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ABSTRACT

A preliminary examination of the influence of control structures on
the complexity of the proof of correctness of computer programs. A block
structured proof technique is defined and studied. Two parameters
affecting the complexity of the proof are defined; the number of exits
from a block, and the cycle rank of a block, a measure of loop complexity.
Proof Complexity classes of flowcharts are defined, with maximum values
for these parameters. The question investigated is: How does restricting
the complexity affect the class of functions realizable, assuming a given
set of primitive actions and predicates: It is found that loop complexity
may be traded for exits, and that for a given number of exits there are
functions requiring any specific loop complexity. Further, it is shown
that blocks with two exists are considerably more powerful than those with
only one. In fact, for a given maximal loop complexity, there are functions
that cannot be realized with one-exit blocks, but can be realized with two-
exit blocks, even if the loop complexity is restricted to essentially one
internal loop per block. Looking at it the other way around, the addition
of a second exit to a block allows construction of flowcharts with any
specified loop complexity. This result appears to be extenable to blocks
with more exits, but this has not been completed.

The work is primarily of a graph theoretical nature, and may also be
interpreted as an examination of sequential control structures from the point
of view of feedback loop complexity.
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The Complexity of Control Structures and Program Validation

1. Introduction

We are interested in analyzing the structural complexity

of computer programs. We intend to illuminate the influence of

the control structure of a program on its proof of correctness.

If we succeed, we will provide a theoretical basis for the in-

tuitive feeling, shared by many, that "structured" programs are

easier to prove correct, This theory, in turn, will provide a

means to judge th e suitability of proposed basic control struct-

ures in simplifying program documentation and certification.

1.1 Flo!vcharts and flowchart schemas

. - In our study of the structural complexity of programs, we

will represent programs by flowcharts. Flowcharts are a form

of directed graphs in which the nodes represent actions and pred-

icates, and the arcs (branches, edges) represent possible sequen-

cing: a directed arc from A to B indicates that B is a possible

direct successor of A. Nodes with only one branch leaving it

represent actions, and nodes with more than one branch leaving

represent Predicates,

Generally, the nodes ;yill be labeled: any unlabeled node

must have only one output branch and represents the identity

transformation over the program variables. The arcs leaving a

predicate node may be labeled :bJith a condition specifying under

what circumstances the indicated node is to be taken as successor,

Ey requiring conditions at every predicate node to be mutually

exclusive, we disallow non-de2erminism. in addition, we require



each flowchart to have at least one node with no predecessor,

the entrance, and at least one node with no successor, the exit.

<For the most part, we will concentrate our attention on

flowchart schemas, a form of flowcharts wherein the actions and

predicates are not specified, That is, they are not interpreted,

but are merely identified by their labels. In schemas, the only

relationship implied between the various actions and predicates

is that they all operate on the program variables. If two actions

or two predicates have identical labels, then the respective ac-

tions or predicates are identical, In proofs, it will sometimes

be convenient to consider a flowchart rather than a schema. In

thes-e cases, an interpretation of the schema will be provided.

The terms control structure, control graph, flowgraph, and

graph will be used synonymously with flowchart, and when the

difference is not important, no distinction will be made between

flowcharts and flowchart schemas.

Most of the flowcharts we will be dealing with will have a

special form, called block structure, In defining a class of

block structured flowcharts, we will specify a set, usually small,

of "primitive blocks" and a series of rules, called block con-- m

structs, for constructing "compound blocks" from actions, predi-

cates, and other blocks. By the general term block, we mean

either primitive blocks or compound blocks constructed from some

set of rules, perhaps unspecified, The primitive blocks will

generally be flowcharts consisting of at most two or three actions

and predicates,



Blocks will be very important in our discussions throughout

this proposal, so we will define here a few of the terms we will

be using. We begin with an example. The class of D-charts [5,29]

is the smallest class defined byt

1. Any action is a D-chart,

2. If p is a predicate, and G1 and G2 are D-charts, then

Concatenation WI-G -2 t GIG2 ) e

Selection

Iteration XZ7 ( While p do G1 od )

are D-charts.. -
In this definition, we have actually given two definitions. The

one on the left defined the flowchart: that on the right is intend-

ed to show another, linear representation for the same constructs,

Rule 1 specifies the primitive blocks, and rule 2 recursively de-

fines the compound blocks. In this case, the block constructs are

the three subrules: concatenation, selection, and iteration.

Here, each block has one entrance, one exl,, and at most one in-'+

ternal loop. In other cases, the number of entrances and exits

may be different. We therefore use the abbreviation (n,,n,)

block to indicate that the block has n1 entrances and n2 exits.

This definition is a 'bottom-up' description, because it

explains how to construct a D-chart from the prhitives, Pre-

quently, we will be interested in a 'top-dowrY description; given

a flowchart, we want to see how it could be construc:ed  froa



3-chsrts (or other blocks, as the case may be). ThlAs it is

necessary to "decompose" the given flowchart into blocks fit-

ting the given description. For example, we illustrate a flax-

chart and one decomposition into D-charts in Figure 1 below.

L----,,wJ

.----m------J

I

Figure 1, A flowchart and a decomposition as a D-chart.

We show the blocks by surrounding them with dashed lines; In

the case of D-charts, any program has a unique decomposition in-

- to blocks, except for the concatenation operation. In general,

this will not be the case. Most of the classes of flowchart

schemss we will be discussing will not yield unique decomposi-

tions. Therefore, unless we specify a particular choice of

blocks for a given flowchart, we mean our discussion to be true

of any of the allo-tiable  decompositions.

