Parall el Solution Methods for

Triangul ar Linear Systems of Equations

by
Sanuel E. Ocutt

Techni cal Report No. 77

June, 1974

Digital Systems Laboratory
Stanford Electronics Laboratories

Stanford, California

-~

3
Science Fourdation under grant GJ-U41C33.



Manuscri pt docunentation unit for:

“#Perzllel solution Met hods for

Triangul ar Linear Systems of Equations”

by Sanuel E. Orcutt

Index terns: linear systens, parallel algorithns,

matrix inversion, recursive doubling.

Preferred address for future correspondencs:

S. E Ocutt
Bel | Tel ephone Laboratories
Naperville, [Illinois 60540



Foot not es

Affiliation of the author: This work was dcie while
the author was at Stanford University. The author is now
with Bell Laboratories, Naperville, lllinois 60540.

This work was supported by Bell Laboratories and by

t he National Science Foundation under Grant GJ-41093.



Fi g.
Fi g.
Fi g.
Fi g.

Fig.

Fi g.
Fi g.
Fi g.

Fig.
Fig.

Fig.
Fig.

= = = =
n =
v o

o
1
o)

Fi gure Captions

Initial conditions for reduction
Final conditions after reduction
Form of matrix Zq
Form of matrix Z,

jth§set of rows before being nodified

jth set of rows after being nodified

Ky

. e s o p k
Final conditions a27ter reduction (m < 27)

Initial conditions for reduction (m< 2

Initial conditions for reduction (m> 2K
Final conditions after reduction (m > 2k)
Form of matrix E

Initial condition of band triangular system



ABSTRACT

In this paper we consider devel oping parallel solution
net hods for triangular |inear systens of equations. For a
system of N equations in N unknowns the serial nethod requires
O(Nz) steps, and the straightforward parallel method requires
ON) steps and Q(N) processors. In this paper we devel op
methods that require O(log® N) time when used with o(x°)
processors and O(vN |og N) -ime when used with O(NZ) processors.
W al so consider solutions to band triangular systesms and
devel op a method that requires 0((log N)(log m) tine and

o(Nmz) processors, Where mis the bandw dth of the system



1. INTRODUCTION

Recent advances in electronic circuitry have brought
down the cost of conputer conponents quite dramatically.
These reductions have made pocsible the construction of com
puters with |arge nunbers c- processors capable of operating
simul taneously, that is, parallel conputers. Probably the
best known of these machines is the TLLIAC IV [Barnes, et al.
1968]1. The devel opnent of these nachines has pronpted con-
siderable research into structuring algorithms for this tyce
of machine, for example, the log-sumalgorithm/['luck, 19687,
dynam ¢ progranm ng [Gilmcre, 1968], tridiagonal |inear
systens solver [Stone, 19731, and solutions to linear re-
currences [XKogge, 19747, Most of this research has been
toward obtaining maximum possible speedup when using a machinc
with n processors to solve a probl emwhose size, in sone
appropriate measure, is n.

In this paper we consider devel oping parallel solution
nmethods for triangular |inear systems of equations. For a
system of N equations in ' unknowns the serial nethod
requires CXhﬁ) steps, and the straightforward parallel
met hod requires Q(N) steps when designed for a nachine with
N processors. The fastest method known to this author is
that of i=ller [1973]. 2y applying matrix theoretical argu-
ments to a lower Hessenberg natrix derived fromthe original

triangular matrix, he developed a nmethod which requires




o(log2 N)* tine and CXN4) processors. By applying recursive
doubling argunents, simlar to those of Stone [1973] and
Kogge [1974], directly to +n= recurrence relation represented
by the triangular system we also develop a nethod requiring
O(log2 N) time. Qur methed requires only CXhﬁ) processors =-:
achieve a time requirenent identical with Heller's.

In Section 2 we give serial and straightforward parallel
algorithns for the solution to triangular |inear systens.
Section 3 presents the basic principle upon which our method
is based, the principle of recursive doubling devel oped by
Stone. In Section 4 we devel op our method for solution tc
triangular linear systenms of equations. This problemis of
interest as it “ornms a fundanental step in the solution of
general linear systens of equations when using the LU
factorization.

