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ABSTRACT

In this paper we consider developing parallel solution

methods ifor triangular linear systems of equations. For a

system of N equations in N unknowns the serial method requires
2O(N > steps, and the straightforward parallel method requires

O(N) steps and O(N) processors. In this paper we develop

methods that require O(log 2 N) time when used with O(N3)

processors and O(fi log K) zime when used with O(N2 ) processors.

We also consider solutions to band triangular sys+ms and

develop a method that requires O((log N)(log m)) time and

. - O(Nm2) processors, where m is the bandwidth of the system.



1. INTRODUCTIGX

Recent advances in electronic circuitry have brought

down the cost of computer components quite dramatically.

These reductions have made poo*s-"ble the construction of com-

puters with large numbers s2 ;?rocessors capable of operating

simultaneously, that is, parallel computers. Probably the

best known of these machines is the TLLIAC IV [Barnes, et al.,

19681. The development of these machines has prompted con-

siderable research into structuring algorithms for this type

of machine, for example, the log-sum algorithm ['luck, 19681,

dynamic programming [Gilmore, 19681, tridiagonal linear

systems solver [Stone, 19731, and solutions to linear re-

currences [Kogge, 19741. Xost of this research has been

;ovjard obtairLIArg ;~~~;<int;r;l possible speedup ~;;k~cp~ *dsi;;;i; a n;~~~;~:-,c

with n processors to solve a problem whose size, in some

appropriate measure, is n.

In this paper we consider developing parallel solution

methods for triangular linear systems of equations. For a

system of N equations in IT unknowns the serial method
2requires O(N ) steps, and the straightforward parallel

method _requires O(N) steps when designed for a machine with

N processors. The fastest method known to this author is

that of :iel.ler [1?73]. 3y applying matrix theoretical argu-

ments to a lo7:er Eessenberg matrix derived from the original

triangular matrix, he developed a method which requires
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omg2 $i ) * time and O(N 4 ) processors. By applying recursiv;_

doubling arguments, similar to those of Stone [1973] and

Kogge [1974], directly to tern recurrence relation represented

by the triangular system, :fe also develop a method requiring

omg2 K) time. Our methcd requires only O(N 3 ) processors :c

achieve a time requirement identical with Heller's.

In Section 2 we give serial and straightforward parallel

algorithms for the solution to triangular linear systems.

Section 3 presents the basic principle upon which our method

is based, the principle of recursive doubling developed by

Stone. In Section 4 we develop our method for solution tc

triangular linear systems of equations. This problem is of

interest as it; C orms a fundamental ster. in the solution of

general linear systems of equations when using the LU

factorization.

The method developed in Section 4 solves triangular

systems by considering the individual elements of the matrix

rather than the matrix as a whole. In Section 5 we develop

an alternative solution method that determines the inverse

of a triangular matrix in O(1og 2 N) steps utilizing only

operations on the entire matrix. This method also requires

3O(N ) processWs.

,/”ection 6 we develop a method that allows triangular

systems to be solved in O(fi log N) time using O(N2)

if
Throughout this paper all logarithms are taken to the base 2.
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processors. Although this time is larger than for the

previous algorithms, it requires fewer processors.

An interesting special case of triangular system is

the triangular band system. In Section 7 we develop a method

for solving these systems in O((log N)(log m)) time, where m

is the bandwidth of the system,. using O(Nm2,, processors.

2. TRIANG?K,M? LIITXR SYST'C:::: 3P EQUATIONS

5'or a computer to be useful, it should be capable of

solving more than a single class of problems. We first

consider the problem of solving triangular linear systems

of equations.

We wish to solve problems of the form

My=b

where

;"22

.

mn2

For the purpose of our derivation, we choose to work with

.

m33

. . . .

mn3 l � l

. mnn

an equivalent formulation. Consider evaluating sequences

of the z"orm
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i-l
y(i) = C A(i,j) l y(i) + H(i), 0 <i< N.- -

j=O

A, H, and N are related to M, b, and n by

H(i) = bi+l/mi+l it1 ;9

A&j) = mit1 j+l/mi+l i+l>3 - ->
0 < j < i-l ;- -

N = n - 1 .

These sequences can be easily evaluated on a ~521 computer

in the following manner.

for i: = 0 step 1 until N do y(i

for J: = 0 step 1 until N-l do

for i: = Jtl step 1 until N do

y(i): = y(i) + A(i,j) x y(l);

This algorithm requires N*(N+1)/2 each of additions and

multiplications. The algorithm thus requires O(N 2 ) steps.

