
SEL-74-015

Computer System Performance
Measurement: Instruction Set
Processor Level and Microcode Level

bY

L i ba Svobodova

June 1974

. -

Technical Report No. 66

This work was supported by the Joint
Services Electronics Program: U.S.
Army, U.S. Navy, and U.S. Air Force
under contract N-0001 4-67-A-0112-0044

STRDFORD ELELTRODIt5 lRBORRTORIE5 ~
ITRIIFORB UnlllER5lTY . STanFORD, CallFORnlR

SEL 74-015

COMPUTER SYSTEM PERFORMANCE MEASUREMENT:

INSTRUCTION SET PROCESSOR LEVEL AND MICROCODE LEVEL

bY

Liba Svobodova

Technical Report No. 66

June 1974

DIGITAL SYSTEMS LABORATORY

Department of Electrical Engineering Department of Computer Science

Stanford University

Stanford, California

This work was supported by the Joint Services Electronics Program: U. S.
Army 9 U. S. Navy, and U. S. Air Force under contract N-00014-67-A-0112-0044.

ABSTRACT

Techniques based on hardware monitoring were developed to measure

computer system performance on the instruction set processor level and the

microcode level.

Knowledge of system behavior and system utilization at these two

levels is extremely valuable for design of new processors. The reasons

why such information is needed are discussed and applicable measurement

techniques for obtaining necessary data are reviewed. A hardware monitor

is a preferable measurement tool since it can trace most of the signifi-

cant events attributed to these two levels without introducing any

artifact.

Described hardware monitoring techniques were implemented on the

S/370 Model 145 at Stanford University. Measurements performed on the

instruction set processor level were concerned with determining execution

frequencies on individual instructions under normal system workload. The

microcode level measurements measured the number and the type of S/370

Model 145 microwords executed in the process of interpretation of an

individual S/370 instruction and the average execution time of each such

instruction.

Implementation of each technique is described and the results based

on the outcome of performed measurements are presented. Finally, effective-

ness and ease of use of the discussed techniques are considered.

TABLE OF CONTENTS

Page

I INTRODUCTION .

II BASIC NOTIONSa..............................

1

5

III ROLE OF INSTRUCTION UTILIZATION STATISTICS IN THE DESIGN
AND IMPLEMENTATION OF AN INSTRUCTION SET PROCESSOR 7

3.1 Instruction Repertoire: The Structure and the Power 7

3.2 Utilization of the Information in Opcodes 10

3.3 Implementation Techniques 12

3.4 Microcode Level .. 15

3.5 Summary .. 18

IV TECHNIQUES FOR MEASURING DYNAMIC INSTRUCTION
UTILIZATION . 20

V USING A HARDWARE MONITOR TO MEASURE INSTRUCTION
UTILIZATION . 27

. -
VI ANALYSIS OF MICROCODE LEVEL FUNCTIONS . 34

6.1

6.2

6.3

6.3.1
6.3.2

38

40

41

42

6.4

6.4.1

6.4.2

S/370 Model 145 Microcode

Microword Utilization Measurements

M-Profile Measurements

I-Phase Measurements

Measurements Covering Both Phases of Instruction
Execution ..

Application of Measurement Results

Enhancement of the Instruction Repertoire

Application of Data on Microcode Level Operations

42

49

49

51

VII SUMMARY AND CONCLUSIONS ..e........ 53

Appendix A. SYSTEM UTILIZATION MONITOR ..e 55

Appendix B. INSTRUCTION UTILIZATION MEASUREMENTS ON THE S/370
MODEL 145 AT STANFORD UNIVERSITY . 60

Appendix C. S/370 MODEL 145 MICROCODE PRINCIPLESa...... 69

Appendix D. MICROWORD UTILIZATION ON THE S/370 MODEL 145 AT
STANFORD UNIVERSITY . 75

iii

TABLE OF CONTENTS (cont.)

Page

Appendix E. DERIVATION OF THE G CONDITION C(BTROLLING
M-PROFILE MEASUREMENTS . 77

BIBLIOGRAPHY . 82

Table

iv

TABLES

Page

1

2

3

4

5

6

7

a

9. -

B.l

B.2.

B.3

B.4

c-1

D.l

Dimensions of an instruction set processor

Program portion that has to be rewritten if the original
set of 142 instructions is limited to g most popular
ones ...

Characteristics of various types of instruction set
processors ...

S/360-370 instruction set --opcode value assignment

S/370 Model 145 control word types

S/370 Model 145 control word types--division based on the
control word function and the CPU cycle length

Lower and upper M-profile boundaries (I-phase only)

Measured M-profiles (I-phase only)

%-profiles of selected IBM/370 instructions

Instruction group frequencies for the division based on
the value of *1

...

Instruction group frequencies for the division based on
the value of x2 ...

Instruction Utilization Function (IUF) for the S/370
Model 145 at Stanford

Instruction mixes at different installations using the
S/360-370 instruction repertoire

Control word formats for the S/370 Model 145

Microword utilization on the S/370 Model 145 at Stanford . . . 76

8

11

17

28

39

39

43

44

46-47

61

62

63-64

68

72

FIGURES

Figure Page

1

2

3

4

5

6

7

A.1

A.2. -

B.l

c.1

c.2

E.l

E.2

E.3

Levels of implementation of an instruction set processor ... 14

Simplified diagram of a system performance monitoring
process .. 21

Decode circuits for halfword and branch operations 30

Hardware monitor SUM connections for monitoring the IUF 32

Levels of the instruction execution process in a micro-
programmed processor 35

Circuits that generate the condition G for M-profile
measurements ... 45

Flowcharts for E-phase microroutines (BC, STM, and shift
instructions) .. 48

SUM functional block diagram 57

SUM connections using Data Comparators 59

Instruction Frequency Distribution (IFD) for the S/370
Model 145 at Stanford 65

Simplified S/370 Model 145 CPU data flow 70

Basic I-phase (I-cycle) functions 73

Selection of instructions for M-profile measurements 78

Timing chart for Opcode register loading 7g

Timing chart of signals generated by the S/370 Model 145
and the SUM logic circuits 81

I. INTRODUCTION

Machine instructions provide a means of control a user can exer-

cise over his machine. The instruction repertoire is an attribute of a

computer family, but its implementation may differ widely among models of

one family. How individual instructions from an available repertoire

are used is a function of the processing environment of a computer instal-

lation. We say that each computer installation processes its own

instruction mix where the instruction mix reflects the particular

environment. Both the instruction set composition (instruction repertoire)

and the technique of implementation affect the suitability of a particular

computer to various processing environments. This suitability can be

evaluated in terms of programming effectiveness and efficiency of execu-

' tion, the latter being one of the aspects for evaluating performance of

computer hardware.

One of the first measures of computer performance used for the

purpose of selection of the best among several machines (selection

evaluation) was the execution time of a single instruction, usually ADD

instruction [LUCA 711. Such a method was soon recognized as inadequate

and was replaced by a method based on an instruction mix. An instruction

mix was a list of instructions weighted according to their frequency of

execution. The time needed to execute a particular instruction mix was

then taken to be the direct measure of performance or it was combined

with other computer system attributes (I/O speed, data path width) to

calculate a 'Figure of Merit' [KNIG 66, DRUM 691. Optimally, the instruc-

tion mix used in evaluation should represent the actual instruction

utilization under the load the selected computer will have to handle.

2

However, statistics about instruction usage were rarely available and

instruction mixes for performance evaluation were constructed according

to what was thought to be a typical business or a typical scientific mix.

Even so it should not be disregarded altogether, the instruction mix as

a performance evaluation tool has a number of drawbacks and is today rated

as entirely insufficient. This fact by no means implies that statistics

on instruction usage have no application. There are fields of computer

engineering where such statistics are extremely valuable. Some of the

candidate areas are explained below.

Design of new processors. A broad instruction repertoire increases

the processor's generality and applicability to several different

processing environments, but the cost of implementation grows also.

Some or all instructions can be implemented entirely in hardware,

microcoded, or interpreted in software. The implementation tech-

nique has a direct impact on the cost of the processor's hardware

and the execution speed. Hardware/firmware/software tradeoffs can

be resolved effectively only when enough facts are known about the

frequency of usage of individual instructions.

Emulator selection. The process of upgrading to a computer system

with a different instruction repertoire than that of a system being

replaced can be significantly simplified if the application soft-

ware can be emulated rather than reprogrammed. The efficiency of an

emulator may depend greatly on the instruction mix the emulator has

to process.

Processor selection. Knowledge of the instruction mix may help in

the first-run selection of computers before starting detailed (and

costly) performance analysis. For example, an installation that is

known to use floating-point arithmetic in less than 1% of the total

mix most probably will not be interested in purchasing an optional

floating-point hardware unit.

Compiler evaluation. Compilers generally utilize only a subset of

available instructions. A good compiler should take advantage of

the flexibility and power of some special instructions. To what

extent such attempts are successful can be found out from the object

code instruction mix.

Generation of 'typical' instruction mixes. Instruction mixes

classified according to what application they represent can be

used as standards for comparing processing environments of different

installations.

. - - Gaining more insight about the computer system environment and

operations. Instruction utilization data reflect some characteristics

of programs run on a particular computer. Some unexpected dis-

coveries may emerge. Perhaps decimal arithmetic is used too heavily

where conversion to binary numbers would be more appropriate, or

some special and efficient instructions are never used merely

because programmers have not been sufficiently trained to appreciate

such extra features.

In this study we examine the degree of applicability of instruction

usage statistics to design and implementation of processors and emulators.

Attention is then focused on methods of acquiring such statistics.

The next section, Section 2, establishes basic terminology for the

rest of the paper. Section 3 discusses various aspects and tradeoffs

inherent in the design of processors and emulators. Section 4 summarizes

techniques of collecting instruction usage data. Section 5 then describes

two ways a simple hardware monitor can be employed to count occurrences of

S/360-370 instructions. Section 6 is concerned with analysis of S/370

Model 145 microprograms. Finally, Section 7 summarizes the work presented

in this paper and suggests the direction of further research.

II. BASIC NOTIONS

The term instruction mix is well known and widely used, but not

well defined. Many instruction mixes do not include every individual

instruction implemented on a machine being evaluated, but concentrate on

a subset of general instructions that are likely to be contained in

instruction sets of machines of different families. Some mixes are

constructed out of groups of instructions that perform similar functions.

For example, an instruction mix for IBM S/360 could specify the weight

for a fixed-point add function without distinguishing between RR and

RX types of operation.

Let s be the number of different instructions (opcodes) implemented

on a machine, where each opcode is assigned a unique integer k such that

' - l < k < s . Let N- - k be the count of occurrences of k-th opcode in N
N

instructions. Then fk = 8 is the frequency of occurrence of the k-th

opcode. There are many possible mappings of the given set of s opcodes

onto the set of first s positive integers. We will consider only two

of them. The first mapping assigns integers to individual opcodes in

such a way that Ck < c k+l where 'k is the value of the k-th opcode.

Since some opcodes are not assigned to any instruction, the value of the

k-th opcode is not always equal to k. The function fk defined on a

set of opcodes under this particular mapping will be called the Instruction

Utilization Function (IUF). The second mapping orders opcodes by their

frequencies of occurrence, such that fk 1 fk+l for all k=1,2,...,s.

Then let the Instruction Frequency Distribution (IFD) be the function

F(q) = 5 fk defined on the set of s opcodes under this second mapping.
k=l

It should be noted that while the first mapping is unique for all machines

using the same instruction set (IUF may be therefore used for a comparison

study), the second one may vary from one installation to another and from

one application to another.

We have to distinguish between two cases of instruction utilization.

Static utilization is determined by the structure of a program(s). Here

fk is the frequency of how often each opcode is written. Dynamic

utilization represents how many times each instruction is executed. The

static IUF for a specified program can be obtained by hand-analysis of

its code. Dynamic instruction utilization is environment-dependent. It

is a function of data operated upon by programs being analyzed and as

such it cannot be computed exactly unless the values of all operands are

explicitly known. This matter becomes even more complex when not only a

single program (or a set of programs) but the entire system is studied.. -

The only way to obtain the function of dynamic instruction utilization

is to monitor the system under its normal operating conditions.

Another parameter of interest is the distance of two instructions

Ii and I..
J

It can be defined as either the average number of instruc-

tions or the average number of CPU cycles executed after an occurrence

of I i and before the first following occurrence Of I.. Note that
3

distance (Ii,Ij) is different from distance (Ij,Ii>'

7

III. ROLE OF INSTRUCTION UTILIZATION STATISTICS IN THE DESIGN

AND IMPLEMENTATION OF AN INSTRUCTION SET PROCESSOR

Conventional computers can be described as composed of three basic

units: the Central Processor Unit (CPU), the main memory, and the Input/

Output (I/O) facilities. A great part of the CPU elements are manipulated

by externally supplied machine instructions, or for short instructions.

The collection of instructions directly interpretable by the CPU is called

the instruction repertoire or simply the instruction set. The portion of

the CPU hardware that supports operations specified by machine instructions

shall be termed the instruction set processor. Bell and Newell proposed

the instruction set processor (ISP) description scheme for specifying a

set of operations and rules of interpretations incorporated into the CPU

. - architecture [BELC 711. We shall not be concerned with defining the

exact data and control flow for an instruction set processor as it is

done under the ISP descriptive scheme. Our interest lies in determining

a set of operations to be included in a machine instruction set and the

techniques of implementation of an instruction set processor.

3.1. Instruction Repertoire: The Structure and the Power

Since the beginning of the history of computers, the specification

of a machine instruction set has usually been a major issue of a computer

design project. Bell and Newell in [BELC 711 give an excellent overview

of various dimensions of computer architecture. The subset of these

dimensions that describes the structure of an instruction set is presented

in Table 1 together with some of the many possible design alternatives.

To select a set of operations executable as a single machine

instruction and to decide on the exact instruction format, a designer has

TA
BL

E
1:

Di
me

ns
io

ns

of

an

in

st
ru

ct
io

n
se

t
pr

oc
es

so
r.

