
i

DIGITAL SYSTEMS LABORATORY
1

STANFORD ELECTRONICS LABORATORIES
DEPARTMENT Of ELECTRICAL ENGINEERING

STANFORD UNIVERSITY - STANFORD. CA 94305

SPRINT - AN INTERACTIVE SYSTEM FOR
PRINTED CIRCUIT BOARD DESIGN
USER’S GUIDE

W.M. vancleemput
T.C. Bennett
J.A. Hupp
K.R. Stevens

Technical Report No. 143

June 19’7’7

This work was supported by the U. S. Energy Research and Development Administration
under contract E4-76-C-03-0515 and by the Joint Services Electronics Program under
contract N-00014-75-C-0601.

Also published by Stanford Linear Accelerator Center, Stanford, California, as Computation
Research Group Technical Memorandum CGTM-187.

SPRINT - An Interactive System for
Printed Circuit Board Design

User's Guide

W.M. vancleemput
T.C. Bennett
J.A. Hupp
K.R. Stevens

Technical Report No. 143

June 1977

Digital Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305

This work was supported by the U. S. Energy Research and Development
Administration under contract E4-76-C-03-0515 and by the Joint Services
Electronics Program under contract N-00014-75-C-0601.

Also published by Stanford Linear Accelerator Center, Stanford,
California, as Computation Research Group Technical Memorandum CGTM-187.

SPRINT - An Interactive System for
Printed Circuit Board Design

User's Guide

W.M. vancleemput
T.C. Bennett
J.A. Hupp
K.R. Stevens

Technical Report No. 143

June 1977

Digital Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305

ABSTRACT
The SPRINT system for the design of printed circuit boards is a collection
of programs that allows designers to interactively design two-sided boards
using a Tektronix 4013 graphics terminal. The major parts of the system
are: a compiler for SDL, the Structural Design Language, an interactive
component placement program, an interactive manual conductor routing pro-
gram, an automatic batch router, a via elimination program and a set of
artwork generation programs.

INDEX TERMS: printed circuit board design, computer-aided design,
design automation

This work was supported by the U. S. Energy Research and Development
Administration under contract E4-76-C-03-0515 and by the Joint Services
Electronics Program under contract N-00014-75-C-0601.

Also published by Stanford Linear Accelerator Center, Stanford, California,
as Computation Research Group Technical Memorandum CGTM-187.

SPRINT - An Interactive System for
Printed Circuit Board Design

User's Guide

0. Introduction 1
1. System Overview 3
2. The Description of Circuits in SDL 5

2.1 SDL Language 5
2.2 An Example 13
2.3 How to Run SDLCOMP 16
2.4 Error Messages 17
2.5 SDL Object Language Format 21
2.6 Sample Output of the SDL Compiler 25

3. Logical and Physical Libraries 35
3.1 Logical Library 35
3.2 Physical Library 39
3.3 How to Add a Component to a Logical Library 42
3.4 Board Description 43

4. Design File Generation 45
4.1 Introduction 45
4.2 How to Run SDLPCGEN 48
4.3 How to Run LOADFILE 50
4.4 Error Messages 51

5. Interactive Placement Program (PLACER) 56
5.1 The Placement Process 56
5.2 Using PLACER 58
5.3 Error Messages 70

6. Manual Prewiring of Critical Connections (WIRE) 76
6.1 Introduction 76

6.2 Using MWIRE 76

6.3 Error Messages 81

7. Batch Routing Program (HIWIRE) 85
7.1 Introduction 85
7.2 Using HIWIRE 87
7.3 Error Messages 96

8. Via Elimination 99
8.1 Introduction 99
8.2 Running VIAELIM 100
8.3 Error Messages 102

9. Output Plot Generation 104
9.1 PLOT 104
9.2 ARTWORK 106

10. Utilities 122
10.1 DUMP and RESTORE 122
10.2 PRINT 123
10.3 Running DUMP and PRINT 123
10.4 Running RESTORE 124

11. Future Enhancements 127

ii

0. INTRODUCTION

The objective of this system is to allow interactive computer-

assisted design of printed circuit boards. The SPRINT system allows

for the manual placement of critical components and for automatic

placement of certain other components such as 14 and 16-pin dual-

in-line packages. The interconnection routing module allows for

manual routing of critical connections and for automatic routing

of non-critical connections. The current system is limited to

two signal layers, but a future expansion to multilayer boards has

been planned.

The input to the system is in the form of an input language

called the Structural Description Language (SDL). In the future

the SDL description will also be used as the input to a logic

simulator, to a fault test generation/simulation system and to an

automatic logic diagram generation capability.

The current system is implemented in MORTRAN and FORTRAN IV

on the IBM 370 system at SLAC and makes use of a Tektronix 4013

terminal. The SDL compiler is implemented in SPITBOL, a SNOBOL

dialect. Currently, the output of the system is in the form of

a Calcomp plot, from which the artwork has to be generated manually.

Future enhancements will be discussed in section 11. In order

to illustrate the working of the system a small example will be

used consistently throughout this manual. (Figure 0.1).

1

A 1NTET

B LOG 2T
I

74CO2
C DIVCLK 3.c ‘is

R
pi

J CREJ

K
AVAILIN 3

5-

6

E MCLR

F BUSGO

G AACK
4 ISIGT ,,

NBUSGO

BUSGO (F)

BUSGO

0 8 0 2 M

8 AVAILOUT L

Figure 0.1

1. SYSTEM OVERVIEW

The current release of the system consists of the following

major programs:

1) SDLCOMP: The SDL compiler translates the circuit description

provided by the user into an internal format. It makes

use of a logical library. This logical library contains

information for each component type used. For the purpose

of printed circuit board design only the pin names for

every component type are retrieved from this library.

2) SDLPCGEN: This program takes the sequential output file,

generated by the compiler, and combines it with information

retrieved from the physical library and the board description

file. The output is a sequential file containing all the

information necessary to initialize the design file.

3) LOADFILE: This program initializes the direct access

design file using the output generated by SDLPCGEN.

4) PLACER: This is an interactive subsystem that allows the

user to place components on the board.

5) MWIRE: Interactive subsystem for routing critical and

multiple width wires manually.

6) HIWIRE: Batch router for automatic routing of non-critical

connections.

7) VIAELIM: Batch program for elimination of unnecessary

via holes.

The overall structure of the system is illustrated in

Figure 1.1.

. 4

SDLCOMP1.
I ~PHYsICA~

ilB /
IS~LPCGENI r 1

.

/’
1 PLACERI

b
LOADFI LE

c
HIWIRE VIAELIM

Figure 1.1

2. THE DESCRIPTION OF CIRCUITS IN SDL

2.1 Language Definition

The SDL language allows for format-free entry of a circuit.

It performs checking of the input wherever possible. The SDL

language removes all blanks from statements before processing.

Therefore embedded blanks have no meaning, although they may be

inserted in the source text in order to enhance readability.

The sequence of groups of statements has to be adhered to.

The following description defines this sequence. Some statements

are mandatory while others are optional. For each statement it

will be indicated whether or not it is optional.

In general, names (identifiers) in the system may consist

of the letters A-Z, the digits O-9, the slash (/), the underscore

() and angular brackets (<and >).-

1) User Identification

USER: <name>;

where name is a character string of at most 20 characters.

Example: USER: TBENNETT;

This declaration is mandatory.

2) Project Identification

NAME: <projectname>;

where <projectname> is a character string of at most

20 characters.

5

Example: NAME: CAMACEXAMPLE;
This declaration is mandatory and should follow the
USER identification.

A preferred naming convention in the system is of the form:

<Purposename>. <level name>. <Project name>
For PC layout

<Purposename> = PCBGEN
and <level name> = BOARD

The reason for this naming convention is the possibility of
logic macro expansion which will be available in a future
release of the system. However, if the description will be
used for PC layout only you may use any name. If you do so
a warning message will be issued.

3) Purpose Definition

PURPOSE: <purposename>;
where <purposename> is a string of at most 20 characters.
In general, the purpose of the description should be
stated here.
For printed circuit board design this purpose is always
defined as: PCBGEN.
This declaration is mandatory.

4) Level Definition

LEVEL: <levelname>;
where <levelname> is a valid identifier.

In general, the level of a description has to be specified
before doing a macro expansion.
For printed circuit board design two levels are of interest:
1) COMP (the component level) which should be used to
describe the board in terms of components and connections.
2) END (the lowest level) which should be used to describe
component types to be entered in the logical library. The
basic purpose of such a description is to associate names
with each of the pins of a given component type.

6

5) Declaration Of All Logical Types Used

TYPES: <namelist>;

where <namelist> consists of a single logical type name

or of several names separated by commas.

It is necessary to declare explicitly all logical component

types used in the circuit being described.

Example: TYPES: AND, OR, 54180, 8080, SN7474, DFLIPFLOP;

The name of a type is restricted to 20 significant

characters.

NOTE: The type EXT is implicitly defined and reserved for

specifying the external connectors. Therefore, EXT is a

reserved type name and should not be redefined.

6) Definition of External Connectors

a) EXT: <cname> : <namelist>;

This declaration is necessary for every external

connector.

A <cname> is the name of that connector while <namelist>

is a list of all the terminals of that connector in the

order in which they appear. All terminals that are

connected should have distinct names. When a terminal

is unconnected and unnamed, this may be indicated by

using the reserved name DUMMY.

Example: EXT: CONNECTORl: A, B, C, DUMMY, D, E, F;

This declares a connector called CONNECTOR1 with 7

b)

terminals with terminals l-3 called A, 6, C and

5-7 called D, E, F.

Terminal 4 is unconnected and without an actual name.

Again, the name of a connector and of terminals is

limited to 20 characters without embedded blanks.

Every external connector implicitly defines a logical

type and a component with the same name (i.e. a <cname>).

INPUTS: <tnamelist>;

OUTPUTS: <tnamelist>;

A terminal of a connector may be defined as either an

input or an output terminal or both or it may be left

undefined.

The order in which these terminals appear in the

INPUTS or OUTPUTS declaration is not important.

A <tnamelist> is either a single <tname> or several

<tname>'s separated by commas.

A <tname> consists of a connector name followed by a

period (.) followed by a terminal name. Both names

are limited to 20 characters without embedded blanks.

Example: INPUTS: CONNECTORl.A,
CONNECTQR1.B;

CONNECTOR2.A, CONNECTOR1.E;
OUTPUTS: CONNECTORl.D, CONNECTORLE;

In this example, terminals A, B of CONNECTOR1 were

defined as inputs only, terminal D as output only,

terminal E is both input and output, while terminals

C and F were left undefined.

7) Comoonent Declarations

<typename> : <enamelist>;

where <typename> is a previously defined logical type and

<enamelist> is a list of component names.

Component name may be up to 20 characters long

Example: AND: Cl, C5, TPX, 8080, Pl;

Note that external connectors should not be declared as

components here since this has been implied by the EXT

statement(s).

8) Net Declarations

Each net is specified by the following declaration:

<netname> = <tnamelist>;

where &name> is of the form: component name, followed

by a period (.), followed by a terminal name.

e.g. : NET1 = Cl,INl, CONNECTOR1.A;
NET2 = Cl.IN2, CONNECTOR1.B;
NET3 = Cl.OUT, C2. INl, C3.IN2;
NET4 = C2.0UT,C3.0UT, CONNECTOR1.C;

The net descriptions are followed by an END; statement.

Some users may prefer to encode a signal in more than one

statement. This is, e.g., the case when a logic diagram that

is being encoded is spread out over several sheets.

Since allowing this removes some of the e,rror-checking capa-

bility of the system, a warning message will be issued for

multiply-defined nets.

9) Crosschecking of the Net Declarations

It is frequently desirable to input the net declarations

in their dual form, i.e., for every component, one can enter

the net each pin is connected to. The option here is:

9

NO CROSSCHECK; or

CROSSCHECK;

In the second case, the following input is expected:

<cname> : <nnamelist>;

where <nname> consists of the netname followed by a

period (.) followed by the pinname.

If crosscheck is specified, a complete netname list has

to be provided for every component. The order in which

these statements appear is not critical. The description

is terminated by an END; statement.

e.g. : CROSSCHECK;
Cl: NETl.INL, NET2.IN2, NET3.0UT;
c2: NET4.0UT, NET3.INl;
C3: NET3.IN2, NET4.0UT;
CONNECTORl: NETl.A, NET4.C, NET2.B;

Although the use of crosscheck will require twice the

encoding work, it allows to detect otherwise difficult-

to-find mistakes.

It is highly recommended to use the crosscheck option.

Although it requires the logic diagram to be encoded twice,

it ensures a more correct input and may eliminate some

unnecessary layout runs.

10) CEND Statement

The circuit description is terminated by a statement of

the form: CEND;

11) Definition of Obstructions

An obstruction is a physical component that completely

occupies one or more layers of a board. The normal

10

components that were defined before may, under certain

conditions, be obstructions. Since this is to be considered

a physical property, this information will be provided in

the physical description library. It will sometimes be

necessary to declare physical obstructions that do not have

any external connections. An example of this is a hole

in the board.

It will be necessary to declare this hole as a component

and to associate a logical and physical type with it.

This will then require the appropriate entries in the

logical and physical libraries.

12) In some cases, a designer may have special components that

are not general enough to be placed in the normal component

library. When this is the case, he can specify a user

library as following:

USERLIB : <name>;

This statement has to follow the TYPES declaration. The

library used has to be referred to in the JCL (this is

taken care of by the #RUNCOMP exec file).

The name of the library is checked against the name in the

leader record of the library. The generator of a library

is discussed in Section 3.3.

13) In some cases, e.g., the generation of a user library, it

may be desirable to compile several circuits in a single

run. This is permitted in the current version of the

compiler. Note that the CEND; statement determines the

11

end of the input deck. The USER statement should only

appear once, i.e., is the first card. A typical batch

may look as follows:

USER : WMVC;

NAME : CIRCUIT1 ;

NOCROSSCHECK;

NAME : CIRCUIT2 ;

CROSSCHECK;

END; (end of crosscheck list)
NAME : CIRCUIT3;

NOCROSSCHECK;

CEND;

12

2.2 An Example

The following simple example illustrates the use of SDL

for describing a circuit. The logic diagram for the circuit in

this example is given in Figure 0.1.

Note that every signal has to be given a distinct name. It

is possible to describe a signal net using more than one net

declaration, e.g., signals LOGIT, BUSGO, BREQ and ISIG in the

example.

Note that pins in such a declaration may be specified only once.

The compiler will merge all net declarations with the same name.

In order to prevent accidental errors, a warning message will be

issued for every duplicate net name encountered.