The net hod devel oped in Section 4 solves triangular
systens by considering the individual elements of the matrix
rather than the nmatrix as a whole. In Section 5 we devel op
an alternative solution nethod that determ nes the inverse

of a triangular matrix in O(log2

N) steps utilizing only
operations on the entire matrix. This nethod also requires
o NP ) proces/spz’é.

ﬂ///ln/Séction 6 we develop a nethod that allows triangular

,systens to be solved in O(vN log N) tinme using O(N2)

i Throughout this paper all logarithns are taken to the base 2.
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processors. Although this time is larger than for the
previous algorithms, it requires fewer processors.

An interesting special case of triangular systemis
the triangular band system In Section 7 we develop a nethod
for solving these systenms in O((log N)(log m) time, where m
I's the bandwi dth of the system. using CXNng} processors.

2. TRIANGULAR LINEAR SYSTENS 0F EQUATI ONS

For a conputer to be useful, it should be capable of
solving nore than a single class of problems. W first
consi der the problemof solving triangular |inear systens
of equations.

W wish to solve problens of the form

My =50
wher e
M1
Moy Moo
M= m3l m32 m33
"1 ™2 ™3 . . Thn

For the purpose of our derivation, we choose to work wth
an equivalent fornulation. Consider evaluating sequences

of the form
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-1
we o T ALY - y(i) + Hi), O
j=0

A H, and N are related to M b, and n by

t

H(1) = Dy 1/Myyy 547 3

i j = Ne , - = . < | - 5

These sequences can be easily evaluated on a2 s=rial conputer

in the follow ng manner.

for i: =0 step 1 until Ndo y(i): = H(i);
for ;: = 0 step 1 until NI do
for i: = j+1 step 1 until N do
y(i): = y(i) + A(L,3) x y(5J;

This algorithmrequires N+ (N+1)/2 each of additions and

mul tiplications. The algorithm thus requires O(N2> st eps.
From t he above serial algorithmwe derive the follow ng

parallel algorithmfor a machine of the ILLIAC | V-type.



N

y(i): = H(1), (0 <1 <Ny

for j: =0 step 1 until NI do

y(i): = y(i) + A(L1,3) x y(J), (J#1 < 1 < 1)

The (jtl<i <N followng the assignment statenent indicates
that it is to be done sinultaneously for all i in the range
between j+1 and N. This algorithmrequires N each of
addition and nultiplication steps, €ach consisting of up to N
operations perforned Simultaneously in parallel. This yields
a speedup of (N+1)/2 as conpared with the sequential algorithm
W would like to obtain further speedup of the algorithm
but there appears to be no straightforward way in which this
speedup can be obtained. For each value of j, the statemen:
in the for loop requires the values of y from the previous
iteration. This situation is quite simlar to that en-
countered in Stone [1973] for tridiagoral systens. On this

basis, we apply the techniques of recursive doubling to our

probl em

3. THE BASI C PRI NCI PLE

The basic principle used in the devel opnment of our
algorithmis an extension Of the technique termed recursive
doubling by Stone [1973]. This technique is discussed in
det=21i1 in Xogge [1974], and the interested reader is referred

there for a nore thorough discussion. By way of an exanple,
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we now present sufficient background to enable the reader to
understand the derivation of the next section.
Consi der the problem of evaluating y(i), 0 <i <N,

where y(i) is defined by the linear recurrence

y(0) = ¥4 3

*

y(i) = A(i) * y(i-1), i >1 .

We proceed in the following manner. Substituting for

y(i-1) vyields

ACf) # (A(i-1) * y(i-2))

y (1)

(A(i) * A(i-1)) # y(i-2)
= A gy * yi-2)
Simlarly, substituting for y(i-2) yields

g(1) = AL () = (-2 * yi-1))

Py ¢ A o2y) # ya-n

202D (1) % wriiuy



That is, we proceed by deriving a sequence of equations for

y(i) of the followi ng form
y(i) = a1y & ya-2ky , A1) = 2 ) # a2ty
wher e

2491y = Az

These equations, although valid in general, must be nodified
slightly to account for the boundary conditions in the recur-
rence that occur at y(0). In this way, we derive a methou

computing the values y(i), 1 <i < N Let n = Mlog, N1, W
eval uat e A(n)(i), 1 <i < N, according to the above formul as.

