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Abstract

Utility can be defined as quality per unit of cost. The utility of a particular function

in a microprocessor can be defined as its contribution to the overall processor per-

formance per unit of implementation cost. In the case of on-chip data memory (e.g.,

registers, caches) the performance contribution can be reduced to its effectiveness

in reducing memory traffic or in reducing the average time to fetch operands. An

important cost measure for on-chip memory is occupied area. On-chip memory per-

formance, however, is expressed much more easily as a function of size (the storage

capacity) than as a function of area.

Simple models have been proposed for mapping memory size to occupied area.

These models, however, are of unproven validity and only apply when comparing

relatively large buffers (2 128 words for caches, 2 32 words for register sets) of

the same structure (e.g., cache versus cache). In this paper we present an area

model for on-chip memories. The area model considers the supplied bandwidth

of the individual memory cells and includes such overhead as control logic, driver

logic, and tag storage, thereby permitting comparison of data buffers of different

organizations and of arbitrary sizes. The model gave less than 10% error when

verified against real caches and register files.
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Using this area-utility measure (v), we first investigated the perfor-

mance of various cache organizations and then compared the performance of register

buffers (e.g., register sets, multiple overlapping sets) and on-chip caches. Comparing

cache performance as a function of area, rather than size, leads to a significantly

different set of organizational tradeoffs. Caches occupy more area per bit than reg-

ister buffers for sizes of 128 words or less. For data caches, line size is a primary

determinant of performance for small sizes while write policy becomes the primary

factor for larger caches. For the same area, multiple register sets have poorer per-

formance than a single register set with cache except when the mamory access time

is very fast (under 3 processor cycles).

Key Words and Phrases: Area-utility model, on-chip buffers, cache, registers,

multiple-register set, register window, global register allocation, memory traffic,

cycle time, trafFic ratio, timing model.
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Figure 1: Architecture design influcnccd by performance requirements ;?llci  .osi constraints.

1 Introduction

Performance requirements and cost constraints placed on an implementation directly influence
processor and memory architecture design decisions (see Figure 1). In the design of an archi-
tecture, it is necessary to abstract these implementation details to architecture measures for
making tradeoffs.

The two most obvious performance-related architecture measures for data buffering are hit
ratio and traffic ratio. The former models the buffer quality in capturing the requests from
the processor and the latter models the buffer response in satisfying the demands placed on
the memory system. Although both measures indicate the relative differences when comparing
buffers of a similar structure (e.g., cache vs cache), they do not suffice when the structures of the
buffers to be compared a,re significantly different (e.g., register vs cache). To compare different
data buffers, it is necessary to use a measure which models the timing of the buffer as well as
its behavior. The cycle ratio presented in Section 2 combines these architecture measures with
the timing characteristics of the buffer or memory, yielding the total time spent in the memory
system.

On an implementation level, cost could be represented in terms of power consumption, I/O
bandwidth, or chip area. Because a balanced distribution of chip area among different functions
is our main focus, we equate cost to area in this paper. Since the performance of data buffers
are primarily characterized by their sizes (storage capacity), a mapping from size to area is
needed. Hill [l] and Alpert  [2]  have used simple area models for such a purpose. The simple
models account for tag and line-status bits in addition to the data bits; the difference in area
between CAM cells and normal storage cells is also included [2]. These simple models, however,
are of unproven validity. Moreover, the models only apply when comparing large caches of the
same structure. When comparing small caches or comparing buffers of different structures (e.g.,
cache vs register) these simple area models do not suffice. In small caches the area overhead



dominates, but is not included in the simple models. The difference between the simple model
and the present model is shown in Figure 2 for a two-way set associative cache, a fully-associative
cache, and a register set. For small caches, the differences in area predicted by the models are
significant.

1
8 32 128 512 2048 8192 32768

cache  size  in words

Figure 2: Proposed area model relative to simple models.

When comparing buffers of different structures, it becomes important to consider the supplied
bandwidth of the individual cells in the area model. A register set, for example, often supplies
two to four times the bandwidth of a cache. This bandwidth difference shows up in the additional
area occupied by a register bit as compared to a cache bit.

The area model presented in Section 3 corrects these deficiencies by including data bits, tag
bits, and overhead logic (i.e., drivers and comparators), and by considering the bandwidth of
the individual memory cells in the model. Measuring the utility (= pe) of a particular
function allows comparison of independent and different functions. Although applicable in a
wider sense we restrict our utility measure to on-chip data buffering (e.g., registers and caches).
In section 4, we use this utility measure (cycle ratio and the area model) to compare cache and
register set performance. The comparison is done for various cache and register set organizations
as a function of both area and size.

2 Performance measures

Extending the concept of hit ratio and traffic ratio requires splitting the reference streams into
those with identical timing characteristics. By associating a penalty to the various reference
streams, we calculate the number of cycles a processor spends in the whole buffering/memory
hierarchy. The measurement tools must be able to record  stat.istics  for these different streams.
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Figure 3: Reference stream models for four different buffering organizations.

Performance models

In this paper, we use the timing characteristics for four different buffer models: baseline, single
register set, multiple register set, and single register set with cache. Each stream is modelled in
terms of R, a baseline reference stream. This is a measure of a sequence of references made by
a processor to the memory system, Rprocc or the number of references made by the processor
to the register set, Rreg or to other elements in the memory hierarchy such as the memory,
Rmem. The baseline reference stream is created by a sequence of instructions, I. So long as all
measurements of the various R; are with respect to the same I, the results are consistent.