From the above serial algorithm we derive the following

txrallel algorithm for a machine of the ILLIAC IV-type.



Y (i): = 2 (i-1, (0 < i < 71);- -

for j: = 0 step 1 until N-l do

y(i): = y(i) + A&j) x y(j), (jtl < i < N);- -

- 5 -

The (jtl _ _< i < N) following the assignment statement indicates

that it is to be done simultaneously for all i in the range

between jtl and N. This algorithm requires N each of

addition and multiplication steps, each consisting of up to N

operations performed simultaneously in parallel. This yields

a speedup of (N+l)/2 as compared :*Tith the sequential algorithm.

We would like to obtain further speedup of the algorithm

but there appears to be no straightforward way in which this

speedup can be obtained. For each value of j, the statemen;

in the for loop requires the values of y from the previous

iteration. This situation is quite similar to that en-

countered in Stone [W/3] for tridiagonal systems. ;,?n this

basis, we apply the techniques of recursive doubling to our

problem.

3. THE BASIC PRINCIPLE

The basic principle used in the development of our

algorithm is an extension of the technique termed recursive

doubling by Stone [lYi3]. This technique is discussed in

detai 1 in Kogge [1974], and the interested reader is referred

there for a more thorough discussion. By way of an example,
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we now present sufficient background to enable the reader to

understand the derivation of the next section.

Consider the problem of evaluating y(i), 0 < i < N,- -

where y(i) is defined by the linear recurrence

Y(O) = Yo ;
I

y(i> = A(i) * y(l-1) , i > 1 .-

We proceed in the following manner. Substituting for

y(i-1) yields

y(i) = A(f) * (A(i-1) * y(i-2))

= (A(i) * A(i-1)) * ;r!i-2)

= A(l)(i) * y(i-2)

Similarly, substituting for ~(1-2) yields

y(i) = A(l)(i) +! (A(') (i-2) * y(i-4))

= (A(')(i) * A(')(i-2)) * y(i-4)



That is, we proceed by deriving a sequence of equations for

y(i) of the following form:

y(i) = A(k)(i) * y(i-2k) , A (k) (i) = A(k-l)(i) 3c A(k-l)(i-2:<-lj .

where

A(')(i) = A(i)

These equations, although valid in general, must be modified

slightly to account for the boundary conditions in the reclxr-

rence that occur at y(0). In this way, we derive a methou

. - computing the values y(i), 1 2 i 2 N. Let n = ri0g2 Xl. We

evaluate A(n)(i), 1 < i < fJ, according to the above formulas.-

From the definition of A , we know that

y(i) = A(n)(i) 3 Q, 1 < 5 < N.- -

Thus, after computing the ,'Lrs: t-log2 Nl sets of A (k)(i), t;r_z

values of y(i), 1 < i < N, are all available as the result- -

of a single multiplication. On an SIMD (Single Instruction

Stream - Multiple Data Stream [Flynn, 19663) computer with

appropriate interconnections, this can be done in O(log N)

time and requires O(N) processors. We now proceed with our

main development.
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4. ?, DOUBLIX TORMULA

Consider evaluating y(i

defined by the inhomogeneous

y(i
i-l

> = C A(i,j) * y(j
j=O

, 0 < i < N, where y(i- -

linear recurrence

) t H(i i > 0.-

> iS

We proce$ in the same manner as for our previous example,

to derive '?L sel~~;:en3e of equations for y(i) of the form

i-2 k
c*k> y(i; = C :A (k

j=C
1 !i,j) * y(j) t Hck)(i) 3 i > 0 .-

A vacuous sum is interpreted as having the constant value 0.

?rom these equations, ~cj can evaluate y(i) by

y(i) = H Ck) (J
, k  > r -lo g 2 (iti) l
-

thIo evaluate y(i), 0 < i < N, we derive the rlog2 (N+l)T--- -

set of equations for y(i). We now give an inductive proof

of validity of (*) which yields appropriate recurrence

relations defining A (k) (i ,j) and ,ci-r(k) (i>.

Basis Step: Let

A(‘)(i ‘~,,I ’ = A(i,j) and H (O)(i) = H(i) .

