Two Dimensional Pinpointing:
An Application of Formal Specification

to Debugging Packages

David Luckham
Sriram Sankar

Shuzo Takahashi

Technical Report No. CSL-TR-89-379
Program Analysis and Verification Group Report No. 40
April 1989

This research was supported by the Defense Advanced Research Projects Agency under contract
N00039-84-C-0211.

Two Dimensional Pinpointing:
An Application of Formal Specification
to Debugging Packages®

David Luckham! Sriram Sankar! Shuzo Takahashi?

April

Computer Systems Laboratory Technical Report CSL-TR-89-379
Program Anaysis and Verification Group Report No. 40

Abstract

New methods of testing and debugging software utilizing high-level formal specifications are presented. These
methods require a new generation of support tools. Such tools must be capable of automatically comparing
the runtime behavior of hierarchically structured software with high-level specifications; they must provide
information about inconsistencies in terms of abstractions used in specifications.

This use of specifications has several advantages over present-day debugging methods: (1) the debugging
problem itself is precisely defined by specifications; (2) violations of specifications are detected automatically,
thus eliminating the need to search output traces and recognize errors manually; (3) complex tests, such
as tests for side-effects on global data, can be made easily; (4) the new methods are independent of any
compiler and runtime environment for a programming language; (5) they apply generally to hierarchically
structured software — e.g., packages containing nested units, (6) they also apply to other life-cycle processes
such as analysis of prototypes, and the use of prototypes to build formal specifications.

In this paper a particular process for locating errors in software packages, called two dimensional pin-
pointing, is described. Tests consist of sequences of package operations (first dimension). Specifications at
the highest (most abstract) level are checked first. If violations occur then new specifications are added if
possible, otherwise checking of specifications at the next lower level (second dimension) is activated. Viola-
tion of a new specification provides more information about the error which reduces the region of program
text under suspicion. All interaction between programmer and toolset is phrased in terms of the concepts
used to specify the program.

Two dimensional pinpointing is presented using the Anna specification language for Ada programs. Anna
and a toolset for comparing behavior of Ada programs with Anna specifications is described. Pinpointing
techniques are then illustrated by examples. The examples involve debugging of Ada packages, for which
Anna provides a rich set of specification constructs. The Anna toolset supports use of the methodology on
the full Ada/ZAnna languages, and is being engineered to commercial standards.

Keywords: Ada, Anna, Data Abstraction, Debugging, Package, Specification, Testing, Verification

*This research was supported by the Defense Advanced Research Projects Agency under contract
N00039-84-C-0211.

Program Analysris and Verification Group, Computer Systems Laboratory, Stanford University, Stanford,
California 94305.

XOdyssey Research Associates, 525 Middlefield Road, Suite 250, Menlo Park, California 94025.

Computer Systems Laboratory
Stanford University
Copyright © 1989

1 Introduction

Specification languages present an opportunity to develop new techniques in al phases of
software production. Essentially, these languages provide facilities for expressing informa
tion about programs that is not normally part of the text of a program. Specifications are
expressed in a machine processable form — they can be parsed, checked for static semantic
errors, and in many cases, compiled into runtime tests. Consequently, they are called formal
specifications!. Typicad examples of specification languages developed during the past few
years are Anna [6], Larch [9] and RAISE [15].

Debugging has always been a creative endeavor. A great dea of ingenuity and effort has
gone into using the current generation of rather crude debugging tools to discover errors in
programs. The main point of this paper is that much more powerful debugging techniques
can be developed based on forma specifications. Our new techniques utilize both the high
level concepts used in specifications, and the abstraction and information-hiding constructs
used in modern programming languages.

There are two aspects to developing new software production techniques.

1. developing a new capability.

In our case, we have designed the Anna specification language for Ada programs, and
developed a suite of tools for checking the runtime behavior of programs for consis-
tency with specifications [11,17]. These tools are collectively caled the Annalyaer.

2. defining methods of applying the capability.
The Annalyzer can be used to develop adequate formal specifications from prototypes.
This is done by checking a proposed (but insufficient) specification against behavior
of various prototypes of the software — as we show later, inconsistencies can be
used to find missing specifications. Alternatively, given an accepted specification, the
Annalyzer can be used to test and debug software.

In this paper we describe some techniques for pinpointing errors in hierarchically
structured software using formal specifications and the Annalyzer.

We present a view of debugging as an activity that starts with a specification and an
executable program. Both have been constructed during earlier activities in the software
development process. The goa is to establish that a program behaves consistently with its
specifications.

We suppose that the program is a complex unit such as an Ada package, with severd
structural levels and nested units which may share common data. Each level has spec-
ifications. Typically, the top level specifications express what the unit itself does using
high-level abstract concepts. Lower level specifications express what the nested units do,
and how they are related, by referring to implementation details that are hidden at higher
program levels.

In general, two strategies are involved in testing a package. First, tests involve exe-
cuting sequences of package operations and using the Annalyzer to compare their runtime
behavior with the specifications — called sequence testing? Second, only the highest leve
specifications are checked unless a violation occurs.

Henceforth we use specification to mean formal specification.
2The reason for using sequences of operations is discussed later.

Thus, we regard the debugging problem as having two dimensions: the length of the
test sequence, and the structural levels of the package.

Two dimensional pinpointing starts if and when inconsistencies arise. When an incon-
sistency arises, a region of suspicion is defined. It is a region of a package, including both
specifications and Ada text, that contains an inconsistency on the test sequence. It may
include not only the (sub) unit whose execution propagated the inconsistency, but aso other
units at the same leve that are related to it, or preceded it in the test sequence. The goa
of pinpointing is to reduce the region in which inconsistent behavior can be detected to a
single declarative region or subprogram.

Pinpointing strategies utilize the hierarchical structure of the program. New, more
detailed specifications and annotations® about program behavior, are added to the previous
specifications — this is called augmenting specifications. New specifications are first added
a the same level as the one that was violated. They should be related to the violated one
in such a way that they are likely to be violated by the same test?. The same test sequence
is then repeated. A violation of a new specification may reduce the region of suspicion by
providing more information, and possibly by occurring earlier in the test sequence. At any
one time only a few high level specifications are checked on a given test sequence.

When the region of suspicion has been reduced as much as possible by augmenting
specifications at one level, the next lower level is considered. At this new level, checking of
specifications and annotations of those nested units that remain in the region of suspicion
is activated. This strategy is repeated at progressively lower levels of the program. Each
time a violation occurs, the length of the test sequence is shorter, or the level of the violated
specification is lower — i.e, one of the two dimensions of the test is reduced.

Repair involves changes to executable code or data structures in a single declarative
region or subprogram body.

This hierarchical use of specifications may be employed with a range of informal or
formal methods. For example, in pinpointing, the methods whereby new specifications and
annotations are created may be highly intuitive, such as “ guess-and-test”. Alternatively,
new specifications may be formaly proved to imply the violated ones before they are tested.
When repairs are made, goal-oriented techniques utilizing the specifications and annotations
can be used [8]. Or repairs can be proved consistent with specifications that were previously
violated.

Advantages of debugging with specifications over present debugging methods and tools
include:

e The debugging problem is precisely defined.
The set of specifications to be tested constitute an accurate forma definition of the
behavior to be tested. If, later on, new specifications are required, analysis of their
relationship to the old specifications will indicate what further tests need to be per-
formed.

« Violations of specifications are detected automatically.
The task of searching output traces in order to recognize errors is eiminated.