13

USER: WMVC;
NAME-EXA"PLEl*
PURP&E:PCBGEN;
LEVEL:COMP;
TYPES:7400,7402,7408,7433,7410,7474,7404,7416,RES,CAP;
EXT:CONN20A:A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T;
7400:C01;
7474:C02,C03;
7408:C04;
7402:C07;
7416:A10;
7433:B03;
7410:Cll;
7404:Bll;
RES:Rl,R2;
CAP:Cl;
INTET=CONN20A.A,C0l.l,C0l.2;
INTE=C01.3,C04.10;
LOG2T=CONN20A.B,C02.10;
DIVCLK=CONN20A.C,C02.3;
HBT=CONN20A.D,C02.1;
MCLR=CONN20A.E,C07.12;
BUSGO=CONN20A.F,C04.4;
AACK=CONN20A.G,C04.5;
LOG2T=C03.4,C03.10;
BREQ=CONN20A.H,C03.2,C03.13;
BUSCL=CONN20A.I,C03.3;
CREJ=CONN20A.J,C04.1;
AVAILIN=CONN20A.K,Bll.3;
C02Q=C02.9,C04.9;
C02QB=C02.6,C02.2,C02.4;
DIVQl=C02.5,C02.11;
NINTDIS=C07,13,C02,13;
GRACK=C04.6,C07.11;
REQ=C03.5,C03.12,B03.2;
BUSGO=C03.9,B03.3,B03.8,B83,11,B03.ll,B03.12;
NX=C03.8,C11.9,A10.13;
NREQ=C03.6,C11.10;
NAVAILIN=B11.4,C03.ll,Cll.ll;
BREQ=C04.8;
ISIGT=B03.4,CONN20A.P;
ISIG=A10,12,R2.2,B03.5,B03.6;'
ISIG=Cl.l;
REQUSGT=B03.l,CONN20A.O;
D806=B03.10,CONN20A.N;

14

D802=B03,13,CONN20A.M;
AVAILOUT=C11.8,CONN2OA.L;
PLUSS=Rl.l,R2.1;
GND=C1,2,R1.2,C02.12;
END;
CROSSCHECK;
C01:INTET.l,INTET.2,INTE.3;
C02:HBT.1,NINTDIS.13,C02QB.2,DIVCLK.3,C02QB.4,DIVQl.5,C02Q.9,

C02QB.6,LOG2T.10,GND.l2,DIVQl.ll;
CONN20A:INTET.A,LOG2T.B,DIVCLK.C,HBT.D,MCLR.E,BUSGO.F,AACK.G,

BREQ.H,BUSCL.I,CREJ.J,AVAILIN.K,AVAILOUT.L,D802.M,
D806.N,REQUSGT.O,ISIGT.P;

C03:BREQ.2,BUSCL.3,LOG2T.4,REQ.S,NREQ.6,NX.8,BUSGO.9,LOG2T.l0,
NAVAILIN.ll,REQ,12,BREQ.l3;

C04:BUSG0,4,CREJ.l,AACK.5,GRACK.6,BREQ.8,C02Q.9,INTE.l0;
C07:GRACK.ll,MCLR.l2,NINTDIS.l3;
AlB:ISIG.l2,NX,13;
B03:REQUSGT.1,REQ.2,BUSGO.3,ISIGT.4,ISIG.5,ISIG.6,BUSGO.8,

BUSG0.9,D806.10,BUSGO.ll,BUSGO.l2,D802.13;
C11:AVAILOUT.8,NX.9,NREQ.l0,NAVAILIN.ll;
B11:NAVAILIN.4,AVAILIN.3;
Rl:PLUSS.l,GND.2;
R2:PLUS5.1,ISIG.2;
Cl:ISIG.l,GND.2;
END;
CEND;

15

2.3 How to Run SDLCOMP

The SDL compiler reads and checks an SDL source file for

syntax errors and logical inconsistencies. If the compilation is

successful SDL object language will be output. The logical library

will contain circuit descriptions in the form of SDL object. All

application programs (PC generation, logic diagram generation,

IC layout etc.) will use the SDL object file of a circuit together

with an application-oriented library to create input for the appropriate

subsystem.

In order to simplify the use of this compiler, a Wylbur

exec file (LIBXRUNCOMP under account number PCB$CG) has been created.

It can be used as follows:

exec from #runcomp user pcb group cg
THIS FILE RUNS THE SDL COMPILER.
<CR> CLEAR ACTIVE?

<CR> clears your active file otherwise use break to save it.
'ACCOUNT?= CG.PCB?'
ENTER? cg.wmv

Enter the account number that will be used as a prefix

for all files e.g. cg.wmv

'SDL SOURCE FILE = SDLINPUT?’
ENTER? exl

Enter the name of the Wylbur format file containing your

SDL source input. Two forms are possible:

a) for sequential files use the file name

b) for library members use the form libname (membername)

16

‘SDL OBJECT OUTPUT FILE = SDLOBJ?’
ENTER? objl

Enter the name of the Wylbur format file into which the

object language output will be written. <CR> will give

you the default name SDLOBJ.

'VOLUME = SCFEV9?
ENTER?

Enter the volume on which the SDL object file is to be

placed. <CR> will give you a scratch volume (i.e. SCFEV9).

'USER LIBRARY? <CR>=NONE'
ENTER? xlib

Enter the name of the user library if you have one,

otherwise reply with a <CR>.

THE JCL IS NOW IN YOUR ACTIVE FILE READY TO RUN
-> EXE F PAU

Issue a run command to submit the job.

2.4 SDLCOMP Error Messages

The following list explains all error messages that are

currently generated by the SDL compiler. A severity less than 4

is a warning; severity 4-7 are serious errors which need correction;

severity 8 is a fatal error.

Depending on the nature of error the following actions are

recommended:

1) correct the error and run the program again

2) keep your output and a copy of the input file and contact

the person responsible for maintaining the compiler

17

3) contact the person responsible for maintaining the component

library.

error
number severity action

1 8

2 8

3 8

4' 4

5 8

6 4

7 4

8 8

9 8

10 8

11 4

12 4

13 4

14 8

15 8

1

1

1

1

1

1

1

3

3

3

1

1

1

1

3

3

1

1

message
- --_ ---- - ---

missing circuit name

missing or incorrect EXT declaration

missing or incorrect TYPE declaration

undefined type

missing type in component declaration

maximum name length exceeded

expecting net definition or END but
other statement found

missing header in logical library

syntax error in logical library

not all types in logical library

invalid pin name

previously defined type

undefined component

missing crosscheck statement

missing or incorrect PINS record in
library

16 8

17 4

18 4

user library name conflict

undefined component

undefined netname

18

error
number

19 4

21 4

22 4

23 8

24 8

26 4

27 8

28 4

29 4

30 8

31 8

37 8

38 8

39 8

40 8

41 8

42 8

43

44

45

4

8

8

severity action

1 or 3 f

1

1

1

1

1

1

1

1

1

1

3

3

3

3

3

3

1

3

3

message
- -.-_

19

undefined pinname

previously defined component

previously defined pinname

missing user name

syntax error in EXT declaration

undefined component type

invalid netlist

invalid terminal name

syntax error

incomplete crosscheck list

missing END statement

missing or incorrect NTYP record
in logical library

missing or incorrect NCOM record
in logical library

missing or incorrect TNPN record
in logical library

missing or incorrect NNET record
in logical library

missing or incorrect TYPE record
in logical library

missing or incorrect COMP record
in logical library

error detected during processing of
crosscheck information

invalid name in logical library

missing or conflicting purpose in
looical library

error
number severity action message

4646 88 33

4747 22

4848 88

4949 88 33

5050

5757

44

22

22

11 pin connected to two different nets

missing or conflicting level in
logical library

previously defined netname

one of the systems limit was
exceeded

error in alias directory of
logical library

unconnected pin

20

2.5 SDL Object Language Format

As indicated in section 2.3, the SDL compiler generates an

intermediate input in the form defined below. This format is

used

1) by each subsystem (printed circuit design, integrated

circuit design, logic simulation etc...) together with a

special library to create a specific design file (the

printed circuit design file generation is discussed in

detail in section 4).

2) in the logical library

3) by the macro-expansion facilities that will be available

in the future.

The user need not be aware of the rest of this section. Nevertheless,

it is included for the sake of completeness.

The SDL object language consists of records of length 80

with columns l-5 reserved for a record type indicator. The following

description gives these records in the order in which they will occur.

All records are fixed-format to make them easy to read from

Fortran.

1) USER:

1 record

username: col. 6-25

2) NAME:

1 record

project name: col. 6-25

21

3)

4)

5)

6)

7)

8)

9)

10)

PURP:

1 record

purpose name: col. 6-25

LEVL:

1 record

level name: col. 6-25

NTYP:

1 record

of logical types: col. 6-10

NCOM:

1 record

of components: col. 6-10

TNPN:

1 record

total # of pins: col. 6-10

NXPN:

1 record

of external pins: col. 6-10

NNET:

1 record

of nets: col. 6-10

XPIN:

1 record per external pin

pinnumber: col. 6-10

pinname: col. 11-30

22

11) TYPE:- -

1 record per logical type

typenumber: col. 6-10

typename: col. 11-30

of pins: col. 31-35

external flag: col. 36-40

12) COMP:

1 record per component

component #: col. 6-10

componentname: col. 11-30

of pins: col. 31-35

logical type: col. 36-40

external flag: col. 41-45

13) PINS:- -

directly follows COMP: record

1 record for every pin of the component

pin #: col. 6-10

pinname: col. 11-30

14) HNET:

1 record for every net

net #: col. 6-10

netname: col. 11-30

of pins: col. 31-35

23

15) PNET:

directly follows HNET: record

1 record for every pin in the net

component #: col. 6-10

pin #: col. 11-15

16) ENDC:

terminates the SDL object file

24

2.
6

Sa
mp

le
 O

ut
pu

t
of

 t
he

 S
DL

 C
om

pi
le

r

US
ER

:
WM

VC
;

NA
ME
:E
XA
MP
LE
l;

PU
RP

OS
E:

PC
BG

EN
;

LE
VE

L:
CO

MP
;

TY
PE

S:
74

00
,7

40
2,

74
08

,7
43

3,
74

10
,7

47
4,

74
04

,7
41

6,
RE

S,
CA

P;
EX

T:
CO

NN
20

A:
A,

B,
C,

D,
E,

F,
G,

H,
I,

J,
K,

L,
M,

N,
O,

P,
Q,

R,
S,

T:
74

00
:C

;o
l;

LI
BR
AR
Y

NA
ME

=

MY
LI
B

**
*

EN
D

OF

LI
BR
AR
Y

FE
TC
H

**
*

74
74

:C
02

,C
03

;
74

08
:C

04
;

74
02

:C
07

;
74

16
:A

lP
I;

74
33

:B
03

;
74

10
:C

ll
;

74
04

:B
ll

;
RE

S:
Rl

,R
2;

CA
P:

Cl
;

IN
TE

T=
CO

NN
20

A.
A,

C0
1,

l,
C0

1.
2;

IN
TE

=C
01

,3
,C

04
.1

0;
LO

G2
T=

CO
NN

20
A.

B,
C0

2.
10

;
DI

VC
LK

=C
ON

N2
0A

.C
,C

02
.3

;
HB

T=
CO

NN
20

A,
D,

Ct
%l

;
MC

LR
=C

ON
N2

0A
.E

,C
07

.1
2;

BU
SG

O=
CO

NN
20

A,
F,

C0
4.

4;
AA

CK
=C

ON
N2

0A
,G

,C
04

,5
;

LO
G2

T=
C0

3.
4,

C0
3.

10
;

**
*

SD
LC
OM
P

*
WA
RN
IN
G

47
**

*
PR
EV
IO
US
LY

DE
FI
NE
D

NE
TN

AM
E

LO

G2
T

BR
EQ

=C
ON

N2
0A

,H
,C

03
,2

,C
03

.1
3;

BU
SC

L=
CO

NN
20

A.
I,

C0
3.

3;
CR

EJ
=C

ON
N2

0A
.J

,C
04

.1
;

AV
AI

LI
N=

CO
NN

20
A.

K,
B1

l,
3;

C0
2Q

=C
02

,9
,C

04
,9

;
C0

2Q
B=

C0
2.

6,
C0

2.
2,

C0
2.

4;
DI

VQ
l=

C0
2.

5,
C0

2.
11

;

P
.

NI
NT

DI
S=

C0
7.

13
,C

02
.1

3;
GR

AC
K=

C0
4.

6,
C0

7.
11

;
RE

Q=
C0

3.
5,

C0
3.

12
,B

03
.2

;
BU

SG
O=

C0
3.

9,
B0

3.
3,

B0
3.

8,
B0

3.
9,

B0
3.

ll
,B

03
.1

2;
**

*
SD
LC
OM
P

*
WA
RN
IN
G

47

**

*
PR
EV
IO
US
LY

DE
FI
NE
D

NE
TN

AM
E

BU

SG
O

NX
=C

03
.8

,C
11

.9
,A

10
.1

3;
NR

EQ
=C

03
.6

,C
11

.1
0;

NA
VA

IL
IN

=B
ll

.4
,C

03
.1

1,
c1

1,
11

;
BR

EQ
=C

04
.8

;
**

*
SD
LC
OM
P

*
WA
RN
IN
G

47

**

*
PR
EV
IO
US
LY

DE
FI
NE
D

NE
TN

AM
E

BR
EQ

IS
IG

T=
B0

3.
4,

CO
NN

20
A.

P;
IS

IG
=A

10
.1

2,
R2

.2
,B

03
.5

,B
83

,6
;

IS
IG

=C
l,

l;
**

*
SD
LC
OM
P

*
WA
RN
IN
G

47

**

*
PR
EV
IO
US
LY

DE
FI
NE
D

NE
TN

AM
E

IS
IG

RE
QU

SG
T=

B0
3.

l,
CO

NN
20

A.
O;

D8
06

=B
03

.1
0,

CO
NN

20
A.

N;
D8

02
=B

03
.1

3,
CO

NN
20

A.
M;

AV
AI

LO
UT

=C
11

.8
,C

ON
N2

0A
.L

;
PL

US
5=

Rl
.l

,R
2.

1;
GN

D=
Cl

.2
,R

l.
2,

C0
2.

12
;

EN
D;

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57

**

*
UN
CO
NN
EC
TE
D

PI
N:

CO
NN
20
A.
Q

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57

**

*
UN
CO
NN
EC
TE
D

PI
N:

CO

NN
20

A.
R

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57

**

*
UN
CO
NN
EC
TE
D

PI
N:

CO
NN
20
A.
S

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57

**

*
UN
CO
NN
EC
TE
D

PI
N:

CO
NN
20
A.
T

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0

1.
4

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
1.
5

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57

**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
1.
6

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
1.
7

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
1.
8

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
1.
9

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0

1.
10

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0

1.
11

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
1.
12

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
1.
13

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0

1.
14

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
2.
7

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
2.
8

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
2.
14

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0

3.
1

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
3.