IWO
RD

SI

ZE
OP

CO
DE

FI

EL
D

OP
CO

DE

IN

TE
RP

RE
TA

TI
ON

BA
SE

AD
DR

ES
SE

S
PE

R
PR

OC
ES

SO
R

SI
ZE

RU
LE

S
IN

ST
RU

CT
IO

N
CO

NC
UR

RE
NC

Y
I

8
bi

ts
0

ad
dr

es
s

(s
ta

ck
)

se
ri

al
 b

y
bi

t

va
ri

ab
le

de
ci

ma
l

1
ad

dr
es

s
pa

ra
ll

el
 b

y
wo

rd
I

16
 b

it
s

ch
ar

ac
te

r
1+

x
(i

nd
ex

)
ad

dr
es

s
mu

lt
ip

le

in

st
ru

c-
ti

on

st

re
am

24
 b

it
s

32
 b

it
s

l+
g

(g
en

er
al

 r
eg

is
te

r)
mu

lt
ip

le

da

ta
ad

dr
es

s
st

re
am

2
ad

dr
es

s
1

in
st

ru
ct

io
n

bu
ff

er

48
 b

it
s

3
ad

dr
es

s
n

in
st

ru
ct

io
n

bu
ff

er

64
 b

it
s

n+
l

ad
dr

es
s

lo
ok

-a
si

de
me

mo
ri

es

pi
pe

li
ne

pr
oc

es
si

ng

to evaluate a number of tradeoffs. The word size often represents a

serious constraint. When the word size is small, the individual fields

of an instruction have to be kept as small as possible. The operation

code, or opcode, specifies the type of a function carried out by an

instruction (load, store, add, etc.). The shorter the opcode field,

the fewer distinctive opcodes are available; this limits the power of an

instruction repertoire.

The power of an instruction set can be defined as the ease of

implementing various programming tasks. We could possibly use the term

effectiveness instead. It is determined by two factors. The first

factor is what operations can be performed with a single instruction.

For example, a multiply operation on some small machines such as the

DEC PDP-8 has to be programmed explicitly using add and shift operations;. -

n+l address instructions can branch in addition to executing a function

specified by the opcode. Some machine instruction sets might include

instructions for such complex functions as search or sort. The second

factor stands for how many and how large the pieces of data are that can

be moved between the processor and the main memory by a single instruction.

Data that are longer than what can be handled by a single instruction

have to be broken into n fields and the requested operation performed

in n steps, while some control information is passed from one step to

the next. For example, to perform a long add operation, the overflow from

step k is the carry into step k+l. Multiple operand address instructions

eliminate the necessity of having to move operands and results between local

processor storage and main memory explicitly. An example is given below.

Goal: Add OPERAND1 and OPERAND2 and store the result in RESULT

One address per instruction: L OPERAND1

(IBM S/360) A OPERAND2

ST RESULT

Three addresses per instruction: A OPERANDl,OPERAND2,RESULT

(MIDAC IBEIC 711)

The problem of a short opcode field is quite common to minicomputer

architecture. Some minicomputers such as the PDP 8 or HP 2116 use the

address portion of an instruction word of those instructions that do not

reference the main memory as additional opcode subfields. This approach

greatly enhances the power of an instruction set while only a few bits

are required for the opcode field. Another scheme, proposed but not yet

implemented, is based on conditional interpretation [FOST 71A1. It

utilizes the fact that each instruction has only a very few likely. -

successors. As an example, 'Load accumulator' operation is not going to

be followed by 'Clear accumulator.' Each instruction can be then encoded

as the k-th successor of the instruction immediately preceding in execu-

tion. Under this scheme, the size of the opcode field could be greatly

reduced, but only at the expense of some special decoding hardware.

3.2. Utilization of the Information in Opcodes

Extra power of an instruction repertoire can be provided only

through increased cost of computer hardware together with extended design

effort. When the instruction set is not fully utilized, both the design

effort and the hardware investment are partially wasted. The maximum

utilization of the information in opcodes is achieved if all instructions

are equally likely. Two measures of opcode usage were proposed in [FOST

71B1. The first measure I is the average number of bits of information

11

S

contained in each opcode. It is obtained as I = c
i=l 'i l"g2Pi where

'i is the probability that the i-th instruction from the instruction set

S of size s is used. The maximum is reached when p i = i for all

i=1,2,3,. s ,l *? and Imax= log2s, but such a situation is fairly

improbable.

The process of coding a set of tasks to run on a particular machine

maps tasks into, but not necessarily onto, the set of machine instructions.

This means that some instructions are perhaps never used. Let the effective

instruction set Se of a specific program be defined as the set of all

instructions used at least once in that program. The second measure then

examines the effort necessary to recode such a program onto an instruction

set s such that sCSe and can be expressed as g(s)=l-F(s), where s

is the size of the set s and F(g) is the IFD defined in Section 2.. -

The two measures were applied to the analysis of instruction usage

in both handcoded programs and object coded programs on the CDC-3600

computer at the University of Massachusetts. Table 2 shows what percentage

of program code would have to be rewritten if the original set of 142

CDC-3600 instructions were limited to include only the s most popular

ones.

TABLE 2: Program portion that has to be rewritten
if the original set of 142 instructions
is limited to s most popular ones.

-
S

Hand-coded
programs

Compiler output
(object code)

64 2%

32 10 - 16%

0%

0 - 3%

Statistics on static (written) usage of opcodes are not sufficient--some

instructions are executed with much greater relative frequency than they

appear in a program listing (branch instructions, for example). Not only

the reprogramming effort, but a possible increase in execution time has

to be analyzed when such reduction of an instruction set is considered.

3.3. Implementation Techniques

Thus far we have discussed the structure of machine instructions

in the context of the instruction set power and the information contained

in each instruction. Next we shall concentrate on how a specified instruc-

tion set can be implemented, or in other words, we shall discuss various

instruction set processor organizations.

An instruction set processor is an assembly of hardware functional
. -

units (registers, adders, shifters) interconnected with data busses and

control lines. Execution of a single instruction may require assistance

of several such units, and some of these units may be used more than once.

As an example, a multiply operation can be performed as a series of add

and shift operations. Sequencing control can be made entirely of logic

circuits, and such processors are then called hardwired, or it may be

supervised by stored programs. Such programs are transparent to a pro-

grammer using the machine instruction set. They are written in a more

primitive instruction set called microcode instruction set with each

instruction termed a microinstruction or a microword. Processors implemented

in this way are known as microprogrammed processors. Microprograms reside

in control memory (control store) and are collectively referred to as

microcode. Control store may be either read only or may provide write

capacilities in addition to read capabilities (writeable control store).

13

Processors with writeable control store are called microprogrammable

processors.

The third level of implementation is then software interpretation.

Frequently used operations can be coded and catalogued as special sub-

routines, a popular term for which is macroinstructions. Macroinstructions

eliminate the necessity of explicit coding and are thus a convenient tool

for a programmer. They must not be mistaken for a subset of the machine

instruction repertoire, but they can be viewed as its extension.

The three levels of instruction set processor implementation are

illustrated in Figure 1. The main tradeoff here lies in design and

implementation cost versus execution speed. Hardwired operations are

fastest, but a completely hardwired processor might be too complex and too

costly. Further, once logic circuits are assembled together, there is no
. -

way to modify the instruction set. Microinstructions perform very simple

operations and their execution does not require an extensive hardware

control. Simpler hardware is only a tradeoff for a reduction in the speed

of execution, since several microinstructions often have to be executed

per single machine instruction. But this factor is becoming less and

less significant as the speed of control memories increases. Both

approaches may be combined in the organization of a single machine.

That is, the crucial instructions may be hardwired while the less fre-

quently used ones are implemented as microroutines.

In recent years, there has been a growing trend toward implementing

an instruction set processor in microcode. As a result, a great part of

the effort associated with hardware design has been shifted to the area

of microprogram development. This shift is even more enhanced by the fact

that many of today's control memories are dynamically writeable; that is,

EXPANDED INSTRUCTION
SET

IMPLIWENTATION

Figure 1: Levels of implementation of an
instruction set processor.

15

their contents can be changed under control of a program. Processors with

dynamically writeable control store are referred to as dynamically micro-

programmable processors. Some dynamically microprogrammable processors

can execute microprograms only if those reside in the control store [COOK

701. Microprograms that are not found in control memory have to be first

swapped in (from main memory or some auxiliary storage). In other cases,

a dynamically microprogrammable processor can execute microinstructions

directly from main memory, at the expense of the execution speed [TUCK 711.

In both cases, if a requested microprogram is not found in control storage,

its execution requires more CPU time. A dynamically writeable control

store facilitates the opportunity to change dynamically the entire instruc-

tion repertoire. The exact composition of the instruction set and the

control store residency can then be optimized to fit the immediate needs

of each individual installation. The optimization process has to be

based on some reliable data about opcode utilization. Some of these

problems are similar to those encountered on the operating system level.

For example, the most frequently used OS/360 SVC routines are resident in

the main memory; the rest are transient. If one or more transient routines

arecalled too often, system overhead might become too large. To find out

the real cause of such overhead, the system has to be monitored. The

same is true when dealing with microroutines, but it is not always possible

to use the same measurement methods.

3.4. Microcode Level

We have discussed microprogramming as one of the possible means of

c implementation of an instruction set processor. Indeed, the original

purpose of microprogramming was to aid a computer designer to eliminate the

randomness of control logic in an instruction set processor [WI= 513.

But the concept of microprogramming has a much wider area of application.

Frequently executed tasks that require a considerable amount of CPU time

can be written directly in microcode to increase system throughput. System

diagnostic routines CJOHA 711, operating system functions, special functions

for performance monitoring ISAAL 72, ROBE 723 are all acknowledged candi-

dates for microcode implementation. Computers can be also microprogrammed

to execute higher level languages directly without the need for a compiler.

In the previous section we suggested that a microprogrammable com-

puter can support more than one instruction set. This means in turn that

such a computer can execute programs written for other, different machines.

The process just described is known as emulation. Salisbury presented a

broad overview of microprogramming in the context of emulation [SALI 73A].. -

A truly universal processor should have the capabilities to emulate a wide

range of machines. The prime supposition here is a great flexibility of

its microinstruction set.

Specification of a microinstruction repertoire represents a problem

analogous to the one encountered on the instruction set processor level.

In fact the microinstruction set could be considered the basic instruction

set of a microcoded machine, and the microcoded processor, the interpreter

of the machine instruction repertoire. Such a concept seems to provide a

better description, especially for machines that do not have what can be

called their 'own' instruction set. The term interpreter has indeed been

used by designers of the B1700 [WILN 721 which is possibly the most

flexible processor ever designed.

Table 3 summarizes instruction processing capabilities of various

processor types. Emulators and interpreters actually belong to the group

17

of microprogrammable processors, but they are described separately because

of special functions they perform. An emulator is also an interpreter,

but its primary function is to execute programs using its own, basic

instruction repertoire.

TABLE 3; Characteristics of various types of instruction
set processors.

Hardwired processor

Microprogrammed processor
(read only control storage)

Instruction set is fixed

Instruction set is fixed, but it
can be customized prior to machine
delivery

Microprogrammable processor
(writeable control storage)

Instruction set can be customized
and changed in accordance with
user processing needs any time such
needs arise

Dynamically microprogrammable Instruction set can be changed
processor dynamically to fit various
(dynamically writeable control applications
store)

Emulator Besides having its own instruction
set, it is capable of executing
one or more instruction sets
differing from the basic repertoire

Interpreter Capable of executing several
instruction sets that are either
basic sets of some existing
machines or are designed to support
some special purpose application

High-level language interpreter Executes either a conventional or
a special purpose high-level
language directly without using a
compiler

Microinstructions are frequently classified either as vertical or

horizontal [ROSI 69, IBM 711. Vertical microinstructions are short and

perform usually only one simple operation. Horizontal microinstructions

are based on a very wide word and use only a minimum degree of encoding.

Individual bits of horizontal microinstructions may be directly assigned

to circuit control lines. This approach enables a single microinstruction

to control simultaneous operations of many independent hardware elements.

A combined approach then uses words of a medium length with control

information encoded into several short fields. The more 'horizontal'

microinstructions are, the broader repertoire they constitute, but the

more difficult it is to use them. The more powerful a microinstruction

repertoire, the most costly it is to implement it. A very good discussion

of these aspects can again be found in ISAL 731.

How individual instructions are used depends on the application

purpose of a processor (execution of basic instruction repertoire, emula-

. - tion, implementation of special functions) and on the actual load of that

processor. The latter implies that utilization of microinstructions is

data dependent. The task of determining the dynamic utilization of micro-

instructions is even more complicated than analysis of machine instructions

usage.

3.5. Summary

This section reviewed various aspects of instruction set processor

design. We discussed the power of an instruction repertoire versus the

instruction structure (format). The more powerful the instruction set,

the more expensive the resulting instruction set processor, both in terms

of hardware and manpower dedicated to the design project. Whether the

power of the instruction set repertoire of a particular machine is fully

utilized can be discovered only through analyzing instruction utilization

statistics obtained under normal working conditions.

19

Implementation of an instruction set processor also has a number

of tradeoffs; such tradeoffs can be resolved effectively only when based

on the knowledge of actual instruction processing requirements. Flexibility

inherent in microprogramming, especially the possibility of dynamic changes

of the entire instruction repertoire, makes this technique the more and

more frequently used one. To provide an adequate basis for designing

microprogrammed processor, instruction utilization statistics have to be

supplemented with statistics about microword utilization.

IV. TECHNIQUES FOR MEASURING DYNAMIC INSTRUCTION UTILIZATION

Before getting down to the problem of how to obtain statistics

about dynamic instruction utilization, we shall review computer performance

monitoring techniques in general. Performance monitoring is a process of

extracting various information about the behavior of a computer system.

The monitored system, frequently called the host system or the object

system has to be first instrumented to make such information accessible.

