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ABSTRACT

ADLIB (A Design Language for Indicating Behavior> is a new computer

design language recently developed at Stanford. ADLIB is a superset of

PASCAL with special facilites for concurrency and int erprocess
communication. It is normally used under the SABLE simulation system.
INDEX TERMS : simulation, PASCAL, hardware description languages,

SABLE, SDL






Page 3
Int roduct ion

SABLE is a design automation system currently being developed at
Stanford University to support structured, multi- level simulation of
computer designs. SABLE stands for Structure And Behavior Linking
Environment, because it joins information about the interconnectivity of
components with algorithmetic specifications of their behavior. The
user expresses interconnectivity via SDL (Structural Design Language )
[VCW77 1, which has facilities for defining multiple levels of physical
hierarchy. Component behavior is specified in ADLIB (A Design Language
for Indicating Behavior), which is a superset of the language PASCAL
{JK74]. ADLIB was designed to simplify the description of commonly used
computer components and to be compatible with SDL and SABLE. ADLIB was

never intended to be a programming language completely by itself.

This manual is divided into three parts: an introduct ion to ADLIB
with a informal description of the basic features; a more detailed
discussion of the structure of an ADLIB program, including scoping rule
and contour models; and a summary of the keywords and syntax of the
language. Because documentation is widely available, this manual will
not repeat the detailed features of PASCAL. However, the basic aspects
of PASCAL will be described briefly, so that readers familiar with other

high level languages should be able to follow the discussion without too

much difficulty.
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CHAPTER 1
BASICS OF ADLIB

1.1 PURPOSE OF ADLIB

The purpose of an ADLIB description is to define the behavior of
one or more types of computer component s. The SABLE system then
combines these with information that specifies the number of component s
used, and the way they are connected. This topological informat ion is
expressed in SDL. For convenience the user may generate the SDL

automatically via an interactive graphical structure editor called SUDS2
(US791.

In ADLIB, the code that defines the behavior of one type of
component is called a comptvpe. There is no way of telling from an
ADLIB source how many components of each comptype, if any, will be used
in a design. Each comptype written in ADLIB is a specification of the
input to output function of one type of component. Essent ially all
information that passes through a component must go through well defined
I0 interfaces called “nets.” SABLE later connects these nets to the

nets of other components as directed by the user via SDL.

Before we enter into any explanations of ADLIB and SABLE, it might
be helpful to give a small, useless but complete example. We will
define a tiny system consisting of a dealer and a player. the dealer
sends random integers to the player, who just receives them and writes

the results on the terminal. The ADLIB code for this looks like:
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PROGRAM exmpl;

NETTYPE
intnet =integer;

finclude rpaks.dcl

COMPIYPE d=saler;

OUTWARD

cardout intnet;
VAR

i : integer;

BEGIN

'include a file of routine declarations

WHILE true DO BEGIN

ASSIGN rndint(1,13) TO cardout;
WAITFOR true DELAY 1.0;

END;
END;

COMPTYPE player;
INWARD

cardin @ intnet;
BEGIN

WHILE true DO BEGIMN

WAITFOR true CHECK cardin;

writeln(tty,cardin);

END;
END;

BEGIN
END,

The structure of this system is

DEALER
JCE

CARDOUT

MET1

shown belcts:

PLAYER
RALPH

CARDIN

Page

1-2
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The SDL code to used describe the interconnectivity of this system is:

NAME: TEST,;

TYFES :dealer,plaver;

dealer : joe;

player : ralph;

END;

NETSEGMENT;

net | = joe.cardout,ralph.cardin;
ENDNETS;

ENDC;

CEND;

When this code is compiled and executed, the result is a never

ending stream of random integers between 1 and 13 (inclusive) directed

to the terminal. If the example makes sense, fine. If not, don't
worry. The remander of this paper will explain and elaborate
everything.

1.2 INTRODUCTION TO THE NEW ADLIB CONSTRUCTS

Because ADLIB is a superset of PASCAL, it includes all of the
PASCAL control statements. For readers not familiar with these

stat emant s t hey are summar i zed here.
1.2.1 Review Of PASCAL Constructs

1. IF <boolean expr> THEN <stmt1> ELSE <stmt2>
which chooses between two alternative statements;

2. CASE <expr> OF <valuei>:<stmt1>
<value2>:<stmt2>

END

which selects one of an arbitrary number of statements, (similar to,
but more powerful than a "switch™ 0r "computed goto");

3. WHILE <boolean expr> DO <stmt>
which iterates a statement zero or more times;
4. REPEAT <stmt> UNTIL <boolean expr>

which iterates a statement one or more times;
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5. FOR <variable>:=<expr 1> T0<expr2> DO <stmt >

which repetitively executes a statement as <variable> ranges from
<expri>t o <expr2>. (Similar to a FORTRAN DO loop.)

6. GOTO <label>

which transfers control to <label> unconditionally%.

1.2.2 Additional ADLIB Constructs

The above six constructs are useful for defining tfie algorithm
incorporated within a component , but are not adequate for describing
inter-component control and data flow. Therefore, the following new

constructs have been added to ADLIB:

1.2.2.1 ASSIGN <expr> TO <net name> <timing clause>

Assign evaluates <expr> and stores the result away in a hidden
area. At a later time, this value is retrieved and assigned to the
specified net. Time delays may be specified in several ways depending
on the nature of the circuit (synchronous or asynchronous) and the
objectives of its designer. The simplest way is to define a delay

directly, as for example:

ASSIGN true TO out DELAY 15.3;

Fifteen and three tenths simulated time units after this statement is
executed, the net "Out"™ will be updated to the value “true”. Time
delays need not be constants, any real expression may be wused. For
example, if two parallel paths exist to the same outward connection, and
either one is sufficient to drive it, then we could define the

component ' s behav i or as:

*#This construct is currently out of fashion.
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ASSIGN result TO out DELAY min(delay_1,delay_2)

("Min" is a function that returns the minimum of its arguments.)

The expression in an ASSIGN statement may contain function calls.
For example, in order to describe a signal generator, it is convenient

to write:

ASSIGN sin(time¥frequency) TO signalout

This statement illustrates two other points as well. In ADLIB, the
variable "time" always contains the current value of the simulation
time. When the simulation begins, it is equal to 0.0. User assignment
to "time” results in a compilation error message. Also, this statement
does not contain an explicit DELAY clause. The ADLIB compiler therefore
treats it as if DELAY 0.0 were specified. At first glance, zero
propagation delay times may seen confusing, unrealistic, and potentially
hazardous. However, because of the runtime organization of SABLE, this
operation is unambiguous and useful. During simulation, SABLE cycles
bet ween the execution of components behavior descriptions and the
updating of the nets connecting them; First, all components are allowed
to execute, then all nets are updated, then all components are al lowed

to execute again, etc. One iteration of this <cycle constitutes one

event. It may happen that several events occur sequentially, but at the
same simulated time. If one or more components assign to a set of nets
with a DELAY of 0.0, then all these wupdates will appear to occur

simultaneously.