7
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57

**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
3.

14
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57

**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
4.

2
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
4.

3
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
4.

7
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
4.

11
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
4.
12

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
4.

13
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
4.
14

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
7.

1
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
7.

2
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
7.

3
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
7.

4
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
7.

5
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
7.

6
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
7.

7
3

**

*
SD
LC
OM
P

*
WA
RN
IN
G

57

**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
7.

8
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
7.
9

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
7.

10
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C0
7.
14

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

Al
PI

.1
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

A1
0.
2

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

A1
0.

3
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

A1
0.

4
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

A1
0.

5
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

A1
0.

6
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

A1
0.

7
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

A1
0.

8
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

A1
0.
9

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57

**

*
UN
CO
NN
EC
TE
D

PI
N:

A1
0.

10
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

A1
0.

11
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

A1
0.

14
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

B0
3.

7
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

B0
3.

14
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

c1
1.

1
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

c1
1.

2
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

c1
1.

3
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

c1
1.

4
**

*
SD
LC
OM
P

*
id

AR
:J

Ii
\T

G
57

**

*
UN
CO
NN
EC
TE
D

PI
N:

c1
1.

5
**

*
SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C1
1.

6

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57

**

*
UN
CO
NN
EC
TE
D

PI
N:

C1
1.
7

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57

**

*
UN
CO
NN
EC
TE
D

PI
N:

C1
1.
12

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C1
1.
13

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

C1
1.
14

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

B1
l.
l

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

B1
1.
2

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

B1
1.
5

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

B1
1.
6

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

B1
1.
7

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

B1

1.
8

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57

**

*
UN
CO
NN
EC
TE
D

PI
N:

B1

1.
9

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

B1
l.
10

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

B1

1.
11

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

B1
1.
12

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

B1
1.
13

**
*

SD
LC
OM
P

*
WA
RN
IN
G

57
**

*
UN
CO
NN
EC
TE
D

PI
N:

B1
1.
14

CR
OS

SC
HE

CK
;

E
CB

l:
IN

TE
T.

l,
IN

TE
T.

2,
IN

TE
.3

;
C0

2:
HB

T.
l,

NI
NT

DI
S.

l3
,C

B2
QB

.2
,D

IV
CL

K.
3,

CB
2Q

B.
4,

DI
VQ

l.
5,

C0
2Q

.9
,

C0
2Q

B.
6,

LO
G2

T,
10

,G
ND

.l
2,

DI
VQ

l.
ll

;
CO

NN
20

A:
IN

TE
T.

A,
LO

G2
T.

B,
DI

VC
LK

.C
,H

BT
,D

,M
CL

R.
E,

BU
SG

O.
F,

AA
CK

.G
,

BR
EQ

.H
,B

US
CL

,I
,C

RE
J,

J,
AV

AI
LI

N.
K,

AV
AI

LO
UT

.L
,D

80
2.

M,
D8

06
.N

,R
EQ

US
GT

.O
,I

SI
GT

.P
;

C0
3:

BR
EQ

.2
,B

US
CL

.3
,L

OG
2T

,4
,R

EQ
.5

,N
RE

Q.
6,

NX
.8

,B
US

GO
.9

,L
OG

2T
.l

0,
NA

VA
IL

IN
,l

l,
RE

Q,
12

,B
RE

Q,
l3

;
C0

4:
BU

SG
0.

4,
CR

EJ
.l

,A
AC

K.
5,

GR
AC

K.
6,

BR
EQ

.8
,C

02
Q,

9,
IN

TE
.l

0;
C0

7:
GR

AC
K.

ll
,M

CL
R.

l2
,N

IN
TD

IS
,l

3;
A1

0:
IS

IG
,l

2,
NX

.1
3;

B0
3:

RE
QU

SG
T.

1,
RE

Q,
2,

BU
SG

O.
3,

IS
IG

T.
4,

IS
IG

~5
,I

SI
G~

6,
BU

SG
O,

8,
BU

SG
0.

9,
D8

06
.1

0,
BU

SG
O.

ll
,B

US
GO

.l
2,

D8
02

,1
3;

C1
1:

AV
AI

LO
UT

.8
,N

X.
9,

NR
EQ

.1
B,

NA
VA

IL
IN

,l
l;

Bl
l:

NA
VA

IL
IN

.4
,A

VA
IL

IN
.3

;
Rl

:P
LU

SS
,l

,G
ND

,2
;

R2
:P

LU
S5

,1
,I

SI
G.

2;
Cl

:I
SI

G.
l,

GN
D.

2;
EN

D;

OF
 T

YP
ES
 =

 1
2

OF
 C

OM
PO
NE
NT
S

=
13

OF
 N

ET
S

=
29

OF
 P

IN
S

=
15
2

OF
 E

XT
ER
NA
L

PI
NS
 =

 2
0

NT
YP
ES
 =

 1
2

TH
E

CO
MP
ON
EN
TS

TY
PE
S

US
ED

AR
E:

1
74

00
2

74
02

3
74

08
4

74
33

5
74

10
6

74
74

7
74

04
8

74
16

9
RE

S
10

CA
P

11
CO

NN
20

A
12

DI
P1

4

NC
OM
PS
 =

13

TO
TA
L

OF

PI
NS

=

15
2

TH
E

CO
MP
ON
EN
TS

AR
E:

1
CO

NN
20

A
11

1
2

c0
1

1
3

c0
2

6
4

C0
3

6
5

C0
4

3
6

C0
7

2
7

Al
0

8
8

I3
03

4
9

Cl
1

5
10

Bl
l

7
11

Rl
9

12
R2

9
13

Cl
1014 14 14 14 14 14 14 14 2 2 20

1
14

NN
ET
S

=
29

TH
E
NE
TS
 A
RE
:

1
IN

TE
T

3
1.
1
2.
1
2.
2

2
IN

TE
2

2.
3

5.
10

3
LO

G2
T

4
1.
2

3.
10
 4

.4
 4

.1
0

4
DI

VC
LK

2
1.

3
3.

3
5

HB
T

2
1.

4
3.

1
6

MC
LR

2
1.

5
6.

12
7

BU
SG

O
8

1.
6

5.
4

4.
9

8.
3

8.
8

8.
9

8.
11

8.
12

8
AA

CK
2

1.
7

5.
5

9
B
R
E
Q

4
1.
8

4.
2

4.
13
 5

.8
10

BU
SC

L
2

1.
9

4.
3

11
CR

EJ
2

1.
10

5.

1
12

AV
AI

LI
N

2
1.
11
 1
0.
3

13
C0

2Q
2

3.
9

5.
9

14
C0

2Q
B

3
3.
6
3.
2
3.
4

15
DI

VQ
l

2
3.

5
3.
11

16
NI

NT
DI

S
2

6.
13
 3
.1
3

17
GR

AC
K

2
5.
6

6.
11

18
RE

Q
3

4.
5

4.
12
 8

.2
19

NX
3

4.
8

9.
9

7.
13

20
NR

EQ
2

4.
6

9.
10

21
NA

VA
IL

IN
3

10
.4
 4

.1
1

9.
11

22
IS

IG
T

2
8.

4
1.

16
23

IS
IG

5
7.
12
 1

2.
2

8.
5

8.
6

13
.1

24
RE

Qt
JS

GT
2

8.
1
1.
15

25
D8

06
2

8.
10
 1
.1
4

26
D8

02
2

8.
13
 1
.1
3

27
AV

AI
LO

UT
2

9.
8

1.
12

28
PL

US
5

2
11
.1
 1
2.
1

29
GN

D
3

13
.2
 1

1.
2

3.
12

UN
CO
NN
EC
TE
D

PI
NS
:

1.
17

1.
18

1.
19

1.
20

2.
4

2.
5

2.
6

2.
7

2.
8

2.
9

2.
10

2.
11

2.
12

2.
13

2.
14

3.
7

3.
8

3.
14

4.
1

4.
7

4.
14

5.
2

5.
3

5.
7

5.
11

5.
12

5.
13

5.
14

6.
1

6
.2

6.
3

6.
4

6.
5

6.
6

6.
7

6.
8

6.
9

6.
10

6,

14

7.
1

7.
2

7.
3

7.
4

7.
5

7.
6

7.
7

7.
8

7.
9

7.
10

7.
11

7.
14

8.
7

8.
14

9.
1

9.
2

9.
3

9.
4

9.
5

9.
6

9.
7

9.
1

2
9.
13

9.
14

10
.1

10
.2

10
.5

10
.6

10
.7

10
.8

10
.9

10
.1
0

10
.1
1

10
.1
2

10
.1
3

10
.1
4

2.
4

2.
5

2.
6

2.
7

2.
8

2.
9

2.
10

2.
11

2.
12

2.
13

2.
14

3.
7

3.
8

3.
14

1.
17

1.
18

1.
19

1.
20

4.
1

4.
7

4.
14

5.
2

5.
3

5.
7

5.
11

5.
12

5.
13

5,

14

6.
1

6.
2

6.
3

6.
4

6.
5

6.
6

6.
7

6.
8

6.
9

6.
10
 6

.1
4

7.
1

7.
2

7.
3

7.
4

7.
5

7.
6

7.
7

7.
8

7.
9

7.
10

7.
11

7.
14

8.
7

8.
14

9.
1

9.
2

9.
3

9.
4

9.
5

9.
6

9.
7

9.
12

9.
13

9.
14

10
.1

10
.2

10
.5

10
.6

10
.7

10
.8

10
.9

10
.1
0

10

.l

l
10
.1
2

10
.1
3

10
.1
4

MO
DU
LE
-N
ET

CR
OS
S

RE
FE
RE
NC
E

LI
ST

CO
MP
ON
EN
T

#
1
NA
ME

=
CO

NN
20

A
 T

YP
E

=
11
 T

AG
 =

 1
1

1
IN
TE
T

w
2
3

LO
G2

T
3
4
DI
VC
LK

4
5

HB
T

5
6

MC
LR

6
7
BU

SG
O

7
8

AA
CK

8
9

BR
EQ

9
10

BU
SC
L

10
11

CR

EJ
11

12
 A

VA
IL

IN
12

27
 A
VA

IL
OU

T
13

26

D8

02
14

25

D8

06
15

24
 R

EQ
US
GT

16
22

IS

IG
T

CO
MP
ON
EN
T

#
2

NA
ME

=
C0

1
TY
PE
 =

 1
 T

AG
 =

1
1

IN
TE

T
2

1
IN

TE
T

3
2

IN
TE

CO
MP
ON
EN
T

#
3

NA
ME

=
C0
2

TY
PE
 =

 6
 T

AG
 =

1
5

HB
T

2
14

C0
2Q

B
3

4
DI
VC
LK

4
14

C0
2Q

B

5
15

DI
VQ

l
6

14
C0

2Q
B

9
13

C0
2Q

10
3

LO
G2

T
11

15
DI

VQ
l

12
29

GN
D

13
16

NI
NT
DI
S

CO
MP
ON
EN
T

#
4

NA
ME

=
C0
3

TY
PE
 =

6

TA
G

=
2

9
BR

EQ
3

10
 B

US
CL

4
3

LO
G2

T
5

18

RE

Q
6

20

NR

EQ
8

19
 N

X
9

7
BU

SG
O

10
3

LO
G2

T
11

21
 N

AV
AI
LI
N

E
12
 1
8
RE
Q

13

9
BR
EQ

CO
MP
ON
EN
T

#
1

11
CR

EJ
4

7
BU

SG
O

5
8
AA
CK

6
17

GR
AC

K
8

9
BR

EQ
9

13
C0

2Q
10

2
IN

TE

5
NA

ME
=

C0
4

TY
PE
 =

3

TA
G

=

CO
MP
ON
EN
T

#
6

NA
ME

=
C0
7

TY
PE
 =

 2
 T

AG
 =

11
17

GR
AC
K

12
6
MC
LR

13
16

NI
NT
DI
S

CO
MP
ON
EN
T

#
7

NA
ME

 .
=
Al
0

TY
PE

=

8
TA
G

=
12

23
IS

IG
13

19
NX

CO
MP
ON
EN
T

#
8

NA
ME

=
B0

3
TY
PE

=

4
TA
G

=
1

24

RE

QU
SG

T
2

18
 R

EQ
3

7
BU

SG
O

4
22

IS

IG
T

5
23

IS

IG
6

23

IS

IG
8

7
BU

SG
O

9
7
BU

SG
O

10
25
 D

80
6

11
7
BU

SG
O

12
7

BU
SG

O
13

26
 D

80
2

CO
MP
ON
EN
T

#
9
NA
ME
 =

Cl
1

TY
PE

=

5
TA
G

=
8

27
AV

AI
LO

UT
9

19
NX

10
20

NR
EQ

11
21

NA
VA
IL
IN

CO
MP
ON
EN
T

#
10

NA
ME

=

Bl
l

TY
PE

=

7
TA
G

=
3

12
AV

AI
LI

N
4

21
NA
VA
IL
IN

CO
MP
ON
EN
T

#
11

NA

ME
=

Rl
 T

YP
E

=
9
TA
G

=
1

28
PL

US
5

2
29

GN
D

CO
MP
ON
EN
T

#
12

NA

ME
=

R2
 T

YP
E

=
9
TA
G

=
1

28
PL

US
5

2
23

IS
IG

CO
MP
ON
EN
T

#
13

NA

ME
=

Cl

TY
PE

=

10

TA
G

=
1

23
IS

IG
2

29
GN
D

* U*

34

3. LOGICAL AND PHYSICAL LIBRARIES

3.1 Logical Library

3.1.1 Logical Library

The library name definition record is specified as

follows:

LLIB:<library name>;

3.1.2 Alias Directory

The alias directory consists of a number of alias

definitions followed by: END;

An alias definition has the form

<typenamel> = <typenameZ>;

where <typenamel> is declared to have the same attributes

as <typenameZ>. This requires the second type to be fully

defined in the body of the library.

3.1.3 Library Body

This part consists of a number of SDL object format

descriptions of various components. The format is identical

to that given in section 2.5 except for the lack of a USER

record.

3.1.4 End of Library

The end of the library is signalled by a record containing

'LEND' in col. l-4.

35

3.
1.

5
Ex

am
pl

e

LL
IB

:
74

LS
QB

=D
IP

14
;

74
LS

Bl
=D

IP
14

;
74

LS
02

=D
IP

14
;

74
LS

83
=D

IP
16

;
EN

D;
NA

ME
:

PU
RP

:
LE

VL
:

NT
YP

:
NC

OM
:

TN
PN

:
NX

PN
:

NN
ET

:
XP

IN
:

XP
IN

:
XP

IN
:

XP
IN

:
XP

IN
:

XP
IN

:
XP

IN
:

XP
IN

:
XP

IN
:

XP
IN

:
XP

IN
:

XP
IN

:
XP

IN
:

XP
IN

:
TY

PE
:

CO
MP

:
PI

NS
:

PI
NS

:
P

IN
S

:
PI

NS
:

PI
NS

:
PI

NS
:

MY
LI

B

PC
BG

EN
.C

OM
P.