In general, when we discuss a block, we consider any other

blocks used in its construction to be non-decomposable. Thus,

when we say that a D-chart block has only one internal loop, we

mean it has only one loop when inner blocks are considered single

nodes.

1.2 Proofs of correctness

We intend to analyze flowchart structures to illuminate

their influence on proofs of correctness. There are several ap-

proaches to proofs of correctness. To name a few:
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a) S'ructural induc?ion
b) Computational induc-?ion Ml2
cl Inductive assertions p+, 25, 331
d) Recursion induction [23, 2% 253

As the names imply, they are all variations on the principle of

mathematical induction. We are primarily interested in the in-

ductive assertion method developed by Floyd [I&], Naur [33),

and Manna 1251. In this method+ logical proposition involving

the variables in the program is associated with each edge in

the flowchart, These propositions, called assertions, are so

chosen that each is true whene:ler, in the course of computation,

control reaches the edge tagged with that assertion. The first

assertion is essentially a statement of the input data specifi-
. - cations, and the final assertion is a statement of the outgut

requirements. The correctness of the pro-Tam is established

by showing that thesemantics of each statement, together with

its antecedent assertion, logically implies its consequent asser-

tion. Thus, the conjunction of all the implications implies that

if the initial assertion is true for the input data, then the

final assertion :Ili.ll be true on completion of execution of the

program. However , this procedure proves only the Dartial correct-

ness of the program. This is not total correctness, because there

has been no proof that the program actually terminates, and thus

the final assertion may never be reached. In general, a separ-

ate proof of termination is require;. This proof is frequently

more difficult, both practically a,nd theore%zlly, than The proof

of nartisl correctness.



In practice, it is necessary for the individual construct-

ing a proof of correctness to tag with assertions only the en-

trance, the exit, and a set of internal ed,ges. The internal

edqes are chosen so that there are no loops in the floyp/chart

that do not have at least one edge tagged. This divides the

flowchart into a finite number of finite paths, each of which

has an assertion at both ends, and includes no other tagged edges.

For each such path, the programmer must verify that the antece-

dent assertion, together with the semantics of the statements

along the eath, implies the consequent assertion.

This description illustrates the relationship between the

structure of a program and its proof of correctness that we seek. -
to examine. The number of assertions that one needs to supply in

order to prove correctness depends strongly on the loop structure

of the program in question. For example, consider the two flow-

charts in Figure 2, Each contains four predicates and two loops,

but one requires two internal assertions, and one requires only

one. We have not shown the action nodes in these flowcharts in

order to show more simply the structure.

Figure 2. a) One assertion required. b) Two assertions required.

We require any measure of the complexity of these flowcharts to

reflect this difference in the number of assertions required.



1.3 Structured programming and structured Trocrams.

The goals and the significance of this research 119 in the

field of structured programming, Structured ;?rogrsrr,??i~y  is a

term used loosely to describe a discipline for the development

of computer programs. The purpose of the discipline is to im-

prove the comprehensibility of programs in order to ease she

tasks of documenting, certifying and maintaining programs. "he

major idea involved is the restriction of the control s';rQctures

available to the programmer. The programs produced under this

methodology, called structured programs, have block strucrured

flowcharts with severely restricted primitive blocks ad block

constructs. Since the GOT0 statement in most programming lan-

. - guages represents a branch capable of connecting any two nodes

in a flowhart, it is very powerful and can easily be used to

construct sny flowchart. For this reason, the advoca"Yes  of

structured programming call for its abol?ion, or a-, leasx for

severe restrictions on its use. This has result& in str';cIy~-aJ- Wd

;!rograms also being known as GOTO-less programs.

There is as yet no general agreement OR the set 05 primitive

blocks and block constructs to allow in structured procams,

However, most proposed sets are restriCted  70 one entrance, one

e&t, and at mos: one intern31 loop, In fact, the mosf cc:<ro-.

vnrsial Droposed structures, the so-called Vscazeg* mecharism,

2rcJ _Dreci.sel:r %hosq that do not fall in this CUES.

By studying control structures to see :?TH -he coTlexi:y of

woofs of correctness is affected by allowi?? more exits cr moreA

complex loo?ing structures in blocks, we ~113, be able f;o i~~dze

7



the suitability of proposed control structures.

Our concern for the complexity o f the proof of correctness

does n'bt arise because we are worried about proving programs cor-

rect. We realize that most programmers will never attempt a for-

mal proof of correctness. On the other hand, almost all program-

mers try to convince themselves that their programs are correct,

and anyone who must modify an existing pogram generally must

understand the pogram in order to modify it successfully. These

processes require at least an informal, intuitive proof of cor-

rectness, 3nd an increase in the complexity of the formal proof

probably implies a corresponding increase in'the complexity of the

informal @roof, Norse, in the informal proof, if the complexity

becomes'very great at all, it will probably be impossible for the

programmer ever to convince himself that the program is correct.

8



2. Literature Survev

The literature related to our proposed research may be

grouped into two general classifications, program validation

and program schemas.

