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ABSTRACT

This paper presents a number of nethods for finding sequentia
circuit output probabilities using regular expressions. Various classes
of regular expressions, based on their form are defined and it is
shown how to easily find nmultistep transition probabilites directly from
the regular expressions. A new procedure for finding steady state
probabilities is given which proceeds either from a regular expression
or a state diagram description. This procedure is based on the concept
of synchronization of the related nmachine, and is useful for those
probl ens where synchronization sequences exist. In the cases where these
techniques can be utilized, substantial savings in conputation can be
realized. Further, application to other areas such as nultinoma

Markov processes is immediate



| NTRODUCTI ON

Kl eene, in 1956, showed that finite automata could be represented
with a regul ar expression notation [Kl eene, 1956]. MNaughton and

‘Yamada gave al gorithns showing the connection between regular expressions
and state graphs, and introduced the concepts of conplenentation and
i ntersection [ McNaughton and Yamada, 1960]. An extensive survey of
regul ar expressions is given by Brzozowski [Brzozowski, 1962]. In 1963
Brzozowski and MO uskey explored the use of signal flow graph techniques
to obtain regular expressions from state diagrams [Brzozowski and
McCl uskey, 1963]. The derivation of a regular expression directly from
a sequential circuit diagram is explored by Brzozowski [Brzozowski
1964a], who also provides us with the concept of the derivative of a
regul ar expression [Brzozowski, 1964b] and its use in formng the state
di agram of the accepting automaton

Regul ar expressions are a precise, unanbiguous |anguage for describing
finite automata which sometimes enjoy the advantages of conpactness and
simlarity to the word description of the accepting automaton, though too,
they can be arbitrarily conplex. A disadvantage is that it is often
difficult to determne whether two expressions are equivalent, i.e.
describe the same automaton, without reverting to state table descriptions
and deternining whether they are equivalent [Hennie, 1968]. This is due
to the lack of a canonical formfor regular expressions. However, for
sone problens, regular expressions are quite useful. They have been used
in formal language theory as well as automata theory, and in this paper

will be used to approach sone probability problens.



Probabilistic analysis has long been in use in reliability studies.
Recently, interest has arisen in logic circuit analysis using probability
[ Parker and McC uskey, 1975b] and its application to reliability [Qgus,
1975], fault analysis in conbinational circuits [Parker and Md uskey,
1975a; Shedl et sky and McCl uskey, 1975b; Shedl etsky, 1975], and fault
anal ysis in sequential networks [Shedletsky and MC uskey, 1975a]. The
work by Shedl etsky and M uskey approaches the difficult problem of
sequential circuit analysis and provides some specific nethods of analysis
utilizing Markov chains. This paper will also deal with sequential circuit
anal ysis on a general |evel.

We are interested in the solution to a nunmber of sinilar problens;

(1) the probability that a finite sequential machine, given random input,
“ produces some specified output,

(2) the probability that a suitablel Markov chain reaches a certain state,
(3) the steady state probabilities of a suitable Markov process.

Al of these problens can be handl ed using Markov chain anal ysis

[ Shedl et sky and MO uskey, 1975a], but this involves solving systems of

equations, inverting matrices, etc. W show that in some cases we can

take advantage of regular expressions to obtain these results directly.

I I . BACKGROUND

Regul ar expressions are defined recursively as follows: given an

al phabet A = (a,.a,,da,,...,a , the synbols A and ¢, and the regul ar
Ithk(OIZ k_1}hn’ol)\d dth [

Ispecifically, a Markov chain representing a nultinomal process [Keneny
and Snell, 1960].



operators "+'", "-" and "*" and parent heses,
(1) A string consisting of a single al phabet synmbol, single A, or single
¢ is a regular expression
(2) If P and Q are regular expressions, then so are (P+Q), (P-Q), and P*.
(3) No other string of synbols is a regular expression unless it follows
from (1) and (2) in a finite nunber of steps
Regul ar expressions represent sets of sequences of synbols. The
synbol A represents the sequence of zero length. The synbol ¢ represents
the null set or enpty set of sequences. The operation "+" in P+Q denotes
the union of the sets P and Q . The operation "+" in P+Q (from now on
witten as PQwth "-" understood) is the concatenation of elenents of
P and Q In general, concatenation is not commutative, i.e., PQ may not
eqaal QP. The star operator "*" or iterate of a set is defined as the

infinite union
P = A+P+PP+PPP+. . (2.1)
which we abbreviate as

p* = J ¢ (2.2)
=0

0 is defined as A. Gven

where P is i copies of P concatenated and P
that P, Q and R are regular expressions, then the follow ng relations

exist.



