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ABSTRACT

This paper is concerned with the relationships among faults as
they affect sequential machine behavior. O particular interest are
equi val ence and domi nance relations.

It is shown that for output faults (i.e., faults that do not
affect state behavior), fault equivalence is related to the exist-
ence of an autonorphism of the state table. For the sane class of
faults, the relation between doninance and equival ence is considered
and some properties are pointed out. Another class of possible faults
is also considered, namely, menory faults (i.e., faults in the logic
feedback lines). These clearly affect the state behavior of the
machine, and their influence on nachine properties, such as being
strongly connected, is discussed. It is proven that there exist
cl asses of machines for which this property of being strongly con-
nected is destroyed by every possible single fault. Further results

on both menory and output faults are also presented.
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I NTRODUCTI ON

The increasing conplexity of digital systens has necessitated
a nore systematic approach in designing adequate test procedures
than the heuristic or intuitive nmethods that prevailed in the early
days of conputer technol ogy.

For sequential machines, the first "testing' was done by Myore [1]
al though his primary interest was in analyzing the state behavior of a
machine rather than in looking for possible faults. Seshu and Free-
man [2, 13] designed test sequences to detect faults, while | ooking
at the possible ways in which a given circuit can be affected by a
fault. Henni e [3] also developed fault detecting nethods, but the
test sequences were designed without the extra infornation obtainable
from an investigation of the influence of faults froma given fault
set on the machine: the sequences verify whether or not the machine
performs its given task. Thus this nethod links up with More's
appr oach.

A systematic procedure, guaranteeing optinal test sequences for
sequential machines, is given by Poage and M uskey [4]. In this paper
all the information concerning the faults that is available is used
as in the Seshu and Freenan method, but the procedure used does not
suffer from the disadvantages of local optimization. It is also in
the work of Poage and MC uskey that the idea of "dom nance" for
faults in sequential circuits is introduced, in analogy with donin-

ance of rows and colums in prine inplicant tables [5].



Wi | e studying the behavior of comhinational circuits, it was soon
realized that relations existed between faults. Investigations on
equi val ence rel ati ons have been done by Clegg and MC uskey [6, 7]
and Schertz [8,9]. Roughly speaking, two faults are said to be
equivalent if and only if they have the same effect on the circuit
according to some suitable criterion, different criteria giving rise
to different equivalence relations. Perhaps the nost basic type of
equi val ence is functional equival ence: two faults are functionally
equivalent if they give rise to the same set of circuit output func-
tions. For nobst of the definitions used, equivalence always inplies
functional equivalence. This neans that the corresponding partitions
are refinements of the partition induced by functional equivalence,
and thus all faults in the sanme equival ence class yield the same
i nput/output behavior. The inportance of this observation becones Ny
clear fromthe fact that fault detecting sets have to be designed
only for as many faults as there are equival ence classes, instead of
for each elenent of the specified fault set separately.

Anot her kind of relation exists in conbinational circuits, nanely
doninance. A fault F, doninates a fault F, if and only if it can
be detected by every test for Fye This also will reduce the nunber
of faults that have to be examined separately. Mei [10] has shown
that dominance gives rise to drastic reductions in the nunber of
faults which nmust be considered when the circuit satisfies sone
general conditions.

Simlar phenomena also exist in sequential machines, and it is

the main objective of this paper to point out those simlarities. -



Further, some specific aspects of faults in sequential machines that
have no counterpart in conbinational circuits are al so examni ned, such
as the properties of output faults and the influence of nenory faults
on the strong-connectedness of the machine. This last aspect m ght
seemrather |oosely related to equival ence and doni nance, but the
results derived will show the desirability of having reset circuitry
in case we want to conpare faulty machines with each other

The considerations on dom nance and equival ence in this paper
have a dual purpose: first, the sinplification of the task of
desi gni ng test sequences by reducing the nunber of faults that need
to be considered separately, and second, the gaining of a better
under st andi ng of the phenonena that affect the behavior of a
machine in the presence of faults

