
f;.

I,

COMPUTER SYSTEMS LABORATORY
I I
STANFORD UNIVERSITY . STANFORD, CA 943054055

Fault Equivalence in Sequential Machines

bY

R. Boute
E. J. McCbskey

June 1971

This document has beun approved for public
release and sale; its distribution is unlimited.

Reprodactioa ia wboio or ia part
ir prrmitted f o r ray pnrpor~ o f
rho Unitad Strtrr Gorornm.8 t.

Technical Report No. 15

This work was supported by the N a t i o n a l
Science Foundation under Grant GJ 27527,
by the Joint Services Electronics Program
under Contract N~l447-A-O1l2~,
and while &. Boute was partially supported
by the Nationaal Fends voot Wetenschappelijk
Onderzoek of Belgium.

Technical Report no. 15

SEG71-038

June 1971

FAULT EQUIVALENCE IN SEQUENTIAL MACHINES

R. Boute and E. J. McCluskey

DIGITAL SYSTEMS LABORATORY

Stanford University, Stanford, California

ERRATA SHEET

P. 9 Line 24 Fig. 2 should be Fig. lb

P. 11 Lines 3,4 . ..faults should be . ..faults. with 1 FQI = (I o 1 + l)m . It will...

P. 14 Line 6 Figure 3 should be Figure 2

P. 22 Line 21 q' = T(q,X) should be q' = 6(q,x)

- - - _I_-

m

SEL-71-038

FAULT EQUIVALENCE IN SEQUENTIAL MACHINES

R. Boute and E. J. McCluskey

June 1971

Technical Report no. 15

DIGITAL SYSTEMS LABORATORY

Stanford Electronics Laboratories
Stanford University

Stanford, California

This work was supported by the National Science Foundation under grant
GJ 27527, by the Joint Services Electronics Program under contract
PI-00014-67-~-0112-0044, and while Mr. Boute was partially supported by
the Nationaal Fonds voor Wetenschappelijk Onderzoek of Belgium.

ABSTRACT

This paper is concerned with the relationships among faults as

they affect sequential machine behavior. Of particular interest are

equivalence and dominance relations.

It is shown that for output faults (i.e., faults that do not

affect state behavior), fault equivalence is related to the exist-

ence of an automorphism of the state table. For the same class of

faults, the relation between dominance and equivalence is considered

and some properties are pointed out. Another class of possible faults

is also considered, namely, memory faults (i.e., faults in the logic

feedback lines). These clearly affect the state behavior of the

machine, and their influence on machine properties, such as being

strongly connected, is discussed. It is proven that there exist

classes of machines for which this property of being strongly con-

nected is destroyed by every possible single fault. Further results

on both memory and output faults are also presented.

iii

TNKGE OF CONTENTS
Page

I* Introduction. .-1
II. Notation. .

III. Definitions .

IV. Equivalence of Output Faults in Sequential Machines . . .

V.

VI.
VII.

A. Combinational Circuits.
B. Sequential Machines
c. Faults .
D. Classes of Faults

A. Combinational Circuits.
B. Sequential Machines
c. Resets .
D. Faults and the Reset Circuiery.

A. State Table Automorphisms and Output Faults
B. The Automorphisms of a State Table.
c. Examples of Output Equivalent Faults.
D. Case where the Faulty Machines are not Reduced. . . .

Equivalence and Dominance
A. Combinational Circuits.
B. Sequential Circuits
Remarks on Memory Faults. , . . .

Conclusion. .

. . .

. . .

. . .

. . .

5
5
5
8
9

12
12
12
13
16
18
19
21
25
28

34
34
35
38
46
117References. -,

iv

LIST OF ILLUSTRATIONS

page

Fig. 1. Representation of a combinational circuit C
and a sequential machine M. 6

Fig. 2. A sequential machine with a reset circuit. 10
Fig. 3. To prove lemma 3 in Section VI 15
Fig. 4. (a) To define b l (b) A machine M describing M';

(c) To illustra!; when F(M) is the homomorphic
imageof M . 40

Fig. 5. To illustrate Theorem 2 of Section VI. 45

I. INTRODUCTION

The increasing complexity of digital systems has necessitated

a more systematic approach in designing adequate test procedures

than the heuristic or intuitive methods that prevailed in the early

days of computer technology.

For sequential machines, the first "testing' was done by Moore [l]

although his primary interest was in analyzing the state behavior of a

machine rather than in looking for possible faults. Seshu and Free-

man [2, 131 designed test sequences to detect faults, while looking

at the possible ways in which a given circuit can be affected by a

fault. Hennie [3] also developed fault detecting methods, but the

test sequences were designed without the extra information obtainable

from an investigation of the influence of faults from a given fault

set on the machine: the sequences verify whether or not the machine

performs its given task. Thus this method links up with Moore's

approach.

A systematic procedure, guaranteeing optimal test sequences for

sequential machines, is given by Poage and McCluskey 141. In this paper,

all the information concerning the faults that is available is used,

as in the Seshu and Freeman method, but the procedure used does not

suffer from the disadvantages of local optimization. It is also in

the work of Poage and McCluskey that the idea of "dominance" for

faults in sequential circuits is introduced, in analogy with domin-

ance of rows and columns in prime implicant tables [5].

While studying the behavior of co&national circuits, it was soon

realized that relations existed between faults. Investigations on

equivalence relations have been done by Clegg and McCluskey [6, 71

and Schertz [8, 91. Roughly speaking, two faults are said to be

equivalent if and only if they have the same effect on the circuit

according to some suitable criterion, different criteria giving rise

to different equivalence relations. Perhaps the most basic type of

equivalence is functional equivalence: two faults are functionally- - - -

equivalent if they give rise to the same set of circuit output func-

tions. For most of the definitions used, equivalence always implies

functional equivalence. This means that the corresponding partitions

are refinements of the partition induced by functional equivalence,

and thus all faults in the same equivalence class yield the same

input/output behavior. The importance of this observation becomes

clear from the fact that fault detecting sets have to be designed

only for as many faults as there are equivalence classes, instead of

for each element of the specified fault set separately.

Another kind of relation exists in combinational circuits, namely

dominance. A fault F1 dominates a fault F2 if and only if it can

be detected by every test for F2. This also will reduce the number

of faults that have to be examined separately. Mei [lo] has shown

that dominance gives rise to drastic reductions in the number of

faults which must be considered when the circuit satisfies some

general conditions.

Similar phenomena also exist in sequential machines, and it is

the main objective of this paper to point out those similarities.

2

Further, Some Specific aspects of faults in sequential machines that

have no counterpart in combinational circuits are also examined, such

as the properties of output faults and the influence of memory faults

on the strong-connectedness of the machine. This last aspect might

seem rather loosely related to equivalence and dominance, but the

results derived will show the desirability of having reset circuitry

in case we want to compare faulty machines with each other.