P+Q = Q+P (+ comut ati ve) (2.3)
P+QQ+R = P+ (Q+R) (+ associative) (2.4)
(PQOR = P(QR) (= associative) (2.5)
PQ+ PR = P(Q + R) (left distributivity) (2.6)
PR+ QR = (P + QR (right distributivity) 2.7
R+¢ = ¢6+R = R (+ identity) (2.8)
Ré = ¢R = ¢ (* zero) (2.9)
RA = M = R (¢ identity) (2.10)
R+R = R (i denpot ency) (2.11)
o= (2.12)
8 = 2 (2.13)

Equation 2.11 illustrates the equivalence problem As an exanple

-
[Brzozowski, 1962], consider the follow ng expressions.

* % %
A= (0 +10 1) 10

* * *
B=01(0+ 10 1) (2.14)

At a glance they do not appear equivalent so that their union would be

A+ B.  However, they are equivalent (they were derived by different
procedures from the sanme machine description) so that indeed, A+ B = A = B.
Since later we will derive probability expressions from these regular
expressions, We need to avoid counting probability masses nore than once.
W will require all regular expressions to be sinplified via equation

2.11. In general it may not be obvious that this condition is satisfied.
However, we will soon define a series of forms that regualr expressions

may have which we find both useful and fairly easy to check for this

sinplification.



Definition 2.1 The derivative [Brzozowski, 1964b] of a regul ar

expression Rwith respect to a sequence a, denoted DaR, i s anot her

regul ar expression given by
DR = {s | as ¢ R} . (2.15)

Al so,

D R

ab Db(DaR) (2.16)

Some sinple exanples are, for R = (011 + 00)

DR = R Do1R =
DR = 11 +0 DR = ¢
DoR = 1

Full details are given in [Brzozowski, 1964b]. Derivatives will be

useful later in defining and deternining substring relations.

Definition 2.2 The synbol | is reserved for the union of the al phabet

synbol s and constitutes a 'dont care' symbol of length 1. Then I* is

the set of all possible strings.

Definition 2.3 A sequence s is defined to be a substring of regular

expression R, denoted s € SUB(R), iff there exists an x ¢ I* such that

stR + ¢. If s e SUB(R then for some r ¢ R the sequence s is enbedded

inr. For example, 011 is a substring of 110110, since there exists an

xel (x = 11) such that D (110110) = 0 % ¢ . However, 111 is

11011
not a substring of 110110.



We now need to clarify the notion of an event, since it occurs both
in the regular expression literature and in probability theory. W

consider an event to be some application of zero or nmore synbols to an
automaton. If the automaton, at the end of the event, produces a

recognition output, i.e., it recognizes the input as a nenmeber of a set

of inputs for which it was designed to accept, we say the autonaton

accepts the event. The set of events that an automaton accepts can be

described by a regular expression [K eene, 1956].

Definiton 2.4 A sinple expression (or elenentary expression) is the

concatenation ofzero or nore al phabet synbols. The length of a sinple
expression T, denoted L(T), is an integer count of the nunmber of synbols
in-T. Note L(T) = 0 inplies T = X, For exanple, T = abcha is a sinple

expression of length 5.

Definiton 2.5 Afinite conposite expression is the union of a finite

nunber of sinple expressions. Exanple: T =ab + bc + ach is a finite

conposite expression

Definition 2.6 An infinite conposite expression is the star iterate of

*
a finite conposite expression. Exanple: T = (a + ab + abca) is an

infinite conposite

Definition 2.7 A concatenate conposite expression is the concatenation

of two or nore finite or infinite conposite expressions. For exanple

let A B be finite conposite, C be infinite conposite. Then ABC, A*B, AB“,
* % . .

and A B are concatenate conposite, as is AB, but AB by distributivity

reduces to another finite conposite



Definition 2.8 All other expressions that are not sinple, finite/infinite/

concatenate conposite in form are called conplex expressions. For exanple

* * . * k %
(ab ¢ + a*b) is conplex. Note that (a b ) and (a* + b*)* are conpl ex

expressions, but by the identity
*_*
(a*b*)* = (a* + b ) = (a + b)* (2.17)
they can be witten as infinite conposite expressions.