DI
P1

4
PC
BG
EN EN
D

1 1 14 14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 1 1 2 3 4 5 5

1 2 3 4 5 6 7 8 9
10 11 12 13 14

14 1
EX
T

1 2 3 4 5 6

PI
NS

:
PI

NS
:

PI
NS

:
PI

NS
:

PI
NS

:
PI

NS
:

PI
NS

:
PI

NS
:

EN
DC

NA
ME

:
PU

RP
:

LE
VL

:
NT

YP
:

NC
OM

:
TN

PN
:

NX
PN

:
NN

ET
:

XP
IN

:
XP

IN
:

XP
IN

:
XP

IN
:

XP
IN

:
XP

IN
:

XP
IN

:
XP

IN
:

XP
IN

:
XP

IN
:

XP
IN

:
XP

IN
:

XP
IN

:
XP

IN
:

XP
IN

:
XP

IN
:

TY
PE

:
CO

MP
:

PI
NS

:
PI

NS
:

7
7

8
8

9
9

10
10

11
11

12
12

13
13

14
14

PC
BG

EN
.C

OM
P.

DI
Pl

G
PC
BG
EN EN
D

1 1 16 16 0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 1 1 1 2

1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16

16 1
EX

T
1 2

PI
NS

:
PI

NS
:

PI
NS

:
PI

NS
:

PI
NS

:
PI

NS
:

PI
NS

:
PI

NS
:

PI
NS

:
PI

NS
:

PI
NS

:
PI

NS
:

PI
NS

:
PI

NS
:

EN
DC

LE
ND

3
3

4
4

5
5

6
6

7
7

8
8

9
9

10
10

11
11

12
12

13
13

14
14

15
15

16
16

3.2 Physical Library

The physical component library is stored as a sequential file

with the following format: -

3.2.1 Header Record:

PHYSICAL LIB: <name>;

3.2.2 Logical Type/Physical Type Associations

a) for every association there will be a statement of

the form:

<logicaltypename> = <physicaltypename>;

b) END;

3.2.3 Physical Type Description:

a) NAME: <physicaltypename>;

b) NPINS: <number>;

Defines the number of pins for this type.

c) OFFSET: <offsetlist>;

Defines for every pin its offset w.r.t pin 1, the

reference pin.

An <offsetlist> consists of a single <offset> or of

several <offset>%, separated by cornma's. An <offset>

is specified as follows: xoffset.yoffset. Both x

and y offset are integer numbers expressing the offset

in mils.

d) OBSTRUCTION: <n>;

Where <n> = NONE if no obstruction.

= COMPONENT if obstruction on component side.

39

= SOLDER if obstruction on solder side.

= BOTH if obstruction on both sides.

e) SIZE: <xsire>.<ysize>;

This indicates the physical size of the component in mils.

f) END;

3.2.4 End of Library Indicator

PLEND;

40

3.2.5 Example

PHYSICAL LIB:EXAMPLE;
DIPl4=DIPl4;
ICBOX=ICBOX8;
NAME:ICBOX8;
NPINS:8;
OFFSET:100.0,200.0,300.0,400.0,500.0,600.0,700.0,800,0;
0BSTRUCTION:BOTH;
SIZE:900.1000;
END;
NAME:DIP16;
NPINS:16;
OFFSET:0.0,100.0,200.0,300.0,400.0,500.0,600.0,700.0,

700.300,600.300,500.300,400.300,300.300,200.300,100.300,0.300:
0BSTRUCTION:NONE;
SIZEz700.300;
END;
NAME:DIPl4;
NPINS:14;
OFFSET:0.0,100.0,200.0,300.0,400.0,500.0,600.0,

600.300,500.300,400.300,300.300,200.300,100.300,0.300;
0BSTRUCTION:NONE;
SIzE:600.300;
END;
PLEND;

41

3.3 How to Add a Component to a Logical Library

Currently no programs are available for updating the logical

library. However9 since its format is rather simple, one can use

Wylbur to perform this task. Two major types of addition are

possible:

1) If you want to add a component for which there is a similar

description already in the library, just insert a line in

the Alias Directory. (Try ito keep this directory in alpha-

betical order.)

2) If no similar description exists, then encode the circuit

in SDL and compile it. Remove from the object file the

USER and CEND records and merge this file into the body

of the library.

42

3.4 Board Description

The board description has to be stored in a file to be used

by the SDLPCGEN program. It consists of the following information:

1) Board Name

NAME:<id>;

2) Physical Outline

PHYSICAL:<point list>;

where every point is specified as <x>.<y>. All dimensions

are expressed in mils. All coordinates are relative to the

lower lefthand corner of the physical board outline (see

figure 3.4.1).

e.g. PHYS1CAL:0.0,0.10000,6000.10000,6000,0;

3) Logical Size and Offset

The logical board is the space allowed for placing components

and for routing connections. The logical board is always

a rectangle and is specified by a size (LOGSIZE) and by the

location of its lower lefthand corner (LOGOFFSET). This

is illustrated in figure 3.4.1.

LOGSIZE:<xsize>.<ysize>;

LOGOFFSET:<xoffset>.<yoffset>;

4) External Connectors

NCONNECTORS:<n>;

for every connector:

NAME:<id>;

NPINS:<n>;

OFFSET:<point list>;

OR1 ENTATION : <n>;

LOCATION:<x>.<y>;

END;
.

43

Example

NAME:CAMACl;
PHYS1CAL:0.0,11990.0,11990.4390,10890.4390,10890.5340,

11990.5340,11990.7230,0.7230,0.0;
LOGSIZE:10400.6300;
LOGOFFSET:500.500;
NCONNECTORS:l;
NAME:CONNl;
NPINS:42;
OFFSET:0.000,0.100,0.200,0.300,0.400,0.500,

0.600,0.700,0.800,0.900,0.1000,0.1100,
0,1200,0.1300,0.1400,0.1500,0.1600,0.1700,
0.1800,0.1900,0.2000,0.2100,0.2200,0.2300,
0.2400,0.2500,0.2600,0.2700,0.2800,0.2900,
0.3000,0.3100,0.3200,0.3300,0.3400,0.3500,
0.3600,0.3700,0.3800,0,39oo,o,400,0,4000,0.4100;

0RIENTATION:O;
LOCATION:10900.600;
END;

44

4. DESIGN FILE GENERATION

4.1 Introduction

The SDLPCGEN program combines the output of SDLCOMP (the SDL

compiler, as described in section 2.5), the physical library (as

described in section 3.2) and the board description (as described

in section 3.4) and generates a file which contains all the information

necessary to start the PC layout process.

The output of the program is a new sequential file which

consists of the original SDL object description plus the following

information appended to it.

N P H T :1)

1 record

of physical types: col. 6-10

2) PNTP:

1 record for every physical type

type #: col. 6-10

type name: col. 11-30

of pins: col. 31-35

obstruction type: col. 36-40

3) PSIZ:

1 record for every physical type

xsize in mils: col. 6-10

ysize in mils: col. 11-15

45

P O F F :4)

1 record for every pin of this type

Xoffset in mils: col. 6-10

Yoffset in mils: co1 11-15

L G P H :5)

1 record for every logical type

logical type #: col. 6-10

corresponding physical type #: col. 11-15

6) ENDP:

1 record ending physical information

B N A M :7)

1 record

board type name: col. 6-25

8) BPAR:

1 record

of points in physical outline: col. 6-10

of connectors: col. 11-15

logical Xsize in mils: col. 16-20

logical Ysize in mils: col. 21-25

logical Xoffset in mils: co1 26-30

logical Yoffset in mils: col. 31-35

9) BPHO:

one record for every point of the physical outline

X in mils: col. 6-10

Y in mils: col. 11-15

46

10) CONN:

one record for every connector

corresponding physical type #: col. 6-10

orientation: col. 11-15

X location: col. 16-20

Y location: col. 21-25

The sequential file is then transformed by the LOADFILE

program into a direct access design file which will then be used

by the rest of the system.

47

4.2 How to Run SDLPCGEN

An exec file is available for creating the JCL for running the

program. It can be used as follows:

exec from #runpcgen user pcb gro cg cle
MIS FILE FUNS THE SDL PC GENERATION PROGRAM
<CR> CLEAR ACTIVE?

A <CR> will clear your active file. Use a break to save if
necessary.

’ ACCOUNT = CG. PCB? '

ENTER? cg.wmv

Enter your account number in the format shown. This number

will be used as a prefix for your files.

‘SDL OBJECT FILE = SDLOBJ?’
ENTER? obj 1

Enter the name of the SDL object file you desire.

A <CR> wi 11 give you the default name SDLOBJ

'SDL BOARD DESCRIPTION FILE = BOARD?'
ENTER? board1 ib(camac)

Enter the name of the file containing the board description

'OUTPUT FILE = PCOUTl?'
ENTER?

Enter the name of the output file. A <CR> will give you the

default name PCOUTJ . The system will overwrite a file with

this name or it will create a new file if none exists.

'VOLUME = SCFEVg?'
ENTER?

Enter the volume on which the output file should be generated.

<CR> will give you a scratch volume (i.e. SCFEV9).

THE JCL IS NOW IN YOUR ACTIVE FILE READY TO RUN
+EXE F PAU

Issue a run command to submit the job.

48

Ou
tp

ut
 f

or
 t

he
 E

xa
mp

le

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*

*
PC

B
IN

PU
T

FI
LE

 G
EN

ER
AT

IO
N

PR
OG

RA
M.

*
*

VE
RS

IO
N

1
LE

VE
L

1
OF

 M
AR

CH
 3

0
19

77
*

*
CO

NT
AC

T
W.

M.

VA

NC
LE

EM
PU

T
(4

15
)

49
7

12
70

*
*

*
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

*

CO
MP

IL
AT

IO
N

TI
ME

0.
16

7
SE

CO
ND

S
ME

MO
RY

 U
SA

GE
 (

DE
CI

MA
L

BY
TE

S)
CO

DE
:

99
76

ST
RI

NG
S:

30
56

VA
RI

AB
LE

S:
72

96
CO

NS
TA

NT
S:

15
60

TO
TA

L:
21

88
0

AV
AI

LA
BL

E:
38

17
15

SU
CC

ES
SF

UL

CO

MP
IL

AT
IO

N

US
ER

 N
AM

E
=

WM
VC

PR
OJ

EC
T

NA
ME

 =
 E

XA
MP

LE
1

**
*
SD

LP
CG

EN
 *
 E

RR
OR

 2
4

**
*
IN

VA
LI

D
NA

ME
 I

N
IN

PU
T

.
1.

00
0

.
2.
00
0

.
3.

00
0

.
3.

10
0

.
3.

20
0

.
4.

00
0

.
5.

00
0

l
6.

00
0

.
7.

00
0

PH
YS

IC
AL

LI

BR
AR

Y
=

EX
AM

PL
E

**
*
SD

LP
CG

EN
 *

**
 N

OR
MA

L
TE

RM
IN

AT
IO

N

4.3 How to Run LOADFILE

Once again an exec file is available for helping you to run this job.

It can be used as follows:

exec from #runload user pcb gro cg cle
THIS FILE RUNS THE SPRINT DESIGN FILE INITIALIZATION
‘CR> CLEAR ACTIVE?

A <CR> will clear your active file. Use a break to save it

if necessary.

'ACCOUNT = CG.PCB?'
ENTER? cg.wmv

Enter your account number in the format shown. This number

will be used as a prefix for your files.

‘INPUT FILE = PCOUTl?'
ENTER?

Enter the name of the input file i.e., the output from the

SDLPCGEN program. A <CR> will give you the default name PCOUTl.

‘DESIGN FILE = DFILE?’
ENTER? mydfile

Enter the name you wish to give to the design file. A <CR>

will give you the default name DFILE.

'VOLUME = SCFEV9?'
ENTER?

Enter the volume the design file is to be created on.

THE JCL IS NOW IN YOUR ACTIVE FILE READY TO RUN
-f EXE F PAU

Issue a run command to submit the job.

50

4.4 Error Messages

4.4.1. SDLPCGEN Messages

When the program terminates normally a message

***SDLPCGEN *** NORMAL TERMINATION

will be printed. This message is not to be confused with

the message: NORMAL TERMINATION IN STATEMENT, which is

generated by the SNOBOL compiler and which may occur even

if the SDLPCGEN ends abnormally due to erroneous input data.

Some messages may be generated because of an erroneous

input caused by a compiler run that did not terminate properly.

Therefore, it is important to check successful completion of

the SDLCOMP program before running SDLPCGEN.

51

error
number severity action Explanation

1 8 5

2 8 3

3 8 1

4 8 1

5 8 1

6 8 1

7 8 1

8 8 1

9 8 1

10 8 1

11 8 1

12 8 1

13 8 1

15 8 5

16 8 5

17 8 5

18 8 3

19 8 5

20 8 5

21 8 5

22 8 5

23 8 5

24 4 4

25 4 4

Missing circuit name specification

All physical types required not found in library

Missing or invalid board name

Missing or invalid board outline

Missing or inva

Missing or inva

Missing or inva

Missing or inva

id logical board size

id logical board offset

id number of connectors

id number of pins

Missing or invalid offset

Missing or invalid connector name

Missing or invalid orientation

Missing or invalid location

Missing end in board description

Missing or incorrect XPIN record

Missing ENDC record in lib

Missing user name

System limit exceeded

Missing or incorrect NTYP record

Missing or incorrect NCOM record

Missing or incorrect TNPN record

Missing or incorrect NNET record

Missing or incorrect TYPE record

Invalid name in input

Missing or conflicting purpose

52

error
number severity action Explanation

26 8 5 Missing or conflicting level

27 8 2 Missing physical library name

28 8 2 Missing NPINS in physical library

29 8 2 Missing offset in physical library

30 8 2 Missing obstruction in physical library

31 8 2 Missing size in physical library

32 8 2 Missing end in physical library

33 8 1 Invalid connector location

34 8 5 Missing or incorrect NXPN record

35 8 1 Incorrect connector in board file

36 4 1 Pins of connector not in straight line

53

Possible Actions

1. Correct the board description file

2. Contact the person responsible for maintaining the physical

component library

3. System error; contact the person responsible for maintaining

the system

4. Warning only

5. Check the compiler run; if it was correct take action 3

54

4.4.2. LOADFILE Messages

All error messages generated by the LOADFILE Program

are fatal in nature. Most of these errors indicate a problem

with the input file. Check the listing of SDLPCGEN that

created this file and correct any errors. If SDLPCGEN finished

with the message ***SDLPCGEW ** NORMAL TERMINATION, then

consult the person responsible for maintaining the system.

