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ABSTRACT

This paper presents a number of methods for finding sequential

circuit output probabilities using regular expressions. Various classes

of regular expressions, based on their form, are defined and it is

shown how to easily find multistep transition probabilites directly from

the regular expressions. A new procedure for finding steady state. -

probabilities is given which proceeds either from a regular expression

or a state diagram description. This procedure is based on the concept

of synchronization of the related machine, and is useful for those

problems where synchronization sequences exist. In the cases where these

techniques can be utilized, substantial savings in computation can be

realized. Further, application to other areas such as multinomial

Markov processes is immediate.
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I. INTRODUCTION

Kleene, in 1956, showed that finite automata could be represented

with a regular expression notation [Kleene, 19561. McNaughton and

Yamada gave algorithms showing the connection between regular expressions

and state graphs, and introduced the concepts of complementation and

intersection [McNaughton and Yamada, 19601. An extensive survey of

regular expressions is given by Brzozowski [Brzozowski, 19621. In 1963,

c

Brzozowski and McCluskey explored the use of signal flow graph techniques

to obtain regular expressions from state diagrams [Brzozowski and

McCluskey, 19631. The derivation of a regular expression directly from

a sequential circuit diagram is explored by Brzozowski [Brzozowski,

who also provides us with the concept of the derivative of a. - 1964a],

regular expression [Brzozowski, 1964b] and its use in forming the state

diagram of the accepting automaton.

Regular expressions are a precise, unambiguous language for describing

finite automata which sometimes enjoy the advantages of compactness and

similarity to the word description of the accepting automaton, though too,

they can be arbitrarily complex. A disadvantage is that it is often

difficult to determine whether two expressions are equivalent, i.e.,

describe the same automaton, without reverting to state table descriptions

and determining whether they are equivalent [Hennie, 19681. This is due

to the lack of a canonical form for regular expressions. However, for

some problems, regular expressions are quite useful. T/&y have been used

in formal language theory as well as automata theory, and in this paper,

will be used to approach some probability problems.
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Probabilistic analysis has long been in use in reliability studies.

Recently, interest has arisen in logic circuit analysis using probability

[Parker and McCluskey, 1975b] and its application to reliability [Ogus,

19751, fault analysis in combinational circuits [Parker and McCluskey,

1975a; Shedletsky and McCluskey, 1975b; Shedletsky, 19751, and fault

analysis in sequential networks [Shedletsky and McCluskey, 1975a). The

work by Shedletsky and McCluskey approaches the difficult problem of

sequential circuit analysis and provides some specific methods of analysis

utilizing Markov chains. This paper will also deal with sequential circuit

analysis on a general level.

We are interested in the solution to a number of similar problems;

(1) the probability that a finite sequential machine, given random input,

produces some specified output,

(2) the probability that a suitable1 Markov chain reaches a certain state,

(3) the steady state probabilities of a suitable Markov process.

All of these problems can be handled using Markov chain analysis

[Shedletsky and McCluskey, 1975a], but this involves solving systems of

equations, inverting matrices, etc. We show that in some cases we can

take advantage of regular expressions to obtain these results directly.

II. BACKGROUND

Regular expressions are defined recursively as follows: given an

alphabet = (a% o*a19a29-'9ak-l 1, the symbols X and $, and the regular

iSpecifically, a Markov chain representing a multinomial process [Kemeny
and Snell, 19601.
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operators "+", "*", and I'*" and parentheses,
I

t

,
(1) A string consisting of a single alphabet symbol, single X, or single

$ is a regular expression.

- ,' (2) If P and Q are regular expressions, then so are (P-+-Q), (P*Q), and P*.

(3) No other string of symbols is a regular expression unless it follows

from (1) and (2) in a finite number of steps.

