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1. Introduction
Research is being conducted to determine how distributed computations can be mapped

onto multiprocessors so as to minimize execution time. The class of programs being
considered here, falls under a subset of the Actor paradigm [Agha 851. A computation is
expressed as a collection of autonomous executable modules known as players [Yan 86a].
They interact with one another via message passing. When a player receives a message, it
may perform user-programmed computations; send/wait for specific messages; or create
new players. The multiprocessors being considered consist of homoPeneous processing
elements (or sites) connected via physical communication links. The resource management
problem in this context involves mapping a m concurrent computation to the
multiprocessor - as opposed to some other efforts that involve minimizing the average
turn-around time (or some other parameter) for a collection of unrelated tasks. By

(i) restricting ourselves to programs in which the number and type of players created
are independent of input data and system load and

(ii) forcing each player to reside in the site in which it was created for the whole
duration of the computation,

the mapping problem reduces to a placement problem: “In which site should a player be

placed after it is created.3”. The number of all possible solutions is finite, enumerable, but
extremely large.

Instead of formulating it as yet another optimization problem based on some abstract
program/ machine models, the approach being investigated here (called “post-game
analysis”) is based on placement heuristics which utilize program execution history [Yan
87b]. Figure l-l below gives a summary of how the “post-game ” iteration framework
works:

1. The program is either executed or simulated
2. Data gathered during simulation/execution is analyzed by a set of
heu- risics which assess relative merits to alternative
perturbations to the current mapping.
13. The perturbation given the highest merit is chosen - from which
an al- ternative mapping is generated
4. Go to step 1 unless some terminating condition is met.

Figure l-l. The “Post-game Analysis” Iteration Framework
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Although initial experiments [Yan 87a] have demonstrated that “post-game analysis”
indeed discovered mappings that exhibit significantly shorter execution times than the worst
cases for the programs tested, three important issues remain to be addressed:

i) Pelformance  Evaluah’on - Just like many other heuristic approaches proposed to
solve combinatorially explosive problems, the initial experiments failed to
demonstrate how close the proposed mappings actually were to the “optimal”. The
“optimal mapping”, in this context, is defined as the mapping in which the given
program executes fastest on the given machine. Furthermore, unless the
“distribution” of execution time (over all mappings) is known, it is difficult to
assess whether the heuristics actually succeeded or it was “mere luck”.

ii> Heuristics Development - “Post-game” analyzes data gathered during program
execution to discover bottlenecks in the system. It then make use of heuristics that
“reason” or “make guesses” to generate mappings which exhibit shorter execution
time than others. Although the parameters on which these heuristics were based
seemed intuitively reasonable, it remains to be shown that they actually describe
aspects of the system which directly translate/relate to execution time. A good
example involves the amount of “remote messages” - messages that has to be
delivered over the communication network connecting different sites of the
multiprocessor. It will be shown later that in spite of popular belief, minimizing
this quantity does not necessary results lead to small execution times even when the

. . .~OlnmU~ llI& are slow!
iii) Control Strategy Development - The “control strategy” being used in the “basic”

post-game analysis [Yan 87a] involves selecting the m and Smallest possible
perturbation. After each iteration, only one of the players is moved to a new
location. Although the number of iterations needed to achieve convergence is still
small in comparison with the total number of possible assignments, efforts are
being made to reduce the number of iterations by relaxing the control strategy to
allow more than one player to be assigned to an alternative site. In order to make
this selection “intelligently”, one must understand very well how and why and to
what limit do the heuristics reported earlier works.

In order to determine (i) which measurable parameters are actually related to execution
time; (ii) the inter-relationship between these parameters; and (iii) the distribution of
execution time over all possible placements and a range of communication costs, parallel
program execution was simulated using “Axe” [Yan 86b]. “Axe” provides an integrated
environment for computation model description, processor architecture specification,



discrete-time simulation, automated data collection as well as the application of “post-game”
heuristics. Communication cost as well as program parameters were varied.

.

Section 2 gives an overall description of how the experiments were designed and the
parameters measured. Each experiment involves the simulation of d possible placements
for a program with nine players executed on a multiprocessor with four sites completely
connected (over 11,000 possible placement configurations). Five groups of parameters are
measured representing different aspects in the concurrent execution environment: (i) overall
measurements, (ii) communication parameters, (iii) CPU utilization, (iv) CPU contention and

(v) dependencies between players. Two programs were simulated - representing two
major classes of parallel computations. The players in the first benchmark can be
visualized as “service centers” in a “pipe-line”. Messages carrying different requests
“flow” through each stage of the pipeline - making different processing demands at the
site in which the player reside. Section 3 reports the preliminary findings for this
benchmark. It was found that the parameters that correlated best with execution time
describes the CPU contention at the busiest site. The results from the second benchmark is
described in section 4. This program is representative of the structure of many “divide-
and-conquer” algorithms. Players are organized as “nodes” at different levels of a “tree”.
Requests generated at the root propagate down to the “branches” of the tree. Players at
higher levels have to “block” and wait for replies from those at the lower levels. It was
discovered that the “dependency parameters” correlates much better than all the others. The
findings for both programs are summarized in section 5. The paper concludes by
evaluating the performance of the application of “post-game” analysis to these programs. It
is shown that “post-game” analysis achieved close to 96% optimal speed-up for both
programs in most cases.
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2. Designing the Experiments
. . .2.1 Benchmark Selection  f Pvum  Characterlzatlon

It would be desirable to have a set of programs with “different characteristics” to serve as
“benchmarks” for experiments of this sort. Unlike sequential programming however,

benchmarks for parallel/distributed computing are relatively difficult to come by:
i) There are not many parallel applications. Parallel/distributed processors

have been in existence for quite a long time - most of which lived as “research

secrets” in laboratories across the nation. Only until recently are some

commercially available. It is not easy to find many programs that run on these
machines - not to mention any that could be termed “representative benchmark”
for parallel program behavior.

ii) It is difficult to classify/describe parallel programs. Sequential

computing on von-Neuman architectures can be described in terms of two basic
operations: “data/ instruction access” and “processing”. Classification of sequential
programs are, therefore, based on the characteristics of such operations (e.g.
“access locality”, "CPU/IO bound” and “branch probabilities”). Although player

programs can also be described in terms of the characteristics of three basic
observable actions - “player creation”, “message sending/ waiting”, and
“processing”, there are many dimensions along which programs can be classified
(e.g. degree of parallelism, amount and pattern of communication and computation,
dependency/relationships between players and parallelism “grain size” etc.). Dif-
ferent programming paradigms seems to demand different dimensions for
classification, The large variety of paradigms in which parallelism can be expressed
(or exploited) makes finding “representative” programs difficult.

For the purpose of this experiment, programs are classified into two classes depending
on how concurrency is expressed/exploited:

$&s A; (e.g. Data-flow [Davis 821 and Systolic [Kung 821 ) - With these
paradigms, the computation is organized as a collection of computing agents
(players) among which requests (messages) of different types are communicated.
No player has to be blocked to wait for a specific (reply) message from another
player before resuming computation. In other words, a player can alwas choose

to process messages (in its message buffer) in any order.

Consider the simple problem of “concurrent tree search”: A data-base is
organized as a tree of players - the lowest level (1) of which holds the actual data.
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Search can be carried out simultaneously along different branches of the tree. A

"Chess-A" implementation is described in Figure 2-l using BDL - a behavioral
description language for player programs [yan 86a]. Requests are generated at the
“root” of the tree and propagates down each branch of the tree. There is no need to
block and wait for replies before sending out the next request because all messages
(both enquiries and replies) are tagged. A player at stage (k) can accept requests
arrived from stage (k+l) and replies from stage (k- 1) and process them in any
order.
(defPlayer node

(SEARCH RESULT)
(parent left-child right-child)
(search-key data)
(SEARCH

(record search-key)
(post left-child SEARCH search-key)
(post right-child SEARCH search-key))

(RESULT

search) received
(record search-key data)
“result”
(post parent RESULT search-key data)))

messages it understand
its acquaintances
internal states
“SEARCH” message received
extract “search-key”
propagate request to left child
. . . and right child
“RESULT (from 1 previous

extract “search-key” and

forward it to the parent player

Figure 2-l. “Data-flow” Implementation of Concurrent Tree Search

(defplayer node
(REQUEST RESULT) messages it understand
(parent left-child right-child) acquaintances
(search-key data) internal states
(REQUEST “REQUEST message received
(record search-key)
(post left-child REQUEST search-key) initiate search...
(post right-child REQUEST search-key))

(RESULT (record data) result arrives
(post client RESULT data) 1) forward it to client

Figure 2-2. “Parallel-Function-Call” Implementation of Concurrent Tree

Class B; (e.g. Remote procedures [Nelson 811, “streams” [Weng 751, ‘Iforkljoin”
[Conway 63, Dennis 661,  “parBeginJparEnd” [Dijkstra 651, “ForAll DoAll” ,
Concurrent Pascal [Hansen 751 and CSP [Hoare 781 etc.) - Analogous to function



6

calls, parallelism is explicitly initiated via message passing between “sender” (c.f.
caller) and receiver (c.f. callee) players. After the message is sent (c.f. function
call), the sender blocks to wait for its reply (c.f. function return).