If LOADFILE is successful, it will print out a message:

DESIGN FILE GENERATION SUCCESSFUL and some statistics about

the usage of records in the file.

A common error occuring when trying to run LOADFILE

is that the new design file to be created already exists,

especially when you use the default name DFILE. If this is

the case, the program will abend with a JCL error. This

is done in order to prevent accidental overwriting of a

valuable existing design file.

55

5. INTERACTIVE PLACEMENT PROGRAM (PLACER)

5.1 THE PLACEMENT PROCESS

In order to allow maximal flexibility in placing components,

this subsystem is highly interactive.

Several algorithms for optimizing the placement can be invoked

by the designer. Depending on the nature of the design and on the

inclination of the designer, placement may be done completely

manually or completely automatically.

Usually the placement process consists of a combination of

both manual placement and algorithmic placement improvement. The

SPRINT system reflects this philosophy in the following four major

steps:

1) placement of critical components. This step is manual

and allows the designer to carefully place components for which

he considers placement to be critical. The so-called "critical"

components will not be moved by the automatic placement algorithms

although the designer can do so at all times. The remaining com-

ponents will be classified as "automatic" or "discrete" components.

Discrete components, in the context of this system, are resistors

and capacitors for which automatic placement is difficult. An

example of this are decoupling capacitors between power and ground

in TTL logic or termination resistors in ECL.

2) initial placement of the "automatic" components. In this

phase the designer has the choice between three different initial

56

placement methods:

- manual initial placement: Useful if the designer has a

good feeling of how the placement should look.

- constructive algorithm: This algorithm achieves a

suboptimal initial placement.

- Random initial placement: Random initial placement

randomly places the components. This can be useful

for evaluating several runs of the placement improve-

ment algorithms for different starting points.

3) placement improvement: Two different algorithms are

available: a pairwise interchange algorithm and Steinberg's

placement improvement algorithm. The designer can choose between

these two for every iteration. He can also make manual changes

if he deems this necessary.

4) placement of "discrete" components: In this last phase,

the designer manually places all remaining components.

57

5.2 Using PLACER

5.2.1. Running the Placement Program

A) EXEC FROM #RUNPLCR USER PCB GROUP CG CLR- - - - - - -

an explanation of the prompts:

1) Design file=DFILE?

a> <cr>:use the default file name

b) enter the name of the design file you wish to

do the placement on

2) Volume=SCFEV9?

a) <cr>:use the default volume

b) enter the name of the volume which the design

file is on

3) The job is now in the active file, type "exec" to

run it

B) Signing on the placement program- -
1) If the user receives the message:

FROM OPERATOR: (uuuPLCRn) PLACER IS READY.

(where uuu=user id, and n is a single digit integer)

Type "uuuPLCRn" as a WYLBUR command when you want to

do the placement. Then the prompt: WHAT'S THE MAGIC

WORD? Respond: "punt". This will attach your 4013 to

the placement program.

2) If the user receives the message:

FROM OPERATOR: (uuuPLCRn) DESIGN FILE HAS

NOT BEEN INITIALIZED.

58

then the placement program has found an invalid

design file (it has nothing in it). The user

should check into how the design file was created.

5.2.2. The Different Stages

A) File identification and cross-checking

to the prompts:

USER NAME?

PROJECT NAME?

the user should identify the design he thinks he is

going to work on. If the user doesn't give the correct

names he will not be allowed to modify the current design.

To stop the program if you have the wrong design, type

"$Wy1", this will let you out of the program.

B) Restarting previous placements

If the design has been wired you will receive the prompt:

DELETE ROUTING?

<cr> meansno. If you respond "no" then the prompt:

LEAVE PLACER?

will appear. Type "yes" to terminate placer. <cr> will

give the prompt:

DELETE ROUTING? again.

If the design has already been placed you will receive

the prompt:

USE OLD PLACEMENT?

to which you may respond <cr> which .neans YES, or you

59

may respond "no" which will not allow you to use the

previous placement. If you restart the placement you

will not be asked for the gridsize or cellular definition.

Instead the old placement will be reconstructed and the

following message should appear:

SUCCESSFUL RESTORE

C) Grid size definition- -

Place the cross-hairs over the appropriate grid size and

hit the space bar. This will give the desired gridsize.

D) Cellular definition

1) To the prompt:

NUMBER OF AUTOMATIC TYPES?

give the number of physically different types you

wish to be defined as automatic. An automatic

component (one whose physical type is defined as

automatic) can be used specially in various parts

of the program.

2) Defining automatic types

You will be given the prompt:

TYPE NO. n?

for each automatic type to be defined. Type the

name of the physical types you wish to be automatic.

By typing 'I?" all types available will be listed.

Type "go back" to restart the cell definition stage.

3) Defining the cell dimensions

60

You will be prompted for the number cells per row

and column.

4) Alignment

For automatic components a global direction (or

orientation) is defined. To the prompt:

ALIGN VERTICALLY?

the user can respond <cr> which meansYES or "no"

which means align horizontally.

5) If the largest automatic type will not fit inside

the defined cells than an error message will be

issued and the user will have to respecify every-

thing in the cellular definition stage.

E) Placement phase 1_ (critical placement_)

menu choice explanations

1) PLACE CRITICAL COMPONENTS

Critical placement allows the user to place any

component exactly as desired.

To the prompt:

COMPONENT NAME?

you may respond

a) The name of the component you wish to place.

After the carriage return, indicate the

reference point (usually pin 1) with the cross-

hairs, hit the space bar. The component has

been placed.

61

b) RULER -- the ruler will be displayed

c) ? -- list the names of all the unplaced components.

Components listed as xxx* must be given a board

connector association.

d) ?xxx -- where xxx is a searching field. All

components whose names start with xxx will be

listed.

e) LABEL -- label the components

f> *xxx -- place logical connector xxx using a

board connector definition. This gives the

prompt:

CONNECTOR ASSOCIATION?

you may respond:

i) ?-- list names of board connectors

ii) the name of the associated board

connector.

g) MENU -- allows the user to leave CRITICAL

PLACEMENT and select something from the menu.

2) RESTART CRITICAL PLACEMENT

Gives the prompt:

DELETE ALL CRITICAL COMPS?

<cr> means don't delete anything, "yes" means

remove all components placed either in CRITICAL or

DISCRETE placement. (Does not affect automatic

components.)

62

3) RESTART PLACEMENT

Gives the prompt:

DELETE ALL COMPONENTS?

a <cr> means don't delete anything, "yes" means

delete all components

4) GO BACK TO CELLULAR DEFINITION

This allows the user to return to cellular

definition and redefine those parameters. Components

will remain placed, but all automatic components will

become critical.

5) END OF CRITICAL PLACEMENT

Allows the user to proceed to placement phase 2.

6) See general utilities for other menu options.

F) Placement phase 2 (initial placement)-

After all automatic components have been placed the

placement program will go on to placement phase 3.

menu choice explanations:

1) CONSTRUCTIVE ALGORITHM -- not implemented

2) RANDOM INITIAL PLACEMENT

Place all unplaced automatic components into random

cells.

3) MANUAL INITIAL PLACEMENT

Manual initial placement allows the user to place

the automatic components into specific cells. Menu

options:

63

a) The user will be prompted with an automatic

component to be placed. Indicate the location

by putting the cross-hairs in a cell and hit the

space bar.

b) EXIT MANUAL INITIAL PLACEMENT

Returns the user to placement phase 2

c) See general utilities for other menu options.

4) RESTART INITIAL PLACEMENT

To the prompt:

DELETE ALL AUTOMATIC COMPS?

<cr> means NO, "YES", means delete all components

placed in the initial placement phase.

5) GO BACK TO CRITICAL PLACEMENT

Allows the user to return to placement phase 1.

6) See general utilities for other menu options

Placement phase 3 (placement improvement)

menu choice explanations:

1) STEINBERG

Not yet implemented.

2) PAIRWISE INTERCHANGE

This algorithm tries all possible cell inter-

changes in an attempt to reduce the estimated

wire length. Several important statistics are

given:

a) Ratio of successful to tried exchanges

64

b) Estimated total wire length (ETWL)

c) Percentage improvement in ETWL

d) Estimated board utilization

After the pairwise interchange is done the

prompt:

PAIRWISE INTERCHANGE AGAIN?

will appear. <cr> will cause the algorithm to be

done again, "no" will let the user exit pair-wise

interchange.

3) GO BACK TO INITIAL PLACEMENT

Allows the user to return to placement phase 2.

4) GO BACK TO CRITICAL PLACEMENT

Allows the user to return to placement phase 1.

5) END OF PLACEMENT IMPROVEMENT

Allows the user to proceed to placement phase 4.

6) RESTART INITIAL PLACEMENT

To the prompt:

DELETE ALL AUTOMATIC COMPS?

<cr> means NO, "YES" means delete all components

placed in the initial placement phase.

7) See general utilities for other menu options..

HI Placement phase 4 (final manual changes)

menu choice explanations:

1) PLACE DISCRETE COMPONENTS

Discrete component placement prompts the user

65

with every unplaced component that is left. If

the user doesn't want to place the current

component, the menu response SKIP COMPONENT will

give a new component to place.

2) GO BACK TO PLACEMENT IMPROVEMENT

Allows the user to return to placement phase 3.

3) SKIP COMPONENT

Valid only in DISCRETE placement.

4) END OF PLACEMENT

If all components have been placed the user is

allowed to leave PLACEMENT and update the design.

5) See general utilities for other menu options.

5.2.3. General Utilities (an Explanation of Various Menu Options)

A) DISPLAY

Display allows the user to changethescaling for board

viewing. Menu options:

1) CURRENT SCALE, MAGNIFY xx, REDUCE xx

Change the scaling by this factor. The user

indicates the new center of the screen when the

cross-hairs come up again.

2) See general utilities for other menu options.

B) RESET SCALE

Set the scale such that the entire board can be viewed.

C) LABEL

Write the names of each component over each component.

66

D) RULER

Display the ruler.

E) RESUME

Return to wherever you came from.

F) HELP

A future feature.

G) MANUAL CHANGE

Manual change allows the user to move and delete

components from the board. Menu options:

1) EXCHANGE

Use the cross-hairs to indicate the two components

to be interchanged. All locations are exchanged.

2) DELETE

The component indicated by the cross-hairs will

be removed.

3) MOVE

a) Critical components are moved to the exact

location indicated by the cross-hairs.

b) Automatic components are moved to the cell

indicated by the cross-hairs.

4) CRITICAL MOVE

The component is moved to the exact location

indicated by the cross-hairs.

5) CLEAN

Regenerate the picture on the screen.

67

6) See general utilities for other menu options.

H) SAVE/RESTORE

To the prompt:

SAVE OR RESTORE?

1) SAVE -- This will update the design file with this

version of the placement. Routing cannot be done

on a placement saved this way. To the prompt:

LEAVE PLACER?

<cr> means "no". A response of "yes" will terminate

the PLACER.

2) RESTORE -- This will reconstruct the placement that

is in the design file. (If no placement has been

put in the design file then that is what will be

reconstructed.)

5.2.4. WAIT INSTRUCTION

Whenever the prompt:

CONTINUE (CR)

appears this means that the user is to hit <cr> to

continue with the program. (If the user responds

"stop" the program will be exited and the design file

will not be updated.)

5.2.5. SPECIAL PROMPT RESPONSES

A) " $wyl " -- Allows user to exit from the PLACER (go

back to WYLBUR). To return to PLACER type "uuuPLCRn"

68

like was done initially.

B) "comnent" -- This allows the user to type directly into

the PLACER log. This is particularly useful if a user

encounters an error he wishes to show to a systems pro-

grammer. After typing "comment" the prompt:

EXPLAIN:

will appear. Tell your problem. To get back to the

original question make the character before the <cr>

a PERIOD (.); this will allow you to stop commenting.

Don't forget to take the output (PLACER log) to some-

one in charge of the SPRINT system.

5.2.6. PLACEMENT LOG

The placement program gives the user a complete log of

his actions during the execution of the program. If

you should encounter a problem:

A) Release the output.

B) Contact the person responsible for the system.

69

5.3 Error Messages

error
number severity routine

1 1 GETCMD

9

10

11

GETINT

GETREL

GETREL

GETGRD

INITPR

INITPR

GETCLL

SETOBJ

SETSUB

GETCLL

description

Menu line selected is not an
allowable choice. (Message was
written to user.)
Fixup: Reprompt

A non-integer has been entered.
(e.g. 7.1 or 7YES)
Fixup: Reprompt

A non-real has been entered.
(e.g. 7YES)
Fixup: Reprompt

Multiple decimal points have
been entered instead of a real.
(e.g. 7.12.8)
Fixup: Reprompt

Invalid gridsize entered.
Fixup: Reprompt

Incorrect project name.
Fixup: Reprompt

Incorrect user name.
Fixup: Reprompt

Cells defined by user are too
small for type(s) specified.
Fixup: Reprompt

Object space range is out of
order--PROGRAMMER error.
No fixup. Job terminated.

Subject space range is out of
order--PROGRAMMER error.
No fixup. Job terminated.

Zero components per column is
clearly not valid.
Fixup: Reprompt

70

error
number

J2

13

14

15

16 1 I PLCMT

18 1 GETCLL

19

20

21

22

24 1 CPLCMT

severity

1

1

1

1

1

1

routine description

GETCLL Zero components per row is not
valid.
Fixup: Reprompt

GETCLL Type name specified for
automatic placement is not on
catalogue.
Fixup: Reprompt

GETCHA

IPLCMT

Too many components per column
in the cell definition.
Fixup: Reprompt

GETCLL Too many components per row in
the cell definition.
Fixup: Reprompt

GETCMD Invalid menu choice.

MANCHG Component must be indicated
when exchanging components.
Fixup: Reprompt

Invalid delete command.

CPLCMT

Too many characters typed in.
Fixup: Reprompt

Instruction during initial
placement cannot be identified.
Fixup: Ignore and continue

Assigning more than one automatir
component per cell is not valid.
Fixup: Reprompt

The component name indicated
could not be located either
because it had already been
placed or the name was invalid.
Fixup: Ignore

Placement causes overlap.
Fixup: Ignore

71

error
number

26

27

severity routine description

MANCHG Invalid exchange command.

DI SPSG Too many segments to display.
PROGRAMMER error.
No fixup. Job terminated.

2

5

30 2 DI SPLY Invalid menu choice.
No message sent to user.
Fixup: Reprompt

31

32

2

2

MANCHG Invalid delete command.