Instrumentation provides an interface between the host system and the

monitor. The function of a monitor is to extract data and to transform

it into a form suitable for recording and/or display. This is illustrated

schematically in Figure 2. Monitors fall into one of four basic categories:

Hardware monitors. A hardware monitor is an external device attached
. -

to the monitored computer via a set of electronic probes. A simple

hardware monitor has a set of probes, a set of counters, and some

logic that allows it to combine two or more signals from probes

prior to their display and/or recording. More advanced monitors

include features such as sequencers, data comparators, random

access memory (RAM), and associative memory. In addition, some

hardware monitors are programmable --they are built around a mini-

computer that dynamically selects signals for recording and may

also be allowed to communicate with the host's software. Except

for such communication, hardware monitors do not interfere with

normal operations of the host system. Hardware monitors are capable

of recording signals at high rates. They can monitor the state of

any logic element, provided there is an external pin on the host's

system mainframe assigned exclusively to such an element.

21

. -

monitored d

HOST SYSTEM

MONITOR

I I

INSTRUMENTATION

dataI selec
for record
and/ or dis

RECORD DISPLAY

Figure 2: Simplified diagram of a system performance
monitoring process.

Firmware monitors. Firmware monitors are analogous to software

monitors, the only difference being that monitoring programs are

written in microcode. Such a technique can greatly reduce the

amount of CPU time necessary to support monitoring, but is of

1 - course applicable only to microprogrammed computers.

Hybrid monitors. A monitor that uses both the host's facilities

and an external device is called hybrid. The software part collects

data stored in various memories of the monitored system and presents

them in the appropriate form to a hardware monitor for further

processing and recording.

Many different computer installations have reported measurements of instruc-

tion utilization. Collectively these measurements cover a broad range of

monitoring techniques with representatives in each of the four classes

described above. The Neurotron monitor [ASCH 711 is a hardware device

developed at Argonne National Laboratory. It has a random access memory

that can serve as an array of 256 counters. Each instruction is assigned

one counter such that the value of the instruction opcode can be used

directly as the address of the associated counter. Any time a counter is

addressed, it is incremented by one. Counter update can be performed in

23

about 200 nsec. This device can be used on any computer provided that no

instruction is executed in a time shorter than the time needed to update

a counter. Bonner [BONN 691 describes what information a simple hardware

monitor that does not have random access memory can extract from the

operation code. A monitor of this kind, the Computer Synectics SUM, was

used to determine usage of 64 operation codes on the CDClGOA LARND 721.

Several test runs had to be made since executions of only 15 different

instructions could be counted during each run. A special hardware instru-

mentation designed for UNIVAC 1108 [BORD 711 can generate an instruction

trace that is later processed to provide a report on instruction utilization.

An instruction trace can also be implemented entirely in software IWIND 731.

Bailey [B&Y 711 discusses how instruction usage profiles can be obtained

through statistical analysis of compiler-generated code. A method called
1 -

self-simulation was used at UCLA [BUSS 701 to collect statistics for the

S/360 Model 75 and the XDS Sigma-7. Instruction utilization statistics

for the S/360 Model 91 at UCLA were produced using a software sampling

method. A firmware monitor has been implemented on the SCC IC7000 at SLAC

CSAAL 721. The instruction operation code of the IC7000 utilizes from 3

to 12 bits. The microcoded monitor recognizes short and long forms of

operation codes and generates the address of the appropriate counter in

the main storage.

The appropriateness of each technique is a function of many factors.

If execution counts are the only information needed, a hardware monitor

with a small RAM will be the best tool. Sometimes the execution counts

alone are not sufficient, since the amount of time needed to execute a

certain set of instructions depends also on the sequence in which these

instructions are submitted for execution. One important factor is the

distance of various instructions. Information about the distance of

24

successful branch instructions can decide how large the stack should be

that holds prefetched instructions [BORD 713. Distances of other instruc-

tions may be critical to a design of processors with pipelined circuits

or with several independent functional units that can execute instructions

in parallel. The S/360 Model 91 processor employs both concepts. Its

floating-point add unit and the floating-point multiply unit may operate

simultaneously, each on a different set of operands. In addition, each

of these units is pipelined, meaning that a new operation can be started

on a functional unit while that unit is still processing a request initiated

some time earlier CANDE 67 1. Assume that each of the requests for a par-

ticular unit can be completed before another one for the same unit is

issued. In such cases the piepline concept is completely useless. Simi-

larly, if the intervals during which the individual functional units are
. -

busy are mutually exclusive, same hardware could be shared to perform

all functions distributed among such units.

The best source of information about instruction sequencing is an

instruction trace. An instruction trace is a detailed record of all or

selected (branch) instructions in the order they were executed. Software

methods generating an instruction trace are extremely time consuming. They

might slow down the computer as much as several hundred times. This is

usually due to the fact that the speed of a supporting I/O device is not

sufficient and the monitoring process has to be frequently interrupted

(wait loop) until the I/O device completes its operation. If not the I/O

speed but the CPU speed is the limiting factor and the CPU happens to be

microprogrammed, it is advantageous to implement trace routines directly

in microcode. CPU overhead is nevertheless significant. Since the pro-

cessing speed of other system resources remains unchanged, interactions of

25

these resources and the CPU become time-skewed, and the trace does not give

a correct picture of normal system operations. A programmable hardware

monitor with fast RAM may be able to trace instructions while the monitored

system is operating at full speed, but the amount of data collected is

limited by the size of the monitor's memory. If such a hardware monitor

has its own sufficiently fast secondary storage device, then RAM can be

divided into two or more buffers, where one buffer can be copied into the

secondary storage in parallel to another buffer being filled with monitored

data. Both Models B and C of the CPM-X [RIND 721 may operate in the

described mode. A hardware monitor that has the ability to communicate

with the monitored system can avoid losing data by creating an interrupt

every time it falls behind operations of the monitored computer.

Some design areas require only a reduced amount of information. -

about instruction sequencing. Such areas include design of conditional

operation codes [FOST 7lA1 or development of an algorithm for microroutine

swapping. The problem here is to obtain a list of the m most frequency

successors for each of the n specified instructions. Such information

can of course be easily extracted from an instruction trace, but there

exist more efficient methods that do the same job. It is only necessary

to have an nXn matrix C, such that the element c ij is the count of

how many times execution of the instruction i immediately preceded

execution of the instruction j. Software implementation of this method

would introduce almost as large an artifact as a software trace. A firm-

wave monitor can update c..
iJ

counters in a much shorter time, but its

overhead would still be significant [SAAL 721. The most efficient tool

is definitely a hardware monitor where the matrix C is accumulated in

the monitor random access memory under control of a set of sequencers.

26

The hardware device SLUR proposed in [MURP 691 can utilize its associative

memory to detect specific sequences of events, and it could also be used

to build the C matrix.

In summary we discussed several monitoring methods used as tools

for gathering statistics about instruction usage. Mere instruction

execution counts are not always sufficient; for certain design concepts

instruction distance or successor relationship are more indicative parameters.

Execution of each single instruction is an event that has to be processed

and recorded. A software monitor that can accomplish the processing and

recording task in

the factor M:l.

M instructions slows down the execution process by

The artifact of a firmware monitor can be considerably

less, but rarely falls below the level of significance. Hence, a hardware

monitor is a preferred tool.

27

V. USING A HARDWARE MONITOR TO MEASURE INSTRUCTION UTILIZATION

This section discusses how a simple hardware monitor such as the

Computer Synectics SUM described in Appendix A can serve to measure

utilization of IBM System/360-370 instructions. Let xi be the i-th

bit of the instruction opcode field, where xl is the most significant

bit. The eight-bit S/360-370 instruction opcode x x x x x x x x1 2 3 4 5 6 7 8 can

be written as two hexadecimal digits x1x2' Not all of the 256 possible

combinations are valid opcodes. The S/360 instruction repertoire contains

150 instruction opcodes [IBM 681. The S/370 instruction set is basically

the S/360 instruction set augmented with fourteen special instructions

[IBM 701. The matrix in Table 4 shows the opcode value assignment for

the S/370 instructions. The maximum number of distinct events the Sk
. -

monitor can record at any time is sixteen. It is therefore not possible

to monitor every single instruction of the S/360-370 repertoire, or at

least not in one measurement run only. Next we shall discuss two possible

solutions to this problem.

(1) The two most significant bits of an S/360-370 instruction

specify the instruction type (RR,RX,RS/SI or SS). The whole digit X 1

describes in most cases the type of the operand (fixed-point RR, fixed-

point RX, floating-point RX, immediate, etc.). But such a division

is too general. A set of instructions with the same value of Xl may

be composed of several subsets of instructions, each subset performing

entirely different operations. As an example, the set associated with

X1=4 consists of halfword operation instructions, branch instructions

of the fix type, instructions for decimal/binary conversion, character

handling instructions of the m type, Load Address instruction, and

TABLE 4: S/360-370 instruction set--opcode value
assignment.

\

~. _ I
3 0 1 2 3'4 5'6 7!8 9 .A B C D E F

-
X I 1
.

1 I '
SPM BALR ' BCTR ' BCR

*
0 SSK ISK svc I

!
MVCL l cI.a

I i I i 1
1 LPR LNR LTR LCR NR CLR OR XR

I
I

1
LR CR AR SR MR

j
D4 ALR ST.R

LTDR LicDR I
2 LPDR LNDR HDR LRDR FjXR

I
MXDR LDR CDR ADR SDR MDR DDR AWR SI*'R

I

3 LPER 1 WER 1 LTER LEER ' HER LRER AXR / SXR LER CER AER SER 1 MER DER AUR SUR

4 STH u STC XC EX BAL BCT BC LH CH AH SH MH CVD CVB

5 ST N CL 0 x
I

L. C A S M D AL SL

6 STD MXD LD CD AD SD MD DD AW SW

7 STE <
f

LE CE AE SE ME DE AU su

a SSM LPSW Dfagn WRD . RDD BXH BXTE SRL SLL SRA SLA SRDL SLDL SRDA SLD,

9 SRI TX
I

MVI Ts NI

I I

CIJ 1 01 1 XI p 1
I- - ----.

* I
' p, j TIO -i y; 1 TCH

I :';
A MC

B 'e - *STCTL *LCTL *CD! *STCM *ICM
I

c
' I m

D NVN MVC MU2 NC CLC oc xc TR TRT ED EDM

E
1

P ;‘SRP PACK UNPK
I

ZAP CP AP SP M-P DP

I r
*
S/370 instructions only

@IB202 - STIDP
B203 - STIDC
B204 - SCK
B205 - STCK

29

Execute instruction. Such subsets are often difficult to extract. Bits

of the x2 field have to help in identifying individual subsets.

The instruction set can be divided into m groups, m < 16,-

where each group gr is assigned one SUM counter. The input CM‘, of

the r-th counter is a function of x1 and individual bits of the X2

field, CNT, = hr(Xl,x4,x5,x6,x,). Xl is obtained as the output of the

SUM decoder; the decoder input are the four most significant opcode bits.

Since the total number of gates on the SUM logic patch-panel is very

limited, methods known from switching theory [MCLU 651 should be employed

to minimize the number of gates needed. Figure 3 shows the circuits

that decode halfword operation instructions and branch instructions.

The second opcode digit X2 determines often the type of an

operation carried out by the instruction (load, store, add, etc.). But. -

again there may be several subsets of instructions that perform different

operations but have the same value of x2* Circuits that separate such

subsets can be acquired by a method analogous to the one described above

where the roles of X 1 and x2 are interchanged.

This first method provides general information about characteristics

of the load processed by the measured system; the resultant data may be

sufficient for the purpose of computer selection in the sense defined in

Section 1, or for the purpose of determining the 'typical' instruction mix

of a particular installation. For all other areas listed in Section 1 we

have to measure the IUF function.

(2) The hardware monitor SUM cannot monitor more than fifteen

instructions simultaneously; the sixteenth counter has to be dedicated to

counting how many instructions are executed in total. Sets of fifteen

instructions can be formed in many ways. The simplest way is to group

\
x5x6

x7x8
\

00

01

11

10

\ 00 01 11 10
1011

0 Odl

0 001

0 001

x1 = 4
Z = (x5 +xax*x)=G *De&678 67

(a) Halfword operation

. -

\x5x6
x7x8 '

00

01

11

10

00 01 11 10
00 00

01 d 0

0100

01 00

‘z 1
“8. I

Deco
Dec4

x1 = 0 or 4

z F G5.x6.(x7 + x8)*(Deco + De&)

(b) Branch operation

Figure 3: Decode circuits for halfword and branch operations

(Table 4); for every value of X2 there is at least one value c
j

of

X 1 such that c.X is not a valid opcode. It means that no more than
J 2

fifteen counters are needed to count usage of opcodes X1X2 for each

selected value of X2.

Each input of the SUM sensor concentrator can be inverted prior

31

instructions according to the value of either the X1 or the x2 digit.

For X1=1,2, or 3, all sixteen values of X2 represent a valid opcode

to routing it to the logic plugboard. The sensor concentrator can there-

fore serve as part of the decoder for the digit X2. Let the output of

the sensor concentrator line corresponding to x. be false if the bit
J

X is then decoded as illustrated in Figure
j

has the desired value. x2

4. x1 is decoded in the SUM decoder that is enabled only when x2 has

the selected value. It is very convenient to use the sensor concentrator. -

this way since the logic plugboard does not have to be rewired between

individual runs; the digit X2 is selected by setting the sensor switches.

It is important to make monitored intervals sufficiently long to

eliminate the effect of workload changes during various times of day.

Data collected by this method can be verified in two ways. If fk is
S

the frequency of occurrence of the k-th opcode, then c fk, where s
k=l

is the number of valid opcodes to equal 1. The second way to verify the

results of this method is to calculate the sums c fk* where g arer
keg

the instruction groups established under the first mzthod and to compare

these sums against measured utilization of each group gr.

The two methods were implemented on the S/370 Model 145 at Stanford.