The considerations on dominance and equivalence in this paper

have a dual purpose: first, the simplification of the task of

designing test sequences by reducing the number of faults that need

to be considered separately, and second, the gaining of a better

understanding of the phenomena that affect the behavior of a

machine in the presence of faults.

In what follows, we first introduce the notation used throughout

this paper. Subsequently, the concepts of equivalence and dominance

in sequential and combinational circuits are clearly defined and

their significance explained. Also, the concept of "reset" is

introduced in order to pin down these ideas more closely. Then we

consider a particular class of faults, namely, output faults (i.e.,

those that do not affect the state behavior) and the existence of an

equivalence relation is shown to depend on the existence of a state-

table automosphism.

The relationships between dominance and equivalence are explored

for combinational circuits and then for sequential circuits, thus

enabling us to point out some similarities between the two cases.

It will become clear at this point that the presence of reset circuitry

makes the setting up of a basis for comparing sequential machines much

easier.

3

Finally, the problem of memory faults will be considered and

we will show that there exist classes of strongly connected machines

for which every single fault destroys this property. The main

result of this section implies in fact that reset circuitry is

Important if we want to compare two faulty machines for all possible

Initial states. We conclude then with some suggestions on future

research.

4

II. NOTATION

A. Combinational Circuits

Let C be a combinational circuit realizing a mapping

Q: an --) urn, where 0 is a finite nonempty set of symbols. In

most applications, CT = {o, 13 and @ is then a Boolean function.

The number of input leads is n and the number of output leads,

m. Input leads are denoted by xi; output leads by yi; see for

example Fig. la.

@ (x1, x2, '.'J Xn) = <Y1, Y2' l **y Y, � l

Here we write () instead of (< >) for simplicity, but otherwise

we will always use angle brackets < > to denote ordered n-tuples.

B. Sequential Machines

A sequential machine M is a 5-tuple:

M = <I, 0, Q, 6, A>

where I = a finite nonempty set of inputs

0 = a finite nonempty set of outputs

Q = a finite nonempty set of states

6 = -ihe next-state function: 6: Q x I -D Q; defined by
6: qt, it' I+ qt+l; the subscript t standing for

"at time t ".

h = the output function:

(a) for a Moore machine, h: Q + 0
defined by, h: qtW ot

(b) for a Mealy machine, A: Q x I --) 0

defined by, A: q,, it>t) o t

5

x1 3
x2 y2
l .

l .

⌧� Y m

(1ac

Combina t iona l

r
.

1

I
I

L

L”1 YI - y2 Y’l 2 1 Y. l

I

. . q t . %+l a
Ym [*-Y

I
m

I
I
I .

..
II II I I I
I I

. w
S e q u e n t i a l

=P

Fig. 1: Representation of a combinational circuit C and a

sequential machine M
6

Following Hartmanis and Stearns [ll], we define now

I+*. the set of all finite input sequences of nonzero
length consisting of symbols from I;

1* = I+ U {A) where A is the empty sequence.

Elements of I+ or I* will be denoted by 2 . We extend 6 to
*

QxI in the following recursive way:

(1) 6 (9, A> = q v q E Q
(2) 6 (9, xx> = 6 Ml, 3, xl f

where q E Q, x E I, : E I*

We also define 7 as follows:

let q E Q, X E I, x E I* (or I+> ; then
9

a) for a Moore machine, ?i: Q x I*+ I+,

defined by x(q,A) = h(q)
and X(q,%x)= x(q,x) l A[h(q,xx)]

b) for a Mealy machine, 1: Q x I+' I+,

defined by X(q,x) = A(q,x)

and x(q,&) = x(q,x) l x[6(q,%), x] .

One of the possible realizations is shown in Fig. lb:

Q = orn = {sl q = <y,, y2, . ..j ym>, yi E 03

I =a;= {i/i=* 1' x2’ � l l ~ ⌧n�, ⌧j � OI3

0 = 0; = {o l 0 = <zl, z2’ l l l) �p >� �k E o o]

Usually one has: aI = CT = a0 = CO, l), but in general 0.. can

be any set of symbols (finite and nonempty). Except when expli-

citly mentioned, such as will be the case for the section on

memory faults, we will think about the machine as the abstract

(2 >a

w

(24

device specified by (l), without referring to the representation

of Fig. lb.

a

C. Faults

In what follows we will only consider permanent faults. By this

we mean that their effect on machine behavior does not change during

or in between tests. It will also be assumed that a fault in a

combinational network does not transform the network into a sequen-

tial circuit. No other restrictions on the faults are assumed unless

they are explicitly stated.

We will use the notation F(C) for the combinational circuit C

affected by a fault F, and similarly F(M) for a sequential machine

M with fault F. The use of the notation for F as if it were a

function can be justified as follows. If we consider interconnections

between circuit elements also as 'components", then the domain of F

is the set of all machines that have a specified subset of their com-

ponents in common. The mapping F is then defined by describing

the way in which F affects the components of that common subset.

Note that this applies to a wide variety of faults, including bridging

faults. However, we will only use this approach for the case of memory

faults, where the subset mentioned above will be clearly specified.

Another point of view can be that the domain contains only a single

machine (C or M).

The absence of a fault is denoted by e, called the "empty

fault ". So, for example, e(C) = C and e(M) = M.

If 9 is the function realized by C, then ip, is the one

realized by F(C). The same convention is used for sequential machines,

i . e . ,

if M = <I, 0, Q, 6, h>

then F(M) = <I, 0, QF, hF, hF> .

8

There is no advantage gained by letting F affect I and 0, but

for Q it will become conceptually useful.

Finally, the set of all faults that will be considered for a

given machine or class of machines (circuits) will be denoted by 3.

3 includes e, by convention.

D. Classes of Faults

In general, a fault F in a sequential machine can affect

the next-state function 6 as well as the output function h. For

many realizations, however, it is reasonable to consider subclasses

of faults that affect either 6 or h, but not both. This is

especially true for cases in which S and h are realized by

separate circuits. Thus, we can consider as special subclasses:

Output faults

A fault F is said to be an "output fault" for a machine

M iff QF = Q and 6, = 6. The set of all output faults for a

machine M will be denoted by sh .

Next-state faults

A fault F is a next-state fault for a machine M iff

&, f b while the output circuitry is unaffected. The set of all next-

state faults for a given machine is denoted by ff6. A further subclass

of next-state faults are the memory faults described next.

Memory faults

We consider the set mm of all machines with m delay

elements and a given alphabet CT (see Fig. 2). For the set of

feedback lines Lm = { eil i = 1, 2, .* m] we define a stuck-at

fault F as a map

9

a

input
M

output

R R R
x1 x2 x3

Reset Circuit

Fig. 2: A sequential machine with a reset circuit

10

F: Lrn- u {N] (3)

assigning to each line a stuck-at value or the status N ("normal").

