\
COMPUTER SYSTEMS LABORATORY
|
STANFORD UNIVERSITY . STANFORD, CA 94305-4055

Unidraw: A Framework for Building
Domain-Specific Graphical Editors

John M. Vlissides and Mark A. Linton

Technical Report: CSL-TR-89-380

July 1989

Research supported by the NASA CASIS project under Contract
NAGW 419 and by the Quantum project through a gift from
Digital Equipment Corporatl on.

Unidraw: A Framework for Building
Domain-Specific Graphical Editors

John M. Vlissides and Mark A. Linton

Technical Report: CSL-TR-89-380
July 1989

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science
Stanford University
Stanford, CA 94305

Abstract

Unidraw is a framework for creating object-oriented graphical editors in domains such as technical
and artistic drawing, music composition, and CAD. The Unidraw architecture simplifies the
construction of these editors by providing programming abstractions that are common across
domains. Unidraw defines four basic abstractions: components encapsulate the appearance
and behavior of objects, tools support direct manipulation of components, commands define
operations on components, and external representations define the mapping between components
and afile or database. Unidraw also supports multiple views, graphical connectivity, and dataflow
between components. This paper presents Unidraw and three prototype domain-specific editors
we have developed with it: a schematic capture system, a user interface builder, and a drawing
editor. Experience indicates a substantial reduction in implementation time and effort compared
with existing tools.

Key Words and Phrases: Object-oriented graphical editors, direct manipulation user interfaces,
graphica constraints.

Copyright ©) 1989
by

John M. Vlissidesand Mark A. Linton

Unidraw: A Framework for Building
Domain-Specific Graphical Editors

John M. Vlissidesand Mark A. Linton
Stanford University

Abstract

Unidraw is a framework for creating object-oriented
graphical editors in domains such as technical and
artistic drawing, music composition, and CAD. The
Unidraw architecture ssimplifies the construction of
these editors by providing programming abstractions
that are common across domains. Unidraw defines
four basic abstractions. components encapsulate the
appearance and behavior of objects, tools support di-
rect manipulation of components, commands define
operations on components, and external representa-
tions define the mapping between components and a
Ele or database. Unidraw also supports multiple views,
graphical connectivity, and dataflow between compo-
nents. This paper presents Unidraw and three proto-
type domain-specific editors we have developed with
it: aschematic capture system, auser interface builder,
and a drawing editor. Experience indicates a substan-
tial reduction in implementation time and effort com-
pared with existing tools.

Keywords: object-oriented graphical editors, direct
manipulation user interfaces, graphical constraints

1 Introduction

Graphical editors represent familiar objects visually
and alow auser to manipulate the representations di-
rectly. Unfortunately, these editors aredifficult to build
with general user interfacetools because of the special
requirements of graphical editors. For example, user
interface toolkits provide buttons, scroll bars, and ways
to assemble them into aspecific interface, but they do
not offer primitives for building drawing editors that
produce PostScript or schematic capture systems that
produce netlists. Higher-level abstractions are required
to make such editors easier to implement.

We use the term graphical object editor for an ap-
plication that lets users manipulate graphical represen-

This research has been supported by the NASA CASIS project
under Contract NAGW 419 and by the Quantum project through a
gift from Digital Equipment Corporation.

To appear in the Proceedings of the ACM SIGGRAPH/SIGCHI
User Interface Software and Technologies ‘89 Conference, Williams-
burg, Virginia, November 1989.

tations of domain-specific objects and generates one
or more static representations. Most graphical object
editors also feature

e non-interactive operations, usually invoked from
menus, that affect objects’ state;

e structuring techniques for building hierarchies of
objects,

e mechanisms for propagating information and
maintaining graphical constraints between ob-
jects;

e and a persistent representation to store objectsin
non-volatile form.

Unidraw is a collection of programming abstractions
that simplifies the construction of graphical object ed-
itors. Unidraw reduces the timeit takes to produce an
editor for a domain by providing functionality char-
acteristic of graphical object editors; it does not of-
fer toolkit features (it is used in conjunction with a
toolkit), nor does it assume the role of a program de-
velopment environment (it provides objects that are
used within an existing environment). In this paper we
present the Unidraw architecture and discuss our pro-
totype implementation, including a brief description of
three editors we have built with the Unidraw prototype:
aschematic capture system, adirect-manipul ation user
interface builder, and an object-oriented drawing editor
similar to MacDraw.

2 Related Work

We can divide current systems that support graph-
ical object editing into three categories: domain-
specific editors, multi-domain systems, and graphi-
cal programming environments. Domain-specific edi-
tors are stand-alone applications designed for editing
in a particular domain. Object-oriented drawing edi-
tors such as MacDraw are the most common example.
Other examples are

« computer-aided design (CAD) tools that provide
adirect manipulation metaphor for producing de-
sign specifications, such as VLS layout editors

for creating chip masks and schematic capture
systemsfor generating netlists;

« diagram editors [5, 7] that specify, model, and
document physical or mathematical processes
with graphical notations such as finite-state di-
agrams and petri nets;

« and user interface editors that let nonprogrammers
assemble a user interface by direct manipulation
and then generate the source code for the inter-
face.