3Speciﬁcations applying over small local scopes are called annotations.
‘Guidelines on how to do this are described in examples later.

o Violations can be analyzed for their effect on users of the software.
Violation of a high level specification in the interface of a module or package indicates
explicitly which facilities are unreliable. Users of other facilities may be unaffected.

o During debugging, new specifications can be expressed formally at any program level,
and then tested by the same methods and tools.
A user interacts with the Annalyzer by formulating new specifications and submitting
them to tests. He no longer has to deduce whether an abstract property of the program
is violated from more primitive data

e Very complex tests can be formulated easily and checked automatically.
For example, specifications againgt side-effects on globa data are easily formalized
and tested. This is difficult to do with standard debuggers.

e Our methods and tools can be used with any Ada compiler and runtime implementa-
tion.

e Our methods apply equally well to debugging other kinds of hierarchically structured
software modules and to concurrent programs.
Indeed, it is in the area of testing and debugging complex software that the advantages
of formal specifications become obvious. For concurrent software, the methods use
specification languages that extend Anna by providing new constructs for concurrent
behavior — eg., TSL [5].

In this paper we describe guidelines and techniques of 2-dimensiona pinpointing. Our
examples show the methodology applied to an Ada package with Anna specifications .

The paper is structured as follows. Section 2 presents an overview of the specification
language Anna. Section 3 describes the Anna consistency checking system as it appears to a
user. Section 4 presents an outline of the general methodology of 2-dimensional pinpointing.

Section 5 presents examples and guidelines. We show part of an interactive session with
the Annalyzer to test and debug an Ada package. Although the software and specifica-
tions in this example are simple, it contains some complexity that may be encountered in
real applications packages. Basic pinpointing techniques are shown, such as augmenting
specifications to reduce the region in which code repairs are considered. Both high level
specifications and low level local annotations are used. As will be seen, al interactions take
place using specification concepts of various levels of the package — i.e., each scope leve of
the package has a set of concepts used to specify that level, and pinpointing a a particular
level uses only those concepts.

This paper is a short introduction to debugging with specifications. Many topics, such
as the use of agebraic specifications, are omitted. A fuller treatment is given in [12]. There
we describe techniques of constructing specifications so as to justify the postulate that
debugging starts with correct specifications. More detailed examples of pinpointing are
given, and the reasoning to justify various steps is discussed in detail, some of it formally.

*The paper is self-contained, and prior knowledge of Anna is not necessary; some familiarity with Ada
or other Algol-like languages such as Modula-2 is assumed.

Relationship with formal methods of program development. Forma methods
may be divided into two categories, strict and relaxed. Strict formal methods result in
programs that provably possess some property. Program Development by transformation
of specifications, and Program Verification by proving consistency between specification and
program, are two examples of strict methods. Historically, strict methods and their support
tools have lagged behind the current generation of programs and programming languages,
while demanding advanced knowledge beyond the training of current programmers.

Relaxed methods utilize only parts of the formal basis of strict methods, but are easier to
use, and can be applied to wider classes of programs. They improve upon current informal
methods, and increase the likelihood of developing programs that possess certain properties
— but not dways provably so.

The hierarchical debugging methods we describe here are relaxed formal methods. They
require using a specification language to express the concepts upon which a program is based,
the functional goas of the program, and the subgoas of its various parts. Also, informal
reasoning, which all programmers use now and then, is applied to formal specifications
and their program contexts. However, we stop short of requiring the use of mathematical
proof to justify various steps. Our first goa is to encourage the application of specifications
to programming problems. Eventualy, someone who caiches on to using specifications to
debug, may well use rigorous formal proofs in place of informal reasoning, because the
information required for such proofs has already been expressed explicitly in specifications
and annot ations.

Utilizing specifications in debugging may be viewed as an evolutionary step towards for-
malizing every stage of software development. Most of the methodologies being researched
at present — e.g., VDM (3], program transformations [2] — propose a top-down process
whereby abstract specifications are developed first (design and specification), and refined
in a series of detailed steps resulting in executable software. If these methodologies are
successful eventually, debugging will be unnecessary. However, it is generally admitted that
these methodologies, when applied, are not strictly top-down. In other words, activities
similar to those that constitute debugging also take place during earlier stages. Thus, the
kinds of methods described here also apply earlier in the development process — eg., in
analysis for missing specifications.

The role of forma proof in software development has been the subject of much research in
Program Verification. A current mgor issue is how best to integrate proof into the process
of building software — see [4], [8] and [19]. Here, we have chosen to rely on informal
reasoning as a method of making diagnostic decisions, and justifying repairs. Certainly,
formal proof can be substituted for informa reasoning any place we use it. If our methods
turn out to be useful, they will indicate ways to integrate formal proof into the process.
This will be appropriate when automated proof tools mature to a point where they provide
adequate support.

Relationship with current debugging methods. In this paper we do not address
the problem of test data selection, which is the subject of much current literature (see
eg. [7,10,20]). Neither do we ded here with the problem of automatically generating test

sequences from formal specifications?. However, we do postulate the need for sequence
testing of complex modules such as Ada packages. Our methods are set up to deal with
general tests of this kind.

Essentially, the Annalyzer is an Oracle which judges the program behavior on tests’.
Having actually implemented an Oracle, we deal with the problem of how best to use it on
a single sequence test which so happens to uncover an inconsistency.

Current debuggers gather information from the lowest implementation levels of a pro-
gram and its runtime environment. The programmer must deduce what is happening from
this information. Some more advanced debuggers will test boolean assertions about pro-
gram variables. The Annalyzer, on the other hand, provides the power to test very genera
constraints on packages, abstract types, data structures, and subprograms, as explained in
the next Section. So the Annalyzer may be viewed as an evolutionary step in the develop-
ment of debugging tools, matching the evolution of programming languages in abstraction
and structuring constructs.

2 An Overview of Anna and the Checking Methodology

Anna (ANNotated Ada) is a language extension of Ada [1] to include facilities for formally
specifying the intended behavior of Ada programs. Anna was designed to meet a perceived
need to augment Ada with precise machine-processable annotations so that well established
formal methods of specification and documentation can be applied to Ada programs. In
this section we give a brief outline of a few kinds of annotations. A complete definition of
Anna is given in [13].

Anna is based on first-order logic and its syntax is a straightforward extension of the
Ada syntax. Anna constructs appear as formal comments within the Ada source text
(within the Ada comment framework). Anna defines two kinds of formal comments, which
are introduced by special comment indicators in order to distinguish them from informal
comments. These formal comments are virtual Ada text, each line of which begins with the
indicator - - : , and annotations, each line of which begins with the indicator -- |.

In the discussion that follows, an overview of the checking methodology® is given cor-
responding to each of the Anna constructs discussed. Details of the checking methodology
can be found in [16,17,18].

2.1 Virtual Ada Text

Virtual Ada text is Ada text appearing as formal comments, but otherwise obeying all of
the Ada language rules. Virtua text may refer to actua text, but is not allowed to affect
the computation of the actual program. Actual text cannot refer to virtual text. The
purpose of virtual Ada text is to define concepts® used in annotations. Often the formal
specifications of a program will refer to concepts that are not explicitly implemented as part

This is a promising research direction, which might be amenable to guidelines similar to the ones we
give for pinpointing.

‘A hypothetical Oracle is an a priori assumption in much testing methodology.

8The checking methodology refers to how annotations are checked at runtime.

Functions used in annotations are called concepts.

of the program. These concepts can be defined as virtual Ada text declarations. Virtua
Ada text may aso be used to compute values that are not computed by the actual program,
but that are useful in defining the behavior of the program.