We denote by 7 Q the set of all such faults.

rlsQl = (I 01 + l>“l l It will become clear at a later

stage how this definition is made compatible with the notation
F (M) l

We will also define TF = fk I F (&) f: N l

11

III. DEFINITIONS

A. Combinational Circuits- - - - - - - - -

A detection set for a fault F is a subset of the set of

inputs defined by

(SF = co, $7-

A combinational circuit is nonredundant iff- - - SF#$ VFEY- (e).

This refers to a well-specified class of faults ff .

A fault F1 dominates a fault F2 iff S 3 S ThusFl - F2'

every test detecting F2 also detects F1* Notation used: Fl>F.- 2

Two faults F1 and 5 --are functionally equivalent, written

Fl 'u F2, or briefly equivalent if and only if- -

a ? (⌧) = @

F1 F2
(⌧) v ⌧ E (0, ljn l

Two faults Fl and 5 ---are detection equivalent, written

F1 ,” 5’ if and only if S = S .
F1 F2

B. Sequential Machines

Two machines M1 and M2 -----are equivalent iff

V ql E Ql (state set of Ml) 3 q2 E Q2 3

5;, (ql, ii) = x2 (q2, X) v x c I* or I +

and vice versa.

Two faults F1 and F2 in a sequential machine M are equiv-- -

alent iff Fl(M), and F2(M) are equivalent.

12

c . Resets-mv

Let M=CI, 0, Q, 6, A> be a sequential machine with a reset

circuit. By this we mean an extra set of input terminals on which

we can apply inputs from a given set J. The circuit is constructed

in such a way that for some subset of J, denoted by IR (the "reset- -

inputs"), there exists a map p: IR + Q with the following property:- -

if any iE1 R is applied to the reset terminals, the machine goes

to state p(i), no matter what the state was before. For practical

reasons we require that I be a proper subset of J and that all
R

iEJ-I remain without effect on the machine. Indeed, the
R

machine should be able to distinguish resets from normal operation

mode. One can also use the elements of J - IR to put the machine

in other modes ("partial resets", for example, where only some of

the yi in q = <yi, y2, . . ., ym> are reset), but we will not

exploit this possibility at this point, although it can result in

more flexible test sequence design.

Note that this approach, where we consider resets as an extra

feature, is only taken for convenience. Indeed, these extra circuits

can be incorporated in the usual model for a sequential machine by

redefining the machine M = <I, 0, Q, 6, h> as M = <I', 0, Q, 6', h'>

where I' = I x J (Cartesian product)

Wq, <i,P)

I

= b(s, i> if j $2 IR

= P(j) if j E IR

A%, <i,P) = h(s, i> if j $Z IR

= undefined if j E IR .

13

Conversely, if a machine M has already inputs i such that

6(q, i) = 6(q1, i) V q, qr E Q, then we can define the set

IR as being the set of elements with this property. In this

case I - I R is the set of 'hormal" machine inputs.

This way the two points of view can be considered as equivalent.

MAMPIX. Figure 3 represents a sequential machine with a reset

circuit consisting of three extra inputs: R R R wherex1 9 5 9 x3 J

XiR E (0, 1’). Thus J = {0, 113. We define IR arbitrarily as

the set

1R = cxlR, x2R, I> 1 xiR E(o, 1)

Physically, this means that we consider x R as the enable/disable3
line for the reset circuitry.

We now can specify p, for example, as follows:

V ti R, x2R, l> = i E IR
1

p (i) = 6c lR + ⌧2R, ⌧2R, ⌧l% E Q l

This results in the table:

1 1 1 I 1 1 1

If the elements of I are of the form ⌧>-1, X2’ l l �☺ n 7 we

can denote those of I' bY -1, 59
R R R>. . . . XnJ x1 7 x2 9 x3

and define

14

x1

x2
Yl

y2

.

Fig. 3: To prove lemma 3 in section VI

15

6 ’ (9, (x1, . . . , xn' XIR, x2R, x R>)3

=

I

6 (9, -1 , l l 0) �$ 9
if xR,O3

P (XIR, x2R, XjRl if xR=l
3

D. Faults and the Reset Circuitry

Suppose we have a machine with reset as described above, but

with a fault F.

This fault F may act in such a way that upon application of

iE1R' the new state also depends on the previous one. For

simplicity, *we will assume such faults do not occur; i.e., in the

faulty machine MF we still have a map P,: 'R + QF
that determines

P,b) as the state after the application of an input iE1 R*

Although possibly pF differs from p, we will say that,

in such cases, the reset is unaffected by the fault F. This simply--P

means that, if we know the fault, we also know the state of the

machine after applying any iE1R*

This becomes important in the following definition: a

F is a sequence x E I + or I *
reset test sequence for a fault

preceded by a reset input iE1 R' such that

x [p(i), x] # %F [PF(i)~ '] '

A fault Fl dominates a fault F2 iff every reset test se-

quence for F2 is also a reset test sequence for Fl i.e.,('

S IS
F1 - F2

where SF = (Yi IX is a reset test sequence for F3 >a

* In the case of stuck-at faults, this assumption is very reasonable,

except for such cases as x R stuck at 0 in the example just
discussed. 3

16

Single reset machines are machines where (IR 1 = 1.

A machine Ml is reset equivalent to M2 (both same type) iff

(l) ‘Rl = ‘R 9 ‘1 = ‘2
2

(2) for all iE1 and XC1+ *
R or I , we have

Xl [p,(i), X] = A2 [P2(i), xl l

A fault Fl is reset equivalent to F2 (Fl - F2) iff

M
F1

is reset equivalent to M .
F2

A fault Fl is detection equivalent to F2 iff S = S
F1 F2’

17

IV. ~UIVAl.XNCr; OF OU’I‘I’UT I:AUI,TS I N SEQUENTIAL L’IACIII NM

DlSFINI'l‘ION. An output function h is nontrivial iff-w-- -

3 ql,q2 c Q and il,i2 E I 3 l(ql, il) # h(q2, 12)' or if

I Q x 'I 1 - 1 (i.e., don't blame h if M is trivial).

LEMMA. Given Al and h2, both defined on Q x I, and

hl # A2. Then, in case 3 ql, il and q2, i2 3 hl(q1, il) =

A*(qp i2 1, at least one of them is nontrivial.

PROOF. Suppose hl(q1, il) = hl(q, i) Vq, i (i.e., Xl trivial).

Since X1 # lb2 3 q3, i3 3 Alb3, i3) # X2(q3, i3).

So $(s2, ie) = Al(sl, ill = ilCq3, i3) # A2b3, i3); i.9

x2 (42, i2) # A2(q3, i,), and A2 is nontrivial.

For the remainder of this section, let F1 and F2 be output

faults for a machine M, and in the interest of simplicity, let

x and h be denoted by Al and X
F1 F2

2' respectively.

THEOREM. If F1(M) a'nd F2(M) are equivalent and

h #AFl F2' then both A
F1

and h
F2

are nontrivial.