Baseline: The baseline model establishes a reference point for all cycle ratio calculations. This
model only buffers intermediate results in expression evaluation (Figure 3a),  i.e., the model
assumes that only temporaries used in expression evaluation reside in a register. The pro-
cessor fetches all other operands directly from memory. In this model, the reference streams
from the processor to the off-chip memory can be described as

Rproc = Rreg -I- Rdirect,

3



Rmem = Direct *

The model assumes availa.bility  of sufficient temporary registers. Since in this paper, we
only look at register based architecture, the baseline is best interpreted as a register set
machine with 8 general purpose registers. This allows sufficient registers for temporaries
plus others for stack control, indexing, etc. Other architectures discussed below have
registers in addition to this baseline of 8 registers.

Single register set (SRS): Besides expression temporaries, an SRS architecture buffers any
object to which a register can be allocated. Because the number of objects eligible for reg-
ister allocation can be easily far greater than the number of register available, a reference
stream exist for saving and restoring registers to and from memory. The two reference
stream equations become (see Figure 3b):

Rproc = Keg + Direct,

Rmem = direct •I Rldst-

Note that Rreg is now different from Rreg of the baseline model.

Multiple overlapping register sets (MRS): An MRS resolves the issue of register short-
age in SRS organizations by having multiple register sets with an overlap between sets
for passing parameters. We distinguish two different access modes: to the top or current
set and to any other set in use. Because the number of sets required to eliminate register
shortage may still be too large, MRS organizations save and restore complete sets when a
set shortage occurs. Access other than to the top set, therefore, requires a check if the set
exists in on-chip or off-chip memory. Such a mechanism is easily implemented when all
potential sets have a memory address. This mechanism is called aliasing and is described
elsewhere in more detail [3, 41. B ecause of the two-level nature of the buffer, the stream
equations contain an additional component:

Rproc = Rreg + Direct + Ralias,

Rmem = Direct + Rsavresr -

4



Note that Rreg in the SRS model is not necessarily the same as Rreg in the MRS model.

Single register set and cache (SRS with cache): Including a cache as second-level buffer
complicates the model because a cache model requires two or three individual reference
streams entering and leaving the cache. The stream equations now become slightly more
complicated:

Rproc = Rreg + Rdirect 7

Rcache = Hit + Rmiss + -hut,

Rmem = Rmiss + Rpref + Rwt + Rwb.

Where Rhit contains those references satisfied by the cache and Rmiss those requiring off-chip
access. The references contained in Rmiss are only those corresponding directly to a reference in
Rcache* Those indirectly caused by a reference in Rmiss (e.g., fetching objects in the same cache
line, or prefetching a line) are included in Rpref . All caches simulated in this paper use subblock
placement [l, 21  where the subblock  size equals that of the transfer unit between cache and
memory. Because of subblock  placement the caches do not require prefetch reference streams
(Rpref = 0). Both write strategies, write-back and write-through, were simulated. &,b is the
write back traffic and R,t the write through traffic.

The SRS architecture modelled by SRS with cache roughly corresponds to an architecture
with 16 general purpose registers (with only eight registers available to the register allocator).

Model parameters and cycle-ratio calculations

Parametrization of the different models now consists of determining the (relative) cycle count.
Table 1 lists the number of cycle accounted for by the various storage hierarchies in Figure 3
and the cycle count equations for the models. In the table, an entry of “1” means that each
reference in R requires one cycle. We begin with the notion of a base cycle count Chase. This
appro,ximates  the number of cycles required by the memory system (including registers) to
execute the reference stream. Chase is determined specifically for the baseline processor.

Other cycle counts are taken relative to Chase. Most instructions that treat the reference
stream take one or two register reads and one register write (ALU type, load, store). By
allocating one cycle for each write (and none for reads), we effectively allocate one cycle to
each instruction that uses the register set. Instructions that access memory require additional

5



Table 1: Allocation of Cvcles and Eauations for Cvcle Ratio Calculation

II access
all mrs cache all

reg a l i a s  h i t miss writeback writethrough memory

read 0 1 1 1 -I- pmem Pmem Pmem Pmem

write lt 1 1 1 + Pmem Pmem Pmem Pmem

i-An entry of “1” means that, each reference in R requires one cycle.

Cbase = RreLJw7-;te  (temporaraes  o n l y )  +  Rmem  ’ Pmem

Cbs =
Rreg,,,t, + Rmem * Pmem

Cb ase

Cr
Rreg,,;te + Ralias + Rsavres  * Pmem + Direct * Pmem

mrs =
Chase

C r
Rregwrrte + Hit + Rmiss . (1-k f’mem)  + Rwb . Pmem + Rwt * Pmem

cache =
Chase

cycles corresponding to the memory access time, Pmem. Overlapping of Pmem with instruction
execution is discussed in the next section. The models presented here are determined relative to
Chase. Presumably, the addition of a more elaborate buffering scheme to the baseline processor
reduces the resulting reference stream. Thus the expected cycle ratios are less than one.

cb ase estimates the time the memory system is occupied (without overlap of its functions).
It underestimates the total cycle count for program execution by ignoring branch instructions
completely and also ignoring the various pipeline breaks. (see [4]  for different models).

Limitation of the Performance-model

As indicated earlier, performance models driven solely by reference streams require the individual
references in a stream to be independent of time and of each other. Both requirements may
cause inaccuracies and complicate refinement of the models.