Example of virtual text:
package QUEUE-MANAGER is
;Qbe QUEUE is private;
-— %dhcﬁonIS_MEMBER(E:ELEMENT;Q : QUEUE) return BOOLEAN;
end”Q.UEUE—MANAGER;

In the above example, ISMEMBER is a virtual function. It is not an actual operation
of the package QUEUE-MANAGER. It is used in annotations of actual subprograms of
QUEUE-MANAGER.

2.2 Annotations

Annotations are congtraints on the underlying Ada program. They are made up of expres
sions that are boolean-valued. The location of an annotation in the Ada program together
with its syntactic structure indicates the kind of constraints that the annotation imposes
on the underlying program. Anna provides different kinds of annotations, each associated
with a particular Ada construct. The Anna expressions extend (i.e., are a superset of the
expressions in Ada. The kinds of annotations used in the example of Section 5 are described
below. Along with each description is a paragraph describing how the Annalyzer checks
for consistency against the corresponding Anna construct. Note that there are many more
constructs in Anna that are not explained below since their explanation is not necessary for
the understanding of the example.

Type Annotations: A type or subtype annotation is a constraint on an Ada type. The
constraint applies throughout the scope of the type definition. Type annotations are located
immediately after the definition of the type they constrain, and are bound to the type
definition by the keyword where.

Example of a type annotation:

type QUEUE is
record
STORE : QUEUE_ARRAY(1. . MAX);
IN-PTR, OUT-PTR: INTEGER range 1. . MAX := 1;

SIZE: INTEGER range 0. . MAX := 0;
end record,;
~-—| where Q:QUEUE =>
° (Q . IN_PTR — Q . OUT-PTR — Q . SIZE) mod MAX = 0;

The above type annotation constrains all values of the type QUEUE so that their compo-
nents, IN-PTR, OUT-PTR and SIZE satisfy the equation in the annotation.

Checking methodology: Subtype annotations are converted into functions that
test for the truth of the annotations. Calls to these functions are inserted at
all places where values of the type are generated. Examples of such places are
assignment statements and type conversions.

In the example of Section 5, this annotation occurs in a modified form:

~ — | where in out Q : QUEUE =>
| (Q. IN-PTR — Q . OUT-PTR — Q . SIZE) mod MAX = O;

This is a modified type annotation. Modified type annotations can be used only in packages.
The in out indicates that values of the type are constrained only at the beginning and end
of each package operation.

Checking methodology: Modified annotations are checked in a similar manner to
subprogram annotations. See the discussion of subprogram annotations below.

Subprogram Annotations: Subprogram annotations are used to describe the behav-
ior of subprograms. They are bound to an Ada subprogram specification by the keyword
where. Subprogram declarations are annotated by lists of annotations. In general, each
annotation of a subprogram specifies an input condition, an output condition, or an excep-
tiona condition. Also subprogram annotations of functions may specify the resulting value
returned by a function.

Examples of subprogram annotations:

function IS_FULL(Q : QUEUE) return BOOLEAN;
<<SPEC_IS_FULL>>
where

return LENGTH(Q) = MAX;

procedure INSERT(E : ELEMENT; Q : in out QUEUE);
—-—| <<SPEC_INSERT> >
—-—| where
| oUt(LENGTH(Q) = LENGTH(in Q) + 1),
d out(IS_MEMBER(E, Q));

The first of the above examples is that of a result annotation. It specifies that the value re-
turned by the function 1S-FULL is the boolean vdue LENGTH(Q) = MAX. The annotations
on the procedure INSERT are out annotations. Out annotations of INSERT must be satisfied
whenever a cal to INSERT terminates normally — i.e., terminates without propagating an
exception. Whenever a cal terminates normaly, the length of the resulting Q must be one
more than the length of the value of Q on entry to INSERT. Also, on termination, E must
be a member of Q.

The above two examples have an extra feature — annotation names. Annotation names
are given using Ada's labd syntax. They are useful in referring to the annotations from the
Annalyzer .

More detailed annotations called statement annotations can appear in the body of the
subprogram. These annotations can be used to specify details of the subprogram at the
statement level.

Checking methodology: Explicit checks are inserted for result annotations im-
mediately before every return statement in its scope. In and out annotations
of subprograms are checked by explicit checks at the beginning of subprograms
and at all possible exit points in the subprogram.

Exception Annotations: Exception annotations (or propagation annotations) specify
the exceptional behavior of program units. There are two different kinds of exception
annotations — strong propagation annotations and weak propagation annotations.

A strong propagation annotation specifies conditions under which exceptions should be
propagated. The conditions are with respect to the initia state of the scope of the annota
tion. If the conditions are satisfied, then the scope of the annotation must be terminated
by propagating the specified exception.

Example of a strong propagation annotation:

procedure INSERT(E : ELEMENT; Q : in out QUEUE);
-—| where
o7 IS-FULL(Q) => raise FULL;

This annotations specifies that if IS-FULL(Q) is true on entry to INSERT, then INSERT
must terminate by propagating the exception FULL.

A weak propagation annotation specifies what happens when an exception is propagated.
It specifies conditions that must be satisfied if the scope of the annotation is terminated by
propagating one or more specified exceptions.

Example of a weak propagation annotation:
procedure INSERT(E : ELEMENT; Q : in out QUEUE);

-- | where
T T raise FULL => Q = in Q;

This annotation specifies that if the procedure INSERT terminates by propagating the ex-
ception FULL, then INSERT does not change the value of Q.

Checking methodology: Exception annotations are checked by enclosing their
scope by an Ada block statement. Exception handlers and out annotations are
inserted into this block to ensure that all normal and abnormal terminations
from the scope of the exception annotations satisfy the conditions imposed by
these annotations.

Note that out annotations do not specify abnorma termination.

3 The Annalyzer Tool Suite

The Annayzer tool suite is a set of programs that convert Anna formal comments into run-
time checking code. This checking code is inserted into the underlying Ada program. When
the resulting Ada program is executed, the checking code ensures that any inconsistency in
the program with respect to the annotations is detected and reported. The resulting Ada
program is linked to a special Anna debugger (also part of the Annalyzer tool suite). For
the purpose of this paper, we are interested mainly in the capabilities of the Anna debugger.
Details of how Anna forma comments are converted to runtime checking code are given
in [16,17,18]. A complete user guide and instalation manual is given in [14].

When a transformed Anna program is executed, the Anna debugger takes control and
provides a top-level interface between the user and the program being tested. Control can
be transferred to the underlying program in which case, control returns to the debugger
when the program becomes inconsistent with some annotation. In addition to transferring
control to the Anna debugger, the exception ANNA-ERROR is aso raised. The debugger
provides the following capabilities:

e Diagnostics.
Provides diagnostic messages when the program becomes inconsistent with an anno-
tation. In this case, the annotation violated and the location of violation is displayed
to the programmer.

¢ Manipulation of annotations.
Annotations can be suppressed or unsuppressed, and their effect when they are vio-
lated can be changed. For example, annotations can be completely suppressed, i.e.
the program will behave as if the annotation were not present. This feature will be
used in the example of Section 5.

The programmer interacts with the debugger using menus, choosing displayed options
with an input device such as a mouse. An example of how the programmer may suppress
annotations is shown in Figure 1. The first level menu displays the various different tools
available in the tool suite. On choosing the Anna Debugger, a second level menu displays
the various options the programmer has in interacting with the debugger. On deciding to
suppress annotations, another menu displays the set of annotations that can be suppressed.

SYNTAX
Start
SEMANTICS - SPEC_INSERT
Continue =
TRANSFORMER. SPEC REMOVE
- -1 Suppress —
- DEBUGGER . " QUEUE_INVARIANT
= Unsuppress
ANALYZER -~ BODY: INSERT
BODY-REMOVE

Figure 1. The Annalyzer Tool-Suite Menus.