Figure 2-2 illustrates the “class-B” implementation of the tree-search example.
Recursive waves of message is sent from players at stage “k+l” to those in stage
“k”. Only one request is allowed to flow down the branches of the tree. At any
one time, only players at the same level executes in parallel. All players at higher
stages are blocked. The next request will have to wait at the root of the tree until the
previous request finishes processing.

.2 The Mul&wocesor  Model

The multiprocessors being considered consist of “ensembles of identical, concurrently
operating, and regularly interconnected processing elements” [Seitz 821 (e.g. the Cosmic
Cube [Su 851). Each processing element (or “site”) is autonomous. It contains its own
storage, processor and a distributed operating system kernel governing local activities such
as message forwarding, task scheduling, and memory management.

In these experiments, the sites of the
multiprocessors are completely connected (Figure
2-3). This topology was chosen in order to
eliminate the effects of routing policy - thus
provides us a simpler environment for data
interpretation.

For the purpose of the study, the basic
operations of a site is modelled as follows:

Figure 2-3. Four Completely-
i) Local scheduling policy: Connected Sites

a. executable players “time-share” the (only) processor unit in a ROUND-ROBIN
fashion;

b. players are preempted for “system operations” which include:

PmATlON TAKEN
l memory management (e.g. player creation/termination) Tmem
l message delivery to local players T&k7
l send a one-packet-message to players in a neighbor site Thop
l context-switch overhead Txm3nlpt

. l routing decisions, scheduling overhead Ta
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Throughout these experiments: Tmem, Tintempt,  T&liver and TOs are kept small
(= 0) .

ii) Message sending mechanism - When player P at site <sp> wishes to send a

message to player Q at site es+, the following procedti is carried out:

on Time charged , to CPU at...

a. message delivered to infinitely large buffer at es+; Thop <sp>t

b. processor at <sq> alerted; Trmn.lpt <sq>

c. late+, the operating system of <sq> delivers the Tdeliver <sq>

message to the receiver player (Q);
t In this case, the time spent in remote communication is charged to the CPU at

the site in which the sender player reside. An alternative model involves

charging Thop to the site of the receiver player. This involves a slightly
modification in protocol suggested.

* Although the operating system at site Csq> can preempt any executing
player(s) to handle messages, many messages may arrive at a site
simultaneously. Therefore, there is still an indeterminate delay between the time
when a message is delivered to the destination & and the time when it is
actually delivered to the receiver plaver.Messages will eventually be received
because i) the ports connected to neighboring sites are served in a ROUND-
ROBIN fashion and ii) incoming messages at each port are served on a FIRST-
COME-FIRST-SERVE basis,.

.2-3 An Jl2ibamve Swrch-9

These experiments simulates the execution of two 9-players-programs a multiprocessor
with 4 completely connected sites. In order to guarantee finding the “optimal mapping”, an
exhaustive search over all possible mappings was carried out.

“How many ways are there to place N-P players into N-S sites?” The answer to this
question depends on:

a. the program - if some of the players have the same behavior (e.g. communica-
tion, synchronization and computation requirements), the number of possible
solutions is greatly reduced;

b. whether all the sites are identical; and
c. how the sites are connected (i.e. the topology of the communication network).
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loo
0 2 4 6 8 10

2-4. Search Space Size for N Players on
N Completely-connected Sites

Figure (at least)

In the worst case, where all sites/players are different and the topology is non-uniform,
there are N-PN-s  assignments. Even when the sites are completely connected, the total
number of possibilities still increases exponentially1 (Figure 2-4). Given the computing
resources and time available, the 9-SEW&PLAYERS  configuration was chosen - it takes
11,05 1 iterations, which translates to 15 hours of simulation time (using one processor on
the Sequent Balance-8000) and 1.2 Mbyte of data to be analyzed (Figure 2-5).

N-S N-P N-P/N-S  no. of solutions simulation time data gathered

9 4 2.25 11,051 15.34 hours 1.2 Mbyte
9 5 2.2 18,002 24.99 hours 2 Mbyte

10 4 2.5 43,947 2.6 days 4.8 Mbyte
10 5 2.0 86,472 5.1 days 9.4 Mbyte

Figure 2-5. Comparing Simulation cost for different N-P and N-S

Beside being economically feasible, the configuration chosen should also post constrains
to make the placement problem “interesting”. For example, with approximately one site
available per player in a completely connected structure (i.e. N-P I (or =) N-S), the
solution to the placement problem with low communication cost (obviously) involves
placing a player at each site. The higher the average number of players per site is, the more
“interesting” the problem becomes. The heuristics have to minimize the contention between
players resident in the same site yet at the same time, be aware of the penalty in remote

1 Appendix I contains the fulI solution to the placement problem with completely-connected sites.
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communication when distributing the computation over the machine. If the value of
N-P/N-S  were too high (e.g. = N-P), the placement problem is also “uninteresting” because
total number of possible placement is small (see Figure A-l in the Appendix). The value of
N-P/N-S for the !iWTE-d-PLAYERS  configuration was = 2.2 .

2*4 What to Mwuxs

2.4.1 Preliminaries

Figure 2-6 below gives a very brief summary of some of the approaches taken by other
researchers to represent a distributed program, a multiprocessor and their interaction
(indicated by “@“). A “4” indicates that the particular model was used, “x” for “not used”
and ” 1” indicates the use of “cost models”.

pokhari  8 1, Gylys 761
4. queuing model [Ni 81, Gao 84, Chow 791

5. message count 4 X X [Miller 851
6. load indices X 4 4 pEfe 82, Stankovic 8 l]

Figure 2-6. Descriptions of Concurrent Execution Environments

Although some of these approaches produced resource management strategies wit
performance improvements, these results were, nevertheless, somewhat unsatisfactory:

i) Many of these approaches were concerned with minimizing the average turn-around
time for a group of unrelated/independent tasks - the results of which are not
directly/readily translatable to the context of managing a tingle computation.

ii) Many researchers have defined “optimal mapping” without giving sufficient
justification that such measurements indeed relate to program execution time.

iii) Approaches that based on abstract program models produce results that are not
directly applicable to “real” programs.

h

“Post-game analysis”, on the other hand, does not rely on any abstract program or
machine model. Instead, it makes use of “measurable quantities” actually gathered during
program execution to produce resource management strategies directly incorporable into
distributed operating system kernels. In order to attain a better understanding about the
resource management problem and why “post-game” works, more than twenty parameters
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were measured. These parameters are classified as follows when used in “post-game”
analysis:

i. Site descrintors (Q) - describe the utilization and contention of the resources at a

site;
ii. Plaver descrintors (CL+,) - describe the resource requirements (or characteristics)

of individual players;
iii. Inter-Plaver descrintors (o$$ - describe the interaction between players which

includes parameters that describe the amount of communication between them and
their inter-dependencies.

iv. Inter-Site descrintors (Rt) - summarizes the interaction between players resident

in different sites.

To facilitate their descriptions, here are some more definitions of the terminology used:
*N-S - total number of sites
*N-P - total number of players

.N-W - the total number of possible player pairs = pi’ = ‘9 (N-P - 1)

S
0 CO, - sum of a site descriptor (0s) over all sites

l o p -Lit sum of a player descriptor (o+) over all players

.“g& - sum of an inter-player descriptor (0~) over all possible players

pairs

PE s
l c 0~ - sum of a player descriptor (0~) for players that reside in the same site.

For our purposes here however, they are classified into five groups describing different
wects of the execution environment.T h e  d i m e n s i o n s  o f  a l l  t h e  p a r a m e t e r s  a r e  i n  t i m e
units (with the exception of N-MSG).