Definition 2.9 A delay expression is a special case of concatenate

conposite expression of the formT = l*S for some finite conposite S
Del ay expressions are identical to 'non-initial definite events'
in [Brzozowski, 1962]. The nane "delay" arises fromthe fact that any
del ay expression corresponds to a delay realized sequential mnachine
[Hennie, 1968] (see finure 4.1). The following definition differs

sonmewhat from Brzozowski's definition of an initial event

Definition 2.10 An initial expression is one where the beginning of the

sequence of input symbols nust be examined in order to determine the
acceptability of the expression. For exanple, ab, ab*c, acb*lf

(c + ab*a)* are initial expressions. Delay expressions are not initial?
since the input symbols contained in I* do not affect the acceptability
of an expression.

Definition 2.11 A synchronized expression is of the forn1I*SR wher e

Sis finite conposite and Ris a regular expression. Delay expressions
are a special case. The nane "synchronized" stens from the machine
realization, where S represents a set of synchronizing sequences [Hennie

1968]. To deternine the acceptability of a synchronized expression, al



symbol s back to the last occurrence of s € S nmust be exam ned. Synchroni zed

expressions are not initial.

Definition 2.12 Gven an al phabet | = a ,a, 1, define the

L IERRETLoN

probabilityof the symbols P(ai) as a set of real nunbers such that

0 j_P(ai) <1 for all i and P(ao) + P(al) + . ..P( ) = 1. Furt her

8k-1
define P(A) = 1 and P(¢) = O.

Lenmma 2.1 The probability of a sinple expression of length m> 0 is

given by the product of the probabilities of its synbols. For exanple,
for E = abc, the probability of this expression is P(a)P(b)P(c). W
are assunming that all appearances of any synbol at any place in an

event are independent of any other synbol.

=

This probability of an expression of length mis identical to the
probability that the corresponding automaton accepts a string of length
m given the probabilities (and independence assunption) of its input
symbols.  Mbst expressions that we have defined do not have a single
length. For exanple, the finite conposite E = (ab + abcab) represents
a machine that can accept after 2 input synbols and after 5 input
synbols. Mre conplicated expressions beconme nore difficult to "eyeball"

The following artiface provides a convenient solution for some more

complicated expressions.



Definition 2.13 G ven a regular expression R the generating function

of R, GEN(R), is constructed as follows:

(1) For each sinple expression within R, convert it to a probability
expression via lemma 2.1 and then follow it by dummy variable ™
where mis its |ength.

(2) Replace each starred term E* by

@O

z (®)3

j=0
repeating (this can be done in any order), until all the stars are

gone.

Exanple 2.1 Let R = (ab + abca) *, Then GEN(R) is formed as foll ows.

(8) Let x=P(a), y=P(b), z=P(c), The step (1) yields
(xyt2 + xzyztA)*

(B) Step (2) yields

[ee]

GEN(R) = z (xyt2 + xzyztl‘)J.
j=0

Exanple 2.2 Let R = (a + ab* + b*c)if Let a, b, and c be probabilities.

(A) Performing step (1) we have
(at + at(bt) + (bt)*ct)*.

(B) Renmoving the 3 stars gives

o)

GEN(R) = i <at + at i (bt)j + Z (bt)kct>i

i=0 =0 k=0



10

whi ch can be sinplified due to the commutativity2 of the variables as
o] [o0] i
GEN(R) = 2 <at + (atc) Z (bt)>
i=0 j=1
which is somewhat |ess conplicated.

The next exanple illustrates a problemin the procedure.