2.1 Pro-77~ validation

While a great deal of work has b een done in this area,

most of it has no bearing on our o*nrn work, and will not bz dis-

cussed. As explained in the introduction, the inductive asser-

tion method developsd by Floyd[l$ Naur [33], and Manna

motivates our study of program complexity. We illustrate

process with an example, Figure 3. This is the flowchart

simple pro~am to find the absolute value of the difference be-

tween its two input variables: the domain is the set of non-
. -

nega5ve inteaers,. _I

S7AN-
I w--w--- ----wnwrtN&LJEN (N iS the set o f

iA
- - - - --aa -

T

3-V-1

e-U 1

f

- - - - - - - - - - - - -

HALT

non-myati u c
htcyert )

---- QhJp,u)

---- Z= k-y1



A proof of partial correctness must show that for every

non-negative integer value for x and y, the program calculates

z=lx-yI if it terminates. Total correctness requires, in ad-

ditidf?, that the program terminate for all non-negative integer

values for x and y, By tagging edges in th$ flowchart with as-

sertions (logical propositions relating the variables) in such

a way that every looping path includes at least one assertion,

we divide the flowchart into a finite number of finite paths to

be verified. A path is verified by showing that the antecedent

assertion, together with the semantics of the programming lan-

guage involved, logically implies the consequent assertion.

This logical implication for a given path is called a verifica-

tion condition for the path. Thus, if and only if the assertion

at the entrance to the flowchart logically implies the conjunc-

tion of all the verification conditions in the program for any

value of the input variables, the program is partially correct,

Similarly, if we can show that there is no assignment of values

to the input variables satisfyingthe conjunction of the entrance

assertion and all the verification conditions, modified by repla-

cing the exit assertion with its negation wherever it occurs,

then we have proved total correctnessc We call. the first pro-

position "PC," and the second "Tc," For the flowchart of FQure

3, they are as follows, where Q(~,y,u,v) is an unspecified zsser-

tion attached as shown:

Pc: (wx) (Wy)((x(N e: ytN) = (by & Q(x,y,x,y)) V (x<y a Q(x,y,y,x)))

eC (Vu) (Vv) (Q(x,y,u,v)=> ((v=O 8~ u=)x-y) )

V b#O a Q(x,y,u-L-1))  >> >

10



mLc: Etx)(3y)(( x0 & y&N) & ((x'-y & Q(x,y,x,y)) V (x<y & Q(x,y,y,x)) j

& (vu)(dv)(Q(x,y,u,v)  3 (b=o 85 uf\x-yf  )

V (v#O 8~ Q(x,y,u-l,v-1))  )) )

To prove partial correctness, it remains necessary to discover

some assertion, Q(x,y,u,v) that makes PC true. It is not difficult

to see that Q(x,y,u,v)=(uLO & ~10 % u=lx-y\+v) satisfies PC, Prov-

ing that there is no assignment to Q that satisfies Tc is consider-

ably more difficult. In general it may be done in one of two ways.

We may prove it directly, by showing that Tc is self-contradictory

for any assignment of Q, or *tie may prove it indirectly by proving

that the program terminates from other considerations. In this

case it is easiest to prove termination by noting that when control

first enters the loop, ~20, and that each time around the loop v

. - is decremented. Since v is an integer, and it is decremented by 1

each time, it must eventually be the case that v=O, in which case

control exits the loop and the program. Thus the program is total-

ly correct. This approach is due to Corn and ‘Floyd.

One nice feature 0 f this formulation of the proof process is

that it makes angarent the fact that the most difficult part of- -
the proof frequently is finding the right assertions.

This method is not obviously applicable to recursive programs,

Cthers have developed methods for dealing with these more qneral

control structures, and much pork has been done in mechanizing

the proof process, We will noi discuss these results, ho-,vever,

since they are u-related to our work,

2.2 Program schemas

There are two general types of research in this area,

sr,uC.es of **pro,qam schzmas" 21-d studies of **flowcharts." The

11



studies of program schemas deal with certain decision problems

concerning various classes of schemas. Examples of the ty-pes of

questions examined are:
‘.) 1) The termination problem -- Does a given schema halt

for every interpretation?

2) The divergence problem -- Does a given schema diverge
(fail to halt) for every interpretation?

3) The equivalence problem -- Do two given schemas com-
pute the same result from the same input for all in-
terpretations?

As might be expected, the answer to most of these extremely broad

questions is undecidable, in fact, usually not even partially de-

cidable. This means, for instance, there is no algorithm that will

always halt with the correct answer for the equivalence problem

when given two schemas, Manna 1271 provides a concise overview

of this work, This research is not directly related to our work.

On the other hand, the research concerning flowcharts is

closely related to our own. This work is generally concerned with

different types of equivalence or reducibility between programs

or flowcharts.

The idea of block structured flowcharts is due to Bijhm and

Jacopini 141 . They demonstrate how to produce a D-chart that is

equivalent to any given flowchart, in the sense that both, Eiven

the same input, produce the same output. In order to do this, we

introduce a stack, and a test for the top element of the stack.

The D-chart simulates the equivalent chart by encoding path infor-

mation on the stack.

Cooper [7] shows that one can do even better, in the sense

that one never needs more than one loop in the equivalent D-chart,

12



In this case, we associate a boolean variable with each statement

in the program to be simulated, Initially the variables are set

to false, exceptfor the start statement. Then, in an outer loop,

each boolean variable is tested in turn, and the associated state-

ment is executed only if the variable is true, After executing

the statement, the associated boolean variable is reset to false,

and the variable for the next statement to be executed is set to

true. While these results have some theoretical interest, they

are of little interest in practice, since the programs they pro-

duce are even more difficult to understand than the programs they

simulate.