2.4.2. ” Overall” Measurements
0 Execution time ( Texee ): Because the “optimal” mapping is defined as the

mapping with minimal execution time, this quantity is used to compare the
relative “goodness” of among different mappings. Speed-Up ( S ) is directly

TO. deducible from the execution time: T where To
exec

= program execution time

when only one site is used.
8 The number of remote messages sent ( N-MSG ): A message is considered

“remote” when it is passed between two players that reside in different sites.
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2.4.3. CPU Utilization
5 CPU time consumed at the busiest site ( H CPUs ) - The “busiest” site is the

one whose processor idles the least. It should be noted that the processor is
used both for “user computation” (Tcompute) as well as operating system
functions such as message passing (Tmsg). Tcompute  only depends on input
data variation for a particular program. In this experiment, Tmem, Tintempt,
Tdeliver and To, are small and, therefore, ignored. For the processor at each site
- TCPU = Tcompute  + Tmsg=

S

0 Average CPU time consumed per site ( A-CPUs ) = CTCPU
N s

0 “Load balance” (US&& is defined as the standard deviation among the CPU
utilizations over all sites. When USRsd = 0, the sites are “loaded evenly”.

2.4.4. Communication
8 CPU time used for communication at the site from which most remote messages

are sent: ( H-MSGs )

8 Average time used for sending messages per site ( A-MSG, ): iT gN y”-

2.4.5. Contention

I Player ID I
.

Execution Profde Contention Caused 1
Ready Start End <A> <B> cc>

<A> 30 - 15 20
<B> 15 30 47 0 - 17
Cc> 10 47 - 0 0 -

Figure 2-7. An Example: Execution Profile and “Contention”
There are many ways in which “contention” can be measured at a site. Instead of

choosing the length of the ready-queue as many researchers have, 9 parameters are
proposed here as possible candidates. All of them have “time” as the dimension.
In Figure 2-7, between CA> and <B> for example, Tconention = 15 - i.e. player
cB> has to wait 15 time units in the “ready-queue” or player <A> to finish



12

execution before it can get hold of the processor! Only players that reside in the
same site can contend with one another.

0 The highest contention (i.e. Tcontention)  (HeCONTpp) experienced between a
pair of players - e.g. in Figure 2-7, H-CONTpp = 20 (between <A> and CC>)

8 The average contention experienced per player pair (A CONTRA): W(
#
E'rcontention9N-Pq)

$ The “total contention received” (or “queue-time”) by a player (from others)
eSSentidly  indicates the total time it spent (Tr&y-q)  waiting for Others to finish
using the CPU. H-CONT-RTp  describes the player which spent the longest
time in the “ready queue” (e.g. in

CC>). For player <P>, Trady-q =
the same site.

Figure 2-7, H-CONT-RTs = 37 received by
qE s
C Tcontenuon  over all <Q> that resides in

8 The average “queue-time” (A-CONT-RTP) per player indicates the average
time a player spent in the “ready queue” before getting hold of the processor.

8 The “total contention caused” by a player &Q others) indicates the total time
other players spent waiting for it to finish using the CPU. H-CONT-CTp

describes the player which causes the most “total contention” (e.g. in Figure 2-
7, H-CONT-cTs  = 35 caused by <A>).

5 A-CONT-CTp represents the average “total contention caused” per player.
PE s

8 The “contention sum” at a particular site ( CTdyq) is defined as the total time

resident players spent in the ready-queue. H-CONTs describes the site which
has the “highest “contention sum”.

5 A-CON& describes the average “sum of contention” per site.
8 Contention balance (CONTstd) is defined as the standard deviation of the

pes
“contention sum” ( CTwyq) over all sites.

2.4.6. Dependencies
During the life-time of a player, it is always in one of three possible states:

i) "ACTIVATED " - when it is ready to make use of (or using) the processor
computing or sending/receiving messages;

1 Throughout this section, the term “Tcontention”  epr resents the time a player spent waiting (in the
“ready queue”) for the CPU.
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ii) "BLOCKED" - when it is waiting for a specific “reply” (message) from some
mecifk playeq or

iii) “~~” - any other occasions in which the player is not computing, waiting
to be “activated” by the next message.

Players in “class A” (c.f. Section 2.1) applications are either activated or idle but
never blocked.
5 When a player <A> is activated by a message sent from player CB>, the time

<A> spent in this “idle” period is defined as the “idle time” between the two
players (Tide).  The player pair which exhibits the highest idle time is described
by H-IDLEpp.

s

6 Average idle time between two players ( A IDLEpp ) is defined as:
5%N zle

8 When a player CA> is blocked waiting for a reply from player <B>, the time
<A> spent in this “blocked” period is defined as the “block time” between the
two players (Tblo&d).  The player pair which exhibits the highest “block time”
is described by H-BLOCK~~.

5 Average idle time between two players ( A-BLOCKpp ) is defined as:

E’“rblocked
N-PQ

PCS
8 The site which exhibits the largest sum of “idle time” ( CTi& for players

resident is described by H-IDLES.

$ The average sum of “idle time” per site is defined as A-IDLES
PES

5 The site which exhibits the largest sum of “block time” ( ~Tblocked)  for players

resident is described by H-BLOCKS.

5 The average sum of “block time” per site is defined as A-BLOCKS
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3 Benchmark 1: “Pipeline”
.3.1 Introdustm

The first benchmark being tested is schematically represented in Figure 3-l. Appendix II
contains a listing of this computation. Requests (coded as messages of different kinds) are
generated by player <l> and propagate “downstream” from left to right. Each player has
two acquaintances l - indicated by “virtual links” (“:===” and ”-” ) to the “right-

hand-side” of each player. After a player finishes processing a request, the result it

generates is then passed to one of its acquaintances for further processing2.

 route 1

$$&.$;A.a route 2

0id Player  <id>

Figure 3-l. The “Pipeline” Benchmark

3.2. Overall Profile
Figure 3-2 gives a summary of

the behavior of this program
when mapped onto a multi-
processor with four completely
connected sites. It can be seen
that the range of attainable speed-
ups decreases as communication
cost increases (in fact this is true
for both benchmarks).

S
P

2.5 91

e 2-a
8
d 1.5 l '

u la1
P

0.5 l

04 : : ..
0 20 40 60 80 100 120 140 160

Communication Cost (T-hop)

Figure 3-2. Distribution of “Speed-Up?

1 The “acquaintances” of a player <A> are those whom <A> “knows the address of” or “holds a pointer
to”. A player can only send messages to its acquaintances.

2 When both links are co~ected  to only one player downstream (e.g. from <3> to <6>), all results are
forwarded to thatpalticularacquaintance.
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It seems that when communication cost is high, spending a lot of effort tackling the
assignment problem is not worthwhile since the best solution attainable may not differ
much from one generated randomly. When the communication cost is low however, a
good assignment makes a lot of difference in execution time.

. . . . .
3.3. htrlbutlon of F&&m Tmuz
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0
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(a) hop = 10

I 4 sites q  3 sites Cl 2 sites I

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1.
6646973778286 9949903071216 224

(b) Thop = 100
Figure 3-3. Speed-Ups “Classified”

Mappings may be conveniently classified into four categories according to the number of
sites that actually have players resident. Figure 3-3 illustrates the distribution of “speed-
up”s attained by each category at high and low communication cost& Two observations
canbemade: -

1. The “shape” of the distribution in both cases indicate that mappings randomly
generated (most probably) achieve a speed up of about one-half of the optimal (or
maximum).

1 In response to each message received, a player expand an average of 100 time units. A value of 10 for
Thop is considered to be “low” because the time spent in communication is only 10% of that spent on
computing. A value of 100 for ThOp is considered high as the time spent communicating is
approximately equal to that spent in computing. For values of greater than 100 time units, the
assignment problem becomes very uninteresting because the best speed-up attainable is 1. In other
words, distributing the computation over more than one site does not help at all!
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2. When communication cost is low, mappings that utilizes alI four sites generally
achieve higher speed-ups than those which do not - e.g. in Figure 3-3b, there are
more mappings with three sites loaded than those with four for which speed up is >
l!