In what follows, we first introduce the notation used throughout
this paper. Subsequently, the concepts of equivalence and doni nance
in sequential and conbinational circuits are clearly defined and
their significance explained. A so, the concept of "reset" is
introduced in order to pin down these ideas nore closely. Then we
consider a particular class of faults, namely, output faults (i.e.
those that do not affect the state behavior) and the existence of an
equi val ence relation is shown to depend on the existence of a state-
tabl e aut onosphi sm

The rel ati onshi ps between doni nance and equi val ence are expl ored
for conmbinational circuits and then for sequential circuits, thus
enabling us to point out some simlarities between the two cases
It will become clear at this point that the presence of reset circuitry
makes the setting up of a basis for conparing sequential nmachines nuch

easi er.



Finally, the problem of menmory faults will be considered and
we will show that there exist classes of strongly connected nachi nes
for which every single fault destroys this property. The main
result of this section inplies in fact that reset circuitry is
Important if we want to conpare two faulty machines for all possible

Initial states. W conclude then with sone suggestions on future

research.



[1.  NOTATI ON

A. Conbinational Crcuits

Let C be a conbinational circuit realizing a mapping
3 g ~ cm, where o 1is a finite nonempty set of synbols. In
nost applications, o = {0, 1} and & is then a Bool ean function.

The number of input leads is n and the nunber of output |eads,
m Input |eads are denoted by x5 out put | eads by ;s see for
exanple Fig. la.

@(xl, XE‘""’ xn) = <y1, y2, N yn>_

Here we wite ( ) instead of (< >) for sinplicity, but otherw se

we will always use angle brackets < > to denote ordered n-tuples.

B. Sequential Machines

A sequential machine Mis a 5-tuple:

M=<l, 0, Q 6, A>

where | = a finite nonempty set of inputs
0 = a finite nonempty set of outputs
Q= a finite nonempty set of states
§ = ithe next-state function: 6: Q x | = Q defined by
8: <Gy, 1> P oa s the subscript t standing for
"at time t ".
A = the output function:

(a) for a More machine, »: Q=0
defined by, A: a4, "™ ot

(b) for a Mealy machine, A: Qx| — O
defined by, A: <qt, i>r o
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Fol l owi ng Hartmanis and Stearns [11], we define now

*. the set of all finite i nput sequences of nonzero
l ength consisting of synbols froml;

I

1F =1t U {A} where A is the enpty sequence.

Elenents of 15 or 1* will be denoted by x. W extend § to

Q x1I in the followi ng recursive way:

(1) 8 (a, A) =a Va€Q
(2) 8 (a, xx) = & [8(qa, x), x],
where q €Q x€1, x€1|*

W also define X as foll ows:
let @ € Q x€1,x€r (or1"), 4nen

a) for a More machine, *:Qx I* =14+
defined by X(q,A) = h(q)
and X(q,xx)= X(q,x) .\[6(q,xx)]

b) for a Mealy machine, AX: Q x I+ [+,
defined by A(q,x) = A(q,x)
and A(q,xx) = A(q,x) .A[8(a,x), x] .

One of the possible realizations is shown in Fig. |b:

m
Q:O’ :[q]q:<y1,)72,. "’ym>’yi€0}

n
= - = . >
| = o] (i1 = < ) X2 Xy € o}

1 Xor

cadpa{olma<z

0 _,zp>,z

y ®ny
1’ 2 kEcrO}

Usual Iy one has: o, =0=0,= {o, 1}, but in general o.. can
be any set of synbols (finite and nonenpty). Except when expli-
citly mentioned, such as will be the case for the section on
menory faults, we will think about the machine as the abstract
device specified by (1), without referring to the representation

of Fig. Ib.



C. Faults

In what follows we will only consider permanent faults. By this
we mean that their effect on machi ne behavi or does not change during
or in between tests. It will also be assumed that a fault in a
conbi nati onal network does not transform the network into a sequen-
tial circuit. No other restrictions on the faults are assuned unless
they are explicitly stated.