REMOVE The user has not indicated a
component with the cross-hairs,
and no component was removed.
Fixup: Ignore

33 1 GETCLL The user has indicated more
types for automatic placement
than are available.
Fixup: Get new value (NAUTO)

34 5 GETCMP No more records in camp. list.
Probable USER error.
No fixup. Job terminated.

35 5 GETCEL No more records in cellst.
Probable USER error.
No fixup. Job terminated.

36 1 GETCLL

PLACE

PLACE

PLACE

PLACE

IPLCMT

MANCHG

The user has indicated a type
as an automatic type more than once.

Fi xup: Reprompt

37

38

39

40

41

42

The same as error #30.

The same as error #3O.

The same as error #30.

The same as error #30.

The same as error #30.

The same as error #30.

72

error
number severity

43 6

44 1 MANCHG

45

46

47

49

50

51

53

54

6 GETCIR

1 DPLCMT

4 IPRAND

routine description

NEWPIC No more space in the graphic
element. (Recompile with a
larger element.)
No fixup. Job terminated.

MANCHG

GETCI R

DPLCMT

DPLCMT

PA1 RP

Component was not moved to
new location because of overlap.
Fixup: Replace component and

reprompt for a new
component to move

The same as error #21.
Invalid move command.

Component and net cross listing
dynamic lists have been over-
flowed. Probable USER error.
No fixup. Job terminated.

Pin type in net list has an
invalid value. Probable USER
error.
No fixup. Job terminated.

User asked for discrete com-
ponent placement while doing
discrete placement.
Fixup: Ignore

The same as error #l.

The same as error #24.

Component table overflow;
Too many dummy components.
Fixup: Stop placing dummy

components.

Not all automatic types will
fit on the board. No more will
be placed
Fixup: Continue

73

error
number severity routine description

55 6 PAIRP Net list overflow; too many
nets involved in component pair
interchange. (Recompile with
a larger array for common nets
in subroutine PAIRP.)
No fixup. Job terminated.

56

57

58

59

60 6 GETCIR

61

62

63

6 GETCIR Too many types, nets, or com-
ponents defined. (Recompile with
more space for these data fields.)
No fixup. Job terminated.

1 CPLCMT The same as error #l

8 RESTOR RUN error. PROGRAMMER error.
One or more components have
replaced on the board in-
correctly.
No fixup. Job terminated.

1 PLACE

6 GETCIR

6 GETCI R

6 GETCI R

The menu instruction "skip"
is only valid while in Discrete
Placement.
Fixup: Ignore

Pointer to the board records
is equal to zero. (Invalid design
file--bad data.) USER error.
No fixup. Job terminated.

Too many type pins defined
by design file. (Recompile
with more space for type pin
definitions.)
No fixup. Job terminated.

Component names have overflowed
the name list. (Recompile
with more room for names.)
No fixup. Job terminated.

Typed names have overflowed
the name list. (Recompile
with more room for names.)
No fixup. Job terminated.

74

error
number severity

64 5

65 4 PROMPT

66 CPLCMT

67 CPLCMT

68

69

71

72 8 CPLCMT

73

74

99 8 GETREC

routine description

DISPNB The integer to be displayed
is out of range (too big).
PROGRAMMER error.
No fixup. Job terminated.

FDUMP

PA1 RP

CPLCMT

GETCIR

PLACE

The prompt to be assigned
is too long.
Fixup: Truncate to prompt

to the maximum size.

Logical connector has fewer
pins than associated board
connector.
Fixup: Continue

Logical connector has more
pins than associated board
connector.
Fixup: Reprompt

NAUTO is greater than 19.
Fixup: NAUTO set to 19.

No automatic components
have been placed.
Fixup: Exit pairwise inter-

change

Cannot assign non-external com-
ponents to board connectors.
Fixup: Reprompt

A non-external component has
no physical type.
No fixup. Job terminated.

A net has no pins.
No fixup. Job terminated.

Must associate all logical
connectors with board connectors.
Fixup: Go back to Critical

Placement

No more free records available.
Probable USER error.
No fixup. Job termi nated

75

6. MANUAL PREWIRING OF CRITICAL CONNECTIONS (MWIRE)

6.1 Introduction

The MWIRE program allows a user to route critical connections

manually, using an interactive graphics terminal. It can also

be used for routing multi-width wires (e.g. for power and ground

connections).

6.2 Using MWIRE

6.2.1 Exec File

An exec file has been provided for using MWIRE. It can

be used as follows

exec from #runmwire user pcb group cg cle
THIS EXEC FILE RUNS THE MANUAL WIRER.
Type I’?” for help.

A reply of ? to any prompt will explain the question.

<cr>=CLR ACT or SAV filename? clr act

A response clr act clears your active file while SAV x

will save it in a file x under your account number.

DIRECT ACCESS FILE=DFILE? dfi le21

Enter the name of the design file containing the problem

(in this case the name is DFILE21). The default name

is DFILE.

FILE DFILE21 ON VOL=SCFEV9?

Enter the volume on which the design file is stored.

A <CR> will give you the default volume SCFEVg.

76

GROUP.USER = CG.PCB? cg.wmv

Enter your group and user name in the format shown.

6.2.2 Explanation of Menu Commands:

A) SET NET -- SET NET sets the current net. Wires may be

placed and removed only from the current net. You may

set current net for any net. Even nets you have com-

pletely wired. This allows *you to wire net A, wire

net B, and then unwire and modify net A.

B) GET PIN -- GET PIN is used to release the pin which you

have pointed to with the cursor. This is useful when

you have pointed to the wrong pin when starting a run.

0 DISPLAY -- DISPLAY allows you to change the board area

on the screen. The options include:

1) RES - reset picture to full board

2) RED - reduce magnification

3) CUR - use current magnification

4) MAG - increase magnification

Options 2, 3 and 4 require a second 'hit' with the cursor

to indicate the center of the new screen image.

D> SET SIDE -- SET SIDE allows you to explicitly define the

side on which the wires are placed. Options include:

1) H - put wires on horizontal side (auto router)

2) V - put wires on vertical side (auto router)

3) C - put wires on component side

77

4) S - put wires on solder side

5) BOTH - put wires on horizontal and vertical to

match the auto router.

Note that H and V will be paired with C and S thus

showing the auto router's preferred alignment. Wires

placed on the wrong side (with respect to the auto

router) are obstructions to the auto routing process and

should therefore be used cautiously. The BOTH option

will automatically choose the correct side for each

wire placed and should therefore be used whenever

possible. The current side set can be seen with the

show status command.

E) SHOW STATUS -- the SHOW STATUS command displays the

following useful information:

1) current wire width in grids

2) current side mode (see SET SIDE)

3) current net (see SETNET)

4) number of unwired pins in current net (if set)

This command should be used whenever such information

would be helpful.

F) REMOVE SEGMENTS-- this command allows you to 'pop'

segments off the net stack. You will be asked for the

number of segments to remove. A response >= the current

number of segments for the net will remove all segments.

78

Note that multi-width segments are considered as

G)

single segments.

Set wire width -- this command causes the prompt

wire width in grids?

to be issued. An answer of 1 will allow all wires to

be placed single width from pin to pin or pin to segment.

If a width of > 1 is given then you will be placed in

multi-width mode. In multi-width mode you will not be

allowed to intersect with pins and therefore wire from

point to point or point to existing wire (point being a

place on the board free from wires and pins).

** NOTE ** When in multi-width mode you are required to

give three cursor 'hits' for each segment. They are:

1) starting point (not at pin or wire)

2) finishing point (to or through intersecting wire

is allowed and wire will be trimmed)

3) direction of width (high or low from base line)

In single width mode wires require:

1) a hit at origin pin of run (only for first segment

of run)

2) a 'hit' at every corner of run (to or through wire

or segment;intersections will be trimmed).

It is generally recommended that all multi-width wires

be placed early. After all multi-width wires are placed it

79

W

1)

J)

is very simple to reset width to 1 and connect all the

multi-width wires to pins with single width wires.

StiOWUNWIRED PINS -- this command will flash the unwired

pins on the screen. Note that this command is only

valid if the current net is set.

LABEL COMPONENTS -- LABEL COMPONENTS simply labels each

component on the current screen image.

END MANUAL WIRING -- this command allows you to exit the

manual routing program. If you have placed any segments

you will be asked to ok the exit. This is just a safety

in the case that you don't want to exit. By responding

with anything but 'yes' you will be returned to the

wiring mode. Typing 'yes' will end the interactive session

and update the design file with all new segments and vias.

6.2.3 Starting Sequence

When the interactive subsystem is active you will

be asked for your name and the project name. This is

to be sure you are using the correct design file. The

prompts will be repeated until they are answered correctly.

If you are not sure of the project name then type I$WYlJ and

cancel the job.

** NOTE ** If the design file has any wires in it

(either from previous manual wiring or auto routing) then

the prompt: 'board wired, type "yes" to start over'

80

will be issued. Should you not wish to remove all the

old wires then answer '$WYL' and cancel the job. If you

want to start over then answer'yes'as instructed.

** NOTE ** A response of 'yes' to 'board wires, type

"yes" to start over' will not remove the old wires until

the end of the job. If you respond yes and then later

cancel the job abnormally then all wires will be left

as before the job started.

It is possible to simply remove all the wires from a

board by responding yes to the start over question and

then not placing any manual wires. This will clean the

board for the auto router.

6.3 Error Messages

error
number

101

102

103

104

105

106

107

108

severity procedure cause

1 wident wrong user name

1 wident wrong project name

6 wident board not placed

7 wloadc ret #l camp ptr <=O

7 wloadc ret #l board ptr
<=o

7 wloadc ret #l net ptr <=O

2 wire invalid cursor
command

action

retry

retry

abend

abend

abend

abend

ignored

81

error
number

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

severity

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

procedure cause action

wire

wire

wire

wire

wire

wire

wire

wire

wire

wire

wire

wire

wire

wire

wire

"show unwired pins"
before set net

ignored

"remove segments"
before set net

ignored

"start net" with an
open run

ignored

invalid net name
given

reprompt

"get pin" before
start net

ignored

"get pin" with an
open run

ignored

invalid pin pointed
to by cursor

retry

cursor off board

pin intersection on
multi-width

retry

retry

invalid via this wire not
segment placed

pin intersect with wire not
different net placed

pin intersect causes wire not
loop placed

subnet formed on wire not
pin intersection placed

wire intersect with wire not
different net placed

wire intersection wire not
causes loop placed

82

error
number severity procedure cause action

124 2 wire "end manual wiring" ignored
with open run

125 5 putseg no more room for abend
segments

126 8 getrec no free records in abend
design file

127 2 wire "set wire width" ignored
with an open run

83

WARNING Special care must be taken when routing

multi-width wires to avoid later errorsin HIWIRE. In

particular, if multi-width segments are used in a net they

must form a single connected network branching out from

one or more pins in that net. This is a special case of

a general requirement: all prerouted segments in a net

must be electrically common with each other and with a

pin in the net. This requirement is enforced when wiring

single-width segments but unfortunately has not been for

multi-width segments. Failure to connect to at least one

pin (with a single-width segment) will cause an error halt

in HIWIRE; failure to keep all segments connected will

result in disjoint paths for the net in the final routed

board.

84

7.1 BATCH ROUTING PRUGRAH (HINIRE)

7.J Introduction

7.1.1 Purpose

HIWIRE is an automatic batch router using a modified

version of Hightower's algorithm to route two-sided PC

boards. The algorithm provides a relatively high connection

completion rate using relatively small amounts of computer

time. It is, however, only a heuristic, and will not necessary

find the optimal path between two pins or even find a path at

all when one might exist. A fair amount of optimization is

done by the program, though, to maximize the chance of

finding a good path.

7.1.2 General Use

HIWIRE uses the design file for input and output.

PLACER must have been run on the design file to provide pin

locations for the networks, and MWIRE may have been run to

route multi-width busses or critical wires, and to insert

wiring obstructions. After routing is completed (as far as

possible), the design file is updated by inserting information

about the segments and vias. This information can then be

used by VIAELIM to minimize the number of vias or be output

on the plotter. In addition to the design file output, HIWIRE

produces a listing of all connections it has made for each net,

a list of pins it has been unable to connect and the paths it

85

tried, and general information about the design file and the

job. This information may be printed, if desired.

7.1.3 Applicability

As stated above, HIWIRE can only handle boards with

two signal planes at the present time. Routing is done with

all horizontal segments on one plane and all vertical segments

on the other, though VIAELIM will try to bring as much of each

path on one side of the board as possible. The board size,

number of pins, number of nets, etc., which can be handled

is fairly arbitrary; most parameters can be set at run time

instead of being fixed in the program. Another factor in applicability

is the quality of the routing obtained for a given circuit.

All that can be said here is that HIWIRE will do the best it

can with the placement it is given. Care must be taken to

avoid producing overly congested areas on the board (e.g.,

near an external connector) or manually routing too many (or

too long) 'wrong' side wires (which act as obstructions to

HIWIRE). With experience, you will probably develop your own

estimation of what will and will not be routable at an acceptable

level of completion. The ease with which a placement can be

modified, combined with the relatively fast execution of

HIWIRE provide a system for adaptively improving the router's

86

performance on a given board. Hopefully, all connections can

be completed or few enough will be left that only minor editing

by hand will be necessary.

7.2 Using HIWIRE

A) An exec file is provided to help you run the router. To

use it type:

exe fro #runroute use pcb gro cg clr

After an introduction, the exec file will prompt you for

information needed to run the job. The prompts are:

1. <CR>=CLR ACT or SAV filename?

Typing a carriage return will clear the active

file. If there is something there you want to

keep, type a save command to put it into a file.

2. FILE ACCOUNT = CG.PCB?

Type the account under which the design file is

stored. The format is group.user. Type a carriage

return if under the default account.

3. DIRECT ACCESS FILE = DFILE?

Type the design file name or <CR> for default

filename.

4. (FKC).(DAFNAME) 0~ VOLUME = scw9?

Type the name of the volume on which the previously

specified design file is to be found (<CR> for default).

87

5. TIME = 4?

Specify the length of time you wish to let the

job run. The default time of four minutes should

be adequate for most boards. If the board is small,

you may be able to get by with as little as half

that much, and by specifying a smaller time limit

you can increase the job's priority and shorten

your wait time. Some very large boards (or fairly

large boards with a bad placement) may take more

than 4 minutes, but if you must specify a larger

time limit, be forewarned that the job's priority

will go down drastically and you may have a long

wait ahead of you. Still, it is always best to

be sure you have given the job enough time to run;

a partially run job is of no use and in the worst

case you may leave the design file in a partially

altered state. The answer to this prompt should

be <CR> for the default time, a single digit for

a time limit in minutes, or something of the form

. '(m,ss)' for a time limit in minutes and seconds.