Individual independence

Individual independence of reference implies that only one reference accesses a data buffer at a
time. This complicates modeling of multi-port buffers. Within our architectural model this is
solved for first-level buffers with two read ports and one write port. Multiple write ports and
concurrent access of second-level buffers cannot be modelled.

6



Time independence (overlapping of operations)

Dependence of time occurs when implementing (partially) overlapped access for references in
a particular stream. The part of reference which is overlapped and therefore invisible for the
cycle ratio, shows up in the performance when this reference blocks a visible reference. A cache
prefetch, which is supposedly invisible, for example, may block the bus to memory also required
by a subsequent cache miss. The effect of overlapping or time dependence can be bounded or
approximated in several ways:

Best case: no interference at all, overlap is maximal. Best case is a good approximation for
large buffers (small traffic ratios).

Worst case: all overlapped references interfere. Worst case may be a good approximation for
small buffers (large traffic ratios).

Probabilistic: all references are assumed to be statistically distributed over time. The visi-
bility of an overlapped reference now becomes Pr( interference) . E(inter  f erencelength).

Pr(interf erence) is the probability that a visible reference runs into an overlapped refer-
cence (and must wait) or ~~~~:~~~~d,  where CO,,erjapped is the total number of hidden cycles

of all (partially) overlapped references and Cbestcase is the number of best-case cycles ac-
cording to the performance model. E( inter f erencelength) is the expected number of
interference cycles or Czgyx (1 - Pr(int.))‘mazwn . Pr(int.)  a n.

Examples of references which may be (partially) overlapped are writes in general, write-through
and write-back references in particular, and cache prefetches (transfer units within a line, or
complete lines).

As this paper is primarily concerned with relatively small on-chip buffers, the performance
measures assumed worst case behavior unless indicated otherwise. The benchmarks used here
consist of 5 medium sized programs (dynamic size 2.5 to 35 million bytes) generally representative
of a workstation environment (non scientific). For additional information, see [5].

3 An improved area model

In this paper, data-buffer area is modelled according to Figure 4. The total amount of area
occupied by a combination of buffers is simply the sum of the individual areas. We ignore the
wiring overhead necessary to combine the buffers for modeling simplicity.

7



* total = * e-stack -

+ A, set + Ad-cache

Figure 4: Area of on-chip data memory as chip cost function.

Area unit

Although the most obvious unit for area is pm’, the unit for this model is a technology in-
dependent notion of a register-bit equivalent or rbe. The advantage of this is the relatively
straightforward relation between area and size, which facilitates interpretation of area figures.
One rbe equals the area of a bit storage cell. Because not all storage cell designs occupy the same
area, a suitable cell has to be selected as the area unit. Static storage cells occupy more area
than dynamic ones, and the area of both static and dynamic cells depends on the bandwidth
required. A higher bandwidth potentially implies more bit and control lines; more lines which
cross a cell increase the area. A higher bandwidth can also imply an increased transistor size to
increase the speed of driving the bus lines.

The following buffer area model uses three different storage cells: a six-transistor static cell
with high bandwidth, a six-transistor static cell with lower bandwidth, and a three-transistor
dynamic cell [6] (henceforth referred to respectively as register cell, static cell, and dynamic cell).
The area unit, rbe, equals the area of the register cell .I We have empirically determined that
the static cell area is 0.6 rbe and the dynamic cell area is 0.3 rbe. Dynamic cells are sometimes
used to reduce the area of on-chip caches at the expense of h;tndwidth.

Register-set and memory areas

Register buffers are generally an integral part of the data pat
register cells consisting of a read port and a port which

h. T hese buffers use high bandwidth
can be used for either reading or

writing. These register cells can support two reads and a time-multiplexed write per access
cycle. Throughout the remainder of this paper, we refer to such register cells as “3-ported
cells”, though they actually have less hardware overhead than ones with two read ports and a

1 MIPS-X  [7] is used as the basis for certain  empirical  parameterizations. This experimental  microprocessor
was implemented  in CMOS  technology  with 2,um  minimum  geometry.  Its register  cell was 37x55,um  and its cache

storage cell  (static)  was 3Ox40pm.

8



separate write port. 2 Besides storage cells, register buffers have bit-line sense amplifiers and
control line drivers, which occupy additional area. The overhead for sense-amplifiers and drivers
on all four sides of the bit array totals approximately six rbe. Figure 5a shows the area model
of a register buffer or on-chip memory. The total area measured in rbe for a single array is

area = (registers, i- LsenseDamp)(datawidthb  + Wdriver) (1)

where registers, is the number of registers in words, Lsense-amp  the length of the sense
amplifiers, datawidthb the width of the word line drivers, all in unit of rbe. (The subscripts “b”

and “w” are used in this paper to denote a quantity in bit and in word, respectively. A word
is equal to four bytes or 32 bits.) From MIPS-X data, Lsenseamp and W&iver equal to 6 rbe.

Equation (1) then becomes

arearegisterset = (registers, + G)(datawidthb  + 6) rbe (a>

In this study, datawidthb is assumed to be 32 bits for all register buffers (register files) unless
otherwise stated.

ram cells
drivers
amplifiers
comparators

a b C

Figure 5: Data- and tag-area model.

Large on-chip buffers, other than register buffers, are generally associated with cache or a
similar structure [8]. The bandwidth requirements of these buffers or memories are significantly

2Register  buffer  designs often differ in the way the read and write ports are used. For example,  a 3-ported

register  buffer  may  have two read ports and a separate  write port,  requiring  a total of 4 bit lines, or two read

ports and a time-multiplexed  write  port,  requiring  only 2 bit lines. The write  port may  share  the decoder  or the

bit lines with the read port,  or both.