VW will use the notation F(C) for the combinational circuit C
affected by a fault F, and sinmlarly F(M for a sequential machine
M with fault F. The use of the notation for Fas if it were a
function can be justified as follows. |If we consider interconnections
between circuit elenents also as 'conponents”, then the domain of F
is the set of all machines that have a specified subset of their com
ponents in conmon.  The mapping F is then defined by describing
the way in which F affects the conponents of that common subset.
Note that this applies to a wide variety of faults, including bridging
faults. However, we will only use this approach for the case of menory
faults, where the subset nentioned above will be clearly specified.
Anot her point of view can be that the donain contains only a single
machine (Cor M.

The absence of a fault is denoted by e, called the "enpty
fault ". So, for example, e(C) = C and e(M =M

If 8is the function realized by C, then @F is the one
realized by F(C. The sane convention is used for sequential machines,
i.e.,

if M=<1, 0, Q 6, \>

then F(M = <I, O, QF,GF, XF> .



There is no advantage gained by letting F affect | and 0, but
for Q it will become conceptually useful.

Finally, the set of all faults that will be considered for a
gi ven machine or class of machines (circuits) will be denoted by ¥.

% includes e, by convention.

D. Classes of Faults

In general, a fault F in a sequential machine can affect
the next-state function § as well as the output function A. For
many realizations, however, it is reasonable to consider subclasses
of faults that affect either & or X, but not both. This is
especially true for cases in which & and X are realized by

separate circuits. Thus, we can consider as special subclasses:

Output faults

A fault F is said to be an "output fault" for a machine

Miff QF = Q and GF = 6. The set of all output faults for a

machine Mwill be denoted by ’j)\ .

Next-state faults

Afault Fis a next-state fault for a machine Miff
80 #6, while the output circuitry is unaffected. The set of all next-
state faults for a given machine is denoted by §,. A further subclass

of next-state faults are the nenory faults described next.

Menory faults

Ve consider the set m_ of all nmchines with m del ay
elements and a given al phabet o (see Fig. 2). For the set of
f eedback |ines Lm = { [1[ i =1, 2, .. m} we define a stuck-at

fault F as a map



Input Output

Fig. 22 A sequential machine with a reset circuit
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F Lm-*cU{N}

(3)
assigning to each line a stuck-at value or the status N ( "norml").
W denote by ‘;Q the set of all such faults.

[] fol = (ol +1)™. It will become clear at a later
stage how this definition is made conpatible with the notation p(nm),

Ve will also define T, {le([k)# N} .

11



[11.  DEFINITIONS

A, Conbinational GCircuits

A detection set for a fault F is a subset of the set of

i nputs defined by

x . xn) # ée(xl, cee, xn)}

Sp = (<, Xoy e xn>| QF( »

(s, < (0, 1}7)

A conbinational circuit is nopredundant iff Sp g VFETF - (e).

This refers to a well-specified class of faults ¥ .
F, i ff SFI 2 SF. Thus
2
> F

A fault Fl dom nates a fault
Not ati on used: Fl— X

every test detecting F, al so detects F.

Two faults F1 and F2 are functionally equivalent, witten
F, ~ F,, of briefly equivalent if and only if
n
. @F,,VE,AI}
1 2
witten

are detection equivalent,

Two faults Fl and ]5‘2

F, ~ F if and only if S_ = S_.
1 -2 F1 F2

B.  Sequential Machines

Two nachi nes My and M2 are equivalent iff

vV g€ Q (state set of M) 3 q2€Q29

X, (q §>=‘x2(q2,;>v§el*or|+

1 1’

and vice versa.
in a sequential machine M are equiv-

Two faults Fl and F2

alent iff Fl(M)\ and FQ(M) are equival ent.

