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Abstract

Lattice gas models are cellular automata used for the simulation of fluid dynamics. This
paper addresses the design issues of a lattice gas collision rule processor for the four-dimensional
FCHC isometric lattice gas model. A novel VLSI architecture based on an optimized version
of Henon’s  isometric algorithm is proposed. One of the key concepts behind this architecture
is the permutation group representation of the isometry group of the lattice.

In contrast to the straightforward table lookup approach which would take 4.5 billion bits
to implement this set of collision rules, the size of our processor is only about 5000 gates. With
a reasonable number of pipeline stages, the processor can deliver one result per cycle with a
cycle time comparable to or less than that of a common commercial DRAM.
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1 Introduct ion

Lattice gas models are cellular automata used for the simulation of fluid dynamics. (see [I] for
an introduction to the subject). A two-dimensional model with the required degree of isotropy
to simulate the full Navier-Stokes equations was proposed [2]. The subject is much less advanced
in higher dimensions. Though no suitable three-dimensional lattice exists [3], one may use four
dimensional models so that three-dimensional problems can then be easily simulated as special
cases [l]. A four-dimensional lattice with the required properties has been proposed [3]: the
face-centered-hypercubic (FCHC) lattice with 24 neighbors.

In two dimensional problems, one can easily implement the collision functions with either
the table lookup approach or simple boolean expressions, since they
and fast. However, this solution does not scale up.

are relatively simple, cheap

The table lookup approach is expensive because it is general purpose. Basically, the size of
such a table grows exponentially as the number of input bits. For an n-bit lattice gas model,
the table size is at least n2n bits. For the 6-bit FHP model, the size is 384 bits. For the
24-bit FCHC model, the size is 384 Mbits! Even this high number does not account for the
extra hardware required to handle non-deterministic aspects of the collision rules. So lattice
gas models seem to lose their appeal when we move to higher dimensional problems.

In order to apply massive parallelism to this problem, we must first efficiently compute a
single collision. If a computation primitive is important enough, we build special units to com-
pute it, just as in the cases of integer and floating point adders and multipliers. Unfortunately,
current special purpose cellular automata machines such as CAM-6 [4] and RAP-l [5], which
use the table lookup approach, are limited to models with 16 or less input bits. How can we
build machines which can handle lattice gas models with 24 or more number of bits by taking
advantage of the special properties of the collision rules?

Henon proposed the isometric collision algorithm mainly as a recipe to select collision
rules [6]. We propose to actually implement the isometric algorithm in hardware. We will
show that an implementation is feasible and cost effective with current technology. Further-
more it is much more effective than the table lookup in terms of area and speed.

We first describe the FCHC isometric lattice gas model from a computational point of view
in Section 2. Section 3 introduces the isometric collision algorithm. Implementation issues and
possible optimization of the algorithm are discussed in details in Section 4. Also introduced
is the permutation group representation of the isometry group, which is a key concept for an
efficient hardware implementation of the isometric algorithm. The hardware organization is
described in Section 5. Section 6 gives a performance estimation of the proposed architecture
in terms of speed and area, and a comparison with the table lookup approach. Finally, this
work is summarized and further research opportunities are briefly discussed.
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2 FCHC Isometric-Model

In a lattice gas model, space and time are discretized. Time is divided into a sequence of equal
time steps, at which particles reside only at the nodes of the lattice. The evolution consists
of two alternating phases: (i) propagation: during one time step, each particle moves from one
node to another along a link of the lattice according to its velocity; (ii) collision: at the end of a
time step, particles arriving at a given node collide and instantaneously acquire new velocities.

The properties of the lattice not only govern the propagation phase, but also significantly
constrain the collision phase, because the collision rules must have the same symmetries as the
lattice [l]. An isometric model is a lattice gas model with isometric collision rules, which are
particularly interesting lattice gas models [6, 31, and they may lead to an efficient implementa-
tion.

