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ABSTRACT

A preliminary examination of the influence of control structures on
the complexity of the proof of correctness of computer programs. A block
structured proof technique is defined and studied. Two parameters
affecting the complexity of the proof are defined; the number of exits
from a block, and the cycle rank of a block, a measure of loop complexity.
Proof Complexity classes of flowcharts are defined, with maximum values
for these parameters. The question investigated is: How does restricting
the complexity affect the class of functions realizable, assuming a given
set of primitive actions and predicates: It is found that loop complexity
may be traded for exits, and that for a given number of exits there are
functions requiring any specific loop complexity. Further, it is shown
that blocks with two exists are considerably more powerful than those with
only one. In fact, for a given maximal loop complexity, there are functions
that cannot be realized with one-exit blocks, but can be realized with two-
exit blocks, even if the loop complexity is restricted to essentially one
internal loop per block. Looking at it the other way around, the addition
of a second exit to a block allows construction of flowcharts with any
specified loop complexity. This result appears to be extenable to blocks
with more exits, but this has not been completed.

The work is primarily of a graph theoretical nature, and may also be
interpreted as an examination of sequential control structures from the point

of view of feedback loop complexity.






PREFACE

With the publication of this report we are resuming our series:
"Studies on Computer Organization™ which, since 1970, has been
supported by the Atomic Energy Commission (now Energy Research and
Development Agency), first at the Johns Hopkins University and since
the beginning of this year at Stanford. The attached report describes
work performed at Johns Hopkins University under a predecessor contract

but concluded after the termination of that contract.

Michael J. Flynn
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The Conplexity of Control Structures and Program Validation

1. | ntroducti on

W are interested in analyzing the structural conplexity

of conputer prograns. W intend to illumnate the influence of
the control structure of a programon its proof of correctness.
If we succeed, we will provide a theoretical basis for the in-
tuitive feeling, shared by nmany, that "structured" programs are
easier to prove correct, This theory, in turn, will provide a
means to judge the suitability of proposed basic control struct-
ures in sinplifying program docunentation and certification.

1.1 Flowcharts and fl owchart schemas

In our study of the structural conplexity of programs, we
wi Il represent prograns by flowharts. Flowharts are a form
of directed graphs in which the nodes represent actions and pred-
icates, and the arcs (branches, edges) represent possible sequen-
cing: a directed arc fromA to B indicates that B is a possible
direct successor of A Nodes with only one branch leaving it
represent actions, and nodes with nmore than one branch |eaving
represent Predicates,

Generally, the nodes will be |abeled: any unlabel ed node
must have only one output branch and represents the identity
transformation over the program variables. The arcs leaving a
predi cate node may be |abeled with a condition specifying under
what circunstances the indicated node is to be taken as successor,
By requiring conditions at every predicate node to be mutually
exclusive, we disallow non-determinism. in addition, we require
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each flowchart to have at |east one node with no predecessor
the entrance, and at |east one node with no sucsessor, the exit,.
For the nost part, we will concentrate our attention on
flowchart schemas, a formof flowcharts wherein the actions and
predicates are not specified, That is, they are not interpreted,
but are nerely identified by their labels. |n schemas, the only
relationship inplied between the various actions and predicates
is that they all operate on the programvariables, |f two actions
or two predicates have i dentical labels, then the respective ac-
tions or predicates are identical, In proofs, it will sometines
be convenient to consider a flowhart rather than a schenma. In
these cases, an interpretation of the schema will be provided.
The terms control structure, control graph, flowgraph, and
graph will be used synonynously with flowhart, and when the
difference is not inportant, no distinction will be nmade between

flowcharts and flowhart schenas.

Most of the flowcharts we will be dealing with will have a
special form called block structure, In defining a class of
bl ock structured flowcharts, we will specify a set, usually small
of "primtive blocks" and a series of rules, called block com
struets, for constructing "conpound bl ocks" fromactions, predi-
cates, and other blocks. By the general term block, we nean
either primtive blocks or conmpound bl ocks constructed from some
set of rules, perhaps unspecified, The primtive blocks wll

generally be flowcharts consisting of at most two or three actions
and predicates,



Bl ocks will be very inportant in our discussions throughout
this proposal, so we will define here a few of the terms we wll
be using. W begin with an exanple. The class of D-charts [5,29)
is the smallest class defined byt
1, Any action is a D-chart,
2, If pis apredicate, and Gy and G, are D-charts, then

Concat enati on —G ——=G ;— ( Gy3G, )
G
. 2701 . .
Sel ection ——-p\G>——- ( if p then (}l else G, fi )
2
| | :Gl7 |
Iteration P —> (Wile p do Gy od )

are D-charts.

In this definition, we have actually given two definitions. The
one on the left defined the flowchart: that on the right is intend-
ed to show another, linear representation for the sane constructs,
Rule 1 specifies the prinitive blocks, and rule 2 recursively de-
fines the compound blocks. In this case, the block constructs are
the three subrules: concatenation, selection, and iteration.
Here, each bl ock has one entrance, one exit, and at nost onein-
ternal loop. In other cases, the nunber of entrances and exits
my be different. W therefore use the abbreviation (n,,n,)
block to indicate that the block has n, entrances and n, exits.
This definition is a 'bottomup' description, tecause it
expl ains howto construct a D-chart fromthe primitives. Fre-
quently, we will be interested in a *top-down* description; given
a flowchart, we want to see how it coul d be construc<ed from
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D-charts (or other blocks, as the case may be). Thusit is
necessary to "deconpose” the given flowchart into blocks fit-
ting the given description. For example, we illustrate a flow-

chart and one deconposition into D-charts in Figure 1 bel ow

Figure 1. A flowhart and a deconposition as a D-chart.