3.4. It Remote tt Messape Count

Many people believed and preached that minimizing communication cost is an important
goal (if not J& objective function) when considering alternative mappings. “Remote”
message count or the total time spent in sending/receiving messages has been commonly
used for such measuring communication cost. The experimental data here (shown in
Figure 3-4) demonstrates that:

i) The correlation between the number of “remote” messages and the execution time is
poor and decreases with increasing communication cost.

ii) In Figure 3-4a, execution time decreases with increased traffic. Whend
communication cost is low compared with the amount of computation required, the
more “distributed” the players are, the faster the program would execute.

iii) Although execution time does increase with increased traffic at high
communication cost (Figure 3-4b), the correlation between the two parameters is
poor.

80 1 R - 0.5 1 8 4 sites 1

60

I -2 A A A Execution time
.

1500 20bo
.

&lo
.

3obO

(a) 'hop = 10
Figure 3-4. Relating “Remote”

80 1 ” R - 0.3
F n 4 sites
E + 3 sites
‘ii -#' m.m ' A 2 sites

‘AA

-A
I A Execution time

20 I I I 1
2500 3500 4500 5500

(b) Thop = 100
Messages with Execution Time
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4000
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Figure 3-5. Average CPU Time Used per Site

t Execution time

6000
n 4 sites

+ 3 sites
A 2  sites

3000 3500 4000 4500 5000

(b) Thop = 100

1500 2500 3500

(a) hop = 10
Figure 3-6. Highest CPU Time Used at a Site

When interpreting the figures, it should be noted that:
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i) There are three sets of points on each graph representing the mappings in which 4
(” m “), 3 (” + “) or 2 (” A “) sites are used.

ii) A line that best-fit each set of points is plotted on the graphs as well. The best-fit
minimizes the root-mean-square of the errors.

iii) the average correlation coefficient for the three lines (“R”) is also indicated.
. . .3.5. CmJ utllu.atlon

The average CPU utilization per site used (A-CPUs) and highest CPU utilization at the
“busiest” site (H-CPUs) are plotted against execution time in Figures 3-5 and 3-6
respectively. It is observed that:

i) The correlation between A-CPU~ and execution time is poor and deteriorates with
increasing communication cost.

ii) Correlation of H-CPU~ with execution time are good in both cases. (Figure 3-6)
iii) The high correlation between H-CPUs and execution time suggests that the total

execution time depends on the operation of the “busiest site” of the multinrocessor
- which is also the bottle-neck of the system.

. .3.6. COB

7sf
E
a'

n 4 sites
+ 3sites
A 2sites

3000
'7 m 4 sites
F
L
+ 3sites

a' A 2sites

0 20 40 60 80 0 20 40 60 80

(a) Thop = 10 (b) Thop = 100
Figure 3-7. Number of Remote Messages vs. the Time Spent Sending Them.

Figure 3-7 suggests that the number of remote messages is directly proportional to the
average time spent to route them. Figure 3-8 confirm the results reported in section 3.4 -
namely that time spent sending remote messages correlates badly with the total execution
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time. It turned out that H:MSGs also did not correlate well with execution time. They
follow the general distribution of A-MSG~ and are not plotted here.

l 4sites
+ 3sites
A 2sites
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Figure 3-8. Correlating the Average Tmsg with Execution Time
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Figure 3-10. Average “Contention” Experienced between Two Players.
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Figure 3-11. Highest Total “Contention” Experienced by Players at a Site.
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3.7. Contelmon

0

The contention measurements are illustrated in Figures 3-9 to 3-14. Four points should
be noted:

i) In general, choosing a mapping that exhibit lower contention (measured by any of
the six parameters proposed) results in a shorter execution time”.
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Figure 3-12. Average Total “Contention” Experienced at a Site.

R - 0.98

execution time execution time
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(a) Thop = 10 W Thop = 100
Figure 3-13. Longest CPU Wait Time.for a Player

ii) The correlation between contention and execution time also decreases with
increased communication costs.

iii) The best correlation is observed in Figure 3-13 - between the “longest total time
a player spent waiting to use the CPU” and the execution time.



22

1500

1000

500

0

iv) Although as explained in section 2.4, contention “caused” is different from
contention “received”, their correlation with execution is very similar. Therefore,
the corresponding graphs for H-CONT-CTp,  A-CONTJTp are not plotted.
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Figure 3-16. Average Idle Time between a Pair of Players
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Figure 3-17. Largest Sum of Idle Time between Players in Two Sites

The highest correlation among the six parameters proposed is found in Figure 3- 13 for
H-CONT-RTp. In other words, the bottle-neck of the system lies in the CPU of the
“busiest” site. It should be noted that the correlation here is even better than that for Figure
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3-9 - suggesting that the time players spent in the ready-queue is a better indicator for
“busy” sites than the CPU utilization at the site.
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(a) Thop = 10 (b) Thop = 100

Figure 3-18. Average Sum of Idle Time between Players in Two Sites
.

3-8 DeDeDdenW3

With this benchmark, no players are ever “blocked” waiting for a specific “reply”.

Therefore, the parameters H-BL~(~$,A-BLOCK~, H-BLOC&, and A-BLOC&are not

definedThe "IDLE" parameters are plotted in Figures 3- 15 - 3-l 8. Although the general
trend of the results are as expected, none of the measured quantities exhibit a very high
correlation with the execution time.. The situation for the next benchmark is not the same

(see Section 4.7).



25

4 Benchmark II: Divide and Conquer
.4 .1  moductmn

The second benchmark being tested is schematically represented in Figure 4-l (BDL
listing in Appendix III). A stream of requests are initially presented to player cl>. It
partitions the fust request into two (not necessarily equal) sub-tasks and delivers them to
players <2> and <3>. Player cl> then “blocks” and wait for players <2> and c3> to
“reply” before servicing the other requests one by one. Player <2> (<3>) invokes players
<4>, c5>, <6> (<7>, <8>, <9>) in parallel, blocks to wait for all their replies before
replying to player cl>. Each player also expand an average of 100 time units in response
to a message received - part of which is spent creating the sub-tasks and the rest in
processing the results received.

4-b Request / reply

0id Player <id>

Figure 4-l. The “Divide-and-Conquer” Benchmark

B 4sites 88 3sites q  2sites
1
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(a) 'hop = 10 (b) Thop = 100
Figure 4-2. Speed-Ups “Classified”
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. .4.2 Sumv of Flndlngs

Instead of going through the graphs one by one, a summary is given here at the
beginning - comparing the major findings here with the previous benchmark. The
interested reader is encouraged to inspect the graphs listed in the rest of this chapter (section
4.3 to 4.7).

1. The distribution of execution time (Figure 4-2) indicates that the success of the
resource management system is also critical for exploiting available parallelism on
the multiprocessor for this benchmark - especially when communication cost is
low.

2. The correlation between the number of messages routed over the net is worse than
that of the previous benchmark (Figure 4-3);

3. so are the parameters describing CPU utilization (Figures 4-4,4-5a, 4-6a).
4. With high communication cost however (Figure 4-5b, 4-6b), the correlation

factors for CPU utilization increases (as opposed to a decrease for the previous
benchmark!).

5. None of the contention figures measured at high communication cost correlates
well with execution time (Figures 4-9b, 4-lob, 4-lib, 4-12b, 4-13b, 4-14b)

6. With low communication cost however, the best contention parameter is
H-CONT-RT, - which’describes the total time a player spent waiting for the CPU in
the ready-queue (Figure 4-13a and 4-14a).

7. All “dependency parameters” (Figures 4-15, 4-16, 4-17, 4~18)  correlates (with
execution time) better than the previous benchmark. In fact, execution time is
almost directly proportional to HJDLEpp (as well as H-BLOCKm) which describes
the longest time a player spent waiting for the next request arriving from its “parent”
upstream.
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Figure 4-6. Correlating Tmsg
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3000

Unlike the first benchmark, A-CPUs and H-CPUs correlates better with executing time
with increased high communication cost. Figure 4-4b bears a close resemblance to Figure
4-3b because the CPU at each site in fact spend more time routing messages than
computing. The pattern in Figure 4-4b actually reflect the number of messages routed.
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Unlike the previous benchmark, the correlation factors for A-MSGs  (as well as H-MSGs)
increase with the communication cost.
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Figure 4-12. Average “Contention Sum” Experienced at a Site.