Details about this particular implementation are presented in Appendix B

<
keg, means the instruction assigned the integer k belongs to the group

gr'

32

sensor concentrator
logic

instruction
counters

l

8

tb
counters

decoder

main SUM
unit

Figure 4,: Hardware monitor SUM connections for monitoring the IUF

33

together with the measurement outcome. With slight modifications, the

described methods are applicable to machines other than those using the

S/360-370 instruction repertoire.

VI. ANALYSIS OF MICROCODE LEVEL FUNCTIONS

In general, execution of an instruction can be decomposed into a

series of more primitive operations or steps (instruction fetch, instruc-

tion decode, operand fetch, arithmetic or logical operation, etc.); the

same type of operation may occur in more than one step. In a micro-

programmed computer, execution of a single step may be accomplished by

one microinstruction, or may require several microinstructions, formed

usually into a microroutine. Individual bits and subfields of a microword

have then direct control over circuits performing actual data transfer

and data transformation. These levels of the instruction execution process

are illustrated in Figure 5.

j The number and types of operations each instruction is comprised
. -

of is not determined merely by the instruction opcode. For some instruc-

tions this number varies only as a result of whether such instruction has

been prefetched or not. For other instructions, it is a function of the

operand length (S/360-370 Multiply instruction). In addition, the number

of microwords required to carry out a particular type of an operation may

be operand dependent. As a result, certain assumptions about the operand

value distribution and the operand length distribution have to be made;

only then we can estimate the numbers of microwords of various types

executed when interpreting a particular instruction.

Let oi be the primitive operation of the type i and nki the

average number of such operations needed to interpret the instruction Ik*

Let mij be the average number of microwords c
j

of the type j executed

per each operation 0..
1

Let the Mk-profile of the instruction Ik be defined as p-tuple

. .
mi

cr
ow

or
d

I
ha

rd
wa

re

Fi
gu

re
 5

:
Le

ve
ls

of

th

e
in

st
ru

ct
io

n
ex

ec
ut

io
n

pr
oc

es
s

in

a

mi
cr

op
ro

gr
am

me
d

pr
oc

es
so

r.

[Mkl Mk2 . . . %pl where h$j is the average number of microwords of the

type j executed per such instruction and p is the number of different

microword types. Let 4cj
be the minimum number of j-type microwords that

must be executed and U
kj

the maximum number of j-type microwords that

can ever be executed in the process of executing the instruction Ik'

Then the p-tuple [\l L12 L13 ... Lkpl is the lower boundary of the Mk-

profile; the p-tuple [U,, Uk2 Uk3 . . . Ukpl is the upper boundary of the

Mk-profile. The YE-profile can be obtained as:

Cnkl nk2 nk3 l ** nkr 1 x -rn 11 m12 m13 l ** mlp

m21 m22 m23 l ** m2p

m m-mrl r2 mr3 l ** rp

= %l"k2%3 "'Mkp'

Knowing the Mk-profile, the average execution time Tk of the instruc-
P

tion Ik can be calculated as T =k c M .*t
kJ j

where t
j

is the time
j=l

needed to execute a microword of the type j.

Microinstruction utilization statistics are perhaps the only means

for evaluation and selection of emulators. Salisbury defines emulator

power P as the number of instructions emulated per second. Emulator

power can be calculated from a corresponding frequency micromix, which

is the frequency of execution of each microinstruction for a fixed number

and particular mix of emulated instructions [SALI 731. The application of

a microinstruction mix to the task of emulator selection is very similar

to using an instruction mix for the purpose of computer selection. The

main drawback of the instruction mix method is that it does not evaluate

effects of the system software. That part of microcode that performs the

actual interpretation of the instruction repertoire, the true emulator,

37

can be viewed as a collection of application programs written in the

processor's lowest-level language and the problem of software (operating

system, language processors) evaluation thus does not arise here.

Knowing the instruction utilization function IUF and the s-profile

of each instruction I k' k=1,2,3,...,s, the relative frequency e. of

each microword type j can be calculated as e
j = E fk*Yrj

/Z L: fkzMkj.
k j

Earlier we showed that the exact values of M
kj

parameters cannot be

calculated; they have to be measured. Software measurement techniques

are'inapplicable to the microcode level. Let us explore the possibility

of using a firmware monitor to gather statistics about microinstruction

utilization. Since the microinstruction set is far more primitive than

the machine instruction set, the number of microinstructions n that have

to be executed each time a firmware monitor is called to process and to. I
record an event is much greater than the number of instructions executed

by a software monitor to accomplish a similar task. Let t be the average

time it takes to execute a single microword and T the average instruction

execution time. Then t*n is the average execution time of the firmware

monitor and T*N is the average execution time of the software monitor.

The microinstruction execution rate is T/t times greater than the instruc-

tion execution rate. The ratio of overhead of a firmware implemented

microinstruction trace to that of a software instruction trace can be

calculated as (t*n)/(T*N)*(T/t) = n/N. We just showed that the overhead

of a firmware monitor measuring microcode-level functions can be even more

severe than the overhead of a software monitor performing analogous

operations on the machine instruction level.

The process of execution of a microinstruction is very closely

related to operations of various hardware circuits. Most of the parameters

of interest, such as the microinstruction opcode, the instruction opcode,

the interrupt status, the processor status, are at some instant avail-

able as output signals of discrete hardware elements. These parameters

can be therefore easily measured by a hardware monitor, providing that

the probes of such a monitor are sensitive enough to recognize high-

frequency changes of states of microcode-level elements. From this

discussion it follows that a suitable (high-frequency) hardware monitor

makes the most appropriate tool for microcode-level measurements.

6.1 S 370 Model 145 Microcode-

S/370 Model 145 microinstructions incorporate both vertical and

horizontal microprogramming characteristics. The type and the amount of

elementary operations performed by a single S/370 Model 145 microinstruc-

. - tion or control word varies. The type of a control work is encoded in

the four most significant bits of each word. The six basic types of

control words are listed in Table 5 together with their representative

binary code. Their interpretation and implementation is discussed in

Appendix C. With the exception of a storage word, each control word is

executed in one CPU cycle. However, the CPU cycle length is variable.

Microwords that belong to the same group under the division presented in

Table 5 do not always execute in the same time. For example, 0001 type

microwords are usually executed in a 202.5 nsec cycle. But sometimes a

control word of this type switches modules also, and in such cases it

requires a 247.5 nsec cycle. A different division had to be therefore

accepted. Table 6 describes control word types under this new division

together with their CPU cycle length. Each type is assigned a decimal

digit for the purpose of easier reference.

39

TABLE 5: S/370 Model 145 control word types.

BINARY REPRESENTATION

Branch and module switch 0000

Branch 0001

Branch and link or return 0010

Word Move 0011

Storage word 0100 - 0111

Arithmetic word 1000 - 1111

TABLFl 6: S/370 Model 145 control word types--
division based on the control word
function and the CPU cycle length.

CONTROL WORD TYPE

Branch and module switch

Branch

Branch and link

Return

Word move

Storage word read

Storage word store

Arithmetic word fullword operation

Arithmetic word byte operation

CPU CYCLE LENGTH
tj (nsec>

247.5

202.5

202.5

247.5

202.5

540.0

607.5

247.5

202.5

Microcode utilization measurements were performed in two stages.

The first stage provided statistics about execution of individual micro-

word types as a result of overall system operations. During the time

the CPU is busy, the state of microword utilization is a direct conse-

quence of what instructions are executed, or in other words, microword

utilization is a function of instruction utilization. The second stage

of microword-level measurements is concerned with how individual instruc-

tions contribute to this overall microword utilization.

From the programmer's point of view, the instruction sets of all

S/360-370 models are identical, but their implementation differs radically.
l

S/360 Models 75, 91 and 195 are hardwired. Each of the other models has

its own private set of microinstructions. While S/360-370 programs can

be easily transfered from one model to another, the models are categorically
. -

incompatible at the microprogram level. Because of the differences in

microinstruction sets, it is not possible to compare microword utilization

statistics across different S/360-370 models as was done for machine

instructions. But the techniques developed here for the S/370 Model 145

can be applied to other microprogrammed S/360-370 models; in fact, they

can be applied to any microprogrammed computer.

6.2 Microword Utilization Measurements

The C-register* bits were monitored by the hardware monitor SLJM

probes and decoded in the SUM decoder. The decoder operation was controlled

by the signals applied to the decoder strobe input. When the strobe input

is active, one and only one of the decoder outputs must be active. Selection

of the strobe signal is one of the most critical tasks in microcode measum-

ment experiments. The time interval during which the C-register content is

*
For explanation see Appendix C.

41

valid is a function of the CPU cycle length. But the validity condition

always holds between the start of a G-time delay and a l-time delay pulse.
3:

The O-time delay signal was therefore chosen as the indicator of the C-

register content validity. The actual decoder strobe is the AND function

of this signal and the signal representing the global condition G, which

selects the period when microwords are to be decoded. The measurements

were repeated for three different interpretations of the condition G:

Case 1:

Case 2:

Case 3:

G stands for CPU busy. In this case, the output is the micro-
word frequency distribution for routines handling normal instruc-
tion processing and microprogram-controlled I/O operations
(channel traps, shared cycles).

G is true when the CPU is busy but not assisting any I/O operation.
The microword frequency distribution covers instruction processing
only.

G corresponds to CPU wait state.

-Results covering all three cases are presented in Appendix D.

6.3 M-Profile Measurements

The two experiments that will be discussed next use basically the

same approach for obtaining microword counts as the measurements discussed

above, but an additional effort was required to generate the condition G.

Details of how the condition G was generated are covered in Appendix E.

The first experiment measures M-profiles of the instruction fetch phase

(I-phase, I-cycles). The second experiment covers both phases of instruc-

tion execution.

Instruction execution times and the time spent in I-phase (I-cycle

time) were obtained in two different ways:

a) Measured: Measure the length of time the condition G is true.
The internal clock of the hardware monitor SUM is too slow for
this purpose. The execution time for the most of the Model 145

*
For explanation see Appendix C.

42

6.3.1

instructions is on the order of 1 or 2 psec. The SUM clock
resolution is 1 psec. The external timer based on a 9 MHz
crystal controlled oscillator was used instead to clock the
signal representing the condition G.

b) Computed: Tk = J:l %j*tj where %j
are measured fre-

=
quen.cies of occ
cond ition G.

urrence of each microword type under the

I-Phase Measurements

A separate measurement run was performed for each of the four

classes of the S/370 instructions (RR, RX, RS/SI, SS). The condition G

had to be true during andonly during the I-phase of instructions belonging

to the class currently monitored; G was generated as shown in Figure 6a.

The I-cycle latch is set at the beginning of the I-phase and remains

set until the first microword for the Execute phase is half executed.
. -

The hardware monitor SUM has no means for recognizing the actual start of

the Execute phase. Table 7 shows the lower and the upper M-profile

boundaries for the I-phase of each instruction class. Only three types

of microinstructions may occur during any I-phase. The results of I-phase

measurements (Table 8) show non-zero values in the entries other than those

in Table 7. This is a consequence of the fact that the first word of an

Execute phase is measured along with microwords executed during the preceding

I-phase.

6.3.2 Measurements Covering Both Phases of Instruction Execution

The most frequently used instructions, identified during the instruc-

tion utilization measurements (Section 5), were selected to be analyzed

individually. The circuit for generation of the condition G is shown in

Figure 6b. Each selected instruction 'k was monitored for a period of

100 seconds. The lower and the upper boundaries Lk and Uk were obtained

43

TABLE 7: Lower and upper M-profile boundaries (I-phase only).

. -

MICROWORD TYPE

Word move

Storage word
read

Arithmetic word
fullword oper.

Minimum number
of CPU cycles

Maximum number
of CPU cycles

BOUNDARY I INSTRUCTION TYPE

I RR

I 4 2 I 2 I 2

L .O 0 0 0

U 1 2 2 2

L 0 0 0 1

U 0 1 2 2

I 1 I 2 1 2

I 6

by static analysis of corresponding microroutines. Figure 7 illustrates

the flow of control during the execute phase of the Branch on Condition

instruction (BC), the Store Multiple instruction (STM), and the group of

shift instructions. Numbers inside the circles describe individual control

word types as they were assigned in Table 6. Table 9 contains the measured

M-profiles of the selected set of S/370 instructions. For easier comparison,

the values of Lk and Uk are included in the same Table. The errors

(Mkj < sj or Mkj > Ukj) are due to the fact that the hardware monitor

SUM is disabled during the time the counter contents are being written on

magnetic tape and some data are therefore lost. The last column, labeled

Instructions executed, is the number of instructions of the particular type

'k executed during the monitored interval, over which the average values

44

M
kj

were calculated. In addition, instruction execution times obtained

by direct measurement, by being computed, and those listed in the IBM

manual [IBM 721 are compared in this table. The difference between the

measured and the calculated values is on the order of the external clock

resolution. The difference between the IBM values and the measured values

is much greater. Since instruction execution times are a function of the

processing environment, it would not be appropriate to say that the values

supplied by IBM are incorrect.

TABIX 8: Measured M-profiles (I-phase only).

MICROWORD TYPE

Branch and module switch

Branch

Branch and link

Return

Word move

Storage word read

Storage word store

Arithmetic word
fullword operation

INSTRUCTION TYPE
RR Rx RS/SI ss

0.273 0.822 0.809 0.433

0 0.002 0.002 0

0 0 0 0

0 0 0 0

1.601 1.293 0.850 1.098

0.630 0.832 0.658 1.022

0 0 0 0

0.551 0.941 0.632 1.424

Arithmetic word
byte operation

0.094 0.002 0.171 0.429

Average number of CPU
cycle for I-phase

3.78 4.72 3.78 5.43

I-cycle time (set) measured 0.876 1.130 0.896 1.299

I-cycle time (set) computed 0.888 1.148 0.919 1.321

45

Data
Comparator

I Opcode register
contains instruction X

not I/O operation
I-cycles
O-time delay

SUM decoder strobe

(a) I-phase monitored only

I-cyc les

I Data
Comparator

I Opcode registercontains instruction X

CPU busy
not I/O operation

1 SUM

(b) Both phases of instruction execution
monitored

Figure 6: Circuits that generate the condition G
for M-profile measurements

dec oderstrobe

46

TABU 9: M-profiles of selected IBM S/370 instructions
(Part 1).