No hazards or races are introduced by allowing zero propagat ion
delay, and there are several appl icat ions where it is in fact, necessary
and appropriate. For example, a designer may prefer to treat
combinational logic as operating with zero time delay, to contrast it

with the sequent ial circuitry. As an extreme example of this, consider
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a system implemanted with relays. We wish to express the idea that a
voltage propagates through the contacts of a relay immeasurably faster
(measured in nano-seconds) than the speed at which the armature moves
(measured in milli-seconds). To describe a relay which operates as a

single pole, dduble throw switch (like a one bit multiplexor), we could

write:

IF armature-positicn = w THEN ASSIGN inputl TO out
ELSE ASSIGN input2 TO out

In the above example, the exact speed of propagat ion is
incalculable and irrelevant (in fact, it would probably be lost to
round-off error>. On the opposite extreme are circuits whose output
values must be available &t preci rely controlled instants, i.e.
synchronous circuits. For example, most micro-controllers operate at a
precisely constant speed independent of the micro-instruction mix (this
is not generally true of macro-instructions), Such controllers and any
circuitry directly connected with them are most conveniently defined in
ADLIB with the use of a CLOCK and the SYNC primitive. An ADLIB clock

may be thought of as a function that maps simulation time into positive

integers. At time 0 all clocks have value O. As simulation time
progresses, the clocks run through their phases repetitively:
0,1,2,3,0,1,2,3,0,1,2,3... etc. for a four phase clock. The period of

repetition is the parameter value specified by the user in the clock
definition statement. The value of clock "clk," defined as:
CLOCKclk(4.0,4);

is shown in figure 1.

By use of the SYNC operator, the user can synchronize an operation
with a particular leading edge of a clock. For example, a
micro-controller might have to have several control lines ready at
precisely the leading edge of the number one phase of clock "micro_clk'".

This could be written as:
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4
cLX 5 ;
e — -
1 . — _
8-
1 2 3 4 5 & 7 8 9
TIME =>
FIGURE 1: VALUE OF CLK(4.9,4)
r = microstorelmicro_ipl;
micro-ip := micro-ip + 1;

ASSIGN r.carry TO linel SYNC micro-elk PHASE 1;
ASSIGN r.shift8 TO line2 SYNC micro-elk PHASE 1;
ASSIGH r.shiftl TO line3 SYNC micro-elk PHASE 1;
ASSICGH r.shift2 TO line4 SYNC micro-elk PHASE 1;
ASSIGN r.clear TO line5 SYNC micro-elk PHASE 1;
(¥etc.¥)
All of the above ASSIGN statements will be effected at precisely the

szme Simulated time.

The user may specify any number of independent CLOCKS, each with
their own periods and numbers of phases. Unlike some other simulation
environments, clocks do not consume any computation resources
themselves: only when and if a component accesses them is any
calculation performed. The user may mark one of the clocks as being the
default. This saves him or her from writing the clock” name in every
sync clause. Also, if no phase is specified, the compiler assumes that
phase 0 is intended. It is therefore quite convenient to describe
systems that maintain 3 single universal «clock, such as a pipel ined

multiplier that keeps each stage in lock step with the others.
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1.2.2.2 WAITFOR <boolean expr> <control clause>

WAITFOR causes execution of a component™ code to stop, and does
not allow it to continue until <boolean expr> evaluates to true. T he
<control clause> may come in one of two forms. First, a <timing clause>
may be used, just like the timing clause in an ASSIGN statement. If a
delay clause if used, the <boolean expr> is reevaluated periodically at

the period specified in the delay clause. For example:
WAITFOR current>0.001 DELAY sample-period;

This statement would check the value of *“current” every “sample-period”

time units, until it exceeded one milliamp.

If SYNC is specified, the <boolean expr> is reevaluated each time

the specified clock goes through the specified phase. For example:
WAITFOR acknowledge=1 SYNC bus-clock PHASE 4;

This statement would not allow execution to continue wuntil the net

“acknowledge” was equal to ton the leading edge of the fourth phase of

clock “bus-clock”.

Alternatively, a control clause may take the form of a list of nets
that the component is to be sensitized to. This format is called a
‘check 1 i st", because whenever one of the nets mentioned in it is
updated, the boolean expression is rechecked. By this means, it is easy
and efficient to describe asynchronous machines driven by the the nets

to which they are connected. For example:
WAITFOR data-rdy = 1 CHECK data-rdy

This statement would put the component into a passive state wuntil the
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net "data_rdy" was updated to the value . No simulation resources are
consumed whi le the component is idle (there is no “busy wait ing"). In
particular, if other components ASSIGN to data-rdy whatever value that
it already contains, the expression “data-rdy =1"is not reevaluated.

This is because SABLE automatically deletes all such null updates.

1.2.2.3 Sensitize, Desensitize, and Detach

Taken collectively, these provide a facility for direct control of
the operat ion of a component. They operate in a way that is similar to
WAITFOR, but at a lower level and somewhat more efficiently. Sensitize
and desensitize are predef ined procedures make a component recept ive or
immune to changes on its inward nets. These procedures are always used
in conjunct ion with the DETACH operator, which causes execution of a
component to stop until one or more of the nets to which it is sensitive

is updated. When an update on = sensitized net occurs, the component

will be awakened.

Because of the flexibility of the WAITFOR construct , it is
difficult to think of an application where DETACH is really more
convenient, and not merely more efficient. However, to illustrate its
use, we shall use it to describe a finite state machine that recognizes
the bit strings consisting of I and 0's. The strings must match a
regular expression that begins and ends with 1, and where any 0 must be
preceeded and followed by at least one | (example taken from [KZ78]).
This machine is stimulated by a net called “input-line”, which contains
a data element "d'" and a strobe field "s". (In order to drive this

machine, it is necessary to put the data value in the "d" field, and to

update the "s" field.) In ADLIB, one way to define the automaton is:



BASICS OF ADLIB Page 1-10
INTRODUCTION TO THE NEW ADLIB CONSTRUCTS
sensitize(input_line);

l: detach; (¥init jal state®)
if input-1ine.d = 0 then goto 3;
2: (¥accepting state*)
wuriteln(output, 'accept');
detach;
if input-1ine.d =0 then goto 1;
qoto 2 ;

3: detach; (¥ terminal state¥®)
goto 3 ;

When combined with the facilities available in PASCAL, the above
primitives are adequate to encode almost any conceivable function among
a component™ nets. However, before a design language will be used, it
must be more than adequate, it must be convenient. Therefore ADLIB also
incorporates the concept of “subprocesses” to facilitate encoding the
behavior of many common computer activities. Each subprocess performs a
single function and runs independently of the main body of the comptype.

There are two types of subprocesses, upon and transmit.

1.2.2.4 UPON <boolean expr> <check list> DO <stmt>

Upon is used to define a set of activities to be performed
independently of the main activities of the component. Whenever a net
in <check list> is updated, <boolean expr> is reevaluated. 1f it is
true, then <stmt> is executed. For example:
interrupt : UPON (interrupt.priority > current)

CHECK interrupt DO
BEGIN
push(machine_state);
service_interrupt;
pop(machine_state);
END;
This code would check the priority level whenever the interrupt net

was updated, and service the interrupt when necessary.
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1.2.2.5 TRANSMIT <expr> TO <net> <timing clause?

TRANSMIT is more specialized than UPON. A transmit subprocess
reevaluates <expr> whenever one or more of the nets in <net list> is
changed. The result is then assigned to <net name> at the time
specified by <timing clause>. Transmit is very convenient for
describing combinati\onal circuitry. For example, a simple NAND gate can
be described wi‘th:

nand: TRANSMIT NOT(a AND b) TO ¢ CHECK a,b DELAY 15.0;

1.2.2.6 Inhibit And Permit

The name given to a subprocess may be used to control it by means
of the procedures “permit” and “inhibit”. All subprocesses are
init jally inhibited, which means that no external stimulus can acti vate
them. The main body of a component may then permit some or all of the
subprocesses to run, at which point they are ready to respond to
stimuli. Subprocesses may be inhibited at any time, which returns them
to their initial, inactive state. For example, a computer may protect a
critical region with:

inhibit(interrupt);

write_to(shared_data);
permitCinterrupt);

1.3 DESIGNING AN ADLIB PROGRAM

To illustrate how ADLIB is used, we shall “design” a small system
that plays Black jack with itself. This was inspired by a DDL design
found in {DDL751, but is somewhat more complex and complete. The ADLIB
system consists of one or more dealers and one or more players. Nets
shall be used to represent the flow of cards from the dealers to the

players, and to coordinate their activities. To begin our design
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process, we first consider what data must be transmitted (suit and rank>
and what <control information is needed (player is waiting for card,
dealer is waiting for player, etc.) We develop three types of nets
(nettvpe's) that define the structure of the nets which carry

informat ion between components, and associate an interpretat ion with

them. The design at this point might be encoded as shown in figure 2.
The nettypes shown fall into two categories: structured nettypes, such
as “card_bus" and simple ones, such as "d i splay-l i ght s and

"control_line". Structured nettypes are most useful when several pieces
of information are logically affiliated but need to be updated and

examined independently.