“ Multi-domain” is a catch-all term for systems that
are neither tied to a particular domain nor designed to
supplant traditional programming languages, as graph-
ical programming environments are. Examples of
multi-domain systems include user interface toolkits
such as Interviews [6] and GROW {2] that support
definition and manipulation of an editor’s graphical
data; simulation systems [4, 1] that provide a direct-
manipulation metaphor for representing and analyz-
ing real-world processes in areas such as data acqui-
sition, manufacturing, and decision support; and gen-
eral constraint-based graphical editors such as Sketch-
pad [91 and ThingLab [3], which can theoretically sup-
port graphical editing in any domain given enough
congtraints.

Graphical programming environments [8] let users
program by drawing pictures. Experienced program-
mers often use graphical notations to diagram their
algorithms before turning them into code. Novices
often find programming difficult because they are un-
comfortable with the rigid syntax of textual languages.
By specifying programs in graphical terms that closely
match the programmer’s mental pictures, the expert
can simply draw his algorithms; the novice can show
the computer how to perform its task. Graphica pro-
gramming environments would thus make program-
ming easier for everyone, and creating domain-specific
editors would be a natural extension of their capabili-
ties.

Our work with Unidraw focuses on production-
quality domain-specific editors for a broad range of
domains. Each of the approaches described above
falls short of this goal. Domain-specific editors are
designed to support a single domain only. Existing
multi-domain systems have at least one of the follow-
ing shortcomings:

o They provide relatively few abstractions for
building domain-specific editors. For example,
one toolkit might offer structured graphics but not
graphical constraints, while another supports con-
straints but not static representations, and so on.

T T
———————— r————__q——j_—ﬂl——-——— ———
s unideaw I I
{ Lo
' Lo
{,—[User interface toolkit] : :
g | |
\ e B
{ \{ Window system l :
| |
\ i
\‘—{ Operating system]

—— besic dependencies
~e==8 other possibie dependencies

Figure 1: Layers of software underlying a domain-
specificeditor

e They require alarge run-time environment or are
embedded in alarger system. Thusthey cannot
be used to create stand-alone editors.

« The extension mechanism for multiple domains is
not efficient enough to be practical. For example,
afast general constraint solver is hard to imple-
ment. Developing a domain-specific editor that
has acceptable performance is therefore difficult
when constraints are the only extension mecha
nism.

Graphical programming environments have proven in-
adequate as well. Though many such environments
have been developed, none has succeeding in supplant-
ing textual programming. Graphical languages gener-
aly lack efficiency of expression. They are adequate
for describing simple algorithms and data structures
but quickly become unwieldy for specifying more so-
phisticated constructs. Moreover, most graphical pro-
gramming systems are interpretive and must deal with
considerable overhead associated with pictorial repre-
sentations. Thus, performance is acceptable only for
simple programs.

3 Unidraw Architecture

Unidraw is designed to span the gap between tradi-
tional user interface toolkits and the implementation
requirements of graphical object editors. An editor for
a particular domain relies on Unidraw for its graph-
ical editing capabilities, on the toolkit for the “ look
and feel” of the user interface, and on the window and
operating systems for managing workstation resources.

Figure 1 depicts the dependencies between the lay-
ers of software that underlie a domain-specific editor
based on Unidraw. At the lowest levels are the oper-
ating and window systems. Above the window sys-
tem level are the abstractions provided by the toolkit,
including buttons, scroll bars, menus, and techniques
for composing them into generic interfaces. Unidraw
stands at the highest level of system software, pro-
viding abstractions that are closely matched to the re-
quirements of graphical object editors. In theory, a
domain-specific editor can access any of these layers;
in practice, minimizing the number of software inter-
faces the programmer must use dramatically reduces
complexity.

3.1 Overview

Unidraw partitions the common attributes of domain-
specific editors into an object-oriented architecture
having four class hierarchies:

1. Components are graphical representations of el-
ements in adomain. Examples include geometric
shapes in technical drawing, electronic partsin
circuit layout, and notes in written music. Com-
ponents encapsul ate the appearance and behavior
of these elements. A domain-specific editor’ s pur-
pose is to alow the user to arrange components
to convey information in the domain of interest.

2. Tools support direct manipulation of components.
Tools employ animation and other visual effects
for immediate feedback to reinforce the user’s
perception that he is dealing with real objects.
Examplesinclude tools for selecting components
for subsequent editing, for applying coordinate
transformations such as translation and rotation,
and for connecting components.

3. Commands define operations on components and
other objects. Commands are similar to mes-
sages in traditional object-oriented systems, ex-
cept they are stateful and can be executed as well
as interpreted by objects, Commands can also be
reverse-executed, allowing rollback to aprevious
state. Examples include commands that change
component attributes, duplicate components, and
group several components into a composite com-
ponent.

4. External representations are used to convey
domain-specific information outside the editor.
Each component can define one or more external
representations of itself. For example, atransistor

component can define both a PostScript represen-
tation for printing and a netlist representation for
circuit simulation.

The Unidraw architecture provides base classes for
component, command, tool, and external representa-
tion objects. Subclasses implement the behavior of
their instances according to the semantics of the pro-
tocol defined by their base class. For example, com-
ponents support operations that define how commands
affect their internal state.