The programmer can now choose the set of annotations to be suppressed and then commit
this action.

In addition to the menus of Figure 1, there is a window that displays the program
execution. When an annotation is violated, two more windows are opened. One of these
windows shows the annotation violated while the other shows the loca program text around
the statement where it was violated. This scenario is illustrated in Figure 2. This figure
corresponds to one of the scenarios of the example in Section 5.

Continu

out (LENGTH(Q) = LENGTH(in Q) + 1), R
out (TOP (Q):=if IS EMPTY(in Q) then E else TOP(
: out (IS_MEMRBER (E,
SYNTAX
SEMANTI
DRI VER>> INSERT (1,Q0); E
OK Q.STORE (Q.IN PTR) := E
TRANSFO DRIVER>> INSERT(2,Q0) /, Q. SIZE := Q.SIZE + I
ANNA-ERROR is detected| end INSERT;
DEBUGG =
ANALYZER |

Figure 2: Error Reporting By The Anna Debugger.

10

4 Two Dimensional Pinpointing

Two dimensiona pinpointing is a process for locating errors in programs. It starts if and
when inconsistencies arise while the program is being tested. The pinpointing process
attempts to reduce the region of suspicion based on the diagnostic messages reported by the
Annalyzer and our understanding of the software being debugged. The region of suspicion
is the portion of the program that is known to contain an inconsistency.

In this paper, we concentrate on the application of two dimensional pinpointing to
debugging Ada packages. We assume that the package is complex with severa structura
levels. While the package executes, it performs a sequence of package operations. Details
of the structural levels of packages are given in §4.1.

To debug a package, we first choose a test sequence — a sequence of package operations.
The package is executed on these operations one after the other. If an inconsistency is
detected, we start the process of two-dimensional pinpointing. At this point, only the
specifications at the highest structural level are activated. The lowest structural level at
which specifications are activated is the current level a which the pinpointing process is
taking place.

As the term — two-dimensiond pinpointing — suggests, the pinpointing process involves
two “dimensions’. These two dimensions are:

1. The length of the test sequence.
2. The number of structural levels of abstraction.

The pinpointing process is carried out by performing the following steps and re-executing
the same test sequence repeatedly until the region of suspicion is reduced to a stage when
repair of this region can be attempted. These steps are discussed further in §4.3.

1. Add new specifications at the current level of the pinpointing process.

2. Activate specifications within the region of suspicion that are at the next lower struc-
tural level.

After either of the two steps above, more annotations are added to the set being checked.
Hence when the test sequence is re-executed, it is compared against a new set of annotations.
A violation against these new annotations will give more information about the location of
the problem. This helps reduce the region of suspicion. This will be illustrated in detail in
Section 5.

Breadth-first search strategy: Always try to add specifications at the current level
being tested before activating specifications at the next lower level.

This leads to completion of the most globa and important specifications, and reduces the
region of suspicion quickly. Fewer annotations need be activated at the next lower level, if
the region is reduced. The breadth-first paradigm alows us to abstract away from the low-
level details of the implementation and consider only the relationships between high-level
abstract entities.

11

4.1 Packages and Levels

A package can be considered to be a composition of entities at different structural levels. A
simple package may have the following structural levels:

e The visible level:
The visible level of the package is where the interface of the package to the rest of the
program is defined. The visible level typically consists of private type and subprogram
declarations.

e The data level:
At this level is the definition of the data structures and the data objects of the package.
The private part of the package is aso part of the data level.

e The subprogram level:
This level consists of the actua bodies of the subprograms inside the package body.

e The statement level:
This level consists of the sequence of statements within the subprogram. Actually,
this level can be split up into more than one level. For example, compound statements
(e.g. loops) may be considered at a higher structural level than the simple statements
within it.
In the example of Section 5, we have a Queue package with the standard operations of
Insert, Remove, etc. The structural levels of this package is illustrated in Figure 3.

package QUEUE- MANAGER is
type QUEUE is private;
procedure INSERT(...):; Visible level

procedure REMOVE(...);

[privae ... Ny

end QUEUE MANAGER;:

package body QUEUE-MANAGER is pata level

Data structures and]
vari abl es

Subprogram level

Body of Body of
INSERT REMOVE

- Statement level

end QUEUE MANAGER;

Figure 3: Structural Levels within the Queue Package.

The test sequences consist of visible package operations. In Section 5, the test sequences
consists of repeated applications of the operations Insert and Remove.

12

4.2

Assumptions about Specifications

The following assumptions about specifications (at the debugging stage) help us to focus
the pinpointing methodology:

1. No initial (starting) specification may be changed.

We assume that the specifications have been written and analyzed at some earlier
stage in the software development process. Hence for the purposes of the pinpointing
methodology, we can assume that the initial specifications are correct and hence may
not be changed.

2. Concepts used in the specifications are correct.

Concepts are functions used in specifications and annotations. We assume that bodies
implementing all concepts have been debugged already and that they are correct.

The following example illustrates the above assumptions.
procedure INSERT(E : ELEMENT; Q : in out QUEUE);
--1 where
.- out(LENGTH(Q) = LENGTH(in Q) + 1),
out (IS_MEMBER(E, Q)

In the above example, LENGTH and I1s-MEMBER are concepts that have been used
to specify INserT!®. While debugging, we assume that the specification of INSERT is
correct and that the concepts LENGTH and IS-MEMBER are correctly implemented.

3. New specifications may be added provided they are consistent with the old ones.

Specifying complex software is a difficult task. It is quite possible that some undesired
behavior has been overlooked and specifications against it have been omitted. We refer
to such specifications as incomplete. Therefore, new specifications may be added to
specify against undesired behavior that has been overlooked. We refer to this process
as augmenting specifications.

4. Repair may involve any change to executable code, but data structures may be changed

4.3

only to the extent that they are not constrained by the initial specifications.
This follows from our assumption made above that the initial specifications are correct.

Guidelines for Applying the Pinpointing Methodology on Ada Pack-
ages

We now present a set of guidelines to perform two dimensional pinpointing on Ada packages.
These guiddines are illustrated in Section 5. A detailed treatment of the pinpointing process
is given in [12].

The following guidelines are described with respect to the visible level of the package

for the sake of clarity. Many of these guidelines apply equaly wel to other levels of the
package also.

Visible package specifications may not be complete (this is one of the assumptions in

our methodology). Due to this, we need to keep two sSituations in mind:

1054 also is the Ada “4” on the INTEGER type.

13

« There might occur an inconsistency of the program behavior with an intuitive intention
which hasn't been formally expressed.

o In a sequence test of a package, we cannot assume that the subprogram in which a
violation occurs is at fault because the previous operations might influence (either
directly or as a side-effect) the variables in the violated specification.

Our goal is to reduce the region of suspicion, either by reducing the length of the test
sequence leading to a violation (first dimension), or by finding a lower level annotation that
is violated (second dimension). There are three choices:

1. We try to add new annotations at the level being tested (here, the visible leve). This
choice is indicated whenever when we think that we can find missing annotations. It
is obviously necessary whenever the program behavior is inconsistent with an intu-
itive intention although no annotation was violated. This strategy usually results in
reducing the region of suspicion by shortening the test sequence in which a violation
oCCurs.

2. We decide to test the package at the next lower level — in this case the data level. We
activate the specifications at the data level. The region of suspicion will be reduced
if a lower level annotation is violated. We take this choice when we cannot think of
any missing visible level specification.

3. We decide that we have pinpointed the region of suspicion to the single subprogram
which is violated. This case occurs in the following situations:

(@) We cannot think of any further missing specification at the data level. Since
package operations interact only through the data level, a complete set of spec-
ifications at the visible and data levels means that every operation is executed
in a consistent package state. Hence a violation can only be due to a problem
within the same operation.