PROGRAM cardgame;

TYPE

suit-type = (clubs,hearts,diamonds, spades);

rank-type = (ace,two,three,four,five,six,seven,
eight,nine, ten, jack,queen,king);

NETTYPE

card_bus = RECORD
suit : suit-type;
rank : rank-type;
END;
display-1 ights = (hit, stand,broke);
control_line = (card_rdy,card_sccepted);
COMPTYPE dealer; (¥ deals out cards¥*)
BEGIN
(* not yet designed¥)
END;
COMP(;I’YPE player; (¥accepts cards, stands or goes broke*)
BEGIN
(¥ not yet designed¥)
END;
BEGIN
END.

Figure 2 - Outline of Blackjack System
The code in figure 2 specifies three net types but no control
protocol. We decide to use one control line between each player and the
dealer that serves it, and to alternate the value of this net betwueen
"ecard_rdy" and “card-accepted”. The synchron i zat ion mechan i sm can then
be expressed by the code fragments shown in figure 3. The first waitfor

statement shown causes the player to wait until the card is ready, and
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the second causes the dealer to wait until the player has decided what
to do.

(¥ player’ code ¥)

WAITFOR cntrl = cardrdy CHECK cntrl;

(% accept card*®)

ASSIGN card-accepted TO cntrl;

(¥ process card, go broke, hit or stand¥)

(¥ dealer” code %)

(¥ generate next card %)

(¥ assign nextcard to cardbus %)

ASSIGN card-rdy TO;

WAITFOR cntrl = cardaccepted CHECK cntrl;

Figure 3 Code fragments for Coordination

We are now ready to specify the algorithms used by the players and
dealers, For the purpose of this discussion, the player just accepts
cards until it reaches its limit, treating aces as 1or !l points as
needed. The ADLIB code for the player is shown in figure 4, and will be

referred to later.
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COMPTYPE player:;

(¥ declare the “terminals” of this component¥*)
INLIARD

card : card-bus;

OUTWARD

lights : display-lights;

EXTERNAL

cntrl : control-line;

(¥declare the storage needed by this component++)
VAR

score :0..27;
holding-ace : boolean;
BEGIN
WHILE true DO BEGIN
holdina_ace:=false;
score := 0;
REPEAT
REPEAT
ASSIGN hit TO lights;
ASSIGN card-accepted TO cntrl;
WAITFOR cntrl=card_rdy CHECK cnfrl;
IF card.rank < jack THEN score :=
score + ord(card.rank) +1
(ford returns an integer in 0..13%
ELSE score :=score +10;
IF (card.rank=ace) AND
(NOT holding-ace)
THEN BEGIN
score :=score +10;
helding_ace:=true END;
UNTIL score >= upper-limit;
IF (score > 21) AND holding-ace THEN BEGIN
score :=score -10;
holding-ace := false END;
UNTIL score >= upper limit;
IF score <= 21 THEN ASSIGN stand TO lights
ELSE ASSIGN broke TO 1 ights;
END;

END;

Figure 4: Definition of Comptype “Player”

In order to see if comptype "player" works properly, it is
necessary t 0 develop a “dealer” comptype to drive it. There are several

possible ways to do this, just as there are several ways to test a new

piece of hardware. In ADLIB, it is easy to write a comptype that talks
with the terminal for interactive testing. Another possibility is to
use a pseudo-random number generator that will choose cards from an

infinite deck. A package of such generator routines <called RNDPAK s
available to ADLIB users. Finally, the designer can write a comptype

that reads the test data from a file. Each of these approaches have
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their own m2rits et different phases in tha design process. HNormally,
interactive testing would be used for initial debugging, large numbers
of randem inputs for extensive testing, and prerecorded, specially

selected values far product ion.

Having specified the behavior of comptype “player” and “dealer”, we
are free to use as many of each as wewishin our design. The structure

of one possible cardgame is shownin figure 5.

RALPM CARD
PLAYER
LIGHTS
CNTRL —
DEALTCARD JOE
DEALER
LIGHTS
L CNTRLY
PETER CARD CNTRL2
PLAYER
LIGHTS
CNTRL

FIGURES :STRUCTURE OF A SIMPLE CARDGAME






CHAPTER 2
TYPES, NETTYPES AND TYPE CHECKING

2.1 WHAT DOES “STRONGLY TYPED” MEAN?

Like its base language PASCAL, ADLIB is said to be a “strongly
typed” 1 anguage ([0EI78]. This means that each piece of data, each
function and all parameters must each be declared with exactly one type.
Whenever a variable or net is used, its use must be type compatible with
its declaration. In a well-written program, the type of a wvariable
defines the narrowest possible range of values that it may attain.
While beginning programmers may think that type checking is an arbitrary
restrict ion on their programming style, more experienced designers can
usually put it to very good use. Typing is essentially a way for the
designer to express his or her intentions about the way in which a piece

of data should be used. The compiler can then automatically detect when

those intent ions are violated, which usually implies an error. In
languages that are not typeful, it is often easy to treat character
strings as reals, or integers as pointers. Even when this is done

intent ionally, it is very difficult to read, understand and maintain the
resulting program. And when it is done unintentionally, chaos can
result. For a discussion of PASCAL typing and program reliability the

reader is referred to {WN751.

2.2 TYPE CHECKING OF NETS

The primary type checking mechanism in ADLIB is the use of nettypes

for defining the intended interconnection mechanism between components.



TYPES, NETTYPES AND TYPE CHECKING Page 2-2
TYPE CHECKING OF NETS

In SABLE, the nets that connect component s must be declared with
identical nettypes at each end. If this is not so, an error message is
printed++. This nettype checking is considerably more thorough than
checks found in most register transfer language” (RTL's), where it is
only necessary that the number of bits must match. To illustrate this
difference, consider a component that produces two BCD (binary coded
decimal) digits and another that accepts eight bits of binary data.
Most RTL's would allow them to be directly connected, since 8 bits = 8
bits. Even simulation might not detect this error if the test set did
not happen to include any values greater than 9. But the ADLIB - SABLE
environment would detect the mismatch, since "BCD"™ is not type
compatible with “binary”. Further examples of type checks will be given

later in this section.

But types should not be viewed just as a restrict ion. Compared
with other languages, ADLIB (like PASCAL) offers a wealth of useful new
types to choose from. The next section illustrates a few of the ways
that a designer can take advantage of them to reduce errors and improve

readability.

2.3 DATA TYPES AVAILABLE IN ADLIB

Because ADLIB is a superset of PASCAL, it inherits all of the
PASCAL type construct ion mechanisms. For the benefit of readers not

familiar with PASCAL, these are listed here:

*Unless a special TRANSLATOR has been provided. TRANSLATORS provide the
ability to do multi-level simulation at the expense of some
type-checking security and some loss of data precision. For a
discussion of their use, see [HDD79~-1].
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2.3.1 Boolean

Boolean variables can attain the values true or false. (Similar to

FORTRANY LOGICAL. ) For example if “strobe” were declared to be of type

boolean we could write:

strobe := data-rdy AND (bus-clock = 3)

2.3.2 Integer

l.e. =-15, 0r 1024.