Using “sequential terminology”, the poor correlation for all these (CPU) contention

parameters seems to indicate that the system is “I/O bound”. In other words, although
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players within a site still competes for the processor, proper allocation of computing
resources to facilitate message sending is more critical to obtaining speed-up!
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Figure 4-13. Longest CPU Wait Time.for a Player
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Figure 4-14. Average CPU Wait Time.per Player.
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For this benchmark, the parameters A-BLOC$, H-BLOCKpp, A-BLOC&, and H-BLOCKS

are defined and plotted in Figures 4-19, 4-20, 4-21 and 4-22. Their high co-relation
suggests that a mapping that minimizes the idle time between players also minimizes the
execution time.
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5. Conclusions and Future Directions
. . . . .v of mar Flndlngs Their In&roret@on

A. For both benchmarks, the speed-up obtained varies according to how players are
mapped to sites. Randomly generated mappings can be far from the optimal, thus making
the success of the resource management system critical to fully exploiting available
parallelism in a concurrent system. Even when all sites are loaded with almost the same

number of players (i.e. “balanced”), execution speed is not necessary minimized. Figure
45 below illustrates that when the sites are loaded in a 2-2-2-3 configurationl,  speed-up is
still distributed over a very wide range irrespective of communication cost. The same is
true for high communication cost.
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“Divide-and-Conquer” Benchmark
Figure 5-1. Speed-up Distribution with the 2-2-2-3 Configuration (Thop = 10)

B. The following parameters are found to be “good descriptors” for the execution
environment - these parameters correlates well with execution time:

1 A “w-x-y-z” configuration indicates that there are “w” players in the first site, “xl’ in the second... etc.
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Benchmark I Pine-line);
With low/high communication costs

l H-CPUs  (Figure 3-6), the CPU utilization of the “busiest” site. This indicates
that the processor at the “busiest” site is the bottle-neck for the execution
environment.

l H-CONT-RTp (Figure 3-13) describes the player which spent the longest
time in the ready-queue. There are three possible reasons that make ready-
queue “long”: (i) all resident players require a lot of processing, (ii) players
at a site always execute at the same time and/or (iii) the CPU is busily
delivering messages. In this benchmark, where players execute as soon as
the CPU is available, the “busiest site” presents the longest ready-queue to
its residents.
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0.58 0.60 0.63 0.66 0.68 0.71 0.74 0.76 0.79 0.82 0.84 0.87 0.90 0.92 0.95 (W

“Divide-and-Conquer” Benchmark (&,p = 50)
Figure 5-2. Speed-up Distribution with the 2-2-2-3 Configuration
With low communication cost

. H-CONTpp (Figure 3-9a) represents the highest contention experienced
between a pair of players. When communication cost is negligible, the
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processor is mostly used for program execution. Players, therefore, has to
wait for the processor mostly because of other players executing.
Therefore, this quantity reflects the CPU utilization at the busiest site.
However, with high communication cost, the player has to wait for message
delivering as well. H-CONTpp therefore, does not necessarily reflect the
bottle-neck of the system.

Benchmark II (Divide-and-Conauer);
With low/high communication costs

l HJDLEpp (Figure 4- 15) and H-BLOCKpp (Figure 4- 19) represent the longest
time a player has to wait for a request to arrive and finished respectively.
Because this benchmark is highly structured, the performance of the system
depends critically on the specific sequence in which players are invoked.
These two quantities represent the ‘bottle-neck” in the system

. A-mLEpp  (Figure 4-16) and A-BLOCKpp (Figure 4-20) represent the average
time a player has to wait for a request to arrive and finished respectively.
The good correlation of these two parameters (with the execution time)
merely reinforces the point above - that the performance of programs
which exploit parallelism explicitly depends critically on the way in which it
is orchestrated.

l A-IDLES  (Figure 4-18) - the average sum of “idle time” per site
With high communication costs

l AJJFWs (Figure 4-4b) and H-CFVs (Figure 4-5b) describe the utilization of
the processor at each site. The fact that they correlate well (with execution
time) pnlr at high communication costs again suggests that CPU usage is not
a critical factor for execution with low communication cost. It is the
sequence, not the amount, in which different players utilizes the CPU that
matters (c.f. H-CONTpp in Figure 4-9a).

l A-MSGs  (Figure 4-7b) and H-MSGs (Figure 4-8b) represent the time spent
delivering messages. At high communication cost, message routing takes a
relatively larger proportion of time and thus CPU usage becomes a bottle-
neck. These parameters reflect such bottle-necks.

With low communication costs
l A-CONTmRTp  (Figure 4-14a) describes the average time a player has to wait

in the “ready queue” before execution. The good correlation again indicates
that it is not the amount of processing power available that matters but that
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the processor should be available when a player requires it. The correlation
deteriorates with increased communication cost because increased message
deliver time have “skewed” the execution profile

C. The following parameters do not correlate well with program execution time for both
benchmarks:

With low/high communication costs
l N-MSG (Figures 3-4 and 4-3) - the total number of messages routed to remote

players does not describe the execution environment because message routine
can occur in parallel. Although N-MSG describes the total emote of processor
time spent for communication, minimizing this quantity without regard to
contention of processor contention at each site does not necessarily guarantee
minimization of execution time.

l A-CONTs (Figures 3-12 and 4-12) - the average sum of “contention” per site
- is not a good measurement of contention over the system.

. H-IDI& (Figures 3- 17 and 4- 17) describes the site with the highest sum of “idle
time”.

With low communication cost:
l A-CPUs (Figure 3-5a and 4-4a) - the average CPU utilization per site

With high communication cost, the following does not represent the contention of the
system:
. H-CONTpp (Figure 3-9b and 4-9b) - highest “contention” between a player pair
l H-CONTs (Figures 3-l 1 b and 4-l lb) - site with the highest contention

experienced by players
l A-CONTs (Figures 3-12b and 4-12b) - average contention experienced by

players per site
l A-CONTmRTp (Figures 3-14b and 4-14b) - average time spent in the ready-

queue per player

Execution time cannot be minimized simply by finding mappings with small numbers of
remote messages. The effects of CPU contention at each site must also be taken into
consideration. In order to improve execution time, “post-game” must:

i) properly trade-off the gain obtained from concurrency with the increased cost in
remote communication; and

ii) locate (and then, alleviated) the bottle-neck of the system.
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Three “post-game” strategies are applied to these benchmarks for performance
comparison and evaluation. The first two strategies “Site-Priority” and “Corn-gain” consist
of a single heuristic each [Yan 87a]. The third strategy labeled “Post-game” consists
consists of 7 heuristics - the application of which is carefully controlled and prioritized.
A detailed description and explanation of the performance of the heuristics is given
elsewhere lyan 87b].

52.1 Benchmark I - Low Communication Cost

The fmt exercise involves managing the “Pipe-line” Benchmark with Thop  = 10. Figures
5-3a and 5-3b illustrate that the optimal placement involves a “balanced mapping” which
presents an approximately equal demand on all the processors at each site.

1 .- 5 3 .Y 3  + A 3 2 sites sites

D R=0.93

12 + i

tion Time

8000

6000

4000

2000

0
1000 2000 3000 4000 1500 2000 2500 3000 3500

(a) USRstd (W CONTstd
Figure 5-3 Benchmark I at Low Communication Cost (Thop = 10)

The performance of the heuristics is plotted against the distribution of speed-up to
demonstrate their performance (Figure 5-4):

1. The maximum speed-up obtained is approximately the same for all three strategies
- within 96% of the optimal (top 1% of all possible mappings).

2. The multi-heuristic-strategy (labeled “Post-Game”) achieves this value in two (!)
steps - while the others take approximately 10 iterations.



42

4000

3000

2000

1000

C

1800

1600

1400

1200

1000

800

600

400

200

0

-

. .

.

I.

. .

6

40
0.99 1.12 1.25 1.38 1.51 1.64 1.77 1.9 2.03 2.16 2.29 2.42 2.55 2.68 2.81 2.94
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5.2.2 Benchmark II - Low Communication Cost
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Figure 5-S Benchmark II at Low Communication Cost (Thop = 10)

The placement exercise for the “Divide-and-Conquer” is a slightly different problem.
Besides the evidences offered in section 4, Figures 5-5a and 5-5b further suggest that
balancing “contention” as opposed to CPU utilization is the key towards obtaining speed up.
Figure 5-6 shows that:



1. Again, the maximum speed-up obtained is approximately the same for all three
strategies - within 96% of the optimal (top 1% of all possible mappings).