(b) We have confidence in al other operations in the test sequence except the violated
operation (this can happen even a the visible levd).

(c) Subprogram annotations at the subprogram body level are violated before data
level or visible level annotations.

(d) The first subprogram in the test sequence is violated.

The following guidelines are more specific to the subprogram level. If we decide to take
the third choice in the guidelines a the visible level, we can consider two cases.

o We try to pinpoint the region of suspicion at the statement level.
o We repair the body if we think that the region of suspicion is sufficiently pinpointed.

5 An lllustrative Debugging Session

In this section, the QUEUE-MANAGER package written in Ada/Anna is tested and de
bugged, using the Annalyzer. The example, although simple for brevity, illustrates the
two-dimensional pinpointing methodology described in Section 4.3.

14

5.1 Description of the QUEUE-MANAGER Package

The QUEUE-MANAGER package provides an abstract queue type, procedures, functions,
and exceptions. The Ada declaration of the package contains the abstract Anna specification
which is visible to users. This Ada/Anna package visible specification defines the behavior
of the facilities (types and operations) provided by the package.

The Ada package body, including the Ada private part, contains an implementation,
the details of which are hidden from users. This hidden part, which has three structural
levels, also contains local annotations specifying how the implementation works. The hid-
den annotations refer to the hidden implementation details, and thus will be different for
different implementations.

The development of the QUEUE-MANAGER visible specification, and an implementation
for it, goes roughly as follows:

1. Types and exceptions are declared. In particular, the abstract data type QUEUE is
declared as an Ada private type.

2. The functions IS-MEMBER, LENGTH, and TOP are declared. We refer to them as
basic concepts because they are used to specify al of the other QUEUE-MANAGER
operations.

3. The rest of the operations are declared and specified in terms of the concepts. Actually,
two of the other package operations, IS-EMPTY and I1S-FULL, which have very smple
specifications in terms of the basic concepts, are aso used as concepts in specifications.
This completes construction of the visible specification.

4. The abstract data type QUEUE is represented as a record type structure in the private
part of the QUEUE-MANAGER package. This is the first and most critical decision
in the implement ation. The vaues of this structure are subject to a type constraint
which expresses a mgjor decision about its use in this particular implementation.

5. The bodies of the concepts are implemented.
6. The rest of operations are implemented.

Here is the description of the actual package:
Specification of the QUEUE-MANAGER Package:

generic
type ELEMENT is private;
MAX : POSITIVE;

package QUEUE-MANAGER is

type QUEUE is private;

15

EMPTY, FULL : exception;

-- The following are concepts used in specifications. | S- EMPTY and IS_FULL are defined in
- - terms of LENGTH.

- function IS_MEMBER(E : ELEMENT; Q : QUEUE) return BOOLEAN;
function LENGTH(Q : QUEUE) return INTEGER;
function TOP(Q : QUEUE) return ELEMENT,

function IS_EMPTY(Q : QUEUE) return BOOLEAN;
ST < <SPEC_IS_EMPTY > > where
T return LENGTH(Q) = 0;

function IS_FULL(Q : QUEUE) return BOOLEAN;
T <<SPEC_IS_FULL>> where
return LENGTH(Q) = MAX;

— — The following are operations specified by concepts.

procedure INSERT(E : ELEMENT,; Q : in out QUEUE);
T < <SPEC_INSERT> > where
‘ IS-FULL(Q) => raise FULL,
| raise FULL => Q = in Q,
| oUt(LENGTH(Q) = LENGTH(in Q) + 1),
\ out (IS_MEMBER(E, Q));

procedure REMOVE(E : out ELEMENT; Q : in out QUEUE);
T < <SPEC_REMOVE> > where
‘ IS-EMPTY(Q) => raise EMPTY,
raise EMPTY => Q = in Q,
T OUt(LENGTH(Q) = LENGTH(in Q) — l),
‘ out(E = TOP(in Q));

— — Axiomatic specifications are omitted in this exam-
-- ple. Debugging using algebraic axioms is described
--in [12].

16

private
type QUEUE-ARRAY is array(INTEGER range <>) of ELEMENT;
type QUEUE is
record
STORE : QUEUE-ARRAY(1. . MAX);
IN-PTR, OUT-PTR: INTEGER range 1. . MAX := 1;
SIZE :INTEGER range 0. . MAX := 0;
end record;
< <QUEUE-INVARIANT> > where
in out Q:QUEUE =>
(Q . IN-PTR — Q . OUT-PTR — Q . SIZE) mod MAX = 0;

end QUEUE-MANAGER;

Implementation of the QUEUE_MANAGER Package:
package body QUEUE-MANAGER;

function IS_MEMBER(E : ELEMENT; Q : QUEUE) return BOOLEAN is
I : INTEGER := Q. OUT-PTR;
begin
if IS_LEMPTY(Q) then
return FALSE;
end if;
loop
if Q .STORE(I) = E then
return TRUE;
end if;
I := 1 mod MAX+1;
if | = Q .IN_PTR then
return FALSE;
end if;
end loop;
end IS-MEMBER;

function LENGTH(Q : QUEUE) return INTEGER is
< <BODY-LENGTH> > where
return Q. SIZE;
begin
return Q. SIZE;
end LENGTH;

17

function TOP(Q : QUEUE) return ELEMENT is
<<BODY-TOP>> where
return Q . STORE(Q . OUT-PTR);
begin
if IS-EMPTY(Q) then
raise EMPTY;
else
return(Q . STORE(Q . OUT-PTR));
end if;
end TOP;

function IS_EMPTY(Q : QUEUE) return BOOLEAN is
< <BODY-IS-EMPTY > > where
return Q .SIZE = 0;
begin
return Q.SIZE = O0;
end IS-EMPTY;

function IS_FULL(Q : QUEUE) return BOOLEAN is
< <BODY-IS-FULL> > where
return Q .SIZE = MAX;
begin
return Q.SIZE = MAX;
end IS-FULL;

procedure INSERT(E : ELEMENT; Q : in out QUEUE) is
begin

if 1S-FULL(Q) then

raise FULL;

end if;

Q . STORE(Q. IN-PTR) := E;

Q.SIZE := Q.SIZE + 1;
end INSERT;

procedure REMOVE(E : out ELEMENT; Q : in out QUEUE) is
begin
if IS-EMPTY(Q) then
raise EMPTY;
end if;

18

E := Q . STORE(Q. IN-PTR);
Q. OUT-PTR := Q.OUT_PTR mod MAX+1;
Q.SIZE := Q.SIZE — 1;

end REMOVE;

end QUEUE-MANAGER,;

5.2 A Debugging Session

Now we illustrate a session with the Annalyzer aimed at testing and debugging this par-
ticular QUEUE-MANAGER specification and body. The session consists of six interactions
in which tests are made, results are analyzed, and further actions are taken. Each inter-
action demonstrates how formal specifications are used in the two-dimensiona oinvointing
methodology. The interactions are now shown below:

Interaction 1

Test
We declare a queue variable QO and an element variable EO. We also suppress

all private part annotations and package body annotations to test the behavior
of the package body for consistency with visible specifications.
We execute a test sequence of three calls to package operations:

INSERT (1, QO); INSERT (2, Q0); REMOVE(EO, QO);

Result
No Anna violation occurred at the visible level. But an inconsistency with our
intuitive intention exists since 2 was removed from QO, whereas the first element
inserted was 1. See the Program 1/O window in Figure 4.