9



lower than that of a register set. These buffers usually support only one read or write at a time,
and have more time to complete these operations than a register set. The storage cells used
for these buffers can be either static or dynamic ones. Relaxed timing constraints allow use of

smaller drivers and amplifiers. As for static cell area, we scale the equation for register area
model (i.e., equation (2)) by 0.6 for static memory area model. For a static-memory array of
sizew words each of lineb  bits long, for example, the area is

areastatic-memory = O.G(size,  -I- 6)(lineb + 6) rbe

The area equation for dynamic-memory can be derived similarly, scaling equation (2) by 0.3.
The size of the drivers in a dynamic-memory, however, does not scale in the same manner as
the storage cells and is comparable to the static-memory one [6]. The area of dynamic memory
is approximated as

areadynamicmemory = 0.3(Size,  i- 12)(zineb  + 6) rbe

Cache areas

The area occupied by caches is more complicated. Besides data (or array) bits, a cache consists
of area for address tags, dirty, and valid bits, comparators, and control logic. The control logic
is usually implemented in programmable logic array (PLA). Generally the cache divides into
two relatively independent sections, one for the data bits and one for the tags, dirty, and valid
bits. Both require additional area for drivers and amplifiers and the tag section also includes
address comparators. The tags and the address comparators have two fundamentally different
implementations. Set-associative caches generally store the tags in static cells (and sometimes
in dynamic cells) using one bank of cells for each degree of associativity and one comparator per
bank. Fully associative caches store tags in content addressable memory (CAM) cells, each cell
consisting of stora#ge  and a comparison circuit. These two cache organizations have different area
models. Caches are able to use static-cells or dynamic-cells because of their relaxed bandwidth
requirements compared with registers.

Set-associative caches (s.a.c.)

The tag area for a set-associative cache is the tag-bit area plus the overhead for status bits,
amplifiers, drivers, and comparators. The area of the comparators is largely determined by the
routing of the address lines to the tag comparators. If the address lines run perpendicular to
the bit lines of the tag cell, an area of at least the address line pitch times the number of lines

10



is necessary. MIPS-X comparators are 300x30pm2, mainly to allow 24 metal wires with lO/Lrn
pitch to cross. Based on these figures the area model assumes a comparator area of 6 x 0.6 rbe.

The number of tag bits per line equals the number of address bits used to address the cache
minus the bits used to index the transfer units and lines. The present calculation uses 30 address
bits, which implies an address space of one Giga word covered by the cache. The number of
status bits per line depends on the transfer-unit3  size and on the write strategy. Every line has
one line-validity bit and every transfer unit has one validity bit and possibly one dirty bit. The
dirty bit is present if the write strategy is write back; if the write strategy is write through, there
is no need for a dirty bit. Area data presented in this and the later sections use one bit per line
and two bits per transfer unit. Besides data and tags, caches require PLAs for control. Only
for small caches does this influence the overhead noticeably. The size of the controller depends
strongly on the write and prefetch strategies. The assumed size of the PLA is 130 rbe [9],  a

fairly low estimate.
Figure 5a shows the layout of a cache array (data), and Figure 5b shows the layout of a

directory area. Figure 5c shows the floorplan of a four-way set-associative cache; the four data
areas are placed side by side and driven by one set of drivers. The four directory areas are also
placed side by side across from the four data array areas.

Excluding the space taken by the address and data busses, the total area of a cache is

areas.a.c. = pla -I- data + tags + status.

The area of the different items are functions of the storage, sizeb, the degree of associativity,
assoc, the line size, Zineb,  and the size of a transfer-unit, transferb. The number of transfer
units in a line, tunits, the total number of address tags, tags, and total number of tag and status
bits, tsbb, are

t u n i t s  =
Eineb

trans f erb ’
sizeb

t a g s  =  -
lineb  ’

tsbitsb = tsbb . tags = (1 -I- y s tunits + log2
23Q - assoc

sixeb
) - tags

Where y equals 2 for a, write-back cache and 1 for a write-through cache. The area of a set
associative cache using static cells is

3This  is because  of the assumption  of subblock  placement  with subblock  size  equals the size  of the transfer

unit between  cache and memory.



areas.a.c. =  1 3 0  +  0.6(2ines . assoc + 6)( -tags + 6) + 0.6(tsbb
tags

assoc
- assoc + 6)(-aSSOC + 6 + 6) he

= 195 + 0.6 . overheadl . sizeb + 0.6 . overhead;! . tsbitsb rbe

where

and

overhead1 = I+

overhead2 = I+

6 - assoc , 6
tags ’ lineb - assoc

12 - assoc , 6
tags ’ tsbb . assoc

The area of a set associative cache using dynamic cells can be derived similarly

where

and

areas.a.c. = 195 + 0.3 . overhead3 . sizeb + 0.3 . overhead4 . tsbitsb rbe

overhead3 = 1 + 6 - assoc 12
tags t lineb m assoc

overhead4 = I+
12. assoc 12

tags t tsbb . assoc
Figure 6a shows the effect of different line sizes on the cache size relative to the storage

provided (‘~~~+$).  The area reduction is rather small, 32%, when moving from a 4-word line to
a 64-word line since the tag-area reduction is partially compensated by an increase in transfer-
unit status bits. Figure 6b shows the effect of the associativity on the cache area per data bit.
As soon as the area becomes dominated by data array bits the associativity has little effect
on the cache area per data bit. For small caches, however, the tag comparators determine the
differences among cache organizations. Figure 6c shows the area of three caches relative to the
area of a three-ported register set. Caches occupy more area than registers for 128 words or
less. For these sizes the cache overhead dominates the cache area. For larger sizes, the smaller
storage cells in the cache provides a total cache area smaller than the register set. A four-way
set-associative cache of size 1024-word with two-word lines only takes 75% of the area of 1024
word register.