Exanple 2.3 Assune A and B are both sinple expressions. Let

R= (A+B)(A+B). Then GEN(R) = (GEN(A) + GEN(B))Z = GEN(A)?
2GEN(A)GEN(B) + GEN(B)>. Let A =a and B = aa. Then the preceeding
expression is incorrect because (a + aa)(a + aa) = (aa + aaa + aaaa)

by equation 2.11. The correct result for this case is GEN(R) = GEN(A)2
GEN(A) GEN(B) + GEN(B)2 but this cannot be determ ned without prior

exam nation of A and B.

Lemma 2.2 G ven regular expression R and GEN(R), the probability of
accepting a string of length mis contained in the coefficient of t".

This is found by an Al gebraic derivative operation

Ld GEN(R)
m! de® (2.18)

Proof Equation 2.18 at t = 0 picks out of GEN(R) the coefficient of

t™ and deletes all the others. This coefficient is the desired
probability. To prove this, we start with sinple events P and Qwth
lengths j and k. It is inmmediate for GEN(P) and GEN(Q) that the assertion

.is true. Next we see that GEN(PQ) = GEN(P)GEN(Q since the multiplication

“We note here that our generating function provides an inventory of
probabilities, indexed by sequence length. A similar ariface can be
used to inventory the sequences, by not converting sinply expressions

into probabilities and observing the non-commutativity of the synbols
under concatenati on.
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of tj and tk produces exponent j+k which is the length of PQ and the
corresponding probabilities have been properly multiplied in either
case. After allowing the assunption that P # Q (so that we don't have
the idenpotency problem of equation 2.11) we see that GEN(P+Q =

GEN(P) + GEN(Q) in the procedure of definiton 2.13. Finally, we show
that the star iterate is properly handled. Examination of equation 2.1,
plus the preceding arguments, show that step 2 of definition 2.13
yields the broper sequence of terms for the iterate case.

o]

For exanple, if GEN(R) = z (ab2t3)i, the probability of accepting
“5
a string of length m=6 is

@D fes] 6
i_d 2 231 =_1_z i2id® 31
61 , (abe) le=0 = &1 P T Mo

Lerma 2.2 is a general result. However, taking higher order deriva-
tives can quickly grow tedious. Also, we will be interested in steady
state solution, i.e., where m approaches infinity. The next section
provi des exanples of the use of lemma 2.2 and deals with specific
sinplifications we can enjoy based on the structure of the event in

question.

[11. EVENT PROBABILITIES

The followi ng theorens give the probabilities of an autonaton
accepting a finite sequence of symbols with given probability assignnents.
The accepting probability will be denoted Pm(E), for an autonaton

represented by expression E and sequence |ength m



AN

12

Theorem 3.1 If Eis sinple, q = L(E) and e = P(E) then for m>_0,

eif g=m

P (E) =
m 0 ot herwise

Proof. The proof follows directly' fromlemm 2. 1. .
Theorem 3.2 |If finite conposite E = (E0 + E1 + .. .+ Ek) with all Ei
simple and di sj oi nt, g = L(E,), and ei=P(Ei),then for m > O,

k (e, if q,=m

P_(E) = 1 !

~ (0 otherw se

i=0
Proof If all q, are unique, the proof follows fromtheorem3.1. If two

or nore q, are equal , then because the corresponding E, are disjoint, we
can add their probabilites. A rigorous proof uses generating functions
of E and equation 2.18, but the above argument should be sufficient.

For exanple, let E = (01 + 10 + 111), with P(1) = p and P(0) = g. Then

_ _ _ 3 - |
P (E) =0, P,(E) = 2pq, P4(E) = p7, and Pk(E) =0 for k > 3.

*
Theorem 3.3 If infinite conposite E = (EO) with sinple EO’ q = L(EO),
and e = P(EO), then for m> 0.
LY q divides m
Pm(E) =

0 ot her wi se

m 0]
Proof We have P (E) = L GEN(E) _ 1 a" q\
m m! m = n Tm . L. (et?)