Start
Continue
SYNTAX
Suppress
SEMANTICS DRI VER>> INSERT(1,0Q0);
Unsuppress X
TRANSFORA DRI VER>> INSERT{2,Q0);
List oK
DEBUGGER DRI VER>> REMOVE (E0,Q0) ;
ANALYZER =2

Figure 4: Result 1.

19

Explanation: An incomplete visible specification.
This happened because the visible specification does not express all of our in-
tuitive requirements of queues — clearly something has been forgotten. At this
stage, an unexpected result has occurred at the end of the sequence,

INSERT(1,QO);INSERT(2, QO); REMOVE(E0,QO);

when the interaction level is the package visible level. The region of suspicion
is the visible specifications of INSERT and REMOVE, the data level, and the
bodies of these package operations. See Figure 10 in page 29. The reason to
include INSERT in the region of suspicion is given in the genera guideline stated
in Section 4.3.

Guideline 1
Pinpointing the region of suspicion at the visible level
Starting with the operation that was violated, and working back through the
test sequence:

1. Express the violated intuitive requirement as a new formal annotation.

2. Consider how the previous operations of the test influence the violated re-
quirement. If we can think of any missing specification of the previous oper-
ations that is related to the violated one, express it as a formal annotation.
Missing specifications at the debugging stage are often invariants of visible
operations.

Action & Justification
We decide to take the first choice in the general guideline stated in Section 4.3.
We have to consider why this inconsistency occurred and look for missing visible
specifications. First we guess

« REMOVE didn't return the value TOP(QO).

However, we see that the visible specification of REMOVE contains
T out (E = TOP(in Q));
and that it wasn't violated. Hence, our first guess was wrong since we assume

the correctness of TOP.
Next, we guess

o The value TOP(QO0) was changed in one of the executions of INSERT.
Now we consider what the expected behavior of INSERT with respect to the
concept TOP is. We realize that TOP(Q) for a non-empty Q must remain

invariant under an INSERT operation, and that this is missing in the visible
specification of INSERT. This missing specification is formally expressed as

procedure INSERT(E : ELEMENT; Q : in out QUEUE);
——|<<SPEC_INSERT>>
-- phere
- -1 out(TOP(Q) = if IS_EMPTY(inQ) then E else TOP(inQ) end if);

We add this to the other annotations of INSERT and run the same test
sequence, in order to check whether our second guess is correct or not.

Remarks

20

1. When we apply two-dimensional pinpointing methodology at the visible

level, it is important not to reason about the cause of an inconsistency based
on a particular implementation detail such as elements being placed in some
positional order in a common data structure as an array or a linked list.
At the visible level of QUEUE-MANAGER, all available to us are the oper-
ations LENGTH, TOP, ISMEMBER, ISEMPTY, ISFULL, INSERT, and
REMOVE, and the abstract relations among these operations. For example,
the reader should not think that the value of TOP(QO) is the first element
in an array.

2. Note that we could prove formally that the new annotation of INSERT in

the visible package specification must be violated by the sequence test.

. People often forget invariants like the above one.
. Imagine what we have to do in order to check whether the above guesses

are correct or not, using a standard debugger. We have to print out the
values of low level variables in the package body, and reconstruct the values
of the visible level concepts either in our mind or by using pencil and paper.
Using the Annalyzer, it is automatically checked whether the guesses are
correct or not, once we express the guesses as visible forma annotations of
the appropriate subprograms.

Other Possible Actions

1. Another possihility considered was to add

procedure INSERT(E : ELEMENT; Q : in out QUEUE);

——|<<SPEC_INSERT> >

-- where

- °| out (for all EI ;:ELEMENT =>

d (IS_MEMBER(E1,Q) <~> E1=E or IS_MEMBER(ELin Q)));

This was considered because we wondered whether INSERT deleted some
elements or not. However this was rejected because it does not constrain
against INSERT changing the value of TOP, i.e, this specification does not
imply the specification which was added in the action we took.

. Similarly, we might consider introducing a new specification concept, LAST,

and specifying that INSERT must insert the new element into the last position
of the queue'!. However, it does not help.

3. We can unsuppress lower level annotations, and run the same test sequence;

but this would violate our general breadth-first search strategy.

Interaction 2

Test

We run the same segquence test again; but this time we only get as far as the
second operation, INSERT(2, QO).

MThis is a popular choice for many people.

21

Result
The Annalyzer detects a violation of our new specification and gives the following
messages in the different windows. See Figure 5.

Start
Continu

ut (LENGTH. (Q) LENGTH (in Q) + 1),
Ut {TOP (Q) = 1f IS EMPIY{in Q) then
-| out (IS_MEMBER(E,

M

: Suppre
SYNTAX

SEMANTI(
DRI VER>> INSERT(1,Q0); 0.STORE(Q.IN PTR) := E
OK Mand i MAD ea LN AN =
DEBUGG ‘ 18 detected S
ANALYZER |

Figure 5: Result 2.

Explanation
As we guessed, INSERT has an additional effect (beyond what is specified). The
window displaying a violated annotation shows that the value of TOP is not
invariant under INSERT’s into non-empty queues. Note that it is the second
INSERT operation that violates. See the Program 1/O window in Figure 5.

The length of the sequence where a violation occurred has decreased. As a result,
the region of suspicion is now reduced to the visible specification of INSERT, the
data level, and the body of INSERT. See Figure 10 in page 29. This does not
mean that REMOVE is correct, however. It means simply that an inconsistency
between the annotations and the program text exists in this region.

Guideline 2
Pinpointing the region of suspicion at the data or body level.
Assume that we take the second choice stated in the general guideline in Sec-
tion 4.3. The following guidelines are useful:

1. Test the subprogram against the existing lower level annotations such as data
invariants in private part or body, subprogram body annotations, etc.

2. Add an annotation of the subprogram body which is a transformation of the
visible specification that was violated. In transforming a visible annotation
into an equivalent hidden one, abstract variables are replaced by their lower
level (hidden) representations. Such an annotation can be used as a start-
ing point for further pinpointing at the body level. It can be used in other
situations, too. See the guideline in the Interaction 3.

3. Add more detailed subprogram annotations to the subprogmm body. A good
candidate is an annotation of the subprogram body referring to hidden com-

22

ponents or variables; such detailed annotations are not expressible as sub-
program annotations at the visible level.

Action & Justification
We decide to take the second choice in the guidelines stated in Section 4.3.
Now our aim is to reduce the region of suspicion, interacting at the next lower
level in the package structure, which is the data level. For this purpose, we
unsuppress QUEUE-INVARIANT in the private part, and run the same test se-
guence (See the private part of QUEUE-MANAGER specification. Also, remem-
ber that previoudly the consistency checking of QUEUE-INVARIANT was sup-
pressed.) QUEUE-INVARIANT must be satisfied by al variables (and parame-
ters) of a QUEUE record whenever a package operation terminates normally (see
Section 2). Notice that at the (lower) data level the structure and components
of queues are visible.

Remarks

1. With a standard debugger, we interact with the program at the same leve
as the low-level information shown in the window displaying the location of
a violation. On the other hand, in our methodology, we interact with the
program a the same level as the high-level specification shown in the win-
dow displaying a violated annotation. At this stage of the two-dimensiona
pinpointing process, we don't understand yet how the low-level information
relates to the high-level specification.

2. The same remark as stated in Interaction 1 is applicable here. With a stan-
dard debugger, we have to print out the values of QO . IN-PTR, QO . OUT-PTR
and QO . SIZE before and after each execution of the operation INSERT, in
order to check whether QUEUE-INVARIANT s satisfied or not. On the other
hand, with the Annayzer, this invariant is checked automaticaly.