O.d72

I

18716:
+ .875

13.497 12027

I-3.386 42062
2.633

1.490 232697

1.369
+ .a73

809791

0.917 5890011
6 .a75

2.295 232697

2.949 347402

47

TABLE 9. M-profiles of selected IBM S/370 instructions
(Part 2).

I Kick cm- 1nmtruct10n cxecut1on tlm

1lvtNct1on nrmch and ’ Brmch Branch and kturn UOd- stefqm starat. kitbrie Arithrtle computed wnturw
mdule link word word word ward

witch read ,toII follrord byte becJ bsec]
L I 0 0 1 0 0 1 0 0

sz 1.01 0.00 0.00 1.00 0.32 0.60 0.99 0.67 0.01 1.665 1.670
0 I 0 0 1 2 1 1 2 0

II L 1 0 0 1 1 I 0 0 1
CLa 1.62 0.00 0.00 1.01 1.14 1.11 0.W 1.39 2.00 2.007 1.977
I 0 2 0 0 1 2 2 0 3 2

L 0 0 0 1 2 1 0 0 0
-L 0.55 0.00 0.00 1.00 2.59 1.33 0.00 0.51 0.w 1.662 1.651

.0 I 0 0 1 4 2 0 2 0
-

L 2 0 0 1 1 1 0 1 1
As 2.96 0.00 0.00 1.00 1.23 l.oL 0.00 1.93 1.00 2.482 2.463

II 3 0 0 1 3 2 0 3 1

L 2 0 0 1 I 1 0 3 0
I4 6.21 0.11 0.00 1.06 $36 1.25 0.00 32.23 25.07 16.5% 17.112

0 26 1 0 1 6 2. 0 SO 35

L L 0 0 1 3 1 0 97 3b
D b.77 0.00 0.00 1.01 3.39 1.53 0.00 97.30 33.99 33.93 W.36

a 5 0 0 1 5 2 0 lo) 34

L 5 1 0 1 0 0 0 0 3
Pitt 5.73 2.36 0.06 1.00 0.11 0.52 0.00 s.53 4.56 5.763 4.760

I 8 * 0 1 3 1 0 27 13

L 2 0 1 2 0 1 1 2 I
a?l 2.au 0.00 I.00 2.00 1.06 1.59 1.25 2.51 22.50 12.463 12.b53

II 2 0 1 2 2 2 16 3 36

L 1 0 0 1 0 1 0 0 3
2?l 1.39 0.00 0.00 1.00 0.36 1.75 0.00 0.87 3.01 2.437 2.bW

P 2 0 0 1 2 2 '0 1 3

L 1 0 0 1 D 0 1 0 0
mI 1.00 0.00 0.00 1.00 0.3b3 0.70 1.00 0.93 0.00 1,764 1.761

I 1 0 0 1 2 1 1 1 0

L 1 0 0 1 0 1 0 0 3
II 1.01 0.00' 0.00 1.00 0.63 1.60 1.00 0.44 1.96 2.716 2.711.

0 1 0 0 1 2 2 1 1 2

L 2 0 0 t 0 1 D 0 2
CLI 2.01 0.00 0.00 1.00 0.66 1.57 0.w 0.31 2.00 2.263 2.219

8 2 0 0 1 2 2 0 1 2

L 1 0 0 1 0 1 1 0 2
OXII 1.01 0.00 0.00 1.00 0.89 1.61 1.00 0.65 2.01 2.685 2.651

I 1 0 0 1 2 2 1 1 2

L 2 0 1 2 .o 1 0 2 9
In 2.00 0.00 0.99 2.00 0.26 Il.64 0.w 2.65 27.55 13.775 13.864

0 2 0 I 2 2 11 0 3 39

L 1 0 0 I 1-3 1 s 4
Ias 1.20 0.16 0.00 1.00 1.90 b.93 2.15 5.61 1l.U 6.622 8.5%

0 # 4 0 1 u + + 6 +

L 2 0 0 1 0 2 0 1 2.
CIC 2.01 0.28 0.w l.W 1.51 3.w 0.00 1.55 b.76 b.616 4.564

D , + n 0 1 2 t~ , 0 2 d .-

I.497

2,700
2.136

1.666 6b664

2.365
2.340

5ob79

34.166

2.900

,3fLl

b.579
to

19.774

1.992 1661875

2.397

1.99:

2.397

4.566

16:;bl

6.406
to

92.492

3.899

b7::92

l'E6362

$73467

665099

--

190126

131O'ilO

4.9967

io59w3

1560671

13w413

* - Instruction timings from IBM S/370 Model 145 Functional Characteristics
[IBM 721

- values are functions of the operand length
L- lower boundaries
U- upper boundaries

-

g

rh
lf

t
lo

gi
ca

l
rh

if
t

Fi
gu

re
 7

:
Fl

ow
ch

ar
ts

 f
or

 E
-p

ha
se

 m
ic

ro
ro

ut
in

es
 (

BC
,

ST
M

an
d

sh
if

t
in

st
ru

ct
io

ns
).

49

M-profiles can be used to study certain aspects of the processing

environment. Two examples are given below:

(1) During execution of a E)I: instruction, the Word "move microwordtt
is executed only when the branch is not successful. Thus 46%
of Bc instructions in the measured instruction mix do branch.

(2) The average number of registers stored by a STM instruction
can be obtained as the number of Storage word ((store microwords"
executed for this instruction. In the measured instruction
mix, a STM instruction 'stores 8.25 registers on the average.

6.4. APPLICATICIN OF MEASUREMENT RESULTS

Data acquired with the described measurement techniques have many

potential uses; they were already discussed in Sections 1 and 3. Two

particular applications of the outcome of monitoring the S/370 Model 145

will be discussed next.. -

6.4.1 Enhancement of the Instruction Repertoire

High incidence of the LA (Load Address) instruction was closely

examined. Static analysis of the most frequently used programs showed

that this instruction is used predominantly to increment a counter (tally,

pointer). Most frequently, such a counter is maintained in the main

memory. The LA instruction is thus used accompanied by load and store

operations, and the execution time of such a sequence is:

L REG,COUNTER 1.851*

LA REG,N(,REG) 1.712*

ST REG,COUNTER 1.670*

5.233 microseconds

Since general purpose registers are a scarce resource, a register used for

incrementing a counter quite often has to be saved and restored:
*
Instruction execution times measured using the hardware monitor (from
Table 9).

50

ST REG,SAVE 1.670*

L REG,COUNTER

LA REG,N(,REG) 5.233

ST REG,COUNTER

L REG,SAVE 1.851*

8.754 microseconds

An even worse situation arises when the code has to be reentrant and any

variable that has to be saved must be put on a stack:

BCT

ST

L

LA

ST

L

LA

POINTER,OVERFLOW 1.434*

REG,STACK(POINTER) 1.670*

REG,COUNTER

REG,N(,REG) 5.233

REG,COUNTER

REG,STACK(POINTER) 1.851*

POINTER,l(,POINTER) 1.712*

Using the S/370 Model

11.900 microseconds

145 microcode, we can define a new SI-type instruction,

INC dl(bl),I, that increments the contents of the memory word specified by

bl and dl by the value of the immediate operand I. The INC instruction

is assigned one of the invalid opcodes of the S/370 instruction set. The

invalid opcode indicator in the Model 145 microcode has to be replaced by

a branch into the E-phase microroutine for the INC instruction. Microcode

implementation of the INC instruction can have the following form:

*
Instruction execution times measured using the hardware monitor (from
Table 9).

51

SI I-phase
0.896*

Hardware-forced branch on opcode

Storage word read 0.5400 Read main memory word

Arithmetic word
fullword operation

0.2475 Increment by I

Storage word store 0.6075 Store back

Arithmetic word
byte operation

0.2025 Set condition code

Return 0.2475 Return to I-cycles

2.7410 microseconds

Thus any of the three machine instruction sequences presented above could

be accomplished in only 2.7410 microseconds.

Decrementing a counter is an operation analogical to counter incre-

mentation. When the decrement is 1, such operation is usually accomplished
. -

by using the BCTR instruction (BCTR REG,O). The same discussion about

register saving and restoring applies to this case. Even though decrementing

a counter is not as frequent an operation as incrementing a counter, a

new instruction, DEC dl(bl),I, would be a useful addition to the S/370

instruction repertoire.

6.4.2 Application of Data on Microcode Level Operations

Many companies that operate a computer installation have large

investments in application software. When the present system becomes

saturated, selection of a new central processor may be severely restricted

by the requirement that the application software would not have to be

modified. This particular problem is referred to as software portability.

In many instances, only models of the same family qualify as candidates for

*
From Table 8.

52

replacement of the old hardware.

Emulation is one of the possible solutions to the problem of soft-

ware portability. The instruction repertoire of the selected machine

(preferably more powerful and efficient than the old one) can be used to

write new software, that will run in the machine basic mode, while the

old programs can be processed without changes in the emulation mode. But

even in this mode, the new machine should give better performance than the

old one; i.e., we expect the running time of the original programs to be

less on the new machine. Salisbury [SALI 73B1 developed a method for

emulator evaluation. This method is based on synthetic kernels. The

emulator power is estimated using the micromix corresponding to the expected

system workload and execution times of emulator microinstructions. The

results of the microcode level measurements described in this study were
. -

used to verify the validity of such an approach.

53

VII. SUMMARY AND CONC!LUSI~S

Knowledge of how various instructions are used on existing machines

provides a valuable basis for design of future machines. This study has

focused mainly on methods for measuring instruction (and microinstruction)

utilization.

We discussed the problems and trends of instruction processor and

emulator design. Many shortcomings in an instruction processor are due

to a lack of reliable information about processing requirements. Some

parts of an instruction processor may be overdesigned, some underdesigned;

both cases lead to an increase in the cost/efficiency ratio of the entire

system. Processing requirements, or workload of an instruction processor,

can be expressed in terms of execution frequencies of individual instruc-
. -

tions from the available instruction repertoire. Incidence of individual

instructions has to be measured. Since software monitor overhead is very

high at this level, a hardware monitor is a preferable tool.

Techniques employing a simple hardware monitor were developed to

measure instruction utilization and microword utilization on the S/370

Model 145. Results acquired by different techniques were compared and

only small differences were detected. Microcode level monitoring is an

extremely sensitive matter. The good fit of measured values M
kj

and

boundary values Lk., U
3 kj' obtained by static analysis of S/370 Model 145

microroutines, is encouraging. This shows that despite the problems with

traceability and timing of certain signals in the monitored processor, a

hardware monitor can measure instruction set processor functions and micro-

code functions with reasonable accuracy.

Execution frequencies of individual instructions indicate which of

the available operations are critical and should be optimized, and which

are used only rarely and could therefore be implemented using different,

less costly media. But the information contained in the instruction utiliza-

tion function is not sufficient to determine what other operations should

be included in the instruction repertoire. Frequently occurring sequences

of instructions could be merged into one instruction. A more sophisticated

monitor than the hardware monitor SLIM would be needed to detect such

sequences, especially if their exact composition is not known beforehand.

Still there might exist other operations that would be used frequently if

implemented as machine instructions, but measurements of existing programs

cannot identify them. If they can be identified, it would have to be done

only through analysis of processing requirements before such requirements

are translated into programs. Defining a set of primitives providing the. -

most efficient support of a particular processing environment is an area

that deserves further research.

Hardware measurements of system performance on the instruction

processor level and the levels below are often complicated by the fact

that some events are not externally accessible. Even if all necessary events

(signals) can be sensed by monitor probes, processing such events may turn

out to be very difficult because of timing constraints and inconsistencies

resulting from special cases. Great demand for computer performance data

will hopefully lead into a situation when measurability will become one of

the important aspects of hardware design. This is a closely related area

of computer performance measurements that unfortunately has not yet

received enough attention.

55

APPENDIX A. SYSTEM UTILIZATION MmITOR

I c The System Utilization Monitor (SUM) is a hardware monitor manu-

factured by Computer Synectics, Inc. [SUM 701. Performance monitoring is

accomplished by connecting the SUM sensors (probes) to externally accessible

points of the monitored device. Sensors are connected via a cable to a

Sensor Concentrator. The SUM has two Sensor Concentrators, and each Sensor

Concentrator can accommodate up to '10 sensors. Each Sensor Concentrator

input may be inverted prior to routing it to hubs on the program patch

panel in the SUM. The patch panel can be wired to form various Boolean

functions on monitored signals and to assign these signals and their

functions to the SUM counters. Each counter may operate either in the

timing mode, measuring the duration of a certain event, or in the counting

. - mode, when it counts the number of occurrences of an event. The contents

of any counter can be displayed on the SUM control panel. In addition, all

counter contents can be periodically written on magnetic tape. The mag-

netic tape written under control of the SUM can later be processed by the

SUM data reduction program SUMDAP.

Technical Specifications

Counters: 16 electronic counters
two modes of operation: -timing mode - minimum

resolution time 1 usec
-counting mode - maximum
repetition rate 10 MHz

mode selection accomplished via patch panel wiring
counter output: -visual display - single counter

only selected by the pushbutton
-magnetic tape - all 16 counters
plus header information
recorded in each magnetic
tape record

I 56

Patch Panel: 300 hubs arranged in a 20x15 matrix
removable
signal levels: active: from 0 to +0.2 V dc

inactive: from +3 to +5 V dc
functions: 20 sensor outputs

6 a-way AND functions

4 3-way AND functions

8 4-way OR functions
4 set-reset latches

2 binary flip-flops

10 inverters

3 divide-by-l0 functions

6 fanouts
32 counter inputs (16 counting, 16 timing)

1 4x16 way decoder

. -
Sensor:

function execution time: inverters - 7 nsec
decoder - 28 nsec
all other functions - 14 nsec

responds to signals of 50 nsec or longer
maximum repetition rate 10 MHz

Basic SUM components and their connections are illustrated in Figure A.l.