& i o .
— il a" qj € i f qQj=m
T € m! m t =

)= dt t=0 0

"ot herwi se )
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*

Corollary to theorem3.3 If infinite conposite g = (EO + E; + ..+ Ek)

with all E, sinple and disjoint, all a; =L(Ei)=q and ei=P(Ei),then

for m> 0, m/q
(e0+el+. .. +ek)

0 ot her wi se

if q divides m
P (E) =
m

As an exanple, with E = (aba + bba), letting a and b be probabilities,

it follows that B,(E) = O, P,(E) = ba® + ab’, P,(E) = P((E) = 0,

P.i(E) = (ba® + ab2)?, etc.
Theorem 3.4 If infinite conpositeEz(EO+E1+. .o +Ek)*with all Ei
sinpl e and uni que, q; = L(Ei), e, = P(Ei), define integers n, j,, j,,--

ik and a constraint set Cm(E) on these integers given as

-

C(E)= mijdy--ed | m 2 003y 2 0 Qi ij. <,
m | 1 2’ k 1 i=1 1

X
and m = nq, + Z i; (e - qo)}
=

=

then for m> 0,

C _(E)
m
i s i 3 -
P (E) = G e gmdymeeeg) T T2 ik
m . A P | 3j 0 l 2
LN EPN POTTEN 1-2 k
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1 4"
Proof W have P = — —— GEN(E)
m,E M2 dtm ‘t:O
®©
m q q q, n
=*an i—tn-Z(eot0+e1tl+ +ektk)
dt n=0 l't=0
The multinom al expansion for the power of a sum yields
m 0] n
Pm(E);—;xllT dm . z (jjn...j
dt n=0 APEEPYRRTS 12 k
s PO —j .. -'“j ) q jl qz 32 quk
0 1 -2 k 1 )
et ) (e,t 7). . (et
(ept ) (e, 2 k £=0
Col l ecting powers of t yields
S < . (n=j,=3,=w--d) 3y 3, I
Pm(E) = z (ij j) ey e; ey T...ep
n=0 31,32,...Jk1 2 k
m -5 s _ _3 . . .
J___ d t((n Jl 32 Jk)q0+31q1+32q2+...+1 q
m! m k
dt =0
However, i
1 vdm__tf(n—jl‘jz_" =i & Ji%
m . m 't=0
dt
k\
,’1 if m = nq, + izb (e - 9y

!0 ot herw se
and the multinom al expansion we used adds the constraints that n > 0,
3 i i+ i+ + 3§ .
i; 2 0 for alll,andani Jp * JkAIIeIementsof Cm(E)
satisfy exactly these constraints so the multiple summation can be replaced
by a single sunmation over the el enents of Cm(E), yi el ding the postul ated

resul t. a
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I nspection reveals that theorem 3.3 and its corollary are a special
case of theorem3.4 if one handl es the nonexistance of a set of ji properly.
Theorem 3.4, though perhaps formdable in appearance, has sone

, interesting properties that sinplify its interpretation and application.

I ndeed, probabilities can sonmetinmes be witten down by inspection.

Exanple 3.1 Consider infinite conposite E = (ab + acbca) *. Since it is
conposed of two sinmple events ab and acbca with lengths 2 and 5 (and
probabilities we define as ab and azbcz), the constraint set Cm(E) is
_ . . . , + 35 =
C (E) ={n,j N2 0, j >0, j < n, 2n 3j = m}

and the probability of accepting a sequence of length mis

C (E)
P (E) = i (% (ab)™ T (a2pc?yd
= " n, J .
c (E)
m
P (E) = z ( ? y a3 23

n,j
The constraint set gives for each m a set of n and j shown in figure 3.1.
J
A

Clz(E)

{n,j |3,2)¢6,0 }

34
PlZ(E) 3a5b3c + a6b6
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Set CmM(E) is a family of lines with slope -2/3. The integral solutions
lying on or between j=O and j=n on a given line are used in the summation
of Pm(E). If we think of lines as two dinmensional surfaces, the constraint
.~ Set gives us a famly of such surfaces containing the desired (n,j). For
more conplicated expressions with k sinple conponents of different |engths

we are |looking for integral solutions on anal agous k-dinensional surfaces
If we examine the state diagramin figure 3.2 for the machine used in

exanple 3.1, we notice that it is not strongly connected

start (A)

Figure 3.2

By changing our context, letting a, b, and c¢c be probabilities suming

- to one, figure 3.2 represents a Markov chain (specifically, an absorbing
trinomal Markov process [Kemeny and Snell, 1960]. The probability of
accepting (arriving in state A) must, as tinme grows |arge, becone snall
or correspondingly, the likelihood that the nmachine is driven into the
trap state C grows larger with time. Mst infinite conposite events

will exhibit this behavior, i.e., FHSE)——>-O for large m This convergence
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need not be nonotonic with mas table 3.1 shows, for a = 0.5, b 0.4,

and ¢ = 0.1.