W show the bl ocks by surrounding them with dashed lines; In
the case of D-charts, any program has a uni que deconposition in-
- to blocks, except for the concatenation operation. In general,
this will not be the case. Mst of the classes of flowchart
schemas we will be discussing will not yield unique deconposi -
tions. Therefore, unless we specify a particular choice of
bl ocks for a given flowhart, we nean our discussion to be true
of any of the allowable deconpositions.

In general, when we discuss a block, we consider any other
bl ocks used in its construction to be non-deconposable.  Thus
when we say that a D-chart block has only one internal |oop, we

mean it has only one | oop when inner blocks are considered single

nodes.
1.2 Proofs of correctness

W intend to analyze flowchart structures to illumnate
+heir influence on proofs of correctness. There are several ap-

proaches to proofs of correctness. To nane a few
n



a) S+ructural induc*ion [ 5]
b) Conputational induction 24]
¢) Inductive assertions s, 235, 33]
d) Recursion induction [23, 2b, 26)

As the nanes inply, they are all variations on the principle of
mat hematical induction. W are primarily interested in the in-
ductive assertion nethod devel oped by Fl oyd [lb]. Naur 33},

and Manna [25]. In this method,2 |ogical proposition involving
the variables in the programis associated with each edge in

the flowchart, These propositions, called assertions, are so
chosen that each is true whenever, in the course of conputation,
control reaches the edge tagged with that assertion. The first
assertion is essentially a statement Of the input data specifi-
cations, and the final assertion is a statenent of the output
requirenents. The correctness of the programis established

by showi ng that thesemantics of each statenent, together wth
its antecedent assertion, logically inplies its consequent asser-
tion. Thus, the conjunction of all the inplications inplies that
if the initial assertion is true for the input data, then the

final assertion will be true on conpletion of execution of the

program  However , this procedure proves only the partial correct-

ness of the program This is not total correctness, because there

has been no proof that the program actually term nates, and thus
the final assertion may never be reached. In general, a separ-
ate proof of ternination is require;. This proof is frequently
nmore difficult, both practically and theore<ically, than the proof

of pmartial correctness.



In practice, it is necessary for the individual construct-
ing a proof of correctness to0 tag with assertions only the en-
trance, the exit, and a set of internal edges. The internal
edzes are chosen so that there are no loops in the flowchart
that do not have at |east one edge tagged. This divides the
flowchart into a finite nunber of finite paths, each of which
has an assertion at both ends, ardé includes no other tagged edges.
For each such path, the programmer nust verify that the antece-
dent assertion, together with the semantics of the statenents
al ong the oath, inplies the consequent assertion.

This description illustrates the relationship between the
structure of a programand its proof of correctness that we seek
to examne. The nunmber of assertions that one needs to supply in
order to prove correctness depends strongly on the |oop structure
of the programin question. For exanple, consider the two flow
charts in Figure 2, Each contains four predicates and two | oops,
but one requires two internal assertions, and one requires only
one. W have not shown the action nodes in these flowcharts in

order to show nore sinply the structure.

1
..hrgl -—r,.gz ——-a,.'p'3 —i>pﬂ— JL+£1—T—> ;82_:1,. JB—,F* pT—-r

Figure 2. a) One assertion required. Db) Two assertions required.
we require any measure of the conplexity of these flowcharts to

reflect this difference in the number of assertions required.



1.3 Structured programmng and structured prozrams,

The goal s and the significance of this research 1ie in the
field of structured programming, Structured programming i S a
termused | oosely to describe a discipline for the devel opment
of conputer programs. The purpose of the discipline is to im=-
prove the conprehensibility of prograns in order to ease she
tasks of docunenting, certifying and maintaining programs. "he
maj or idea involved is the restriction of the control structures
available to the progranmer. The prograns produced under this
met hodol ogy, called structured programs, have bl ock struczured
flowcharts with severely restricted prinmitive blocks and block
constructs. Since the GOT0 statement in nost progranmmng |an-
_guages represents a branch capable of connecting any two nodes
ina flowhart, it is very powerful and can easily be used to
construct any flowchart. For this reason, the adivoca<ss of
structured programmng call for its aboli=<ion, or at least or

severe restrictions on its use. This has resul<ed in

n

trucsured
rrograms al so bei ng known as GOT0-less prograns.

There is as yet no general agreenment or the set of primtive
bl ocks and bl ock constructs to allow in structured programs.
However, nDSt proposed SetsS are restric*ted <o nne entrznce, ONE
exit, and at mos* one intern3l loop, In fact, the mos* consro-.
versial proposed Structures, the so-called "escape" macharisms,
are precisely those that do not fall inthisclzass.

By studying control structures tosee n1ow <he comnlexi<y of
woof s Of correctness 1S affected by allowinz NMOre =xi-s cr more
conpl ex looping structures in bl ocks, we will be z%»le =o uize
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the suitability of proposed control structures.

Qur concern for the conplexity of the proof of correctness
does nvt arise because we are worried about proving progranms cor-
rect. We realize that nost programmers will never attenpt a for-
mal proof of correctness. On the other hand, alnmost all program
mers try to convince thenselves that their prograns are correct,
and anyone who nust nodify an existing program general |y nust
understand the program in order to nodify it successfully. These
processes require at least an informal, intuitive proof of cor-
rectness, and an increase in the conplexity of the fornmal proof

probably inplies a corresponding increase in'the conplexity of the

i nformal proof. Norse, in the informal proof, if the conplexity
becomes' very great at all, it wll probably be inpossible for the

programmer ever to convince hinself that the programis correct.



2. Literature Survey

The literature related to our proposed research may be
grouped into two general classifications, programvalidation
and program schemas.