2.1 FCHC Lattice

A FCHC (face-centered hypercubic) lattice consists of those nodes, which are the points with
signed integer coordinates (~1, x2, x3, x4) = x such that the sum x1 + 22 + 23 +x4 is even. Each
node x is linked to its 24 nearest neighbors x’ such that the vector x’ - x corresponds to one
of the following 24 values:

W,fvM), (~LO,~l,O), (fl,O,O,fl),

Wl,fLO),  (O,fl,O,&l), (O,O,fl,fl). (1)

These 24 nearest neighbors form a regular polytope. With time steps normalized to 1, the
vectors in (1) are also the 24 possible velocities of the particles arriving at a node or leaving it.
Let V be the set of such velocities, which are arbitrarily labeled as v;, with i = 1,. . . ,24. The
state of a node can be denoted by the bit vector b = (bl, . . . , b24),  where b; = 1 if a particle
with the corresponding velocity v; is present, and b; = 0 otherwise.

2.2 Isometry Group

Associated with the FCHC lattice is the isometry group G of order 1152, which preserves the set
of velocities V. Roughly speaking, an isometry is a rotation around the origin plus an optional
mirror symmetry. More precisely, an isometry can be represented by a matrix M:

The group operator is the ordinary matrix multiplication operator. The image of a velocity v
in the isometry M is Mv. Particular examples of isometries are

2



1. S,: the change of sign of one coordinate ac, where a = 1,2,3,4.  For example:

2. Pap: the permutation of two coordinates a and ,O where a, ,O = 1,2,3,4 and a # ,8. For
example:

f52 =

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

(4)

3. Cl, &: the reflections with respect to the hyperplanes x1 + x4 = x2 + x3 and x1 =
x2 + x3 + x4 respectively:

1
Cl = 5

1 1 1
1 l-l
l-l 1

-1 1 1

1
1

- 1
- 1

It can be shown [6] that the set of 12 elements:

1
- 1

1
- 1

- 1
\

1
1
1 I

1
-1
-1

1 )

~1,~2,~3,~4,~12,~13,~14,~23,~24,~34,cl,c2 (7)

form a generating set, and every isometry M can be uniquely expressed as a product of the
form

I
I

fi2

p13
Cl (8)

fi4
i ic2

where, in each parenthesis, one of the factors is to be chosen, and I is the identity matrix.

(5)
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2.3 Isometric Collision Rules

The isometric collision rules [6] require that

1. Every collision is an isometry: the output velocities are images of the input velocities in
an isometry.

2. The isometry depends on the momentum only: compute the momentum of the input state,
and normalize it by taking advantage of the symmetries, and use it for classification.

3. The isometry is randomly chosen among all optimal isometries: this is why non-determinism
comes into play. (An optimal isometry is one which minimizes the viscosity of the lattice
gas, so that higher Reynolds numbers can be reached.)

3 Isometric Collision Algorithm

Henon’s  isometric algorithm
function of the input state.

[6] shows how the output state is computed as a non-deterministic

1. Compute the momentum q = (qr,q2,q3,  q4) of the input state: q = C$!, b;v;

2. Normalization: Apply the appropriate isometries to the input state and the momentum
so that the normalized momentum satisfies the following condition:

Qr 2 42 2 43 > 44 L 0 and (q4 = 0 or ql + q4 < q2 + q3) (9)

(a) Apply the isometry S, if qa < 0, for QI = 1,2,3,4.

(b) APPLY pap (o # P, and a, P = 1,2,3,4)  so that ql > q2 2 q3 2 q4 2 O.

(c) If 44 > 6 and qr + 44 = 42 t 43, apply x2. If q4 > 0 and q1 t q4 > q2 + q3, apply Cl,
and then apply S4 if the new q4 < 0.

3. Collision:

(a) Determine the class of the normalized momentum according to Table 1.

(b) Choose at random one of the optimal isometries of that class according to Table 2.

(c) Apply this isometry.