Fromthe definition of A(n>(i), we know t hat
i) = (n)gs . .
y(i) =2 (1) * ¥4, 1 <1< N

Thus, after conputing the firss Mlog, N1sets of A(k)(i>, tre
values of y(i), 1 <i <N, are all available as the result

of a single nultiplication. On an SIMD (Single Instruction
Stream- Miltiple Data Stream [Flynn, 1966]) conputer with
appropriate interconnections, this can be done in 0(log N)
time and requires Q'N) processors. \& now proceed with our

mai n devel opnment .



4. A DOUBLING FORMULA

Consider evaluating y(i , 0<i <N where y(1) is
defined by the inhonogeneous |inear recurrence
- . .
y(i) = I A(1,3) * y()t Hi >0
) =0
W procec?, in the sane manner as for our previous exanple,
to derive a secuence of equations for y(i) of the form

k

2 Jl_(k)(i,j) * y@g) + 109 (1) , i >0 .

(*) y(i) = I
J=0

A vacuous sumis interpreted as having the constant val ue O.

From these equations, w= can evaluate y(i) by
y(i) = H(K>(i) -k > Flog2 (i+1)7 .

To evaluate y(i), 0 <i <N we derive the Flogg(Nﬂ)’\Lg
set of equations for y(i). W now give an inductive proof

of validity of (*) which yields appropriate recurrence
rel ations defining A% (1,1) and 58 (4,

Basis Step: Let

201 5y = aca,3) and HO) (1) = H(i)

From this we have inmmediately

g(1) = ¢ A oy w y) ta®y , 10 .



[ nduction Step:
Assume that (#)is valid for k = n-1. Ve prove that

(#)is also valid for k = n. W know that

120t _ _
y(i) =3 a0V, xy@) t e ).
j=0
. : : : : . -1,
Usi ng the inductive hypothesis, we substitute for y(|-2n x
g(i=2"tony, L y(i-29. This yields the follow ng

: . (n) ,, . n, .
recurrence relations defining AKL)<1,J) and H™ (1),
n-1

Case 1: 1 ' 2™2"7 -1
100"
I R CO R DI S CIE PR S C PO
:_._]_-gl‘l._
~ 101 (
a5y 4 }E: a=D sy % AU gy,
k=1-2M41
0 < < 1-2%12m!
LSS =7
‘ {_zn—l
A(n—l>(i, i)+ Z A('n_l)(i,k) % A(n-—l) (x,5 ) ;
; p=<3on-1
- SPPUNTRPLES PR PR
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Case 2: ot <1< RN LA
L—an”l
-— — . (n_l> K] .
R D DT S CF D
j=iz2"+1
4 9n4
=2 (7 (n-
A(ri)(l ,j) - A(n—l)<i, o+ Z A\n .L>(i,k> * A\n l)(k,j) ’
k=s 2"t
0 < §1—2n
Case 3: " < i< 2™
ﬁ_?n-l

g1y = 1 + SC I SIC PR

j=0

Case 4: 1 < pn-i,

The four cases shown above can be reduced by noting that the
di fferences between the cases are due to different bounds on
otherwi se identical sunmmations.

The general way in which this nethod works can be
described graphically in terms of the original triangular

matrix. We performoperations on the rows of the matrix as
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. . . ) K41 4 this
follows. Consider nodifying rowi where i > 2 ‘
case there exists a set of 2k +1 rows of the matrix in the
formof Figure 4.1a. The block of oK rows in this diagram

k+1
are rows i - 2

+1 through i -2 W nodify this set of
rows into the formof Figure 4.1b. This process corresponds
to elimnating 2k variables fromthe equation represented to
the 1*® row.  The val ues of M;” and b, are given by