2,1 Prozram validation

Wiile a great deal of work has been done in this area,

most of it has no bearing on our own work, and will not be dis-
cussed. As explained in the introduction, the inductive asser-
tion nethod devel opsd by Floya[14], Naur [Iﬂ. and Manna p5]
motivates our study of program complexity. W illustrate <the
process with an exanple, Figure 3. This is the flowhart of a
simple proeram to find the absolute value of the difference be-
tween its two input variables: the domain is the set of non-

negative intezsers,

XeN&yeN (N (s the set o f
non-negative
infeger;)

Fizure 3, A flowchart with ascertions,
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A proof of partial correctness must show that for every
non-negative integer value for x and y, the programcalculates
z=|x-y| if it ternminates. Total correctness requires, in ad-
ditioh, that the programterminate for all non-negative integer
values for x and y. By tagging edges in the flowchart with as-
sertions (logical propositions relating the variables) in such
away that every looping path includes at |east one assertion,
we divide the flowhart into a finite number of finite paths to
be verified. A path is verified by showing that the antecedent
assertion, together with the semantics of the programm ng lan-
guage involved, logically inplies the consequent assertion.

This logical inplication for a given path is called a verifica-
tion condition for the path. Thus, if and only if the assertion
at the entrance to the flowhart logically inplies the conjunc-
tion of all the verification conditions in the programfor any
value of the input variables, the programis partially correct,
Simlarly, if we canshow that there is no assignnent of values
to the input variabl es satisfying the conjunction of the entrance
assertion and all the verification conditions, nodified by repla-
cing the exit assertion with its negation wherever it occurs,
then we haveproved total correctness. W call. the first pro-
position *Pc,* and the second »Te,” For the flowhart of Figure
3,they areas follows, where a(x,y,u,v)is an unspecified asser=
tion attached as shown:
Pc:  (Vx) (Wy) ((xeN & yeN) o ((x2y & Q(x,y,%,y)) V (x<y & Q(x,y,y,x)))
& (Yu) (vv) (Q(x,y,u,v)o ((v=0 & u=|x-y|)
V (v#0 & Q(x,y,u=1,v-1)))) )
10



Te: (Ix)(Jy) ((xeN & yeN) & ((xzy & Q(x,y,x,y)) Vixky &Q(x,y,y,x)) |
& (V) (Yv) (Q(=,y,u,v) s ((v=0 & uf|x-yl )

V (v#0 & Q(x,y,u-1,v-1)))) )

To prove partial correctness, it remains necessary to discover
some assertion, Q(x,y,u,v) that makes Pc true. It is not difficult
to see that Q(x,y,u,v)=(u20 & v20 % u=|x-yl +v) satisfies Pc, Prov-
ing that there is no assignment to Q that satisfies Tc is consider-
ably more difficult. [In general it may be done in one of two ways.
We may prove it directly, by showing that Tc is self-contradictory
for any assignment of Q, or we may prove it indirectly by proving
that the programterminates from other considerations. In this
case it is easiest to prove termnation by noting that when control
first enters the loop, v20, and that each time around the [oop v
is decrenented. Since v is an integer, and it is decrenented by 1
each time, it nust eventually be the case that v=0, in which case
control exits the loop and the program  Thus the programis total-
ly correct. This approach is due to Gorn and ' Fl oyd.

e nice feature 0f this fornulation of the proof process is
that it makes apparent the fact that the most difficult part of
the proof frequently is finding the right assertions.

This method is not obviously applicable to recursive prograns,
Cthers have develoned nethods for dealing with these nore gzreral
control structures, and nmuch work has been done in nechanizing
the proof process, We will no+ discuss these results, however,
since they are u-related to our work,

2.2 Programschemas

There are “wo general -=yvoass of research in this area,
studies Oof "progzram schzmas" and studi es of "flowcharts." The

11



studi es of program schemas deal with certain decision problens
concerning various classes of schemas. Exanples of the types of
questions exam ned are:

1) The termnation problem -- Does a given schema halt
for every interpretation?

2) The divergence problem-- Does a given schema diverge
(fail to halt) for every interpretation?

3) The equival ence problem-- Do two given schemas com
pute the sane result fromthe same input for all in-
terpretations?

As m ght be expected, the answer to nost of these extrenely broad
questions is undecidable, in fact, usually not even partially de-
cidable. This means, for instance, there is no algorithmthat wll
always halt with the correct answer for the equival ence problem
when given two schemas, Manna [27) provides a concise overview

of this work, This research is not directly related to our work.

On the other hand, the research concerning flowharts is
closely related to our owmn. This work is generally concerned wth
different types of equivalence o reducibility between prograns
or flowcharts.

The idea of block structured flowcharts is due to Bdhm and
Jacopini {4]. They denonstrate how to produce a D-chart that is
equivalent to any given flowhart, in the sense that both, given
the same input, produce the sane output. In order to do this, we
introduce a stack, and a test for the top elenment of the stack.
The D-chart simulates the equival ent chart by encoding path infor-
mation on the stack.

Cooper [7] shows that one can do even better, in the sense
that one never needs nmore than one loop in the equivalent D-chart,

12



In this case, We associate a bool ean variable with each statenent
in the programto be sinulated, [Initially the variables are set
to false, exceptfor the start statement. Then, in an outer |oop,
each bool ean variable is tested in turn, and the associated state-
ment is executed only if the variable is true, After executing
the statenent, the associated bool ean variable is reset to fal se,
and the variable for the next statenment to be executed is set to
true. While these results have some theoretical interest, they
are of little interest in practice, since the prograns they pro-
duce are even nmore difficult to understand than the prograns they
simulate.