3.1.1 Subjects and Views

A well-established user interface concept is the distinc-
tion between (1) the state and operations that charac-
terize objects and (2) the way the objects are presented
in a particular context. In Unidraw this distinction is
manifest in the separation of components into sub-
ject and view objects. A subject defines the context-
independent state and operations of a component. A
view supports a context-dependent presentation of the
subject. A component subject may have one or more
component views, each offering a different representa-
tion of and interface to the subject. A subject notifies
its views whenever its state is modified to allow them
to change their state or appearance to reflect the mod-
ification.

A component subject maintains information that
characterizes the component; in the case of a logic gate
component, for example, the subject might containin-
formation about what is connected to the gate and its
current input values. Different views of the subject
can reflect this information in distinctive ways and can
provide additional information as well. One view can
depict the gate graphically by drawing the appropriate
logic symbol, and it might also define what it means
to manipulate the gate with a tool. Another view can
provide the externa representation of the gate by gen-
erating a netlist from the connectivity information in
the subject.

3.1.2 Application Framework

Figure 2 shows the general structure of a domain-
specific editor based on Unidraw. At the bottom level
in the diagram are two component subjects, the left-
most containing subcomponent subjects. An entire
domain-specific drawing js represented by a compos-
ite component subject that can be incorporated into a
larger work. At the second level from the bottom are
the corresponding views of the subjects. Note that the
right-hand subject has two views attached. Each com-
ponent view is placed in a viewer at the third level.

Figure 2: General structure of adomain-specific editor
based on Unidraw

A viewer displays a graphical component view, most
often the root view in a hierarchy. A viewer pro-
vides aframework for displaying the view, supporting
such “non-semantic” manipulations as scrolling and
zooming. Viewers also take raw window system or
toolkit events and translate them to conform to stan-
dard Unidraw protocols.

Aneditor associates tools and user-accessible com-
mands with one or more viewers and combines them
into a coherent user interface. An editor also main-
tains a selection object that manages component views
in which the user has expressed interest. A Unidraw-
based application can create any number of editor ob-
jects, allowing the user to work on multiple views of
components. Operations requiring inter-editor com-
munication or coordination access the unidraw object,
a one-of-a-kind object maintained by the application.
For example, commands that allow the user to open
and close editors and quit the application must access
this object. The unidraw object also maintains logs
of commands that have been executed and reverse-
executed to support arbitrary-level undo and redo. Not
shown in the diagram is the catalog object, which
manages a database of components, commands, and
tools. At minimum, a domain-specific editor uses the
catalog to name, store, and retrieve components that
represent user drawings. An editor could also access
unused commands and tool s and incorporate them into
itsinterface at run-time.

This structure provides a standard framework for
building domain-specific editors, yet it allows substan-
tial latitude for customized interfaces. Nothing in this

operation
Attach
Detach
Notify
Update
Interpret
Uninterpret
GetTransferFunction
(child iteration
and manipulation
operations}
GetGraphic
SetMobility
GetMobility

return values arguments
comp. view

comp. view

command
command
transfer fn.

graphic
mobility

mobility

Table 1. Component subject protocol

architecture dictates, for example, a particular look and
feel for agiven editor object. A domain-specific editor
may define editor objects that use separate windows for
their commands, tools, and viewers. The architecture
only specifieshow the editor mediates communication
between components and the commands, tools, and
viewersthat affect them.

3.2 Components

A component defines the appearance and behavior of
adomain-specific abject A component’s behavior has
three aspects: (1) how it responds to commands and
tools, (2) its connectivity, and (3) how it communi-
cates with other components. This section describes
the protocols and abstractions that support component
semantics.

3.2.1 Subject and View Protocols

The Unidraw architecture defines separate protocols
for component subjects and views. Tables 1 and 2 list
the protocols basic operations. Component subjects
define Attach and Detach operations to establish or
destroy a connection with a component view. Notify
aerts the subject’s views to the possibility that their
state is inconsistent with the subject’ s Upon notifica-
tion, a view reconciles any inconsistencies between the
subject’s state and its own. The Update operation is
used to notify the subject that some state upon which
it depends has changed. The subject is responsible for
updating its state in response to an Update message.
A component subject can be passed a command to
interpret via the Interpret operation. The semantics
of this operation are component-specific; the subject

return values operation arguments
Update
Interpret command
Uninterpret command
{child iteration
andmanipulation
operations}
graphic GetGraphic
Highlight
Unhighlight
manipulator CreateManipulator tool, event
command InterpretManipulator | manipulator
Table 2: Component view protocol

typically retrieves information from the command for
internal use or executes the command. The Uninterpret
operation allows the component to negate the effects
of a command; the subject might undo internal state
changes based on information in the command, or it
might simply reverse-execute the command. Compo-
nents can also define a transfer function, described in
Section 3.2.4, that can be accessed via the GetTrans-
ferFunction operation. Finally, a component subject
can contain other component subjects, allowing hier-
archies of domain-specific components. Component
subjects therefore define a family of operations for it-
erating through their child subjects (if any) and for
reordering them.

The component view protocol duplicates some of
the subject protocol’ s operations, namely Update, In-
terpret, Uninterpret, and those for child iteration and
manipulation. A subject’s Notify operation usualy
calls Update on each of its views. Interpret and Unin-
terpret are defined on views because some objects ma-
nipulate component views rather than their subjects.
Thus it may be convenient to send a command to a
view for (un)interpretation, which may in turn send it
to its subject. A component view may have asubcom-
ponent view structure, which may or may not reflect
its subject’s structure, so the view protocol also defines
child iteration and manipulation operations.