4. Denormalization: Apply the isometries applied in step 2 in reverse order to obtain the
output state.

In order to take advantage of the isometries inherited in the model, it is not necessary to
restrict ourselves to the particular form of normalization momentum as defined in (9). However,
this form is convenient for mapping to familiar hardware structures.
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Table 1: Classes of normalized momenta

Class Definition

1 Ql = 42 > q3 > q4 > 0

2 Ql = q2 = q3 > q4 > 0

3 Ql >q2>q3>q4=0, q1=q2+q3

4 Ql >q2>q3>qLl=o, q1#q2+q3

5 Ql = q2 > q3 > q4 = 0

6 q1 > q2 = q3 > q4 = 0, ql = zq2

7 Ql > q2 = q3 > q4 = 0, q1 # 2q2

8 q1 = qz = q3 > q4 = o

9 Ql > q2 > q3 = q4 = 0

10 q1=qL?>q3=q4=0

11 q1 >q2=q3=q4=0

12 q1 = q2 = q3 = q4 = 0

Table 2: Classes of optimal isometries

Class Optimal isometries

1 1 p12

2 2 p23pl2,  p23pl3

3 2 s4&, s4c2

4 1 s4

5 1 s4pl2

6 4 s4%, s4c2, s4p23&,  s4p23c2

7 1 s4p23

8 4 p23pl2,p23pl3,  ~4~23~12,~4~23~13

9 3 s4s3,  s3p34, s4p34

10 6 s3p34pl2,  s4p34pl2,  s4s3&,

s4s3p34pl2&,  s4s3c2,  p34pl2c2

11 6 s4s2p23,  s4s3p23,  s3s2p24,

s4 s3p24,  s3s2p34,  s4 s2p34

12 12 s3&p34pl2,  s4slp34pl2,  s3s,p34pl2, s4s2p34pl2

s2slp24pl3,  s4slp24pl3,  s3s2p24pl3,  s4s3p24pl.3

s2slp23pl4,  s3slp23pl4,  s4s2p23pl4,  s4s3p23pl4
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4 Implementation Issues

The algorithm can be viewed as a description of how to generate the right control signals to
transform the input state bits.

4.1 Data Transformation

As we see in the isometric collision algorithm, the application of an isometry to a state is the
most frequent and important operation. An efficient implementation of this operation is thus
most crucial.

Let us examine carefully how this operation may be carried out. Suppose b and b’ are
the input state and output state respectively, and b’ is deduced by applying the isometry M
to b. First, we decode the actual set of input velocities from b: {v;lb; = 1, i = 1,. . ., 24).
Then we apply the isometry M to each present velocity to compute the set of output velocities:
{MviIbi = 1,i = l , . . . , 24). Finally, we encode the output velocities as the output state:
b’= (b;,.. . , bi4), where for all j, b$ = 1 if vj = Mvi and b; = 1 for some i E { 1,. . . ,24}, and
b> = 0 otherwise. Decoding is simple; matrix multiplication is relatively expensive; encoding
may even involve searching or sorting in some implementation. In other words, the operation
of applying an isometry to a state seems to be quite expensive. Fortunately, there is a much
better way to approach the problem.

Since an isometry M preserves the set of velocities V, that is, v; is mapped to vj, whether
b: = 1 is equivalent to asking whether bi = 1. Hence, applying an isometry to a state vector is
equivalent to permuting the state components in a particular order, independent of the actual
values of the components. This implies that the output state vector is a permutation of the
input state vector. How an isometry is applied to a state vector is strongly related to how the
isometry is represented.

4.1.1 Representation of Isometries

This section is written with general notations so as to be valid for any single-speed lattice gas
model [1] with its associated isometry group G.

Let V be the set of all n distinct particle velocities. A velocity labeling function, f V, is a
bijective function fv : V I+ N, where N = {1,2 ,..., n}, We write V = {VjIj E N} with the
implicit assumption that some fv has already been chosen.

Let A be a set and consider the set 5’~ of all bijections f such that f : A H A. The set
SA under function composition, denoted by [SA, o], is called the group of permutations on A.
Any subgroup of SA is called a permutation group. Cayley’s theorem states that every group is
isomorphic to a permutation group [i’].