Regular expressions represent sets of sequences of symbols. The

symbol X represents the sequence of zero length. The symbol $ represents

the null set or empty set of sequences. The operation "+" in P+Q denotes

the union of the sets P and Q. . The operation "*" in P*Q (from now on

written as PQ with "0" understood) is the concatenation of elements of

P and Q. In general, concatenation is not commutative, i.e., PQ may not

. - eq‘;;al QP. The star operator "*" or iterate of a set is defined as the

infinite union

P* = A + P + PP + PPP + . . . (2.1)

which we abbreviate as

.
P* = u P1

i=O
(2.2)

.
where P' is i copies of P concatenated and P" is defined as X. Given

. that P, Q, and R are regular expressions, then the following relations
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P+Q

@ + Q) + R

(PQ)R

PQ + PR

PR + QR

R+$

RX

R + R

x*
9*

Q+P

P + (Q + R)

P (QR)

P(Q + R)

@ + Q)R

$+R = R

@R = 4

AR = R

R

x

x

(+ commutative)

(+ associative)

(* associative)

(left distributivity)

(right distributivity)

(+ identity)

(* zero)

(* identity)

(idempotency)

Equation 2.11 illustrates the equivalence problem. As an example

. - [BTiozowski,  19621, consider the following expressions.

A = (0 + lo*l)*lo*

B = O*l(O + lO*l)*

U-3)

G-1

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)
(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

At a glance they do not appear equivalent so that their union would be

A + B. However, they are equivalent (they were derived by different

procedures from the same machine description) SO that indeed, A + B = A = B.

Since later we will derive probability expressions from these regular

exnressions, we need to avoid counting probability masses more than once.

We will require all regular expressions to be simplified via equation

2.11. In general it may not be obvious that this condition is satisfied.

However, we will soon define a series of forms that regualr expressions

may have which we find both useful and fairly easy to check for this

simplification.
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Definition 2.1 The derivative [Brzozowski, 1964b] of a regular

expression R with respect to a sequence a, denoted D,R, is another

regular expression given by

DaR = {s ] as E R) . (2.15)

Also,

DabR = Db(DaR) (2.16)

Some simple examples are, for R = (011 + 00)

DAR = R DOllR = x

DOR = 11+0 DlR = $ .

:
. -

DOIR = 1

Full details are given in [Brzozowski,  1964b]. Derivatives will be

useful later in defining and determining substring relations.

Definition 2.2 The symbol I is reserved for the union of the alphabet

symbols and constitutes a 'dont care' symbol of length 1. Then I* is

the set of all possible strings.

Definition 2.3 A sequence s is defined to be a substring of regular

. expression R, denoted s E SUB(R), iff there exists an x E; I* such that

DxsR c $0 If s E SUB(R) then for some r E: R, the sequence s is embedded

in r. For example, 011 is a substring of 110110, since there exists an

irEI* (x = 11) such that Dlloll(llOllO) = 0 $ Cp . However, 111 is

not a substring of 110110.
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We now need to clarify the notion of an event, since it occurs both

in the regular expression literature and in probability theory. We

consider an event to be some application of zero or more symbols to an

,-> automaton. If the automaton, at the end of the event, produces a

recognition output, i.e., it recognizes the input as a memeber of a set

of inputs for which it was designed to accept, we say the automaton

accepts the event. The set of events that an automaton accepts can be

described by a regular expression [Kleene, 19561.

Definiton 2.4 A simple expression (or elementary expression) is the

concatenation df zero or more alphabet symbols. The length of a simple

expression T, denoted L(T), is an integer count of the number of symbols

in.:T. Note L(T) = 0 implies T = X. For example, T = abcba is a simple
. -

expression of length 5.

Definiton 2.5 A finite composite expression is the union of a finite

number of simple expressions. Example: T = ab + bc + acb is a finite

composite expression.

Definition 2.6 An infinite composite expression is the star iterate of

a finite composite expression. Example: T = (a + ab + abca)* is an

infinite composite.

Definition 2.7 A concatenate composite expression is the concatenation

of two or more finite or infinite composite expressions. For example,

let A,B be finite composite, C be infinite composite. Then ABC, A*B, AB",
* *

and A B are concatenate composite, as is AB, but AB by distributivity

reduces to another finite composite.
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Definition 2.8 All other expressions that are not simple, finite/infinite/

concatenate composite in form are called complex expressions. For example,

(ab*c + a*b)
*

is complex. Note that (a*b*)* and (a* + b*)* are complex

expressions,. .-> but by the identity

(a*b*)* = (a* + b*)* = (a + b)* (2.17)

they can be written as infinite composite expressions.

