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ABSTRACT

Techni ques based on hardware nonitoring were devel oped to neasure
comput er system performance on the instruction set processor |level and the
m crocode |evel.

Know edge of system behavior and system utilization at these two
level s is extrenely valuable for design of new processors. The reasons
why such information is needed are discussed and applicable neasurenent
techni ques for obtaining necessary data are reviewed. A hardware nonitor
is a preferable nmeasurenent tool since it can trace nost of the signifi-
cant events attributed to these two levels without introducing any
artifact.

Described hardware nonitoring techniques were inplenmented on the
8/370 Model 145 at Stanford University. Measurements performed on the
instruction set processor |evel were concerned with determning execution
frequencies on individual instructions under normal system workload. The
m crocode |evel neasurements measured the nunmber and the type of S/370
Model 145 microwords executed in the process of interpretation of an
i ndividual S/370 instruction and the average execution time of each such
i nstruction,

| mpl enmentation of each technique is described and the results based
on the outcome of performed measurements are presented. Finally, effective-

ness and ease of use of the discussed techniques are considered
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| NTRODUCTI ON

Machine instructions provide a neans of control a user can exer-
cise over his nmachine. The instruction repertoire is an attribute of a
computer fanmily, but its inplementation may differ wdely anong nodels of
one famly. How individual instructions from an available repertoire
are used is a function of the processing environment of a conputer instal-
lation. W say that each conputer installation processes its own
instruction mx where the instruction mx reflects the particular
environment. Both the instruction set conposition (instruction repertoire)
and the technique of inplementation affect the suitability of a particular
conputer to various processing environnments. This suitability can be
evaluated in terns of programm ng effectiveness and efficiency of execu-
“tion, the latter being one of the aspects for evaluating performance of
comput er hardware

One of the first neasures of conputer performance used for the
purpose of selection of the best anmong several machines (selection
eval uation) was the execution time of a single instruction, usually ADD
instruction [LUCA 71]. Such a nmethod was soon recognized as inadequate
and was replaced by a nethod based on an instruction mx. An instruction
mx was a list of instructions weighted according to their frequency of
execution. The tine needed to execute a particular instruction mx was
then taken to be the direct neasure of performance or it was conbined
with other conputer systemattributes (1/0 speed, data path width) to
calculate a 'Figure of Merit' [KNIG 66, DRUM69]. Optimally, the instruc-
tion mx used in evaluation should represent the actual instruction

utilization under the load the selected conputer will have to handle



However, statistics about instruction usage were rarely available and
instruction mxes for performance evaluation were constructed according
to what was thought to be a typical business or a typical scientific mx.
Even so it should not be disregarded altogether, the instruction mx as

a performance evaluation tool has a nunber of drawbacks and is today rated
as entirely insufficient. This fact by no neans inplies that statistics
on instruction usage have no application. There are fields of conputer
engi neering where such statistics are extrenely valuable. Sone of the
candi date areas are explained bel ow.

Desi gn of new processors. A broad instruction repertoire increases

the processor's generality and applicability to several different
processi ng environments, but the cost of inplementation grows also.
Some or all instructions can be inplenented entirely in hardware,
m crocoded, or interpreted in software. The inplenentation tech-
nique has a direct inpact on the cost of the processor's hardware
and the execution speed. Hardware/firmare/software tradeoffs can
be resolved effectively only when enough facts are known about the
frequency of usage of individual instructions.

Emul ator selection. The process of upgrading to a conputer system

with a different instruction repertoire than that of a system being
replaced can be significantly sinplified if the application soft-
ware can be enulated rather than reprogrammed. The efficiency of an
emul ator may depend greatly on the instruction mx the emulator has
to process.

Processor selection. Know edge of the instruction nmix may helpin

the first-run selection of conputers before starting detailed (and

costly) performance analysis. For exanple, an installation that is



known to use floating-point arithmetic in less than 1% of the tota
m x nost probably will not be interested in purchasing an optiona
fl oating-point hardware unit

Conpi l er evaluation. Conpilers generally utilize only a subset of

available instructions. A good conpiler should take advantage of
the flexibility and power of sone special instructions. To what
extent such attenpts are successful can be found out from the object
code instruction mx.

CGeneration of 'typical' instruction mxes. Instruction mxes

classified according to what application they represent can be
used as standards for conparing processing environnents of different
installations.

- Gaining nore insight about the conputer system environment and

oper ati ons. Instruction utilization data reflect sone characteristics

of programs run on a particular computer. Some unexpected dis-

coveries may energe. Perhaps decimal arithmetic is used too heavily

where conversion to binary numbers would be more appropriate, or

some special and efficient instructions are never used nerely

because programmers have not been sufficiently trained to appreciate

such extra features

In this study we examne the degree of applicability of instruction
usage statistics to design and inplementation of processors and emul ators
Attention is then focused on nethods of acquiring such statistics

The next section, Section 2, establishes basic termnology for the
rest of the paper. Section 3 discusses various aspects and tradeoffs
inherent in the design of processors and emulators. Section 4 sumarizes

techni ques of collecting instruction usage data. Section 5 then describes



two ways a sinple hardware monitor can be enployed to count occurrences of
S/360-370 instructions. Section 6 is concerned with analysis of S/ 370
Model 145 microprograns. Finally, Section 7 summarizes the work presented

in this paper and suggests the direction of further research



1. BASIC NOTI ONS

The terminstruction mix is well known and wi dely used, but not

wel | defined. Many instruction mxes do not include every individual
instruction inplenmented on a nachine being evaluated, but concentrate on
a subset of general instructions that are likely to be contained in
instruction sets of machines of different families. Sone mixes are
constructed out of groups of instructions that perform simlar functions.
For exanple, an instruction mix for 1BM S/ 360 could specify the weight
for a fixed-point add function w thout distinguishing between RR and
RX types of operation.

Let s be the nunber of different instructions (opcodes) inplenented

on a machine, where each opcode is assigned a unique integer k such that

-l <k<s. Let N be the count of occurrences of k-th opcode in N
instructions. Then fk = ;k_ is the frequency of occurrence of the k-th

opcode. There are many possible mappings of the given set of s opcodes
onto the set of first s positiveintegers. W wll consider only two
of them The first mapping assigns integers to individual opcodes in

such a way that ¢ where ¢ is the valueof the k-th opcode.

k < Sk k

Since some opcodes are not assigned to any instruction, the value of the
k-th opcode is not always equal to k. The function fk defined on a

set of opcodes under this particular mapping will be called the Instruction

Utilization Function (IUF). The second mapping orders opcodes by their

frequencies of occurrence, such that szfk+1 for all k=1,2,...,s.

Then let the Instruction Frequency Distribution (IFD) be the function

q
F(q) = E fk defined on the set of s opcodes under this second mapping.
k=1

It should be noted that while the first nmapping is unique for all machines



using the same instruction set (IUF may be therefore used for a conparison
study), the second one may vary from one installation to another and from
one application to another.

We have to distinguish between two cases of instruction utilization

Static utilization is determined by the structure of a progran(s). Here

fk is the frequency of how often each opcode is witten. Dynamc
utilization represents how many tines each instruction is executed. The
static IUF for a specified program can be obtained by hand-anal ysis of
its code. Dynamic instruction utilization is environment-dependent. It
is a function of data operated upon by prograns being anal yzed and as
such it cannot be conputed exactly unless the values of all operands are
explicitly known. This matter becomes even nore conplex when not only a
_single program (or a set of programs) but the entire systemis studied
The only way to obtain the function of dynamc instruction utilization
is to nmonitor the system under its normal operating conditions.

Anot her paraneter of interest is the distance of two instructions
I and l'I It can be defined as either the average nunber of instruc-
tions or the average number of CPU cycles executed after an occurrence

of | : and before the first followi ng occurrence O Ij' Not e that

di st ance (Ii,Ij) is different from distance (Ij’Ii)'



[11.  ROLE OF I NSTRUCTION UTI LI ZATI ON STATI STICS IN THE DESI GN
AND | MPLEMENTATI ON OF AN | NSTRUCTI ON SET PROCESSCR

Conventional conputers can be described as conposed of three basic
units: the Central Processor Unit (CPU), the nmain nenmory, and the Input/
Qutput (I/O facilities. A great part of the CPU elements are nanipul ated

by externally supplied machine instructions, or for short instructions

The collection of instructions directly interpretable by the CPU is called

the instruction repertoire or sinply the instruction set. The portion of

the CPU hardware that supports operations specified by nmachine instructions

shall be ternmed the instruction set processor. Bell and Newell proposed

the instruction set processor (ISP) description scheme for specifying a
set of operations and rules of interpretations incorporated into the CPU
architecture [BELC 711. W shall not be concerned with defining the
exact data and control flow for an instruction set processor as it is
done under the ISP descriptive schenme. Qur interest lies in determining
a set of operations to be included in a machine instruction set and the

techni ques of inplementation of an instruction set processor.

3.1 Instruction Repertoire: The Structure and the Power

Since the beginning of the history of computers, the specification
of a machine instruction set has usually been a major issue of a conputer
design project. Bell and Newell in [BELC 71] give an excellent overview
of various dinensions of conputer architecture. The subset of these
di mensi ons that describes the structure of an instruction set is presented
in Table 1 together with some of the many possible design alternatives

To select a set of operations executable as a single machine

instruction and to decide on the exact instruction format, a designer has
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to evaluate a nunber of tradeoffs. The word size often represents a
serious constraint. \When the word size is small, the individual fields
of an instruction have to be kept as small as possible. The operation
code, or opcode, specifies the type of a function carried out by an
instruction (load, store, add, etc.). The shorter the opcode field
the fewer distinctive opcodes are available; this limts the power of an
instruction repertoire

The power of an instruction set can be defined as the ease of
i npl enenting various progranmng tasks. W could possibly use the term

effectiveness instead. It is determined by two factors. The first

factor is what operations can be performed with a single instruction.

For exanple, a nultiply operation on sone small nachines such as the

_DEC PDP-8 has to be programmed explicitly using add and shift operations

n+l address instructions can branch in addition to executing a function
specified by the opcode. Sone machine instruction sets mght include
instructions for such conplex functions as search or sort. The second
factor stands for how many and how large the pieces of data are that can

be noved between the processor and the main nemory by a single instruction
Data that are longer than what can be handled by a single instruction

have to be broken into n fields and the requested operation perforned

in n steps, while some control information is passed from one step to

the next. For exanple, to performa long add operation, the overflow from
step k is the carry into step k+l. Miltiple operand address instructions
elimnate the necessity of having to nove operands and results between |oca

processor storage and main nenory explicitly. An exanple is given bel ow
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Goal: Add OPERANDL and OPERAND2 and store the result in RESULT

One address per instruction: L OPERAND1
(1BM S/360) A OPERAND2
ST  RESULT

Three addresses per instruction: A OPERAND1, OPERAND2, RESULT
(M DAC [BEIC 711)

The problem of a short opcode field is quite comron to mniconputer
architecture. Sone miniconmputers such as the PDP 8 or HP 2116 use the
address portion of an instruction word of those instructions that do not
reference the main nenory as additional opcode subfields. This approach
greatly enhances the power of an instruction set while only a few bits
are required for the opcode field. Another scheme, proposed but not yet
impl emented, is based on conditional interpretation [FOST 71A]. It
utilizes the fact that each instruction has only a very few likely
successors. As an exanple, 'Load accumulator' operation is not going to
be followed by 'Cear accunulator.' Each instruction can be then encoded
as the k-th successor of the instruction inmediately preceding in execu-
tion. Under this schene, the size of the opcode field could be greatly

reduced, but only at the expense of some special decoding hardware.