Graphical components are specialized components
that use graphic objects in both their subjects and
views to define their appearance. A graphic contains
graphics state and geometric information and uses this
information to draw itself and to perform hit detection.
By definition, graphical component subjects store their
geometric and graphics state in a graphic, providing a
standard interface for retrieving this information. The
GetGraphic operation returns the information in the

subject’s graphic. Graphical component subjects can
also have a mobility attribute and define operations for
assigning and retrieving it. Later we show how mo-
bility is used to define the component’s connectivity
semantics.

Severa operations augment the basic component
view protocol to support graphical component views.
These views maintain a graphic that defines their ap-
pearance, so they provide a GetGraphic operation.
Highlight and Unhighlight operations let views distin-
guish themselves graphically, for example, when they
are selected. CreateManipulator and InterpretManip-
ulator define how a graphical component view reacts
when it is manipulated by atool and how the tool
affects the component after manipul ation. Both op-
erations use a manipulator to characterize the ma-
nipulation. Manipulators abstract and encapsul ate the
mechanics of direct manipulation; they are discussed
further in Section 3.4.

3.2.2 Connectors

Unidraw supports connectivity and confinement se-
mantics with the connector graphical component sub-
class. Since connectors are components, each consists
of a subject and zero or more views and can be manip-
ulated directly. Often, however, connectors are embed-
ded in larger components that use connector subjects
to define their own connectivity semantics but do not
incorporate the corresponding connector views in their
ownviews.

A connector can be connected to one or more other
connectors. Once connected, two connectors can af-
fect each other’s position in specific ways, as defined
by the semantics of the connection. Connector sub
classes support different connection semantics. A pin
contributes zero degrees of freedom to a connection.
A degree of freedom is an independent variable along
a particular dimension, which for connectors is a carte-
sian coordinate. Slots and pads provide one and two
degrees of freedom within certain bounds, respectively.

Figure 3 shows how different connectors behave
in several connections, using the connectors' default
graphical representations. The centers of two con-
nected pins must always coincide (Figure 3a). A pin
connected to a slot (Figure 3b) is free to move along
the dlot’s major axis until it reaches either end of the
slot; the pin cannot move in the transverse dimension.
Two connected slots (Figure 3c) can move relative to
each other as long as the center lines of their major
axes share a point. Finally, Figure 3d shows how a
pad-pin connection constrains the pin to stay within
the confines of the pad

pmpe
°. === 4

EE[H 1

P

{d) pad-pin

Figure 3: Several connections and their semantics

The connectors' mobilities characterize how each
connector moves to satisfy the connection constraints.
A mobility attribute can have one of three values.
fixed, floating, or undefined. In general, afixed com-
ponent’s position cannot be affected by a connection
regardless of the connection’s semantics, while a float-
ing component will move to satisfy the connection’'s
semantics. The behavior of aconnector with undefined
mobility is indeterminate. Composite components of -
ten have undefined mobility to avoid overriding their
children’s mobilities.

Mobility specifications disambiguate the semantics
of aconnection. In Figure3b, for example, it isunclear
which connector (the pin or the slot) actually moves.
If, however, the dlot’s mobility is fixed and the pin's is
floating, then the pin will always move to satisfy the
connection constraints. If the slot is moved explicitly,
then the pin will move to stay within it. An attempt to
explicitly move the pin beyond the slot’s bounds will
fail; in fact, if the pin is also connected to another,
orthogonal dot, any attempt to move it explicitly will
fail. Asacorollary, a connection can have no effect
on two fixed connectors.

3.2.3 Domain-Specific Connectivity

Domain-specific components use connectors to define
their connectivity semantics. For example, consider

-

B e
i
[e)(e |

Figure 4: Possible composition of an inverter compo-
nent

, Inverter
subject

an inverter schematic component whose wires remain
connected when the user moves it. Figure 4 shows
how the inverter subject and view can be composed
with polygon, circle, and pin subjects and views. Note
that the pins are treated as any other component in the
composition, but they have a special responsibility to
define the inverter’s connectivity semantics. The in-
verter gives its pins fixed mobility so that their posi-
tions areunaffected by any connectionsto them. When
the inverter is moved, it moves al its components.
Since the pins are fixed, they will not be affected by
their connections; rather, any floating connectors that
are connected to the pins will move as the connection
permits. One such floating connector might be a pin
subcomponent of a wire component whose shape is de-
termined by the position of the pin; the wire therefore
deforms to maintain the connection. Graphical com-
ponents can thus extend the connectivity behavior of
primitive connectors to define their own connectivity
semantics.

3.2.4 Dataflow

Communication between components is often tied
closdly to their connectivity. Unidraw providesastan-
dard way for components to communicate viadatafiow
and for associating dataflow with their connectivity.
Component subjects often maintain state on which
other subjects depend or state that must be accessible
to the user. Unidraw defines a set of objects called
state variables that provide a standard way to rep-
resent and access this state. State variables are com-
monly used to allow user modification of component
attributes and to support datafiow between compo-
nents. Like components, state variables are partitioned
into subjects and views. The state variable subject

represents a typed datum, and views provide a graph-
ical interface that lets a user examine and modify the
subject. A component can make its state variables
available externally by providing access operations as
necessary.