6. OUTPUT LEVEL = l?

Not all of the output HIWIRE is capable of pro-

ducing may be useful every time the program is

run. This prompt allows you to select the amount

88

7.

of output generated. Available levels are:

0 - Overall statistics and error messages only

1 - Level 0 plus an indication of unconnected

pins for each net.

2 - Level 1 plus a list of what pin-to-pin

connections were attempted and whether or

not they were successful.

3 - Level 2 plus lists of endpoints for each

successful path.

4 - Level 2 plus detailed information (dis-

cussed below) about the unsuccessful

connection attempts.

5 - All possible output (Levels 3 and 4

combined).

Type the number of the desired output level or

a <CR> to use the default.

MODIFY CONSTANTS (<cR>=N~)?

If you wish to run the standard version of HIWIRE

(the array sizes are set to handle a fairly large

and complex board), simply hit a <CR>.

Otherwise,you may change certain important

constants in HIWIRE for this particular run.

There are at least three possible reasons for

89

doing this:

A) You have a small board which does not re-

quire the large array limits provided in

the standard version. Decreasing the

memory requirements has the same effect as

decreasing the time limit - your priority

and turnaround time are improved.

B) You have a very large circuit and an error

message says you have overflowed some table

limit. You can increase the size of that

table and try again (you may want to increase

the size of several of the tables, since they

are fairly well matched to a given maximum

size circuit). The default memory size

should be adequate for almost any increase

in table sizes.

C) Some of the constants control how hard the

router looks for a path and how desirable

the final path will be. You may wish to

change these values, although the default

values are considered to be close to the

optimum.

90

8. The constant prompts:

You will not get the following prompts if you typed

<CR> to prompt #7. If you wish to use the default

value for a constant, type a <CR>.

A) NETTL=300?

Maximum of 300 signal nets.

B) PINTL=1500?

Maximum of 1500 pins.

C) SEGTL=4000?

Somewhat difficult to define; a net will use

one segment for each X or Y coordinate along

which any of its segments lie. Some work

space for the next connection is also required.

D) XTNTTL=6000?

Closer to the actual number of segments,

but includes 2 elements for each unconnected

pin (including those not belonging to any net)

and some workspace for figuring the next

connection.

E) BRDXSIZE=250?

BRDYS I ZE=200?

Maximum X(Y) coordinate (in grid units) of

any point on the logical board.

F) E'PTL=41?

Approximately the number of segments HIWIRE

91

will draw before giving up on a given

connection. Increasing this may increase

the number of connections found, but the

number of segments and vias in the added

paths may be unacceptable.

G) MAXNETPASSES=2?

Maximum number of passes HIWIRE will make

through the unconnected pins in a net,

trying to connect them to the connected

group of pins and segments (HIWIRE main-

tains a single connected group of pins; no

separately connected subgroups of pins are

allowed). HIWIRE will continue trying to

connect unconnected pins to the connected

group until this number is exceeded or no

connections are made on a given pass.

H) MAXMISSES=lO?

In the path refinement process where extra-

neous backtracking is eliminated from the

original paths coming from the basic routing

algorithm, this constant governs how far

HIWIRE will look for a chance to improve

the path. An increased value will increase

run time but may improve on some paths found.

92

I) VIATL=200?

The via table must be able to hold all of

the prerouted vias (from MWIRE or previous

HIWIRE run) plus the maximum number of vias

produced in any of the nets.

J) GOREGION= 2?

Specifies the program's memory requirements

in multiples of 1024 bytes. Default value

should be able to accomodate almost any

increase in table sizes; with enough decreases

in table sizes for a small board, this can

be reduced to 320 (possibly 256 in extreme

cases). Decreasing memory requirements will

improve priority and turnaround time.

B) Unless something goes terribly wrong (bad answers to some

of the exec file prompts could be one cause), extensive

printed output about the routing should be available. This

includes:

1) Information about the input design file:

A) User name

B) Project name

C) Gridsize

D) Major component alignment (0 for horiz., 1 for

vert.)

E) Total estimated wire length in grids

93

2) Nets are listed in the order in which they were

attempted. Nets are routed in order of increasing

size of the box that would enclose all pins in the net.

Routing for one net is taken as far as possible before

going to the next net and no backup is allowed.

3) Within a net, pairs of pins are chosen for each

attempted path and printed in the form:

COMP #l PIN #l XLOC YLOC => COMP #2 PIN #2 XLOC YLOC

Where #l is the source and #2 is the destination (in

many cases pin #2 ends up only giving direction to the

path since the actual connection will often be made to

some existing segment of the net instead of to the pin

itself).

4) A pin pair will either route successfully or not. If

a path is completed, the coordinates of each segment

endpoint are listed, starting with the source pin and

ending either the destination pin or the point at which a

connection was made with a previous segment. If no path

is found, a message is printed to that effect. If

HIWIRE thinks the failure may have been due to too

small a value of 'EPTL' (see exec file prompts), it will

add the message: 'path too long'. Finally, a table

is printed to indicate how HIWIRE was attempting to

complete the path. Columns in this table are:

A) Line number

94

8) X location of 'corner'

C) Y location of 'corner'

D) Minimum coordinate of test line through 'corner'
I in specified orientation

E) Maximum coordinate of test line (with 'D)' indicates

where that line was looking for an intersection)

F) Orientation (l=horizontal, 2=vertical)

Entries coming down from the top of the table are from the

source pin, those coming up from the bottom are from the

destination pin (test lines are sent out from both pins to

increase the chances of connection). This list of the

automatically attempted path may aid the manual insertion

of unroutable wires. It can also indicate areas of blockage

on the board; if one or both of test line lists stop con-

siderably short of the center of the table, it probably

means a blockage exists.

5) The output for each net ends either with a statement that

all pins were connected, or with a count and list of the

unconnected pins.

6) After all possible routing is completed, a summary of the

routing is given, including:

A) Number of pins on board

B) Number of unused pins (not in any net)

C) Number of unrouted pins (in net but not connected)

D) Number of segments generated

95

E) Number of segment elements used (LSEG) - compare

to Exec file constant 'SEGTL' (doesn't include work

area)

F) Number of extent elements used (LXTNT) - compare

to Exec file constant 'XTNTTL' (doesn't include

work area)

G) Actual number of segments put into design file

(straight lines broken into segments by vias are

output as a single segment to save space in the

design file) and their total actual length

H) Number of vias put into design file

I) Index of next available record in design file

7.3 Error Messages

The classes of errors recognized by HIWIRE are:

A)

B)

cl

D)

WIRING ALREADY COMPLETE IN DA FILE

Safeguard to prevent overwrite of wrong design file.

INPUT OUT OF RANGE

Bad input is specified; check to see that it really

is valid and change appropriate limit using exec file

if necessary.

INCOMPLETE PLACEMENT IN DA FILE

Flag indicating completed placement is not set; place-

ment has not been run or completed.

CHAINING/COUNT ERROR IN NET REALIZATION (VIA LIST) RECORDS

Number of segments(vias) specified does not equal that

96

found. Compress the design file and save it for

later analysis along with the router output.

El TOO MANY SEGMENT GROUPS (UNIQUE SEGMENTS) (VIAS)

Out of space in one of the dynamically allocated

tables. Change the indicated limit using the exec file.

F) DESIGN FILE OVERFLOW

A fatal error. Not enough room to add

all of the segments and vias produced by HIWIRE but

some probably have been added. A good reason to keep a

compressed backup copy of whatever work has been

completed betweeen runs of any two SPRINT programs.

G) PIN TO BE ROUTED NOT FOUND AMONG OBSTACLE POINTS

All pins are considered to be obstacles, even to wires

from their own net, until it is their turn to be

routed. Here, something has gone wrong with that

convention. Save the compressed design file and router

output for later analysis.

H) PIN OFF LOGICAL BOARD

Probable program error in either PLACER or HIWIRE.

Could also result from using a design file that has

somehow become partially mangled. Please save the

compressed design file and router output for later

analysis.

I) PREROUTED WIRES BUT NO CONNECTED PINS IN NET #n

97

The segments for any net must be a connected

whole which also includes at least one pin.

MWIRE, unfortunately, does not check this condition

when multi-width segments are involved. Manual and

automatic routing must be redone.

98

8. VIA ELIMINATION PROGRAM (VIAELIM)

8.1 Introduction

8.1.1 Purpose

VIAELIM is a batch program designed to eliminate unnecessary
via holes from the automatic routing produced by HIWIRE. This
is a fairly important function, since HIWIRE routes all paths
with horizontal and vertical segments on opposite sides of a
board, resulting in a large number of vias. If carried through
to the final board, these vias would increase the board's cost
and decrease its reliability.
Another property of VIAELIM is that, in changing the locations
of segments from one side of the board to the other to eliminate
vias, it may clear previously blocked paths and allow further
routing to be done by another pass through HIWIRE. Segments
now on the 'wrong' side will act as new obstructions to automatic
routing, so one should not expect large numbers of previously
unroutable pins to be routed by this process. Some improvement
in the completion ratio, however, could occur.

8.1.2 Implementation

VIAELIM is based, in part, on an algorithm presented by Stevens
and Hashimoto at the 1971 Design Automation Workshop. Basically,
it models the routing as a graph in which the nodes represent
disjoint sets of mutually intersecting segments and the edges
represent vias where segments from different groups connect.
Each node is assigned one of two colors, indicating that seg-
ments in the set either stay where they are or switch sides,
attempting to minimize the number of edges between two nodes of
the same color. Edges between nodes of different colors represent
vias that can be eliminated. This procedure is equivalent to
trying to find the maximal bipartite subgraph of the modeling
graph. Routing information is obtained from the design file
and is updated when via elimination is complete.

99

8.2 Running VIAELIM

8.2.1 Exec file

An exec file is provided to help you run the via elimination
program. To use it, type:

exe fro #runvelim use pcb gro cg clr
After an introduction, the exec file will prompt you for infor-
mation needed to run the job. Typing a I?' to any of the major
prompts will print a message reminding you how to answer. The
prompts are:

1. <CR>=CLR ACT or SAV fi lename?

Typing a carriage return will clear the active file.
If there is something there you want to keep, type a
save command to put it into a file.

2. FILE ACCOUNT = CG.PCB
Type the account under which the design file is stored.
The format is (group.user). Type a carriage return if
under the default account.

3. DIRECT ACCESS FILE = DFILE?
Type the design file name or <CFb for default filename.

4. (FACC). (DAFNAME) ON VOLUME = SCFEV9?
Type the name of the volume on which the previously
specified design file is to be found (<CR> for default).

5. MODIFY CONSTANTS (<c~>=N0) ?
If you wish to run the standard version of VIAELIM, type
a carriage return. Otherwise, you may change certain
constants (primarily array sizes) for this particular
run. Increasing allowed execution time or the size of
certain arrays may be necessary for very large or complex
circuits, perhaps in response to an error on a previous
run. If you type 'yes' to this prompt, you will be
prompted for values for each of the constants listed
below.

100

If the default value given is sufficient, hit <CR>; otherwise
type a new value. Responding with a I?' is not valid for these
prompts.
a. TIME=(m,ss)?

Minutes ('ml) and seconds ('ss') of execution time allowed.
New value, if desired, should be typed using the same format
or you may type a single digit to specify minutes only. The
larger this value is, the lower your job's priority will be.

b. NETTL=value?
Should be greater than the number of signal nets in the
circuit.

C. SEGTL=value?
Should be son-ewhat greater than the number of segments routed
in MIRE and HIWIRE.
VIATL-val ue?
Should be greater than the number of vias produced in MOIRE
and HIWIRE.
STKLN=val ue?
Should be greater than LOG2(2*SEGTL), i.e. if you double SEGTL,
add 2 to STKLEN.
GROTL=value?
Maximum number of sets of mutually intersecting segments. This
varies greatly from one board to the next, and possibly between
two routings of the same circuit. The output of VIAELIM con-
tains a line 'NGRO=val' where 'val' is actual number of groups
in that run (GROTL should be somewhat greater than this value).

9- CONNTL=value?
Two elements of the connection table (of which CONNTL is the
length) are used for each pair of groups having any segments
connecting at a common via. Also difficult to estimate; the
line 'LCONN=val' in VIAELIM’s output gives the number of elements
actually used in that run.

101

h. GOREGION=value?
Specifies memory requirements in multiples of 1024 bytes.
If you have substantially increased any of the table sizes,
particularly NETTL, SEGTL, or VIATL, it may be necessary
to increase this value.

6. After the exec file has set up the necessary JCL in your active
file, it will type:
TYPE 'EXE' TO RUN THE VIA ELIMINATION JOB.
-tEXE PAU
If you now type 'exe', the exec file will submit your VIAELIM
job to the system to be run.

8.2.2 Output

Most of the activity in VIAELIM has to do with the design file.
A small amount of printed output, however, is generated. This
includes:
1. Information from the original design file, including the

user and project identifications and a count of the number of
segments and vias in the file.

2. Values for NGRO and LCONN mentioned above.
3. An indication of successful completion or an error message

(see below).
4. If completed successfully, a count of the number of segments

and vias in the updated design file. Note that the number of
segments may change due to the splitting of a segment into two
segments connected by a via if inserting that via eliminates
others elsewhere.

8 . 3 Error Mesaqeq

Classes of errors recognized by VIAELIM include:
A. Non-applicability

1. No placement in design file
2. No routing in design file.
3. No non-critical (and therefore movable) wires in design

file.

102

B. Input errors
1. Conflict between record chaining and stored count

for net realization (segment) records.
2. Chaining/count conflict in via records.

C. Table overflow for each of the table sizes that can be
set in the exec file.

D. Program error in the color optimization routine. If
this occurs, please save your output and the design file.

E. Design file overflow
Should never happen since fewer records should always be
needed after via elimination. Please save the output and
design file.

F. Via in design file with 0 or 1 segments attached. This is
a warning rather than a fatal error. The location of the
bad via and the net it is in are printed, the via deleted
and the program continues. This problem would generally
come from incorrect connection of multi-width wires in
MIWIRE. If you have not used any multi-width wires or
are puzzled by the message's appearance, please save the
output and design file.

103

9. OUTPUT PLOT GENERATION

Two separate programs, PLOT and ARTWORK, are provided for

plotting a design produced with the SPRINT system.

9.1 PLOT

PLOT is a basic program for outputing a routed board on the

Versatec plotter. It produces a simplified plot consisting of

three pictures; one of each side of the board and a composite.

The drawingsare produced at 1:l scale and the picture of the

solder side routing is a mirror image. A diagonal line is drawn

through an intersection that represents a connection, regardless of

whether or not a via exists at that point. While the plots pro-

duced by this program will probably not be acceptable as the

final output from a design, they may be useful at some inter-

mediate point.