12
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Let M= <I, 0, Q 6, A> be a sequential machine with a reset
circuit. By this we mean an extra set of input terminals on which
we can apply inputs froma given set J. The circuit is constructed
in such a way that for some subset of J, denoted by IR (the "reset
inputs"), there exists a nmap p: I~ Q wth the follow ng property:
if any i € In is applied to the reset termnals, the machine goes
to state p(i), no matter what the state was before. For practical
reasons we require that | be a proper subset of J and that all

R
i € J- 1. remin without effect on the machine. Indeed, the

R

machi ne shoul d be able to distinguish resets fromnormal operation
mode. One can al so use the elenents of J - I to put the nmachine
in other nodes ("partial resets", for exanple, where only some of
the y, in ¢ = <y, Yor « o0 y> are reset), but we wll not
exploit this possibility at this point, although it can resultin
more flexible test sequence design.

Note that this approach, Wwhere we consider resets as an extra
feature, is only taken for convenience. Indeed, these extra circuits

can be incorporated in the usual nodel for a sequential machine by

redefining the machine M= <1, 0, Q, 6, A> as M=<1',0, Q &', \'>

where |' =1 x J (Cartesian product)
5'(q, <i,i>) |= 6(q, i) if j €IR
= p(3) ifjery
A, <i,5>) = Mg, 1) if j €1

undefined if j € Ip -

13
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Conversely, if a machine Mhas already inputs i such that
8(q, i) =28(q', i) Vg, q'€ Q then we can define the set

I, as being the set of elenments with this property. Inthis

case | - | R is the set of "normal'" nachine inputs.

This way the two points of view can be considered as equivalent.

EXAMPLE. Figure 3 represents a sequential machine with a reset

1
xiR € {0, 1}. Thus J = {0, 1}3. W define I arbitrarily as

circuit consisting of three extra inputs: X R, Xl;, % , Where

the set

R
I = <XR, X2

R c
. 1 > | x % €{0, 1)tc J .

)

Physically, this means that we consider x3R as the enabl e/ di sabl e

line for the reset circuitry.

W now can specify p, for exanple, as follows:

R R > = 1
v <x1 y Xy 1 i € I
R R ., R LRy
. <x1 + x5, Xy, X €
This results in the table:
reset_input reset state
—— e
O 0 1 O 0 O
0O 1 1 1 1 O
1 0 1 1 0 1
1 1 1 1 1 1
If the elements of | are of the form <x,, X, x>, we
can denote those of |' by <X1, X5, X le’ XER, X3R>

and define

14



Fig. 3

To prove lenma 3 in section VI
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A T A

Y ’ 12 ¥ 7y
= (6 (a, S PR xn>) i f x3R= 0
R R R i R _
p(xl,xg,x?)) i f x3_1

DO Faults and the Reset Circuitry

Suppose we have a machine with reset as described above, but
with a fault F.

This fault F may act in such a way that upon application of

i€ IR, the new state al so depends on the previous one. For
sinplicity, we will assume such faults do not occur;*i.e., in the

[ i : that deternines
faul ty machi ne MF we still have a map Pp: IR-'QF

pF(i) as the state after the application of an input i € I

Al t hough possibly Py differs fromp, we wll say that,
in such cases, the reset is unaffected by the fault F. This sinply
means that, if we know the fault, we also know the state of the
machi ne after applying any i € IR .
This becomes inmportant in the following definition: a

reset test sequence for a fault F is a sequence x € | *or 1 ¥
preceded by a reset input i € I such t hat
X [o(1), x] # g [pg(i), x] .
A fault FI domnates a fault F. iff every reset test se-

2

qguence for F, is also a reset test sequence for Fl (ie.,

Sy, 28y where s_={x |x is a reset test sequence for F}).

% |n the case of stuck-at faults, this assunption is very reasonable,
except for such cases as x3R stuck at 0 in the exanple just
di scussed.

16




Single reset machines are mmchines where | I_|= L.