3.2. Uilization of the Information in Opcodes

Extra power of an instruction repertoire can be provided only
through increased cost of computer hardware together with extended design
effort. Wen the instruction set is not fully utilized, both the design
effort and the hardware investnent are partially wasted. The maxi num
utilization of the information in opcodes is achieved if all instructions
are equally likely. Two neasures of opcode usage were proposed in [FOST

71B]. The first neasure | is the average nunmber of bits of infornmation
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S
contained in each opcode. It is obtained as | = iz_:l Py logzpi wher e
Py is the probability that the i-th instruction fromthe instruction set

S of size s is used. The maximum is reached when P, =§ for all
i=1,2,3,..,.S, and lmax: 1og2s, but such a situation is fairly
i mprobabl e.

The process of coding a set of tasks to run on a particular machine
maps tasks into, but not necessarily onto, the set of machine instructions.
This means that some instructions are perhaps never used. Let the effective
i nstruction set Se of a specific program be defined as the set of all
instructions used at least once in that program The second neasure then
exam nes the effort necessary to recode such a program onto an instruction
set S such that §cse and can be expressed as g(s)=1-F(s), where s
) is the size of the set S and F(s) is the IFD defined in Section 2.

The two measures were applied to the analysis of instruction usage
in both handcoded programs and object coded programs on the CDC-3600
conputer at the University of Massachusetts. Table 2 shows what percentage
of program code would have to be rewitten if the original set of 142
CDC- 3600 instructions were linited to include only the s nost popul ar

ones.

TABLE 2: Program portion that has to be rewitten
if the original _set of 142 instructions
is limted to s nost popular ones.

- Hand- coded Conpi | er out put
S .

progr ans (obj ect code)
64 2% 0%

32 10 - 16% 0 - 3%
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Statistics on static (witten) usage of opcodes are not sufficient--sone
instructions are executed with nuch greater relative frequency than they
appear in a program listing (branch instructions, for exanple). Not only
the reprogranmng effort, but a possible increase in execution tinme has

to be anal yzed when such reduction of an instruction set is considered

3.3. | npl ement ati on Techni ques

Thus far we have discussed the structure of machine instructions
in the context of the instruction set power and the information contained
in each instruction. Next we shall concentrate on how a specified instruc-
tion set can be inplemented, or in other words, we shall discuss various
instruction set processor organizations

An instruction set processor is an assenbly of hardware functiona

‘units (registers, adders, shifters) interconnected with data busses and

control lines. Execution of a single instruction may require assistance
of several such units, and sone of these units nay be used nore than once
As an exanple, a nultiply operation can be perforned as a series of add
and shift operations. Sequencing control can be made entirely of logic
circuits, and such processors are then called hardwired, or it nmay be
supervised by stored prograns. Such programs are transparent to a pro-
granmer using the machine instruction set. They are witten in a nore

primtive instruction set called microcode instruction set with each

instruction terned a microinstruction or a mcrowrd. Processors inplemented

in this way are known as nicroprogramed processors. Mcroprogranms reside

in control menory (control store) and are collectively referred to as
m crocode. Control store may be either read only or may provide wite

capacilities in addition to read capabilities (witeable control store).
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Processors with witeable control store are called mcroprogrammble

processors.
The third level of inplementation is then software interpretation.
Frequently used operations can be coded and catalogued as special sub-

routines, a popular term for which is macroinstructions. Macroinstructions

elimnate the necessity of explicit coding and are thus a convenient tool
for a programrer. They nust not be mstaken for a subset of the machine
instruction repertoire, but they can be viewed as its extension.

The three levels of instruction set processor inplementation are
illustrated in Figure 1. The main tradeoff here lies in design and
i npl enentation cost versus execution speed. Hardwired operations are
fastest, but a conpletely hardw red processor might be too conplex and too
costly. Further, once logic circuits are assenbled together, there is no
way to nodify the instruction set. Mcroinstructions perform very sinple
operations and their execution does not require an extensive hardware
control. Sinpler hardware is only a tradeoff for a reduction in the speed
of execution, since several microinstructions often have to be executed
per single machine instruction. But this factor is beconming less and
less significant as the speed of control nenories increases. Both
approaches may be conbined in the organization of a single nachine.

That is, the crucial instructions may be hardwired while the less fre-
quently used ones are inplemented as mcroroutines.

In recent years, there has been a growing trend toward inplenenting
an instruction set processor in microcode. As aresult, a great part of
the effort associated with hardware design has been shifted to the area
of mcroprogram devel opment. This shift is even nore enhanced by the fact

that many of today's control menories are dynamically witeable; that is,
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their contents can be changed under control of a program  Processors with
dynamcally witeable control store are referred to as dynamcally mcro-
programmabl e processors. Sone dynamically mcroprogrammble processors
can execute mcroprograns only if those reside in the control store [COXK
701. Mcroprograms that are not found in control menory have to be first
swapped in (from nmain nenory or some auxiliary storage). In other cases,

a dynamically mcroprogrammbl e processor can execute nicroinstructions
directly from main nenory, at the expense of the execution speed [TUCK 711.
In both cases, if a requested microprogramis not found in control storage,
its execution requires nore CPU tine. A dynanically witeable control
store facilitates the opportunity to change dynamically the entire instruc-
tion repertoire. The exact conposition of the instruction set and the
control store residency can then be optimzed to fit the inmediate needs

of each individual installation. The optimzation process has to be

based on some reliable data about opcode utilization. Sonme of these
problems are similar to those encountered on the operating system |evel.
For exanple, the npst frequently used OS/360 SVC routines are resident in
the main menory, the rest are transient. |f one or nore transient routines
arecal led too often, system overhead night become too large. To find out
the real cause of such overhead, the system has to be nonitored. The

sane is true when dealing with microroutines, but it is not always possible

to use the same neasurenent nethods.

3. 4. M crocode Level

We have discussed microprogramring as one of the possible neans of
i mpl ementation of an instruction set processor. Indeed, the original

purpose of mcroprogranming was to aid a computer designer to elinminate the
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randommess of control logic in an instruction set processor [WIIK 51].
But the concept of microprogramming has a nuch w der area of application
Frequently executed tasks that require a considerable amunt of CPU tine
can be witten directly in microcode to increase system throughput. System
di agnostic routines [JOHA 711, operating system functions, special functions
for performance nonitoring [SAAL 72, ROBE 72] are all acknow edged candi -
dates for mcrocode inplenmentation. Conputers can be also mcroprogranmmed
to execute higher level languages directly without the need for a conpiler
In the previous section we suggested that a microprogramable com
puter can support more than one instruction set. This neans in turn that
such a conputer can execute progranms witten for other, different nachines

The process just described is known as enulation. Salisbury presented a

_broad overview of microprogramming in the context of enulation [SALI 73A].

A truly universal processor should have the capabilities to enulate a wde
range of machines. The prine supposition here is a great flexibility of
its mcroinstruction set.

Specification of a microinstruction repertoire represents a problem
anal ogous to the one encountered on the instruction set processor |evel
In fact the nicroinstruction set could be considered the basic instruction
set of a microcoded machine, and the nicrocoded processor, the interpreter
of the machine instruction repertoire. Such a concept seens to provide a
better description, especially for machines that do not have what can be
called their 'own' instruction set. The terminterpreter has indeed been
used by designers of the B1700 [WILN 72] which is possibly the nost
flexible processor ever designed

Table 3 summarizes instruction processing capabilities of various

processor types. Enulators and interpreters actually belong to the group



of m croprogrammbl e

of special functions they perform

processors,

17

they are described separately because

An emulator is also an interpreter

but its primary function is to execute programs using its own, basic

instruction repertoir

e

TABLE 3; Characteristics of various types of instruction

set

processors.

Har dwi red processor

(read only contro

(witeable contro

processor
store)

Enul at or

I nterpreter

H gh-1evel |anguage

M croprogranmed processor

st orage)

M croprogranmabl e processor

st orage)

Dynami cal ly microprogrammbl e

(dynamically witeable contro

interpreter

Instruction set is fixed

Instruction set is fixed, but it
can be customzed prior to machine
delivery

Instruction set can be custonized
and changed in accordance wth

user processing needs any tine such
needs arise

Instruction set can be changed
dynamically to fit various
applications

Besi des having its own instruction
set, it is capable of executing

one or nore instruction sets
differing from the basic repertoire

Capabl e of executing severa
instruction sets that are either
basi c sets of some existing

machi nes or are designed to support
some special purpose application

Executes either a conventional or
a special purpose high-1eve

| anguage directly without using a
conpi | er

Mcroinstructions are frequently classified either as vertical or

hori zontal [ROSI 69,

| BM 711. Vertical mecroinstructions are short and

perform usually only one sinple operation. Horizontal mcroinstructions



are based on a very wide word and use only a minimum degree of encoding

I ndividual bits of horizontal mcroinstructions may be directly assigned
to circuit control lines. This approach enables a single microinstruction
to control sinultaneous operations of many independent hardware el enents

A conbi ned approach then uses words of a medium length with contro
informati on encoded into several short fields. The nore 'horizontal'
mcroinstructions are, the broader repertoire they constitute, but the
nore difficult it is to use them The nmore powerful a microinstruction
repertoire, the nost costly it is to inplement it. A very good discussion
of these aspects can again be found in [SALI 73].

How individual instructions are used depends on the application
purpose of a processor (execution of basic instruction repertoire, enula-
tion, inplenentation of special functions) and on the actual |oad of that
processor. The latter inplies that utilization of microinstructions is
data dependent. The task of determining the dynamc utilization of micro-

instructions is even nore conplicated than analysis of machine instructions

usage.

3.5. Summary

This section reviewed various aspects of instruction set processor
design. W discussed the power of an instruction repertoire versus the
instruction structure (format). The nore powerful the instruction set
the nore expensive the resulting instruction set processor, both in terns
of hardware and nanpower dedicated to the design project. \ether the
power of the instruction set repertoire of a particular machine is fully
utilized can be discovered only through analyzing instruction utilization

statistics obtained under normal working conditions
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I mpl ementation of an instruction set processor also has a nunber
of tradeoffs; such tradeoffs can be resolved effectively only when based
on the know edge of actual instruction processing requirenents. Flexibility
inherent in nicroprograming, especially the possibility of dynam c changes
of the entire instruction repertoire, makes this technique the nore and
nore frequently used one. To provide an adequate basis for designing
m croprogranmed processor, instruction utilization statistics have to be

suppl emented with statistics about nicroword utilization.
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V.  TECHNI QUES FOR MEASURI NG DYNAM C | NSTRUCTI ON UTI LI ZATI ON

Before getting down to the problem of how to obtain statistics
about dynamic instruction utilization, we shall review conputer performance
moni toring techniques in general. Performance nonitoring is a process of
extracting various information aboutthe behavior of a conputer system
The nonitored system frequently called the host system or the object
system has to be first instrunented to make such information accessible

Instrunentation provides an interface between the host system and the

monitor. The function of a nonitor is to extract data and to transform
it into a formsuitable for recording and/or display. This is illustrated
schematically in Figure 2. Mmnitors fall into one of four basic categories

Hardware nonitors. A hardware nonitor is an external device attached

to the nonitored conputer via a set of electronic probes. A sinple
hardware nonitor has a set of probes, a set of counters, and some
logic that allows it to combine two or more signals from probes
prior to their display and/or recording. Mre advanced nonitors
include features such as sequencers, data conparators, random
access nenory (RAM, and associative nenory. In addition, sone
hardware nonitors are progranmable--they are built around a mni-
computer that dynamically selects signals for recording and may
also be allowed to comunicate with the host's software. Except
for such conmunication, hardware nmonitors do not interfere with
nornal operations of the host system Hardware nonitors are capable
of recording signals at high rates. They can nonitor the state of
any logic element, provided there is an external pin on the host's

system nmai nframe assigned exclusively to such an el ement
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Figure 2. Sinplified diagram of a system perfornmance

moni t ori ng process.
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- Software monitors. Special programs incorporated into the host's

sof tware can collect relevant data either by sampling contents of
the system registers and control tables or can be invoked by the
occurrence of selected events. Such programs, called software
monitors, compete for system resources with jobs run on the host
system, We say they generate system artifact. As the sampling

or the event rate increases, the artifact may grow too large to be
tolerable.