DATA COMPARATOR

An optional unit, the Data Comparator, can be attached to the SUM

to provide comparison facility. Up to six 4-bit sensors can be attached

to the Data Comparator via a Sensor Concentrator. Outputs of the Data

Comparator probes may be inverted in the Sensor Concentrator. The Data

Comparator strobe (Load Comparator signal) gates the output signals of the

comparator probes into the register X. The contents of this register are

then compared to the contents of the Data Comparator registers A and B.

Values of the A and B registers are set manually via two sets of push-

buttons. The Data Comparator generates a set of signals describing the

results of a comparison. The possible outputs are: X<A, X=A, X>A,

X < B, X=B, X > B, A > X > B; a latch is set on the occurrence A > X > B- -

,
,

S
E

N
S

O
R

S

1
TH

RO
UG

H
 1

0
‘

SE
 h

SO
R

CC
NC

EN
TR

A~
O

R

.

SE
NS

OR

,

Jo
e

I

1.0
.

I
.

.
z

I

HE
AD

ER
I

W
O

RD
I I

CA
TC

H
PA

NE
L

CO
UN

TE
R

SE
LE

CT
-
.

sw
11

ct
t

IN
DI

CA
TO

RS

l

M
N
0

W
C

CO
U
N
T
E
R
S

C
O
U
N
T
I
N
G

(1
61

-

11
 T

HR
O

UG
H

 2
0

Fi
gu

re
 A

.l
:

W
U

T
W

L

A
N

0

IA
R

A
M

E
T

E
R

C
A

R
D

S

O
R

A
m

lc

M
A

N
A

G
E

M
E

N
T

RE
FO

RT
S

SU
M

fu
nc

ti
on

al
 b

lo
ck
 d

ia
gr

am
(C

ou
rt

es
y

of
 T

es
da

ta
 S

ys
te

ms
 C

or
po

ra
ti

on
)

W
IS

TO
G

RA
Y

58

and reset when the condition is no longer true. Except for the latch

output, comparison signals are in the form of 50-nsec pulses.

Technical Specifications

Control Panel:

Sensors:

2 dial switches to select the Load Comparator signal
for a comparison against the A or B registers

24 pushbutton switches for loading the A register

24 pushbutton switches for loading the B register

24 indicator lights displaying the contents of the
A register '

24 indicator lights displaying the contents of the
B register

10 thumbwheel switches for routing the comparison
results to the SUM

up to six $-bit sensors for loading the X register
up to two l-bit sensors providing the Load Comparator
signal

up to ten l-bit sensors connected to a different
concentrator - can be used as Load Comparator
signals or routed to the SUM for normal SUM inputs

Up to 20 Data Comparator units can be connected in tandem to the one set

of sensors. Figure A.2 shows SUM connections using Data Comparators.

.
ZS

',
50

'
4

10
0'

le
ng

th
s

.
10

l-
Bi

t
Se

ns
or

s
15

:
st

an
da

rd

le
ng

th
25

’
ex

te
n

si
on

s
l

1

-
-
-
*
L
\

.
NO

DE
L

4
16

lx
S
E

O
L
=

CO
NC

EN
TR

AT
OR

l-
10
 S

EN
SO

R
CA

BL
ES

.

.
I ‘

.
]S

IN
GL

E
CO

MP
AF

WT
OR

CO
NC

EN
TR

AT
OR

+

CO

El
PA

mT
OR

+
-
-
-
-

I :,
*

.
I

-
-
-

1

.
,

.
#

BA
SX

C
 S
UM

 S
YS

TE
Zi
 I

ND
IC

AT
ED

BY

HE

AV
Y

LI
NE

S.

*

+
CO

XP
AR

i'
.T

OR

WI

TH
 S

TE
CX

AL

.

6
-

FE
AT

UR
E

Wi
IC

H
PR

OV
ID

ES

FO

R
PA

SS
IN

G
24

SE
NS

OR

SI

GN
AL

S

TC

j
NE

XT
CO

MP
AR

AT
OR

,

I I
CO

MP
AR

AT
OR

*

-

8
*

8 8
-

b

CO

MP
AR

AT
OR

*
r
-
-

8
.

.

F
ig

ur
e

A
.2

 :
,

SU
M

co
nn

ec
ti

on
s
 u

si
ng
 D

at
a

Co
mp

ar
at

or
s

(C
ou

rt
es

y
of
 T

es
da

ta
 S

ys
te

ms
 C

or
po

ra
ti

on
)

60

APPENDIX B. INSTRUCTION UTILIZATION MEASUREMENTS ON THE

S/370 MODEL 145 AT STANFORD UNIVERSITY

Instruction utilization measurement methods discussed in Section 5

were implemented on the S/370 Model 145 at Stanford. This appendix presents

results of these measurements and discusses some difficulties encountered

during the instrumentation phase. Finally, data obtained through monitoring

the Model 145 are compared to resuits of similar experiments performed at

some other computer installations.

(1) The S/370 instructions were grouped in two different ways.

The first division was based mainly on the operand type (X, digit); the

. -

second, on the function type (X2 digit). Each measurement experiment was

run for a week in twelve-hour intervals (when writing one record every two

seconds, the SUM tape can store data representing twelve hours of measure-

ments). Divisions into groups gr and frequencies of instructions in

individual groups, f(g,), are presented in Tables B.l and B.2.

(2) The second method described in Section 5 was used to generate

data necessary to determine the IUF and the IFD functions. Results are

presented in Table B.3. The last column of this table, labeled k',

specifies the permutation on the set of integers k assigned to individual

opcodes. Under this permutation, fk8 > f- k'+l for all k'=1,2,3,...,

and it therefore represents the IFD, illustrated graphically in Figure B.l.

Instructions with frequencies less than .OOOl were ignored when construc-

ting the IFD; no numbers are assigned to them in the column k'. Fre-

quencies of instructions Ik belonging to individual groups gr from the

method I were summed up and compared against frequencies f(g,) measured

by the method I. These sums appear in the last columns of Tables B.1 and

B.2.

61

TABLE B.l: Instruction group frequencies for the
division based on the value of x1*

r Instruction group gr fk,)
c

fk
measured k t gr

1 RR instructions .1134 .1081
(X1=0)

2 Fixed-point RR instructions .1095 .0923
(X1=1)

3 Floating-point RR instructions .0016 .0018
(Xl=2 or X1=3)

4 RX instructions .3771 .3811
(X1=4)

5 Halfword instructions .0776 .0768
(X1=4)

6 Fixed-point RX instructions .1328 . 1366
(x1=5)

7 Floating-point RX instructions .0036 .0032
(Xl=6 or X1=7)

8 Branch instructions .3274 .3202
(X1=0 or X1=4)

9 RS/SI instructions .0189 .0232
(X1=8)

10 Shift instructions .0152 .0163
(X1=8 >

11 RS/SI instructions . 1639 .1710
(X1=9)

12 I/O instructions .0033 .0026
(X1=9 >

13 SVC instruction .0045 .0040
(x1=0)

14 SS instructions - character .0825 .0824
operations (Xl=D)

15 Decimal SS instructions .0006 .0008
(X1=F)

TABLE B.2: Instruction group frequencies for the
division based on the value of X,.

r Instruction group gr fk,)
c

fk
measured k wr

1 Load instructions . 1348 .1386
(X2=8 >

2 Store instructions .0614 .0668
(X2=0)

3 x2=1 . 1158 . 1132

4 Move instructions .0561 .0595
(X2=2)

5 Logical operations (AND,OR,XOR) .0147 -0165
(X2=4 or X2=6 or X2=7)

6 Compare instructions . 1100 .1127
(X2=5 or X,=9)

7 Branch instructions .3050 .3202
(X2=5 or X2=6 or X2=7)

8 Add or subtract instructions .0674 .0626
(X2=A or X2=B)

9 Multiply instructions .0026 .0025
(X,,c)

10 Divide instructions .0041 .0038
(X2=D)

11 Load register test or change .0191 .0206
(X2=0 or X2=1 or X2=2 or X2=3)

63

Table B.3: Instruction Utilization Function (IUF)
for the S/370 Model 145 at Stanford (Part I)

opcode opcode
k Ck instruction fk k' k 'k instruction fk k'

(hex) (hex 1

1 04 SPM .oooo 42 30 LPER .oooo
2 05 BALR .0278 10 43 31 LNER .oooo
3 06 BCTR .0090 26 44 32 LTER ,oooo
4 07 BCR .0657 2 45 33 LCER .oooo
5 08 SSK .0004 68 46 34 HER .oooo
6 09 ISK .0012 55 47 35 LRER .oooo
7 OA svc .0040 40 48 36 AXR .oooo
8 OE MVCL .oooo 49 37 SXR .oooo
9 OF CLCL .oooo 50 38 LER .oooo

10 lo LPR .0079 27 51 39 CER .oooo
11 11 LNR .0021 44 52 3A AER .oooo
12 12 LTR .0098 25 53 3B SER .oooo
13 13 ICR . l 0005 64 54 3c MER .oooo
14 14 NR .oooo 55 3D DER .oooo
15 15 CLR .0015 53 56 3E AUR .oooo

'16 16 OR . 0000 57 3F SUR l 0 0 0 0

17 17 XR .0020 45 58 40 STH .0214 15
18 18 LR .0234 13 59 41 LA .0498 5
19 19 CR .0107 24 60 42 STC .0072 31
20 1A AR dl.56 21 61 43 IC ' .0206 16
21 LB SR .0177 18 62 44 EX .0076 28
22 1c MR . 0000 63 45 BAL .0240 12
23 1D DR .oooo 64 46 BCT .0187 17
24 1E ALR . 0000 65 47 BC .1750 1
25 1F SLR .OOll 56 66 48 LH .0257 11
26 20 LPDR .OOOl 79 67 49 CH b.0052 38
27 21 LNDR .oooo 68 4A AH .0165 20
28 22 LTDR .0002 73 69 4B SH l 0075 29
29 23 LCDR . 0000 70 4c MH .0005 65
30 24 HDR .oooo 71 4E CVD .0013 54
31 25 'LRDR .oooo 72 4F CVB .OOOl 81
32 26 MXR .oooo 73 50 ST .0306 9
33 27 MXDR .0002 74 74 54 N .0058 35
34 28 LDR .OOlO 57 75 55 CL .0063 32
35 29 CDR .0002 75 76 56 0 . 0001 82
36 2A ADR l 0 0 0 0 77 57 X .0002 76
37 2B SDR . 0001 80 78 58 L .0648 3
38 2c MDR . 0000 79 59 C .0122 23
39 2D DDR .oooo 80 5A A .0020 46
40 2E AWR .oooo 81 5B s .0033 42
41 2F SWR .oooo 82 5c M .0018 49

64

Table B.3: Instruction Utilization Function (IUF)
for the S/370 Model 145 at Stanford (Part II)

opcode opcode
k 'k instruction fk k' k 'k instruction fk k'

(hex) (hex)

83 5D D .0038 41 124 94 NI .0062 33
84 5E AL .0057 37 125 95 CL1 .0424 6
85 5F SL .oooo 126 96 01 .0060 34
86 60 STD .0016 51 127 97 XI .0002 78
87 67 MXD .oooo 128 98 LM .0220 14
88 68 LD .0016 52 129 9C SIO .0020 47
89 69 CD .oooo 130 9D TIO .oooo
90 6A AD .oooo 131 9E HI0 .oooo
91 6~ SD .oooo 132 9F TCH .0006 62
92 6c MD .oooo 133 AF MC l 0000

93 6~ DD .oooo - 134 B2 STIDP
94 6~ AW . .oooo 135 STIDC95 6~ SW .oooo 136 SCK .oooo
96. - 70 STE . 0000 137 STCK
97 78 lx .oooo 138 B6 STCTL .oooo

- 98 79 CE .oooo 139 B7 LCTL .oooo
99 7A AE .oooo 140 BD Cl24 .oooo

100 7B SE .oooo 141 BE STCM .oooo
101 7c ME .oooo 142 BF ICM .oooo
102 7D DE . 0000 143 Dl MVN .0003 70
103 7E AU .oooo 144 D2 MVC .b418 7
104 7F su .oooo 145 D3 MVZ .0020 48
105 80 SSM .0005 66 146 ~4 NC .oooo
106 82 LPSW .0057 36 147 D5 CLC .0342 8
107 83 Diagnose .oooo 148 ~6 oc .0006 63
108 84 WRD .oooo 149 D7 xc .0008 60
109 85 RDD .oooo 150 DC TR .OOlO 59
110 86 BXH .0002 77 151 DD TRT .0017 50
111 87 BXLE .0005 67 152 DE ED .oooo
112 88 SRL .0048 39 153 DF EDMK .oooo
113 89 SLL .0074 30 154 FO SRP .oooo
114 8A SRA .OOlO 58 155 Fl MVO .oooo

.115 8~ swb .0022 43 156 F2 PACK .0003 71
116 8c SRDL .0006 61 157 F3 UNPK .OOOl 83
117 8D SLDL .0003 69 158 F8 ZAP .0003 72
118 8~ SRDA .oooo 159 P9 CP .OOOl 84
119 8~ SLDA .oooo 160 FA AP .oooo
120 90 STM .0132 22 161 FB SP .oooo
121 91 TM .0610 4 162 FC MP .oooo
122 92 MVI .0174 19 163 FD DP .oooo
123 93 TS .oooo

1

65

--

_-

-

.-

.-

.-

-

-

.

-.

a.

. .

.
:i 1 ! ;.

0 . 1 .
W.-m -- -..-e... * .-r. ..-.--. se..*..

! i .
: ;

1 : i i*
-,-m-.-. - . . . -w..-. .-..-

! . i

iI i -1’
. . . ._ -. . ,- .-. -2

I
i :’ t i

.
-‘r---.---. ----s. - ‘Cm.-. -.. -

. . I .i

I i
i i
. i

. ,
.-. - - .- ..--. .,-I.. _.) ..:. m-e-

I :‘ i
. i ’

; .
I i .i’ j.