Fully associative caches (f.a.c.)

The tag area of a fully-associative cache is only a function of the number of address bits. The
tag bits, however, are not stored in static or dynamic cells but in CAM cells. Alpert  [lo]
assumed CAM cells to be twice the size of a static cell (1.2 rbe). His assumption is based on
data for the 280,000. Our tag-area model assumes the same ratio. Figure 7 shows the layout
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Figure 6: Relative area for set-associative caches as a function of line size, associativity, and
provided storage.
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data cells
drivers
amplifiers
tag cells

Figure 7: Fully associative cache layout.

of a fully-associative cache. If the associative search through the tags yields a hit, then the
corresponding status bits are examined and the data array is indexed. Generally the status bits
are combined with the tags to get the status early, which is useful if the tags and data are not
placed immediately next to each other. The status bits, however, can be data type cells. The
occupied area of a fully-associative cache is:

areaf.a.c. = pla + (data + status) + CAM
= 130  •k O.G(tags -I- 6)(p  - linebJata  + 6) +

0.6(&e  tags + 6)(&n !ineb-C&f + 6) (3)

Where /? = 1 •l- e and lineb_CAM  = 30 - Zogz(Zine,). The derivation of the equation
follows the static memory one. The CAM cells are assumed to have an aspect ratio of 1.
Defining Sizf?b-CAM  = tags . kLeb_CAM,  expanding, and rearranging, we rewrite equation (3) as

flreaf.a.c. = 175 + 0.6. p. overhead:, . siZebdata  j- 1.2 . overhead6 . sizeb_CAM

where

a.nd

69 12overh,ead5 = I+ -
tags ’ ,d - lineb

overhead6 = I+ 8.5 8.5
-t-tags I!ineb

The effect of organization on the area of fully-associative caches is shown in Figure 8a. Increasing
the line size has significantly more effect for fully-associative caches than for direct-mapped ones
(Figure 6a). Moving from l-word lines to 16-word lines, for example, reduces the cache area
by 60%; the same move for a direct-ma.pped cache results in 35% less cache area. Figures 8b
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shows the area of various cache and register configurations relative to the area occupied by a
fully-associative cache of indicated sizes in 32-bit words. Generally, the fully-associative cache
occupies the most per bit area, for sizes in excess of 64 words and registers the next most area per
bit with set associative caches occupying the least area per bit over the same range. Similarly
from Figures 8c, fully-associative caches occupy more area than 4-way set associative caches at
large sizes with the crossover point depending on the line size.

Limit ation of the Area-model

The area model is based on three assumptions. The first and most important assumption is
that the access time of a buffer is independent of the storage provided. Second, the area only
depends on the buffer organization and not on the layout specifics. Third, the aspect ratio is
not significant for modeling purposes.

Access-time dependencies

To maintain the same access time while increasing the buffer size generally means that the storage
cells, the drivers, and amplifiers also grow in size. This implies that the model is accurate for
buffer sizes about which we have parametrized the model. These sizes are approximately 32x32
bits for register buffers and 2 Kbytes for caches.

The influence of layout on area

In any implementation, the amount of wasted area depends on the actually layout of the buffer.
Our model allows for some wasted area because it abstracts both tag and data area to rectangles.
Further, a circuit can be laid out in several ways, requiring slightly different amounts of area.

Aspect ratio

Figures 9a, b, and c illustrate the relation between layout and both size and aspect ratio (defined
here as the width to height ratio of a geometry). If small caches with high degrees of associativity
are laid out according to the area model (Figure 5c), the aspect ratios may become large.
Figure 9a shows a four-way set-associative cache laid out according to our model. Although
the area is optimal, the a,spect  ratio may be impractical for wiring purposes. Folding the cache
twice (Figure 9b) and four times (Figure 9c) improves the aspect ratio from 7 to 2 and 0.6 but
increases the area by 15% and 40%, respectively. Ignoring aspect ratio then can introduce an
error of f20Y  (0 over the aspect ratios considered, with model centered on an aspect ratio of
about 2). The area increase is caused by two reasons. First, every fold requires its own drivers
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Figure 8: Relative area of fully associative caches as a function of line size and provided storage.
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Figure 9: Aspect ratio and area change as a function of layout.
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for both tag and data arrays a,nd second, every fold increases the area for both address and data
busses supplying the cache. While aspect ratio in cache design can be important [II], we chose
to ignore it to simplify modeling. This necessarily limits the achievable accuracy of our model.