2.3.3 Real

l.e. 3.14159 or 6.023e24

2.3.4 Enumerated Types

These allow a user to enumerate (list out) all the possible values

of a piece of data. For example:

logic-level = (low, high, unknown, high-impedance)

We have already seen several examples of enumerated types in the
cardgame program. Enumerated types are also useful for describing the

instruct ion sets of machines, such as the INTEL 8008 (I1731:

TYPE
instruct-kind = (Irr‘,lrm,lmr‘.lr‘i,lmi,
inr,dcr,adr,adm, (¥etc¥*) );

In ADLIB, one can use a CASE statement to describe the execution of

a machine instruct ion in a format very similar to ISP {BCG71]. For

exampl e:
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FUNCTION decode : instruct_kind; '
(% code omitted for brevity)
BEGIN (*main body of program¥)
CASE decode OF
Irr : (¥ load reg to reg¥*)
BEGIN (¥ code omitted ¥) END;
ret : (¥ return from subroutine++>
BEGIN (% code omitted¥*) END;

(¥etc*)
END;

2.3.5 Subranges

These specify that only part of a range of values is acceptable,

for example:

register-number = 0..7

specifies not only that variables of type register-number are integers,
but al so that they must lie between 0 and 7 (inclusive). Assigning a
value to a subrange variable that is outside its range is automatically
detected. For example, in the ADLIB blackjack machine the variable
“score” was declared to range over the values 0 to 27, the high wvalue
being equal to 16 (the highest possible score before standing) + 11
(value of an ace). By contrast, the DDL version merely declared the
score to be a five bit register. The ADLIB approach has two advantages.
First, it al lows the designer to defer any decision on t he
representat ion of data in the early stages of design. Second, and more
importantly, it encodes more information: e.g. the fact that the score
can never exceed 27. Although this is not too critical here, it is easy
to visualize applications where the range of data that a register holds,
if known, <can be used to improve the design. For example, nine ACLIB
blackjack scores could safely be added in an 8-bit alu, since we know
the total cannot exceed 243. On a more practical level, it might be

useful to know not only that memory addresses in a DEC 10 are 18 bits
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long, but also that they range from 16 to 262144, (since the first 16

addresses refer to registers).

2.3.6 Arrays

ARRAY is similar to DIMENSION in FORTRAN. For example:

memory = ARRAY[0..10231 OF integer

2.3.7 Records

Records are useful for grouping related data, as for example:
complex = RECORD
real_part, imag_part: real;
END;
Most register transfer languages, including DDL, provide mechanisms
for making several names equivalent references to the same piece of

data. The usual example of this is an instruction register, where one

of the bits is given a mnemonic name such as "I" (for Indirect) in
addition to being IRI[O0]. This can make parts of a program more
readable, but can also lead to confusion when a mnemonic is referenced
for the first time several pages away from its declaration. The

strategy adopted by ADLIB is to use “variant” records for this purpose.
A variant record is essentially a single data area that may have several
different data structure “templates” applied to it. As an example of
this, <consider the four ways that one can look at an HP 2116
instruct ion, as discussed in the machine manual [HPl. In ADLIB, these

alternative views would be encoded as:
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TYPE

instr-variant = (whole,memory_ref,register_ref,i_o);
VAR

ir : RECORD CASE instr-variant OF

whole : (ARRAY[0.. 151 OF bit);
memory-ref : (indirect : bit;

mem_instr . ARRAY[0..41OF bit;

zero : bit;

mem_addr : ARRAY[0..9] OF bit);
rearef : (group : ARRAYI[0..3]1 OF bit;

micro : ARRAY[0.. 111 OF bit);
i_o ! (io_group : ARRAY[0..31OF bit;

io_instr : ARRAY[0..5]1]0F bit;

select : ARRAYI[0..5]1O0F bit;

END;
This record informs the reader (and the compiler> that the
instruct ion register "ir" may be viewed in four different ways, but is
still in fact just one register 16 bits long. (Note that the total

number of Dbits in each wvariant is 16.) Access to ir can then be

performed using the mnemonic fields, as for example:

ir.whole := data-bus;

or

IF ir.indirect =1 THEN cycle := fetch:

Now the fields are closely associated with the register, and the reader

is (hopefully> less likely to misinterpret them.

2.3.8 Sets

A SET is an area of storage that may contain from 0 to all of its
members i . e. a powerset. Textually, sets are delimited by "['" and "]",
and facilties are provided for set intersect ion (AND), union (OR),

difference (-) membership (IN), equality ("="), size comparison ("<" and
">y, Since sets are normally packed into machine words, these
operations usually run very quickly. Sets are convenient for grouping
related symbols, both visually for the reader and logically for
simulation. For exampl e, in the 8008 we can express certain facts in

machine readable form that are normally only shown on the data sheets,
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such as:

index-instructs:= {1rr,lrm,lmr,1ri,lmi,inr,dcrl;
one_cycle_alu:=[adr,acr,sur,sbr,ndr,xrr,orr,cpri;

As an example of the use O0f set operators, consider the code that

describes the timing of part of the execution cycle. It might contain:

IF instruct ion IN one-cycle-alu THEN
WAITFOR SYNC PHASE 1,

2.3.9Files

The ADLIB user may declare various types of FILEs to match the data
to be stored in them. Storing and retrieving that data can then be

accomplished very efficiently. For example, it is easy to describe a

core image as:

core-image : FILE OF integer;

For convenience, special facilties are provided for reading and writing

files of text.

2.3.10 Pointers

PASCAL, (and therefore ADLIB) provides two independent areas for
storing data, the ordinary stack and a heap. The heap is accessed only
via special pointer variables, which may in turn point to other
pointers, etc. This makes it convenient and efficient to develop
complex data structures. Pointers are denoted by the up arrow "f". For

example, the data structures for describing a virtual memory system

might look like:

ma
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TYPE
page = ARRAYI[0..511] OF integer;

page-ptr = Tpage; (¥ "M means “pointer to'"¥)

page-table = ARRAY [0..255] OF RECORD
logical-address : 0..64255;
is_incore : boolean;
memory-ref : page-ptr;

END;

New elements are added to the heap by means of the "new" procedure.

Using this, part of the code to describe memory management might be

written:

VAR pm : pagemap;
IF NOT pmlhigh_bits].is_incore THEN new(pm.memory_ref);

This would allocate a new page of memory from the heap if the

"is_incore" flag of page-map "pm" were false.

Whereas the above types are part of both PASCAL and ADLIB, the

following two are available only in ADLIB.

2.3.11  Bit
It may range over the

This is a predeclared subrange of integer.

values 0..1.
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2.3.12 Register

This is a predeclared type that is useful for RTL descriptions.
Many special rout i nes are provided for manipulating variables of type
register, such as exclusive or, rotate, etc. Arithmetic may be
performed on registers in one’ complement , two’ complement, sign

magnitude, and unsigned formats.

2.3.13 Another Example: RS232 Interface

One can combine enumerated types with records to <create a very
strong, specific definition of an interface. For example, consider the
RS232 connection standard. Most RTL's would merely specify it as a 25

bit connect ion, which could be written in ADLIB as:

RS232 = ARRAY [!1..251 OF bit;

However, this would not make best use of the facilities available. In

ADLIB, it would be better to write:

TYPE '
wi derange = (neg_12V,pos_12V);
grounded = (zero);
NETTYPE
RS232 = RECORD
fg : grounded; (¥f rame ground¥*)
td : widerange; (*transmit data¥%)
rd : widerange; (“received data%)
rts : widerange; (¥ request to send¥)
(* etc.¥*)

END;

If the net "tty!l_line"™ were declared to be of nettype RS232, then the

compiler would accept
ASSIGN neg_12Y TO ttyl_line.td;
but would flag as an error:

ASSIGN 0 TO ttyil_line.terminal_rdy;
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beczuse of type incompatibility.