From this we have immediately

y(i
i-2 0

) = 1 A("),:qJ (j ) t Ho (1 ,i>O.-
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Induction Step:

Assume that (5) is valid for k = n-l. We prove that

(*) is also valid for k = n. We know that

i 2n-l
y(i) = c A("-')(i,j) * y(j) t H(n-l)(i) .

j=O

Using the inductive hypothesis, we substitute for y(i-2
n-l,),

y(i-2"+1), . . . . y(i-2%). This yields the following
b-d ( Lj > and H (n)(i).recurrence relations defining A

Case 1: i , 2nt2n- l-1 :-

,(q,,A J-J = H(n-l)(i) + i-2n-1
c n.-j zi-2 -i‘_L

I

-A(n-l)(i,j

1

>

f ,n-1I-L A(n-l)(i k) * ,(n-l+, j)> 3 3

i

fG+i,j) =i/. L-

: A(n-l)(i j) + i--L9
I ckc; t2-l

oyj < i-Zntl-2 n-l .>-

Ah-l) (i,k) * A (=') (k,j ) ;

l-2nt2-2n-1 < j < i-2n .
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Case 2: 2n < i < 2n+2 n-lml..

-: ,n-1
H(n)(i

,(d (

= H(n-l)(i) + L-c
c*

,(n-l)(i -J) JIG H(n-l)(j) ’2 3

n-l
i = A(n-l)(i j )  + i-2,j > > c

,(n-1) (i,k) % AcnB1)
k=J ,2"-l-

ozj < i-2n .-

Case 3: 2n-l < i < 2n:-

H(n)(q) = H(n-l)(i) + ’ -I
c
j=O

Case 4: i < 2n-1:

11Hen)(i) = H(n-l,(,) .

The four cases shown above can be reduced by noting that the

differences between the cases are due to different bounds on

otherwise identical summations.

The general way in which this method works can be

described graphically in terms of the original triangular

matri:<. Ye perform operat'ions on the rows of the ;natrix as
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follows. Consider modifying row i where I 2 2
ktl . In this

case there exists a set of 2
k t 1 rows of the matrix in the

form of Figure 4.la. The block of 2k rows in this diagram

are rows I - 2 k+l t 1 through i -2k . We modify this set of

rows into the form of Figure 4.lb. This process corresponds

to eliminating 2k variables from the equation represented to

the itn row. The values of Ml' and blN are given by

Ml' = Ml x Zl - (Ml x Z2> x M2 3

bl' = bl - (Ml 2xZ)xb .

. - Zl and Z2 are matrices such that Ml x Zl is a matrix consist-

ing of the first m - 2 k columns of Ml and Ml x Z, is a

matrix consisting of the last 2k columns of Ml. These are

shown schematically in Figure 4.2. We use a somewhat liberal-

ized definition of matrix product. In particular, if you

multiply an m x n matrix A times a p x q matrix 3, you

obtain an m x q c1atYi.x L' -zi.th

c.. =1J c A(i,k) x B(k,j) .
k=i

For the rows 2 k < i < 2k+l the situations is similar to that-

presented except that the matrices M2 and b2 are no longer
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FIGURE 9.2a
FORM OF MATRIX Z1
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FIGURE k2b
FORM OF MATRIX Z2
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2k rows long. We perform the changes just described to all

rows i, i > 2 k . In this way many new zero elements are-

introduced into the matrix. These elements are introduced

in a manner corresponding to the elimination of 2 k diagonals

of the matrix. In this way, in the first step we eliminate

the first subdiagonal, the second step eliminates the next

two subdiagonals, then the next four, and SO on until there

is only an identity matrix remaining. This process is sho:s;n

in Figure 4.3 for the case n = 5. At this point %he solution

vector is easily determined as it is identical to the modified

right-hand side.

The execution time and process requirements of this
. - method can also be determined. Eliminating all the sub-

diagonals of the matrix requires rlog2 nl applications of the

recurrence. Each of these applications requires the compu-

tation of inner products of vectors of length at most N/2

which requires at most I-log2 37. From tMs, the time

required is s.+Fen to be O(log 2 Y). From sisiLar ccnsidera-

tions, the processor requirement can be seen to be O(N3).
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5. A?: ALTERNATIVE TRIANGULAR SYST3 SOLVER

In a previous section we developed an algorithm for

solving triangular linear systems of equations in O(log 2 N)

time for a system of N equations and N unknowns. This

algori'thm was developed by applying the principle cf recur-

sive doubling [Stone, 1973; Kogge, 19741 to the recurrence

relation equivalent to the linear system. This approach is

not entirely satisfying from the matrix theory point of view.