PROOF. Let ql, cl,,L q 7 q4 E Q.3 Since Fl(hl) and -F2(M) are

equivalent, V ql 3 q2 (and Vq2 3 ql), such that xl(q1, X)=X (q2 2' 3

VGCI
*

(or I+). Thus, 3 ql and q2 3 hl(q1, i) = h2(q2, i) Vi C I

and 3 ql and q2, and 3 il, i2 C I such that hl(q1, il) = A2(q2, i2)

(take simply il = i2 = i) .

18

According to tile prcvio!!s 1 C?lilD;L, OI-IC or bot.h output functions is

nontrivial, say, A&' i3) + Ap44, i4)' I3ut since Pl(h1) and

~22(ho are oquival cnt: '7 q,',
3 9;. 3 h2(dj, i3) = h1(q3, i3) and

A2(Ylj" iJ+> = “1(“4, i)+!. so 1 ('13 ;, ij) # A2b)) i4) and A2 is

also nontrivial. This proves the theorem.

Trivial hi are uninteresting since they make all states of

Fi(M) equivalent and don't reveal anything about the state trans-

itions in the machine. Therefore, the above theorem is interesting

because it assures us that no trivial hi exist in the conditions

specified.

State Table Automor@~isms and Output FaultsA . p - w - -

DEFINITION. A state table automorphism for a machine M is

a bijective map 9: Q + Q such that G&4), i] = (.fO(q, i-)1 for all

q EQ, i c I. (More general definitions, such as @: Q x I --+ Q x I,

etc. are possible, but we will not consider them here.) See also

[14, 15, 16, I':, 181.
The trivial automorphism (cp = 1) always exists.

TIIEORELI. Let Fl and F2 be equivalent. Then Fl(hi) and

F2(M) are equivalent (by definition), and if Fl(M) is reduced then

1) F2(M) is reduced

2) 3 is a uniquely defined state table automorphism v

3) 9 is nontrivial if hl f h2,
Remark. By "uniquely defined" we mean "uniquely specified"

by h, and X2, not necessarily that the automorphism itself is

unique for the given M.

PROOF. Define a relation qRq' iff nl(q, X) = h2(qr, X)

V X E I+ or I*] (4)

Now define S(q) as the set (9' E Q lqm') .

(a) Because of machine equivalence: V q E Q 3 g' E Q 3 gEt-q',

i.e., s(q) # q v q

(b) Further, s u p p o s e q’ E S(qi) n S(qj), i . e . , q.Rg’, qjRg’,
1

then %l(qi, 2) = A2(q', 2) = % (q1 j' 2) V 2 E I+ or I*.
But this implies, since Fl(M) is reduced, qi = q..

3
SO ql # qj * '(qi) n s(sj) = 8.

This implies, for an N-state machine 1

with 1 S(qi) 1 _> 1 because of (a). Since iyl s(ql) C Q we
obtain j,c", 1 'Cql) 1= _< N and conclude I S(qi) I = 1. Therefore R

is a function which we denote by cp: Q + Q. Further 1 i& s(qi) 1 = N

implies that v is surjective, and since the range and the domain

are the same set, bijective. Thus v q E Q one can write

1) Take 9; # q; then $(q;) # cp-'(q;) (bijective (9) and

$[cp-'(qi), x] # xl[cp-l(q;), x] for some x because Fl(M)

is reduced. This implies also 5; 2 1' x> # T&, 3 bY(9'

definition of cp. So F2(M) is reduced.

2) The relation R and thus CQ is uniquely defined. We have

only to prove now cQ is an automorphism. Take any q E Q,

then the definition of cp implies

x,(q, xx) = x,[q(q), xx] v x E I and 5 E I+ or I*

x1[e, 4, X] = X2{6[cp(q), x], 2) v x E I and % C I+ or I*,

i.e., h(s, x> R fjbfh), xl VXCI

20

and since R defines cp uniquely (i.e., V q E Q

3 only one q' E Q 3 qRq', namely q' = v(q)), we get

wp(s), xl = cpcqs, x)1 = (preb x)1 v x E 1

and since q was arbitrarily chosen, alsoV q E Q .

3)If hl # A2, then 3 q, i E Q, I

3 +, i> # A2(q, i>

i.e., q(q) # q. cp is nontrivial.

Note that hl # A2 =$

I

A, and A2 nontrivial

cp nontrivial .

Application of the Theorem

As will become clear from the considerations below,

most machines do not have a nontrivial state table automorphism.

For such a machine M without nontrivial state table automorphisms,

every fault F E 3h with the property that F(M) is reduced will

fall in a separate equivalence class of its own. In most cases, this

will necessitate separate testing for each of these faults, espe-

cially when no dominance relations exist.

B. The Automorphisms of a State Table

The general problem of finding all automorphisms of a given

state table is as yet unsolved. The same holds for the equivalent

task of finding the automorphisms of a graph, which is an important

problem in organic chemistry and many other areas.

Nevertheless, several heuristic approaches are possible. In

particular, for state tables that are not too large, inspection

"by eye" usually reveals very quickly the nonexistence of a non-

trivial automorphism, if such is the case.

A study of the properties of state table automorphisms may

simplify the heuristic approach considerably, since they show what

one should look for first, while searching for automorphisms.

Weeg, Fleck and Barnes have done a considerable amount of

work in the area of automorphisms of machines [lb, 15, 16, 171.

Let us point out some of the facts that are relevant to this

problem.

Since a state-table automorphism cp implies a bijective

mapping from the state set Q onto itself, it is in fact a

permutation on Q.

LEMMA. The set AM of all state-table automorphisms for

a machine M with N states forms a subgroup of SN (under

composition).

PROOF. Closure, identity, inverses are easily verified,

and the remark above implies that AcS- N'

LEMMA. If M is strongly connected, then AM
is a group

of regular permutations. By this we mean: the cycles of every

permutation have equal length.

PROOF. Let q and q' be two arbitrary elements of Q,

and cp a state table automorphism. Then we can find an input

*
sequence XC1 such that q' = a(q, G). Suppose k is the

length of the cycle of v that contains q where up is con-

sidered as a permutation on Q written in cycle notation. Then

22

3

yk(cl) = ‘2 and cpk(qT) = (pk[%(q, x)] = x[cpk(q), x] = x(q, x) = qT,

as can be easily seen from the definition of 3. Therefore, the

length k' of the cycle containing q' satisfies k' < k.

Similarly, one shows k C k' and thus k' = k.

LEMMA. If M is strongly connected and ' ' AM' then giving

T(qo) for any q. E Q specifies T completely.

PROOF. By assumption, any q E Q can be written as

q = e40’ 3 *for some X E I . Therefore 7(q) = T[6(qo, x)] =

The above lemmas can be found, under a slightly different

form, in the references mentioned. Let us now introduce some

lemmas that can be used in the heuristic approach for finding state

table automorphisms.