A state variable can be bound to a connector like an
actual parameter is bound to a formal parameter in a
procedure call. Connectors define “ parameter passing”
semantics for any bound state variable, one of in, out,
or inout. \When connected, two connectors with bound
state variables will pass their values accordingly; for
example, an in connector’ s state variable will receive
the value of an out connector’s variable. Passing a
value between incompatible connectors (such as two
out connectors) is an error; such connections should
be disallowed by the tool or command making the
connection.

Transfer functions complete the dataflow model by
participating in the propagation of state variable val-
ues. A transfer function defines a relationship between
state variables, modifying one set of variables based
on the values of another set. For example, the inverter
could use an Invert transfer function to establish ade-
pendency between the logic level state variables bound
toitsin and out pins: Invert assigns the inverse value
of the input variable to the output variable. Thus trans-
fer functions describe how val ues change as they flow
from one component to another.

3.3 Commands

Commands are analogous to messages because they
can be interpreted by components. Commands are also
like methods in that they are stateful and can be ex-
ecuted, and they resemble transactions because they
can be reverseexecuted to a previous state. Some
commands may be directly accessible to the user as
menu operations, while others are only used by the
editor internaly. In general, any undoable operations
should be carried out by command objects.

Table 3 shows the basic operations defined by the
command protocol. Execute performs computation to
carry out the command’s semantics. Unexecute per-
forms computation to reverse the effects of a previous
Execute, based on whatever internal state the com-
mand maintains. A command is responsible for main-
taining enough state to reverse one Execute operation;
repeated Unexecute operations will not undo the ef-
fects of more than one Execute. Multilevel undo can
be implemented by keeping an ordered list of com-
mands to reverseexecute. It may not be meaningful or
appropriate, however, for some commands to reverse

return values operation
Execute
Unexecute
Reversible
Store

Recall
SetClipboard
GetClipboard
(child iteration
and manipulation
operations}

arguments

boolean
comp. subj., any
comp. subj.
clipboard

any

clipboard

Table 3: Command protocol

their effect. For example, it is probably not feasible to
undo a command that generates an externa represen-
tation. The Reversible operation indicates whether or
not the command is unexecutable and uninterpretable.
If the command is not reversible, then it can be ignored
during the undo process.

Since acommand can affect more than one compo-
nent, the command protocol must allow components
that interpret the command to store information in it
that they can later use to reverse its effects. The Store
operation alows a component to store information in
the command as part of its Interpret operation. The
component can retrieve thisinformation later with the
Recall operation if it must uninterpret the command.
Furthermore, commands that operate on selected or
otherwise distinguished components must maintain a
record of the component subjectsthey affected and the
order in which they were affected. Commands there-
fore store a clipboard object, which can be assigned
and retrieved with the SetClipboard and GetClipboard
operations. A clipboard keeps a list of component sub-
jects and provides operations for iterating through the
list and manipulating its elements. Typically, the clip-
board is initialized with the component subjects whose
viewsare currently selected when the command isfirst
executed. Purely interpretive commands should de-
fine their Execute and Unexecute functions to invoke
Interpret and Uninterpret on the components in their
clipboard.

It is often convenient to create “ macro” commands,
that is, commands composed of other commands. The
command protocol includes operations for iterating
through and manipulating its children, if any. By de-
fault, (un)executing or (un)interpreting a macro com-
mand is semantically identical to performing the cor-
responding operations on each of its children.

return values operation arguments
manipulator CreateManipulator event
command InterpretManipulator | manipulator
component view | GetPrototype

Table 4: Tool protocol

3.4 Tools

By definition, a graphical object editor supports the di-
rect manipulation model of interaction. Unidraw-based
editors usetool objectsto alow the user to manipulate
components directly. The user grasps and wields a tool
to achieve a desired effect. The effect may involve a
change to one or more components' internal state, or it
may change the way components are viewed, or there
may be no effect a al (if the tool is used in an inappro-
priate context, for example). Tools often use animated
graphical effects as they are wielded to suggest how
they will affect their environment.

3.4.1 Tool Protocol

The basic tool protocol is shown in Table 4. Con-
ceptually, tools work within viewers, in which graph-
ical component views are displayed and manipul ated.
Whenever a viewer receives an event, it in turn asks
the current tool (defined by the enclosing editor ob-
ject) to produce a manipulator object. A tool imple-
ments its CreateManipulator operation to create and
initialize an appropriate manipulator, which encapsu-
lates the tool’s manipulation semantics by defining the
three phases (grasp, wield, effect) of the manipulation.
A tool may modify the contents of the current selec-
tion object (also defined by the enclosing editor) based
on the event. Moreover, atool can delegate manipula
tor creation to one or more graphical component views
(usually among those in the editor’s selection object) to
allow component-specific interaction. A tool’s Inter-
pretManipulator operation analyzesinformation in the
manipulator that characterizes the manipulation and
then creates a command that carries out the desired
effect. If the tool delegated manipulator creation to
agraphical component view, then it must delegate its
interpretation to the same view.

The GetPrototype operation is defined by the graph-
ical component tool subclass. Graphical component
tools maintain a prototype component and define how
that component is created and added to the component
hierarchy in the viewer. The prototype consists of both
agraphical component subject and a view. The tool

returnvalues operation arguments
Grasp event

boolean Manipulating event
Effect event

(childiteration
and manipulation
operations)

Table 5: Manipulator protocol

copies the prototype, modifies it to conform to the di-
rect manipulation, and inserts it into the component
hierarchy using an appropriate command.