D,efi.nition 2.9 A delay expression is a special case of concatenate__-.II

composite expression of the form T - I*S for some finite composite S.

Delay expressions are identical to 'non-initial definite events'

in [Brzozowski, 19621. The name "delay" arises from the fact that any

delay expression corresponds to a delay realized sequential machine"
. -

[Hennie, 19681 (see finure 4.1). The following definition differs

somewhat from Brzozowski's definition of an initial event.

Definition 2.10 An initial expression- - - is one where the beginning of the

sequence of input symbols must be examined in order to determine the
* *

acceptability of the expression. For example, ab, ab*c, acb I ,

(c + ab*a)* are initial expressions. Delay expressions are not initial?
*

since the input symbols contained in I do not affect the acceptability

. of an expression.

Definition 2.11 A synchronized expression is of the form I*SR where

S is finite composite and R is a regular expression. Delay expressions

are a special case. The name "synchronized" stems from the machine

realization, where S represents a set of synchronizing sequences [Hennie,

19681. To determine the acceptability of a synchronized expression, all
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symbols back to the last occurrence of s E: S must be examined. Synchronized

expressions are not initial.

Definition 2.12 Given an alphabet I = ao,al,...,ak  1, define the

-4' probability  of the symbols P(ai> as a set of real numbers such that

0 < P(ai) 2 1 for all i and P(ao) + P(a1) + . ..P(ak-1) = 1. Further,-

define P(x) = l. and P(4) = 0.

Lemma 2.1 The probability of a simple expression of length m 2 0 is

given by the product of the probabilities of its symbols. For example,

for E = abc, the probability of this expression is P(a)P(b)P(c). We

are assuming that all appearances of any symbol at any place in an

event are independent of any other symbol.

I . - 9

This probability of an expression of length m is identical to the

probability that the corresponding automaton accepts a string of length
.

a m given the probabilities (and independence assumption) of its input

symbols. Most expressions that we have defined do not have a single

length. For example, the finite composite E = (ab + abcab) represents

/ a machine that can accept after 2 input symbols and after 5 input

symbols. More complicated expressions become more difficult to "eyeball".
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Definition 2.13 Given a regular expression R, the generating function

of R, GEN(R), is constructed as follows:

(1) For each simple expression within R, convert it to a probability

expression via lemma 2.1 and then follow it by dummy variable tm

where m is its length.

(2) Replace each starred term E* by

repeating (this can be done in any order), until all the stars are

gone.

*
Example 2.1 Let R = (ab + abca) . Then GEN(R) is formed as follows.

(s) Let x=P(a), y=P(b), z=P(c), The step (1) yields
. _

4 *(xyt2 + x2yzt ) .

(B) Step (2) yields

GEN(R) = c (xyt2 + x2yzt4)j.
j=O

Jc
Example 2.2 Let R = (a + ab* + b*c) . Let a, b, and c be probabilities.

(A) Performing step (1) we have

7k
(at + at(bt) + (bt)*ct)*.

(B) Removing the 3 stars givesCo a0 al
GEN(R) = + at c i

(bt)j + c (bt)kct
j=O k=O
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which can be simplified due to the commutativity2 of the variables as

co

GEN(R) = at + (a+c)

I’ which is somewhat less complicated.

The next example illustrates a problem in the procedure.

Example 2.3 Assume A and B are both simple expressions. Let

R = (A + B)(A + B). Then GEN(R) = (GEN(A) + GEN(B))2 = GEN(A)2 +

2GEN(A)GEN(B)  + GEN(B)2. Let A = a and B = aa. Then the preceeding

expression is incorrect because (a + aa)(a + aa) = (aa + aaa + aaaa)

by equation 2.11. The correct result for this case is GEN(R) = GEN(A)2 +

GEN(A)GEN(B) + GEN(B)2 but this cannot be determined without prior

examination of A and B.