IIEMMA. Consider a state machine M = <I, Q, 6> and let

I = I1 u I2 u . ..u Ik. If we define M
3

= <I jf Q, 6 I QxI',
3

then the automorphism group AM is given by AM = AM n AM n . . . n A .
1 2 Yk

PROOF. Obvious.

This last lemma is very important, since it allows us to consider

separate columns of the state table (I j
= Ii,)) and thus reduces

the problem of finding the automorphism group of the state table to

finding the group for each single column separately, and then taking

the intersection.

23

LEMMA. If i E I is a permutation input, i.e., the map

-r-r i: Q 3 Q, defined by rri(q) = 6(q, i) is bijective, then TT

is an automorphism for the ith column of the state table which

represents the state machine <(iI, Q, 6 IQ x [i1> .

PROOF. S(q, i) = rri(q) for all q in Q. Thus,

‘lrri(‘), il = rrihi(S)l = rri[6(q, i)] for all q in Q.

COROLLARY. If the permutation TT~ in the above lemma has

a single cycle, then the automorphism group for the ith column is

the cyclic group generated by TT.

PROOF. For any qo, q f Q we can write q = rk(qo) for

some k E N (nonnegative numbers). Thus, the machine is strongly

connected by q = % (qo, ik), and any arbitrary 7 of the state

table is then completely specified by 7(qo)' Now the powers

kl-r of I-r assign to q
0

successively all elements q of Q

if k ranges over 0, 1, IQ I-1. Therefore 7 must be

one of these powers.

Remark. In case I-T is not a single cycle, the situation is

more complicated. Let us only note here that elements of a given

cycle can be mapped to elements of another cycle only in case the

cycles have the same length.

LEMMA. If, in a given column of the state table, an element

'k occurs with multiplicity mk, and there exists an automorphism

that maps qk into q
e

, we must have = mmk j'

PROOF. Obvious.

24

Application to heuristics

The two main cases considered are mutually exclusive:

either an input i is a permutation input, or in the corresponding

column some qk must occur with multiplicity mk > 1. Note

further the duality between length of a cycle and multiplicity

of a state.

The lemmas above aid very much in a fast visual check for

automorphisms. Needless to say, they can also be incorporated in

algorithms, ,

Finally, it is clear that state tables with automorphisms

are the exception rather than the rule.

c. Examples of Output Equivalent Faults

1) Consider a machine M with output faults F, and F2I

yielding the machines F, CM) and F2(M) shown below.

q

A

B

C

D

E

F

G

H

I

J

K

L

F#o
0

4 0

D, 0

491

L, 1

c, 0

E, 0

E, 1

14

G, 1

H, 0

4 1

J, 0

1

J,

b 1

b 1
H, 0
D, 0
B, lL
A 1 G,i9
E, 0
c, 0
G, 0
F, 0
19

> 1' 1 (9, i

q

A

B

C

D

E

F
> G

H

I

J

K

L

F2bo

0

D, 0

D, 1

A, 0

L, 1

c.9 1

E, 0

E, 0

170

G, 1

H, 1

H, 0

J, 1

1

J, 0
K, 0
L, 1
H, 0
D, 0
B, 1
A, 0

,S

E, 0
c, 1
G9 lL
F, 1
IJO

hi)A2 (9, i >

25

Fpo is reduced as can be seen as follows. Consider the

equivalence relation defined by:

q1 f q2(rr'), if and only if Al(q1, x) = ll(q2, X) V x E I = (0,l)

then TT' = s, E, z, HKDI

under input 0 m, 3, AE, IHLG shows next states, grouped

1 E, =, LA, EFHC as parts of blocks of I-T'

F&M) and F*(M) are equivalent, as can be seen from direct

product (Hennie [19], p. 25): denote states of F2(M) with a

prime and consider a &-state machine?

TT = AG'JA'EH', FK'LC'BF', CI'GJ', HD'KB'DE'IL'

0 DE'HD'CI', EH'JA'DE', AG'EH', IL'HD'LC'GJ
input - - - -

1 JA'GJ'DE', %5-m, xzm, -D'GI'

We obtain: {AG'JA'EH'FK'LC'BF'CI'CJ'HD'KB'DE'IL') =rrRt

This represents the relation R, giving directly the auto-

morphism v

I q I A B C D E F G H I J K L I
G F I E H K J D L A B C I

This is, of course, not the only one, since

WPYs), iI = cp ucp n-1(q), i] = . . . = yn6(q, i) V q E Q
iE1

n E Z+

but it is uniquely specified by hl and h
2

as obtained by the

above procedure
---a---------

* The states are ordered in such a way that the partitions with
substitution property can be easily recognized

t nR: see Hartmanis and Stearns [12], pp. 55-56

26

2) Consider the machine M such that

M = 0 1
q --

A A

t

B

B A B

Clearly, there exists no nontrivial automorphisms. According to

the theorem, for no reduced F,(M) does there exist on Fi(M)

such that Fi (M) = F&M

(write only)ci):

0 1

t - t

A 0 0

B 0 11

0 1

l-t
0 1

A 0 1

t-t

A l l

B 0 o4 B 0 07

0 1

i-t

A 0 0

B 1 O2

0 1

i-t

A 0 0

Bll
3

0 1t-t
0 1

A 01 A 1 0

B105 8 t-tB O 51

0 1

l-t

o 1 0 1

A 01 A l l A 1 0

Bll 5 -t-l-BlO
9 i-tB l 52

We then obtain for the product machine:

1 . Consider all reduced F,(M.> possible
L

IT= AlA2A3B4B7BloJ A4A5A6B1B8Bll’ A,P8A9B3B6B127 A10A11A12B2B5B9
-am-e--v -- - -

0
input A1A2A3AkA7A107 A4A5A6AlA@l17 w9’3%iAG7 A10AllA12A2A5A9

TTR = 15, q7 . . .) iq2]. So no two machines are equivalent; there

exist not even two equivalent states in product machine.

27

This last remark illustrates the following.

THEOREM. (Gill [20]) If Ml and M2 are strongly connected

and non-equivalent, then no state in Ml is equivalent to any state

in .!2

The proof is very simple, so we omit it.

Observe the fact that M is strongly connected in this

example.

D. Case where the Faulty Machines Are Not Reduced- ---_ _)---__ --_--_ I____

ANTITHEOREM. The theorem

does not hold in case Fl(M) is not reduced.

PROOF. The theorem breaks down in part 3). (It is not interesting

to consider hl = h2 = trivial case, since then state transistions do

not influence output.) A nontrivial case is (h, # X,>

1 0
A c7 0
B c7 0
C A7 l

F#o

1

A7 l
A7 1
c7 IL

I L

0 1

A C,l A,1

t-t

B C,l A,1
C A,0 C,l

F200

The machines Floe and F2(M) are equivalent. This can be seen

from the equivalences described by the following pairs of states

denoted by < q17q2 >, where ql is a state of Fl(M) and q2

is a state of F2W: <A,C>, <B,C>, <C,A>, and<C,B>.