3.4.2 Manipulator Protocol

The manipulator protocol (Table 5) is designed to re-
flect the grasp-wield-effect behavior of tools. The
Grasp operation takes a window system event (such
as amouse click or key press) and initializes what-
ever state is needed for the direct manipulation (such
as animation objects). During direct manipulation, the
Manipulating operation is called repeatedly until the
mani pulator decides that manipulation has terminated
(based on its own termination criteria) and indicates
this by returning a false value. The Effect operation
gives the manipulator a chance to perform any fina
actionsfollowing the manipul ation.

Somekinds of direct manipulation may require sev-
eral sub-manipulations to progress simultaneously (for
instance, the editor may allow the user to manipulate
more than one component at a time). A manipula
tor can therefore have children, and the manipulator
protocol includes operations for iterating through and
manipulating them.

This simple protocol is sufficient to describe direct
manipul ations ranging from text entry andrubberband-
ing effects to simulating real-world dynamics such as
imparting momentum to an object. Unidraw imple-
mentations can predefine manipulators for the most
common kinds of manipulation. Since manipulators
must maintain information that characterizes the final
outcome of a manipulation, subclasses usually aug-
ment the protocol with operations for retrieving state
that determines this outcome. For example, a manip-
ulator that supports dragging the mouse to translate a
graphical component will define an operation for re-
trieving the distance moved.

Figure 5: Communication between objects during di-
rect manipulation

3.4.3 Object Communication during
Direct Manipulation

Figure 5 diagramsthe communi cation between objects
during direct manipulation. The numeric labelsin the
diagram correspond to the transmission sequence:

1. The viewer receives an input event, such as the
press of a mouse button.

2. The viewer asks the current tool to CreateManip-
ulator based on the event.

3. Manipulator creation: the tool either

(a) creates a manipulator itself (based on the
selection or other information), or

(b) asks the component view(s) to create the
manipulator(s) on its behalf. The tool must
combine multiple manipulators into a com-
posite manipulator. Each class of compo-
nent view is responsible for creating an ap
propriate manipulator for the tool.

4. Direct manipulation; the viewer

(@) invokes Grasp on the manipulator, supplying
theinitiating event;

(b) loops, reading subsequent events and send-
ing them to the manipulator in a Manipu-
lating operation (looping continues until the
Manipulating operation returns fase);

(c) invokes Effect on the manipulator, supply-
ing the event that terminated the loop.

5. The viewer asks the current tool to InterpretMa-
nipulator.

6. Manipulator interpretation; the tool either

(a) interprets the manipulator itself, creating the
appropriate command, or

(b) asks the component view(s) to interpret the
manipulator(s) on its behalf. The view(s)
then create(s) the appropriate command(s).
Thetool must combine multiple commands
into acomposite (macro) command.

7. The viewer executes the command.

8. The command carries out the intention of the di-
rect manipulation.

To illustrate this process, consider the following
example of direct manipulation in adrawing editor.
Suppose the user clicks on an rectangle component
view (Rectangle View) in the drawing area (viewer)
with the MoveTool. The viewer receives a “mouse-
button-wentdown” event and asks the current tool (the
MoveTool, as provided by the enclosing editor) toCre-
ateManipulator based on the event. MoveTool’s Cre-
ateManipulator operation determines from the event
which component view was hit and adds it to the se-
lection. Mor e precisely, the selection object provided
by the enclosing editor appends the view to itslist.

If the selection object contains only one component
view, then MoveTool’s CreateManipulator operation
callsCreateManipulator on that component view. This
gives the component view a chance to create the ma
nipulator it deems appropriate for the MoveTool under
the circumstances. Since the user clicked on aRectan-
gleView, the component view will create aDragManip-
ulator, a manipulator that implements an downclick-
drag-upclick style of manipulation. DragManipulators
animate the dragging portion of the manipulation by
drawing a particular shape in dightly different waysin
each successive call to their Manipulating operation.
The definition of DragManipulator parameter& es the
shape so that subclasses of DragManipulator are not
needed to support dragging different shapes.

Once the viewer obtains the DragManipulator from
the MoveTool, the viewer creates the illusion that the
user is “grasping” and “wielding” the tool. First the
viewer calls Grasp on the manipulator, which allows
the manipulator to initialize itself and perhaps draw
the first “frame” of the animation. Then the viewer
loops, forwarding all subsequent events to the manip-
ulator’s Manipulating operation until it returns false.
Successive calls to Manipulating produce successive

frames of the animation. Once manipulation is com-
plete, the viewer invokes the manipulator’s Effect op-
eration, which gives the DragManipulator a chance to
finalize the animation and the state it maintains to char-
acterize the manipulation. The viewer then asks the
tool to InterpretManipulator; in this case, the Move-
Tool in turn asks the RectangleView to InterpretMa-
nipulator. In response, RectangleView constructs and
returns a MoveCommand, which specifies a transla-
tion transformation. TheRectangleView initializesthe
amount of tranglation in the MoveCommand to the
distance between the initial and final frames of the an-
imation, which it obtains from the DragManipulator.

3.5 External Representations

An external representation of a component is simply
anon-graphical view of the corresponding component
subject. Domain-specific external representations are
derived from the external view subclass of component
view.