Knuth and Floyd (18] , Aschcroft and Manna [1], and Bruno
and Steiglitz {53, show that there exist flowcharts that are not
equi val ent to any D-chart, under slightly different forms of equi-
val ence, all of whichessentially require that no new variabl es
be added, and exactly the same sequence of actions occur in both
flowcharts for a given input.

Kosaraju [201 investigates the struczural conplexity of the
classes of block structured flowhart schemas that have been pro-
posed as the basis for structured prograns, H's investigation
is primarily in terms of a reducibility thatrequires that if X
is reducible to Y, every action and predicate in Y must occur in
X, and the result computed by X be the same as *hat conputed by Y

for every input value; if one does not *erminate, neither does.

(]

He shows that there exists a hierarchy of classes of flowchart
schemas, with D-charts at the bottom 1In each class, there exist
flowchart schemas that are not reduci ble Lo any schema in any |ow
er class. Two of the classes he defines will be of interest to

13



us. These are defined bel ow.
RE, -charts (for Repeat-Exit) The miniml class defined by:
1. Any action is an REn-chart.
2. The (1,1) statenent EXIT(i), 0¢i«n, i S an RE -char*.

3. If pis apredicate, and G,,G are RE_-charts, then
G43G, and if p_then G, else G, fi are RE _-charts.

4. If Gis an RE -chart, then RPT;G;END is an RE -chart.
(Note: W do not give a graphical form because it is difficult
to describe concisely a graph structure that suits the intuitive
notion of the flowchart for the RE -charts.) In this class, the
RPT-END pair delineates a block. Wth this definition of a bl ock
we can define levels in a manner anal ogous to that of well-forned
parent hesi zed expressions. W nunber the levels so that the outer-
nost level is level 1, and each successively deeper |evel increases
the level nunber by one. VWen it is useful, we attach subscripts
to the RP™ and END statements to identify matching pairs. Thus,
in Figure 4, the innermst RPT-END block (shown with subscript 3)

is at level 3. Both the RPT.-END

5 2 and RPT,-END, pairs delineate

bl ocks at |evel 2.

The RPT, EXIT(i), and END statements are purely control state-
nents; they do not transformdata in any way. The RPT statenent
serves only as a | abel ed node; when an END statenent is reached,
control transfers inmediately to its associated RPT, Thus, the
RPT-END pair represents a loop in the flowhart. The EXI T(i)
statement provides a mechanismfor transferring control out of a
loop. It transfers control out of the ith RPT- END bl ock encl osing
the statenment; the next statement executed is that statenment im
medi ately following the END statenent of the outernost block exited,

14




RPsz
if p then =XIT(2)
else RPT3:
1f q then EXIT(2)
else if r then EXIT(1)
else A
fi
fi;
END3
fi;
ENDZ:
Cs
RPTQ;

if's then EXIT(2)

el se B

ENDu:
END1

7igure 4. An exanple of an RE,-chart,

Thus, in Fizure 4, the EXIT(2) statenment in the innernost block
(with subscriptd transfers control to the statement "C» follow-
ing the END,, statenent, and the one in the RPT) -END;, block trans-
fers control out of the program |f we consider some RPT-END

bl ock that contains another RPT-END bl ock nested k |evels deeper,
and this nested block contains an EXIT(i) statement at its top

[evel, then if ik, that exis statement has an effective | evel

15




of i-k with respect to the outer block. No outermost block of an
REn-chartcontains an exit with an effective level>o,

GRE ~charts (Generalized RE_):

- The cl ass of GRE_-charts is defined the sane as RE _-charts,
except we do not restrict i in an EXIT(i) statenent to be |ess
than n. Instead, we restrict each RPT-END bl ock to have at nost

n distinet effective | evel s.

Peterson, Kasam, and Tokura (34]consider a stronger form of
reducibility, called size reducibility. Xey if and only if for every
i nput, X produces exactly the sane sequence of actions and predicates
as Y, and the total nunber of actions and predicates in X (the size
of X) is no less than the size of Y. The results are largely sub-
sunmed by Kosaraju's, in that they showthe existence of prograns not
size- reducible to D-charts, prograns not size reducible to RE,-charts,
and prograns not size reducible to ;ﬁ; RE;-charts. W abbrevi ate
"this last class as RE_. Firally, an algorithmis given that produ-
ces, for any given flowchart, an RE_-chart to which it is reducible
in the same sense as above, excep* that the size restriction is

dr opped.
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3. Definitions and Results.

3.1 3lock structured oroofs.

In order to study the effects of the structure of flowcharts
on proof conplexity, it is necessary that we have a particular
formof proof in mnd. W are particularly interested in proofs
of **structured programs” , or, equivalently, of block structured
fl omchart schemas. The inductive assertion technique, as previous-.
|y discussed, does not take into account the block structure of a
given flowhart: rather, it attenpts to handle the entire flow
chart a+ one tine.

W extend the idea of verifying paths to verifying bl ocks.
For each innernost block, we provide assertions for each entrance,
and for each exit, and then verify that the block satisfies these
conditions by considering its internal structure. Once this has
been done, we may ignore the structure of the internal blocks in
verifying the correctness of any block that is constructed from
actions, predicates, and previously verified bl ocks.