M7= My ox 2y - (Mg x Zy) < My,

o
N
I

n
1 bl - (Mlx Z2) X 0

z, and z, are matrices such that M; xZ, is a matrix consist-
ing of the first m- 2 col umns of M, and M; x Z,is a

matrix consisting of the |ast 2K colums of M. These are
shown schematically in Figure 4.2, V& use a somewhat liberal-
ized definition of matrix product. In particular, if you
miltiply an mx n matrix Atimes a p x g matrix 3, you

ohtain an M x q matrix C with

o= 9 ALK x B(kJ) |

K

For the rows 2"~ <1 < 2K*1 the situations is simlar to that

presented except that the matrices M, and b, are no | onger



ROW i M| 0 I

~ T

m 2K - |

FIGURE 4. 1a
INITIAL CONDITIONS FOR REDUCTION

zk M2 I
ROW i My 0 |
\, - 4 - J
m-2K 2kt
FIGURE 4.1 b -

FINAL CONDITIGNS AFTER REDUCTION




m <

FIGURE Y. 2a
FORM OF MATRIX Z;



m<

FIGURE Y. 2v
FORM OF MATRIX Z,
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K

2" rows long. W performthe changes just described to al

rows i, i 32k. In this way many new zero el enments are
introduced into the matrix. These elenents are introduced
in a manner corresponding to the elimnation of 2% di agonal s
of the matrix. In this way, in the first step we elimnate
the first subdiagonal, the second step elimnates the next
two subdiagonals, then the next four, and so on until there
is only an identity matrix remmining. This process is shoun
in Figure 4.3 for the case n = 5. A4t this point the solution
vector is easily determined as it is identical to the nodified
ri ght-hand side.

The execution time and process requirements of this
met hod can also be determned. Elimnating all the sub-
di agonal s of the matrix requires Mlog, nl applications of the
recurrence. Each of these applications requires the conpu-
tation of inner products of vectors of length at nost N2
which requires at nost Mlog, N71. Fromthis, the tine
required is seen to be O(log2 17y, Fromsimilar considera-
tions, the processor requirenent can be seen to be O(N3).

o
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1
3 1
1 5 1
1
0 1
2 0 1
-18 -14 0 1
1
0 1
0 0 1
0 0 0 1
1
0 1
0 0 1
0 0 0 1
Figure 4.3

Numerical Exanple for 1 = ¢

10
14

12

329 .
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5. AN ALTERNATI VE TRI ANGULAR SYSTEN SOLVER

In a previous section we devel oped an al gorithm for
solving triangular linear systens of equations in 0(10g> M)
time for a systemof N equations and N unknowns. Thi's
al gori' thm was devel oped by applying the principle cf recur-
sive doubling [Stone, 1973; Kogge, 1974] to the recurrence
rel ation equivalent to the linear system This approach is
not entirely satisfying fromthe matrix theory point of view

In this section we present an algorithmfor conputing the

inverse of a triangular matrix in O(log2 N) tinme using only
matrix operations rather than cperations on the individual
el ements of the matrix. Heller [1974] presented, wi thout
proof, the same solution nethod. The derivation we present
here was devel oped i ndependently ana shows the validity of
this method. To proceed with this devel opnent we first
prove two | emmas.

Lenma 1 [Ostrowski, 19367:

For any N x N matrix X, we have

ok 2k-r)

(1oL = (1P (14x) (THx?) (Tex) L L (THX

where | is an N x Nidentity matrix.
Pr oof :

W start with the ident

(1-x0"1 = (1-0)7t



The right-hand side of this equation is multiplied on the

ri ght by

12!

_ _ \ 0 .
= (14300 L () Loz T (T )T (14X Yo (T4X2) (T+X)

W reduce this by applying reductions simlar to
(1357 (ex®) 7 = (-7
until only a single terminvolves an inverse. Since the

terns (I-t-Xk) are polynomals in the matrix X, they commute.

Using this commutativity, we reorder the terns into the

order given in the statenent of the |emms. QED
Lenma 2:

If A and B are arbitrary N x N natrices with 245 = 0
for all i <jfkl and bij: 0 for all i <,j+k2,then C=A-B
is amtrix with C,, = 0 for all i < JHkytks.