There is no nontrivial automorphism for this machine M.

28

Before we investigate what happens in the case where Fl(M) is not

reduced (therefore, F2(M) is not reduced either), we recall [12]:

a partition TT on Q has substitution property if and only if

q1 E 92(n) implies that 6(q17 i) E 6(q,, i) for all i in I.

We denote the set of partition blocks by Qsr.

If TT is a partition with substitution property, then the

n-image of M is the state machine Mn = <I, Q,, 6n>7 where,-VP

for all Brr E Q,,

6,(Bn, i) = BA if and only if

WV7 _i)CB; .

THEOREM. In case a machine M has no two partitions

3 and n2 with substitution property such that 7~1 # rr2

but M
3

is isomorphic to M
rr27

then the equivalence of two

faults F1 and F2 implies the existence of a unique (in the

same sense as before) automorphism for the state table of the

reduced machine of F1(M). The automorphism is nontrivial in

case h #A
F1 F2'

PROOF. The equivalence between Fl(M) and F2(M) implies

the equivalence of the corresponding reduced machines, denoted by

M1 and
M27

which are, therefore, isomorphic.

The states of the reduced machines are blocks of some par-

titions rrl and
rr27

both with substitution property. From the

assumption, it follows that TT~ = rr2 = n and therefore, Ml and

M2 must have the same state set Q .7-T

29

Further, h # A
F1 F2

implies also that the reduced machines

have different output functions since they have the same state

set Q
l-r

and, for all q17 q2 E Bn E B,, 6(q 1 7 i> = 6(q 27 i> l

Thus we are reduced to the situation of the previous theorems.

Strongly Connected Machines----me -----mm-

1) For a long time we conjectured that there exists no strongly

connected machine with two different substitution-property partitions,

? and =27 such that M :'M
3 n2'

In case M
3

(thus also M
rr2

)

has only two states, this conjecture holds, according to a private

communication from J. Ullman. In general, however, it is false, as can

be illustrated by the example of Table I.

Table I.

M-

1

2

3
4

5
6

7
8

3 = { -i?, 3457 678 1 = 1 B17 B27 B31

Tf2 = I: 3-T77 537 n 1 = f B;, BL7 B; ?
4 8

5 7
4 8
1' 2
1 2

2 1

M
"3---

B1
*

B2
*

B3*

0 1

B2
* B*

3
Bl* Bl*

30

2) Note that M
"1

does not have a nontrivial automorphism in

the above example. However, it seems to be true that the existence

of two different substitution-property partitions *1 and n2 with

M ; M
3 *2

implies the existence of a nontrivial automorphism for

MTr
(where n=ll l

1 n2) that can be found according to the following

procedure:

Assume, without loss of generality, that the blocks {Bi] of rrl

and [BI) of rr2 are indexed in such a manner that B; corresponds

to Bi in the isomorphism M =" M . Since nl # TT2' there exists
5 n2

at least on pair of blocks B. and B'
3

such that Bj # B;. Therefore
J

one of these two blocks contains a state q. that does not belong to

the other one*; without loss of generality we can assume q. E B! but
3

q0 9 Bj’ Further, q. E Bk for some k # j.

Now define a map cf~ on the state set Q, of Mn as follows:

let D be a block of Q, such that DC B_ j and define v(D) = B,(q,).

Since M, and thus M117 is strongly connected,for every D' E Qrr

there exists a sequence 5 E I* such that D' = 6$D, %). Thus we

define:

Our conjecture is now that cp is well defined, i.e., if xl and x2

are two sequences satisfying $p7 x1) = 6rr(D, x2), then we have

sn[Bn(qo), xl) = 6rr[Bn(qo)7 x2). Once this fact is established,

it is easily shown that v is an automorphism; let indeed D' be

any element of Q,; then we have for all 2' c I*:

* In fact, one can show that Bj n Bi # g implies nl = rr2

31

= c@~(D, :%')]

= ~,[qo), -;Tx’l (definition of cp and conjecture)

= ~*O,MD), 37 a

= ~n~cp(D’)7 ~‘1

where 2 is the sequence leading from D to D'. Note here that cp

is necessarily nontrivial because q. fz D and thus v(D) = Brr(q
0

) f D.

Further, v is not always unique, since it depends on the choice of

D and qo.

3) Example.

Using the machine described by Table I, where:

we obtain the following automorphisms for M :
7-r

Bj--
B1

B1

B;

D

-i-

qO ycDl) cP(D,) 0,) cP(D4) cp(D,) cp(Ds,
- - - .

t

-mm___m____m___- - ---__-.-,- - - -

D1 3 D3 D5 D6 D2 D4 D1

D1 6 O5 D3 D2 D6 D1 D4

D3 l D6 D4 D1 D5 D2 D3

There are, in fact, two more nontrivial automorphisms for Mn7 namely

cp(D,) = D2 and y(D,) = D4’ but these cannot be obtained from the

above procedure since 1 and 2 appear in the same block of B1'
and

1 and 4 in the same block of B'.
3

32

4) Conclusion

If the conjecture stated above holds, then we can conclude

that, for strongly connected machines, equivalence of two output

faults, Fl and F2' with AFl' 'F always implies a nontrivial
2

automorphism for the state table of M for some substitution-n
property partition n. Here T may be the trivial partition TT = 0

where the blocks are the states of M.

33

v . EQUIVALENCE AND DOMINANCE

A. Combinational Circuits

LEMMA 1. Dominance induces partial ordering on the equivalence

classes with respect to detection equivalence.

PROOF. The proof follows from the correspondence between

faults and detection sets:

Fl>F e S- 2 1 SF
F1- 2

LEMMA 2. For single-output, irredundant networks,

F1 ry F2 iff F1 ," 5.

PROOF. Assume F1 cv F2 and let XES
F1

; then,

Qi (x) = @F2(x) # G,(x) SO x E SF and
F1 2

SF C SF . Similarly,
1- 2

S CS so s = s and Next assume
F2 - F17 F1 F2

F1 ," 50 F1 ," 5

and consider x E {O,l]" (a n y x)

either xgs = s
F1 F2

then 'PFl(x) = Qh(x) = eF (x)
2

or XES = s
F1 F2

then mF1(x) # @#)

But, for single output, which forces @
F1

(x) = 'F (x>'
2

LEMMA 3. The above does not hold, in general, for multiple-

output networks.

PROOF. The circuit in Fig. 3 realizes

Yl = ⌧1 l x2

Y2 = x1 0 ⌧2 .

34

Referring to this figure, let

Fl = "A stuck at 0"

F2 = "B stuck at 1" .

Then the only test for F1, as well as for F2) is xl = x2 = 1.
I

In the case of Fl we get yl = 0

i y2 = x1 + x2

.
F2

we get y1 = x 'X1 2

y2 = x1 + x2
i.e.,@ #H .