2. The multi-heuristic-strategy (labeled “Post-Game”) achieves this value in five steps
- while the other two takes approximately 7 iterations.
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Benchmark II with low Communication Cost (Thop = 10)

5.2.3 Benchmark I - High Communication Cost

With higher communication cost, the placement problem becomes less interesting as the
range of achievable speed-up decreases. The optimal speed-up attainable also decreases -
in fact, with sufficiently high communication cost, mappings utilizing more than one site
exhibit a longer execution time. Figures S-7a and 57b further suggest even balancing
“contention” does not guarantee obtaining the optimal speed-up in this case. Figure 5-8
shows that:

1. The maximum speed-up obtained is is obtained by the heuristic labeled “Com-
gain” in 11 steps - within 95% of the optimal (top 1% of all possible mappings).

2. The multi-heuristic-strategy (labeled “Post-Game”) achieved only 85% of the
optimal and halted after 3 iterations.
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5.2.4 Benchmark II - Moderate Communication Cost

It should be noted that:
i). obtaining the optimal speed-up has nothing to do with “load-balancing” (Figure 5-

9); and
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ii). the range of attainable speed-up is small - with half of which less than 1 (Figure

5-10).
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Figure 5-9 Benchmark II at Moderate Communication Cost (Thop = 25)
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In spite of these difficulties, the placement heuristics were able to attain to 84% of the
optimal speed-up achievable (top 25% of the whole population). Figure 5-10 shows that
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for the two single-heuristic strategies, the initial steps in fact “slowed down” the execution
time of the program. This, however, was soon corrected.

. . .
5-3 Conchsum and Wuw D~~MUUIS

An investigation was conducted to find out how system parameters varies with mapping
configurations for two small programs (with nine players) on a multiprocessor (with four
sites). The sites of the multiprocessor were completely connected, nullifying any effect of
routing strategies. The measurement of “locality” in this system involves only two discrete
states: “local” or “remote” as opposed to some continuum for other connection topologies
such as a “grid” or n-dimensional cube. Even for such a simple system, the range of
attainable speed-up is large (a 3-fold difference!) with low communication cost. The two
programs selected represented two different ways of exploiting parallelism: data-flow vs.
parallel-procedure invocation, unstructured vs. structured exploitation of parallelism,
implicit vs. explicit expression of concurrency and processing-bound vs. communication-
bound characteristics. Initial experimental analysis of the data suggests that the key factors
to obtain speed-up for both cases are similar:

1. Alleviation of bottle-neck - whether it be communication or processing
contention, the bottle-neck of the system has to be detected and somehow,
alleviated.

2. Minimization of remote communication or balancing the load of each site alone
does not necessarily leads to a reduction in execution time. These two factors have
to be properly traded off.

The experiment also demonstrate that a good resource management strategy should be able
to respond to different programs behavior (or programming paradigms):

l With the first program “pipe-line”, the key issue was reducing the processing bottle-
neck in the system

l With the second program however, identifying the dependencies between players to
allocate resources accordingly is more important

It was also shown that the placement heuristics proposed indeed was able to respond to
the different needs of these two small programs and attain acceptable speed-ups. A detailed
account of these heuristics is given elsewhere Ban 87a, Yan 87b].

Regression analysis and related data-interpretation techniques are being employed in
order to identify the cross-correlation between some of these variables and extract the few
that are “really matters”. The findings from these analysis are currently used to
refine/improve the heuristics.
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Appendix
.Ia Solvlu for 11 All fl . .Possrble Assignments f o r  Comoletely  C onnected

Sites

The problem of generating all possible assignments for completely connected sites turned
out to be more difficult than expected. If all the sites were different or are connected in an
irregular topology, the number of possible assignments is large (NJ&p)- but generating
the placement configurations is straight forward! When the sites are connected in a regular
topology, many of the N-SN-p mappings are in fact identical. They are “mirror images” or
can be obtained via similar transformations from some other mappings. Completely
connected nets present a easier placement problem to be solved among the many regular
topologies.

The problem of deciding “how many ways there are to place N-P players into N-S
completely connected site” is broken into two major sub-problems -‘both of which can be
solved by recursive methods.

A. Classification of Placement Configurations.

Although N-S sites are available, it does not necessarily follows that there is at least one
player in each site for each of the possible configuration. So if we define:

1. At-i = the number of ways to place N-P players into N-S completely connected

sites (such that N-P 2 N-S), then

2. AZ-: = izWsBN;p  . . . . . . where
i=l

3. BN~P = the number of ways to place N-P players into exactly “i” completely

connected sites. In other words,. BN~’ describes the number of ways to place N-P

players into Y” completely sites such that there is at least one Dlaver in each site.
4. Each mapping that utilizes exactly “i” sites can be described by a set PiJ-p =

(nl, n2, . ..n.} where “nk” describe the number of players in the “k*“ site (e.g.
when N-P = 6 and i = 3, the possible pi,N-p’s include: ( 1,1,4}, ( 1,2,3} and
{2,2,2)). It should be noted that

a. since all sites are homogeneous and are connected to one another, the order
of the elements ‘tnk” does not matter (hence PiJ-p is a a); and

b. f’nk = N-P for all pi8 p
k=l



A.2

0 5. The sets PiJ p can be further classified into three kinds:
a. simple-p: where all “nk”S are different;
b. even-p: where all “nk”S are the same; and
c. normal-~: otherwise (only some “nk”s are identical)

The method of obtaining B‘rp for all three cases are similar but not identical

B. Generating Placement Configurations.
A simple recursive algorithm can be used to generate PiJ-p for any ‘5”. The total

number of possibilities can be enumerated by further classifying the p’s into the

three classes shown in 55 above. The difficult part of the problem is not finding a
method to “count” but to “generate” all placement configurations without

. .ication. In combinatorial theory, many enumeration techniques fast generate
all possible configurations in a similar situation and then divide the result obtained
with an appropriate value argued from symmetry1. With millions of possibilities,

an algorithm that needs to check each configuration with the ones already generated
is not practical.

This section describes the recursive algorithms used to
i) generate all possible &>-p’s
ii) generate all possible placement configuration for simple-P’s, even-p’s and

normal-pls.
B.1 The Algorithm to Generate pis-p

For any set piB_p,  a corresponding ordered i-tuple (or vector) p’is-p can be
obtained by sorting the ‘tnkt’s  in an increasing order. “generatep(i, 1, N-P)”

can be called to obtain the “nk”s of the vector p’ia p (where P’[k] represents

the kh element of the i-tuple). The simplified procedure is listed as follows
following in a “C”-like syntax.

generatep(k, min-val, players-left) /’ The procedure takes 3 arguments ‘1

int k, P points to (i-k)th element of array ‘/
min-val, /* P’[k] 5 P’[k+l] l /

1 e.g. the total number of ways to choose “r” balls out of “n” C” =
n!

f -can be  thought  of(r ! )(n-r)!
i) place “n” balls into “n” slots (n!);
ii) then merely look at the first 9”. slots (hence divide by (n - r)!); and finally
iii) ignore the ordering of the fmt “r” slots (hence divide by r!)
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players-left;
k=i

P since C nk = N-P ‘1
k=l

{ int result, flag; F internal variables’/
flag = 0; T initialization l /
if (players-left < min-val) return (0) ; P since P’[k] I P’[k+l],this  call*/

else I
if (k == 1) (

P [Ii - 11 = players-left;

configurep(PI)

return(l);
} else do {

P 1Ii. -kl _= min val;

result =
generateplk-1,

min val,-
players-left-min-val);

if (result) flag = 1;
++min val;-

} while (result););

returntflag);)

T call to assign fails l /

F otherwise...*/
/* if this is the last (kfh) element of p’ l /

/’ put all the players left into p’[i-l]‘/

r record configuration and generate*/

p the actual placement configuration l /

r a successful configuration is found*/
p if this is not the (krh)  element of p’ ‘/

p assign the minimum value to P’[i-k]‘/

p recurse  down the array... l /
p assign the next element... l /

F with the same minimum value... l /

/’ but with fewer players left */

p if any successful configuration was l /
F found , increment value of P’[i-k]...*/

p and try again until no successful l /

p mapping can be located ‘I

r tell caller whether any successful ‘/

f configuration was ever found l /

B.2 The Algorithm to Configure &J-p

Generating the actual mapping between players and sites is simplest when all the
“nk”s of P’i,N p are different from another. This problem is analogous to
enumerating the sequential selection of balls from a pool of N-P with nk balls taken
at a time (in any order). For example, for f.33,~) = {2,3,5}, the total number of

possible placements = Cy*Ci*< = C’t*Cz*C;...  where Ci = the number of

ways to select a subset of ‘lx” items from a pool of “y”. However, when all “nk”s
are identical, this simple enumeration approach has to be slightly modified. The
interested ready is encouraged to prove the following statements:
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8 6. The total number of ways to configure simple-Pis p = {no, nl, n2, . . .
ni} is:

0 7. The total number of ways to configure even-pip p = {n, n, n, . . . n} is:
-CN-P-l * p-P-(n+l)-1  * p-P-2(n+l)-1 * en-l

n-l n-l n-1 ‘*’ n-l

Because the enumeration methods for even-p is different from that for simple-
p, the process of configuring normal-P’s (e.g. p7,30 = {2,3,3,5,5,5,7})
involves two steps:
i) Sectioning p’ into even-p’s with the smallest nossible  length (in this

case for p730: (2}, (3,3},  (5,5,5}, and (7)) and then
ii) sequentially generating the configurations of these even-Pk.