Qur zoal in proposing such a block structured proof process
is to reduce the complexity of the task of proving a program cor-
rect. when confronted with the task of proving the correctness
of alnost any reasonable program we may be di smayed by the mag-
nitude of the problemuntil we begin to form opinions of what
function is served by the various parts of the program |t is
this idea that we try to capture in our block structured proofs.
Ye reduce the overall conplexity of the sinzle task by dividing
it into a number of smaller tasks. As Cooper [9] observes:

"In some ways it seems natural to isolate a part
of the program arr specify itS properties, then

17



combi ne these progerties to obtain the conditions
to be verified. hus one is led to consider block

form attaching relations (between values of vari-
ables on input and output) to blocks and deriving
conditions between these relations depending on the
particul ar block structure,”
Gven this idea of a block structured proof, it is not difficult
to apply it in a "top-down" manner, as advocated by MIls [29-32},
Dijkstra[11,12], Wrth {35],and others.
W are not interested in developing a particular theory of
bl ock structured proofs. Ve feel that such proofs can be generated
by rewiting a given Floyd/Naur proof, and, for our purposes, this
observation will suffice. W are interested, in fact, in only one
aspect of these proofs: The required points of attachment of the
assertions. These points are: Al entrances to the block; all
exits fromthe block; and one in each loop within the block. W
are guided in our choice of block constructs by a need to relate
t hese assertion points to the structures.

3.2 Loov_conplexity -- cycle rank of a flowhart

Before we can describe any particular block constructs, we
need to examne nore closely the idea of loop conplexity of a flow
chart, and the nunber of internal assertions (those not on entran-
ces or exits) required. W consider assertions attached to nodes
rather than to edges; we assune the attached assertion is true at
the entrance to that node no matter how it is reached. In fact
normal |y we consider tagging only predicates. This is possible
in general only when we restrict our attention to "proper” flow-
charts, flowcharts in which there exists, for each node, a "con-
sistent path" from some entrance to sone exit of the flowchart
whi ch passes through that node. Here, by consistent path we nean

18




one on which there are no inherently contradictory predicates,
This restrictidm proper flowcharts prevents, for instance,
| oops that contain no tests.

W define the cycle rank of a flowhart to be the m nimum
nunber of assertions required to insure at |east one in each
loop. This definition is stated nmore precisely bel ow

Let F be a flowchart, X be a set of nodes, each in sone
loop in F, and G be the graph obtained fromF by removing all
nodes in X. Then, if Gis loop free, any node in X is called a
breaknode. The cycle rank of F is the nunber of nodes in a
m ni mal set of breaknodes for F

This is not really sufficient to characterize the loop
conplexity of a graph, as may be seen by exam ning the graphs
in Figure 5. Each has cycle rank 2, even though the conplexity
of the loop structure seens to vary widely. W will renedy this

problemin the next section.

5) — G2 C 2

5b) 7 - -

-—ETE.-19 —-—a-fo_i——?:>«ﬁi-———a—-ﬁ’S—i)

5e) __/C>>____»

Figure 5. Flowgrapnhs with cycle rank 2 (action nodes omtted)
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Figure 5. [continued)

3.3Proof conplexity (PC) based fl owchart schemas

In the block structured proofs previously discussed, we saw
that the nunber of assertions required to prove a block correct
depends on the nunber of entrances, nunber of exits, and the cy-
cle rank of the block. W therefore define a series of classes of
flowcharts with these itens as parameters. W call these classes
proof conplexity classes, and denote each of them as (i,k)PC_-
charts. Here, i,k, and r are integers, interpreted as follows:

i+ The maxi num nunber of entrances to a bl ock.
k:  The maxi mum nunmber of exits froma bl ock.
r: The maxi mum cycle rank of a bl ock construct.
By cycle rank of a block construct, we mean the rank of the con-
struct with any conponent bl ocks considered as single nodes. The
fact that this cycle rank is restricted to the block constructs
20



causes no problem since our recursive definition (below insures
that every conponent block also has cycle rank no greater than r,

(i,k)PCr-charts:The snmal | est class of flowharts defined by:

1. Any (3ij,n) flowchart, 0#%j*i, 0%ntkx, conposed of
actions and oredicates with cycle rank no greater
than r is an (1,k)PC_-char<.

2. Any (j,h) flowchart, 0%j%i, 0%h*k, conposed of
actions, predicates, and (1,X)PC_-charts With
bl ock construct cycle rank no greater than » is
an (i,k)PCr-chart.

we reserve the term(i,k)PCr-chart to refer to a whole graph in
the remainder of this report, and use the terms "block* and
"(i,k)PC_-block" to nean an (i,x)PC_-chart either used as a com
ponent or as a whole flowchart. |f a flowchart belongs to sone class
~of (i1,k)PC_-char*s, it belongs to all classes with numerically great-
er parameters. In addition, by choosing different types of blocks,
i ncreasing the nunber of entrances and/or exits, it is often pos-
sible to choose snaller blocks, yielding |ower cycle ranks. For
exanple, we may classify the flowharts of Figure 5 as follows:

5a) (1 ,I)PC1

5b) (1,1)PC2 and (1,2)Pc
5c)(1,1)PC2 and (2,2)pC
5d)(1,1)Pc2 and (2,2)pC
5e) (1,1)PC, and (2,3)PC

2
5f) (1,1)pC, and (3,3)PC1

P S

Note that this nultiple classification differentiates these flow-
charts into five different groups. we feel that these groups nore
closely reflect the conplexity of the |ooping constructs in these
figures than did the sinple assiegnment of cycle rank 2 to all of
them
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2,4 Reducibilities

we intend to investigate the structural complexity of (i,k)-
PC_-charts using two different reducibility orderings. Ve will
folloy nuch the sane approach as Kosaraju [20], (r2 studied a dicfar-

ent family of clzzzse of schemas) in his research, We define a

flowchart schema, X, to be elenentally reducible to a flowhart

schema,¥, (X&;Y) if and only if every element (action or predicate)
of Yis an elenment of X, and, for every interpretation and for every
input, u, X and Y both either termnate with the sane value, or fail
to termnate. Intuitively, X and Y both conpute the sane (partial)
functi‘on, and the elements used in constructing Y are a subset of
the elenents in X. Note that we allow in Y any nunmber of copies
of any element in X, but no new elenents may be added.