Table 3.1

m P (E)
m

—

0

0

2

0

04
.001
. 008
. 0004
. 0016

. 00012
. 000321

© ©O —~N o o1 B w N
O O O O O O O O O O

—
o

Some infinite conposite events correspond to strongly connected nachines.
*
For exanple, let | = (p + q) and infinite conposite E = (p + qp + qgp + qqq) .

The state diagram and state table for this event is shown in figure 3.3.



P.,q
P aq
» () () ()
q q AlA B
) BA ¢
ch A
Cm(E)
P® = Y n-j, i +2j
m - . . n. ) p 2 q 1 2
n’JI’JZ J]_ J2

C (E)= {n,j,,] i : i< . .
(B { 1’32 ‘H’Jl’Jg 2 0, 3, + g = n+j +23, = m}

Figure 3.3

The equation for Pm(E) is evaluated in table 3.2 for several values of m

with p=0.4 and q = 0.6

Table 3.2

m PnfE) m Pm(E)

| 0.4 11 0.509093478
2 0.4 12 0.511270261
3 0.616 13 0.509964191
4 0. 4864 14 0.509964191
5 0. 4864 15 0.510434376
6. 0. 533056 16 0.510152265
7 0. 5050624 17 0.510152265
8 0. 5050624 18 0. 510253825
9 0.515140096 19 0.510192889
10 0.509093478 20 0.510192889
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For large values of m the probability of accepting an infinite conposite
expression always converges to some value. For absorbing (not strongly
connected) machines, this value is always O or 1. As just observed in

. table 3.2, the value may be somewhere in between, dependent upon the
transition probability assignments. It can be shown in this exanple by
simpl e Markov steady state analysis that P, (E) = 0.510204082. O course,
eval uating Pm(E) directly via theorem3.4 is only practical for smaller

m and for larger mthe steady state value P,(E) is usually what is

desi red. In the next section we deal with steady state solutions.

V. STEADY STATE PROBABILITIES

s If we consider a (finite) nachine that has been receiving input for
a long tinme we mght expect its response to eventually stabilize into
sone pattern. Indeed this is true as a sinple Mrkov chain anal ogy
reveals, for any type of input that has stationary (tinme invariant)
statistics. W denote this steady state value for expression E as P, (E)
and show how it can be directly derived for some fornms of regular
expression, thereby avoiding traditional Markov analysis. W first

consi der del ay expressions.

* : .
- Theorem 4.1 G ven delay expressions E =T S where Sis sinple and
4 = L(S), then P,(E) = Pq(S), that is, P,(E) is equal to the probability

that the last q inputs forned S
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Proof Verification is trivial when the machine that realizes E is

visualized as a g-stage shift register driving a decoder such as shown

infigure 4.1

Input
©

I—-1>o—- FF) | o | FFy || B

Figure 4.1

Theroutput equals 1 if the shift register contains S. The probability

of this is sinply Pq(s), since inputs are independent in tine. °

*
Corollary to theorem 4.1 Gven a general delay expression E=1 S

where Sis finite conposite (S1 S, Sn), with sinple and disjoint

Si of length q = L(Si)’ t hen

n
P (E) = ZI qu(Si)

Proof The proof is the sane as for theorem 4.1 except that the output
“circuit (the AND gate) in figure 4.1 is replaced by a sum of products
network with n AND gates, one for each Si' Since the Si are unique, the

outputs of the n AND gates are disjoint and their probabilities sinply

sum for the correct result. o

Note, care nust be taken when using the corollary, that the Si are
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disjoint. For exanple, the following two expressions are equivalent.
*
E, =1 (1 + 01 + 001) (4.1)
*
= .2
E, =11 (4.2)