Suppose GM is the matrix group representation of the isometry group G, so that the image
of a velocity v in the isometry M is Mv, where M E GM. We would like to find a permutation
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group isomorphic to the isometry group G. In the following, we will derive the corresponding
permutation group G, from the matrix group GM by construction of an isomorphism.

Let G, be the range of the function f~ : GM I-+ G, defined by ~G(M) = 7r such that for
all i,j E N, r(i) = j if iklvi = vj, where vi, vj E V. Since an isometry preserves the set of
velocities, 7r is indeed a permutation of N, and hence G, is a subset of S,. Moreover, it can be
easily verified that G, is a subgroup of S,, that is, G, is a permutation group (see Appendix A).

Since G, is defined as the range of fG, fG is onto by definition. It is also one-to-one because
of isometry. Hence, fG is bijective.

Proposition 1 For all Ml, M2 E GM, fG(M2 - Ml) = f~(M2)  o f~(M1).

proof: For all i E N, there exist j, k E N such that Mrv; = vj, and Mzvj = vk. Obviously, we
have (~~2~1)~;  = vk, and hence fG(& - Ml)(i)  = k. Also we have (f&&) o fG(n/rl))(i)  =
fG(M?.)(  f&b)(i)) = f&b)(j) = k. Cl

Theorem 1 fG is an isomorphism from [GM, *] to [G,, 01.

Proof: As G, has already been verified to be a group under function composition, the theorem
follows naturally since we have already shown that (a) the function f G is a bijection and (b)
for all Mr,M2 E GM, fG(k?2 - Ml) = fG(M2) 0 fG(Ml) (see Prqhtion 1). 0

Although Theorem 1 is valid independent of the particular choice of fv, the velocity labeling
function, the particular permutation functions in G, do depend on fv. Table 3 shows some
images of fG for the particular fv chosen. The permutations in lower cases are the isomorphic

images of their respective matrices in upper cases.

4.1.2 Applying Isometries

Recall that N = {1,2,. .., n}, and bi E {O,l}.  Let B = (0, l}. For each permutation r : N +-+ N
in the permutation group G, , let us define a function ii : Bn H B” such that

k[(bl,  b2, - - . 7 bn)] = (b,-l(l) 7 br-1(2)  7 * * * 7 b,-l(n)) (10)

We can easily show that ii is a permutation of B”, and G^,, the set of such 2’s, is a
permutation group of Bn under function composition (see Appendix B). We shall call G^,  the
induced permutation group of G,. Note that Ic^,l = IGXI.

Since an isometry A4 preserves the set of velocities V, that is, v; is mapped to vj, whether
b$ = 1 is equivalent to whether b; = 1. As x = fG(M) exactly represents the permutation of
the indices of a state vector, applying an isometry M to a state vector b is thus equivalent to
evaluating ‘7i( b), where K = fG(h!). A s a circuit, ii is nothing more than a permutation of the
n wires connecting the n input ports to the n output ports.
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1
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24

4
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17
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8
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6
18
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7
2

22
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4.1.3 Composition of hornet  ries

As GM is isomorphic to G, according to Theorem 1, 7r can be uniquely expressed as a compo-
sition of the form

~=(~4)(~3)(rli:l)(p~4)(~~)[  i;]( ;;) (11) _

where, in each parenthesis, one of the factors is to be chosen. The factors in lower cases are
permutation functions, the respective images of those matrices appeared in (8), and i is the
identity permutation.

These generators have some interesting and useful properties. Each of them is an inverse
of itself; some commute with each other, for example, sr o s2 = s2 o sr. This may be useful
when we consider operator reordering to reduce the critical path delay. The permutations

%~27~3~~47%~2  are even, while pr2,  prs, pr,J, &‘,p24,p34  are odd. This is independent Of
the labeling function. Any one of these generators can be written as the product of disjoint
transpositions, i.e., disjoint cycles of length 2. In general, every permutation can be written
as the product of disjoint cycles in only one way (where the order of the factors does not
matter) [8]. In other words, the cycle form of such a generator is unique.