In this section we present an algorithm for computing the
2

inverse of a triangular matrix in O(log N) time using only

matrix operations rather than cp?rations on the individual '

elements of the matrix. Heller [197'r] presented, without

proof, the same solution method. The derivation we present

here was developed independently ana shows the validity of

this method. To proceed with this development we first

prove two lemmas.

Lemma 1 [Ostrowski, 19361:

For any N x N matrix X, we have

(I-X)-l
k

= (I-X2 )--l (1+x)

where I is an N x N identity

Proof:

We start with the iden?

(1+x2) (I+x4) . . . (1+x2
k-l

)

matrix.

. I

(I-x)-l = (I--X)--l .
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The right-hand side of this equation is multiplied on the

right by

k-l k-l
I = (I+X)-l(I+X*)-1;I+X4)-1...(I+x2 )+1+x* )...(1+X2HI+Xj 9

We reduce this by applying reductions similar to

(I-xk)-1 (-r+xk)-l = (I-X2k)-1

until only a single term involves an inverse. Since the

terms (I-t-X k ) are polynomials in the matrix X, they commute.

Using this commutativity, we reorder the terms into the

. - order given in the statement of the lemma. QED

Lemma 2:

If A and B are arbitrary N x N matrices with aij = 0

for all i < jfkl and bij = 0 for all i < j+k2, then C = A43

is a matrix with c.. = 0 for all i < j-+kl+k2.iJ
P4qof:

For c ij to possibly be nonzero, we must have

n
C aiR*b

R=l
Rj f O'

This implies that



or equivalently

i 1 j+kl+k2 .

From this it is easil-: seen that c,. = 0 for i < jtkltk2.IJ
QED

-1
With these two lemmas we can derive an equation for A

where A is lower triangular with unit diagonal elements. To

proceed, we let X in Lemma 1 be replaced by (1-A).

yields

.A4 = (I-(I-A))-1 = (1-(1-A
4 l

)' )-I(It(I-A
?

)) (I+(I-A>'>...(I+(I-A>
*n-l

10

This

Let n = ri0g2 tn. This means that

is such that (I-A)ij = 0 for all i
r>n

2n > ?I. The matrix (I-A)-
< j-f-1. Applying Lemma 2

repeatedly, we see that ((i-A)L )ij = 8 for 211 i < jt*".

Since 2n 1 N, this is also true for all I < :+N which includes

all elements of the matrix. Yrom this ~;e determine that

(I-(I-A)*? = (1-0)-l = 7-1 = 1

where 0 is an N x N zero matrix. Substituting into the

original equation for A
-1 , we obtain

A-l = (z+(T-.cA)) (1+(1-A)*) (It(I-A)II) . . . (I+!I--.)
*n-l

> l



- 17 -

We can determine the required time for this method

fairly easily. All the required terms

(I-A)k

can be determined by repeated squarings. This requires

O(log K) steps each taking O(log N) time for a total time

of O(log* N). The terms

can now all be computed with O(log N) matrix additions each

requiring O(1) steps for a total of O(log N) steps. The

final vziue of A-1 is obtained by another O(log N) matrix

product"u3. The total overall time required is thus O(log * 2).

As for the processor requirements, the operations that are

used are matrix products and sums requiring O(N3 ) and
2O(N ) processor:, respectively. This implies a processor

reqtirement of G(X 31,.
-

6. A TRIANGULAR SYSTEHS SOLVER FOR O(N*) PROCESSORS

The solution methods presented in the preceding two

sections required O(N 3 ) processors for their execution.

This rate of growth is quite rapid as N becomes large. In

this section we briefly describe a method that makes a

trade-off between reducing the number of processors required

and increasing the execution time. More precisely, the
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method we present requires only O(N 2 ) processors to attain

an execution time of O(fi log N).

This method proceeds in two stages. In the first

stage we consider the rows of the matrix in blocks of fi

consecutive rows. All of these blocks are treated identically

and in parallel. A typical block is shown in Figure &la.

Mj is a full matrix and L.J is a lower triangular matrix

with unit diagonal elements. Proceeding by rows, we

eliminate the subdiagonal elements of L..J This yields the

situation shown in Figure 6.lb where

M.' = ,;-l M.
3 3

. -

b 'j = L.--l bJ j

L.-lJ is never actually formed but the equivalent effect is

obtained by the row eliminatfcns. The execution time and

processor requirements for this stage are easily determined.