CHAPTER 3
A CONTOUR MODEL FOR ADLIB

The chapter is intended to be an informal but unambiguous
definition of the behavior of systems“pecified in ADLIB and SDL, and
simulated under SABLE. The definition consists of three parts: a
static cont our model for ADLIB programs, a dynamic contour model for
their execution under SABLE, and a simulation structure that defines the
the various ADLIB primitives. For readers unfamiliar with contour
models, an introductory tutorial is available in [JBJ71]. Also of
interest is SIMULA Begin [BGM73] which is tuned to SIMULA67, and OREGANO
[BD71]. However, the basic principles of contour models are fairly

simple, and this description will avoid the more complex issues.

3.1 CONTOUR MODELS

A contour model uses rectangles to represent scopes of program
ident if iers as defined by the user. A static contour model represents
the way in which these scopes are nested in the source program, e.g.
procedures within procedures, global and local variables etc. Such a
drawing can be used to answer (quest ions about identifier visibility,
naming conflicts, and data hiding, The set of identifiers visible at
any point in the model is determined by examining each enclosing contour
in turn. Identifiers inside of non-nested contours can be accessed only
through “access pointers” (ap's) that Ilink One scope with another.

Access pointers are used extensively in SIMULA 67 to perform a “remote
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access,?” which is where one process reaches into another and may
directly alter internal attributes of it. This facility is not
available to the ADLIB user directly because it invites hard-to-detect

side effects and bad code structuring.

3.2 STRUCTURE 0OF AN ADLIB PROGRAM

The static contour model for an ADLIB program is illustrated in

figure 1.

3.2.1 Global Identifiers

The model shown in figure 1 is not much different from the contour
model of a PASCAL program. In the upper left hand corner of each
rectangle appear the user defined labels, constants, and types and al so
the user declared variables*. |In addition, more rectangles may appear

within a rectangle represent ing nested scopes.

In the outermost contour is the predeclared variable "time" which
represents the simulation time. User assignment to this variable is

illegal and is detected at during compilation. Contour 2 in figure tis

the global level for the user. In it are found the user” global
labels, constants, types, nettypes clocks, variables, rout ines*¥% and
comptypes. The meanings of labels, constant and type definitions, are

unchanged from PASCAL. There is also an algorithm associated with this

*In this report, items that do not consume storage at runtime are said
to be "defined", and items that do are said to be “declared”™. In
particular, items that are defined do not appear inside of contours in
the dynamic models.

¥¥Throughout this paper, the word “routine” is taken to mean procedure
or function.
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contour that could be called the “main body” of the program which can be
used for initialization of the global variables, resetting files and
such. This main body may not contain any ADLIB control primitives such
as detach or waitfor, and may not access any component or net. During
the execution of the program® main body, time and all clocks are
identically zero. This code block may call global routines that call
further routines recursively, just like the main body of an ordinary

PASCAL program

The inclusion of global variables into ADLIB is a concession to
practicality and user convenience. Ideally, a design should not have
any, since they might represent inter- component connections that have
no physical correspondence. However, there are also many applications
for global variables that do not violate the intended structure of
SABLE. For example? data collect ion and interpretat ion can be
simplified if each component calls a routine that accepts intermediate
results and stores them away in a global area for later analysis. On
the other hand, global variables should not be used for i nt ercomponent
communication. This is what nets are intended for, just as paranmeters
are intended for communicating with routines. It may be possible to
detect such <clandestine component interaction during compilation and
prohibit it, just as there have been proposals to ensure that routines
have no side effects. However, such mechanisms can generally be
defeated and are invariably unpopular with programmers. The decision of

how to use global variables is therefore left to the user.

3.2.2 Nets And Nettypes

Nettype definitions are similiar to type definitions, except that
they inform the compiler that it must be prepared to handle nets of this
type. Nets are a concept that is unique to ADLIB, similiar to but not

the same as ordinary program variables. Nets are allocated in a
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different way from variables, and are interconnected with other
components and with the simulation support system. The various nettypes
thus def ine the ways that the components are able to interact. The
importance of this for error detection and verification is discussed in
[HDD7S9-11. During simulation, the support system generates new data
items of the various nettypes, compares them, does assignments to them,
and dynamically regenerates the storage alloted to them. Net t ypes (as
opposad to ordinary types) must be used whenever nets are declared
inside comptypes or are used as parameters to routines. Funct ions may
not return nets, and nets may not appear on the left side of assignment
(":=") statements. To update a net, the ASSIGN statement and the
TRANSMIT subprocess facilities are provided. (This is somewhat 1 ike
SIMULA 67, where updating a pointer requires a special syntax. ) Any
expression assigned to or compared with a net must be type compatible
with the nettype of the net. Within a comptype, two types or net types

are compatible if they are subranges of the same base type¥¥xx*,

Whenever a nest appears where an expression is <called for, the
current value of the net is used, in the same way that a program
variable normally refects its value. When a net i s used as the subject
of an assign or transmit statement, its reference value is used. When a
net is declared as a var parameter to a routine (i.e. the Kkeyword var
is used in the parameter declaration), the routine may assian to it. If
the net is not marked as var, then the routine wmay access , but not

update the value of the net.

¥¥%% This is not true in connections betwzen components, because SABLE
considers each nettype to be incompatible with all the other nettypes.
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3.2.3 Clocks

Following the nettype definitions, an ADLIB program may contain one
or more clock definitions. These create functions that map the

simulation time to an unsigned integer. Their syntax is:

CLOCK <clockname> ( <period> , <numphases> )} [ DEFAULT1 ;

Symbol ical ly, the function is:
<cl kname> ==

(time/(Kperiod>/<numphases>)) MOD <numphases>

A clock function may be invoked anywhere that a variable integer
expression is allowed. Clocks may also be used in timing clauses, which

are explained in the next section.

3.2.4 Timing Clauses

Timing clauses may be wused in assign, transmit and waitfor
statements throughout an ADLIB program. A timing clause yields a time
value at each evaluation. This time value is used in various ways as

described later. There are two forms of timing clause: sync and delay.

3.2.4.1 SYNC

The syntax for a sync timing clause is:
SYNC [ <clock name> [PHASE <integer phase number>]}
If <clock name> is omitted the clock marked “default” is used. If phase
is omitted, phase 0 is assumed. The value returned by this sync timing

clause is the next time when the specified clock will go through the
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specified phase. Symbolically, this can be written as:

SYNC <clock name> PHASE <integer phase number> ==

min ¢ ft' : real | (' > time) AND
<clockname>(t') = <integer phase number>)

3.2.4.2 DELAY
The other timing expression used in ADLIB is the delay Clause which
has the syntax:
DELAY <real delay time>
This evaluates as:

time + <real delay time>

3.2.5 Routines

Global routines are represented as in PASCAL and may include more
rout i nes nested within themselves. These routines may be freely called
from inside any comptype, and may contain assign statements to net
parameters. However, routines may not contain waitfor o r detach
statements. This restrict ion allows an enormous simplification and
acceleration of the runtime support, because it sharply reduces the need
for dynami ¢ storage reclamation (“garbage <collect ion'") found in some
simulation languages, (for example SIMULA 67). Since ADLIB provides
other facilities such as subprocesses and better i nt erprocess

communication, it is hoped this restrict ion will not be overly

constraining.

