stages are being used in parallel. For example, if D = 2, then the
utilization of one-half means that only every other stage in the pipeline can be simultaneously
evaluating.

If the output of a pipeline is blocked so that the pipeline fills up with tokens and stops, then
another important quantity is the static spread in stages between tokens. The static spread, denoted by
S is the reciprocal of the “packing density” of the pipeline, and is, of course, determined by the
connectivity of the components but not their delays. The static spread is important if the application
requires the pipeline to also provide a buffer queue for a specified number of tokens during brief
periods of I/O mismatch. Both the dynamic and static spreads for the various pipeline configurations
are shown in Table 4, where, of course, smaller numbers are better. The numbers are in units of
stages/token; however, the stages are not necessarily of constant area since the stages which include
more latches will, of course, be larger. The numbers provide a fair indication of the relative areas of the
different configurations if the function block area is large compared to the latch area.
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Table 4 : Dynamic and Static spreads in units of stages/token

At any instant in a pipeline, the stages not occupied by the data tokens or their intervening reset
spacers can be said to contain a “bubble.” Bubbles are introduced at the output by the consumption of
data tokens. Like holes in a semiconductor, the bubbles flow backwards as the data and reset spacers
flow forwards. But unlike a synchronous pipeline, which can flow when fully packed, an
asynchronous pipeline can be limited by the supply of bubbles. In fact, there must be bubbles for an
asynchronous pipeline to flow at all. In a pipeline of N stages with static occupancy S from Table 4,
there can be up to NIS tokens; however, if the pipeline has nearly that many tokens then it will flow at
a rate wholly limited by the “backwards latency” of bubbles introduced at the output rather than the
“forward latency” of data tokens introduced at the input.
An asynchronous pipeline will be able to achieve its maximum flow rate, given by the reciprocal of the
cycle time P, when it flows uniformly throughout its length. For this flow rate to be supported, there
must be enough bubbles. This required number of bubbles for maximum flow is given by

NC+ -$,

the difference of the reciprocals of the static and dynamic spreads. If there are fewer bubbles than this,
then the pipeline will not be able to flow at the maximum rate, and while momentary input or output
rates in excess of the overall flow rate can occur, they will result in a non-uniform distribution of tokens
along the pipeline.

VI. Application to Rings

A pipeline which recirculates its output back around to its input can form a loop, or ring, which
cycles wholly under self-timed control. The rate at which the ring cycles, or iterates, will be determined
by the configuration and delays of the stages, independent of any external control signals. Rings can
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circulate one or several tokens. Although in general, the rings may go through merge or join stages
which introduce or consume additional tokens as the tokens flow around the ring, this report will
examine the simpler case of a ring where the number of tokens is fixed once the ring has hen
initialized. So although a ring certainly requires a means for initialization and output, they can be
ignored in discussing the fundamental iteration time of the ring. The dominant consideration in
evaluating the ring‘s performance is therefore the overall function htencv which will be determined by-
the rate at which the tokens are able to flow around the ring.

The rate at which tokens flow around the ring is limited by two factors. The first is the
fundamental per-stage latency of the particular stage configuration chosen, as given in Tables 2 and 3.
A lower bound on the overall function latency is NM, the number of stages in the ring times the per-
stage latency times R, the number of times around the ring necessary to accomplish the desired
function.

The other consideration giving a lower bound on the overall latency is the possibility of being
limited by waiting for the control handshakes or the propagation of bubbles. Such waiting can occur if
there are so few stages in the ring that the local handshakes between adjacent stages have dependencies
which affect each other. To keep the dependencies from introducing additional constraints, there needs
to be enough stages in the ring to support the desired number of data tokens and spacers, as well as
additional extra space which forms the “bubbles” around the tokens. If there is not enough bubble
space around the tokens then the ring will cycle at a reduced rate because the extra dependencies cause
reduced parallelism between the stages. Optimally, data tokens will circulate through the ring at the
same rate they could flow down a pipeline using the same stage configuration. The minimum number
of stages needed in the ring for this optimal flow is given by TD, where T is the number of data tokens
desired and D is the dynamic spread from Table 4 for the particular pipeline configuration. The
dynamic spread thus specifies the average number of stages occupied by a data token and its
accompanying reset spacer along with enough bubble space so that it can flow unimpeded by the other
tokens. If there are TD or more stages then the rate at which the tokens flow around the ring will be
limited only by the fundamental per-stage latency.