Equation 11 suggests the use of some kind of multiplexers to specify the particular r to be
composed. An implementation of this form may use 2-to-1 multiplexers, 3-to-l multiplexers, or
4-to-l multiplexers. Since the order of the group G is 1152, we need at least [log, 11521 = 11
control points. In fact, a more convenient and efficient composition form of 7r exists:

T = (:,)(r,)(r,)(:l)(,:3)(;4)

ip:,) (Pi4) (P:2) (i2 )(z)

Let X(T, c) be a conditional permutation defined by

X(Tr, c) =
{

7r i f c = l
i i f c = O

(12)

(13)

We can then rewrite Equation 12 more precisely as

7r = X(S4,%*) OJqS3&) 0 X(s24sz)" x(sl,csl)  ox(P23,cp~~)"x(p24,cpz.l)  o

X(P13Ad O X(P341Cp34  > O X(P12, CpJ O wJ2,  G72) O X(% cq) (14)

This form also requires 11 control signals, but it only uses 2-to-l multiplexers. The par-
ticular 13,~‘s are chosen because they correspond to a fast parallel momentum sorter used to
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implement step 2(b) of the isometric algorithm. To be consistent, some entries in Table 2 re-
quire modification: for the last 4 optimal isometries of class 12, replace the symbols P23Pr4 by

p24pl3p34pl2.

4.2 Control Generation

Since the generation of the control signals has to precede the application of the corresponding
isometries, they are in the critical path of the circuit. The general guideline of our design

is to generate the control signals as early as possible with the minimum amount of hardware
resources. We tend to trade area for speed if or-parallelism is useful, that is, if computing
results for different cases in parallel helps to reduce the critical path delay. One significant
demonstration of such tradeoff is described in the next section.

. .

4.2.1 Sigma Optimization

From Table 1, we observe that the class of the normalized momentum is completely specified by
the results of the following five boolean equality tests performed on the momentum components
after step 2(c) of the isometric collision algorithm: q1 = a, q2 = q3,q3 = q4,q4 = 0, and wtq4 =
q2 + 43. In other words, computing the actual value of the normalized momentum is a means
rather than an end. Can we somehow avoid computing the actual values of the momentum
components under various cases in step 2(c)? The idea is to merge steps 2(c) and 3(a) of the
isometric collision algorithm. Instead of actually calculating the (final) normalized momenta
under different cases, testing the equalities, and then selecting the results conditionally, we have
found that we can skip the calculation of the normalized momenta by the following analysis.

By the end of step 2(b) of the isometric collision algorithm, the momentum components are
non-negative and sorted: q1 2 q2 2 q3 > q4 2 0. There are a total of 5 mutually exclusive cases:

1. q4 = 0: apply I

2. 44 > 0 and qr t q4 < q2 + 43: apply I

3. 44 > 0 and q1 + q4 = q2 + q3: apply  c2

4. 44 > 0 and qr t q4 > q2 t q3 and q1 - q4 5 q2 + q3: apply c 1

5. 44 > 0 and qr t q4 > q2 + q3 and q1 - q4 > q2 + q3 apply s4c1

It is clear that the final momentum q’ after application of the corresponding isometry in all
5 cases satisfy condition (9). For example, if case 3 applies, then

q’ = c,q = ;

Ql t q2 t q3 t q4

Ql t 42 - q3 - q4

Ql - Q2 t q3 - q4

Ql - 42 - q3 t q4 I

(15)



case equality tests

!7: = q; q; = q; q; = q; qi = 0 q: + (2; = q; t 4;

1 !I1 = 42 42 = 43 q3 = q4 true o-44 = 42 t q3

2 !I1 = (22 42 = 43 43 = q4 false false

3 false 42 = 43 43 = q4 true false

4 43 = 44 42 = q3 Qi = 42 Qi - 44 = q2 t q3 false

5 43 = 44 42 = q3 false false false

Table 4: Equality tests under the 5 cases

input output

h 41 = 42 e1 !l: = d?