Interaction 3

Test
We run the same sequence test again.

Result
Anna consistency checking system detects a violation at the first call of INSERT
and gives the following messages in the different windows. See Figure 6.

Explanation
This means that after an element was inserted, the invariant condition among
Q . IN-PTR, Q . OUT-PTR, and Q . SIZE was violated. Notice that both dimen-
sions, the length of the violated sequence and the level of the violated annotation
are reduced. We have reduced the region of suspicion to the data level and the
body of INSERT. See Figure 10 in page 29.

Guideline 3
Pinpointing the region of suspicion within a single subprogram or re-
pairing a body.

23

Star
Continue

Suppress
SYNTAX ..f:..l...,.SgQUEUE_INYARIAN.TZ?.:z,c
-~|. where in ‘out QIQUEUE =>"
Unsuppress o (G.IN PTR - 0.0UT PTR
SEMANTIC
TRANSFOR
DRIVER>> INSERT(1,Q0);
ANNA ERROR =X
DEBUGGEH — Q.STORE (Q.IN_PTR) := E;
Q:SIZE 3= Q.SITE 13
ANALYZER end INSERT;

Figure 6: Result 3.

Once we decide to take the third choice in the guideline stated in Section 4.3, we

have to reduce the region of suspicion in a single subprogram body or repair the
body. In these cases, the following guidelines are useful:

1. Add a subprogram annotation to the subprogram body which is a transforma-
tion of the visible specification that was violated'?. This annotation can be
used for further pinpointing as well as for repair.

2. Add more detailed subprogram annotations to the subprogram body*3.

3. Add statement annotations such as loop invariants or assertions within the
code of the subprogram body.

4. At the subprogram body level, a considerable number of detailed annotations
for a subprogram body are available. Thus, it is sometimes advisable to
rewrite the body that is under suspicion, using these annotations, rather
than to find the cause of the inconsistency in the body and to repair it.

Action & Justification
We decide to repair the body of INSERT. At this stage we consider the goal
plan for the body of INSERT. We consider how Q.IN_PTR, Q.OUT_PTR, and
Q .SIZE have to be updated in the body of INSERT (See the body of INSERT
in QUEUE_MANAGER body.). INSERT must achieve four goals:

1. out(Q.STORE(in Q.IN_PTR) = E)

—— inserting E in STORE
2. out(Q.SIZE = in Q.SIZE + 1)
—~— incrementing LENGTH

3. out(Q.IN_PTR = in Q.IN_PTR mod MAX + 1)

~— incrementing IN_PTR

4. <<QUEUE_INVARIANT>>

2See guideline 2, number 2.
13See guideline 2, number 3.

24

The orders of the first two and the last two are indeterminate. Since the fourth
goa was violated, the body did not achieve it. We have to find a way of fixing the
body so that the body achieves the fourth goa. Looking a the body, we redize
that the body achieves the first and second goals, but not the third one. We can
informally conclude that if we add the third goa as an assignment statement to
the body, then the fourth goa is aso met. Thus Repair: we add the following
assignment statement to the body of INSERT.
Q . IN-PTR := Q.IN_PTR mod MAX + 1;

Other Possible Actions
1. We could pinpoint the inconsistency further in the body of INSERT by adding
the above goals to the subprogram body as assertions at appropriate points.
2. The correctness of this repair also could be checked formally by proof meth-
ods. For example see [8].

Interaction 4

Test
We run the same sequence test again, checking annotations at al levels.

Result
The Annalyzer detects another violation at the visible level and gives the follow-
ing messages in the different windows. See Figure 7.

Star
Continue
Suppress _ .
SYNTAX --1 raise EMPTY => 0 = in Q 9
--| out (LENGTH(Q) = LENGTH (in - 1),
Unsuppress =] BUE{E = TOP{in Q)):
SEMANTI
TRANSF(
: DRIVER>> INSERT(1,Q0);
. OK
DEBUGG| ;. ygr>> INSERT (2,00); Q.OUT PTR: = Q.OUT_PTR mod MAX + 1;
ANALYZH DRIVER>> RFMAVE (R0 Q) ; endoﬁél\gé?E;i Q-s12E -1
ANNA- ERROR i5 d ‘

Figure 7: Result 4.

Explanation
This test actually serves two purposes.
1. Running INSERT(1, QO); INSERT(2, QO) against the annotations at all levels
in order to find out whether the repair we made in the previous interaction
is correct on this test or not.

25

2. Running INSERT(1, QO); INSERT(2, QO); REMOVE(E(, QO) against visible spec-
ifications for further testing.

The result shows that INSERT, as repaired, is consistent with al existing specifi-
cations on this particular test sequence, but that another inconsistency occurred
with a visible level specification. The region of suspicion is the visible specifica-
tions of INSERT and REMOVE, the data level, and the bodies of these procedures.
See Figure 10 in page 29.

Action & Justification

The test sequence leading to a new violation and the level of the violated anno-
tation is the same as in Interaction 1. However, we now know that INSERT is
consistent on this test with all existing annotations at al levels. Also we make
a judgement that the annotations of INSERT are complete, i.e.,, that we cannot
think any further missing specifications. Hence, we have a good confidence in
the correctness of INSERT. Therefore, following the third choice in Section 4.3,
we decide that we have reduced the region of suspicion to the visible level of
REMOVE, the data level, and the body of REMOVE. See Figure 10. Our am is
now to reduce the region of suspicion to the data level and the body of REMOVE.
At this stage, if we strictly follow two-dimensiona pinpointing, first we must con-
sider finding an inconsistency at the data level. If we tried this, we would find no
inconsistency. We omit the explanation of this interaction and consider further
reducing the region of suspicion to the body of REMOVE. Now we must provide
more detailed body annotations for REMOVE. We follow guideline 3, number 1.
The violated visible annotation is

"| out(E = TOP(in Q)); (1)

This tells us exactly what the value of E in REMOVE should be. The body level
annotation of TOP is

- ret urn Q . STORE(Q . OUT-PTR); (2)

We transform the violated visible specification (1) into the body annotation of
REMOVE, using (2). The resulting annotation is

procedure REMOVE(E : out ELEMENT; Q : in out QUEUE)
-—| <<BODY-REMOVE>>
-—| where
T out(E = in (Q. STORE(Q. OUT-PTRY)));
This transformed annotation tells us exactly how E should be updated in the

body of REMOVE. We add this transformed annotation to the body and run
the same test.

Other Possible Action
We could check the actual out-put value of E on this test, using the Annalyzer
options. The detail of such options will be explained in [14].

26

Interaction 5

Test
We run the same sequence test again.
Result

The Annalyzer detects a violation of the new body annotation of REMOVE, and
gives the following messages in the different windows. See Figure 8.

Continue

Suppress

SYNTAX

Unsuppress

SEMANTIC
TRANSFOH ry vER>> INSERT(1,0Q0) ;
—-—ﬁ" : OK
DEBUGGET DRI VER>> INSERT(2,Q0);
Sttt oK Q-OUT PTR = Q QUT_PTR mod MX + 1
DRI VER>> REMOVE (E0,Q0Y;, | Q.512E 1= Q.SIZE ~71;
ANALYZEF ANNA- ERROR is det end REMOVE;
1

Figure 8: Result 5.

Explanation
We have reduced the region of suspicion to the body of REMOVE . See Figure 10
in page 29.

Action & Justification
The annotation BODY-REMOVE tells us the exact component in Q . STORE to
be returned as the value of E. We read the body of REMOVE and redize that

the following repair is needed: Repair: We change IN-PTR to OUT-PTR in
E := Q. STORE(Q. IN-PTR);.