Lemma 2.2 Given regular expression R and GEN(R), the probability of

accepting a string of length m is contained in the coefficient of tm,

This is found by an Algebraic derivative operation

1 dm,I p GEN(R). (2.18)

Proof Equation 2.18 at t = 0 picks out of GEN(R) the coefficient of- -

tm and deletes all the others. This coefficient is the desired

probability. To prove this, we start with simple events P and Q with

lengths j and k. It is immediate for GEN(P) and GEN(Q) that the assertion

-is true. Next we see that GEN(PQ) = GEN(P)GEN(Q) since the multiplication

LWe note here that our generating function provides an inventory of
probabilities, indexed by sequence length. A similar ariface can be
used to inventory the sequences, by not converting simply expressions
into probabilities and observing the non-commutativity of the symbols
under concatenation.
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.
of tJ and tk produces exponent j+k which is the length of PQ, and the

corresponding probabilities have been properly multiplied in either

case. After allowing the assumption that P 9 Q (so that we don't have

the idempotency problem of equation 2.11) we see that GEN(P+Q) =
- 4'

GEN(P) + GEN(Q) in the procedure of definiton 2.13. Finally, we show

that the star iterate is properly handled. Examination of equation 2.1,

plus the preceding arguments, show that step 2 of definition 2.13
.

yields the proper sequence of terms for the iterate case.
a3

For example, if GEN(R) = c (ab2t3)i, the probability of accepting
i=O

a string of length m = 6 is

a3
1 d6
6!dtb 2

co

(ab2t3)iitzo  = $- z
6

i=O l iso

(aib2i .s t3i)It=o

-:
. - = a2b4 . l

Lemma 2.2 is a general result. However, taking higher order deriva-

tives can quickly grow tedious. Also, we will be interested in steady

state solution, i.e., where m approaches infinity. The next section

provides examples of the use of lemma 2.2 and deals with specific

simplifications we can enjoy based on the structure of the event in

question.

III. EVENT PROBABILITIES

The following theorems give the probabilities of an automaton

accepting a finite sequence of symbols with given probability assignments.

The accepting probability will be denoted P,(E), for an automaton

represented by expression E and sequence length m.
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Theorem 3.1 If E is simple, q = L(E) and e = P(E) then for m > 0,-

e if q=m
P,(E) =

0 otherwise

*" Proof The proof follows directly' from lemma 2.1.- -

Theorem 3.2 If finite composite E = (E. + El + . . . + Ek) with all Ei

simple  and disjoint, q. = L(Ei), and ei = P(Ei)' then for m F's1
k e

P,(E) =
xi

i if q.=m
1

i=. 0 otherwise

Proof If all qi are unique, the proof follows from theorem 3.1. If two

or more qi are equal, then because the corresponding Ei are disjoint, we

can add their probabilites. A rigorous proof uses generating functions

. _ of E and equation 2.18, but the above argument should be sufficient.

For example, let E = (01 + 10 + ill), with P(1) = p and P(0) = q. Then

P1 (E) = 0, P2(E) = 2pq, P3(E) = p3, and Pk(E) = 0 for k > 3.

*
Theorem 3.3 If infinite composite E = (Eo) with simple Eo, q = L(EO),

and e = P(EO), then for m 2 0.

m/se if q divides m
P,(E) =

0 otherwise

Proof We have P,(E) = $-c
00

GEN(E)
I

1 dmZ-P
l dtm t=O m! c

dtm j=O
(etq)j

I t=Oa3 .
c ej 1 dm $i if q;i = m=
j=O ml>

'otherwise l
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*
Corollary to theorem 3.3 If infinite composite F= = (E. + El + ..= + Ek)

with all ~~ simple and disjoint, all q. = L(Ei) = q and ei = P(Ei)' then
1

for m 2 0,
m/q if q divides m

. ,-> P,(E) =
(e. + el + . . . + ek)

0 otherwise
- .^., __~_. ---.-.-

As an example, with E = (aba + bba), letting a and b be probabilities,

it follows that P2(E) = 0, P3(E) = ba2 + ab2, P4(E) = P5(E) = 0,

P,;(E) = (ba2 + ab2)2, etc.