An important application of self-timed rings is their usage in solving a single function which
requires the recursive evaluation of an operation many times. In this case, the stages in the ring can
form the steps of the operation or can repeat the operation several times as computation progresses
around the ring. For this application, it is usually desired to concentrate on solving just one problem at
a time and therefore there need only be one data token circulating around the ring. For just a single
token, the minimum number of stages in the ring is simply D, the dynamic spread.

Actual implementions of single-token self-timed rings have been applied to evaluating the
arithmetic function of division of normalized fractions in mL87] and mL91]. Both of these
designs chose the PSO configuration because of its minimal latency and simple control. By directly
concatenating the functional blocks, the per-stage latencies in this configuration come solely from the
raw combinational logic. The design in wLL87] used only three columns and was unfortunately
limited by the cycling of the control circuitry because the particular value of dynamic spread incurred by
the control logic was nearly 4.5 stages. The second design in [WILL91 ] contained several
improvements which lessened the absolute value of L, the per-stage latency, and also chose to use five
stages. Experimental measurements found the actual value of the dynamic spread was about 4.2 stages.
Therefore by using 5 stages, the rate at which data flows around the ring in this circuit is limited solely
by the fundamental per-stage latency L since the control logic never enters into the critical path of the
data tokens.

VII. Conclusions and Further Work

Using Dependency graphs, a methodology has been prescribed to quickly determine the exact
throughput and latency for deterministic self-timed pipelines. Applying this method to examples has led
to useful tables for comparison of self-timed pipeline configurations. These comparisons could be used
by synthesis tools [CHU86][MENG89]  to choose from a wider range of possible circuits depending on
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specific delay considerations.
For ordinary pipelines, throughput is usually the dominant consideration. From Table 1 it can

be seen that the best choice for a high-throughput pipeline may indeed vary depending on the actual
ratios of tc and tF1 to *FT. Likely good choices for pipeline configurations are Ps2, PL2, and FCl.
The latter uses a direct function block style rather than a precharged function block and can save the cost.
of a completion detector per stage while achieving similar throughput, but it is important that the
remaining completion detectors following the latches and not the function blocks. Using direct function
blocks is most significant if a completion detector has a high cost in area, because for example of a large
bus width.

Latency is the most important concern for self-timed rings. The direct concatenation of
precharged function blocks, configuration PSO, is the best because it adds no additional latency over
the functional blocks themselves, and it will, moreover, be compact because of the absence of control
logic. However, this configuration has a higher dynamic spread than others which will increase the
number of stages necessary to keep the ring from being slowed by additional dependencies between the
stages. If area limitations are important than choosing configuration PSl might be a good compromise
between latency and area for a ring. Evaluating the actual performance for a particular ring
implementation requires specific information about the relative delays of the control elements and the
function blocks. The Dependency Graph analysis can used to evaluate the possible problem of extra
dependencies in the ring by drawing the graph for the whole ring rather than just a pipeline segment.
Examining the design in this way will allow the comparison of possible alternatives in defining the
stage boundaries and control logic connections.

Although this report is concerned primarily with four-phase value-encoded systems, many of
the results will also apply to two-phase transition encoded systems [SUTH89] with appropriate
modifications to the function blocks [DEAN90]. In particular, the last four columns of Tables 2 and 3
have the assumption fFJ=tF~ which would be appropriate for two-phase pipelines where both
transistions convey a useful data token. In the two-phase case, the latency remains the same but the
throughput is doubled. Likewise, the static and dynamic occupancies would both be doubled, and thus
the static and dynamic spreads shown in Table 4 would both be halved. More work will be needed for
alternate control or function block styles designed specifically for two-phase pipelines.

The performance analysis in this report was based on fixed component delays. An extension
would be to consider stochastic delays with specified probabilistic distributions. Such an analysis has
been performed in [GREE88] for a very abstract model, closest to PSO in this report, but could be
extended to the other pipeline configurations suggested here. Such stochastic models would more
accurately reflect situations where delays are more variable and unknown. Unfortunately, the results of
a stochastic delay model will always be worse than the case of fixed delays because the former can only
introduce additional waiting and pipeline stalling in a speed-independent circuit.
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