Firmvare nonitors. Firmware nonitors are analogous to software

monitors, the only difference being that nmonitoring prograns are
witten in microcode. Such a technique can greatly reduce the
amount of CPU time necessary to support nonitoring, but is of
course applicable only to mcroprogramred conputers

Hybrid monitors. A nonitor that uses both the host's facilities

and an external device is called hybrid. The software part collects
data stored in various nmenories of the nonitored system and presents
themin the appropriate formto a hardware monitor for further

processing and recording

Many different conmputer installations have reported neasurements of instruc-

tion utilization. Collectively these measurenents cover a broad range of
monitoring techniques with representatives in each of the four classes
descri bed above. The Neurotron nonitor [ASCH 71] is a hardware device
devel oped at Argonne National Laboratory. It has a random access nenory
that can serve as an array of 256 counters. [Each instruction is assigned
one counter such that the value of the instruction opcode can be used
directly as the address of the associated counter. Any time a counter is

addressed, it is increnented by one. Counter update can be performed in
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about 200 nsec. This device can be used on any conputer provided that no
instruction is executed in a tinme shorter than the tinme needed to update
a counter. Bonner [BONN 691 describes what information a sinple hardware
moni tor that does not have random access menory can extract from the
operation code. A nonitor of this kind, the Conputer Synectics SUM was
used to determi ne usage of 64 operation codes on the CDC160A [ARND 72].
Several test runs had to be nade since executions of only 15 different
instructions could be counted during each run. A special hardware instru-
mentati on designed for UNIVAC 1108 [BORD 711 can generate an instruction
trace that is later processed to provide a report on instruction utilization.
An instruction trace can also be inplenented entirely in software [WIND 731.
Bai l ey [BALY 711 di scusses how i nstruction usage profiles can be obtained
through statistical analysis of conpiler-generated code. A nmethod called
4self-si mul ati on was used at UCLA [BUSS 701 to collect statistics for the
S/360 Model 75 and the XDS Sigma-7. Instruction utilization statistics
for the S/360 Mbdel 91 at UCLA were produced using a software sanpling
method. A firmware nmonitor has been inplenmented on the SCC IC7000 at SILAC
[SAAL 721. The instruction operation code of the 1c7000 utilizes from3
to 12 bits. The microcoded nonitor recognizes short and long forms of
operation codes and generates the address of the appropriate counter in
the main storage.

The appropriateness of each technique is a function of many factors.
If execution counts are the only information needed, a hardware mnonitor
with a small RAMwi ||l be the best tool. Sometines the execution counts
alone are not sufficient, since the amount of time needed to execute a
certain set of instructions depends also on the sequence in which these

instructions are subnmitted for execution. One inportant factor is the

di stance of various instructions. I nformati on about the distance of
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successful branch instructions can decide how |arge the stack should be
that hol ds prefetched instructions [BORD 71]. Distances of other instruc-
tions nmay be critical to a design of processors with pipelined circuits
or with several independent functional units that can execute instructions
in parallel. The S/ 360 Mddel 91 processor enploys both concepts. 1Its
floating-point add unit and the floating-point nultiply unit may operate
sinul taneously, each on a different set of operands. In addition, each
of these units is pipelined, neaning that a new operation can be started
on a functional unit while that unit is still processing a request initiated
sone tine earlier [ANDE 67 1. Assune that each of the requests for a par-
ticular unit can be conpleted before another one for the sanme unit is
issued. In such cases the piepline concept is completely useless. Sim-
larly, if the intervals during which the individual functional units are
busy are mutually exclusive, sanme hardware could be shared to perform
all functions distributed among such units.

The best source of information about instruction sequencing is an
instruction trace. An instruction trace is a detailed record of all or
sel ected (branch) instructions in the order they were executed. Software
methods generating an instruction trace are extrenmely time consumng. They
m ght slow down the conputer as nuch as several hundred times. This is
usually due to the fact that the speed of a supporting |/O device is not
sufficient and the nonitoring process has to be frequently interrupted
(wait loop) until the 1/0O device conpletes its operation. If not the I/O
speed but the CPU speed is the liniting factor and the CPU happens to be
mcroprogrammed, it is advantageous to inplenent trace routines directly
in mcrocode. CPU overhead is nevertheless significant. Since the pro-

cessing speed of other system resources renmins unchanged, interactions of
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these resources and the CPU becore tine-skewed, and the trace does not give
a correct picture of normal system operations. A progranmmabl e hardware
monitor with fast RAM may be able to trace instructions while the nonitored
systemis operating at full speed, but the anount of data collected is
limted by the size of the monitor's menory. |f such a hardware nonitor
has its own sufficiently fast secondary storage device, then RAM can be
divided into two or nore buffers, where one buffer can be copied into the
secondary storage in parallel to another buffer being filled with nonitored
data. Both Mddels B and C of the CPM X [RUUD 721 may operate in the
described node. A hardware nonitor that has the ability to conmmunicate
with the nonitored systemcan avoid |losing data by creating an interrupt
every time it falls behind operations of the nonitored conputer.

Some design areas require only a reduced amount of infornmation
about instruction sequencing. Such areas include design of conditional
operation codes [FOST 71A1 or devel opnment of an algorithmfor mcroroutine
swapping. The problem here is to obtain a list of the mnost frequency
successors for each of the n specified instructions. Such information

can of course be easily extracted from an instruction trace, but there

exist nore efficient methods that do the same job. It is only necessary
to have an nxn matrix C, such that the elenent cij is the count of
how many times execution of the instruction i inmediately preceded

execution of the instruction j. Software inplenentation of this nethod
woul d introduce alnmost as large an artifact as a software trace. A firm-
wave nonitor can update c.l.J counters in a much shorter time, but its
overhead woul d still be significant [SAAL 721. The nost efficient tool
is definitely a hardware nmonitor where the matrix Cis accurmulated in

the nmonitor random access nenory under control of a set of sequencers.
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The hardware device SLUR proposed in [MURP 691 can utilize its associative
menory to detect specific sequences of events, and it could also be used
to build the C natrix.

In summary we di scussed several nonitoring methods used as tools
for gathering statistics about instruction usage. Mere instruction
execution counts are not always sufficient; for certain design concepts
instruction distance or successor relationship are nore indicative paraneters.
Execution of each single instruction is an event that has to be processed
and recorded. A software monitor that can acconplish the processing and
recording task in M instructions slows down the execution process by
the factor MI. The artifact of a firmvare nonitor can be considerably
less, but rarely falls below the |evel of significance. Hence, a hardware

monitor is a preferred tool.
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V. USING A HARDWARE MONI TOR TO MEASURE | NSTRUCTI ON UTI LI ZATI ON

This section discusses how a sinple hardware nonitor such as the
Conput er Synectics SUM described in Appendix A can serve to neasure
utilization of |BMSystem/360-370 instructions. Let x; be the i-th
bit of the instruction opcode field, where xI is the nost significant
bit. The eight-bit S/ 360-370 instruction opcode X XXX XXX Xg - can
be witten as two hexadecimal digits X X Not all of the 256 possible
conbinations are valid opcodes. The S/360 instruction repertoire contains
150 instruction opcodes [IBM 681. The S/ 370 instruction set is basically
the S/360 instruction set augnmented with fourteen special instructions
[1BM 701. The matrix in Table 4 shows the opcode val ue assignment for
the S/370 instructions. The maxi mum nunber of distinct events the suM
nonitor can record at any time is sixteen. It is therefore not possible
to nonitor every single instruction of the S/ 360-370 repertoire, or at
| east not in one neasurenent run only. Next we shall discuss two possible
solutions to this problem

(1) The two nost significant bits of an S/ 360-370 instruction
specify the instruction type (RR,RX,RS/SI or SS). The whole digit Xl
describes in nost cases the type of the operand (fixed-point RR,  fixed-
point RX, floating-point RX, immediate, etc.). But such a division
is too general. A set of instructions with the same value of X may
be conposed of several subsets of instructions, each subset performng
entirely different operations. As an exanple, the set associated wth
x1:4 consi sts of halfword operation instructions, branch instructions

of the RX type, instructions for decimal/binary conversion, character

handling instructions of the RX type, Load Address instruction, and
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TABLE 4. S/ 360-370 instruction set--opcode value
assi gnnent .
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Execute instruction. Such subsets are often difficult to extract. Bits

of the X, field have to help in identifying individual subsets

The instruction set can be divided into m groups, m< 16,
where each group 9, is assigned one SUM counter. The i nput CNT of

the r-th counter is a function of X and individual bits of the X

1 2

1,x4,x5,x6,x7). Xl is obtained as the output of the
SUM decoder; the decoder input are the four nobst significant opcode bits

field, CNT_ = h (X
r r

Since the total nunber of gates on the SUM |ogic patch-panel is very
limted, methods known from sw tching theory [MCLU 651 should be enpl oyed
to minimze the nunber of gates needed. Figure 3 shows the circuits
t hat decode halfword operation instructions and branch instructions.