At each step we modify a row of at most N elements in each

of /ti blocks. Updating each element requires computation

of inner products of a- it fi elements. This requires a

total of O(N) O(m) O(n) = O(N*) processors. To determine

the executI0n time requirements, we note that this process

requires fl - 1 steps each involving inner products of at
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5 5

I

Jr-N

1

FIGURE 6.la
ith SET OF ROi'/S BEFORE BEING MODIFIED

Mj ' I

FIGURE 6.1 b

j th SET OF ROWS AFTER BEING MODIFIED,
l
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most fi elements yielding an execution time of 0(/R log N).

The execution of this stage of the process converts the

matrix from lower triangular form with unit diagonal elements

into block lower triangular form with identity matrices on

the diagonal.

The second half of the method proceeds in a manner

logically equivalent to the first half except that the

elements involved are fi x fi matrices rather than scalars.

The modif ications performed are those of Figure 6.1~1 with
7”
iv1 . a null matrix. The time ad processor regiirements

3
are again easy to determine. At each step, wz compute at

most fi inner products each of at most N elements. This

requires O(N 3'2) Processors. For the time requirements,

there are fi - 1 steps each requiring the computation of

inner products of at most N elements. This yields a time

of o(A log N).

To compute the overall requirements, we take the

maximum of the processor me,yuirements and the sum of the
_-

time requirements. This yields a total time of O(fi log FT)

and a total processor requirement of O(N 2 ). Figure 6.2

gives an example of this method for N = ,9.
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7. BAND TRIANGULAR SYSTEXS

Although the general triangular system solution

methods can also be used to solve band triangular systems,

it would be desirable to utilize the special form of the

matrix to reduce the time and processor requirements. In

this section we develop a method that accomplishes this.

Before presenting the mathematical formulation of

our method, we motivate the basic concept used in a graphical

manner. Consider the problem of solving

Axy=b

where A is an X x PJ upper triangular matrix with unit

diagonal elements and bandwidth m. We consider performing

operations on the rows of A in the following manner. There

are two cases to consider. In Figure 7.1 we have 2 k 2 m.

Wher, this is the case, we transform the siX?tion shown

in 7.la into that shown in 7.lb where

Ml’ = -Xl x M2 ,

bl' = bl - Ml xb 2'

__ /-‘-
In the second case, m > 2 k , the situation is complicated

somewhat by the overlapping columns of Ml and M2. In this

case, we transform the situation +?":? in '?‘I*T~x 7.2a into

that shown in 7.2b where
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Ml’ = h’$ xE-M xM1 2 '

bl' = bl - Ml x b,,L

and E is a matrix that shifts the columns of Ml 2
k columns

to the left and inserts columns of zeroes on the right. E

is shown ir,~ ,F-:-E;:A~-;  7 . 2~ * rJ-v?,LT T: A. -&ri VL operations are equivalent

to eliminating variables from the equation represented by the

row of the matrix. In this way, we can reduce a pair of
k+l

adjacent blocks of 2 k rows each into a single block of 2

rows and still maintain the same general form for the rc-;:s.

Considering again the initial problem, we see that the

. - rows of the matrix are initially in the form shown in

Figure 7.3. This is precisely the form which we require in

the case that k = 0. From this we see that the matrix can

be reduced by applying the transformations just described.

We first combine all odd - even pairs of rows to get blocks

of size 2. 2dd - even pairs of these blocks are then

combined ',o ;:ield blocks of size 4. ThiS pccess Is con-

tinued until only a single block remains. At this time,

the block must be an identity matrix and the solution is

immediately available from the value of the modified right-

hand side.

To put things on a more concrete foundation, we now

present a mathematical formulation of the method we just
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described. As for the general triangular system solver, we

choose to work with the equivalent recurrence relation

rather than the matrix formulation. In particular we con-

sider solving

m
X(i) = C A(i,j)*X(i-j) + b(i) 3

j=l
L :.d

l<i< N.- -

On the basis of the graphical description, we postulate that

m
X(i) = C

j=l

Using this

is valid.

A(k)(i,j)*X(i  - (i-l) mod 2k - j) + b(k)(i) ,

1.ci<N.-

as our inductive hypothesis, we now show that it

The proof yields the required recurrence relations

for A(k) and b(k).