._.- *.._ --.. _ -.. -..-...- 1- ._ ._... .-
I ,. II
I f

I :. i 1.1 : I
; - .

! . ’r . f . : *
l :

�
I� :

-4 ,* ------. i-----� -__ -e_ --.. -s. .e-. - . e--e .--- . -.--:. -.a -..- .-e. -.- ..e.-- --- . . __ _

.
1 i I

:,i p, . .

. . ? . .
I.

I : . - .
t

I .
d ----L--e*.. -- ---..e -.-- - -*. .-.- -_---. -c..-- ,- -. -*.-L-.---L--.-

I
.I

. *

j,i. 1 / :i i.

i 1 .;’

r
I

. .-a--. -- .-w. -.- .-.-w. 2- .-- -..e -. -: -.- : . ..-_-.

I
. .

:

i
I

I 4 . L : i

i i

A- .
.e .--- -m--e-----*---.-Ai---e-c---- - - - - ,

-i i i . I
*.. ; i

.j . .
& i. !..i

.-‘r”--c’ - -:-f---.----.-C.‘- ------.- - am.--- - .----.-.----------.--*. .-- _

1 * I .

i:i -f. i, i] :,j../ i I 1 -

A-
4

- I - - - - - - - - - - - - . . - - - - - - - - - - - - - -

i*
i : i :..; . .

+ - - - - - - - - - - - --.- _ -.- . .

i

. t
1’. * :

m : -;
:

i i ;

..--. ---. ..-..* -...-. ..- -. . . .
.*9

.-... . . . -_.-._ - -.- L. -. --. .--- * - - - .---- .------_ .
.

9 I I i
I

i ;

\’

I . i. i :
1 t. . . ‘.. . .. -

_ _ .-.-.-e. s....'. . I
i

1
.--- -. ..e.. . -a. *- -----. _ -- -t--.

. !*. t* .
-‘:---*--

:
t .

i
rI I I i *.

. : . ;
.

. ..-e.. --. ----j .-.-e-i - --.. -s -.. . . . - .e -.---.--.----- L-..- .d-- -.- .I . 1

*\I

I I -
I .

I :

. . *. ;
, .

. * 4 I

. . I * * t
*

*.
. . _ .- - - .- . _- --.i --_

.
e-.. --. .---.s.. -2. - .-- _.-- -..- -_-- - ---- ----..

i ‘\’
i . ‘*: ..A,‘--. .- - a--L I :

-_ -7..-- - mm- ---- ..
. - .

. -.

. .

Jo - *ce *
. *..

z
--.

-0
m--A

+-.

--.-

-z

--

66

Difficulties Encountered During Hardware Instrumentation

Implementation

The low number of various logical elements on the SUM logic plug-

board was found to be quite limiting; several compromises had to be made

in dividing the instruction set such that implementation of Method I would

be feasible. But the main problem lay elsewhere. The opcode bits cannot

be monitored at the output of the Opcode register since the Model 145 has

no external attachment points provided for this register. Opcode bit

values are routed to several units in the CPU. The points suitable for

hardware monitor probe attachment were found among inputs of these units.

Due to varying component and line delays, the values of opcode bits do

not change simultaneously at all monitored points. This effect was found

to cause an extremely large error. More than one SUM decoder output
. -

would often be activated during execution of a single instruction.

Explanation: Since some opcode bits change earlier than others, the SUM

decoder decodes one or more wrong values before the correct value is reached.

This is a well known problem from switching theory, called critical races

[MCLU 651. To eliminate errors of this kind, the SUM decoder must not

be enabled except for a period during which its inputs are static. The

selection of the SUM decoder strobe required a careful analysis of Model

145 circuit operations. The 'Set-Reset Opcode register' signal is activated

several times during execution of a single instruction, and the number of

activations varies from one instruction to another. This signal is not

therefore suitable as the decoder strobe. In addition, execution of

instructions immediately following a jump out of the prefetched stream of

instructions proceeds in a special way. These special cases eliminate

the possibility of assigning any of the processor internal signals directly

67

to the function of the decoder strobe. Strobe pulses had to be generated

artificially. The pulse generator, built out of the SUM components, was

triggered by the 'I-cycle' signal (beginning of a fetch phase) and generated

pulses were delayed properly to ensure that the decoder inputs had correct

values.

Comparison of S 360-370 Instruction Mixes From Different

Installations

Table B.4 compares utilization of various subsets of instructions

at different S/360-370 installations. The RCA Series 70/45 was included

because its instruction format is identical to the IBM 360 instruction

format. A dash in a table entry means that no information about the

associated group was found in the corresponding reference. The Model 75

[ASCH 711 is oriented more toward arithmetic computation than the Model

145 at Stanford. Otherwise their instruction mixes compare quite closely.

The Model 91 at UCLA handles a completely different load, based heavily

on floating-point arithmetic, which is the strongest feature of this model.

The RCA instruction mix was obtained from the instruction trace of a set

of selected programs [WIND 731. Relatively high utilization of decimal

instructions is probably due to heavy bias toward COBOL programs in the

monitored set of programs.

68

TABLE B-4: Instruction mixes at different installations
using the S/360-370 instruction repertoire.

Operation type Installation/Model
I

Stanford Argonne UCLA RCA
University National Laboratories

Laboratory
370/145 360175 360/91 70145

Integer load, store, 26.51% 50.85% 25.21% 25.7%
arithmetic

Floating-point load, 0.52% 2.82% 28.62%
store, arithmetic

Decimal 0.06% 5.0%

Branch 32.74% 26.04% 18.30% 34.2%

Logical, compare, 18.97% 17.15% 13.41% 17.1%
move

Control, I/O 0.54% 0.37%
1 .

69

APPENDIX C. S/370 MODEL 145 MICROCODE PRINCIPLES

The S/370 Model 145 Central Processing Unit, IBM 3145, illustrated

schematically in Figure C.l, is a microprogrammable processor. All CPU

and channel operations of the S/370 Model 145 are controlled by micro-

programs resident in reloadable control store (RCS). Microprograms are

entered into the control store from the console disk file. Such operation

is called the Initial Microprogram Loading (IMPI.,). Microcode may be

altered during IMPL only. Control storage is divided into 64-word modules;

32-bit microwords, called control words, are composed of several highly

encoded control fields. Decoding of these fields takes place in the C-

register that directly activates circuit control lines. Each control word

specifies explicitly the next control word address (each control word has

the capability to branch), but most of the control words can branch to a
. -

word in the same module only. The branch can be either to a single

specified address or to a branch set. A branch set is composed of 2 to

16 control words stored sequentially. Individual control words in a branch

set are identified by a branch leg. The most significant four bits of a

control word describe the control word type.

S/370 Model 145 Control Words

Branch and module switch word: Allows for up to four-way branching
to any word in control storage.

Branch word: Provides for up to sixteen-way branch in control
storage, may set or reset specified local storage or external word
bits.

Branch and link or return word: Saves and restores status in
connection with subroutine execution.

Word move: Moves a full word or selected bytes of a word between
local storage or external locations.

Storage word: Moves data between the main or control storage and
some working area in the CPU.

Arithmetic word: Performs arithmetic and logical functions on data
from local or external storage.

Op
co

de
re

gi
st

er

pu
ls

e

1

Co
nt

ro
l

st
or

ag
e-

.
-
-
-
-
-
-
-

Ma
in

 s
to

ra
ge

 - .

3 1 -
*

-
-
L

A-
re

g

Ex
te

rn
al

I
1

I

AL
U

1

c
.

;I

CP

U
cl

oc
k

co
nt

ro
l

li
ne

s
m

SD
BO

tr
ap

an

d
pr

io
ri

ty
co

nt
ro

l
1

SD
B1

b
b

b~

~f
s~

r
1

bu
ff

er

SD
RI

Fi
gu

re
 C

.l
:

Si
mp

li
fi

ed
 S

/3
70
 M

od
el
 1

45
 C

PU
 d

at
a

fl
ow

(C
ou

rt
es

y
of
 I

BM
)

71

Table C.l shows the control word formats for the six control word types.

CPU Timing

Each control word is executed in one CPU cycle, except for the ones

that access data in the main or control storage; such control words require

two CPU cycles. The CPU cycle time is variable; its length is determined

by the control word type. The possible lengths of the CPU cycle are

202.5 nsec, 247.5 nsec, 292.5 nsec ,and 315 nsec. Timing of the IBM 3145

processor is derived from a 22.222 MHz crystal oscillator that drives a

variable-cycle clock. Six basic signals are developed by this clock:

O-time O-time delay

l-time l-time delay

2-time a-time delay

The n-time delay pulse is delayed 45 nsec after the n-time pulse, and the

two pulses have the same length, which is either 90 or 112.5 nsec.

Instruction Execution Phases

Execution of a S/370 (machine) instruction is performed in two

phases: the Instruction phase (I-phase) and the Execute phase (E-phase).

The I-phase is speeded up by special hardware for automatic instruction

prefetch. The I-buffers are used to hold the current instruction plus

the next instruction doubleword. If at the beginning of the I-phase the

instruction scheduled for execution is not fully contained in the I-buffers,

this phase will start with instruction fetch. Such a situation occurs

usually after execution of an Execute instruction or a successful branch.

Automatic prefetch is initiated during the execute phase if it is detected

that the next instruction is not fully contained in the I-buffers. The

exact processing during the I-phase is further determined by the instruction

type I as shown in Figure C.2. Instruction decoding is performed via a

Ta
bl

e
C.

l>
Co

nt
ro

l
wo

rd
 f

or
ma

ts
 f

or
 t

he
 S

/3
70
 M

od
el
 1

45
(C

ou
rt

es
y

of
 I

BM
)

co
Cl

c2
c3

l

3
1

2
3

4
5

6
7

1
2

3
4

5
6

7
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

3
0

0
0

j B
r

Hi
Lr

ki

or
d

By
te

De
st

L
-

I
1

ro
a
u

 1
e

N
e
xt

B
r

L
o

3
0

0
1
l
B
r
H
i

br
Wo

rd
iB

yt
e

jK
-H

/L
tI

KI
S/

R[
Sr

ce
lK

. iC
?X

t
Er

L

o

3
0

1
0

I L
/q

 B
r

Hi
si

nk
In

se
rt

1
(/

Mo
du

le
.:

ex
t

P
Br

Lo

1
0

IF
or

m
1O

p
(~

10
)

b
1

Wo
rd
-
7

d
Wo

rd
By

te

1H
l
Lo

 I
G

e
x
t

trr
(A

)

1
i

1
Fo

rm
 1
 O

pl
A

Ga
te

1
A

Wo
ra

1 B
yt

e
1
St

at
 B
 F

or
d

IB
yt

e
[H

i
Lo

pk
xt

t
iB

r
.

(B
)

. -

73

I Fetch I

I instruction
from storage

I I

I r I

a 4 h I t t
1 f

t t

s sRR Rx, RS/SI

Fetch operand Calculate operand Calculate operand
from general reg. address using X,B address using B

and displacement and displacement
L & I b

‘1 + V

Fetch operand
from storage
and align

I
w

t

Start execution routine
(hardware branch on

Figure C.2: Basic I-phase (I-cycle) functions

74

hardware-forced branch on the instruction opcode. In some cases the

conditional code also participates in forming the entry address to the

execute routine. Some execute routines are shared by several opcodes;

for example, corresponding RR and RX operations are executed by the

same routines. The last control word of the E-phase is RTN LNK (Return

Link) which causes return to the I-phase routines.

75

APPENDIX D. MICROWORD UTILIZATION ON THE S/370 MODEL 145 AT STANFORD

This appendix presents the results of microword utilization measure-

ments performed at Stanford. The measurement technique is described in

Section 6.2. The frequencies e
j

of individual microword types j

measured under Case 2 (CPU is busy but not assisting in any I/O operation,

i.e., CPU is processing microroutines interpreting machine instructions)

can be compared with the corresponding microword mix calculated as

e
j

= zfA$./z Zfk%j, where fk
k k J

is fhe frequency of the instruction
j k

Ik(Table B.3) and Mk.
J

is the average number of microwords of the type j

necessary to execute the instruction Ik (Table 9). The instructions 'k

included in the calculation of the corresponding microword mix cover only

84.6% of the total instructions executed, yet the calculated and the

measured microword frequencies compare closely. The CPU wait state is

microprogrammed as a wait loop; since every Model 145 microword has the

ability to branch, test and branch operations of the wait loop can be

accomplished by one microword (Word move).

76

Table D.1: Microword utilization on the S/370 Model 145
at Stanford University

j Control word (microword) Microword frequency e
type c 1

j
1

Corresponding
Case 1 Case 2 Case 3 micromix.

calculated

1 Branch and modile switch .1592 .1377 .0021 :1264

2 Branch .0246 .0096 .0006 .0086

3 Branch and link .0041 ,003l .OOOl .0038. -

4 Return .1033 .1121 .0008 .1052

5 Word move .1625 .1712 .9912 .1614

6 Storage word read .I414 .I494 .0013 .I458

7 Storage word store .0261 .0299 .0004 .0326

8 Arithmetic word .1426 .1600 .0012 .1680. fullword operation
P

9 Arithmetic word .2362 .2370 .0023 .2482
byte operation

microwcrrds executed 5401474253 2804990291 9987435365

microwordslinstruction 9.948 9.359 9.195

77

APPENDIX E. DERIVATION OF THE G CONDITION

CONTROLLING M-PROFILE MEASUREMENTS

The value of the condition G for M-profile measurements is a

function of the current instruction opcode. The Opcode register was

monitored by two SUM Data Comparator probes. The A and B registers

of the Data Comparator were set such that A > X > B would be true for-

all opcodes monitored together as a set. (When monitoring a single opcode

. xlx2' the contents of these registers were: A = 0000X X1 2' B = 0000X,(X,-1).)