3.2.6 Comptype Definitions

Following the global routine definition sect ion is the "raison
d'etre” for the whole ADLIB program, the component type definitions
(comptypes). These are the only part of an ADLIB program visible to

SABLE. Compt ypes are similiar t o routine definitions in that they



COTPTYPE NAME

PARAMETERS
NETS
LABELS
CONSTANTS
TYPES

VARS

ROUTINEL ROUTINEZ ROUTINEZD...

SUBPROCESS 1 SUBPROCESS2 SUBPROCESS3...

(MAIN BODY CF COMPTYFE)

FIGURE 3: STATIC CONTOUR MOTEL CF A COMPTYFE
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define algorithms for data manipulation. In fact, some functional
simulation systems such as BUILD [LT79] use ordinary routine definitions
to describe the behavior of components. However, it was felt that this
was too inconvienent for the wuser, and in many cases, the resulting
rout ine was not easily readable. Therefore, ADLIB provides several
special features for defining comptypes. The structure of a ccmptype
definition is outlined in figure 3, and it includes parameters,
defaults, net declarations, labels, constant s, types, Vvariables,

routines, subprocesses and the “main body™ of the comptype.

3.2.6.1 The Heading Of A Comptype

A comptype™ parameters are similiar to those of a routine, except
that they may be set only in the structure definition language. For
example, a comptype "nandgat e'" might have a parameter "riset ime". This
would ennble many instances of the nandgate to be allocated by SABLE,
with each one potent ially having- a different riset ime. This is simpler
and more efficient than requiring separate models for each. The default
sect ion, which follows immediately after the parameter list, may be used
to specify default values for any or all of the parameters. The
parameters listed in the default section do not have to be in the same
order as in the parameter list. All paramet err to comptypes are
considered call by value, and pointer, file, and structured data types

are prohibited.

3.2.6.2 Net Declarations In A Comptype

Following the parameter default section is the declaration of +the
nets wused by the comptype. These act as the interface between the
component and its env i ronment . Nets must be marked as one of the

following: INWARD (receive data only), OUTWARD (transmit data only),
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EXTERNAL (both receive and transmit) or INTERNAL (receive and transmit
but only within the component). It is illegal to assign or transmit to
an inward net, or to access the value of an outward net. In addition it
is illegal to sensitize an outward net, or to place an outward net in a
check 1'ist. The intention here is to ensure that information never
flows from a net marked outward or to a net marked inward. |If both

forms of access are needed the net should be marked external.

3.2.6.3 Internal Nets

INTERNAL nets may be examined and manipulated by a component just
1like external ones. However, internal nets are part of the behavior
specification only, and do not appear in any structural description.
They are wuseful to help specify the behavior of a component with
inertial delays or other internal timing characteristiCf. For example,
consider a combinational circuit that implements the function "(a%*b)+c"
by means of a 2-input AND gate and a 2-input OR gate. If the exact
input to output timing relation were important, an internal net might be

used to help code this circuit? behavior. In ADLIB, this could be done

as in Figure 4.

COMPTYPE combin;
INWARD

a,b,c : boolnet;
QUTWARD

d : boolnet;
INTERNAL

X : boolnet;

SUBPROCESS
andgate : TRANSMIT (a AND b) TO x DELAY 15.0;
orgate : TRANSMIT (x OR ¢) TO d DELAY 14.0;

BEGIN
permit(andgate);

permit(orgate);
END;

Figure 4
Combinational Logic: D=(A¥B)+C
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The internal net x represents the intermediate value (a¥*b). T he
transmit subprocess "andgate®" causes the value of a*b to be transfered
to net x with a delay of 15 time units. The express ion "a AND b" is
reevaluated whenever net a or net b is updated, and if a new result is
obtained a net update takes place. The '"orgate" subprocess operates
asynchronously so that whenever x or ¢ is updated, an assignment is made
to net d. The overall result is that a change in nets a or b s
reflected at net d after 29 time units, while a change in net c is

reflected after only 14 time units.

Labels, constants, types, variables and routines in comptypes are
unchanged from PASCAL, and again these routines may be nested
arbitrarily. Following the normal scoping rules, routines have access

to all the identifiers inside the comptype, and to all those defined at

the global level.

3.2.6.4 Subprocesses

The next part of a comptype definition s the subprocess
declaration section. Subprocesses are like "1i ttle components” that run
autonomously from the main component body, but under its control. They
might be used, for example, to describe the direct memory access
channels in an IBM 370. Their purpose is to simplify the code in the
main  body of the comptype by taking care of secondary functions.
Because the subprocesses are watching for interrupts and other low level
activities, the the main body of a comptype can concent rate on the high
level supervisory tasks of the component, resulting in a less cluttered
and easier to read piece of code. Subprocesses are less powerful than
the main body of the comptype for two reasons: they execute a fixed
algorithm to completion each time they are activated, and the criterion
for their activation is fixed at compile time, unlike the main body of

the comptype which may be stimulated in different ways at different
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points in its execution. Subprocesses may be <controlled by the
predefined procedures

inhibit( <subprocess name> )

and

permit( <subprocess name>)
The former disables a subprocess from running, and the latter enables it
to run. These procedure calls may appear anywhere inside a comptype
definition, and do not need to textually follow the subprocess named in

them.

3.2.6.5 The Main Body Of A Comptype

The main body of the comptype describes the fundamental activities
of that type of component. In addition to assigning new values to nets,
and permitting and inhibiting subprocesses, the main body may also place
itself into a wait state, where it stays until some stimulus is received

or some condition is met.

A complete and unambiguous definition of these and all ADLIB
primitives in terms of denotat ional semantics will be available in

{HDD79-21.



CHAPTER 4
ADLIB SYNTAX

This summary of ADLIB syntax is derived from the appendices of the
PASCAL User>s Manual and Report [JK721, with the additional ADLIB

constructs included where necessary.

4.1 LOW LEVEL SYNTAX

The basic format of ADLIB programs is patterned closely after

PASCAL. However a few points of clarification and difference exist.

1. ldentifiers may include the underscore "_", and the use of upper or

lower case characters is insignificant.

2. In order to shorten the code, reduce programmer effort, and
eliminate transcript ion errors, a user may "include" files into his

or her ADLIB source. The syntax is (starting in column 1):

#include filename

“Filename” must be a valid, unambiguous file name. It syntax may

depend on the operating system employed.

3. Comments are delimited by "(¥'" and "#¥)" and may be nested to any
depth. In addit ion, a second comment convention is supported. Any
text between an exclamation point, "!", and the end of a source 1 ine
is ignored. The exclamation point is ignored inside a (% ¥) pair,
and the symbols (¥ and %) are ignored between an exclamation point

and the end of a 1ine. The following is therefore syntatically
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correct:

(*this comment is

garbage! notice exclamation is ignored

here ! %)

x == | but not here, so (¥ is ineffective
17.2 (¥ more comments) ;! again is effective

and is syntactically equivalent to:

x = 17.2;
4. In order to pass though the parser, comptype names and net names
must be wvalid ADLIB identifiers. But this can lead to conflicts

since designers usually prefer to wuse names meaningful to their
application. For example, one could not define a comptype named
“and” or a net named "in" because these conflict with reserved words.
To remedy this situation, ADLIB allows a programmer to specify a
second name for comptypes, nets and parameters to comptypes. This
name is specified immediately after the valid ADLIB name and is
enclosed by double quotes. SABLE will see only the name enclosed in
quotes. For example:

comptype andgate "and"(propdelay "delay" :

real);
inward

innet "in" : boolnet;
(¥ otc®)
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SUMMARY OF OPERATORS

4.2 SUMMARY OF OFERATORS

An asterisk

operator

ASSIGN*

1]

arithmetic:
+(unary)

-{unary)

t

[s NI 4
<

B
o «
Q.