Area-model verification

Clearly, the best way to establish the validity of the model is to compare the model prediction
with actual caches and register buffers (or register files). For this purpose, we introduce a
technology factor, TF, for both caches and register files. TF arises because our model was
derived based on the MIPS-X data which is built with a 2pm technology. The use of TF

permits comparison of caches and register files across generations of technologies (e.g., lprn vs
2pm).  Since TF is an area scale factor, it can be obtained simply as

T F = (
minimum geometry in pm 2

2 >

For register files, the situation is more complicated because not all register files have the same
number of read and write ports as the MIPS-X does. Also, read and write methods vary among
processors. A read or a write port needs a decoder (and a word line) and one to two bit lines
depending on the accessing methods. Single-ended ports require only one bit line; differential
ports require two. To account for the different numbers of ports, we modify equation (1) as
follows

area = (registers, + Lsensellmp)(datawidthb  -f- W&C . Ndec) . PF rbe

Where I/tJdec  is the width, and N&.c the total number, of the decoder. PF is an empirical factor
accounting for the number of register ports in the register file. W&c and PF are modelled as

Wdec = Q . datawidthb (5)

and

PF = [l t 0.25(&t-zi,,,  - a)] (6)

Incorporating equations (5) and (6) and rearranging, equation (4) becomes

area = datawidthb(1  -/- a . Ndec)(registersw -f- Lsense-amp)[l  -I- 0.25(nib;td;,,, - 2)] rbe

where &it-lines is the number of bit lines in the register file. For register files with only single-

ended ports, NbitAines  equals  Ndec. In general, &it-lines = Ndec  i- Differential-ports-  In words,

equation (5) states that the size of a decoder in a register file is proportional to datawidthb,  the
number of bits it has to drive. MIPS-X data indicate that this proportionality constant a is
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0.1. Equation (6) models the effect of each bit line in excess of two as increasing the register file
area by 25% over a register file that has 2 bit lines (specifically, over the MIPS-X register file).

Table 2 compares the actual cache sizes with the model prediction. The cache areas in the
“AREA,, column are in thousands of pm2, obtained from the micrographs or the designers of
the processors. The “MODEL” column contains the predicted cache areas, scaled appropriately
by the TF factor. The absolute average error (AAE) is about 8.9%. The average error is -
6.5% with a standard deviation of around 8.6%. The M68020  and DEC pVAX processors use
one-transistor cells in the cache arrays. This has been modelled using the area equation for
dynamic memory. The DEC2 processor uses four-transistor cells in the cache, which are about
10% smaller than the six-transistor static cells assumed in the present study [12]. The data and
error given in Table 2 include this adjustment. The DEC ,QVAX  processor also uses a folded bit
line sensing scheme to reduce the size of the cache, the actual cache size and error should have
been larger than those indicated in the table.

A similar set of data is presented in Table 3 for register files. The area data are obtained
with the same procedure. The AAE is about 7.1%. The average error centers at 1.4% with a
standard deviation of 9.9%. The MIPS-X register file includes the double-bypass logic, which
occupies roughly 40% of the total area as estimated by visual inspection of the micrograph. The
register file in the HP RISC processor drives the bus lines directly, requiring register cells that
are 50% (1.5 rbe) larger than the conventional ones [13]. The register files in GE1 and GE2

processors use bigger cells than necessary because of the requirements of low soft-error rates.
The actual cell size is 37x100 pm2 in a 1.2pm process. We accounted for this by using this size

as the area unit (instead of rbe). The data presented in Table 3 include all these adjustments.

4 Application of area and performance models

In this section, we consider data-cache performance and tradeoffs in cache parameters. We apply
both models (area utility) to a comparison of cache organizations with large register-oriented
buffering (MRS).

Cache performance

Small on-chip caches have attracted significant attention in recent years because of increasing
circuit integration density. The Zilog 280,000 [29], DEC’s microvax  [18],  and the Intel i486
[30] incorporate a on-chip mixed instruction a’nd data cache; the Motorola M68020 [31], Bell-
lab’s CRISP microprocessor [32],  Stanford’s MIPS-X [21], Matsushita’s research microprocessor
[22],  and HP RISC processor [15] include an instruction cache; and the Motorola M68030 and
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Table 2: Comparison of Actual and Predicted Cache Areas.
PP T E C H .  TYPEb S I Z E  AREA: M O D E L  E R R O R REF.

b-4 PYW (mm2  > (mm2  > mt
M68020 2.0
M68030 1.2

1.2
HP RISC 1.6
NS32532 1.25

1.25
NEC 1.2
DECl (/#AX)  2 . 0
DEC2 1.5

1.5
DEC3 1.5
MIPS-X 2.0
Matsushita 1.0
i860 1.0

1.0
i486 1.0

1,lw 256 4,449 4,048 -9.0

I,lW 256 2,445 2,184 -10.7
D,lw 256 2,345 2,184 -6.9
1,lw 256 2,775 3,134 12.9
I,2w 512 3,776 3,246 -14.0
D,lw 1K 7,699 6,153 -20.1
1,lw 1K 9,448 8,596 -9.0
I/D ,2w 1K 8,750 8,705 -0.5

IS 1K 9,448 9,858 4.3
D,lw 2K 20,125 16,935 -15.9
I,lW 2K 18,463 15,773 -14.6

1,s 2K 27,517 27,545 0.1
I,2w 2K 11,188 10,448 -6.6
1,2w 4K 13,347 12,805 -4.1
D,2w 8K 26,977 23,904 -11.4
I/D,4w 8K 26,000 26,500 1.9

WI
P4

WI
WI

WI
[181

Pg, 121

PO1
WI
[=I
WI

r24l

Legend:

b I - I-cache; D - D-cache; I/D - Mixed cache or cache that can be used either as an I-cache or
as a D-cache; lw - Direct-mapped; 2w - 2-way set-associative; 4w - 4-way set-associative;
S - Sector cache.