W call the sequence of actions and predicates encountered

ina flowhart, X, while processing input u the conputational seguence

in ¥ for u wittenc(X,u).

A flowchart, X is oath reducible to a flowchart, Y, (Xtyv),
if and only if XfgY, and C(Y,v) is a subsequence of c(x,u), for
every input, u.
These orderings,.as defined, relate flowharts or flowchart
schemas, but we frequently use themto relate classes of schenas.
In these cases, when we writeX&Y, andX and y are cl asses of schremas,

we nMean that;
(vXeX) (3vey) (X&Y) .

we denote that both X£Y and Yye x hold by x=Y (X isS equival-
ent to Y), and that X&Y holds, but X=Y does not by XLy (X is
strictly reducible to Y).
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3.5 Summary Of Results to date

In our investigations so far, we have been trying to under-
stand the partial ordering of the (1,k)PC_-chart cl asses under
elemental reducibility, and also to relate these classes to Ko-
saraju's RE - and GRE_-charts,

We | 0se nothing by restricting our attention to one input
bl ocks, since given any (i,k)PC_-chart, we can construct a path
equi val ent (1,k+r)PC1 chart. we omit the details here, since
they are rather involved.

In order to be able to »rove any statenents relating (1,k)-
PC_-charts, It has been necessary to develop a normal formfor the
bl ocks. This normal formis illustrated in Figure 6. Each of the
sub-blocks, A and B, in the nornal formare acyclic: all |ooping
arcs are shown explicitly. The nodes ipeeed, in B are considered

to be the breaknodes in this form

—

-
=

|-}

k exit connections

®

~

() ;oo
=
N\

i
U\

r loopinz connections

La

vy
"5-”_
U

Figure 6., ~Normal formfor (1,k)PC bl ocks. A and B are acyclic.
W can easily show that every (1,k)PCr bl ock has a path equivalen=

23



normal formblock for any choice of nreaknodes.

So far, we have been able -to prove that for any cycle rank,
r, there exists a (1,2)PCl—chart that is not elementally reduc-
ible to any (1,1)PC_-chart, but that is a (1,1)PC_ , -chart. 'This
proo* shows both that (1,1)Pclc;‘(1,2)PC1 and that, for all r,

(1,1)PCrE%(1.1)PC This strongly suggests that a hierarchy

r+1*
exists both for k, the nunber of exits, and for r, the cycle rank
of the blocks; but we have not yet proved this nore general re-
sult.(see the appendix for this and other proofs).

we have also been able to show that it is possible to trade
cycle rank for exits, in that for any (1,k)PC_,4 block,X, we can
construct a (1,k+1)PC_ block, Y, such that XEj V. This can be
used to show t hat (l,k)PCr~charts E,(1,k+r-1)PCl-charts.

It7is not difficult to show that REl-charts are the same
class as the (1,1)PC1-charts. This class includes alnobst all the
bl ock constructs proposed for structured programming. The fact
that the (1,1)PCl-charts are the | east conplex charts in our fam
ily of schemas agrees with the intuition that structured programns
are easier to prove correct than are general flowharts.

I'n our proof that for any r there exists a (1,2)PC,-chart
that is not (1,1)PC_, the flowchart used is an RE,-chart. Thi s
shows that there are REz-charts that require at |east r+1 inter-
nal assertions for any r., The significance of this is that the
escape mechani sms in some programm ng |anguages (such as the “oON
ERROR coTo" statenent in BASIC-PLUS, or the "oN CONDI TI ON' st ate-
ment in PL/1) are at |east as powerful as the RE,-charts, and may
thus be used in a manner that greatly conplicates a proof of cor-

rectness for the program
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Because of the naturee of the restrictions on RE_-charts,
we do not expect to be able to show a precise relation between
themand our (1,kx)PC_-charts. This is not true for the GRE -
charts, however, and we expect to be able to show (we have not yet
done so) that GRE =,(1,n)PC,. So far, we can show t hat GRE E,(1,n)PC,.
Intuitively, the proof is sinple; each GRE -block has at nost n
distinct effective levels, and the RPT node nay be taken as the
only breaknode. Thus, we may consider any GRE_-block to be a
(1,n)PC,-dblock.

It remains to show the converse.

3.6 Further research

In addition to the remaining research nentioned in- the | ast

section, we intend to survey the control structures available in
t-he major programmng |anguages in use today, and to relate these
control structures to the hypothesized hierarchy. s wi|| pay
particular attention to those features that may be used to generat e
structures nore powerful than the (1,1)PC;-charts. Exanples of
this type of statenents are the current inplenentations of CALL

and RETURN statenents in nost |anguages.

VW may then be able to suggest restrictions on the use of
these statements to reduce their inpact on proof conplexity. In
addition, we may be able to suggest additional control structures
that could be added to programm ng |anguages w thout severely

affecting the conplexity of proofs of correctness.
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APPENDI X |:  T™he Proofs-,

In this appendi x, we include the theorems alluded to in the
text, and their proofs.

In discussing graph transformations, we nake reference to
"node splitting", and "node stretching? By node splitting we mean
the process of duplicating a node and its output branches, and the
distribution of its input branches in such a way that each copy has
at |east one input branch, and no input branch is duplicated. By

node stretching we nmean the introduction of a new node, connected

to the original by a single output branch, and the distribution of
the inputs as in node splitting. The new node is considered to be

an identity transformation. These transformations obviously preserve
path reducibility, at least when identity transfornations are ignored.
Figure 11, below, illustrates the use of both node splitting and

node Stretching in transformng nore general flowharts into D-charts,

o
S £
T ‘\~i:;x3-1- g "‘b;:;iffi:3>a- >
—P, ‘tf}?* —=f e
\c \c e "*J

FI GURE 11: Node splitting and node stretching: node d was split,
node e was stretched. (twice).
THEOREM 1 : For every (1,k)PC_-chart, there exists a path equival ent

(l,k)PCr-chart in normal form

Proof: Consi der any (I,k)PCr—chart, F. Assune F is not in norma
form else we are through. W describe the derivation of a path
equi val ent (l,k)PCr-chart, innormal form fromF. Figure 12 illus-
trates the process for a particular case: the general procedure is
described bel ow.
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First: Using node splitting as needed, copy F, but separate the

paths fromthe entrance to the breaknodes and/or outputs fromthe

ot her paths (see figure I2a and I2b).