Since 1 is a suffix of 01 and 001 (also 01 is a suffix of 001), the s,
in equation 4.1 are not disjoint. If s is a suffix of t then there
exists an x ¢ I* such that xs =t. This suffix condition is a special
case of substrings (definition 2.2),i.e., stt = A

Now consi der the expressions nmade up of concatenations of I, S, and

T where S and T are both sinple and further, S ¢ SUB(T*), that is, Sis

not enbedded in T*. Equation 4.2 lists some expressions.

st (a) (4.3)
.. ITITITIS (b)
ST (c)
.. I1ISTT (d)
J1STTT (e)

Qui ck examination show that 4.3a represents 4.2b-4.2e. Everything to the
left of the rightnost occurrence of Sis in essence a don't care (1)

synmbol in nmeaning. The English description of a recognizer for 4.3a

is "the nachine that accepts any string ending in S followed by zero or
more occurrences of T". Such a nmachine is remniniscent of a delay machine
but for non-trivial T, cannot be so constructed with a finite nunber

of stages. What occurred before the |ast appearance of S is inconsequential

to the output of the machine. In figure 4.2 we show the inproper® state

3In an inproper state diagram an arc may represent a transition through
a nunber of states. In figure 4.2, the synbols S, T, U and V may be
single input synbols, or more conplex expressions.
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di agram [ Brzozowski, 1962]of a machine that recognizes |*ST*.

e QLT )0

Figure 4.2

We let V be the set of all strings that do not contain an enbedded S
W let Ube a set of all strings that do not contain an enbedded S or
Then letting s = P(S) and t = P(T), we can find a Markov chain that

gives us the probability of accepting I*ST*, shown in figure 4.3.

l-s5-

. t
L-s ‘° o. s+t

i

Figure 4.3

The steady state solution for state B (acceptance) for this two state

chain is easily found to be

P(state B) = P(1*ST*) = s/(1-t) (4.4)

The following theorem gives this result proved by a different route, but

the foregoing analysis wll be useful later.
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: : _ *
Theorem4.2 Gven sinple Sand T with T #2, S ¢ SUB(T ), E = |*ST*,

s =P(S and t = P(T), then P,(E) = s/(1-t).

Proof By theorem 4.1, the probability of receiving 1*Sis s. The

. o - * . * 2 * 3,

> probability of receiving T ST is st; I STT—st ; I STTT—est | etcC.
Since S cannot equal T, each such string is unique and has a disjoint

probability of occurrence. Thus

@D [e0]
P (E) = 2 sth = s >: X = s/-0). -
k=0 k=0

Exanple 4.1 Consider R = I*(OO)(ll)*. Letting q = P(0) and p = P(l),
find P,(R. By theorem4.2, with S =00 and T = 11 we can imediately
wite p (R) as qz/(l—pz). We check this result via a Markov steady state
ar?lysis. The Markov chain for Ris given in figure 4.4 along with its

transition matri Xx.

A
P g
p -

moe® >
o 0 1

Figure 4.4
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We solve a system of equations in 4.5 derived fromthe matrix and the

constraint that the sum of the state probabilities is unity.

A= PA + gB

B =qA + gb + ¢E

C=qB + ¢qC (4.5)
D= pC + pE

E = pD

Since it is easiest to solve for B we get the series of equations in 4.6.

A=2Eg

q
B=B
C = %B (4.6)
D=-_.B

12
E = _E&_B

2
1-p

Their sumis

A+B+C+D+E =1-= B(% r1+3y 94 PL)

P l-—p?‘ 1_p2
2 2
| = p(RFPate. + 4U+p) )
Pq 1-p2
1 = B(l:Rﬂ + 1)
Pq
1
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So B = pg and then C=q2andE=J—2. Then
1-p
9 22
Po(R) = C+E=q + 24
1-p
2
-a® (14 P
1-p
2 2
=q /(1-p")
as before.
Corollary to theorem 4.2 Gven finite conposite S=(Sl+ Sz+' ..t Sk)

with probability s and some T 4 A such that we can find its probability
*
expression t. Then if for all i, S ¢ SUB(T ) then P (I*ST*) = s/(1-t)

by the sane argument used for theorem 4. 2.