Proof:

For S| to possibly be nonzero, we nust have

{| M g ]
Y
o3
RS
(@)

This inplies that

g2 | 1> 84K and & > jtk,



or equivalently

> j+kl+k2.

l+k2 .

QED

Fromthis it is easilv seen that c;; =0 for i < j+k

Wth these two | enmas we can derive an equation for A
where A is lower triangular with unit diagonal elenents. To
proceed, we let X in Lemma 1 be replaced by (1-»). -nis
yi el ds

1 on g > on-1
Al 2 (1-(1-A))-1 = (I-(I-A)° )7 (I+(I-A)) (T+(I-A)7)...(I+(I-A) ).

Let n = Flog, N1. This neans that o > N. The matrix (I-A)

is such that (I-A)ij =0 for all i < j+1. Applying Lenma 2
el

c - A A N s PN ¢
repeatedly, we see that ((I-A) )ij = 0 for all 1 < j+2.

Since 2" > N, this is also true for all i < ;+N which includes

all elements of the matrix. From this we determne that

n
(I-(1-)° )L = (1-0)7t = 171 = 1

where 0 is an N x N zero matrix. Substituting into the

o _ -1 :
original equation for A =, We obtain

1 2. 4 P on-1
AT = (TH(T=A)) (T+(I-A)T)(I+(I-A) ") . . . (I+(I-1) )




We can determine the required tine for this nethod

fairly easily. Al the required terns
(1-a)"

can be determined by repeated squarings. This requires
O(log N) steps each taking 0(log N) tine for a total tinme
of O(log2 N). The terns

(T+(1-4)%)

can now all be conputed with 0(log N) matrix additions each
requiring Q(1) steps for atotal of 0(log N) steps. The

. - -1
final value of A

I's obtained by another 0(log N matrix
products. The total overall time required is thus 0(108;2 RO
As for the processor requirenents, the operations that are
used are matrix products and sums requiring QN°) and
O(Nz) processor:, respectively. This inplies a processor
3y

requirement of O(N~)

6. A TRI ANGULAR sY3TEMS SOLVER FOR 0O( Nz) PROCESSORS

The solution nethods presented in the preceding two
sections required O(NS) processors for their execution.
This rate of growh is quite rapid as N becones large. In
this section we briefly describe a nethod that makes a
trade-of f between reduci ng the nunber of processors required

and increasing the execution time. Mre precisely, the
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met hod we present requires only CXhﬁ) processors to attain
an execution time of 0(vN log N).
This nethod proceeds in tw stages. In the first
stage we consider the rows of the matrix in blocks of VN
consecutive rows. Al of these blocks are treated identically
and in parallel. A typical block is shown in Figure 6.1a.
Mj is a full matrix and L.J is a lower triangular matrix
with unit diagonal elements. Proceeding by rows, we
elimnate the subdiagonal elements of L.. This yields the

J
situation shown in Figure 6.1b where

M' =1z "tM
J J J
b =1.tb
J J J
Lj"l is never actually fornmed but the equivalent effect is

obtained by the row elimnatfcns. The execution tine and
processor requirements for this stage are easily determ ned.
At each step we nmodify a row of at nost N elenents in each
of vN blocks. Updating each el ement requires conputation
of inner products of a- =-st /il elements. This requires a
total of QUN) 0O(¥N) O(¥N) = 0(N?) processors. To determ ne
t he execution time requirements, we note that this process

requires vN - 1 steps each involving inner products of at



VYN ¢

FIGURE 6. la
;th SET OF ROWS BEFORE BEING MODIFIED

|

Mj ! |

FIGURE 6.1 b
jth SET OF ROWS AFTER BEING MODIFIED
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nmost ¢vN el enents yielding an execution tinme of O(vN log N).
The execution of this stage of the process converts the
matrix fromlower triangular formw th unit diagonal elenents
into block lower triangular formwth identity matrices on
t he di agonal .