Theorem 3.4 If infinite composite E = (E. -t El + . . . + Ek)* with all E i

simple and unique, qi = L(E& ei = P(Ei), define integers n, j,, j,, .*.

jk and a constraint set C,(E) on these integers given as

C,(E) =
I
n9ji9j2,***jk I n 2 0, j i 1 0 Q i,

i=l
ji 1. n,

and m = nq0 +
iY1

ji(Cl.1 - q())

t

then for m 2 0,
--- -

p,(E)
cm(E)= c (.

Jl j2
n . . .n+j2.9”‘jk )e (n-jl-j2-...-jk)  e jl j2 jk

jk ' 1 e2 "oek
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Proof We have Pm E ='dm,mr GEN(E)
? - dtm I t=O

1 dm
00

=- -
m! c

dtm n=O
hotqO + elt q1 + 'k n. . . + ekt )

I t=O

* ,-> The multinomial expansion for the power of a sum yields

C (j,j,n...j,j,,j,,...j,

q . ( n - j  ,-j2-* l  �-jk >

(e,t

q1 jl
> (e2t

92 j2
kot 1 ) l l l c ek t

'k jk
)

I

t o

=

Collecting powers of t yields

. -
Pa(E) = 2 2 (jljc...jk) eo(n-~1~~2~*~~-~k)e~~1e2~2...e~k

n=O j,,j,,...j,

1 dm
m!--- t

(bjl-j2-a*tjk)40  + jlql + j2q2 +. ..f j
kq

dtm =0

However,

1 dm (b jl-jj2-�  l  �-jk )q o  +

- -  -

m! dtm t
i=l I t=O

ifm=nqo+ ji(4i - 40)
=

\0 otherwise

and the multinomial expansion we used adds the constraints that n 2 0,

ji 1 0 for all i, and n 2 ji + j, + . . . + j,. All elements of C,(E)

satisfy exactly these constraints so the multiple summation can be replaced

by a single summation over the elements of C,(E), yielding the postulated

result. m
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Inspection reveals that theorem 3.3 and its corollary are a special

of theorem 3.4 if one handles the nonexistance of a set of ji properly.

Theorem 3.4, though perhaps formidable in appearance, has some

,-, interesting properties that simplify its interpretation and application.

Indeed, probabilities can sometimes be written down by inspection.

*
Example 3.1 Consider infinite composite E = (ab + acbca) . Since it is

composed of two simple events ab and acbca with lengths 2 and 5 (and

probabilities we define as ab and 2 2a bc ), the constraint set C,(E) is

C,(E) = n,j n 1 0, j 2 0, j 5' n, 2n + 3j = ml
( I

and the probability of accepting a sequence of length m is

P,(E) = ( 7 ) Cab) n-j (a2bc2)j

c,(E)
p,(E) = c (n,j y).“+jbnc2j .

The constraint set gives for each m, a set of n and j shown in figure 3.1.

PI209 = 3a5b3c4. + a6b6

, P 11

0 1 2 3 4 5 6 7

Fiwre 3.1
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Set Cm(E) is a family of lines with slope -Z/3. The integral solutions

lying on or between j=O and j=n on a given line are used in the summation

of P,(E). If we think of lines as two dimensional surfaces, the constr;lillt

.,, set gives us a family of such surfaces containing the desired (n,j). For

more complicated expressions with k simple components of different lengths,

we are looking for integral solutions on analagous k-dimensional surfaces.