C. Distribution of the Number of Configurations
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It has already been shown in Figure 2-4 that the total number of possible configurations
increases exponentially when an infinite number of sites is available. Figure A-l below
illustrates how the total number of configuration varies against the number of sites actually
used. It can be seen that the number of possibilities is the greatest when N-P = 2 * N-S .
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This explains another reason for choosing the 9-player-4-site configuration - to make it
harder for the placement heuristics to locate a suitable mapping!
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D Actual Program Listing

#include <stdio.h>
/* #define G 'generate data structures to give correct output */
/* #define P output placement configuration on screen */
l* #define Q output player id's on screen */
/* Allowable Configurations G-P-Q-, G+P-Q+, G+P+Q- and G+P+Q+ */
/* The output for the various options are listed as follows for N-S = 2,
NP = 5-
G-P-Q- merely counts the number of possible configurations for different p

##type: 14 /* i.e. 1 player in a site and 4 in the other */
## 5 ##
##type: 23
## 10 ##

/* i.e. 2 player in a site and 3 in the other */

### Total(5, 2): 15 ###
G+P-Q+ generate the id’s of the players that actually reside in each site

##t'ype: 14
0123 4 /* player <4> in one site and the rest in the other site..*/
0124 3 0134 2 0234 1 1234 0
## 5 ## /* total count  */
##type: 23
012 34 /* players <3>,<4> in one site and the rest in other site..*/
013 24 014 23 023 14 024 13
034 12 123 04 124 03 134 02 234 01
## 10 xx
#XX Total(5, 2): 15 ###

G+P+Q-  generates the placement locations (i.e. site id’s) for players
##type: 14
1 1 1 1 0 /* player <4> in site “0” and the others in site “1”
1 1 1 0 1 1 1 0  11
1 0 1 1 1 0 1 1 1 1
## 5 xx
##type: 23
1 1 1 0  0 1 1 0 1 0 1 1 0 0 1
1 0 1 1 0 1 0 1 0 1 1 0  0 1 1
0 1 1 1 0 0 1 1 0 1 0 1 0 1 1
0 0 1 1 1
## 10 ##

G+P+Q+ generates “everything”
##type: 14
0123 4 ** 1 1 1 1 0 ** 0124 3 ** 1 1 1 0 1 **
0134 2 ** 1 1 0 1 1 ** 0234 1 ** 1 0 1 1 1 **
1234 0 ** 0 1 1 1 1 **
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## 5 ##
##type: 23
012 34 ** 1 1 1 0 0 ** 013 24 ** 1 1 0 1 0 **
014 23 ** 1 1 0 0 1 ** 023 14 ** 1 0 1 1 0 **
024 13 ** 1 0 1 0 1 **
034 12 ** 1 0 0 1 1 ** 123 04 ** 0 1 1 1 0 **
124 03 ** 0 1 1 0 1 ** 134 02 ** 0 1 0 1 1 **
234 01 ** 0 0 1 1 1 **
## 10 ##
### Total(5, 2): 15 ###

*/

/* --------------------- Cosmetic adjustments --------------------
#ifdef Q
#define COLUMN 5
#else
#define COLUMN 1
#gndif

1" ---------------------------- Problem Size ----------------------
#define DIM 15 /* maximum size of N-P */

#define VDIM 10 /* maximum no. of sections in each p */

/* ------------------------ Useful Macros -------------------------
#define BU(Z2,Zl) for (i J 0; i < DIM; i++) Zl[i] = Z2[i]

--

#define ml for (i-0; i < rr; i++) dd[i+usedJ = bb[used+D aray(i]]-
#define m2 for (i = 0; i < rr + used; i++) bb[i] = dd[i]
#define ddAbb ml; m2; fillup(N-P, used + rr, bb)
#define m3 for (i=O; i < rr; i ++) D[i + used] = B[used+D aray[i]]
#define m4 for (i = 0; i < rr + used; i ++) B[i] = D[i]
#define ddAbb2 m3; m4; fill-up(n_p, used + rr, B)

/* -----------------------  Global Variables -------------------------
*/

int

int

int

int
int

AA[VDIMl[DIMl, BB[VDIM][DIM], /* used for solving config2P */
CC[VDIM][DIMl,  DD[VDIM][DIM];

new-ALDIM],  ALDIM], B[DIM], /* used for solving configp */
C[DIM], D[DIM];
E[DIM], F[DIM];

stack[VDIMl[2];

np, rI n-s;
/* used for sectioning each p */

long int total, sub total;-
main0
f
printf("input np, n-s\n");

/* main program */



A.8
scanf("%d %d", &np, &n s);-
sub total = total = 0;-
total = sub total = 0;-

/* first input N-P and N-s */
/* Initializations */

generatep(n-s, 1, n_p); /* generate the pfs */
if (sub-total > (long) 0) printf("## %ld ##", sub total);
total +=

-
sub total;-

printf("\n### Total(%d, %d): %ld ###", n_p, n s,- total);

generatep(dim, start, left)
int dim, start, left;
I

int i, result, flag;
flag = 0; if (left < start) return(O);
else (

if (dim == 1) {
if (sub-total > 0) printf("## %ld ##", sub total):
total += sub total; sub total = (long) 0; -- -
Ah-s - dim] = left;
printf("\n##type: "); display(stdout,  n s,A); printf("\n");-
new-vals();

for (i = 0; i < DIM; i++) B[i] = i;
genk, C, 0) ;
return(l);
else do {

Ah-s - dim] = start; result = generatep(dim-1, start, left-start);
if (result) flag = 1; ++start;
while (result);

return(flag);

gen(a_pos, ar, used)
int apos, ar[], used;

int i, num, count, SSpOS;

sspos = apes;
num- new-A[--ss_pos];

configurep(0,  0, n2 - used, num, ar, apes-1 I used);

configurep(start-val, startpos, nn, rr, D aray- , apos, used)
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int start-t-al, start_pos, nn, rr, D-aray[], ages, used;

int i, num, b[DIM];

if (start_pos == rr - 1) I
while (start-val < nn) {
D-aray[startpos]  = start-val++;

#ifdef G
BU(B,b); ddAbb2;

#endif
if (a20s) (

gen (a_pos, &D-aray[rr], used + new-A[a_posl);
} else {
if (n-s == r) report(D, new-A, r);
else new-section(O);
1;

#ifdef G
BU(b,B);

#endif
1 .
I I

return(l);
} else while (nn > start-val) {
D-aray[startpos]  = start-val++;

#ifdef G
BU(B,b);

#endif

configurep(start-val,  startpos + 1, nn, rr, D-aray, apos, used);

#ifdef G
BU(b,B);

#endif
1;

1

new-vals()
I
int i, old, new;

old = new = -1; r = 0;
for (i = 0; i < n-3; i++) {

new = A[i];
if (old == new) {

stack[r-l][l]++; stack[r-l][O]  += new;
new-A[r-1]  += new;

1 else {
stack[r] [l] = 1; stack[r][O] = new;
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new-A[r++] = new;

1;
old = new;

fill-up (nn, rr, array) /* fill up rest of the array */
int nn, rr, array[ I; /* with no.s not already there */

int i, index;
index = rr;
for (i = 0; i < nn; i++) if (absent(i, array, rr)) array [index++] = i;

absent(element,  array, rr)
int element, array[], rr;
I

/* check whether a particular value */
/* is missing in the "array" */

int i;
for (i = 0; i < rr; i++) if (element == array[i]) return(O); return(l);

report (ar, in, the-r)
int ar[], in[];
I

/* display the particular configuration */

int i, j, u;
sub-total++; /* increment no. of configurations found */

#ifdef G
#ifdef Q

U = 0; if (1 !- sub-total%COLUMN)  printf(" ");
for(i = the-r-l; i >= 0; i--) {

if (i. != the-r-l) printf(" ");
display(stdout,  in[i], &ar[u]); u +=in[i];