$ Measured or reported areas.

t Percent error is calculated as:

%error = Model - Actual
Actual

* 100
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Table 3: Compa,rison  of Actual and Predicted Register File Areas.
T E C H .  P O R T S Nbit-linesn  TYPEb S I Z E  AREAS  M O D E L  ERRORt  R E F .

b-4 WW/(R/W) ( b i t s )  (Kpm2)  (Kpm2) v>0

MIPS-X 2.0 2/O/l’ 2 I 32x32 3,330 3,217 -3.4 P11
DEC3 1.5 l/O/l 4 I 48x32 3,534 3,523 -0.3 WI
HP1 1.5 2/2/o 4 I 31x32 3,450 3,727 8.0 P51
GE1 1.2 2/w 4 F P 8x64 4,760 4,558 -4.2 WI
GE2 1.2 2/w 4 F P 21x32 3,734 4,396 17.7 WI
i860 1.0 w/o 5 F P 8x128 2,581 2,343 -9.2 WI

Legend:

#N bit-lines is the total number of bit lines in the register file; it is equal to the number of ports
if only single-ended ports are used. In general, Nbit,lines  = Ndecoders  + Ndifferential-ports
(see text).

b FP - floating point registers, I - integer registers.

$ Measured or reported areas.

t %Error  is calculated as:

%E
Model - Actual

rror =
Actual

* 100.

* MIPS-X’s register file has 3 set of decoders but has only 2 bot lines (see text).
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M68040 [33,  341, the Intel i860 [35], and the National Semiconductor NS32532 [36] have separate

instruction and data caches.
Mixed on-chip caches may not offer sufficient combined instruction and data bandwidth to

be implemented in high speed microprocessors (especially RISC type). Instruction-only caches
are not always as area efficient as split caches for a given area [4]. Additionally, certain memory
organization and processor-architecture combinations may perform better with a single data
cache over a single instruction cache. The recent attention given to small caches has mainly

been directed towards instruction and mixed caches, while fewer studies have been done on
data-only caches.

In this subsection we investigate the performance of four data-cache register-set combina-
tions, all with SRS architecture and (eight) registers set allocated globally4 [37, 381 and a two-way
set-associative cache organization with a line size of two words. The combinations differ on the
write (writeback or writethrough) and prefetch5 (with or without) strategies. All caches use sub-
block placement, where a subblock  is the width of a transfer unit between cache and memory
(one word).

0.6

1.0 1 Q write back

0.8

0.6

4 16 64 256 1024 4 0 9 6 4 16 64 256 1024 4096

area in 32-rbe units size in 32-bit words

Figure 10: Traffic ratio for a combination of a (small) register set and a set-associative cache.

Figure 10 shows the traffic ratio (R,e, /R,,,,) of the four combinations. For small caches
the existence of prefetch determines the difference between the caches. For large caches the write
traffic in the write-through organizations dominates the difference. The traffic ratio indicates
a significant disadvantage of write-through and prefetch; the cycle ratio indicates the opposite
conclusion however.

4This  corresponds  to about 16 general  purpose  registers  when allowance  is made for other register  functions,

e.g., temporaries  and control stack  pointers,  etc.

5Prefetch  in this context  means  fetching  the transfer  unit in a line which was not explicitly  requested.
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The cycle ratio includes one parameter not yet considered: the memory access time, Pmem.

When Pmem becomes large the cycle ratio approaches the traffic ratio. When Pmem equals one,
then the cycle ratio reflects the performance when the off-chip memory is ideal. For the cache
performance we have chosen a Pmem of three cycles which reflects, for example, a 1OOns  memory

for a 33ns processor cycle. Because writeback, writethrough, and prefetch references can be

(partially) overlapped our measurements indicate both best- and worst-case cycle ratios.

-g 1.0

ti 0 . 8 + write back, prefetch

0.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6

o.2j.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

best case best case
1 I I I I I I I 1

4 16 64 256 1024 4096 4 16 64 256 1024 4096
area in 32-rbe  units size in 32-bit words

Figure II: Best-case performance for register-cache combination.

.g 1.0

: 0 . 8

0.6

0.4

0.0
worst case

I I I I 1
4 16 64 256 1024 4096

area in 32-rbe units

Figure 12: Worst-case performance for register-cache combination.

0.8

0.6

+ write back, prefetch
+ write-through, prefetch

0.0 I
worst case

I
4 16

I
64

I I 1
256 1024 4096

size in 32-bit words

The best-case figures (Figures lla and b) show for small caches a minimal difference with
respect to prefetch strategies, but favors write-through over write-back. For large caches Rmiss

dominates the ratio because write-throughs, write-backs, and prefetches are invisible. Note that
for larger caches the best-case model becomes more realistic.

The worst-case figures (Figures 12a and b) show a completely different picture from the best-
case figures, but is similar to the traffic ratio in shape. Prefetching dominates the differences
for small caches while the write strategy dominates the difference for large caches.

To interpret the absolute value of the cycle ratio for a particular organization recall that the
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cycle ratio models the performance of a non-ideal memory system together with an ideal (zero
time for breaks or branches) processor. A small register set combined with a 512-word cache
and a 3-cycle memory yields approximately 40% of the memory cycles spent in the baseline
model. The performance gain in real processor cycles is smaller and depends on the frequency
and penalties of those instructions which leave the data-memory idle (e.g., branches and other
pipeline breaks such as run-on instructions).