Knuth arrd ?loyd [I81 , Aschcroft and Manna [l] , and Bruno

and Steiglitz 151 , show that there exist flowcharts that are not

equivalent to any D-chart, under slightly different forms of equi-

valence, all of which essentially require that no new variables

be added, and exactly the same sequence of actions occur in both

flowcharts for a given input.

Kosaraju 1201 investigates the structural complexity of the

classes of block structured flowchart schemas that have been pro-

posed as the basis for structured programs, His investigation

is primarily in terms of a reducibility that requires that if X

is reducible to Y, every action and predicate in Y must occur in

X, and the result computed by X be the same as :hat computed by Y

for every input value; if or.e does not terminate, neither does.

He shows that there exists a hierarchy of classes of flowchart

schemas, with D-charts at the bottom. i? each class, there exist

floltichart schemas that are not reducible LO any schema in any low-

er class. Two of the classes he defines :vill be of interest to

1 ?/



us. These are defined below.

REncharts (for Repeat-Exit) The minimal class defined by:

1. Any action is an REn-chart.

2. The (1,l) statement EXIT(i), OS%, is an REn-chart.
< -> 39 If p is a predicate, and Gl,G are RI&-charts, then

95 - - -and if p then Gl else G2 fi are REn-charts.

4. If G is an REn-chart, then RPT;G;END is an REn-chart.

(Note: We do not give a graphical form because it is difficult

to describe concisely a graph structure that suits the intuitive

notion of the flowchart for the REn-charts.) In this class, the

RPT-END pair delineates a block. With this definition of a block,

we ca.3 define levels in a manner analogous to that of well-formed

parenthesized expressions. We number the levels so that the outer-

most 1eve.l is level 1, and each successively deeper level increases. -
the level number by one. When it is useful, we attach subscripts

to the RP'2 and END statements to identify matching pairs. Thus,

in Figre 4, the innermost RPT-END block (shown with subscript 3)
is at level 3. Both the RPT2-END2 and RPT&-END4 pairs delineate

blocks at level 2.

The RPT, EXIT(i), and END statements are purely control state-

ments; they do not transform data in any way. The RPT statement

serves only as a labeled node; when an END statement is reached,

control transfers immediately to its associated RPT, Thus, the

RPT-END pair represents a loop in the flowchart. The EXIT(i)

statement provides a mechanism for transferring control out of a

loop. It transfers control out of the ith RPT-END block enclosing

the statement; the next statement executed is that statement im-

mediately following the END statement of the outermost block exited,

14



RPTl ;

RPT2g

if p then EXIT(2)

else RPT 3 :

if q then EXIT(2)

else if r then EXIT(i)- -
else A

fi

E?CD3
fi;

. a

R?T& :

if. sthen EXIT(2)

else 3

?.Ture 4.. An example of an RE2-chart.

Thus, in Figure 4, the EXIT(2) statement in the innermost block

(with subscript3) transfers control to the statement VW folloqrr-

ing the END2 statement, and the one in the RPT4-END4 block trans-

fers control out of the program, If we cor,sider some RPT-END

block that contains another RPT-END block nested k levels deeper,

and this nested block contains an EXIT(i) statement at its top

level, then if i5kk, that exit statement has an effective level

15



of i-k with respect to the outer block. No outermost block of an

REn-chart contains an exit with an effective level>%

GRE,-charts (Generalized RE,):

.' The class of GREncharts is defined the same as REn-charts,
except we do not restrict i in an EXIT(i) statement to be less
than n. Instead, we restrict each RPT-END block to have at most
n distirict effective levels.

Peterson, Kasami, and Tokura [34] consider a stronger form of

reducibility, called size reducibility. X$Y if and only if for every

input, X produces exactly the same sequence of actions and predicates

as Y, and the total number of actions and predicates in X (the size

of X) is no less than the size of Y, The results are largely sub-

sumed by Kossraju's, in that they showthe existence of programs not

size- reducible to D-charts, programs not size reducible to RE1-charts,II
and programs not size reducible to ids. REi-charts. We abbreviate

'this last class as RE,. FiRally, an algorithm is given that produ-

ces, for any given flowchart, an RE@ -chart to which it is reducible

in the same sense as above, excep -t, that the size restriction is

dropped.

16



3. Definitions and Iiesults.

3.1 Ylock structured croofs.

In order to study the effects of the structure*of flovrcharts

on proof complexity, it is necessary that we have a particular
,?

form of proof in mind. We are particularly interested in proofs

O f **structured pro,f;rams" , or, equivalently, of block structured

flowchart schema% The inductive assertion technique, as previous-.

ly discussed, does not take into account the block structure of a

given flowchart: rather, it attempts to handle the entire flow-

chart a+ one time.

We ex+"end the idea of verifying paths to verifying blocks.

For each innermost block, we provide assertions for each entrance,

and for each exit, and then verify that the block satisfies these
. -

conditions by considering its internal structure. Once this has

been done, we may ignore the structure of the internal blocks in

verifying the correctness of any block that is constructed from

actions, predicates, and previously verified blocks.

Our coal in proposing such a block structured proof process

is to reduce the complexity of the task of proving a program cor-

rect. ?/hen confronted with the task of proving the correctness

of almost any reasonable program, we may be dismayed by the mag-

nitude of the problem until we begin to form opinions of what

function is served by the various parts of the program, It is
this idea that \(ue try to capture in our block structured proofs.