I I

#endif
#ifdef P
#ifdef Q
printf(" ** ");

#endif
U = 0 ;

for(i = the-r-l; i >= 0; i--) (
for(j = 0; j < in[i]; j++) F[ar[j+ u]] = i;
u +-in[i];

1;
for(j = 0; j < "2; j++) printf("%d ", F[jl);

#ifdef Q
printf("**")  ;
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#endif
#endif
#ifdef Q

if (0 == sub-total%COLUMN) printf("\n");
#else

printf("\n")  ;
#endif
#endif

display(where,  end, array)
int end, arrayl];
FILE *where;

/* Low level Display routine */

{ int i; for (i = 0; i < end; i++) fprintf(where,  "%d", array[i]);}

new-section(leve1)
int level;

int i, size, N-P, R;
N P = stack[level] [O]; R = stack[level] [ll;-
size = N-P/R;
for (i = 0; i < R; i++) AA[level][i]  = size;
for (i = 0; i < DIM; i++) BB[level] [i] = i;
if (N-P == R) {
for (i = 0; i < DIM; i++) DD[level] [i] = i;

if (level == r-l) xreport(); else new-section(level+l);
) else 1
gen3(R, CC[level], 0, AA[level], BB[level],. DD[level], level, N-P, R);

1;

gen3(a_pos,  ar, used, aa, bb, dd, level, N-P, R)
int apos, ar[], used, aa[], bb[], dd[l, level, N-P, R;
1
int i, mm;
nuxn = aa[--a_pos];

configure2P(O, 0, N-P - used, num, ar, apos,
used, aa, bb, dd, level, N-P, R);

configure2P(start_val, start_pos, nn, rr, D-aray, apos,
used, aa, bb, dd, level, N-P, R)

int start-val, startpos, nn, rr, D-aray[l, apos,
used, aa[], bb[], dd[l, level, N-P, R;

I
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int i, num, b[DIM];

if (start_pos == rr - 1) {
while (start-val < nn) (

D-aray[start_pos] = start-val++;
#ifdef G

BU(bb,b); ddAbb;
#endif

if (a_pos) {
gen3(a_pos, &D-aray[rr], used + aa[apos],aa,bb,dd,level,N_P, RI;

} else {
if (level == r-l) xreport(); else new-section(levelt1);

1;
#ifdef G

BU(b,bb);
#endif

1;
return(l);
} else while (nn > start-val) (
if (start_pos == 0) {

D-aray[start_postt] = start-valtt;
if (start_pos -= rr - 1) {
while (start-val < nn) {

D-aray[start_pos] = start-valtt;
#ifdef G

BU(bb,b); ddAbb;
#endif

if (a_pos) (
gen3(a_pos,  CD-aray[rr], used t aa[apos],aa,bb,dd,level,N_PrR);

} else (
if (level == r-l) xreport(); else new-section(levelt1);

1;
#ifdef G

BU(b,bb);
#endif

1;
return(l);
1 1;
D-aray[start_pos] = start-valtt;

#ifdef G
BU(bb,b);

#endif

configure2P(start_val, startpos t 1, nn, rr,
D-aray, apos, used, aa, bb, dd, level, N-P, R);

#ifdef G
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BU(b,bb);

#endif
1;

1

xreport()
I
int i, u, lev, j;

#ifdef G
lev = u = 0;
for (i = 0; i < r; it+) {

for (j = 0; j < stackUevll01;  j++) E[j+u] = D[DD[~~v]  [j] + us,.
u+ stack[lev++][O];

1;
#endif

report(E, A, n s);-
I
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The frost benchmark is made up of three player types:

“Stage” defines the operation of players c2> to 43~ They have different service times
for three request types. After processing each request, they propagate the request to the
next stage. It should be noted that requests are routed to the two acquaintances
“downstream” alternately.

(DefPlayer .w

(MES-A MES-B MES-C I-D 1-s)

(nxt-stg-1 nxt-stg-2 nxt-stg)

(dur-a durb dur-c)

(I-D (record dur-a dur-b dur-c))

(I-S (record nxt-stg-1 nxt-stg-2)s
(setq nxt-stg nxt-stg-1))

(MES-A

(run dur-a)
(post nXt_Stg MESA)

A”pipe-line stage”

It understands 5 message types

acquaintances “downstream”

Service times for different requests

hit: record different service times

Init: record alternative acquaintances

Set acquaintance to receive next

Request type “MES-A” received

Execute for that amount of time

Pass same type of request to next

stage
(if (= nxt-stg-1

receiver

(setq nxt-stg

(setq nxt-stg

(MES-B (run dur-b)

(if (= nxt-stg-1

(setq nxt-stg

(setq nxt-stg

(MES-c (run dur-c)

(if (= nxt-stg-1

(setq nxt-stg

(setq nxt-stg

nxt-stg) Set other acquaintance as next

nxt-stg-2)

nxt-stg-1)  ) )
@Oat  nXt_Stg MESB) Same for “MES-B”

nxt-stg)

nxt-stg-2)

nxt-stg-1)) 1

(post nXt_stg MES-C) Same for “MES-C”

nxt-stg)

nxt-stg-2)

nxt-stg-1) 1))

“Last-stage” defines the operation of player <9>. It’s main function is to terminate
simulation after all requests are received and processed.

(DefPlayer Laat-,sta(x

(MES-A MES-B MES-c INIT)

The m “pipe-line stage”



(dur-a dur-b dur-c my-count)

0

( INIT (record dur-a dur-b dur-c my-count) Record service times and total
msg. count

(repeat my-Count

(wait MES-A) (run dur-a)

(wait MES-B) (run dur-b)

(wait MES-C) (run dur-c))

(terminate)))

Receive all requests generated at first

stage

Terminate simulation/execution

“First-stage” (i.e. Player cl>) carries out the initialization procedures (such as setting
up the configuration of the pipe-line) and generate the appropriate number/type of requests.

(DefPlayer  fi?-st-stw

(MEs-A MES-B MES-c INIT...)

(da db dc...)

The first stage (Player cl>)

( . . . t2 t3...)

(INIT

(repeat my-Count

(run da) (post t2 MES-A)

(=lUl db) (post t2 MES-B)

(run dc) (post t3 MES-c))))

Generate a number of requests

and propagate them “downstream”
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The second benchmark is also made up of three player types:

“Root” (i.e. Player cl>) is the “root” of the tree from which requests are generated.

(DefPlayer root The lst level of the tree

(INIT... )

(left-child right-child... )

(dl d2 d3 d4 no-of-req duration)

(INIT . . .

(repeat no-of-req (run duration)

(post left-child REQUEST dl d2)

(post right-child REQUEST d3 d4)

( w a i t  a c k ) ( w a i t  a c k )

(run duration))

(terminate)))

requests

Generates “no-of-req” requests

. ..to left child

. ..and right child

Wait for their completion

Executes for some time

Terminates after “no-of-req”

“Level2”  defines the operation of players c2> and <3>. They have different service
times for three request types. After receiving a request, they propagate the request to
players at the next level and block to wait for all their replies before replying to their parent.

(DefPlayer level2

(INIT REQUEST)

(parent child-l child-2 child-3)

(dur-a dur-b)

(INIT . ..)

(REQUEST (record dur-a dur-b)

(run dur-a)

(post child-l REQUEST)

(post child-2 REQUEST)

(post child-3 REQUEST)

(Wai t  ACK) (wait ACK) ( W a i t  A C K )

(run dur-b)

(post master ACK)))

The 2nd level of the tree

Initialization

Request received

Execute for some time

Distribute requests to children

Wait for all their replies

Execute for some more and...

. ..reply
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“Leaf’ defines the operation of players <4> to <9x After receiving a request, they carry
out some processing before replying to their parent.

(DefPlayer leaf The 3rd level of the tree

(REQUEST)

0

(dur)

(INIT (record dur)) Initialization: record execution time

(REQUEST “Request” received

(run dur) Execute...

(reply A-) 1 ) . . .then reply