Other Possible Action
The correctness of this repair could aso be checked formally by proof methods.

Interaction 6

Test

After fixing the bug as suggested in the previous step, we run the same test
sequence.

Result
This time, no violation is detected. See Figure 9.

27

SYNTAX —
Continue il :
SEMANTICS DRI VER>> INSERT(1,Q0);
Suppress oK
TRANSFORN DRI VER>> (I]IzSERT (2,00);
Unsuppres DRI VER>> REMOVER (E0, Q0) ;
DEBUGGER [T F0= 1

ANALYZER — !

Figure 9: Result 6.

6 Conclusions

Two-dimensiona pinpointing is a methodology for locating errors in Ada packages or similar
complex software modules that are constructed using data abstraction and information
hiding principles. It utilizes annotations at all levels of the software, starting a the most
abstract level specification.

The methodology is independent of any compiler or runtime environment. It is sup-
ported by tools that transform annotations into runtime checks. Support tools have been
developed for Ada and Anna, and can be clearly be developed for similar modern program-
ming and specification languages.

We believe that this kind of use of abstract specifications in testing and debugging will
become commonplace as programming/specification languages become more powerful, and
analysis tools such as the Annalyzer become readily available. It is particularly appropriate
in reuse of software, where for example, a standard interface specification may be imple-
mented many times to fit differing environments, or modified by additional requirements.

Work towards developing pinpointing methods is continuing in severa directions. First,
pinpointing is being applied to more complex packages than the simple example shown here.
This involves a theory of building correct specifications, and also the checking of agebraic
specifications [12]. One objective is to develop detailed guidelines covering many situations
as a step towards constructing rule-based automated aids to debugging.

Secondly, use of forma proof in debugging and repair is being considered. Although the
presentation here utilizes intuitive judgements and guesswork, forma proof methods can be
employed to justify various steps in two-dimensiona pinpointing.

Finadly, development of similar pinpointing methods for concurrent software is underway.

7 Acknowledgements

Substantial portions of the Anna toolsuite have been implemented by Geoff Mendal. Other
basic Anna environment tools used in this work were implemented by David Rosenblum,
Chuan-Chieh Ko, and other members of the Program Anaysis and Verification Group.

28

package QUEUE MANAGER is
type QUEUE is private:

)i

package QUEUE- MANAGER is

package QUEUE_MANAGER is
type QUELE is private;

type QUEUE is private;

fjiféc.du:q INSERTY: procedure INSERT (

procedure INSERT({

private
end QUEUE MANAGER

end QUEUE MANAGER,

end QUEUE MANACGER

package body QUEUER MANAGER is package body QUEUE_MANAGER is

package body QUEUE_MANAGER is

“ Data structure
" variables

‘Data structure
“‘varjables :

Body of Body of
REMOVE

REMOVE

end QUEUE_MANAGER;

end QUEUE_MANAGER; end QUEUE MANAGER;
INTERACTION 2

INTERACTION1 INTERACTION 3

package QUEUE MANAGER is

package QUEUE- MANAGER is
type QUEUE is private:

type QUEUE is private;
procedure INSERT(...);

package QUEUE MANAGER is

type QUEUE is private;
- procedure INSERT(...);

procedure INSERT{,

private
end QUEUE MANAGER

private
end QUEUE MANAGER

private

end QUEUE MANAGER;

package body QUEUE MANAGER is package body QUEUE- MANAGER i s

package body QUEUE- MANAGER is

Data structures and |

Data structures and
vari abl es

Data structures
variables G variables
Body of Body of Body of Body of Body of
: INSERT INSERT REMOVE

INSERT

end QUEUE MANAGER

end QUEUE_MANAGER;

end OUEUE MANAGER:

INTERACTION 4 INTERACTION 5 INTERACTION6

Figure 10: Region of Suspicion at each Interaction

29

References

[1]

[2]

[5]

(6]

The Ada Programming Language Reference Manual. US Department of Defense, US
Government Printing Office, February 1983. ANSI/MIL-STD-1815A-1983.

F. L. Bauer, B. Moller, M. Partsch, and P. Pepper. Formal program construction by
transformations-computer-aided, intuition-guided programming. IEEE Transactions
on Software Engineering, 15(2):165-180, February 1989.

D. Bjorner and C. Jones. Formal Specification and Software Development. Prentice
Hall, 1982.

D.C. Luckham. Program verification and verification-oriented programming. In Pro-
ceedings of IFIP Congress 77, pages 783-793, North-Holland Publishing Co., Amster-
dam, August 1977.

D.C. Luckham, D.P. Helmbold, S. Meldal, D.L. Bryan, and M.A. Haberler. TSL:
Task Sequencing Language for Specifying Distributed Ada Systems: TSL-1. Techni-
cal Report CSL-TR-87-334, Stanford University, July 1987. Program Analysis and
Verification Group Report PAVG-34.

D.C. Luckham and F.W. von Henke. An overview of Anna, a specification language
for Ada IEEE Software, 2(2):9-23, March 1985.

Richard A. DeMillo, W. Michael McCracken, R. J. Martin, and John F. Passafiume.
Software Testing and Evaluation. Benjamin/Cummings, 1987.

David Gries. The Science of Programming. Texts and Monographs in Computer Sci-
ence, Springer-Verlag, 1981.

John V. Guttag, James J. Horning, and Jeannette M. Wing. The Larch family of
specification languages. |IEEE Software, 2(5):24-36, September 1985.

William C. Hetzel, editor. Program Test Methods. Series in Automatic Computation,
Prentice-Hall, 1973.

David C. Luckham, Randall B. Neff, and David S. Rosenblum. An Environment for
Ada Software Development Based on Formal Specification. Technical Report 86-305,
Computer Systems Laboratory, Stanford University, August 1986. (Program Anaysis
and Veification Group Report 31).

David C. Luckham, Sriram Sankar, and Shuzo Takahashi. The methodology of formal
specification and hierarchical debugging. (In preparation).

David C. Luckham, Friedrich W. von Henke, Bernd Krieg-Briickner, and Olaf Owe.
Anna-A Language for Annotating Ada Programs. Springer-Verlag-Lecture Notes in
Computer Science No. 260, July 1987. (Also Stanford University Computer Systems
Laboratory Technica Report No. 84-261).

30

[14]

Geoff Mendal et al. The Annal user guide and installation manual. Computer Systems
Laboratory, Stanford University, Stanford, California - 94305. Jan. 1989. Available
upon request. Forthcoming Technical Report.

M. Nidlsen, K. Havelund, K. R. Wagner, and C. George. The RAISE language, method
and tools. In Proceedings of the VDM Conference, pages 376-405, Springer-Verlag—
Lecture Notes in Computer Science No. 328, 1988.

Sriram Sankar. Automatic runtime consistency checking and debugging of formally
specified programs. (forthcoming PhD thesis).

Sriram Sankar and David S. Rosenblum. The Complete Transformation Methodology
for Sequential Runtime Checking of an Anna Subset. Technica Report 86-301, Com-
puter Systems Laboratory, Stanford University, June 1986. (Program Analysis and
Verification Group Report 30).

[18] Sriram Sankar, David S. Rosenblum, and Randall B. Neff. An implementation of Anna.

[19]

[20]

In Ada in Use: Proceedings of the Ada International Conference, Paris, pages 285-296,
Cambridge University Press, May 1985.

D. Scott and W. Scherlis. First steps towards inferential programming. In Proceedings
of the IFIP Conference, pages 199-212, 1983.

Raymond T. Yeh, editor. Current Trends in Programming Methodology, Volume 2—
Program Validation. Prentice-Hall, Inc., 1977.

3l