Ye reduce the overall complexity of the sinzle task by dividing

it j.nto a number of smaller tasks. As Cooper Lo] observes:-
“In some ways it seems natural to isolate a part
of the program an. ,d snecify its oroperties, then

17



combine these properties to obtain the conditions
to be verified. Thus one is led to consider block
form, attaching relations (between values of vari-
ables on input and output) to blocks and deriving
conditions between these relations de.pending on the
particular block structure,"

Given this idea of a block structured proof, it is not difficult

to apply it in a "top-down" manner, as advocated by Mills [29-323,

Dijkstra 11,12[ 1, Wirth [35], and others.

We are not interested in developing a particular theory of

block structured proofs. We feel that such proofs can be generated

by rewriting a given Floyd/Naur proof, and, for our purposes, this

observation will suffice. We are interested, in fact, in only one

aspect of these proof% The required points of attachment of the

assertions. These points are: All entrances to the block; all

exits from the block; and one in each loop within the block. We

are guided in our choice of block constructs by a need to relate

these assertion points to the structures.

3.2 LOOP complexity -- cycle rank of a flowchart

Before we can describe any particular block constructs, we

need to examine more closely the idea of loop complexity of a flow-

chart, and the number of internal assertions (those not on entran-

ces or exits) required. We consider assertions attached to nodes

rather than to edges; we assume the attached assertion is true at

the entrance to that node no matter how it is reached. In fact,

normally we consider tagging only predicates. This is possible

in general only when we restrict our attention to g9propertv  flop-

charts, flowcharts in which there exists, for each node, a "con-

sistent path" from some entrance to some exit of the flowchart

which passes through that node. Here, by consistent path we mean

13



one on which there are no inherently contradictory predicates,

This restriction _ _to toroger flowcharts prevents, for instance,

loops that contain no tests.

We define the cycl-e rank of a flowchart to be the minimum

number of assertions required to insure at least one in each

loop. This definition is stated more precisely below.

Let F be a flowchart, X be a set of nodes, each in some

loop in F, and G be the graph obtained from F by removing all

nodes in X. Then, if G is loop free, any node in X is called a

breaknode. The cycle rank of F is the number of nodes in a

minimal set of breaknodes for F.

This is no: really sufficient to characterize the 1oo.p

complexity of a ._graph, as may be seen by examining the graphs
. - in Figure 5. Each has cycle rank 2, even though the complexity

of the loop structure seems to vary widely. We will remedy this

problem in the next section.

Figure 5. Flowgraphs ?rith cycle rank 2 (action nodes omitted)
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. -
Figure 5. [continued)

3.3 Proof complexity (PC) based flowchart schemas
In the block structured proofs previously discussed, we saw

that the number of assertions required to prove a block correct

depends on the number of entrances, number of exits, and the cy-

cle rank of the block. We therefore define a series of classes of

flowcharts with these items as parameters. We call these classes

proof complexity classes, and denote each of them as (i,k)PCr-

charts. Here, i,k, and r are integers, interpreted as follows:

ir The maximum number of entrances to a block.

k: The maximum number of exits from a block.

rr The maximum cycle rank of a block construct.

By cycle rank of a block construct, we mean the rank of the con-

struct with any component blocks considered as single nodes. The

fact that this cycle rank is restricted to the block constructs
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causes no problem, since our recursive definition (below) insures

that every component block also has cycle rank no greater than r.

(i,k)PCr-charts8 The smallest class of flowcharts defined by:

1. Any (j,h) flowchart, O-^j%, 0%*-k, composed of 3 :
a ctions and predicates with cycle rank no greater
than r is an (i,k)PCr-chart.

2. Any (jh) flov!chart, Oejei, O-'hlk, composed of
actions, predicates, and (i&PC.-charts with
block construct cycle rank no greater than r is
an (i,k)PCr-chart.

:':e reserve the term (i,k)PCr-chart  to refer to a whole graph in

the remsirder of this report, and use the terms "block" and

l*(i,k)?Cr-block" to mean an (i,k)PCr-chart either used as a com-
ponent or as a w!~ole flowchart. If a flowchart belongs to some class

. - of (i,k)PCr-charts, it belongs to all classes with numerically great-

er parameters. In addition, by choosing different types of blocks,

increasing the number of entrances and/or exits, it is often pos-

sible to choose smaller blocks, yielding lower cycle ranks. For
example, we may classify the flowcharts of Figure 5 as followst

54 (1 JPCl

5b) (1,1)PC2 and (1,2)PC1
5~) (1,1)PC2 and (2,2)X1
5d) (l,1)PC2 and (2,2)PCI
5e) (L1)PC2 and (L3)PC1

2) (LlPC2 and (3,3)PC 1
Xote that thi-3 multiple classification differentiates these flop-

charts into five different noups, We feel that these groups more
closely reflect the complexity of the looping constructs in these

figures than did the simple assignment  of cycle rank 2 to all of

them.
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?4 geducibilities

We intend to investigate the structural com_nlexity of (i,k)-

PCr-charts using two different reducibility orderings. We will

follo~y much the same approach as Kosara,ju PO], (he stu~lied a diff~-

floT:lchart  schema, X, to be elementally reducible to a flowchart

schema,Y, (XE,Y) if and only if every element (action or predicate)

of Y is an element of X, and, for every interpretation and for every

input, u, X and Y both either terminate with the same value, or fail

to terminate. Intuitively, X and Y both compute the same (partial)
.function, and the elements used in constructing Y are a subset of

the elements in X. Note that we allow in Y any number of copies

of any element in X, but no new elements may be added.
. -

We call the sequence of actions and predicates encountered

in a flowchart, X, while processing input u the computational sequence

in X for u, written C(X,u) .