F1 F2

So in this case s
F1

= SF = F17W * F1 ," 5
2t

Q #@ 3F
F1 F2

1 + F2 l

Remarks.
1) Clearly Fl - F2 * Fl 2 F2 (in proving sufficiency

of lemma 2, a single-fault assumption was not used)

2) Conjectures: (multiple output) .
---if reconvergent fanout, every circuit has faults

exhibiting lemma 3

---if no reconvergent fanout, lemma 2 holds always.

B. Sequential Circuits

LEMMA 1'. Dominance induces partial ordering on the set

of equivalence classes with respect to detection equivalence.

I;EMMA 2'. If two faults are reset equivalent, they are

also detection equivalent.

Proofs are analogous to the combinational case.

35

LEMMA 3’. Detection equivalence does not always imply reset

equivalence.

There are necessary and sufficient conditions for detection

equivalence to imply reset equivalence, but they will not be

discussed here.

PROOF. Consider the machine M and its fault versions as

described below.

Let 1 IR 1 = 1 and p(i) = A ci ' 'R)

= A

F&J>

Consider:

M

D A,0 C,l

1
c,o r

c7 1 B

E7 0 C

B7 0 D

A7 1 E

L

0 1

t

D,O E,l

A,0 C,l

D,l C,O

A,1 E,O

D,O C,O

Using the method described by Poage and McCluskey [4], we obtain:

A B A

B A D

C C E

D x x

E x x

0

B A D

0 0 0- - - -

A B A

1 1 1- - - -

D x x

l - -- - - -

A x x

o - -- - - -

D x x

o - -

1

C C E

1 1 1- - - -

C C E

0 0 0- - - -

E x x

l - -- - - s

c x x

l - -- - - -

E x x

o - -

36

From this table it is clear that S = S
F1 F2'

Nevertheless, if we

apply the input sequence:

< reset > 7 07 17 1, 07 1

we get as outputs: F&M) : 0 0 0 0 0

F;!(M): 0 0 0 1 0

so clearly F&M) and F2H are not reset equivalent. So Fl ," F2

but Fl + F2.

37

VI. REMARKS ON MEMORY FAULTS

In this section we discuss the influence of stuck-at faults

in the feedback lines of a sequential circuit on the behavior of the

machine. In particular, it will be shown that, for some machines,

the fundamental properties can be very drastically changed, thus

adding extra complexity to the problem.

Consider now the fault F as defined in section III under

'memory faults". On the set mm the fault F defines a map which

we denote by the same symbol as the map defined by (3).

F: 7-Tim ‘7Tlh (h = In - /TF I >

M = < I, 0, Q7 6, h > w < I, 0, QF7 6F7 h, > = F(M)

where F(M) is defined as the result of the following transformation

on the model of hil (Fig. lb):

a) delete all 1i 3 F(ji) # N and corresponding memory

elements (delays)

b) for each of these j,, the corresponding input to the

combinational logic is fixed at the value F(ei) and

the combinational function is redefined on the remaining

variables only.

The set Q F is obtained from Q by deleting in each

q=<Y 17 y27 '*'7 y, >EQ those yi that correspond to F(L,) ' N*

The corresponding map CF: Q -+ QF will be called "fault projection

function."

We also define a map rF: Q + Q

rF: 17 Y27 l * ‘7 Y, ’ - < Y;, $7 l **7 Y ’ >m

38

as follows: y! = yi in case
1 F(fi) = N

Y; = F(LI >7 otherwise.

From this it is possible to find a bijective map bF: QF --) rF(Q)C Q

such that the diagram of Fig. 4a commutes. The reader can consult

Arbib [ll] for the concept, "commuting diagram".

It is also easy to verify that bF is unique. In fact, bF

does nothing else than insert the "defective" yi with the corres-

ponding values of F(li) # N in the representation of q = <..*> c QF .

The maps bF and cF will be used throughout this section.

DEFINITION. A machine M = < I, 0, Q, 6, h > describes a

machine MT = < If7 Or7 Qr7 6', h*> iff there exist maps:

hl: Q' +-Q

hi: Q + Q'

h2: I '--*I

h': 0 -, 0'
3

such that 6’(q: if> = hiE6[hl(q’), +2(i’)lI
A’(q: i’> = h3bbl(q’), he0911 7

i.e., the diagrams of Fig. kb commute.

THEOREM 1. M describes F(M)

PROOF. If the machine F(M) is in state q', then the machine

M in presence of the fault F is in the state qB defined by

qB
= bF(q') according to the definition (5) of b. The next state of

M is then 6[bF(qf), i] and for F(M) this is thus CFb[bF(q'), i]b

(5)

We obtain 6F(4 ’ 7 i> = CF(6bF(4'), il') (6 >a

Similarly hF(9', i> =)c[bF(q’)7 il (W

39

Taking now hl = bF

h2
= identity map on I

h'
3

= identity map on 0,

we see that M describes F(M) in the sense defined above.

Remark. The relationship between M and F(M) is not, in

general, a homomorphism since the diagram of Fig. kc does not, in

general, commute. It can be shown that the diagram commutes

in case the "fault partition" nF, defined by q1 = q2(nF)

if and only if cF(ql) = cF(q2), has substitution property.

EXAMPLE. F(j3) = 0 F(j1) = F(I1;1) = N (a = (O,l], m= 3)

Q
<Y Y Y’

1 2 3

0 0 0

0 0 1

0 1 1

0 1 0

1 1 0

1 1 1

1 0 1

1 0 0

Qbi,)
<Y1’ Y2’ Y3’
~ ~~

10 0

1 1 0

1 0 1

0 1 0

0 1 0

1 1 0

0 0 1

1 1 1

-p-
Q’

0 0

01

11

10

0 0 0

010

110

100

This table yields, using (6a), the state table for F(M):

q’

00

01

11

10
-

-S’(q’, i,)
10

01

01

11

41

Let us now consider the influence of memory faults on the

strongly connectedness of machines. The following point will be

useful in proving a theorem on this subject.

For all m and all finite sets of the form CJ = (0, 1, 1~ (-11

there exists a single cycle permutation $ on Q = CTm, with the property

that q and $(q) differ only in a single component yi for any q E Q.

We will not provide a proof for this. It is, in fact, a consequence

of a stronger result, where 1J, has to satisfy the extra requirement that

the difference between the yi that are unequal in q and q(q) is

alwayslmodulo 1 CJ/ . See also the related material about "unit distance

codes" in ref. i57.

The following example shows, for m = 3, one of the permutations $

that satisfy this stronger requirement.

EXAMPLE. We describe $ by arbitrarily taking q. = < 0 0 0 >

and listing all Jlj(qo) as j ranges over 0, 1, IQ I-1

I ICT = 2 yields the table

j = 012... 7
- -

y3 0 0 0 0 1 1 1 1

y2 0 0 1 1 1 1 0 0

y1 0 1 1 0 0 1 1 0

while 1 CJ 1 = 3 yields

j = 012....... 26
- - - - -I__----

y3 0 1 2 2 1 0 0 1 2 2 1 0 0 0 1 2 2 1 1 1 2 2 2 1 0 0 0

y2 0 0 0 1 1 1 2 2 2 2 2 2 1 0 0 0 1 1 1 0 0 1 2 2 2 1 0

y1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

42

It is useful to look at the paths qo, $(qo), . . . in 3-dimensional

space, since it shows how these sequences are formed and how the

fact stated above can be proven in general.