2 * .
Example 4.2 Consider the expression R =1 (001 + 11)(01)*. A qui ck

exam nation of R shows that the corollary to theorem 4.2 applies yielding

Po(®) = (p° + pq2) /(1 - pq)

p(p + qz)/(l - pq)

p(1 -~ pq)/(1 - pq)

=p.

We can derive this answer fromthe state description of T as shown in

figure 4.5 wthout Markov analysis.
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HET oW
umowiewWlo
mEEEOQO|F

Figure 4.5

Ftom the state table we can derive the set of synchronizing sequences from

the anbiguity tree [Hennie, 1968] as in figure 4.6

(ABCDEF)

N

(BDF) (CE)

0 \/ Y 1
(BF)j
.4——””"”#”’27 1
(E)

Figure 4.6

™)
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Fromthis tree we see the set of sequences is given by
* * * *
(00+114+011+100+1 (01) 1+1(01) 00+01(01) 1+01(01) 00) (4.8)

.o but we notice that each sequence in the set ends with either 00 or 11,
which are thensel ves synchronizing sequences. Ve retain only these so
that the synchronizing set Sis (00 + 11). Next we note that the
sequence 00 leaves us in state D while sequence 11 leaves us in state E,
an acceptor state. W can get fromDto Ewth a 1, so we nodify the
synchroni zing set so that the end result is unanbiguous and has an
accepting output. This gives us S = (001 + 11) which guarantees to
place us in state E. Next we determine A the set of all sequences that

take us fromE back to E These are

o

A= (1+(01)+0(10) 00y *1)* (4.9)

Now we examine A and determine if a synchronizing sequence fromS is
enmbedded init. First, 11 ¢ SUB(A) until we renove the 1 inside. Next,
001 € SUB(A) until we renove the term Q1 OQ*QO*I. This leaves us with
T* = (01)*, which is the set of all sequences that take us fromE to E
wit hout any enbedded synchronizi ng sequences. Hence, with s = p2 + pq2
and t = pq we get B (R) = (p2 + pqz)/ (1 ~ pq) = p as before. Vhat we
have done is to construct a sinple Markov chain of the formin figure
4.3 directly fromthe state description of the nachine, for which the
steady state solution is easily found. These results can be verified
by a standard steady state Markov analysis of the original state diagram
The procedure just outlined is general in that we may not necessarily

be working with a regular expression that has the form of a synchronized
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expression. Recall the expression in figure 3.3, E=(p +qgp + qqgp + qqq)#
W have already seen that it converges to a steady state value other than

0 or 1. Quick inspection of its graph shows that its synchronizing set

is S=( p)and that T (mnus enbedded synchronizing sequences) is T = (qqq)
Therefore its steady state equation should be P (E) = p/(l—qs) whi ch
evaluates to 0.510204082 for p = 0.4 and q = 0.6. This agrees with the

Mar kov sol ution (See section 3).

V. CONCLUSI ON

Utilizing regular expressions we have found new ways to calcul ate
two probabilities; the probability of traveling fromstate X to state Y
iqzexactly m steps and the steady state probabilities of being in a
state. W have shown exanples in finding output probabilities for
sequential circuits and in multinonmial Mrkov processes. In particular,
we have shown the useful ness of synchronizing sequences in determning
steady state probabilities. In sone cases, the techniques devel oped
here lead to substantial sinplifications, especially in steady state
probl ens.

Basic intuition is quite useful in approaching cases which are not
directly covered in this work. For instance, if presented with a sinple
expression A cascaded with a synchronized expression, such as AI*ST*,

a steady state solution for this case should quickly be seen as
as/(l-t). Oher problens of seeming difficulty yield when the underlying
state diagrans are viewed. Usually, a flexible approach will give

surprisingly good results.



Certain problems restrict the generality of these results. For
exanpl e, regular expressions that have the conplex form may be intractable
[f the underlying automata has no synchronizing sequence, then by default,
- the steady state analysis cannot be undertaken. Further problens arise
from the equival ence problem (equation 2.11) and determining if the
substring relation holds. In many cases, this is not too difficult
"by eyebal|" due to the pattern recognition abilities of the eye. However,
a programto performthis task could easily consume |arge quantities of
time. Thus we find the procedures devel oped here to be specialized to

certain tasks, for which they can be quite useful
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