A flowchart, X, is oath reducible to a flowchart, Y, (Xc,Y),

if and only if Xs,Y, and C(Y,u) is a subsequence of C(X,u), for

every input, u.

These orderings,:as  defined, relate flowcharts or flowchart

schemas, but we frequently use them to relate classes of schemas.

In these cases, when we write~E,y, andX and y are classes of scherr.as,

*#t/e mean that;

:'!e denote that both XLY and YEX hold by XSY (X is equival-

nnt to Y), and that XC,Y holds, but XZY does not by XCY (X is

I strictly reducible to Y).
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3.3 Summary of Results to date

In our investigations so far, we have been trying to under-

stand the partial ordering of the (l,k)PCr-chart  classes under

elemental reducibility, and also to relate these classes to Ko-

saraju's EEn- and GREn-charts.

Ye lose nothing by restricting our attention to one input

blocks, since given any (i,k)PC,-chart, we can construct a path

equivalent (l,k+r)PC1 chart. We omit the details here, since

they are rather involved.

In order to be able to Trove any statements relating (l,k)-

PCr-charts, it has been necessary to develop a normal form for the

blocks. This normal form is illustrated in Figure 6. Each of the

sub-blocks, A. and B, in the normal form are acyclic: all looping

arcs are shown explicitly. The nodes i,...ir in B are considered

to be the breaknodes in this form.

1
el-
e2 l

l
0
.

ek'
A B

c1 c % 5.
c2' cc I2 c2. . .. . .. . l

C ir-r C r

k exit connections

r loopinz connec’ions

Figure 6, Y'ormal form for (l,k)PC, blocks. A and B are acyclic.

We can easily sholrr that ever:r (l,k)PCr block has a path eq-Jivalen?
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normal form block for any choice of breaknodes.

So far, we have been able -to prove that for any cycle rank,

r, there exists a (1,2)PCl-chart  that is not elementally reduc-

ible to any (l,l)PCr-chart, but that is a (l,l)PCr+l-chart. 'This

proo'f shows both that (l,l)PC15(1,2)PCl and that, for all r,

(l,l)Pcr~~~l,l)Pcr+l’ This strongly suggests that a hierarchy

exists both for k, the number of exits, and for r, the cycle ra%k

of the blocks; but we have not yet proved this more general re-

sul-t.(see the appendix for this and other proofs).

We have also been able to show that it is possible to trade

cycle rank for exits, in that for any (l,k)PCr+l  block,X, we can

construct a (l,k+l)PCr block, Y, such that X sp Y. This can be

used to show that (l,k)PCr-charts  & (l,k+r4)PCl-charts.

. - I&s not difficult to show that REl-charts are the same

class as the (l,l)PCl-charts. This class includes almost all the

block constructs proposed for structured programming. The fact

that the (l,l)PCl-charts  are the least complex charts in our fam-

ily of schemas agrees with the intuition that structured programs

are easier to prove correct than are general flowcharts.

In our proof that for any r there exists a (l,2)PCl-chart

that is not (l,l)PCr, the flowchart used is an RE2-chart. This

shows that there are RE2 -charts that require at least r+l inter-

nal assertions for any r. The significance. of this is that the

escape mechanisms in some programming languages (such as the "OH

ERROR GOTO" statement in BASIC-PLUS, or the "ON CONDITION" state-

ment in PL/l) are at least as powerful as the RE2-charts, and may

thus be used in a manner that oflreatly complicates a proof of cor-

rectness for the program.



Because of the naturee of the restrictions on REn-charts,

we do not expect to be able to show a precise relation between

them and our (l,k)PCr-charts. This is not true for the GR!Zn-

charts, however, and we expect to be able to show (we have not yet

d'one so) that GRZnzp(l,n)PCl. So far, we can show that GR3&,tl,nPcl*

Intuitively, the proof is simple; each GREn-block has at most n

distinct effective levels, and the RPT node may be taken as the

only breaknode. Thus, we may consider any GREn-block to be a

(l,n)PCl-block.

It remains to show the converse.

3.6 Further research

In addition to the remaining research mentioned inthe last

section, we intend to survey the control structures available in

. t-he major programming languages in use today, and to relate these

control structures to the hypothesized hierarchy. We will pay
particular attention to those features that may be used to generate
structures more powerful than the (l,l)PCl-charts. Examples of
this type of statements are the current implementations of CALL

and RETURN statements in most languages.

We may then be able to suggest restrictions on the use of

these statements to reduce their impact on proof complexity. 1~

addition, we may be able to suggest additional control structures

that could be added to programming languages without severely

affecting the complexity of proofs of correctness.
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APPENDIX I: The Proofs-,

In this appendix, we include the theorems alluded to in the

text, and their proofs.

In discussing graph transformations, we make reference to

"node splitting", and "node stretching? By node splitting we mean

the process of duplicating a node and its output branches, and the

distribution of its input branches in such a way that each copy has

at least one input branch, and no input branch is duplicated. By

node stretching we mean the introduction of a new node, connected

to the original by a single output branch, and the distribution of

the inputs as in node splitting. The new node is considered to be

an identity transformation. These transformations obviously preserve

path reducibility, at least when identity transformations are ignored.