The second opcode digit X2 determnes often the type of an
operation carried out by the instruction (load, store, add, etc.). But
again there may be several subsets of instructions that perform different
operations but have the sane val ue of X, Crcuits that separate such
subsets can be acquired by a method anal ogous to the one described above
where the roles of X1 and X, are i nterchanged

This first method provides general information about characteristics
of the load processed by the neasured system the resultant data may be
sufficient for the purpose of conputer selection in the sense defined in
Section 1, or for the purpose of determning the '"typical' instruction mx
of a particular installation. For all other areas listed in Section 1 we
have to measure the | UF function

(2) The hardware nonitor SUM cannot nonitor nore than fifteen
instructions sinultaneously; the sixteenth counter has to be dedicated to

counting how many instructions are executed in total. Sets of fifteen

instructions can be fornmed in nmany ways. The sinplest way is to group
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Figure 3: Decode circuits for halfword and branch operations
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instructions according to the value of either the X, or the x, digit.
For X,=1,2, or 3, all sixteen values of X, represent a valid opcode
(Table 4); for every value of X, there is at |east one value cj of

X, such that e¢.X. is not a valid opcode. It neans that no nore than

1 J2

fifteen counters are needed to count usage of opcodes X,X, for each

sel ected val ue of Xy

Each input of the SUM sensor concentrator can be inverted prior
to routing it to the logic plugboard. The sensor concentrator can there-
fore serve as part of the decoder for the digit X,. Let the output of
the sensor concentrator |ine corresponding to x., be false if the bit
x5 has the desired val ue. X, is then decoded as illustrated in Figure
4. X_ is decoded in the SUM decoder that is enabled only when X, has

1
_the sel ected val ue. It is very convenient to use the sensor concentrator
this way since the logic plugboard does not have to be rewired between
individual runs; the digit X, is selected by setting the sensor switches
It is inportant to make nonitored intervals sufficiently long to
elimnate the effect of workload changes during various times of day.
Data collected by this method can be verified in two ways. If £ s
s
the frequency of occurrence of the k-th opcode, thenkZ; fk, where s
is the nunber of valid opcodes to equal 1. The second @hy to verify the
results of this nethod is to calculate the sums 2, fk* where g = are
€

the instruction groups established under the firsf iéthod and to conpare
t hese suns against neasured utilization of each group g.-

The two nethods were inplenented on the S/ 370 Mbdel 145 at Stanford

Details about this particular inplenentation are presented in Appendix B

*kcgr nmeans the instruction assigned the integer k belongs to the group

gr-
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together with the neasurement outcone. Wth slight nodifications, the
described nethods are applicable to machines other than those using the

S/ 360-370 instruction repertoire.
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VI.  ANALYSIS OF M CROCODE LEVEL FUNCTI ONS

In general, execution of an instruction can be deconposed into a
series of nore primtive operations or steps (instruction fetch, instruc-
tion decode, operand fetch, arithmetic or logical operation, etc.); the
same type of operation nmay occur in nore than one step. In a mcro-
programed conputer, execution of a single step may be acconplished by
one mcroinstruction, or may require several mcroinstructions, forned
usually into a microroutine. Individual bits and subfields of a microword
have then direct control over circuits performng actual data transfer
and data transformation. These levels of the instruction execution process
are illustrated in Figure 5.

The nunber and types of operations each instruction is conprised

“of is not determined merely by the instruction opcode. For sone instruc-
tions this nunber varies only as a result of whether such instruction has
been prefetched or not. For other instructions, it is a function of the
operand length (S/360-370 Multiply instruction). In addition, the nunber
of microwrds required to carry out a particular type of an operation may
be operand dependent. As a result, certain assunptions about the operand
value distribution and the operand length distribution have to be nade
only then we can estinmate the numbers of mcrowords of various types
executed when interpreting a particular instruction

Let o4 be the prinmtive operation of the type i and oy t he
average nunber of such operations needed to interpret the instruction Ik.

Let rqj

per each operation o, .

be the average nunmber of nicrowords cj of the type j executed

Let the Mk—profile of the instruction I be defined as p-tuple
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[Mkl Mo - Mkp] where Mkj is the average number of nicrowords of the
type j executed per such instruction and p is the nunber of different
mcroword types. Let ij be the mninum nunber of j-type mcrowords that

must be executed and Ukj t he maxi mum nunmber of j-type nicrowords that

can ever be executed in the process of executing the instruction Ik.
Then the p-tuple [Lkl Lo Lyg oo Lkp]IS the | ower boundary of the M, -

profile; the p-tuple [U

k1 %2 Yk3 - Ukp] is the upper boundary of the

Mk—profile. The M.k—profile can be obtained as:

Doy gy Mg s M IXmgq myp myg e my b= DG Mo Megoeee M)

Moy Mog Moz  +x Mgy

_mrl rPZ rT}S .**mrp

Knowi ng the M.k—profile, the average execution tine Tk of the instruc-
P
. _ . . .
tion 1 can be calculated as T, = J% I\/L.j tj wher e ty is the tine
needed to execute a microwrd of the type j.
Mcroinstruction utilization statistics are perhaps the only neans
for evaluation and selection of enmulators. Salisbury defines enul ator

power P as the nunber of instructions emul ated per second. Enulator

power can be calculated from a corresponding frequency mcromnix, which

is the frequency of execution of each mcroinstruction for a fixed nunber
and particular mx of emulated instructions [SALI 731. The application of
a mcroinstruction mix to the task of enmulator selection is very simlar
to using an instruction mx for the purpose of conputer selection. The
mai n drawback of the instruction mx nethod is that it does not evaluate
effects of the system software. That part of microcode that performs the

actual interpretation of the instruction repertoire, the true emulator,
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can be viewed as a collection of application programs witten in the
processor's |owest-level |anguage and the problem of software (operating
system |anguage processors) evaluation thus does not arise here.

Knowi ng the instruction utilization function IUF and the M, -profile

of each instruction |

X k=1,2,3,...,8, the relative frequency %‘ of
each microword type j can be calculated as e, f *M . £ oxM .
ype | lez{kMkJ/i‘J‘,:kkJ

Earlier we showed that the exact values of M, . paraneters cannot be

kj
calculated; they have to be neasured. Software neasurenent techniques

are'inapplicable to the nmicrocode level. Let us explore the possibility
of using a firmvare nonitor to gather statistics about mcroinstruction
utilization. Since the nicroinstruction set is far nmore primtive than
the machine instruction set, the number of microinstructions n that have
to be executed each tine a firmvare nonitor is called to process and to
record an event is nuch greater than the number of instructions executed
by a software nonitor to acconplish a simlar task. Let t be the average
time it takes to execute a single microword and T the average instruction
execution time. Then t*n is the average execution tinme of the firmware
monitor and T*N is the average execution time of the software nonitor.
The microinstruction execution rate is T/t tinmes greater than the instruc-
tion execution rate. The ratio of overhead of a firmware inplenented
mcroinstruction trace to that of a software instruction trace can be
calculated as (t*n)/(T*N)*(T/t) = n/N. W just showed that the overhead
of a firmwvare nonitor measuring mcrocode-level functions can be even nore
severe than the overhead of a software nonitor performng anal ogous
operations on the machine instruction |evel.

The process of execution of a microinstruction is very closely

related to operations of various hardware circuits. Mst of the paraneters
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of interest, such as the mcroinstruction opcode, the instruction opcode,
the interrupt status, the processor status, are at sone instant avail-
able as output signals of discrete hardware elenents. These paranmeters
can be therefore easily measured by a hardware nonitor, providing that
the probes of such a nonitor are sensitive enough to recognize high-
frequency changes of states of mcrocode-level elements. Fromthis
discussion it follows that a suitable (high-frequency) hardware nonitor

makes the nost appropriate tool for mcrocode-level measurenents.

6.1 S 370 Mbdel 145 M crocode

S/370 Mobdel 145 microinstructions incorporate both vertical and
horizontal mcroprogrammng characteristics. The type and the amount of
el enmentary operations performed by a single S/370 Mdel 145 microinstruc-

tion or control word varies. The type of a control work is encoded in

the four nost significant bits of each word. The six basic types of
control words are listed in Table 5 together with their representative
binary code. Their interpretation and inplementation is discussed in
Appendix C.  Wth the exception of a storage word, each control word is
executed in one CPU cycle. However, the CPU cycle length is variable.
M crowords that belong to the same group under the division presented in
Table 5 do not always execute in the sane time. For exanple, 0001 type
m crowords are usually executed in a 202.5 nsec cycle. But sonetines a
control word of this type switches nodules also, and in such cases it
requires a 247.5 nsec cycle. A different division had to be therefore
accepted. Table 6 describes control word types under this new division
together with their CPU cycle length. Each type is assigned a decinal

digit for the purpose of easier reference.
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CONTROL WORD TYPE

Bl NARY REPRESENTATI ON

Branch and nodule switch
Branch

Branch and link or return
Word Mve

Storage word

Arithmetic word

0000

0001

0010

0011

0100 - 0111

1000 - 1111

TABLE 6: S/ 370 Model

145 control word types--

di vi sion based on the control word
function and the CPU cycle |ength.

CONTROL WORD TYPE

CPU CYCLE LENGTH

Cj tj (nsec)
Branch and nodule switch 247.5
Branch 202.5
Branch and |ink 202.5
Return 247.5
Wrd nove 202.5
Storage word read 540.0
Storage word store 607.5
Arithnetic word fullword operation 247.5

Arithmetic word byte operation 202.5
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M crocode utilization neasurements were performed in tw stages.
The first stage provided statistics about execution of individual micro-
word types as a result of overall system operations. During the time
the CPU is busy, the state of microword utilization is a direct conse-
quence of what instructions are executed, or in other words, mcroword
utilization is a function of instruction utilization. The second stage
of mcroword-level neasurenments is concerned with how individual instruc-
tions contribute to this overall mnicroword utilization.

From the programmer's point of view, the instruction sets of all
S/ 360-370 nodels are identical, but their inplenentation differs radically.
S/ 360 Models 75, 91 and 195 are hardwired. Each of the other nodels has
its own private set of microinstructions. Wile S/ 360-370 programs can
be easily transfered from one nodel to another, the nodels are categorically
incompatible at the nmicroprogram |evel. Because of the differences in
mcroinstruction sets, it is not possible to conpare microword utilization
statistics across different S/ 360-370 nodels as was done for mnachine
instructions. But the techniques devel oped here for the S/ 370 Mddel 145
can be applied to other mcroprogrammed S/ 360-370 nodels; in fact, they

can be applied to any mcroprogrammed conputer.

6.2 Mcroword UWilization Measurenents

The Cregister* bits were nmonitored by the hardware monitor SLIM
probes and decoded in the SUM decoder. The decoder operation was controlled
by the signals applied to the decoder strobe input. \Wen the strobe input
is active, one and only one of the decoder outputs nust be active. Selection
of the strobe signal is one of the nost critical tasks in mcrocode measure -

ment experiments. The time interval during which the Cregister content is

*For expl anation see Appendix C.
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valid is a function of the CPU cycle length. But the validity condition

al ways hol ds between the start of a Gtinme delay and a |-tine delay pulse. *
The Otinme delay signal was therefore chosen as the indicator of the c-
register content validity. The actual decoder strobe is the AND function
of this signal and the signal representing the global condition G  which
selects the period when microwords are to be decoded. The measurenents
were repeated for three different interpretations of the condition G

Case 1: G stands for CPU busy. In this case, the output is the micro-
word frequency distribution for routines handling normal instruc-

tion processing and mcroprogramcontrolled I/O operations
(channel traps, shared cycles).

Case 2. Gis true when the CPU is busy but not assisting any I/O operation.
The microword frequency distribution covers instruction processing
only.

Case 3: G corresponds to CPU wait state.

-Results covering all three cases are presented in Appendix D.

6.3 M Profile Measurenments

The two experinments that will be discussed next use basically the
same approach for obtaining mcrowrd counts as the neasurements discussed
above, but an additional effort was required to generate the condition G
Details of how the condition G was generated are covered in Appendix E
The first experiment measures Mprofiles of the instruction fetch phase
(I-phase, 1-cycles). The second experiment covers both phases of instruc-
tion execution.

Instruction execution times and the tinme spent in |-phase (l-cycle
time) were obtained in two different ways:

a) Measured: Measure the length of time the condition Gis true.