If we examine the state diagram in figure 3-2 for the machine used in

example 3.1, we notice that it is not strongly connected.

start (A)

a,0

Figure 3.2

By changing our context, letting a, b, and c be probabilities summing

- to one, figure 3.2 represents a Markov chain (specifically, an absorbing

trinomial Markov process [Kemeny and Snell, 19601. The probability of

accepting (arriving in state A) must, as time grows large, become small,

or correspondingly, the likelihood that the machine is driven into the

trap state C grows larger with time. Most infinite composite events

will exhibit this behavior, i.e., P (E)-+O for large m.m This convergenc<l



need not be monotonic with m as table 3.1 shows, for a = 0.5, b = 0.4,

and c = 0.1.

0:
. -

m

Table 3,l

P,(E)
0 1.0
1 0.0

2 0.2

3 0.0

4 0.04

5 0.001

6 0.008

7 0.0004

8 0.0016

9 0.00012

10 0.000321

Some infinite composite events correspond to strongly connected machines.
*

For example, let I = (p + q) and infinite composite E = (p + qp + qqp + qqq) .

The state diagram and state table for this event is shown in figure 3.3.



C,(E)

P q
AA B
BA c

c lCA A

P,(E) = n-j 2
cn)P 4

j 1+2j 2
n+i, j, ii,

C,(E) = {n,jl,j,
I
n,jlJ, 2 03 j, + j L n,2 n+j1+2j2 = m}

Figure 3.3

The equation for P,(E) is evaluated in table 3.2 for several values of m,
+T

. - with p = 0.4 and q = 0.6.

m P (E)
m

1 0.4

2 0.4

3 0.616

4 0.4864

5 0.4864

6. 0.533056

Table 3.2

m P,(E)

- -__-_-.-_ - - -___

11 0.509093478

12 0.511270261

13 0.509964191

14 0.509964191

15 0.510434376

16 0.510152265

7 0.5050624 17 0.510152265

8 0.5050624 18 0.510253825

9 0.515140096 19 0.510192889

10 0.509093478 20 0.510192889
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For large values of m, the probability of accepting an infinite composite

expression always converges to some value. For absorbing (not strongly

connected) machines, this value is always 0 or 1. As just observed in

I ;> table 3.2, the value may be somewhere in between, dependent upon the

transition probability assignments. It can be shown in this example by

simple Markov steady state analysis that P,(E) = 0.510204082. Of course,

evaluating P,(E) directly via theorem 3.4 is only practical for smaller

m, and for larger m the steady state value P,(E) is usually what is

desired. In the next section we deal with steady state solutions.

IV. STEADY STATE PROBABILITIES

C If we consider a (finite) machine that has been receiving input for
. -

a long time we might expect its response to eventually stabilize into

some pattern. Indeed this is true as a simple Markov chain analogy

reveals, for any type of input that has stationary (time invariant)

statistics. We denote this steady state value for expression E as P,(E)

and show how it can be directly derived for some forms of regular

expression, thereby avoiding traditional Markov analysis. We first

consider delay expressions.

- Theorem 4.1 Given delay expressions E = I*S where S is simple and

4 = L(S), then P,(E) = Pq(S), that is, P,(E) is equal to the probability

that the last q inputs formed S.
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Proof Verification is trivial when the machine that realizes E is

visualized as a q-stage shift register driving a decoder such as shown

in figure 4.1

. . .

Figure 4.1

TheToutput equals 1 if the shift register contains S. The probability. -

of this is simply Pq(S), since inputs are independent in time. l

Corollary to theorem 4.1 Given a general delay expression E = I*S

where S is finite composite (S1 + S2 + . . . + Sn), with simple and disjoint

Si of length qi = L(Si), then
n

Pm(E) = c ' ('i) '
i=l '1

Proof The proof is the same as for theorem 4.1 except that the output

- circuit (the AND gate) in figure 4.1 is replaced by a sum of products

network with n AND gates, one for each Si. Since the Si are unique, the

outputs of the n AND gates are disjoint and their probabilities simply

sum for the correct result. m

Note, care must be taken when using the corollary, that the Si are
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disjoint. For example, the following two expressions are equivalent.