Basis Step:

X(i) = F A(i,j)*X(i-j
j=l

) + b(i)

m
= C A(') (i,j)*X(i - (i-l) mod 2' - j) + b )(i) .

j=l
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Induction Step:

Case 1: (i-l) mod 2k+l = (i-l) mod 2 k..

Acktl)(i,j) = Ack)(i,j) ,

Case 2: (i-l) mod 2kt' = (i-l) mod 2k + 2k:

2a) 2k < P:

x(i) = gk A(k) (Lj
j=l

m
t c #d

kj=2 +l
i,j)*X

i-1) mod 2 k - j>

.IL- (i-l) mod 2k - j ) + bck)(i) .

--.
Nquctive hypothesis to substitute for the X's in

the first wmmation, we are able to derive the following

rec'urrence  relations between the A (k) and bck).
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Z A(k)(i,a>.A(k)(i - (i-l) ri>d 2' - !?,,j) ,
R=l

1 < j < rn-2k ;- -

Acktl) (i, j) =

- (i-1) mod 2k - R,j) ,

m- 2k+l<j<m;- -

b (k+l) (i) = b(k)(i> + $ Ack)(i,R)*bck)(i - (i-l) mod 2k - !L) .
R=l

2b) _2:( > m:

m
X(i) = i: ACk)(i,j)*X

j=l
(1 -

17
i-1) mcd 2" - j t bck)(i >

We again use the inductive hypothesis to subs5'.--Ae for the

X'sin the summation. This yields the followin:; Fecurrence

relations.

(kti )(i) = b

n
.P.

(kil (i)

(k

t

h,a)

m
c A

R=l

\
112,I - (i-l) mod 2k - ~,,j) ,

(i - (I-1) mod 2 k - S,:.
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From this we see that our inductive hypothesis was in fact

valid and we determine the recurrence relations defining the
*w and b(k).

Utilizing the recurrence relations, we can solve our

problem in the following way. We derive the I-10~a2 , -- setdh
of equations for A (k) (k)and b . From the nature of these

equations, it is easily seen tnat each X is given as a

summation involving only Xs with nonpositive indices and a

constant term. The mapping between the original triangular

system and the recurrence relation assigns all Xs with non-

positive indices a value of 0. This im-,l ies that the value

of X(i) is b(i) in the Tlog2 &h set of equations. The

function of this algorithm is easily shown graphically.. -
Figure 7.4 gives a numerical e:<a.r?,Fk for N = 6 azd m = 2.

To determine the execution time and processor require-

ments for this method, we consider the time and number of

processors involved in a single step of the method. At

each step we compute at most Nm/2 inner products each product

being of vectors of length at most m, giving a processor

requirement of O(m*N). Since each step requires O(log m)

time and there are O(log Ii) steps, the total time required

by the method is O((log m)(log N)).
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8. CONCLUSIONS

In this paper we have considered the solution to

triangular linear systems of equations. For a general

triangular system, we derived two methods for solution

both of which require O(log 2 N) time and @(N3) processors,

and a solution method which requires O(V% log N) time but

only O(N2 ) processors. Table 8.1 summarizes the execution

time and processor requirements for various triangular

linear systems solvers. One of these methods is developed

by applying the principle of recursive doubling to a

recurrence relation equivalent to the original triangular

system and another is developed by applying matrix opera-

tions to the original matrix. The best prior method known

to t:iis author Is that of Iizllcr [1973-j l;hich required

O(log 2 N) time and O(N') processors.

We also considered the solution to band triangular

systems. By considering the equivalent recurrence relation,

we derived a method requiring O((log N)(log m)) time and

o(hb.2? processors, where m is the bandwidth of the matrix.
-

\w Algorithms with different processor and execution time

--- --rwements also exist for this problem but are not

discussed here.

Recent work by Hyafil and Kung [1974a, 1974b] has

L resulted in the development of a class of algorithms for

the solution of this problem. In particular, they describe
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an algorithm using O(n2 ) processors that requires only

Oh113 log' n) time. They also develop a more unified

method of reducing the numbers of processors used in an

algorithm. The method we used in Section 6 seems to be a

hybrid of the two methods they propose.

Table 8.1

Solution Methods for Full Triangular Systems

Method Processors

Serial 1

Time

h2T

Straightforward
Parallel

Section 6

Sections 4 and 5

N N

N2 JN log X

>; 3 log2 N
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