The internal clock of the hardware nonitor SUMis too slow for
this purpose. The execution time for the nost of the Mdel 145

*For expl anation see Appendix C.
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instructions is on the order of 1 or 2 usec. The SUM cl ock
resolution is 1 yusec. The external tiner based on a 9 M&
crystal controlled oscillator was used instead to clock the
signal representing the condition G

9
. * _
b) Conput ed: T, - ;g% My S tj wher e My are measured fre
quencies of occurrence of each microwrd type under the

condition G

6.3.1 |-Phase Measurenments

A separate measurement run was performed for each of the four
cl asses of the S/ 370 instructions (RR, RX, RS/SI, ss). The condition G
had to be true during and only during the |-phase of instructions belonging
to the class currently nonitored; G was generated as shown in Figure 6a
The I-cycle latch is set at the beginning of the I-phase and remains
set until the first microword for the Execute phase is half executed
The hardware nonitor SUM has no neans for recognizing the actual start of
the Execute phase. Table 7 shows the |ower and the upper Mprofile
boundaries for the |-phase of each instruction class. Only three types
of mcroinstructions may occur during any |-phase. The results of |-phase
measurenents (Table 8) show non-zero values in the entries other than those
in Table 7. This is a consequence of the fact that the first word of an
Execute phase is neasured along with nicrowords executed during the preceding

| - phase.

6.3.2 Measurenments Covering Both Phases of Instruction Execution

The nost frequently used instructions, identified during the instruc-
tion utilization neasurements (Section 5), were selected to be anal yzed
individually. The circuit for generation of the condition G is shown in
Figure 6b. Each selected instruction I, was monitored for a period of
100 seconds. The lower and the upper boundaries L and Uk wer e obt ai ned
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TABLE 7: Lower and upper Mprofile boundaries (I-phase only).

MICROWORD TYPE BOUNDARY I NSTRUCTI ON TYPE
RS/ SS

Word nove

Storage word L 0 0 0 0
read U ’ ) ’
Arithmetic word L 0 0 0 1
fullword oper. U 0 1 9 9
M ni mum nunber

of CPU cycles L 2 L 2
Maxi mum nunber

of CPU cycles 5 6 5 6
by static analysis of corresponding mcroroutines. Figure 7 illustrates

the flow of control during the execute phase of the Branch on Condition
instruction (BC), the Store Multiple instruction (STM, and the group of
shift instructions. Numbers inside the circles describe individual contro
word types as they were assigned in Table 6. Table 9 contains the neasured
Mprofiles of the selected set of S/370 instructions. For easier comparison
t he val ues of L and Uk are included in the same Table. The errors

(Mkj < ij or Mkj > Ukj) are due to the fact that the hardware nonitor
SUM is disabled during the tine the counter contents are being witten on
magnetic tape and some data are therefore lost. The last colum, [abeled
Instructions executed, is the nunber of instructions of the particular type

I executed during the monitored interval, over which the average val ues
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N&j were calculated. In addition, instruction execution times obtained
by direct measurenment, by being conputed, and those listed in the |BM
manual [IBM72] are conpared in this table. The difference between the
measured and the calculated values is on the order of the external clock
resolution. The difference between the 1BM values and the neasured val ues
is much greater. Since instruction execution times are a function of the
processing environnent, it would not be appropriate to say that the val ues

supplied by IBM are incorrect

TABLE 8: Measured Mprofiles (I-phase only)

o crverD T ST T TR —
Branch and nodul e switch 0.273 0. 822 0. 809 0.433
Branch 0 0. 002 0. 002 0
Branch and |ink 0 0 0 0
Return 0 0 0 0
Wrd nove 1.601 1.293 0. 850 1. 098
Storage word read 0.630 0. 832 0. 658 1. 022
Storage word store 0 0 0 0
Arithnetic word 0. 551 0.941 0.632 1. 424
fullword operation
Arithretic word 0. 094 0. 002 0.171 0.429
byte operation
Average nunber of CPU 3.78 4.72 3.78 5.43
cycle for |-phase
I-cycle time (sec) neasured 0.876 1.130 0. 896 1.299
I-cycle time (sec) conput ed 0. 888 1.148 0.919 1.321
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Data
Comparator

Opcode register
contains instruction X

not I/0 operation \ G

I-cycles |/ ;:j::)__?___. SUM decoder strobe
O-time delay

(8) I-phase monitored only

Data
Comparator

Opcode register
contains instruction X

I-cycles Q G

Q
CPU busy SUM decoder strobe
not I/0 operation L/

(b) Both phases of instruction execution

monitored

Figure 6: Circuits that generate the condition G

for M-profile measurements
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TABLE 91 Mprofiles of selected IBM S/ 370 instructions
(Part 1).
Microword type Instruction exccufion time
Instruction]| Branch and Branch Brauch and Return Word move Storage Storage Arithmetic JArithmetic | computed d 1IN * ]Instruction
module liak word word word word timings executed
switch read - etore fullvord byte Ignec_] [guc] ‘us.-:]
L [ ° 0 1 3 0 ° [ 1
nx 0.00 0.00 0.00 1.00 3.28 0.53 0.00 0.00 1.00 1.616 | 1383 ] 1.em 89204
v [ 0 0 1 1 1 ° [ 1 + .84
L [ 0 0 1 1 ° [ 1 °
TR 0.08 0.00 0.00 1.00 1.58 0.64 0.00 1.00 0.00 18 | 137 ] 1o 38261
v 1 o [} 1 s 1 [ 1 ) +.078
L 0 ° [ 1 1 ° 0 ° [
ack 0.30 0.00 0.00 1.00 1.62 0.47 0.00 0.03 0.00 0.917 | o0.902 | ¢.a12 187162
o 1 [ 0 1 s 1 0 1 ° + .85
R Rt 6 ° 1 7 3 2 4 13
sve 13.08 5.99 08.00 1.01 8.13 4.01 2.00 4.00 14.00 13.551 | 13.167 | 13,497 12027
o| 1 s 0 1 un 4 2 4 Y
el 3 1 ° 0 1 1 [ [ 1 1
LR 1.90 0.00 0.00 1.00 1.09 0.48 0.00 1.41 1.00 1752 | 1689 | 1.373 - 26139
L 3 1 0 1 s 1 0 2 1 1.676
L 0 0 [ 1 2 0 [ 0 [}
w 0.00 0.00 0.00 1.00 2.36 0.77 0.00 0.00 0.01 1.100 | 1.061-} 0.923 156495
v ° 0 [ 1 5 1 [ 0 0
L 2 ° ° 1 1 [ [ 1 1
:: 2,00 0.00 0.00 1.00 1.10 0.8 0.00 1.00 1.00 1.866 | 1.761 | 1.373 47946
M 2 1y 0 1 . 1 ) 1 1 1.575
L 1 ° [ 1 1 2 [ ° °
g 2.57 0.00 0.00 1.00 3.9 2.44 1.00 1.50 0.00 3.962 | 3.991 | 3.386 42082
] 3 [ 0 1 s 3 2 3 [ 2.633
L 1 ° ° 1 [ [ 1 [} [
sTH 1.00 0.00 0.00 1.00 0.51 0.52 1.00 0.81 , 0.00 1.695 | 1.671 | 1.498 232697
1] 1 0 (1] 1 z 2 1 2 ]
L 1 ° ° 1 2 o [ [ 1
7 101 0.00 0.00 1.00 2.47 0.52 0.00 0.96 1.00 1y | oL | oresz | sssisor
v 1 [ 0 1 4 1 [} 2 1
L 1 [ ° 1 2 1 1 2 [
sTC 1.00 0.00 0.00 1.00 0.15 0.47 1.00 0.48 0.00 1507 | 1.497 | 1432 25188
[ 1 ° [ 1 2 1 1 2 [
L 1 [ [} 1 [ 1 [ ° °
Ic 1.01 0.00 0.00 1.00 0.39 1.52 0.00 0.80 0.00 1.596 | 1.592 | 1.38 66101
v 1 [ ° 1 2 2 0 2 °
L 1 0 [ 1 3 [ ° 0 1
ML 1.00 0.00 0.00 1.00 4.03 1.05 0.00 0.43 1.00 2.196 | 2.165 | z.399 96434
v 1 [ [ 1 s 2 0 2 1
L 1 o o 1 [ [} [ [}
%4 1.00 0.00 0,00 1.60 1.51 0.31 0.00 1.99 0.00 1,463 | 1634 | 1.369 889798
v 1 0 [ 1 3 2 0 [} +.873
L [ ) [ 1 ° ° ° [ [ )
x 0.5 0.00 0.00 1.00 1.50 0.43 0.00 0.9 0.00 1.152 | 1.133 f o917 | sse001
v 1 0 ] 1 3 2 ° 2 ] ¢ 075
L 1 0 [ 1 3 1 [ 0 [
w 1.78 0.00 0.00 1.00 3.77 1.86 0.00 1.1 0,00 2,730 | 2.678 || 2.295 233697
v 2 [ [} 1 s 2 [ 2 [}
L 3 ° ° 1 2 1 0 1 1
:": 3,20 0.00 0.00 1,00 2,12 1.5% 0.00 1.01 1.00 s.001 | 2,926 | 2.049 %7402
v [ [ o 1 4 2 ° b} 1
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TABLE 9. Mprofiles of selected IBM S/370 instructions

(Part 2)
Mieroword type Instruction execution time
Instruction |franch and Sranch Branch and Retura Word move Storege Stotage Arithmet ic| Arithercic | computed Imeasurce 1AM * || Instructio:
wmodule link word word wvord word timings executed
switch read store fullword byte fusec] £“"‘] Jusec)
L 1 [ [ 1 [ ° 1 ° °
st 1.0 0.00 0.00 1.00 0,32 0.60 0.9 0.67 0.01 1.665 | 1.670 | t.497 ems3y
] 1 0 1 1 1 ] °
" L 1 [ [ 1 1 1 ° ° 1
g 1.62 0.00 0,00 1.01 1.14 L1 0,00 1.39 2,00 2.007 | 1.977 | 2,700 w2781
x v 2 ) 0 1 2 1 ° ) 1 2.138
L ° 0 [ 2 [] ] °
L 0.55 0.00 0.00 1.00 2,59 1.9 0,00 0.51 0.00 1.862 | 1.851 | 1.688 64664
] 1 [} 1 4 ' 2 0
3 2 [ [ 1 1 1 ] 1 1
$ 2.98 0.00 0.00 1.00 1.23 1.06 0.00 1.9 1.00 2.482 | 2.463 | 2.385 50479
v 3 0 0 1 3 1 0 3 1 2.340
L 2 ] [ 1 1 1 [ 3 [}
] 6.21 o.11 0.00 1.00 .36 1.28 0.00 32.23 25.07 16.5% | 12,112 20.0m7 2966
] 28 1 0 1 ] 2 [] 50 s
L 4 [} [} 1 3 1 [ ” %
] 577 0.00 0.00 1.01 3.39 1.93 0.00 97.30 33.99 33,93 | .36 | 34.186 9860
v ] [} [ 1 s 2 [} 104 TS
L ] 1 [ 1 [ [ [ [ 3 2.900
Shife 3.73 2,38 0.00 1.00 0.15 0,52 0.00 5.53 4.58 4763 | 4760 | o 1026862
] : ‘ ) 1 3 1 ) 7 n 13.700
L 2 [] 1 1 1 2 ] b.579
] 2.m 0,00 1.00 2,00 1.06 1.59 8.25 2.51 22.50 12.463 | 12.453 to 473467
v H 0 1 H 2 2 1 3 38 19.774
L 1 0 ° 1 [ [ 3
™ 1.39 0.00 0.00 1.00 0.36 178 0.00 0.87 .01 2.437 | 2,008 | 1.992 1661875
3 H 0 2 2 [ 1 3
L [ [ 1 ° ° 1 [ [
w1 1.00 0.00 0.00 1.00 0.343 0.70 1.00 0.93 0.00 1,78 1.761 1.452 665099
v 1 0 [} 1 2 1 1 1 [
L 1 [} 0 1 ) 1 [ [ 3
LU 1.0t 0.00° 0.00 1.00 0.63 1.80 1.00 0.44 1.9 2.ns | 2.m | 2.397 180126
v 1 [ ° 1 2 H 1 1 H
! H [ 0 1 0 1 [ °
cu 2.0 0.00 0.00 1.00 0.66 1.87 0.00 0.51 2,00 2.263 | 2.219 | 1.992 | 130510
v H o [ 1 ? 2 [ 1
t 1 0 [ 1 [ 1 1 0 2
£t .0 0.00 0.00 1.00 0.89 1.6 1.00 0.63 2.01 2,685 | 2,651 | 239 48967
v 0 ] 1 2 H 1 1 2
L 2 ° 1 2 ° 1 [ H [ 4.566
w 2,00 0.00 0.99 2,00 0.28 11.64 0.00 2.63 7,58 13,775 | 13.88 | o 405908
v | 2 ) 1 2 2 » 0 3 3 18.781
L 1 [} ° 1 ol B | 1 5 I .406
wc 1.20 0.16 0,00 1.00 1.80 A9 2,13 5.6l 11.48 8.622 | 8.598 | to 1360671
v ¢ ' 0 1 ¢ ’ ) . ] 92.492
L 2 0 0 1 ° 2 o 1 1 3.899
cwe 2,00 0.28 0.00 1.00 (11 iR 0.00 1.98 b.76 a.616 | 4388 | o 1306483
vl oo ' 0 1 2 ' ° 2 ' ) 1Y) |
* - |Instruction timngs from IBM S/ 370 Mdel 145 Functional Characteristics
[1BM72]
# - values are functions of the operand |ength
L - lower boundaries