E1
= I*(1 + 01 + 001)

*
E2 =I1

(4.1)

(4.2)

Since 1 is a suffix of 01 and 001 (also 01 is a suffix of OOl), the S.1

in equation 4.1 are not disjoint. If s is a suffix of t then there
*

exists an x E I such that xs = t. This suffix condition is a special

case of substrings (definition 2.2), i.e., Dxst = A.

Now consider the expressions made up of concatenations of I, S, and

T where S and T are both simple and further, S & SUB(T*), that is, S is

not embedded in T*. Equation 4.2 lists some expressions.

I'ST* (a> (4.3)

. . . . 11111s

. . . . IIIIST

. . ..IIISTT

(b)

('3

Cd)

. . . . IISTTT (4

Quick examination show that 4.3a represents 4.2b-4.2e. Everything to the

left of the rightmost occurrence of S is in essence a don't care (I)

symbol in meaning. The English description of a recognizer for 4.3a

. is "the machine that accepts any string ending in S followed by zero or

more occurrences of T". Such a machine is reminiscent of a delay machine,

but for non-trivial T, cannot be so constructed with a finite number

of stages. What occurred before the last appearance of S is inconsequential

to the output of the machine. In figure 4.2 we show the improper3 state

3In an improper state diagram, an arc may represent a transition through
a number of states. In figure 4.2, the symbols S,'T, U and V may be
single input symbols, or more complex expressions.
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diagram [Brzozowski, 19621 of a machine that recognizes I*ST*.

Figure 4.2

We let V be the set of ‘ill strings that do not contain an embedded S.

We let U be a set of all strings that do not contain an embedded S or

T. Then letting s =z P(S) and t = P(T), we can find a Markov chain that

gives us the probability of accepting I*ST*, shown in figure 4.3.

c

Figure 4.3

The steady state solution for state B (acceptance) for this two state

chain is easily fouxi to be

P(state B) = P(I*ST*) = s/(1--t) (4.4)

The following theorem gives this result proved by a different route, but

the foregoing analysis will be useful later.
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Theorem 4.2 Given simple S and T with T + X, S b SUB(T*), E = I*ST*,

S = P(S) and t = P(T), then P,(E) = s/(1-t).

Proof By theorem 4.1, the probability of receiving I*S is s. The

*I\ probability of receiving I*ST
3

is st; I*STTdst2; I*STTT-+st ; etc.

Since S cannot equal T, each such string is unique and has a disjoint

probability of occurrence. Thus
co cn

P,(E) = c
k \'st =sL tk = s/(1-t). 8

k=O k=O

Example 4.1 Consider R = I*(OO)(ll)*. Letting q = P(0) and p = P(l),

find P,(R). By theorem 4.2, with S = 00 and T = 11 we can immediately

write P,(R) as q2/(l-p2). We check this result via a Markov steady state

analysis. The PIarkov chain for R is given in figure 4.4 along with its
3

. -
transition matrix.

A B CD E

Apq---
Bp-4"
c- - q p -
D- q - - P
E- q - P -

Figure 4.4
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L

We solve a system of equations in 4.5 derived from the matrix and the

constraint that the sum of the state probabilities is unity.

A = PA + qB

B = qA + qD + qE

C = qB + qC

D = PC + PE

E = pD

(4.5)

Since it is easiest to solve for B we get the series of equations in 4.6.

B B=

C = 9B
P

D = - B
l2

E = AL' B
l-p2

Their sum is

A+B+C+D+E =l=B$+l+Q+ L+a)
q P l-p2 l-p2

1 = f&b!!
Pq

+ q(l+p) )
l-p2

1 =B(% + 1)

1 =&
PQ

(4.6)
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2 2
So B = pq and then C = q2 and E = p-%- .

l-p2
Then

2 2
P,(R) =C+E=q2 + =

l-p2

= q2(l+L)
l-p2

= q2/Wp2)

as before.

Corollary to theorem 4.2 Given finite composite S = (S1 + S2 + . . . + Sk)

with probability s and some T $ X such that we can find its probability

expression t. Then if for all i, Si 4 SUB(T*) then P (I*ST*) = s/(1-t)

by the same argument used for theorem 4.2.