t2 42 = 43 e2 d? = 4

t3 43 = 44 e3 4 = 4

t4 44=0 e4 q; = 0

t5 q1 tq4 > 42-03 e5 qi + q: =  q; t  Q

t6 q1 tq4 = 42 t q3 N--C2 case 3 applies

t7 q1 - q4 > q2 t q3 N-G case 4 or 5 applies

t8 ql - 44 =  42 t  43 N34A case 5 applies

Table 5: Meaning of Sigma block variables

variable expression

N-C2
N-Cl
NwS4A

el

e2

e3

e4

e5

ct6

m5

m5 t7
- -

tl (t4 v t5 t6) v t3t4t5

t2

t4 v t6 v t5 t7 tg

t4 t6

Table 6: Sigma block outputs
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Figure 1: A processor architecture for the FCHC isometric model

As shown in Table 4, performing the equality tests on the final momentum q’ is equivalent
to performing some other tests on the “sorted momentum” before the possible application of

Cr or C2. For example, if case 4 applies, then testing whether qi = qi is equivalent to testing
whether q3 = 44. As another example, if case 3 applies, then qi = 0 is known to be true. If we
make the variable assignment as shown in Table 5, we can express the output variables as in
Table 6 (also see Section 5.1.2).

5 Hardware Organization

The processor consists of two parts, namely, the control generator and the permutation network.
Figure 1 shows the block diagram of the top level architecture. In this paper, it is described
basically as a combinational circuit. However, this structure is easily pipelined to achieve higher
throughput. How the pipeline feature can be utilized in a system environment will be discussed
in another paper.

5.1 Control Generator

The control generator is composed of 4 functional blocks, namely, the momentum adder, mo-
mentum normalizer, collision rule table, and randomizer. It generates all the control signals
required to control the settings of the permutation network. It accepts 24 input state bits and

12



generates 23 distinct control signals.

5.1.1 Momentum Adder

The momentum adder computes the four momentum components from the input state bits, as
specified in step 1 of the isometric algorithm. Using the same velocity labeling as in Table 3,
we have

Ql = bl t b2 - b3 - b4 t b5 t b6 - b7 - bg t bg t blc, - bll - b12

q2 = h - b2 i-b3 - h-i- h3th4 - h5 - hit b-018 - big - b2o

43 = b5 - b6 t b7 - bs t h3 - bl4 t bl5 - b16 t b21 t b22 - b23 - b24

44 = bg - ho t hl - b t bl7 - bus t hg - bm t b21 - b22 t b23 - b24

(16)

(17)

(18)

(19)

Note that all operands are 1 bit wide, and there are many common sub-expressions.
operands may be added by using carry save adders [9].

Such

5.1.2 Momentum Normalizer

Figure 2 shows the complete design of the momentum normalizer in terms of common functional
blocks such as adders and comparators. Most of the operands are 3 bit wide, and only a few of
them are 4 bit wide. Hence, they are small and fast. The momentum normalizer accepts the 16
momentum bits, generates 12 control signals to drive the state normalizer of the permutation
network, and outputs 5 bits to drive the collision rule table. The hardware implements the
control decisions made in steps 2 and 3(a) of the isometric algorithm. The 4 blocks in the first
level correspond to step 2(a). They generate the four control signals, N-Sl,N-S2,NS3  and
N-,74. The 5 sorters in levels 2, 3 and 4 correspond to step 2(b). This structure is chosen
because it is the fastest and smallest parallel sorter [lo] for 4 numbers. It generates the five
control signals, NPl2, N-P34, NYl3, NY24 and NY23.

At the output of the fourth level, the momentum components are sorted: q1 2 q2 2 q3 2
q4 2 0. The rest of the normalizer implements the Sigma optimization as discussed in Sec-
tion 4.2.1. The Sigma block generates the last 3 control signals, namely N-X2, N-Cl and
N3’4A, and the 5 bits, er, e2, es, e4, es, which encode the class, according to Tables 5 and 6.

5.1.3 Randomizer

Suppose we have a good quality pseudo-random number generator. Since the maximum number
of optimal isometries of any one class is 12, the randomizer must have 4 output bits. Note that
12 is divisible by all n,, where n, is the number of optimal isometries corresponding to any one
class (see Table 2). The random number generator can be realized as a chain of simple linear
feedback shift registers. It generates one new random number for each input state vector. It is
not in the critical path.