U - upper boundaries
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Mprofiles can be used to study certain aspects of the processing
environment. Two exanples are given bel ow
(1) During execution of a BC instruction, the Wrd "nmove microword”
is executed only when the branch is not successful. Thus 46%
of BC instructions in the neasured instruction mx do branch
(2) The average number of registers stored by a STM instruction
can be obtained as the nunber of Storage word "store nicrowords"

executed for this instruction. In the measured instruction
mx, a STMinstruction 'stores 8.25 registers on the average

6.4. APPLICATION OF MEASUREMENT RESULTS

Data acquired with the described neasurement techniques have many
potential uses; they were already discussed in Sections 1 and 3. Two
particular applications of the outcone of monitoring the S/ 370 Mdel 145

will be discussed next

6.4.1 Enhancenent of the Instruction Repertoire

H gh incidence of the LA (Load Address) instruction was closely
exam ned. Static analysis of the nost frequently used prograns showed
that this instruction is used predonminantly to increment a counter (tally,
pointer). Mst frequently, such a counter is maintained in the main
menory. The LA instruction is thus used acconpanied by load and store

operations, and the execution time of such a sequence is:

L REG COUNTER 1.851F
LA  REG,N(,REG) 1.712"
ST  REG COUNTER 1.670"

5.233 nicroseconds
Since general purpose registers are a scarce resource, a register used for

incrementing a counter quite often has to be saved and restored

*Instruction execution tines neasured using the hardware monitor (from
Table 9).
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ST REG SAVE 1.670"
L REG, COUNTER
LA REG,N(,REG) 5.233

ST REG, COUNTER
L REG, SAVE 1.851"
8. 754 ni croseconds
An even worse situation arises when the code has to be reentrant and any

variable that has to be saved nust be put on a stack

BCT PO NTER, OVERFLOW 1.434

ST REG, STACK (POINTER) 1.670"

L REG,COUNTER

LA  REG,N(,REG) 5.233

ST REG,COUNTER

L REG STACK(PO NTER) 1.851"

LA POINTER, 1(,POINTER) 1.712"

11.900 nicroseconds

Using the S/ 370 Model 145 nicrocode, we can define a new SI-type instruction,
INCd1(bl),I, that increments the contents of the menmory word specified by
bl and dlI by the value of the inmediate operand I. The INC instruction
is assigned one of the invalid opcodes of the S/ 370 instruction set. The
invalid opcode indicator in the Mdel 145 microcode has to be replaced by

a branch into the E-phase microroutine for the INC instruction. M crocode

impl ementation of the INC instruction can have the following form

E . . . . .
Instruction execution times neasured using the hardware monitor (from
Table 9).
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SI | - phase .
0.896

Har dwar e- f orced branch on opcode
Storage word read 0. 5400 Read main nenory word
Arithmetic word 0.2475 I ncrement by |
fullword operation
Storage word store 0. 6075 Store back
Arithmetic word 0.2025 Set condition code
byte operation

Return 0. 2475 Return to I-cycles
2.7410 mcroseconds

Thus any of the three machine instruction sequences presented above could
be acconplished in only 2.7410 mi croseconds.

Decrenenting a counter is an operation analogical to counter incre-
mentation. Wen the decrement is 1, such operation is usually acconplished
by using the BCTR instruction (BCTR REG O). The sane di scussi on about
register saving and restoring applies to this case. Even though decrenenting
a counter is not as frequent an operation as incrementing a counter, a
new instruction, DEC dl(bl),lI, would be a useful addition to the S/ 370

instruction repertoire.

6.4.2 Application of Data on Mcrocode Level QOperations

Many conpanies that operate a conputer installation have |arge
investments in application software. \Wen the present system becones
saturated, selection of a new central processor may be severely restricted
by the requirenent that the application software would not have to be

modified. This particular problemis referred to as software portability.

In many instances, only nodels of the same famly qualify as candidates for

1"From Tabl e 8.
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repl acenent of the old hardware

Emul ation is one of the possible solutions to the problem of soft-
ware portability. The instruction repertoire of the selected nachine
(preferably nore powerful and efficient than the old one) can be used to
wite new software, that will run in the nmachine basic node, while the
old prograns can be processed without changes in the enulation node. But
even in this node, the new machine should give better performance than the
old one; i.e., we expect the running time of the original programs to be
l ess on the new machine. Salisbury [SALI 73B] devel oped a nethod for
emul ator evaluation. This nethod is based on synthetic kernels. The
enul at or power is estimated using the micromix corresponding to the expected
system workload and execution times of emulator microinstructions. The
results of the microcode |evel neasurenents described in this study were

used to verify the validity of such an approach
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VIT.  SUMVARY AND CONCLUSIONS

Know edge of how various instructions are used on existing machines
provides a valuable basis for design of future machines. This study has
focused nmainly on nmethods for neasuring instruction (and nmicroinstruction)
utilization,

We discussed the problens and trends of instruction processor and
emul ator design. Many shortcomings in an instruction processor are due
to a lack of reliable information about processing requirenments. Sone
parts of an instruction processor may be overdesigned, sonme underdesigned
both cases lead to an increase in the cost/efficiency ratio of the entire
system  Processing requirenments, or workload of an instruction processor
can be expressed in terns of execution frequencies of individual instruc-
tions from the available instruction repertoire. |Incidence of individua
instructions has to be measured. Since software monitor overhead is very
high at this level, a hardware nonitor is a preferable tool

Techni ques enploying a sinple hardware monitor were developed to
measure instruction utilization and microword utilization on the S/ 370
Model 145. Results acquired by different techniques were conpared and
only small differences were detected. Mcrocode |evel monitoring is an
extrenely sensitive matter. The good fit of measured val ues NLj and
boundary val ues Ikﬁ’ UH' obtained by static analysis of S/ 370 Mdel 145
mcroroutines, is encouraging. This shows that despite the problens wth
traceability and tinmng of certain signals in the nonitored processor, a
hardware nonitor can neasure instruction set processor functions and nicro-
code functions wth reasonabl e accuracy.

Execution frequencies of individual instructions indicate which of



54

the available operations are critical and should be optimized, and which
are used only rarely and could therefore be inplenented using different,
l ess costly nmedia. But the information contained in the instruction utiliza-
tion function is not sufficient to deternm ne what other operations should
be included in the instruction repertoire. Frequently occurring sequences
of instructions could be nerged into one instruction. A nore sophisticated
nonitor than the hardware nonitor SLIMwould be needed to detect such
sequences, especially if their exact conposition is not known beforehand
Still there mght exist other operations that would be used frequently if
i npl emented as machine instructions, but neasurenents of existing prograns
cannot identify them If they can be identified, it would have to be done
only through analysis of processing requirements before such requirements
are translated into prograns. Defining a set of primtives providing the
most efficient support of a particular processing environnment is an area
that deserves further research

Har dware measurements of system performance on the instruction
processor |evel and the levels below are often conplicated by the fact
that some events are not externally accessible. Even if all necessary events
(signals) can be sensed by nonitor probes, processing such events may turn
out to be very difficult because of timng constraints and inconsistencies
resulting from special cases. Geat demand for conputer performance data
will hopefully lead into a situation when neasurability will becone one of
the inportant aspects of hardware design. This is a closely related area
of computer performance neasurenents that unfortunately has not yet

recei ved enough attention
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APPENDI X A, SYSTEM UTI LI ZATI ON MON ITOR

The System UWilization Mnitor (SUM is a hardware nonitor manu-
factured by Conputer Synectics, Inc. [sum 70]. Perfornmance nonitoring is
acconpl i shed by connecting the SUM sensors (probes) to externally accessible
points of the nonitored device. Sensors are connected via a cable to a
Sensor Concentrator. The SUM has two Sensor Concentrators, and each Sensor
Concentrator can accommdate up to '10 sensors. Each Sensor Concentrator
input may be inverted prior to routing it to hubs on the program patch
panel in the SUM The patch panel can be wired to form various Bool ean
functions on nonitored signals and to assign these signals and their
functions to the SUM counters. Each counter may operate either in the
timng node, neasuring the duration of a certain event, or in the counting
nmode, when it counts the nunber of occurrences of an event. The contents
of any counter can be displayed on the SUM control panel. In addition, al
counter contents can be periodically witten on magnetic tape. The nmg-
netic tape witten under control of the SUM can |ater be processed by the
SUM data reduction program SUVDAP

Techni cal Specifications

Count ers: 16 electronic counters
two nodes of operation: -timng node - mininmum
resolution time 1 pysec
-counting node ~ maxi mum
repetition rate 10 Mz
mode sel ection acconplished via patch panel wiring
counter output: -visual display - single counter
only selected by the pushbutton
-magnetic tape - all 16 counters
pl us header information
recorded in each magnetic
tape record
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Pat ch Panel : 300 hubs arranged in a 20x15 matrix
renovabl e
signal |evels: active: from0O to +0.2 V dc
inactive: from+3to +5 V dc
functions: 20 sensor outputs
6 2-way AND functions
4 3-way AND functions
8 4-way OR functions
4 set-reset latches
2 binary flip-flops

10 inverters

3 divide-by-10 functions

6 fanouts
32 counter inputs (16 counting, 16 tim ng)
1 4x16 way decoder

function execution tine: inverters - 7 nsec
decoder - 28 nsec
all other functions - 14 nsec

Sensor : responds to signals of 50 nsec or |onger
maxi mum repetition rate 10 Mz

Basi ¢ SUM conponents and their connections are illustrated in Figure Al

DATA COVPARATOR

An optional unit, the Data Conparator, can be attached to the SUM
to provide conparison facility. Up to six 4-bit sensors can be attached
to the Data Conparator via a Sensor Concentrator. Qutputs of the Data
Comparator probes may be inverted in the Sensor Concentrator. The Data
Comparator strobe (Load Conparator signal) gates the output signals of the
conparator probes into the register X. The contents of this register are
then conpared to the contents of the Data Conparator registers A and B
Val ues of the A and B registers are set manually via two sets of push-
buttons. The Data Conparator generates a set of signals describing the
results of a conparison. The possible outputs are: X <A, X=A, XA

X<B X=B, X>B, A>X>B;, alatch is set on the occurrence A> X>B
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and reset when the condition is no longer true. Except for the latch
output, conparison signals are in the form of 50-nsec pul ses.