The second hal f of the nethod proceeds in a manner
logically equivalent to the first half except that the
el ements invclived are vN x ¥N matrices rather than scal ars.
The modif ications performed are those of Figure 6.1a with
Mj a null matrix. The time ani processor requirements
are again easy to deternmine. At each step, we compute at
nmost vN inner products each of at nost N elenments. This
requires O(N3/2) Processors. For the time requirenents,
there are v¥ - 1 steps each requiring the conputation of
inner products of at nmpbst N elements. This yields a tine
of O(/N log N).

To conpute the overall requirenents, we take the
maxi mum of the processor res:uirements and the sum of the
time requirements. This yields a total tine of o(v¥N log M)

and a total processor requirenent of O(Nz). Figure 6.2

gives an exanple of this method for N = 9.
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L0 ]

-20

-20

Figure 6.2

NMumerical Exanpl e of Frocedure for N =9
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7. BAND TRI ANGULAR SYSTELS

Al though the general triangular system solution
nmet hods can al so be used to solve band triangul ar systens,
it would be desirable to utilize the special formof the
matrix to reduce the tinme and processor requirenents. In
this section we develop a nmethod that acconplishes this.
Before presenting the mathematical fornulation of
our nethod, we notivate the basic concept used in a graphical

manner.  Consi der the problem of solving

where A is an N x N upper triangular matrix with unit
di agonal elenents and bandwidth m W consider performng

operations on the rows of Ain the follow ng manner. There

are two cases to consider. In Figure 7.1 we have 2k >m

When this is the case, we transformthe situation shown

in 7.1la into that shown in 7.1b where

b.” = b, - M xbz.

///

———

In the second case, m> 2k, the situation is conplicated

sonewhat by the overlapping colums of M, and M,. In this

1
case, We transformthe situation shawn in Tizure 7.2a into

that shown in 7.2b where



2k+|<

FIGURE 7. 1a

INITIAL CONDITIONS FOR REDUCTION (m < 2¥)

—
My by
1 I J——
MZ b2
L
FIGURE 7.1 b

FINAL CONDITIONS AFTER REDUCTION (m < Zk)‘



N

~

m

FIGURE 7. 2a
INITIAL CONDITIONS FOR REDUCTION (m > 2¥)

g k1 ¢ O —_—

FIGURE 7. 2b
FINAL CONDITIONS AFTER REDUCTION (m > 2K)
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=
N

I
=
X
=

|
=

k

and Eis a matrix that shifts the colums of M 2 colums

to the left and inserts colums of zeroes on the right. E
is shown ins Pigurs 7. 2e. m™eazA operations are equival ent

to elimnating variables fromthe equation represented by the
row of the matrix. In this way, we can reduce a pair of
adj acent bl ocks of 2k rows each into a single block of e
rows and still naintain the sane general formfor the rous.
Consi dering again the initial problem we see that the
rows of the matrix are initially in the formshown in
Figure 7.3. This is precisely the formwhich we require in
the case that k = 0. Fromthis we see that the matrix can
be reduced by applying the transformations just described.
We first conbine all odd - even pairs of rows to get blocks
of size 2. 0céd - even pairs of these blocks are then
conbi ned o 7ield bl ocks of size 4. This prccess |s con-
tinued until only a single block remains. At this tine,

the bl ock nmust be an identity matrix and the solution is

i medi ately available fromthe value of the nodified right-

hand si de.
To put things on a nore concrete foundati on, we now

present a mathenati cal fornulation of the nethod we just



FIGURE 7. 2¢
FORM OF MATRIX E



FIGURE 7.3
INITIAL CONDITION OF BAND TRIANGULAR SYSTEM



descri bed. As for the general triangular system solver, we
choose to work with the equivalent recurrence relation
rather than the matrix formulation. In particular we con-

si der solving

X(i) = Z A(1,3)-X(i-j) + b(i)

On the basis of the graphical description, we postulate that

3

X(i) = ¢ a%1,5)ex(1 - (i-1) mod 2¥ - ) + o1y

[

J= L

Using this as our inductive hypothesis, we now show that it
is valid. The proof yields the required recurrence relations
for A<k) and b(k).

Basis Step:

X(I) - I; A(i,j)'X(i—j) + b(l)
j=1

3

a0 (s 3yex1 = (i-1) mod 2° - j) + b 9)(i) .