13
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5.1.4 Collision Rule Table

The collision rule table generates the 11 control signals, namely, C-Cl,  CX2, C-P12, C-P34,
C_Pl3, CY24, C-P23, C-Sl, C-5’2,  C-S3, and C-5’4.  All these signals can be generated at
about the same time. The table is the “programmable” component of the processor (see Table 2
and the required modification as mentioned in Section 4.1.3). It can be realized as a PLA with
9 inputs, 11 outputs, and at most 79 product terms. It can also easily be split into a few smaller
PLAs or logic circuits to further optimize speed and area.

5.2 Permutation Network

The permutation network is divided into 3 sections, namely, the state normalizer, state collider,
and state denormalizer, that are very similar in structure. The network takes 24 state bits
as inputs, permutes the bits according to the conditional signals from the control generator,
and provides 24 state bits as outputs. The width of the data path is uniformly 24 bit all
through the network. The structure is very regular. Each conditional permutation operator is

a hardware realization of some function ii of G^,. It is a combinational circuit which realizes
some ii : Bn H B”, so that the corresponding isometry is applied to the input bits. In Figure 3,
say, NSl is a control signal to the conditional permutation operator s 1.

Such a conditional permutation unit can be realized as a row of multiplexers. Figure 4 shows
the implementation of some of the permutation functions listed in Table 3. Alternatively, since
each element of the permutation group can be written as products of disjoint transpositions,
it can also be realized as a row of 2x2 switch boxes (see Figure 5). A 2x2 switch box copies
its 2 inputs to outputs if the control is 0, and switches the outputs if the control is 1. For a
given permutation function, the number of multiplexers is exactly twice the number of switch
boxes, which is equal to the number of 2-cycles in its cycle representation. These numbers are
independent of velocity labeling.

Some permutation units require longer wires and wider wiring channels than others. As the
choice of the velocity labeling function, fv, determines the exact permutation function repre-
sentation of an isometry, the labeling function affects the wiring complexity of the permutation
network.

The cascade order of the operators in the state normalizer matches the order in which the
control signals are generated so as to minimize the critical path delay.

The state denormalizer is the inverse of the state normalizer, so that the order of the signals
and the permutation operators are exactly reversed.

5.3 Enhancement for Collisions with Obstacles

So far, we have dealt with a model with no obstacle bits. An obstacle at a node indicates the
presence of solid rather than free space. Effectively, we have a different set of collision rules at
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Figure 5: Realization of permutation functions by 2x2 switch boxes
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Figure 6: An enhanced processor architecture for the FCHC isometric model

such a node. Figure 6 shows how our design can be modified to accommodate a FCHC model
with obstacle bits. Since an obstacle bit does not move, the bit value corresponding to the
obstacle bit of a cell does not change in a collision. As an obstacle bit is in its own equivalence
class under the isometry group, it can bypass the normalization steps and can be used to lookup
the collision rule table directly. An implementation may choose to split the rule table into two,
for the cases with and without the obstacle bit.

6 Discussions

The critical path of the whole circuit is the path from input to momentum adder, momentum
normalizer, collision rule table, state collider, state denormalizer, and then to output. Assuming
1 pm CMOS technology, the critical path delay is estimated to be about 100 ns, which translates
to a throughput of about 10 million operations per second. With a reasonable number of
pipeline stages, the throughput can easily be increased a few times. A non-pipelined (minimal)
implementation of this architecture would require about 5000 gates, and 50 pins (including
clock and reset, but excluding power and ground and other pins for testing). One or several
such processors can easily fit on a single chip.

Compare these estimates with those of the table lookup approach using RAM or ROM. For
a deterministic collision function of 24 bits, the general table lookup approach requires 24 x 2 24
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bits = 384 Mbits = 48 Mbytes. With one obstacle per cell, the memory requirement is doubled.
To implement the same isometric collision rules, the straightforward extension of this approach
requires at least 12 times the memory requirement, that is, 4.5 Gbits = 576 Mbytes, since
the maximum number of optimal isometries for any state is 12 (see Table 2). This takes 1152
4-Mbit DRAM chip; the typical chip access time of which is about 80 ns.