Figure 11, below, illustrates the use of both node splitting and

noZe stretching in transforming more general flowcharts into D-charts,

FIGURE 11: Node splitting and node stretching: node d was split,
node e was stretched.(twice).

THEOREM 1 t For every (l,k)P$-chart, there exists a path equivalent

(l,k)PCr-chart  in normal form.

Proof: Consider any (l,k)PCr-chart, F, Assume F is not in normal

form, else we are through. We describe the derivation of a path

equivalent (l,k)PC=chart, in normal form, from F. Figure I2 illus-

trates the process for a particular case: the general procedure is

described below.
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First: Using node splitting as needed, copy F, but separate the

paths from the entrance to the breaknodes and/or outputs from the

other paths (see figure 12a and 12b).

Secomdr Stretch each breaknode, B., I&j&r,3 and split the introduced

identity node into two nodes, c. and c.'.J J The inputs to B. are3
distributed between c. and c.*3 J so that all paths from the entrance

to Bj include C.,3 and all paths from any breaknode to B. includeJ

7 ) but not c.3 ( see figure 12c).

Thirdr The normal form graph is, at most, a different arrangement

of the graph produced so far. The first part consists of the paths

from the entrance to one of the c., lkj*r,3 or to one of the outputs.

The second part, the loop block, consists of the paths from B., l%fr,J
to'&', l&j&r,3 or to one of the outputs. As shown in figure 6, page

23, C, and c j' (the cj in the 100~ block) are connected to i.j, the

l th &trance to the second block, which,J in this proof, is the node

corresponding to B..J
Since the only transformations involved in producing the new

flowchart are node splitting and node stretching, the new flowchart

is path equivalent to F. Since no new outputs or breaknodes were

introduced, and the breaknodes were not duplicated, the new chart

must remain (l,k)PCr. The new chart is thus the required (l,k)PC,-

chart in normal form.

By unwinding a (1,k)PC block n turns is meant the processL
of transforming the block to normal form, duplicating the loop block

n times (resulting in n+l copies), and then connecting the loop

exits from one block to the inputs of the next, the final loop

exits to the initial inputs, and the outputs to each other, as
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shown in figure 13. The resulting graph is obviously path equiva-

lent to the original.

a) (1,2)PCphart hot in nor-
mal form.

. - c) After second step in the
transformation.

b) Same graph after first step
in the transformation.

I
-w--d

d) The (1,Z)PCphart in normal
form.

FIGURE 12: Transforming a (1,2)PC -chart to normal form (nodes
P2 and P3 are used as breaknob es).

FIGUREI Unwinding a (l,k)PCr-block.
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THEOREM 2: For every krl, and every rrl, for every (l,k)PCr+l-chart,

F, there exists a (l,k+l)PCr-chart, G, such that FspG. That is, we

may trade cycle rank for outputs.

Proof: Transform F to normal form, if need be. We construct G from F,

being careful to preserve path reducibility.

The loop block of F is a (r+l,r+l+k) acyclic graph, where we

consider the cycle connections to be external to the loop block.

Let B be the (r+l,k)PCr+l -chart consisting of the loop block from F,

together with the cyclic paths from c. to i
J j, lkjfr+l. Construct

a set of r+l (l,k+l)PCr-charts,  Hi, 15ikr+l, from B as followsg

the input to H. is i. in B;J J
through ek,

the exits from Hj are el
as in B, plus ek+l# which is the node labeled

' j+l ( or c1 if j=r+l). The body of H.3 is identical to B,
except that the branch connecting c. - j+l to i j+l is deleted.

For example, see figure 14.

Next, considering each of the Hi as (l,k+l) predicates, construct

r+l (l,k)PC1-charts, M., lkjkr+l, as follows:J
The entrance to Mj connects directly to the input of H..

3
COlllleCt ek+l in Hi to the input Of Hi+l(or to the input
of H1 if i=r+l). Connect the el, 0.0 , ek exits of aI1
Hi lSer+l, to the corresponding output of M;.

For example, figure I4 illustrates M2.

Now, at this level, each Mj appears to be (l,k)PC1, but since

it is composed of (l,k+l)PCr-charts,  it is also (l,k+l)PC r'
We now produce the (l,k+l)PCr-chart,  G, from the M., and the

3
initial block of the normal form of F. Note that the G so produced

is not in normal form. Connect the ci exit of the initial block

to the input of Mi, for each value of i, l%.'r+l, and connect all the

exits labeled e. to the e. output of G, for all j, lkjek,3 3
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The original chart, F, is obviously path reducible to G, since

the initial blocks of both graphs are identical, and Mj is so con-

structed that any path in F which takes control from ij in the loop

block of F to any exit is duplicated in Mj. No new paths are intro-

duced, since each component, Hi, duplicates the loop block from F,

except for the loop through ii+19 and any path that exits Hi without

exiting G is a duplicate of some path from ii to ii+1 in the 100-p

block,

COROLLARY 2.1: (l,k)PCrilSp(l~k+r)PClb

Proof: By repeated application of the theorem,

one of the breaknodes  for output connections.-

el J
e2-
e3 -

I
A B -

cl -c' il cl3

ci- t-,, i2 ca3
c3 .-e i3 cq3

c ‘L

we may trade all but

a) F in normal form; (1,3)PC3.
- - - - - m - - v - -

b) H1 a (1,4)PC2- chart used in an intermediate step.