Cache-organization tradeoffs as a function of area utility

To assess tradeoffs in cache design, we consider the area and size effects with different line size
and associativity on traffic ratio. In the following figures the left-hand graph (a) always shows
the traffic ratio as a function of area and the right-hand graph (b) shows the traffic ratio as a
function of size (storage capacity). All graphs show traffic relative to one particular organization.

Associativity

1 linesize = 2  32-bit w o r d s I 4s one-way I

B...................................

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6 b :  s i z e
I I I I I 1

4 16 64 256 1024 4096 16384 4 16 64 256 1024 4096 16384
area in 32-rbe  units size in 32-bit  words

Figure 13: Performance as a function of set associativity, area, and size.

The traffic ratio (Figure 13b) relative to four-way associativity is relatively independent of cache
size. Associativity of two-way and four-way performs better than direct-mapped for caches larger
than 256 words. For caches larger than 4096 words the associativity differences reduce to zero.
Cache traffic as a function of area (Figure 13a) deviates significantly from the traffic as a function
of size for small caches (< 256 words). At these sizes, direct-mapped caches perform significantly
better as function of area than as a function of size.

Figures 14a and b also show performance as a function of area, size, and associativity, but
relative to a fully-associative cache. While for small caches the CAM cells for the tags outweigh
the comparators of the set-associative (two-way and four-way) organizations, for larger caches
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Figure 14: Full versus set associativity.

(> 128 rbe) the set-associative caches outperform fully-associative caches of the same area. At
this line size, direct-mapped cache always produces equal or more traffic than fully-associative
cache for all areas considered. The performance variations between fully and set-associative
caches are significantly smaller when compared by area rather than by size (-25% - +50%  vs
+40%  - +200%).

Line size

1.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6

4 16 64 256 1024  4 0 9 6  16384 4 16 64 256 1024 4096 16384
area in 32&e  units size  in 32-bit  words

Figure 15: Performance as a function of line size, area, and size.

Figures 15a and b show relative traffic ratio as a function of area and size with line sizes ranging
from one to eight words. The traffic ratio is relative to a cache with a line size of one word. The
differences in relative traffic ratio among caches are quite large when compared by size (up to
65% for a cache with a line size of eight words. See Figure 15b), but become noticeably smaller
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when compared by area, especially for medium-size caches (256 5 size < 4096 rbe). Figure 15a
also shows a different performance order from Figure 15b.

Cache register-set tradeoffs as a function of area utility

+ Single register set (SW)

16 32 64 128 256 512 1024
Figure 16: Traffic ratio as a function of buffer ar&@&&@N&i,tqSRS,  MRS, and SRS with Cache
organization.

This section compares the performances of SRS, MRS, and SRS with cache. All register sets are
allocated globally, the cache used in the SRS with cache combination is two-way set associative
with a line size of two words and a subblocks of one word. The MRS organization is similar to
the one found in RISC-II and SPARC, except for the addition of alias detection and resolution
(16 registers for locals, 8 registers for input parameters, and 8 registers for output parameters)

PI 7
Every procedure or function call causes switching of register set. When insufficient sets are

available the MRS overflows into memory (Rressav  in Section 2).
Figure 16 shows the traffic ratio of the three organizations relative to the baseline. Global

register allocation becomes ineffective in reducing the traffic ratio below 65% when more than
8 registers are available for allocation (i.e., 16 general-purpose registers in total). Adding area
to MRS decreases the ratio down to approximately 25% of the baseline, when it covers most
runtime-stack accesses. Cache covers all accesses and reduces the traffic ratio to less than 5%.
SRS with cache outperforms MRS for all areas considered.

Figures 17ab show the cycle ratios of the three organizations relative to the baseline for a
two- and four-cycle memory respectively. For small buffers (< 256 rbe), the cycle lost during the
cache lookup for a reference miss causes SRS with cache to have a slight disadvantage compared
to MRS for two-cycle memories. Larger buffer areas, however, always yield an advantage for
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Figure 17: Cycle ratio as a function of buffer area for baseline, SRS, MRS, and Cache organiza-
tion (2/4 cycle memory).

the SRS with cache organization. The MRS organization performs approximately as well as
SRS with cache for three-cycle memories, but is outperformed for memories of four cycles or
more for all area. It is important to note, however, that both MRS and SRS organizations
perform better when more sophisticated register allocation strategies are used [39]. The SRS
with cache combination profits less because only eight registers can be exploited (the SRS with
cache combination has a total of 16 registers, but only eight is available to the register allocator).

5 Conclusion

In this paper we have developed an area-utility model for comparing data-buffering schemes.
The performance model translates typical architecture measures into a performance measure,
cycle ratio. The area model incorporates overhead area like drivers, sense amplifiers, tags, and
control logic. Data cells are distinguished according to their delivered bandwidth in the model.

Using the utility model and traffic-ratio, we have compared the performance of various cache
organizations as a function of area and size and investigated the relative performance of large
register sets and caches. We have compared cache traffic and cycle ratio and established worst-
and best-case cycle ratios. Both measures are required to get correct insight into cache behaviors.
Comparing cache performance as a function of area, rather than size, leads to a significantly
different set of organizational tradeoffs. Caches occupy more area per bit than register buffers for
sizes of 128 words or less. For data caches, line size is a primary determinant of performance for
small sizes while write policy becomes the primary factor for large caches. Multiple register sets
(“register windows”) have poorer performance than a single register set plus a cache (occupying
the same area) except when the cache miss time (memory access) is less than three cycles.
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