The Data Comparator thus acted as an instruction selector. A 'Set-Reset

Opcode register' signal was used to gate the contents of the Opcode register

to the Data Comparator X register for comparison. This signal becomes

active several times during execution of a single instruction; this property

made measurements of instruction utilization complicated (Appendix B), but

did not cause any problems here. The Data Comparator (A > X > B)-latch-

is set the first time a match is detected and remains set until an opcode

value that does not satisfy the condition A > X > B is loaded into the

Opcode register. The instruction selection procedure is illustrated in

Figure E.l.

The Opcode register is loaded from the I-buffer. The I-buffer is

a doubleword register used to hold prefetched instructions. Normally,

the Opcode register is set to the value of the next instruction opcode at

the beginning of the Execute phase of the current instruction In (Figure

E.2a). But if the next instruction In+l is not fully contained in the

I-buffer, the Opcode register load operation is suppressed and the next

I-phase has to start with a fetch operation. The Opcode register is then

loaded when the fetch completes (Figure E.2b). The fetch operation for

such instruction cannot be monitored, since it is not known during this

F;+, Set-reset Opcode register

Data
Comparator

X register 0 0 0 0

B register

Figure E.1: Selection of instructions for M-profile
measurements

Instruction

In

In+l

I-phase E-phase
I

1 1

I
Load Opcode register E-phase-m---Bar+

(a) Instruction In+l fully contained in the I-buffer

I
I Operations performed on behalf I
I of instruction I I

n
I I

Instruction 1 I
. - I

In
1
I

I-phase E-phase I
b -T

I
I

I n+l
E-phase
eve-~

Load; Opcode register

(b) Instruction In+1 not fully contained in the I-buffer

(I-phase starts with instruction fetch)

Figure E.2: Timing chart for Opcode register loading

80

operation what the instruction opcode is; the state of condition G cannot

be resolved until after the Opcode register has been properly loaded. Such

a situation arises mainly after a successful branch, when the stream of

prefetched instructions has to be reinitialized. So it can be said that

the time delay in the opcode decoding process (fetch time) for the instruc-

tion In+l is a direct consequence of the operation performed by the In
instruction and as such it can be taken to be a part of the time needed to

execute the instruction In' This relationship is illustrated graphically

in Figure E.2b.

The monitor also has to count how many instructions of the monitored

type are executed. The value of the condition G alone cannot be used for

this purpose; if two or more instructions of the type selected for analysis

are executed consecutively, G remains true for the total period it takes. -

to execute the entire sequence. The I-cycle signal was used again to

trigger the pulse-generation circuit built of the SUM logic components.

The output of the pulse generator was AND-ed with the output of the Data

Comparator to produce one pulse each time an instruction of the monitored

type was executed. Figure E.3 shows the relations among the monitored

signals and the signals generated by the SUM.

81

. .
, . ..a

. .. !... .

. .-.-*. 1- ,- .
; ~ .i$-;
: .A..!*! I..--A .-.- -. .- ‘a&.-. . . -. ;-.;; -._. --. ..,-!-.- f
,- * -L .,-I-
y--II. :- Le. .-, . + .--..-*-I ‘e-7 i-.-- --;.:-. c. . .- --_ . - *- - ---.,. . _.--_ .- ._i-: _- .-.-.I I.- :-..-r-- -c. A+- _. . --. .9-G. i-L--,- .-‘;A’ ‘.-‘7--’ _:
‘----7 . --.___c- “_..

- .---C---C.. l

- . ..+-L-

- .-;-A -._._
1 :

_)

c - ..q7-*- .--

LI.-.- --. ..:
’ , id-d-+-- . - .
.- -A,--- . -

.-,-+-.--. .-

._. I_. ;[b-e-

- --v---
l-C,-.-. -.*

. . .-r;- :---:

-.v.-.- . -.
-‘L-L...-

-*l-. . ..-
--I::_ __

--- i-i-- -a-,--- .c
:y-.- _ . . .

L_I_-..--

-,-*---.
c .A .-- _

.
.-.--. -, - e
. -i.L-‘- -.l

- - .-.--.-.-L__
I #

*.---
rr-- ‘--

y--q-g- i’ -,

-.-- ‘4 aI .--I
--uvc -
-.... o’+r -

+g 2. :--. _

CrJA --r
.--.i-f-J- +
.-;+CI c, .+-.

L-,,-... -. -4: 4-t
:u I,,.-*-.

.-.-I $j gi .y

-.--. s-a--

yTy-’ : -;-’
lyv-T-; -._ -

I’ -----*-*
.-7 . ,
; .A-&!- _.t-_C

1; -r;

. -.-;-!-A4
-A I--.

I

-_

B

- -a

ML+=

2x-c

. -

. .

: ..*- ’ ! i
8. : _q._;

t‘-.“.; . .._.

. : .!. I._, L! .

(.. --e; :.
. :--,.-k--.

. . . b-, - *- . - .
I

: -.-
,- ,-.. -: -i-l-, _.

..A!... .-L.. . .

. ,
;q -J;.i-iyi?;i::: :

a-& *_._C._ I-.
‘I 2. .._.---_ . -

. ,‘ L!-/Y .. .
* .-., . * _ , . -

----. -.

.-&.-*-. . .
I /.--,-... -.__ .’

1
. . ..- .- . - - -.

. .-.-.- ,_._ -

. .:.A-.- i

‘~i~~~r;- ‘_ ’
-i -,

/
! - ,-;-.

@I:-!- -c-.

* ..- 1-

-g 1; :;T-‘;: :

‘CI
. L&-WC_ .-

’.

--- -..- : ..- ,1.. ..I -.
1 - _..,:‘--_I 1. _ _,,- . ._ _. . .- ,.A-.-- .I.-,-L :..:-. . _ - ̂ -, .-*--s -.-:. -__- -

‘1 -1 -;---:.--I_.-+.:--._.-.--L.-‘-- --t-;.s; . . . :‘.,-, .I I. -- ‘i-‘--.---

- - 7-It- -
liEI^_ ^ -

i- .
.._
.._ 11 ’ ,

- :i: i :c
-...-, --..-_

I.:,,! .:-;
.!A.’ I.- : .
;- - -. ; - !’ . A
-.i.. . .

. ..*_..-. :-. .
.-.-. :I ’, _ _ ,
. - - . .

~-- - - - _A-_-
. -. . - , , . . a.

-.-‘-’ i - 1 - - -
‘-r _..-.. 1 .:... _
.--+-.. 4 _ .:
--_ . _*

.~~;~~~r*

-: *-,- _.I- -1 -;-. -.- .

. - . _ . _ Ir”
-*--- r-
_. _.-*
- _.C’ ., . .
-.-.m.- - _’

‘i

I-A- .--q . “7 -
. e-- b.-: ,- : .
.- . -_-. ; . I._ _.

et .; ‘j
.-. .
---A- - ! 2- ..A---a .:
- - . .., 24
.---:-. 4 .
-a-.- .i.-. *

i:
---.- ! -- cc
-i-.-__ .- f-\ z
_L... ,--'
---. ._. ii
- ---
__.__._ 13
-L-:-1-, 2
-i-'-'-L'-,
--P-- -- -I-.. - .-

I' \
-+i--
.---.. .--
-*'-T--y-i-. c
+. :

--.-..-- .- -.

jz:.i:.j.:-
4-_-.- __
-p-. .I : I- .-

qx T :
t 1

.-. --,

. .-

:: ;: ::!:'. 1 : :
.'.. a-.
++-L-:
-.-. a
__. c, i
- 1 -I- .0-. .-. t. . . , -
:‘L b'. :.., '. . .-0 -!-;.; :
-.. , JJ l-.-;-!
Q ' .-. . .1 k .-a.. ,..

-, !A!
-.... g ._ -.:-,.
r Q) .*-.

-r-- m - .,' 1..!-. (.-i-L i
-,-:-.aJ.)_ : -,-'
A.-z:1 !+!

i. ; 'Jn: .:--!:I. ;

j#+y-~

7
?

1.

- .

:
. ,

i:
.- -,

1.
II
II1

,.i

1- - -
-. - . . . - , -
.-A-- _ i .
,I 1 ..:-,
..‘p-- -+- *
p - - ! - y j- ;-

:-c-i:.)
.-:-L* i -..._,_ _.
m__

m
.
.-:

-

-.._

e
. .
.

i -;
- 1. -1-
.I 1
-

82

Bibliography

ANDE 67

ARND 72

ASCH 71

BALY 71

BELC 71

BONN 69

BORD 71
. -

BUSS 70

COOK 70

DRUM 69

Anderson, S. F., Earle, J. G., Goldschmidt, R. E., Powers, D. M.,
"The IBM System/360 Model 91: Floating-Point Execution Unit,"
IBM J. Res. Dev., Vol. 11, No. 1, January 1967, pp. 34-53.

Arndt, F. R., Oliver, G. M., "Hardware Monitoring of Real-Time
Computer System Performance," Computer, Vol. 5, No. 4,
July/August 1972, pp. 25-29.

Aschenbrenner, R. A., Amiot, L., Natarajan, M. K., "The Neuro-
tron Monitor System," AFIPS Proc. FJCC, 1971, pp. 31-37.

Bailey, W. O., "The Processor Figure of Merit," Honeywell
Computer Journal, Vol. 5, No. 4, 1971, pp. 201-204.

Bell, C. G., Newell, A., Computer Structure: Readings and
Examples, McGraw-Hill, Inc., 1971.

Bonner, A. J., "Using System Monitor Output to Improve Per-
formance," IBM Systems Journal, Vol. 8, No. 4, 1969, pp.290-298.

Bordsen, D. T., "Univac 1108 Hardware Instrumentation System,"
Proc. ACM SIGOPS Workshop on System Performance Evaluation,
April 1971, pp. l-28.

Bussell, B., Koster, R. A., "Instrumenting Computer Systems
and their Programs," AFIPS Proc. FJCC, 1970, pp. 525-534.

Cook, R. W., Flynn, M. J., "System Design of a Dynamic Micro-
processor," IEEE Transactions on Computers, Vol. C-19, No. 3,
March 1970, pp. 213-222.

Drummond, M. E., Jr., "A Perspective on System Performance
Evaluation," IBM Systems Journal, Vol. 8, No. 4, 1969,
PP. 252-263.

FOST 71A Foster, C. C., Gonter, R. H., "Conditional Interpretation of
Operation Codes," IEEE Transactions on Computers, Vol. C-20,
No. 1, January 1971, pp. 108-111.

FOST 71B Foster, C. C., Gonter, R. H., Riseman, E. M., "Measures of
Op-code Utilization," IEEE Transactions on Computers, Vol. C-20,
No. 5, May 1971, pp. 582-584.

IBM 68

IBM 70

"IBM System/360 Principles of Operation," IBM Systems Reference
Library, GA22-6821-7, September 1968.

."IBM System/370 Principles of Operation," IBM Systems Reference
Library, GA22-7000-0, June 1970.

f

83

IBM 71

IBM 72

JOHA 71

KNIG 66

LUCA 71

MCLU 65

MURP 69

ROBE 72

. -
ROSI 69

RUUD 72

SAAL 72

SAL1 73A

SAL1 73B

SUM 70

SUM 7oc

TUCK 71

"An Introduction to Microprogramming," IBM Data Processing
Techniques, GF20-0385-0, December 1971.

"IBM System/370 Model 145 Functional Characteristics,"
GA24-3557-3, August 1972.

Johnson, A. M., "The Microdiagnostics for the IBM S/360 Model 30,"
IEEE Transactions on Commuters, Vol. C-20, No. 7, July 1971,
pp. 798-808.

Knight, K. E., "Changes in Computer Performance: A Historical
Review," Datamation, Vol. 12, No. 9, September 1966, pp. 40-54.

Lucas, H. C., "Performance Evaluation and Monitoring," Computer
Surveys, Vol. 3, No. 3, September 1971, pp. 79-90.

McCluskey, E. J., Introduction to the Theory of Switching
Circuits, McGraw-Hill, Inc., 1965.

Murphy, R. W., "The System Logic and Usage Recorder," AFIPS
Proc. FJCC, 1969, pp. 218-229.

Roberts, L. S. "Performance Measurement with Microcode,"
presented at the Seminar on Computer System Performance Measure-
ments, Whippany, New Jersey, June 14-15, 1972.

Rosin, R. F., 'Contemporary Concepts of Microprogramming and
Emulation," Computing Surveys, Vol. 1, No. 4, December 1969,
pp. 1977212.

Ruud, R. J., "The CFM-X - A System Approach to Performance
Measurement," AFIPS Proc. FJCC, 1972, pp. 949-957.

Saal, H. J., Shustek, L. J., "Microprogrammed Implementation
of Computer Measurement Techniques," Proc. ACM 5th Annual
Workshop on Microprogramming, September 1972, pp. 42-50.

Salisbury, A. B., "A Study of General-Purpose Micropro-
grammable Computer Architectures," Technical Report No. 59,

University, Stanford,Digital Systems Laboratory, Stanford
California, July 1973.

Salisbury, A. B., "The Evaluation of Microprogram Implemented
Emulators," Technical Report No. 60, Digital Systems Labora-
tory, Stanford University, Stanford, California, July 1973.

System Utilization Monitor User's Manual, Computer Synectics,
Inc., Santa Clara, California, 1970.

"Model 3024 24 Bit Comparator II," System Utilization Monitor,
Computer Synectics, Inc., Santa Clara, California, September
1970 (preliminary draft).

Tucker, A. B., Flynn, M. J., "Dynamic Microprogramming:
Processor Organization and Programming," Communications of
the ACM, Vol. 13, No. 4, April 1971, pp. 240-250.

WILK 51 Wiikes, M. V., "The Best Way to Design an Automatic Calculating
Machine," Manchester University Computer Inaugural Conference,
July 1951.

WILN 72 Wilner, W. T., "Design of the Burroughs B1700," AFIPS Proc.
FJCC, 1972, pp. 481-497.

WIND 73 Winder, R. O., "A Data Base for Computer Performance Evaluation,"
Computer, Vol. 6, No. 3, March 1973, pp. 25-29.

. -