The external view protocol defines two operations,
Emit and Definition, that generate a stream of bytes
constituting the external representation. Emit initiates
externa representation generation, and Definition is
called recursively by Emit. Emit normally calls the
external view’'s own Definition operation first. Then
if the external view contains subviews, Emit must in-
vokethe children’s Definition operationsin the proper
order to ensure a syntactically-correct externa repre-
sentation.

Emit is often used to generate “ header” informa-
tion that appears only once in the externa represen-
tation, while Definition produces component-specific,
context-independent information. For example, a
drawing editor might define a PostScript View exter-
nal view subclass that defines Emit to generate global
procedures and definitions. Component-specific sub-
classes of PostScriptView then need only define Def-
inition to externalize the state of their corresponding
component. Thus when Emit is invoked on an in-
stance of any PostScriptView subclass, a stand-alone
PostScript representation (known as “encapsul ated”
PostScript) will be generated. When the same instance
isburied in alarger PostScriptView, only its definition
will be emitted

The architecture predefines preorder, inorder, and
postorder external views. These subclasses manage
subviews and support one of three common traversals
of the external view hierarchy.

- 10 -

4 Prototype Implementation

Our Unidraw prototypeis a library of C++ classes
containing about 20,000 lines of source. It runs on
top of Interviews and the X Window System. The
prototype uses Interviews object-oriented structured
graphics [10] to support graphical components and its
persistent object facility for implementing catalog se-
mantics.

C++ is an attractive language for our purposes be-
cause of its efficiency and true object-oriented se-
mantics, but it does not allow sending arbitrary mes-
sages to objects. Messages are sent via strongly-
typed procedure calls, so a class must declare al
acceptable messages at compile-time. Thus, compo-
nent operations such as Interpret and Uninterpret can-
not be implemented by accepting untyped messages
from commands. In lieu of this capability, compo-
nents must query the command to determineits class,
but C++ cannot provide this information at run-time.
We solved this problem in our implementation by us-
ing the IsA operation defined for InterViews persistent
objects, but ideally the language would provide either
run-time class resolution or untyped (or dynamically-
typed) method lookup.

The remainder of this section discusses two sig-
nificant aspects of the implementation followed by a
brief description of the three domain-specific editors
we have implemented with the Unidraw prototype.

4.1 View Consistency

A component view must reconcile its interna state
with its subject’s when Update is called. This is usu-
aly trivial for leaf components, but components with
children must be prepared to restructure themselves to
conform to their subject’s structure. To accomplish
this, the view could assume that all its children are
inconsistent with their subjects’ and just rebuild them
from scratch based on the subject’s structure. This
approach is simple but potentially expensive. More-
over, the subject’s structure usually stays the same or
changes only dlightly, so an incremental approach in
which the view reuses most of its children is prefer-
able. Our implementation supports the common case
where the view's child structure is identical to the sub-
ject’s, Components with differing subject and view
structures must implement their own update algorithm.

Figure 6 shows the algorithm. On Update, any chil-
dren that no longer have a subject are destroyed. Then
the list of child views is compared to the list of child
subjects. If there is a subject-view mismatch, the Up-
dateCurrent operation is called. UpdateCurrent per-

void Update ViewStructure () {

iterator subj = SubjectsFirstChild();
iterator view = ViewsFirstChild();
DeleteSubjectless Views();
do {

if (*subj !=*view) {

UpdateCurrent(subj, view);

}

Advance(subj);

Advance(view);
} until (Done(subj) || Done(view));
UpdateExcessSubj ects(subj);
DeleteExcessViews(view);

}

Figure 6: View structure update algorithm

forms two searches through the remaining views and
subjects. If it does not find a view corresponding to
the current subject, it creates one and inserts it before
the current view; otherwise, it moves the correspond-
ing view to its proper position. If it does not find the
current view's subject among the remaining subjects, it
deletes the view; otherwise, if the corresponding sub-
ject does not follow the current subject, it moves the
view to the end of the list of child views for repo-
sitioning in subsequent iterations. The main iteration
loop continues until either the subject or the view runs
out of children. Findly, views are created for any
remaining subjects, and unused views are destroyed

4.2 Connector Implementation

Connectivity semantics are enforced by a csolver ob-
ject that manages connection networks, or disjoint sets
of connections. A connection consists of two connec-
tors and a piece of connector glue. Connector glue
is characterized by a natura size, elasticity, and de-
formation limits. Elasticity is specified in terms of in-
dependent shrinkability and stretchability parameters.
Deformation limits are expressed as independent lim-
its on the total amount the glue can stretch and shrink.
A connection uses connector glue to define the re-
lationship between connectors' centers, thus defining
their connectivity semantics. For example, connector
glue of zero natural size and elaticity is used to imple-
ment pin-pin connection semantics. Pin-pad semantics
are modeled with a piece of glue of infinite elasticity
within limits that keep the pin inside the pad.