To run this simplified plotting program, type:

exe fro #runplot use pcb gro cg clr

After an introduction you will receive the following prompts:

A) <cr>=CLR ACT or SAV filename

Type a <CR> to clear the active file for use as

a work area. Otherwise type a SAVE command to

store the active file under some filename.

B) FILE ACCOUNT = gg.uuu?

Give the account the design file is stored under.

The default, chosen by hitting <CR>, is the logged

104

on user's account. Format is gg.uuu (groupuser).

C) DIRECT ACCESS FILE’DFILE?

Give the name of the file containing the design you

want to plot.

D) gg.uuu.filename ON VOLUME=SCFEV9?

The volume the specified design file is on. The

default is the scratch disk 'SCFEV9'.

E) STANDARD ORIENTATION (<CR>=yes)?

Because this program always produces a 1:l plot

rather than scaling the picture to fit the page,

a board may be defined which would not fit on the

paper in the normal orientation (x-axis horizontal)

but would fit if rotated 90°. To get this rotated

plot, type 'no'; otherwise type a <CR>.

F) TYPE 'EXE' TO RUN THE PLOTTING JOB

The appropriate JCL has now been collected in the

active file. Type 'exe' to run it.

When the program is done, its output will be in the print hold

queue. If the plot was successful, there should be a data set

labeled ‘GO.UGDEVICE’ containing several hundred lines. Release

this data set to obtain the plot.

The only error message produced by PLOT concerns not being

able to fit the drawing on the paper. If switching to the

opposite orientation does not eliminate the problem, PLOT cannot

be used for that board.

105

9.2 ARTWORK

ARTWORK produces a more comprehensive set of drawings of a

design. The output can currently be sent to any of three devices:

A) Tektronix 4013 terminal - This option gives you a

quick look at the design on the terminal's storage

tube screen.

B) Versatec plotter - A reasonably fast way to get

hard-copy drawings of the design, generally as an

aid in making modifications during the design process.

C) Calcomp plotter (33" paper) - High-quality, 3-color

plots at 2:l scale from which the final taping of the

board can be done.

9.2.1 Output

A set of nine pictures is produced by ARTWORK. These

include:

A) Header and trailer pictures indicating the name and

status of the design.

B) A top view of the board showing component place-

ment.

C) A bottom view 'airline route' plot of the signal

net chaining. This point-to-point representation

of the nets can give a clear indication of how good

the placement is and show which components should be

moved closer together to improve an unsatisfactory

106

placement.

D) A bottom view composite drawing of the routing

on both sides of the board. On the Calcomp

plotter, routing from each side can be plotted

in a different color.

E) A bottom view of the component side routing

(as it would be seen looking through the board).

F) A bottom view of the foil side routing.

G) A top view of the component side routing.

H) A bottom view of the pin and via holes (pin

holes are also drawn in pictures C through 6,

as square boxes, via holes are shown as X's

in pictures D through G).

All pictures are labeled and are scaled as close to 2:l

as possible in the available space. The scale used is printed

on the header and trailer sheets.

92.2 Runnina ARTWORK

To obtain ARTWORK plots on any of the devices, type:

exe fro #runart use pcb gro cg clr

After a short introduction, you will be given the

following prompts:

A) <cr>=CLR ACT or SAV filename

Type a <cr> to clear the active file. If you

want it saved under some filename, type a SAV

command.

107

B) DIRECT ACCESS FILE=DFILE?

Type the name of the design file you want to

produce art work for.

C) FILE filename ON VOL=SCFEV9?

Give the volume the specified design file is on.

D) GROUP.USER=gg.uuu?

Give the account the design file is stored under.

The default is the logged on user's account.

E) Output device=VERSATEC?

This is where the program becomes specialized

for a particular output device. Type a <CR>

for the default device (the Versatec plotter in

this case), 'ver' for the Versatec plotter, 'tek'

for the Tektronix 4013 terminal, or 'Cal' for the

Calcomp plotter (33" paper).

F) TYPE 'EXE' TO RUN THE ARTWORK JOB

The specialized JCL has been assembled in your

active file and will be run if you type 'exe'.

The job's name will be of the form 'uuudddnn',

where uuu is the user's name, ddd is the output

device's name (e.g. 'TEK"), and nn is the last

two digits of the current job number.

9.2.3 Getting the output

The extra steps necessary to obtain the output depend

on the device used:

A) Tektronix 4013 - This job runs as an interactive

108

subsystem, much the same as PLACER and MWIRE. When

the program is ready, it will send the message to

the terminal:

FROM OPERATOR: (uuudddnn) THE PLOTTER IS READY

where 'uuudddnn' is the job name described above.

To connect the program to your terminal, type the

jobname. To "WHAT'S THE MAGIC WORD?” type, "punt".

Each picture will be drawn on the screen (there may

be some delay, particularly when the machine is heavily

loaded), then the crosshairs will appear. When you

want to generate the next picture, just hit the space

bar. After the last picture, the screen is cleared

and you are returned to Wylbur. Any printed output

from the program can be purged.

NOTE: Due to limitations on the amount of

memory available to CLASS I (interactive)

jobs, some of the routing segments may not

be output on large complex boards, parti-

cularly if VIAELIM has not been run. This

is not a problem with the Versatec or Calcomp

plots.

B) Versatec plotter - If the program completes

successfully, the output in the print hold queue

should include a data set labeled “GO.UGDEVICE”

containing several hundred lines of output.

109

c>

Releasing that data set will send the output to

the plotter. The remaining printed output can

be purged when the plotting is completed.

Calcomp plotter - The program should produce

a plot tape which will be placed in your bin.

You must then fill out a plot request card

(available at the dispatch desk), attach it

to the tape, and place the tape in the "TO

CAMPUS' bin. A sample card, marked for the re-

commended configuration, is shown in Fig. 9.1.

Some things to note:

11 'CAMPUS ACCT' refers to an account

valid for plotting at SCIP on campus,

not a SLAC account. See your group

secretary for an account to use or

make arrangements with SCIP accounting.

2) Fill in 'REEL NUMBER' from the tape

you receive.

3) The program scales everything for

plotting on 33" paper. This will

handle 2:l plots of boards up to 16.5"

long by 13.75" wide. For 2:l plots of

boards up to 5" long by 4.3125" wide or

less than 2:l plots of larger boards on

10" paper, type:

110

SCIP RT SLRC
1130 DRUil Pl.OtfER REQUEST

PWER S I Z E = rlpINCHfi=.

PEN* 1
d33 @

PAPES ST’f LE
($czQ

co3 RED
@g 6LU

LOS .
LO6

PEN# 2

LO3 RED
0 (B’L’U’)

LOS
LO8

.
FEN# 3

LOS .
LO8

Figure 9.1’

111

exe fro #artcl@ use pcb gro cg clr

Everything in this exec file is identical

to #RUNART except the Calcomp plots are

scaled for 10" paper.

4) The 'Lp)4' liquid ink pens should produce

good plots. Larger pens may be used to

produce greater line width, but 'L(J3' pens

should never be used as they tend to dry

out in the middle of complex pictures.

5) The color choice shown is recommended,

but may be changed to fit personal re-

quirements. Pen assignments are:

-Pen #l- usedfor lettering, board outline,

component outlines, component side routing.

-Pen #2- used for 'airline route' picture

and foil side routing.

-Pen #3- used for pin and via holes.

The plot should be completed within a day or so and will

be returned, along with the tape to the 'FROM CAMPUS'

bin. If the plot is satisfactory, you may send the

tape back for another plot or return it to SLAC Dis-

patch.

9.2.4 Errors

Other than attempting to plot a non-existent or garbage

112

design file, there are no expected errors in ARTWORK. If

the program should fail, please release and save the printed

output and save a compressed version of the design file for

later analysis.

The following pages contain the plots generated on the

Versatec plotter for the example of Fig. 0.1.

113

WM
VC

EX
AM

PL
E1

30

NE

TS
22

7
PI
NS

13

C0

MP
0N

EN
TS

12

L0

GI
CA

L
TY

PE
S

5
PH

YS
IC

AL

TY

PE
S

A
0,

05
00

pp

GR

.I
D

SI
ZE

z
DE

SI
GN

ST

AT
US

06
/0

7/
77

PL
AC

EM
EN

T

C0

MP
LE

TE
D

WI
RI

IV
G

ST
AR

TE
D

AU
T0

MA
TI

C

R0

UT
IN

G
C0

MP
LE

TE
D

VI
A

EL
IM

IN
AT

I@
N

Cm
MP

LE
TE

D
2,

Oc
iO

O
Ti

Z
1.
SC

AL
E

0M
P

0N
E

N
0M

P
LE

TE
P

L
A

C
EM

EN
T

P
L

A
C

E
M

EN
T

(T
0

P
l

0N
N2

CM

3

-.I__

Cl q c l c l c l q

P a c l 0 0 I☺

Cl X0 c l G 0 0

0 0 0 0 c l c l

0 0 0 0 0 0

0 OX Cl c l 0 0
X X

0 0 0 ⌧ c l c l 0

X

0 x 0
X

0 0 x
X X

IJ X0
X

0 Cl x
cl OX

0 cl
X

X0 X o x
x j

0 X ox x
X

0 ::
X

X X

X
X x x

cl 0

0 X Cl

X0 OX
x

cl ⌧ ⌧ q
q lX

c l ⌧ 0
X

Cl 0
X

Cl x cl
cl

X
X

x

116

n

CL
EJ
t-

u
Z

W
0

l-
Z
W
Z
Ed
n -
>
txl
Ll

J]

I
l-

117

F
0
1
L

S

ID
E

R

0t
iT

IN
G

(B

0T
T

0M
l

P
Cl

0

13

0

0

a
cl

Cl

E

/

>
EJ
t-
t-
Ed
al
LJ

I-
Z
W
Z
El
CL
z--
F-J\
c-l

X X I
Cl D X13 J;o Q-x El

X x

I x X&I a K
X x

X X

‘4
I

/

I1

l-t9

0
Cl
El
Cl
0
0
0

I3
5

-I-CI
0
0
0

?
---3

El

T

----I
Cl

120

m

r

t-
w-z

121

10. UTILITIES

This chapter describes some utility programs which, while

not a necessary part of the design process, may be of some use.

10.1 DUMP and RESTORE

DUMP and RESTORE are a pair of programs providing the

capability to compress a direct access design file into a se-

quential Wylbur edit format file and vice versa. There are

two reasons one might wish to do this. First, a direct access

file cannot be copied directly. If the designer wishes to try

several alternate designs for a given board, he can easily pro-

duce several identical copies of the design file by dumping it

once, then restoring it under several different names. The

second, and probably more prevalent use of DUMP and RESTORE in-

volves efficient use of disk space. A design file will generally

be over 100 tracks long and be stored on a scratch disk while in

use. It is a fixed size no matter what the size of the circuit.

Length of the compressed file is proportional to the size of the

circuit and compression factors between 5 and 10 can be obtained.

This makes the file small enough to be saved on a tape or perma-

nent disk, a necessary step if the design is not completed in

one day, and something which is probably desirable in any case.

Also, if there are problems with any of the SPRINT system pro-

grams, a dumped file containing the design is needed to discover

the cause of the problem.

122

Both DUMP and RESTORE make use of a temporary file called

'TEMPPY' on volume SCFEV9. The user should not have a file by

this name for any other purpose.

DUMP prints each record of the design file exactly as it

was read. This output can be released to the printer if desired.

10.2 PRINT

PRINT produces a formatted printout of the design file.

In other words, it knows the significance of the fields in the

various records and can produce an easily readable account of

the components, nets, segments, vias, etc., defined in a parti-

cular file. This kind of documentation may prove to be a use-

ful supplement to the drawings produced by ARTWORK.

10.3 Running DUMP and PRINT

Due to the common nature of their functions, the exec

files for DUMP and PRINT are almost identical. To run DUMP,

type:

exe fro #rundump use pcb gro cg clr

For PRINT, type:

exe fro #runprint use pcb gro cg clr

After an introduction, each exec file will prompt for the

following information:

A) <cr>=CLR ACT or SAV filename?

Type a SAVE command to save the active file under

some filename or hit a <cr> to clear the active

file immediately for use as a scratch area.

123

B) DIRECT ACCESS FILE=DFILE?

Type the name of the file you want dumped or

printed.

C) FILE filename ON VOL=SCFEVS?

Give the volume the specified file is on.

D) GROUP.USER=gg.uuu?

Give the account the design file is saved under.

The default is the logged on user's account.

Note that even if you are dumping a file under

a different account, the compressed file will be

saved in 'TEMPPY' on SCFEV9 under the logged

on user's account.

The DUMP or PRINT job is now in the active file. Type

'exe' to run it. The output will be held in the print hold

queue when the job is completed. You can fetch it from your

terminal or release it to the printer.

10.4 Running RESTORE

To run the exec file for running RESTORE, type:

exe fro #runrest use pcb gro cg clr

Here the prompts are:

A) <cr>=CLR ACT or SAV filename?

Same as DUMP

B) Source file for restore (<cr>=ACTIVE)?

Here you have three alternatives:

124

1) Typing a <cr> will save the active

file in 'TEMPPY' to be restored.

2) Typing a Wylbur filename will cause

that file to be loaded then saved in

'TEMPPY'.

3) Typing an '@I followed by an Orvyl

filename will cause Orvyl to be set

and that file to be loaded and stored

in 'TEMPPY'.

No facilities are available for direct loading

from tapes.

C) DIRECT ACCESS FILE=DFILE?

Same as DUMP

D) FILE filename ON VOL=SCFEV9?

Same as DUMP

E) GROUP.USER=gg.uuu?

Same as DUMP

F) These files are on volume volname (gg.uuu).

The files on the given volume under the given

account are listed. This allows the user to

check for a duplicate design file name. RESTORE

will abend if a duplicate filename exists.

The JCL for RESTORE is now in the active file and is run by

typing 'exe'. The printed output from RESTORE is only useful if

the job fails due to an invalid filename or other operating system

125

problem (RESTORE generates no error messages), and should be

purged.

126

11. Future Enhancements

The following programs are in the design/implementation phase:

1) Macro expansion of the SDL output

2) Component Assignment

3) Wire wrap output

The following programs are in the planning phase:

1) Graphic input for the SDL compiler in the form of logic

diagrams, drawn on a Tektronix 4013

2) Interactive editing of the completed board

3) Constructive initial placement of components

4) Gate and pin assignment (after the placement, before the

routing)

5) Multilayer capability (4 signal layers initially)

6) Interface to TESTAID and TEGAS logic simulators

7) Interface to SPICE and MSINC circuit analysis programs

8) Automatic logic diagram generation subsystem

127