Techni cal Specifications

Control Panel: 2 dial switches to select the Load Comparator signal
for a conparison against the A or B registers

24 pushbutton switches for loading the A register
24 pushbutton switches for loading the B register

24 indicator lights displaying the contents of the
A register

24 indicator lights displaying the contents of the
B register

10 thurmbwheel switches for routing the conparison
results to the SUM
Sensors: up to six 4-bit sensors for loading the X register

up to two I-bit sensors providing the Load Conparator
si gnal

up to ten I-bit sensors connected to a different

concentrator - can be used as Load Conparator

signals or routed to the SUM for normal SUM inputs
Up to 20 Data Conparator units can be connected in tandemto the one set

of sensors. Figure A 2 shows SUM connections using Data Conparators.
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APPENDI X B. | NSTRUCTI ON UTI LI ZATI ON MEASUREMENTS ON THE
S/370 MODEL 145 AT STANFORD UNI VERSI TY

Instruction utilization measurement methods discussed in Section 5
were inplenmented on the S/370 Mbdel 145 at Stanford. This appendi x presents
results of these neasurements and discusses sone difficulties encountered
during the instrumentation phase. Finally, data obtained through nonitoring
the Mddel 145 are conpared to resuits of sinmilar experinents performed at
some other conputer installations

(1) The S/370 instructions were grouped in two different ways.

The first division was based mainly on the operand type (Xu digit); the
second, on the function type (X2 digit). Each nmeasurenent experinent was
run for a week in twelve-hour intervals (when witing one record every two
seconds, the SUM tape can store data representing twelve hours of measure-
ments). Divisions into groups g, and frequencies of instructions in

i ndi vi dual groups, f(gr), are presented in Tables B.I and B.2

(2) The second nethod described in Section 5 was used to generate
data necessary to determine the IUF and the IFD functions. Results are
presented in Table B.3. The last colum of this table, |abeled k',
specifies the permutation on the set of integers Kk assigned to individua
opcodes. Under this pernutation, fk, z_fk,+l for all x'=1,2,3,...,
and it therefore represents the IFD, illustrated graphically in Figure B.I
Instructions with frequencies |ess than .0001 were ignored when construc-
ting the IFD; no numbers are assigned to themin the colum k'. Fre-
quenci es of instructions I bel ongi ng to individual groups g, fromthe
method | were sumred up and conpared agai nst frequencies f(gr) neasur ed

by the method |I. These sums appear in the last colums of Tables B.1 and

B.2.
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TABLE B.l: Instruction group frequencies for the
division based on the value of X,
r I nstruction group g, f(gr) :E: f
measur ed €8,

1 RR instructions .1134 .1081
(X1=0)

2 Fi xed-point RR instructions .1095 .0923
(x1=1)

3 Fl oating-point RR instructions .0016 .0018
(XI=2 or X1=3)

4 RX instructions .3771 .3811
(X1=4)

5 Halfword i nstructions .0776 .0768
(X1=4)

6 Fi xed-point RX instructions .1328 . 1366
(X1=5)

7 Fl oating-point RX instructions .0036 .0032
(X1=6 or X1=7)

8 Branch instructions .3274 .3202
(X1=0 or x1=4)

9 RS/SI instructions .0189 .0232
(X1=8)

10 Shift instructions .0152 .0163
(X1=8)

11 | rs/s1instructions . 1639 .1710
(X1=9)

12 /O instructions .0033 .0026
(X,=9)

13 SVC instruction .0045 .0040
(X1=0)

14 SS ins}ructions - character .0825 .0824
operations (X1=D)

15 Decimal SS instructions .0006 .0008
(X,=F)




TABLE B. 2: Instruction group frequencies for the
division based on the value of X.

&

r I nstruction group g, f(gr) :E: fk
measur ed keg,

1 Load instructions . 1348 .1386
(X2:8)

2 Store instructions .0614 .0668
(X,=0)

3 X,=1 . 1158 . 1132

4 Move instructions .0561 .0595
(X2=2)

5 Logi cal operations (AND, OR XOR) .0147 .0165
(X,=4 or X,=6 Or X,=7)

6 Conpare instructions . 1100 .1127
(x2=5 or x2:9)

7 Branch instructions .3050 .3202
(X2=5 or X2:6 or x2=7)

8 Add or subtract instructions .0674 .0626
(X,=A or X,=B)

9 Mul tiply instructions .0026 .0025
(X2=C)

10 Di vide instructions .0041 .0038
(X2=D)

11 Load register test or change .0191 .0206
(X,=0 or X, =1 0r X,=2 0r X,=3)




Table B.3: Instruction Utilization Function (IUF)
for the S/370 Model 145 at Stanford (Part I)
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opcode opcode
k Cy instruction fk k' k e instruction fk k'
(hex) (hex)

1 04 SPM . 0000 42 30 LPER .0000

2 05 BALR .0278 10 43 31 LNER . 0000

3 06 BCTR . 0090 26 44 32 LTER . 0000

4 07 BCR .0657 2 45 33 LCER . 0000

5 08 SSK .0004 68 46 34 HER . 0000

6 09 ISK .0012 55 47 35 LRER . 0000

7 0A SVC . 0040 40 48 36 AXR . 0000

8 OE MVCL .0000 49 37 SXR . 0000

9 OF CLCL . 0000 50 38 LER . 0000

10 | 10 LPR .0079 27 51 39 CER .0000

11 11 LNR .0021 44 52 3A AER . 0000

12 12 LTR .0098 25 53 3B SER . 0000

13 13 ICR 00005 64 54 3C MER . 0000

14 14 NR . 0000 55 3D DER . 0000

15 15 CLR .0015 53 56 3E AUR .0000

16 | 16 OR . 0000 57 3F SUR .

17 17 XR .0020 45 58 40 STH .0214 15
18 18 LR .0234 13 59 41 LA . 0498 5
19 19 CR .0107 24 60 42 STC . 0072 31
20 1A AR L0156 21 61 43 IC .0206 16
21 1B SR 0177 18 62 44 EX .0076 28
22 1C MR .0000 63 45 BAL .0240 12
23 1D DR . 0000 64 46 BCT .0187 17
24 1E ALR . 0000 65 47 BC .1750 1
25 | 1F SLR L0011 56 66 48 LH .0257 11
26 20 LPDR . 0001 79 67 49 CH .. 0052 38
27 21 LNDR .0000 68 LA AH ,0165 20
28 22 LTDR , 0002 73 69 4B SH 00075 29
29 23 LCDR . 0000 70 4C MH . 0005 65
30 24 HDR . 0000 71 4E CVD .0013 54
31 25 LRDR . 0000 72 4% CVB .0001 81
32 26 MXR . 0000 73 50 ST .0306 9
33 27 MXDR .0002 74 74 54 N .0058 35
34 28 LDR .0010 57 75 55 CL . 0063 32
35 29 CDR . 0002 75 76 56 0 .0001 82
36 2A ADR . 77 57 X . 0002 76
37 2B SDR .0001 80 78 58 L .0648 3
38 2C MDR . 0000 79 59 C .0122 23
39 2D DDR . 0000 80 5A A .0020 46
40 2E AWR . 0000 81 5B ) .0033 42
41 2F SWR . 0000 82 5C M .0018 49
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Table B.3: Instruction Utilization Function (IUF)
for the S/370 Model 145 at Stanford (Part II)
opcode opcode
k ¢ instruction fk k' k ¢\ instruction fk k'
(hex) (hex)
83 5D D .0038 41 124 94 NI . 0062 33
84 S5E AL . 0057 37 125 95 CLI L0424 6
85 SF SL .0000 126 96 01 .0060 34
86 60 STD .0016 51 | 127 97 XI .0002 78
87 67 MXD .0000 128 98 M .0220 14
88 68 1D .0016 52 129 9C SIo .0020 47
89 69 Ch .0000 130 9D TIO . 0000
90 6A AD .0000 131 9E HIO .0000
91 6B SD .0000 132 9F TCH .0006 62
92 6C MD .0000 133 AF MC .
93 6D DD .0000 134 B2 STIDP
3 F & 0000 138 SCk>C .0000
96. (. 70 STE . 0000 137 STCK
97 78 1E .0000 138 B6 STCTL .0000
"~ 98 79 CE .0000 139 B7 LCTL . 0000
99 7A AE . 0000 140 BD CIM .0000
100 7B SE .0000 141 BE STCM .0000
101 7C ME .0000 142 BF ICM .0000
102 7D DE . 0000 143 D1 MUN .0003 70
103 7E AU .0000 144 D2 MVC .0418 7
104 7F SU . 0000 145 D3 MVZ .0020 48
105 80 SSM . 0005 66 146 D4 NC .0000
106 82 LPSW .0057 36 | 147 D5 ClLC L0342 8
107 83 Diagnose .0000 148 D6 oC . 0006 63
108 84 WRD .0000 149 D7 Xc .0008 60
109 85 RDD .0000 150 DC TR .0010 59
110 86 BXH .0002 77 | 151 DD TRT .0017 50
111 87 BXLE . 0005 67 | 152 DE ED .0000
112 88 SRL .0048 39 | 153 DF EDMK .0000
113 89 SLL .0074 30 154 FO SRP .0000
114 8A . SRA .0010 58 | 155 F1 MVO .0000
115 8B SLA .0022 43 | 156 F2 PACK . 0003 71
116 8C SRDL . 0006 61 157 F3 UNPK .0001 83
117 8D SLDL .0003 69 | 158 F8 ZAP .0003 72
118 8E SRDA .0000 159 F9 CP . 0001 84
119 8F SLDA .0000 160 FA AP .0000
120 90 STM .0132 22 161 FB SP . 0000
121 91 ™ .0610 4 162 FC MP . 0000
122 92 MVI 0174 19 163 FD DP . 0000
123 93 TS . 0000
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Difficulties Encountered During Hardware Instrumentation

| mpl ement ati on

The | ow nunmber of various |ogical elements on the SUMIogic plug-
board was found to be quite limting; several conpromses had to be nade
in dividing the instruction set such that inplenentation of Method | would
be feasible. But the main problem |lay elsewhere. The opcode bits cannot
be nonitored at the output of the Qpcode register since the Mdel 145 has
no external attachnment points provided for this register. Qpcode bit
values are routed to several units in the CPU.  The points suitable for
hardware nonitor probe attachment were found anmong inputs of these units.
Due to varying conponent and line delays, the values of opcode bits do
not change simultaneously at all nonitored points. This effect was found
to cause an extrenely large error. Mre than one SUM decoder out put
woul d often be activated during execution of a single instruction.