-11-

G2
a1
O—Wv—ﬁ)
as
fecurse
@ TR
recasss
. 8+ @lam
o- MW -0

Figure 7: Recursive solution of connection network

The csolver is responsible for solving constraint net-
works that have been perturbed, meaning it must posi-
tion the connectors to satisfy all connection semantics.
The csolver stores each connection network as a list
of connections. It solves each network by recursively
identifying primitive combinations of connectionsand
replacing them with equivalent connections. The two
most common primitive combinations are series and
parallel connections. Figure 7 depicts the process of
recursive substitution on a network having three con-
nections. Connectors are shown as circles, and con-
nector glue is represented by resistor symbols. The
shaded connectors have fixed mobility, while the oth-
ers are floating. On theinitial recursion, the csolver
identifies the parallel combination of G2 and G3 and
replaces it with an equivalent connection. It replaces
the resulting series combination with another equiv-
alent connection on the second recursion, leaving a
single connection. Recursion terminates whenever a
single connection remains or al connectors are fixed,
at which point the connectors' positions are determi-
nate. The csolver then unwinds the recursion, appor-
tioning the amount of stretch or shrink applied to each
equivalent connection to the connectionsthey replaced
until the original network is obtained. Then the csolver
issues move commands to the affected connectors.

4.3 Three Domain-Specific Editor
Prototypes

We have built three domain-specific editors with our
prototype Unidraw library: a schematic capture system
(see Figure 8), a user interface builder (Figure 9), and
a drawing editor (Figure 10). All provide a direct-
manipulation, multi-view editing environment. The
schematic capture system lets the user wire-up circuit
elements (such as gates, latches, and pass transistors)

Emuc

¢ hitmiss.edif

Cacaleg mit

Stresture Align Viev Optiens

Figure 8: Schematic capture system prototype

:: E]
' viewsetup.dinleg -y 1z
Cateley Bdit Structure View Opties
Squares Frame Selup Acc-pl)
(cancet)
Adjuser type: @ scrollers O panner
Adiueter size: @ smait O medivm O targe
Scrolier posilions:
B Horizonal O above @ betow
& Vertical Qett @ rignt

Seleet Meve

Neatse Mantpulat,

U.'DI:I(-) $ u + g....:@._,:@

Figure 10: Drawing editor prototype

-12 -

and generates a netlist of the resulting circuit. The
system supports hierarchical composition of circuit el-
ements and maintains graphical connectivity between
them. The user interface builder lets the user compose
auser interface in terms of Interviews toolkit abstrac-
tions and generates C++ source code to be incorporated
into the target application. Finally, the drawing editor
provides MacDraw-like functionality (with the added
benefits of multiple views) and generates PostScript.
The prototype schematic capture system and user in-
terface builder are less than 5000 lines each, while the
drawing editor isless than 2500 lines.

5 Conclusion

Unidraw greatly facilitated the implementation of our
three prototype domain-specific editors. Though these
editors do not yet represent production-quality sys-
tems, they have proven to be useful tools for their in-
tended purposes. Unidraw narrowed the design space
for each editor significantly, obviating basic design de-
cisionsthat are independent of the domain. The proto-
type library provided reusable functionality in the form
of predefined components, commands, and tools. De-
bugging time was reduced because much less code was
written. Our experience is that developing domain-
specific editors with Unidraw is mainly a matter of
choosing, designing, and implementing the required
domain-specific components. Significantly less effort
is spent defining new commands, while specialized
tools are needed the least often.

The architecture is undergoing continuous refine-
ment as we experiment with the prototype. Fertile
ground for future research involves additional support
for external representations, which is a difficult prob-
lem in general. We would like to go beyond the current
predefined external view traversals to develop amore
powerful model that includes support for interpreting
external representations. This capability would let a
domain-specific editor read in existing representations,
including those not generated by the editor itself. For
example, a schematic editor could read in an existing
netlist, allow the user to edit it graphically, and gen-
erate a new netlist. A logic simulator could then give
the user feedback about the modified circuit’s behav-
ior, which might prompt him to edit the circuit again.
The ability to read as well as write external repre-
sentations permits iterative design by closing the loop
between specification and analysis, making Unidraw-
based tools even more useful.

.13-

References

{1] LabVIEW Manual. National Instruments Corp.,
1987.

[2] P.S. Barth. An object-oriented approach to graph-
ical interfaces. ACM Transactions on Graphics,
5(2): 142-172, April 1986.

(3] Alan H. Boming. ThingLab — A Constrain:-
Oriented Simulation Laboratory. Technical Re-
port SSL-79-3, Xerox Palo Alto Research Center,
July 1979.

[4] Steven H. Gutfreund. ManiplIcons in Thinker-
Toy. In ACM OOPSLA 87 Conference Proceed-
ings, pages 307-317, Orlando, FL, October 1987.

[51R.JK. Jacob. A state transition diagram language
for visual programming. Computer, 18(8):51-59,
August 1985.

[6]1 Mark A. Linton, John M. Vlissides, and Paul R.
Calder. Composing user interfaces with Inter-
Views. Computer, 22(2):8-22, February 1989.

[71 M.K. Molloy. A CAD tool for stochastic petri
nets. In Proceedings of the 1986 Fall Joint Com-
puter Conference, pages 1082-1091, Ddlas, TX,
November 1986.

(8] Nan C. Shu. Visual Programming. Van Nostrand
Reinhold, New Y ork, 1988.

[91 I.E. Sutherland. Sketchpad: A Man-Machine
Graphical Communication System. PhD thesis,
MIT, 1963.

[10] John M. Vlissides and Mark A. Linton. Applying
object-oriented design to structured graphics. In
Proceedings of the 1988 USENIX C+ + Confer-
ence, pages 81-94, October 1988.