relational
<>

<
>

A
"

v
1]

logical:

mlor
3o
Q. —~+

|

~wn
[¢°]
~+

*

Page 4-3

indicates those that are in ADLIB, but not PASCAL.

operat ion

net assignment

assignment

identi ty

sign inversion
addit ion
subtract ion
multiplication
integer
division
modulus

real division

equality
inequality

less than
greater than

less or equal
_Or_

set inclusion
greater or
equal -or-
set inclusion

set membership

negation
disjunct ion
conjunct ion

union
set difference
intersect ion

operand result
expression,net,

timing clause

any type

except file

integer same as
or real operand
integer integer
integer

integer real

or real

scalar,string, boolean

set or pointer

scalar or string

scalar or string

set )
scalar or string

set
scalar, and set

boolean boolean

any set type T T
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4.3 STANDARD IDENTIFIERS

The following are the standard, predefined identifiers in ADLIB. A
user is free to wuse redefine any of them, and implementors are at
liberty to include additional predefined constants, types, variables,
and routines wherever they might be useful. An asterisk indicates those

that are in ADLIB, but not PASCAL.
1. Constants:
false, true, maxint
2. Types:
bit*¥, boolean, char, integer, real, register¥®, text
3 Files:
input, output
4 Functions:

abs, arctan,c h r , cos, eof, eoln, exp, 1In, odd, ord, pred,

round, sin, sqr, sqrt, succ, time¥, trunc
5. Procedures:

desensitize*, detach¥%, get, inhibit*, new, pack, page, permit¥,
put, read, readln, reset, rewrite, sensitize*, stopsim¥%,

unpack, write, writeln
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4.4 RESERVED WORDS

An asterisk

indicates those that are

plus sign indicates DEC!0 pascal extension.

and
array
assian¥
beain
case
checks
clock*
comptvpe*
const
default*
delay¥®

div

dcwunta
else
end

ext_ern
external*
for

file
fortrant
forward
function
aoto

il
in
inward*
internals

—
st

abe
moed

(=]
—

others+
out Lard*

to
translator¥®
transmits
ype

unt i 1

in ADLIB, but not

Page 4-5
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4.5 SYNTAX CHARTS

These charts were automatically drawn by a program called Syndia,

using a BNF- 1like notation for input. Documentation on Syndia is
available in [CWE79-2].

Field ident, net ident, type 1ident, subprocess ident, clock
ident, nettype ident, constant ident, and variable ident are all

syntactically equivalent to ident.
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ROUTINE PACKAGES

A major goal of ADLIB was that the language itself should remain
small but be easily extensible by the user or implementor. This is done
by adding new data types and new rout ines. Note that this does not
imply any syntax changes or extensions, and does not require the user to
learn about features not relevant to his or her own area of work (i.e.

a user can not “trip over™ an extension that he or she was not aware
of.)

In particular, two fairly large packages of routines are available
to the ADLIB programmer: Rgpack, which provides bit manipulation
facilities not directly available in PASCAL or ADLIB; and Rndpak, which
provides a set of random number generators with various distributions.
If the implementor did not predeclare them, then the user must declare
them in his or her source program in order to access them. The earijest

way to do this if with an “include” statement, i.e.:

#include rpaks.dcl

The file "rpaks.dcl" is assumed to contain the routine headers of all
the procedures and functions listed below. Note that al 1 rgpack
routines start with the letters "rg" and all rndpak routines start with

the letters "rnd". This should help avoid naming conflicts.
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A.1 RGPACK

This set of routines is intended to be used with PASCAL and ADLIB
programs for describing the bit manipulation features of computers.
This has the capability of performing many common hardware manipulations
not ordinarily available in higher level languages, such as exclusive
or, rotate, etc. They make use of the type “register” and "bit", both
of which are type compatible to “integer”.

Register = integer

bit =0..1

There is no difference between register wvalues and integers for
positive values. Negative values are stored in the appropriate format
for the negative encoding selected, i.e. one or two™ complement, sign
magn i tude, or unsigned. Registers are stored in one machine word (like

integers) and bits to the left of the most significant bit are always 0.

The routines are listed below by class.

A.t.t Initialization
1. PROCEDURE rgsetup(leastsig, mostsig, format : integer);

Rgsetup must be called prior to calling any other rgpack routi ne
(except the /o0 routines). The first two arguments specify the bit
number of the least and most significant bits. The third argument
specifies the format of negative numbers.

twos complement - 0

ones complement - 1
sign magnitude - 2
unsigned -3

For example, to describe an HP2 1MX computer one would call

rgsetup(0,15,0). Unfortunately, the current implementation supports no
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more than 34 bits, since it uses ordinary DECSYSTEM-10 PASCAL arithmetic

operators, and must avoid machine interrupts on addition.

A.1.2 Conversion

2. FUNCTION rgtoreg(i : integer): register;

Rgtoreg accepts an integer and converts it to register format. An
error message will be printed if iis out of range.
3. FUNCTION rgtoint(r : register): integer;

Rgtoint converts a register to integer format.

A.1.3 Arithmetic

The following rout ines perform most of the common computer
arithematic operations in the various formats specified in rgsetup. Two
of the routines, rgadd and rgsub also effect bits internal to rgpack
itself, so that the user can easily determine if the last addition or

subtraction caused an overflow or carry.
4. FUNCTION rgadd(argl, arg2 : register) : register;

Rgadds adds it two arguments and returns the result, truncated to
the number of bits in registers. It sets the overflow if the result is
too big for the number of bits, and the carry flag i f there was a carry
out of the highest ©posit ion. Note that such a carry does not

necessarily imply that the result was too large for the specified word

size.

5. FUNCTION rgsub(arg!, arg2 : registerl : register;
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Rgsub returns argl - arg2 and sets the overflow and carry flags.

6. FUNCTION rgovrf low: bit;

Rgovrf low returns a one if the overflow flag is set, otherwise

Zero.
7. FUNCTIONrgcarry: bit;

Rgcarry returns a one if the carry flag is set, otherwise zero.

A.1.4 Shifts
8. FUNCTION rgshift(source: register; amount : integer): register;

Rgshift returns its argument shifted the specified number of bit

posit ions. (Positive is toward most significant bit.) Padding is with
Zeros.

9. FUNCTION rgrotate(source : register; amount : integer)
register;

Rgrotate returns its argument rotated the specified number of bit

posit ions. (Positive is toward most significant bit.)

10. FUNCTION rgrotlong(source:register; amount:integer; VAR

carry:bit):register;

Rgrotlong is similiar to rgrotate except that an extra bit,

specified by the user, is included in the rotation.

1.  FUNCTION rgarshi ft (source register; amount : integer):

register;

Rgarshift returns its argument shifted the specified number of bit
posit ions. (Positive is toward most significant bit.) The arithmetic

sign of negative numbers is extended in right shifts.
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12. FUNCTION revtranslate(res : integer) : integer;
begin if res<msbpos then res := msbpos - else if res
basewordminusl then res := basewordsize;

A. 15 Bit Accessing
13.  FUNCTION rgbit(r:register; pos : integer) : bit;

Rgbit returns the bit located at position "pos", relative to the
least and most significant bits specified in setup. For example, if
msbnum = 16 and Isbnum = 1 then rgbit(6,3) will return the third bit
from the right (lsb) side, which is 1, since 6 is represented as
0000000000000110 in binary.