. - E&mple 4.2 Consider the expression R = I*(001 + ll)(Ol)*. A quick

examination of R shows that the corollary to theorem 4.2 applies yielding

pa0 w = (P2 + Pq2)/u - P4)

= P(P + q2>m - P4)

= PO - Pd/(l - P4)

= PO

We can derive this answer from the state description of T as shown in

figure 4.5, without Markov analysis.
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earn the state table we can

the ambiguity tree pennie, 19681 as in figure 4.6.

Figure 4.5

derive the set of synchronizing sequences from

(AEXDEF)

s/k
(BDF) (CE)

Figure 4,6
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From this tree we see the set of sequences is given by

(00+11~11+100+1(01)*1+1(01)*00+01(01)*1+01(01)*00) (4.8)

,.,, but we notice that each sequence in the set ends with either 00 or 11,

which are themselves synchronizing sequences. We retain only these so

that the synchronizing set S is (00 + 11). Next we note that the

sequence 00 leaves us in state D while sequence 11 leaves us in state E,

an acceptor state. We can get from D to E with a 1, so we modify the

synchronizing set so that the end result is unambiguous and has an

accepting output. This gives us S = (001 + 11) which guarantees to

place us in state E. Next we determine A, the set of all sequences that

take us from E back to E. These are
A?

. _
A = (l+(ol)+o(lo)*o(o)*l)* (4.9)

. Now we examine A and determine if a synchronizing sequence from S is

embedded in it. First, 11 E SUB(A) until we remove the 1 inside. Next,

001 E: SUB(A) until we remove the term O(lO)*O(O)*l. This leaves us with

T* = (ol)*, which is the set of all sequences that take us from E to E

without any embedded synchronizing sequences. Hence, with s = p2 + Pq2

and t = pq we get Pm CR.), = (p2 + pq2>/ (1 - P4) = p as before. What we

have done is to construct a simple Markov chain of the form in figure

4.3 directly from the state description of the machine, for which the

steady state solution is easily found. These results can be verified

-by a standard steady state Markov analysis of the original state diagram.

The procedure just outlined is general in that we may not necessarily

be working with a regular expression that has the form of a synchronized
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*
expression. Recall the expression in figure 3.3, E = (p + qp + qqp + qqq) .

We have already seen that it converges to a steady state value other than

0 or 1. Quick inspection of its graph shows that its synchronizing set

is S = ( p ) and that T (minus embedded synchronizing sequences) is T = (qqq).. ,->

Therefore its steady state equation should be P (E) = p/(1-q3 ) which

evaluates to 0.510204082 for p = 0.4 and q = 0.6. This agrees with the

Markov solution (See section 3).

v. CONCLUSION

Utilizing regular expressions we have found new ways to calculate

two probabilities; the probability of traveling from state X to state Y

in exactly m steps and the steady state probabilities of being in a-"
. -

state. We have shown examples in finding output probabilities for

sequential circuits and in multinomial Markov processes. In particular,

we have shown the usefulness of synchronizing sequences in determining

steady state probabilities. In some cases, the techniques developed

here lead to substantial simplifications, especially in steady state

problems.

Basic intuition is quite useful in approaching cases which are not

directly covered in this work. For instance, if presented with a simple
.

expression A cascaded with a synchronized expression, such as AI*ST*,

a steady state solution for this case should quickly be seen as

as/(l-t). Other problems of seeming difficulty yield when the underlying

state diagrams are viewed. Usually, a flexible approach will give

surprisingly good results.



Certain problems restrict the generality of these results. For

example, regular expressions that have the complex form may be intractable.

If the underlying automata has no synchronizing sequence, then by default,

. ,-> the steady state analysis cannot be undertaken. Further problems arise

from the equivalence problem (equation 2.11) and determining if the

substring relation holds. In many cases, this is not too difficult

"by eyeball" due to the pattern recognition abilities of the eye. However,

a program to perform this task could easily consume large quantities of

time. Thus we find the procedures developed here to be specialized to

certain tasks, for which they can be quite useful.
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