Expl anation: Since sone opcode bits change earlier than others, the SUM
decoder decodes one or more wong values before the correct value is reached.
This is a well known problem from switching theory, called critical races
[McLU 651. To elimnate errors of this kind, the SUM decoder nust not

be enabl ed except for a period during which its inputs are static. The

sel ection of the SUM decoder strobe required a careful analysis of Mdel

145 circuit operations. The 'Set-Reset Opcode register' signal is activated
several tinmes during execution of a single instruction, and the nunmber of
activations varies from one instruction to another. This signal is not
therefore suitable as the decoder strobe. |In addition, execution of
instructions imrediately following a junp out of the prefetched stream of
instructions proceeds in a special way. These special cases elininate

the possibility of assigning any of the processor internal signals directly
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to the function of the decoder strobe. Strobe pulses had to be generated
artificially. The pulse generator, built out of the SUM conponents, was
triggered by the "I-cycle' signal (beginning of a fetch phase) and generated
pul ses were delayed properly to ensure that the decoder inputs had correct

val ues.

Comparison of S 360-370 Instruction Mxes From Different

Installations

Table B.4 conpares utilization of various subsets of instructions
at different S/360-370 installations. The RCA Series 70/45 was i ncl uded
because its instruction format is identical to the IBM 360 instruction
format. A dash in a table entry nmeans that no information about the
associated group was found in the corresponding reference. The Mdel 75
[ASCH 711 is oriented nore toward arithnetic conputation than the Mbdel
145 at Stanford. Qherwise their instruction mxes conpare quite closely.
The Mdel 91 at UCLA handles a conpletely different |oad, based heavily
on floating-point arithmetic, which is the strongest feature of this nodel.
The RCA instruction mx was obtained fromthe instruction trace of a set
of selected prograns [WND 731. Relatively high utilization of decinal
instructions is probably due to heavy bias toward COBOL progranms in the

moni tored set of prograns.
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TABLE B.4: Instruction nmixes at different installations
using the S/360-370 instruction repertoire.

Qperation type I nstall ation/Mdel
Stanford Argonne UCLA RCA
University Nat i onal Laboratories
Laboratory
370/145 360/75 360/91 70/45
I nteger load, store, 26.51% 50. 85% 25.21% 25. 7%
arithnetic
Fl oati ng-poi nt | oad, 0.52% 2.82% 28. 62%
store, arithmetic
Deci mal 0. 06% 5. 0%
Branch 32.74% 26. 04% 18. 30% 34.2%
Logi cal, conpare, 18.97% 17. 15% 13. 41% 17. 1%
move
Control, 1/0 0.54% 0.37%
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APPENDI X C.  S/370 MODEL 145 M CROCODE PRI NCI PLES

The S/ 370 Model 145 Central Processing Unit, IBM 3145, illustrated
schematically in Figure Cl, is a microprogrammble processor. Al CPU
and channel operations of the S/ 370 Mdel 145 are controlled by micro-
prograns resident in reloadable control store (RCS). Mcroprograns are
entered into the control store fromthe console disk file. Such operation
is called the Initial Mcroprogram Loading (IMPL). M crocode may be
altered during IMPL only. Control storage is divided into 64-word nodul es;
32-bit microwrds, called control words, are conposed of several highly
encoded control fields. Decoding of these fields takes place in the C-
register that directly activates circuit control lines. Each control word
specifies explicitly the next control word address (each control word has
the capability to branch), but nost of the control words can branch to a
word in the same nmodule only. The branch can be either to a single
specified address or to a branch set. A branch set is conposed of 2 to
16 control words stored sequentially. Individual control words in a branch
set are identified by a branch leg. The nost significant four bits of a

control word describe the control word type.

S/ 370 Model 145 Control Words

Branch and nodule switch word: Allows for up to four-way branching
to any word in control storage.

Branch word: Provides for up to sixteen-way branch in control
storage, may set or reset specified local storage or external word
bits.

Branch and link or return word: Saves and restores status in
connection with subroutine execution.

Word move: Moves a full word or selected bytes of a word between
| ocal storage or external |ocations.

Storage word: Moyves data between the main or control storage and
some working area in the CPU.

Arithmetic word: Perforns arithnetic and logical functions on data
from local or external storage.
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Table C.1 shows the control word formats for the six control word types

CPU_Ti m ng

Each control word is executed in one CPU cycle, except for the ones
that access data in the main or control storage; such control words require
two CPU cycles. The CPU cycle tine is variable; its length is deternined
by the control word type. The possible lengths of the CPU cycle are
202.5 nsec, 247.5 nsec, 292.5 nsec and 315 nsec. Timng of the |IBM 3145
processor is derived froma 22.222 Mz crystal oscillator that drives a

variabl e-cycle clock. Six basic signals are devel oped by this clock:

Otine Otine delay
| -tinme | -time delay
2-tine 2-time del ay

The n-time delay pulse is delayed 45 nsec after the n-time pulse, and the

two pul ses have the same l[ength, which is either 90 or 112.5 nsec

I nstruction Execution Phases

Execution of a S/ 370 (machine) instruction is perforned in two
phases: the Instruction phase (I-phase) and the Execute phase (E-phase)
The |-phase is speeded up by special hardware for automatic instruction
prefetch. The I|-buffers are used to hold the current instruction plus
the next instruction doubleword. If at the beginning of the I-phase the
instruction scheduled for execution is not fully contained in the I-buffers
this phase will start with instruction fetch. Such a situation occurs
usual ly after execution of an Execute instruction or a successful branch
Automatic prefetch is initiated during the execute phase if it is detected
that the next instruction is not fully contained in the |-buffers. The
exact processing during the I-phase is further deternmined by the instruction

type, as shown in Figure C 2. Instruction decoding is performed via a
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RTN LNK
end of execution phase
go to I-cycles

no Next ins
in I-buffers
7
[ yes
Fetch
instruction
from storage
T .
1 r ¥
RR RX, RS/SI
Fetch operand Calculate operand Calculate operand
from general reg. address using X,B address using B
and displacement and displacement
] ] v

Prefetch next
instruction

(if required)

from storage
and alig

|

Start execution routine

(hardware branch on opcode)

Figure C.2: Basic I-phase (I-cycle) functions
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hardware-forced branch on the instruction opcode. In sone cases the
conditional code also participates in formng the entry address to the
execute routine. Some execute routines are shared by several opcodes;
for exanple, corresponding RR and RX operations are executed by the
sane routines. The last control word of the E-phase is RTN LNK (Return

Li nk) which causes return to the |-phase routines.



75

APPENDI X D. M CROAORD UTI LI ZATION ON THE S/ 370 MODEL 145 AT STANFORD

This appendix presents the results of mcroword utilization measure-
ments performed at Stanford. The neasurement technique is described in
Section 6.2. The frequencies ej of individual mcrowrd types |
measured under Case 2 (CPU is busy but not assisting in any |/O operation,
i.e., CPU is processing mcroroutines interpreting machine instructions)
can be conpared with the corresponding mcroword mx calculated as

J
Ik(Table B. 3) and NH(j is the average number of mcrowords of the type j

e, = Ekokj /Jz Ekokj’ where f  is fhe frequency of the instruction

necessary to execute the instruction I (Table 9). The instructions I
included in the calculation of the corresponding mcroword mx cover only
84.6% of the total instructions executed, yet the calculated and the
measured mcroword frequencies conpare closely. The CPU wait state is

m croprogranmed as a wait loop; since every Mdel 145 microwerd has the

ability to branch, test and branch operations of the wait |oop can be

acconpl i shed by one mcroword (Wrd nove).
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Table D.1:

at Stanford University

Microword utilization on the S/370 Model 145

Control @%g ‘(:rri crowor d)

Mcroword frequency e

3

]

Cor r espondi ng

Case 1 Case 2 Case 3 micromix
cal cul at ed

Branch and nodile switch ,1592 .1377 ,0021 .'1264
Branch . 0246 . 0096 .0006 .0086
Branch and |ink .0041 ,0031 .0001 .0038
Return ,1033 1121 .0008 .1052
Wrd nove .1625 L1712 .9912 L1614
Storage word read 1414 1494 .0013 .1458
Storage word store .0261 .0299 .0004 .0326
Arithnetic word L1426 .1600 .0012 .1680
fullword operation
Arithnetic word .2362 .2370 ,0023 .2482
byte operation
# microwards execut ed 5401474253 2804990291 9987435365
# microwords/instruction 9.948 9. 359 9.195
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APPENDI X E. DERI VATION OF THE G CONDI TI ON
CONTROLLI NG M PROFI LE MEASUREMENTS

The value of the condition G for Mprofile neasurenents is a
function of the current instruction opcode. The Opcode register was
nmoni tored by two SUM Data Conparator probes. The A and B registers
of the Data Conparator were set such that A > X > B would be true for
all opcodes nonitored together as a set. (Wwen nonitoring a single opcode
xlxz, the contents of these registers were: A = 0000X1X? B = Ooooxl(xz—l).)
The Data Conparator thus acted as an instruction selector. A 'Set-Reset
Opcode register' signal was used to gate the contents of the Qpcode register
to the Data Conparator X register for conparison. This signal becones
active several tines during execution of a single instruction; this property
made measurenments of instruction utilization conplicated (Appendix B), but
did not cause any problems here. The Data Conparator (A > X > B)-latch
is set the first tine a match is detected and renains set until an opcode
val ue that does not satisfy the condition A > X > B is loaded into the
Qpcode register. The instruction selection procedure is illustrated in
Figure E.I.

The Opcode register is loaded fromthe I-buffer. The I-buffer is
a doubl eword register used to hold prefetched instructions. Normally
the Opcode register is set to the value of the next instruction opcode at
t he begi nning of the Execute phase of the current instruction I (Figure
E.2a). But if the next instruction In+l is not fully contained in the
I-buffer, the Opcode register |oad operation is suppressed and the next
| -phase has to start with a fetch operation. The Opcode register is then

| oaded when the fetch conpletes (Figure E.2b). The fetch operation for

such instruction cannot be monitored, since it is not known during this
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Data
Comparator

OpcodeSet-reset
[egister

1

Opcode

|
X registef 00 Ol oo X

register

A register § o | o olo A | A

1} 2
] compare
circuit

B register ] 0 | O 0}0 B, B,
AZX>B

Figure E.l:

Selection of instructions for M-profile

measurements
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I
I |Fetch | I-phase E-phase
n+1 - s amw = )

Load, Opcode register
(st

Instruction
I I-phase E-phase
n —: e 1
| |
ILoad Opcode register!  I-phase E-phase
In-!-l r— M——-—.—.—.
(a) Instruction In+1 fully contained in the I-buffer
l Operations performed on behalf |
) of instruction In :
|
Instruction | |
: I
I | I-phase E-phase '
n |
l
|

(b) Instruction In+1 not fully contained in the I-buffer

(I-phase starts with instruction fetch)

Figure E.2: Timing chart for Opcode register loading
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operation what the instruction opcode is; the state of condition G cannot
be resolved until after the Opcode register has been properly |oaded. Such
a situation arises mainly after a successful branch, when the stream of
prefetched instructions has to be reinitialized. So it can be said that
the tine delay in the opcode decoding process (fetch tine) for the instruc-

tion I N is a direct consequence of the operation performed by the In

+1
instruction and as such it can be taken to be a part of the time needed to

execute the instruction In. This relationship is illustrated graphically

in Figure E.2b.

The monitor also has to count how many instructions of the nonitored
type are executed. The value of the condition G alone cannot be used for
this purpose; if tw or nore instructions of the type selected for analysis
are executed consecutively, Gremains true for the total period it takes
to execute the entire sequence. The |-cycle signal was used again to
trigger the pulse-generation circuit built of the SUM | ogic conponents
The output of the pulse generator was AND-ed with the output of the Data
Comparator to produce one pulse each tine an instruction of the nonitored

type was executed. Figure E. 3 shows the relations anpng the nonitored

signals and the signals generated by the SUM
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