14. FUNCTION rgbitset(r:register; pos : integer; newval : bit)

register;

Rgbit sets the bit located at position "pos", relative to the least

and most significant bits specified in setup to “newval” and returns the

result.
15. FUNCTION rgfield(r:register; left ‘“right : integer) : register;

Rgfield returns the bits located between position "left" and
"right", relative to the least and most significant bits specified in
setup. For example, if msbnum = 16 and Isbnum =1 then rgfield(6,4,2)

will return 3 (011in binary.>

16. FUNCTION rgfldset(r:register; left “ight : integer; newval

register):register;

Rgfldset sets the bits located between and including posit ions

"left" and “right”, to "newval", and returns the results.
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17. FUNCTION rgfdri(rg: register) : integer;

Rgfdrl finds the rightmost 1 in a register, and returns its bit

position in the coordinates used at setup time. If no one is found, the
bit number of the bit to the left of the most significant Dbit is
returned.

18. FUNCTION rgfdr8(rg: register) : integer;

Rgfdr0 finds the righmost 0 in a register, and returns its bit

position in the coordinates used at setup time. If no one is found, the
bit number of the bit to the left of the most significant bit is
returned.

19. FUNCTION rgfdli(rg: register) : integer;

Rgfdll finds the leftmost 1 in a register, and returns its bit
position in the coordinates used at setup time. If no one is found, the
bit number of the bit to the right of the least significant Dbit is
returned.

20. FUNCTION rgfdl0(rg : register) : integer;

Rgfdl0 finds the leftmost 0 in a register, and returns its bit

posit ion in the coordinates used at setup time. If no zero is found,
the bit number of the bit to the right of the least significant bit is
returned.

A.1.6, Logical
21. FUNCTION rgand(argl,arg2 : register) : register;

Rgand returns the bitwise AND of its arguments-
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22. FUNCTION rgnand(argt,arg2: register) : register;
Rgnand returns the bitwise NAND of its arguments.
23. FUNCTION rginv(argl: register) : register;
Rginv returns the bitwise INVERSION of its argument.
24. FUNCTION rgor(argl,arg2 : register> : register;
Rgor returns the bitwise OR of it s argument s.
25. FUNCTION rgnor(argl,arg2: register) : register;
Rgnor returns the bitwise NOR of its arguments.
26. FUNCTION rgxor{argl,arg2 : register> : register;
Rgxor returns the bitwise EXCLUSIVE OR of its arguments.
27. FUNCTION rgnxor(argt,arg2 : register> : register;

Rgnxor returns the bitwise inversion of the EXCLUSIVE OR of its

arguments, (which is also called the equivalence relation.)

A. 1.7 Formatted I/0
28. FUNCTION rgrdoct(VAR f: text) : integer;

Rgrdoct reads a {signedl octal number from the specified file and
returns it as an integer. This can be assigned directly to a variable

of type register, if desired.
29. FUNCTION rgrdhex(VAR f : text) : integer;

Rgrdoct reads an [signed] hexadecimal number from the specified
file and returns it as an integer. This can be assigned directly to a

variable of type register, if desired.
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30. FUNCTION rgrdbin(VAR f : text) : integer;

Rgrdoct reads an [signed! binary number from the specified file and
returns it as an integer. This can be assigned directly to a variable

of type register, if desired.
31. PROCEDURE rgutoct(VARf:text; {,width : integer);

Rgwtoct writes i into file f as an octal number padded on the left

with blanks so that “width” characters are printed. Max width=40.
32. PROCEDURE rgutbin(VAR f:text; i,width : integer);

Rgwtbin writes i into file f as a binary number padded on the left

with blanks so that “width™ characters are printed. Max width=40.
33. PROCEDURE rgut hex(VAR f:t ext ; i,width : integer>;

Rgwthex writes i into file f as a hexadecimal number padded on the

left with blanks so that “width” characters are printed. Max width=60.

A.2 RNDPACK

Rndpack is a set of fairly random number generators useful for

storhast ic simulations. They are 1 i sted below.

A.2.1 Setting A New "Saed"

1. PROCEDURE rndset (newseed: integer);
Rndset resets the internal random number generat or mechanism
according wusing "newseed". It is only necessary to call rndret if

multiple simulation runs are to be performed wusing different “random”

inputs.
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A.2.2 Random Drawing Functions
2. FUNCTION rnd01 : real ;

Rnd01 produces a random number between 0 .0 and 1 .O by wusing one
random number generator to scramble the results of another, thereby

lowering the autocorrelation.

3. FUNCTION rndnexp(lambda : real> : real ;

1

Rndnexp returns a number drawn from the negati ve exponent ial
distribution with mean and standard deviation 1.0/lambda (lamba must be

positive>.

4. FUNCTION rnderlang(lambda : real; k : integer> : real ;

1

Rndelrang returns a number drawn from the Erlang distribution with
mean (1/lamba) and standard deviation {/(sgrt(k)*lambda). (Minimum k=1,

higher k makes for a tighter distribution.)
5. FUNCTION rndnormal (mean, variance : real) : real ;

1

Rndnormal returns a number drawn from the Normal distribution with
the mean and variance specified. The distribution is approximated by

summing 36 uniformly distributed random values.
6. FUNCTION rndint(low, high : integer) : integer;

Rndint produces an integer evenly distributed among the numbers

from low to and including high.
7. FUNCTION rnddraw(p : real) : boolean;

Rnddraw returns true with probability p.
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A.2.3 Data Analysis Facility
8. FUNCTION rnduniform(low, high : real) : real ;

Rnduniform produces a random real number wuniformly distributed
bet ween low and high. (Note that the probability of returning a value

exactly equal to low or high is vanishingly small.)
9. PROCEDURE rndhisto(data : real ; command : integer);

Rndhisto collects, analyzes and plots a random variable. It
produces a hi st ogram automat i cal ly scaled to the width of the paper.
Maximum number of bins= 200. Its “commands” are as follows:

reset all tallies, and data values

set high limit to "data"(default=10.0)

set low limit t o Mdata"(default=-10.0)
set number of bins to "data"(default = 20)
accept "data" as a point to be plotted

plot results in file **output**

plot results at tty

set paper width to "data"(default =79 columns)
reset all parameters to default values

oNoUIHCN—O

The print out includes: the number of points, the value of the highest
and lowest points, the number of points out of range high and low (if
any), the mean, variance, sum, standard deviation, sum of squares” and
the auto covariance and autocorrelation of adjacent terms. The
following trivial program shows an example of its use:

program X ;

var i : integer;

function rnderlang(lambda : real; k : integer> : real; exfern;

procedure rndhisto(data : real; command : integer);extern;
begin

for i := 1 to 1000 do rndhisto(rnderlang(3.0,4),4);
rnghisfo(D.O;S);
end.

This produces the output shown:
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-9.50000 0>
-8.50000 0>
-7.50000 o>
-6.50000 o>
-5.50000 o>
-4.50000 o>
-3.50000 o>
-2.50000 0>
-1.50000 0>
-5.00000E-01 7>
5.00000E-01 134 >XXXXXXXXXKXXXXX
1.50000 237 >XXXKUXXXXX KX XXX XYY XXX X XHXXXXXXXX
2.50000 262> XXXXXXXXXXXXXXXXXXXXXXX XXX XXX
3.50000 154 >XXXXXXXXXXXXXXXXX
4.50000 2 >XXXXXXXX
5.50000 I2>XXX
6.50000 17>X
7.50000 8>
8.50000 6>
9.50000 0>
NUM POINTS= 1000 LOWVAL= 1.826466932E-01

HIGHYALUE= 1.178417652E+01 -

1 POINT(S) WERE TOO HIGH 0 POINT(S) WERE TOO LOW
MEAN= 2.976368099 VARIANCE= 2.365632474

SUM= 2.87636809GE+03

SUMSQ= 1.122203394E+04 SUM PROD= 8.854801416E+03
STD DEV= 1.538061276

AUTO COVARIANCE=-6.792426109E-03
AUTOCORRELATION=-2.871293902E-03
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The code for this routine is not very complicated, so the user may wish

to copy it and modify it for his or her own special application.
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