Secondr Stretch each breaknode, B,, 1¢34r, and split the introduced

3 )

i dentity node into two nodes, C, and cy'e The inputs to BD

di stributed between c4 and cy' so that all paths fromthe entrance

to B; i ncl ude Cy and all paths from any breaknode to B.J i ncl ude

are

¢y’ but not C., (see figure I2c).

Thirdr The normal formgraph is, at nost, a different arrangenent
of the graph produced so far. The first part consists of the paths

fromthe entrance to one of the c,, 14j¢r, or to one of the outputs.
The second part, the looo hlock, consists of the paths fron1BJ,
to'ci', 1%3j%r, or to one of the outputs. As shown in figure 6, page

1&i%r,

23,<;;%nd C.' (the c in the loopbl ock) are connected to ij,the
P th entrance to the second block, which, in this proof, is the node
corresponding to Bj.

Since the only transformations involved in producing the new
fl owchart are node splitting and node stretching, the new flowchart
is path equivalent to F. Since no new outputs or breaknodes were
introduced, and the breaknodes were not duplicated, the new chart
nust remain (1,k)PC_. The new chart is thus the required (1,k)PC -
chart in normal form

By unwi nding a (1,k)Pq block n turns is neant the process

of transforming the block to normal form duplicating the [oop block
ntimes (resulting in n+l copies), and then connecting the |oop
exits fromone block to the inputs of the next, the final loop

exits to the initial inputs, and the outputs to each other, as
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shown in figure I3. The resulting graph is obviously path equiva-

lent to the original.

| ﬁ ~ ;;‘72’5
) '$/ﬁ* —>F, - %5
A ' %/P

a) (1,2)PC,-chart not in nor- b) Same graph after first step
mal f‘or?h inthe transformation.

2
9>ﬁ 'L_______. C
c) After second step in the d) The (1,2)PCy-chart in normal
t ransformati on. form

FIGURE 12; Transformng a (1,2)PC -chart to normal form (nodes
p, and py are used as breaknodes

X L] y,) ’=_
ki i 14 ”
| 11k ] a
€5 ) ) =)
€x €x ex k
—* [ . .
SN e o fi Gty e Yy P
ol © 1, Cof= - M1, cr >
iy Crf—> i, cpfpms ML S o)

FIGURE I3: Unwi nding a(l,k)PCr-block.
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+1-chart,

F, there exists a(l,k+1)PCr-chart,(i such t hat FEPG. That is, we

THEOREM 2: For every k21, and every r21, for every (1.k)PCr

may trade cycle rank for outputs.

Proof: TransformF to normal form if need be. W construct G from F,
being careful to preserve path reducibility.

The loop block of Fis a (r+l,r+l+k) acyclic graph, where we
consi der the cycle connections to be external to the |loop bl ock.
Let B be the (r+1,k)PCr+1-chart consisting of the loop block fromrF,
together with the cyclic paths fromcj to ij,léj£r+1, Const r uct
a set ofr+l (1,k+1)PCr-charts, Hi,lsitr+1,'fron1B as follows:

the input to H.is i, in B; the exits fromHj are e,

t hr ough €y as in B, plus ep41» Which is the node labeled

iy ( or ¢y if j=r+1). The body of H.3 Is identical to B,

except that the branch connecting cj+| to ij+| I's del eted.

For exanple, see figure 14,
Next, considering each of the H as (1,k+1) predicates, construct

r+l (1,k)PC1-charts,|Wj 1¢j¢r+1, as fol | ows:

The entrance to M. connects directly to the input of H._.
Connecfcek+1 in H; to t he i nput ofH; 4 (or tO t he i nput
of Hy if i=r+1). Connect the €1r oo, & exits of all
H: 1%ir+1, to the corresponding output of M..

For exanple, figure I4 illustrates M.

Now, at this level, each M appears to be (1,k)PC1, but since
it is conposed of (1,k+1)PCr-charts, it is also (|,k+I)PCr.

W now produce the (1,k+1)PCr-chart, G fromthe MJ, and the
initial block of the normal formof F. Note that the G so produced
is not in normal form  Connect the cy exit of the initial block
tothe input of M, for each value of i, 14i%4r+1, and connect all the

exits |abeled e.‘_J to the e.J output of G for all |, 1£j%k,
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The original chart, F. is obviously path reducible to G since
the initial bl ocks of both graphs are identical, and M. is so con-

J
structed that any path in F which takes control fromi. in the |oop

block of F to any exit is duplicated in M., NO NewW paths are intro-

except for the loop through i;,4, and any path that exits H; wi thout

exiting Gis a duplicate of sone path fromi; to i,,4 in the 100-p
bl ock,

CORALLARY 2.1:(1,k)PCr+iEP(1;k+r)PC1.
Proof: By repeated application of the theorem we may trade all but

one of the breaknodes for output connections,-
: < -

>

- o

eq ! e1.{l

e, €

€q € 3

oo IR

cs 2 %35
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a) F in nornal form:(l,B)PCB.
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b) H a (1'4)p02_0hart used in an internediate step.