Assuming 4 transistors per gate, and 1 transistor per DRAM cell, the table lookup approach
takes about 4.5 x log transistors (including address decoders and other necessary glue circuits),
while our design takes about 2 x lo4 transistors.

The above comparison shows that our design is about 5 orders of magnitude more efficient
than the general RAM table lookup approach in terms of active silicon area. The latency is
roughly comparable to that of the lookup table. However, it is clear that our design can be
easily pipelined with at least a 2 to 5 times increase in throughput, whereas it is not possible
to do so in the table lookup approach.

.

The area efficiency of this architecture is due to the effective ways that symmetry properties
are exploited. It is interesting to observe that the collision computation structure, though
purely combinational in nature, can be nicely broken down into two parts, namely, the control
path and the data path. The data path contains a cascade of conditional permutation operators
as defined here, which are not present in any existing general purpose computer or in any other
special purpose cellular automat a machine.

7 Summary

We have systematically derived a new VLSI architecture for the FCHC isometric lattice gas
model from Henon’s  isometric collision algorithm. With current technology, the architecture
can be implemented at least as fast as the table lookup approach while requiring about lo5
times fewer transistors. This is the first step toward creating a very high performance machine
containing many such processors working in parallel to solve three dimensional lattice gas
models.

This architecture is well matched to the algorithm and demonstrates how other architectures
may be derived for other models of lattice gas. It is also interesting to generalize the architecture
to non-isometric models.
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A Proof: G, is a permutation group of IV

We can easily verify that G, is a group under function composition. Associativity  always holds
for function composition. The identity permutation i is in G, because I E GM. G, is closed
because for all MI, M2 E GM, we have MzMr E GM. Therefore, for all fG(Mr)J&&)  E G,,

We have fG(M2) 0 fG(&) = fG(Mdh) E G, by P rop osition 1. Since for all A4 E GM, there

exists M-r, and fG(M) 0 fG(M-l> = fG(MM-l) = fG(I). Therefore, each fG(k!) E G, has
an hAVerSe element fG( M-l). H ence, G, is indeed a permutation group. •I

.

B Proof: G*-, is a permutation group of Bn

We first show that ii is a permutation of B”, that is, ii is one-one and onto. To show that ii is

one-one, we only have to prove that no two tuples in Bn are mapped into the same tuple by ii.

Suppose there are two tuples x and y both of which are mapped into z under 7i; that is,

ii(x) = ii(y) = z

(%T-l(l), * * - 7 ‘7r-l(n))  = (Y,-l(l)~...,Y~-l(n))  = (zl,...,zn)

znmltj) = y.,-ltj) = xj for all j

Hence, XI, = yk for all k, since 7r is a permutation of N. This means that x and y are the
same tuple. Since for all x = (21, . . . ,x,), there exists a tuple (am,. . . ,x,(,J)  = x’ such that
ii = x, ii is clearly onto.

As associativity always holds for function composition, and the identity 2^ is in G^,  (because
i is in G,), in order to show that G^, is a group, we must prove that G^, is closed under function
composition, and each element of G^,  has an inverse. G^, is closed, because for all 5-1,  ji2 E G*‘,,

Fc)r all ? E G^,, there exists an inverse ii-’ = 7r--7 so that

(*2 ~~l>(X>  = 7iz("~;'(l)'.'~~;l(n,)

= ( ~?r;‘(~;l(l))“..‘~a;‘(~;‘(n)))l

=
(x(7r;107r;1)(1))  ’ * * ) ‘(r;lo?r;‘)(n))

= (x(7T207rl)-1  (1) 7 - - * 7 x (~zo~l)-l(n))

= (X27&)(X)

( 77-- o%)(x) = -7---i r- (x7r-1(1), - * - 7 x7r-1(n))

IX ( X 7r-l@(l))  7 * * * 7 x7r-1(7r(n))>

= i(x)
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