THEOREM 2.

1) For all m there exist a large class of strongly-connected

machines such that every single fault * ' !fQ destroys the strongly

connectedness.

2) For all m there exist strongly connected machines M

such that F(M) is strongly connected for all F E ffQ*

6 (9, i > = $(q) for some iq E I

q for all other i # i .q
This corresponds to a very wide class of strongly-connected ($ has a

single cycle) machines. Let F be an arbitrary single fault defined

by F(ik) = cy E 0.

The definition of JI implies the existence of a state

q =<y 1, yk = cy, y, > such that

☺r (s) = < Y1 , . ..☺ Y;c # a , l e.9 Y, >-. For F(M) this implies that

'F(q) = c,$(q) = q' E QF and bF(qr) = q.

The next-state function for the faulty machine gives, for q:

PROOF.

Part 1 Let 6 be defined as follows:

'F(q ', i> = cFh[bF(q'), 13 {from (6a)]

= 1 cF(q) in case i # iq

C,Jr(q) in case i = i .q

43

Therefore, the only state reachable from q' E Q F is qT

itself, and therefore, F(M) is not strongly connected. This

process is illustrated in Fig. 5 for 1 o I = 2, m = 2, and y2

stuck at zero.

Part 2. Consider a machine M with Q = I and d(q, i) = i

for all q and i in I. It is easily verified that M is strongly

connected and also that, in F(M), any qrEQF can be reached from

any other state of QF by applying an input satisfying c,(i) = q'.

Of course, many less trivial machines with this property can

be found easily.

Consequences for the study of equivalence and dominance. This- -

theorem clearly illustrates the need for having several reset states

available in order to have a sound basis for comparing faulty machines.

It would be inaccurate to say that two faulty machines are (reset)

equivalent based on only one single reset state from which only a

small portion of the actual states can be reached.

44

- 0a

Fig. 5: To illustrate Theorem 2 of Section VI.

(a) A strongly connected machine M

(>b The machine F(M) after the fault F = (lineI

stuck at 0) occurred.

Note that the input labeling in M can *be changed arbi-

trarily as long as the graph remains deterministic.

45

VII. CONCLUSION

From this paper, three main ideas have become clear. First,

the possibility that output faults are equivalent, without being

functionally equivalent for the output function, can be investigated

directly from the structure of the state table only. This gives

certain information on the equivalence classes.

Second, it has been shown for both combinational (mainly to

demonstrate the parallel) and sequential networks that reset equiva-

lence and detection equivalence are not always the same thing.

Finally, the invalidity of the assumption that a strongly

connected machine is still strongly connected after a fault occurs

has been demonstrated by exhibiting some large class of machines for

which it is clearly false. Another consequence is the need to have

a reset circuitry in order to be able to compare such machines in a

meaningful way.

It has also become apparent that extreme caution is needed

when comparing machines, i.e., the basis for comparison must be

specified very precisely, and as insensitive to faults as possible.

Further research is being done to find conditions under which

faulty machines are equivalent under faults of a certain class.

Also, the relationship between reset and detection equivalence is

being further investigated.

46

REFERENCES

[l] E. F. Moore, "Gedanken Experiments on Sequential Machines,"
Automata Studies, No. 34, pp. 129-133, Princeton University Press,
Princeton, N. J. (1956).

[2] S. Seshu and D. N. Freeman, "The Diagnosis of Asynchronous
Sequential Switching Systems," I.R.E. Transactions on Electronic
Computers, Vol. EC 11, No. 4, pp. 459-465 (Aug. 1962).

[3] F. C. Hennie, "Fault Detecting Experiments for Sequential Circuits,"
Proc. 5th Ann. Sympos. on Switching Theory and Logical Design,
pp. 95-110, Princeton, N. J. (Nov. 1964).

[4] J. F. Poage and E. J. McCluskey, "Derivation of Optimum Test
Sequences for Sequential Machines," Proc. 5th Ann. Sympos. on
Switching Theory and Logical Design, pp. 121-132 (1964).

[5] E. J. McCluskey, Introduction to the Theory of Switching Circuits,
McGraw-Hill, N. Y. (1965).

[6] F. W. Clegg and E. J. McCluskey, "Algebraic Properties of Faults
in Logic Networks," Technical Report No. 4, Digital Systems
Laboratory, Stanford Electronics Labs, Stanford, California
(March 1970).

[7] F. W. Clegg and E. J. McCluskey, "The Algebraic Approach to Faulty
Logic Networks," IEEE 1971 International Symposium on Fault-
Tolerant Computing, pp. 44-45, Pasadena, California (March 1971).

[8] D. R. Schertz, "On the Representation of Faults," Report R-418,
Coordinated Science Laboratory, University of Illinois (1969).

[9] D. R. Schertz and G. Metze, "On the Indistinguishability of Faults
in Digital Systems," Proc. 6th Ann. Allerton Confer. on Circuit
and Syst. Thy., pp. 572-760 (1968).

[lo] K. C. Y. Mei, "Fault Dominance in Combinational Circuits," Technical
Note No. 2, Digital Systems Laboratory, Stanford Electronics Labs,
Stanford University, California (August 1970).

[ll] M. A. Arbib, Theories of Abstract Automata, Prentice-Hall (1969).

47

[12] J. Hartmanis, R. E. Stearns, Algebraic Structure Theory of
Sequential Machines, Prentice-Hall (1966).

[13] H. X. Chang, E. G. Manning, G. Metze, Fault Diagnosis of Digital
Systems, Wiley (1970).

[l4] G. P. Weeg, "The Structure of an Automaton and its Operation-
Preserving Transformation Group," J.A.C.M., 9, No. 3, p. 345
(1962).

[15] A. C. Fleck, "Isomorphism Groups of Automata," J.A.C.M., 9, No. 4,
p. 469 (1962).

[16] A. C. Fleck, "On the Automorphism Group of an Automaton,"
J.A.C.M., 12, No. 4, p. 566 (1965).

[17] B. Barnes, "Groups of Automorphisms and Sets of Equivalence
Classes of Input for Automata,' J.A.C.M., 12, No. 4, p. 561
(1965).

[18] H. 0. Rabin and D. Scott, "Finite Automata and their Decision
Problems," No. 3, pp.
114-125 (1959).

[19] F. C. Hennie, Finite-State Models for Logical Machines, Wiley
(1968).

[20] A Gill, Introduction to the Theory of Finite-State Machines,
McGraw-Hill, N. Y. (lm .

48