FIGURE I4: Exanples of the construction in Theorem 2. Here, k=3, r=2.
(continued next page)
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2 /" H3—I ler]

c)‘\MZ, a (1,4)PC,-chart used in an intermediate step (each of
the H is"a (1,4)PC2 bl ock.
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d) G the final (1,4)PC,-chart; FEG.
FI GRE 1%: Exanples of the construction in theorem 2, continued.

/ / T / e
T T
ey '+~p L‘.—p e s s A
T 00 APo1 5410 11’):"“ —f:%-—:*pmf‘)
Z ={S’SOO'SOI'SIO’811’ tet 1SpgeSpy4 0 20#3 distinct synbols,
Py, = "the prefix synbol is §so"

A = "delete the prefix symbol.”

. . *
Inputs to F_ are strings in r

() = {;{LZ:! control reaches the exit from F_ when x is jppyt.

3
FIJURE I5: Phe flowchart for theorem3,

THEOREM 3:  For any given cycle rank, r21, there exists a (1,2)PC, -
chart which is not elementally reducible to any (1, 1)pc -chart
’ r- 1

but which is (1,1)PCr+1.

Proof:  Consider the flowhart, F shown in figure I5, with the
indicated interpretation. Note that F. is both (1,2)pC
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Assune, contrary to the theorem that sone (1,1)PC_-chart, G
exists such that ¥ =.,6. W may assume that there is at |east one

i nnernmost block, m, in G and an input string, x with the

0*1%2?
foll ow ng properties:

a) after deleting the final symbol in x4, control is
within m.

b) the length of x, is at least 5, and control renains
within mat |eadt until x4 i's deleted,

c) neither x, nor x,x, is accepted by F_., but x;x,;x, is,
We may assune this without |oss of generality, since, if there is a
bound, uniformover all inputs, on the nunber of synbols deleted
with control conpletely within any innernmost block, we my unw nd
that block the appropriate nunber of tines and then delete the |ooping
branches. Thus, we may replace any such innernost block with an
. acycIic graph. It is not possible that all innermpst blocks will
be deleted by this technique, since there are strings of arbitrary
length accepted by G distinguishable fromstrings rejected by G
only in the final symbol; this requires that G contain at |east
one | oop, and we may choose some such |oop as an innernost bl ock
Let o be the prefix synbol of x,. Then either x,s or Xy0S
Is accepted by Fls and thus by G and nust therefore cause control
to exit m. Let xg &8
is accepted by G. Note that control nust be inside n after deleting

represent either x, or x,0, as needed so that x

X4 since it is a prefix string of XXy o Furthernore, after delet-

ing x4e control inF_  is at t&entrance to sone test, Pig for some

value of j. Thus, every string xgw with w;-‘sjo is accepted by G

and therefore nust cause control to exit n. Since the length of

X%q Is greater than that of x4w, and control remains within = until

after x,x, is deleted, control cannot leave w for the string X4 30
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(x4xq NUSE be an extension of xésjo).

Furthernmore, control cannot exit w for the string XS 50551 ¢
because there is only one exit fromiT, and fromthat exit there
I'S no,way to distinguish between X48 51 and 48505 51 since no infor-
mation IS available there about the symbols preceding the Si5q
Thus, if they both exited, both would be accepted-since the forner
must be, but the latter is not accepted by Fl.

Again, each string xésjcfij w#s(j+1)o, must be accepted by
G and therefore nust cause control to exit.w. This includes the
string xésjosjlst' Thus, since X4, w,J.sjo and xésjosjlsjo cause
control to leave m on their final symbol and be accepted, every
string that causes control to exit w nust be accepted by G.

Now,. we have , for every synmbol in Ejr. exhibited a string
accepted by G that causes control to exit w on that synbol, and thus

every string with prefix x, that causes control to exit = nust be

0
accepted by G.

Consider the string, X, shown on the next |ine:
xO(Sjos)asjos 31(S(j+ﬁos)a coe (3208) %8080y (500807 4 (S(j-l)os)as
This string must be accepted by G for any value of a®0,but no prefix
string of it may be, Let there be at nost A predicates in w. Then
the string X+, being the string X with a=A, nust be accepted by G,
and therefore causes control to exit m. Since no prefix of Xv'is
accepted by G control cannot exit m except on the final symbol,s.
Since there are only A predicates in mw, and there are 2A synbols
in each forcing substring, (SiOS)A' each such substring forces contro
toloop in n. There are r+t such forcing substrings'in X*. By def-

inition of (1,1)PCr bl ocks, there are at nost r breaknodes in m.
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Therefore, at least two of these |oops nmust share a comon breaknode
Qe ASSune, W t hout |oss of generality, that the two forcing sub-

s)A and (skos)A, with hegkx. Then, for

strings in question are (shO
"some val ues of m,n both €A, there exists a string of the form

Z: ZO(ShOS)mzl(SkOS) z,, (Where z, is either null or s, z, is the
substring of X'required to make Z a substring of X*, and Zp i's
either null or SkO) that carries control from a, to q,. Note t hat

s,. IS not the final synbol of Z.

k1
Let Yoy be any string accepted by G that causes control to
be at 9 after deleting Yo+ Then the string Yo22y¥4 is also accepted
by G, since after deleting ZZ control is back at q.e But this string
i's not accepted by L since ZZ requires control to travel from the
.(skds)—loop to the (Shos)-loop wi thout encountering Syq
Thus, we have exhibited a string not accepted by F. t hat nust
be accepted by Gif every string accepted by F_is also accepted
by G Thus, Gcannot be I/O equivalent to F_. But then FrgéG.

Thus, F. is not elenentally reducible to any (1,1)PCr—chart.

This conpletes the proof of the theorems referred to in the text,