I ™

j=1
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I nduction Step:
Case 1: (i-1) mod 2%*Y = (i-1) nmod 2K

A(k+l)(i, - A(k)(i

J> 93)’

p (k1) 5y o p (B 4y

Case 22 (i-1) mod 2K* = (i-1) nod 2¥ + 2%.
2a) oK ¢
ok
X(1)= = A(k)(i,j)'X(i - (i-1) nod ok _ i)
Jj=1
m (k) : k- (k)
+ ) A (1,3)X(z - (i-1) mod 2™ -] ) + b (1) .
J=2k+l
va\mﬁgfﬁg“the~in§uctive hypot hesis to substitute for the X's in

the first summation, we are able to derive the follow ng

recurrence rel ati ons between the A<k) and b(k).
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K
PN \ 2 .
(A0 5 505 + 2 a® @, 0)a® @ - (1-1) moa 28 - 2,4,
2=1
1< <m2®;
K
r a0y a® G - (4-1) mod 25 - 2,3) ,
g=1
L m - Zk +1<3j<m;

k
@ = v® ) + ; A @, 5™ @ - @-1) mod 25 - 1)

2=1

b(k+l)

[

2b) 2°

|V
=]

g} 3
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W again use the inductive hypothesis to subst:-ute for the

X's in the summation. This yields the following recurrence

rel ations.
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Fromthis we see that our inductive hypothesis was in fact
valid and we determne the recurrence relations defining the
a(5) and p(k)

Utilizing the recurrence relations, we can solve our
problemin the following way. Ve derive the Mlog, ER set
of equations for A(k) and B%). Fromthe nature of these
equations, it is easily seen tnat each X is given as a
summation involving only Xs with nonpositive indices and a
constant term  The nappi ng between the original triangular
system and the recurrence relation assigns all Xs with non-
positive indices a value of 0. This implies that the value
of X(i) is b(i) in the rlog, NM%2 set of equations. The
function of this algorithmis easily shown graphically.
Figure 7.4 gives a nunerical exampl=s for N = 6and m = 2.

To determine the execution tine and processor require-
ments for this nethod, we consider the time and nunmber of
processors involved in a single step of the nethod. At
each step we conpute at nost Nm/2 inner products each product
being of vectors of length at nmost m giving a processor

- requi rement of o(m2N). Since each step requires 0(log m)
time and there are 0(log ) steps, the total time required

by the nethod is 0((log m)(log N)).
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8. CONCLUSI ONS

In this paper we have considered the solution to

triangular |inear systens of equations. For a genera
triangular system we derived two nmethods for solution

2 N)time and 0O(N°) processors,

both of which require 0(log
and a solution nethod which requires o(vN log N) tinme but
only O(Nz) processors. Table 8.1 summarizes the execution
time and processor requirenents for various triangular

| inear systens solvers. One of these nethods is devel oped
by applying the principle of recursive doubling to a
recurrence relation equivalent to the original triangular
system and anot her is devel oped by applying matrix opera-
tions to the original matrix. The best prior nethod known
to this author s that of Hellcr [19737 which required
O(logz N time and O(Nu) processors.

We al so considered the solution to band triangul ar
systens. By considering the equivalent recurrence relation
we derived a nethod requiri ng 0((log N)(log m)) time and
O(Nm2> processors, where mis the bandwidth of the natrix.

Algorithms with different processor and execution tinme

--- —reguirements al so exist for this problem but are not

di scussed here.
Recent work by Hyafil and Kung [1974a, 1974b] has
resulted in the devel opnent o a class of algorithns for

the solution of this problem In particular, they describe
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an al gorithm using Can) processors that requires only
O(nl/3 1og2 n) time. They also develop a nore unified
nmet hod of reducing the nunbers of processors used in an
algorithm The nethod we used in Section 6seens to be a

hybrid of the two nethods they propose.

Table 8.1

Sol ution Methods for Full Triangular Systemns

Met hod Processors Ti me
Seri al 1 N°
Strai ghtforward

Paral | el N N
Section 6 N° /N log N
Sections 4 and 5 33 1og2 N
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