FIGURE L4r Examples of the construction in Theorem 2. Here, k=3, r=2,
(continued next page)
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c)“M2, a (l,&)PC,-chart  used in an intermediate step (each of
the Hi isLa (l,4)PC2 block.

d) G, the final (1,4)PC2-chart; FspG.
FIGURE 11;; Examples of Ithe construction in theorem 2, continued,

. -
--7----

z- c

~r~rL~]

=r s,sOO~sO1~slO,sll, ..* ,srO,srl
3 B 2r+3 distinct symbols,

p.. =13 "the prefix symbol is s. @*ljb
A q "delete the prefix symboW*

Inputs to Fr *are strings in r

x(F) = [x&z 1 control reaches the exit from Fr when x is input.3
FIXJRE 151 Phe flowchart for theorem 3b

THEOREM 3: For any given cycle rank, rS1, there exists a (1,Z)PC 1-
chart which is not elementally reducible to any (1,l)PC -chart,r
but which is (l,l)PCr+l.

Proof: Consider the flowchart, Fr, shown in figure Is, with the
indicated interpretation. Note that Fr is both (1,2)PCl and (l,l)PCr+,,
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Assume, contrary to the theorem, that some (l,l)PCr-chart, G,

exists such that P&G. We may assume that there is at least one

innermost block, TT, in G, and an input string, x0x1x2, with the

following properties:

a) after deleting the final symbol in x0, control is
within TT~

b) the length of x is at least 5, and control remains
within n at lea;3. t until x1 is deleted,

c) neither x0 nor x0x1 is accepted by Fr, but x0x1x2 is,

We may assume this without loss of generality, since, if there is a

bound, uniform over all inputs, on the number of symbols deleted

with control completely within any innermost block, we may unwind

that block the appropriate number of times and then delete the looping

branches. Thus, we may replace any such innermost block with an

. acyciic graph. It is not possible that all innermost blocks will

be deleted by this technique, since there are strings of arbitrary

length accepted by G, distinguishable from strings rejected by G

only in the final symbolr this requires that G contain at least

one loop, and we may choose some such loop as an innermost block.

Let o be the prefix symbol of xlb Then either xOs or xGas

is accepted by F,, and thus by G, and must therefore cause control

to exit TTb Let x6 represent either x0 or x00, as needed so that xbs

is accepted by G. Note that control must be inside TT after deleting

x6, since it is a prefix string of x0x1' Furthermore, after delet-

ing x+control in F, is at t&entrance to some test, pjo, for some

value of j. Thus, every string xbw with wfs.JO is accepted by G,

and therefore must cause control to exit TT. Since the length of

x0x1 is greater than that of X$H, and control remains within TT until

after %x1 is deleted, control cannot leave TT for the string x's0 j0
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(xoxl must be an extension of x's0 j0 ).

Furthermore, control cannot exit TT for the string x's. s.0 Jo 51’
because there is only one exit from IT, and from that exit there

is noway to distinguish between x's0 Jr and x~sjosjl, since no infor-

mation is available there about the symbols preceding the s.51'
Thus, if they both exited, both would be accepted-since the former

must be, but the latter is not accepted by F,.

Again, each string x's. s. w,0 JO 51 wfs (j+l)O' must be accepted by

G, and therefore must cause control to exits. This includes the

string x~sjosjlsjo' Thus, since xhw, wfs.JO' and x~sjosjlsjo cause

control to leave TT on their final symbol and be accepted, every

string that causes control to exit TT must be accepted by G,

Now,. we have , for every symbol in r,, exhibited a string

accepted by G that causes control to exit TT on that symbol, and thus

every string with prefix x0 that causes control to exit n must be

accepted by Gb

Consider the string, X, shown on the next line:

I
x (s0 j0 s>as

jOs jlc s(  j+l)o s☺a  l b  b  (Sr Os)a sr Osr l(SOOS)a  b  b  l (S(j-l)o S☺a S

This string must be accepted by G for any value of a%,but no prefix

string of it may be, Let there be at most A ,predicates in n, Then

the string XV, being the string X with a=A, must be accepted by G,

and therefore causes control to exit TT. Since no prefix of XV is

accepted by G, control cannot exit TT except on the final symbol,s,

Since there are only A predicates in n, and there are 2A symbols

in each forcing substring, (sios) A , each such substring forces control

to loop in R. There are r_tl such forcing substrings'in Xv. By def-

inition of (l,l)PC, blocks, there are at most r breaknodes in TT.
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Therefore, at least two of these loops must share a common breaknode,

%-rb Assume, without loss of generality, that the two forcing sub-

strings in question are (shos) A and (skos) A , with h&J,. Then, for
, ')
some values of m,n both GA, there exists a string of the form

2: ~~(s~~s)~z~(s~~s)~z~,  (where zO is either null or s, z1 is the

substring of XV required to make 2 a substring of X1, and z2 is

either null or Sk0 ) that carries control from q, to qn* Note that

ski is not the final symbol of 2.

Let yOyl be any string accepted by G that causes control to

be at q, after deleting yO. Then the string yOZZyl is also accepted

by G, since after deleting 22 control is back at q+ Eut this string

is not accepted by !?,, since ZZ requires control to travel from the

(skds)-loop to the (shOs)-loop without. - encountering skl'

Thus, we have exhibited a string not accepted by Pr that must

be accepted by G if every string accepted by Fr is also accepted

by G. Thus, G cannot be I/O equivalent to Fr. But then Fr&Ge

Thus, Fr is not elementally reducible to any (lJ)PCr-chart.

This completes the proof of the theorems referred to in the text,