A machine M is reset equivalent to M, (both same type) iff

A fault FI is reset equivalent to F, (Fl ~ F.) iff

W is reset equivalent to I\Q,
1 2
A fault FI is detection equivalent to F., iff S_ =8

17



I'V. IQUIVALENCE OF QUIPUT FAULTS | N SEQUENTI AL MACHI NM

DEFINITION. An output function A is nontrivial iff

\Qx'l |=1(i.e., don't blame XA if Mis trivial).
LEMVA. Gven Al and )\2, both defined on Q x I, and
N # A,- Then, in case 3 gl, il and gy, i, Bkl(ql, il) =

i at | east one of i ivial.
)\2(q2, 12), themis nontrivial

PROOF.  Suppose xl(ql, il) = Al(q, i) va,i (i.e., X trivial).
Since A, # A, 3 a3, 13 3 M(qy 13) # )\2(q3, 13).
So )\Q(qe, 12) = Al(ql, il) = )\l(qs, i3) # >\2(q3, 13); i.e.,
kz(qg, 12) # >\2(q3, i,), and A, is nontrivial.

For the remainder of this section, let ¥, and F, be output

1 2
faults for a machine M and in the interest of sinplicity, let
A and A. be denoted by Al and X, respectively.

F F 2
1 2
THEOREM  If F, (M) and F (M) are equivalent and
A. #\A_., then both A and A are nontrivial.
¥, F, F F,

PROCF.  Let q;, cl,, 95, 9 € Q. Since Fl(M) and ;FQ(M) are

3

equivalent, V gl 3 q, (and ng 3 ql), such that 'Xl(ql, X) =X 2(q2 X)
- * + . .

V x€1 (orI'). Thus, 3 gl and d, ) ll(ql, i) = 7\2(q2, i) Vi €1

and 3 gl and q2, and 3 il, 12

€ | such that >‘1<q1’ i) = )\g(qg, 12)

(take sinply il =12=i)

18



According to the previous 1 cuma, one or both output functions is
nontrivial, say, i 3 i, ). . Si o
y kl(q3, l3) # kl(qh, lh) But since Il(M) and

FE(M) are equival ent: 3 qé, a)) 3 Ag(qé, 13) = Kl(qs, 13) and

! = i, ). S ™ ! i
)\Q(q)-#’ ih) )‘1((‘21,’ 1‘) o )\E(QS) 13) # )\2((1)‘0 11*) and )\2 is
also nontrivial. This proves the theorem

Trivial Xi are uninteresting since they nake all states of
Fi(M) equi valent and don't reveal anything about the state trans-
itions in the machi ne. Therefore, the above theoremis interesting
because it assures us that no trivial ki exist in the conditions

specified

Btate Table Automorphigms. apd- Qutput Faults

DEFI NI TI ON. A state table autonorphismfor a machine Mis
a bijective map ¢: Q = Q such that 6[p(q), i) = ¢[8(q, 1)] w al
q€qQ,i €1. (More general definitions, such as ¢: Qx 1 - Qx|
etc. are possible, but we will not consider them here.) See also
[14, 15, 16, 17, 18].

The trivial autonorphism (¢ = 1) always exists.

THEOREM. Let Fl and F2 be equivalent. Then Fl(M) and

F2(M) are equivalent (by definition), and if Fl(M) is reduced then
1) Fé(M) is reduced
2) 3 is a uniquely defined state table autonorphism ¢
3)¢ is nontrivial if A #A,.

Remark. By "uniquely defined" we nmean "uniquely specified"

by Xl and x2, not necessarily that the autonorphismitself is

uni que for the given M.

19



PROOF. Define a relation qrq' iff ﬁl(q, x) = A (a, x)
VXEI+or ¥ (&)
Now define S(q) as the set {q' € Q|aqm') .
(a) Because of machine equivalence: v q € Q3 q'€ Q3 qRq’,
i.e., s(qa) # @ v q
(b) Further, suppose q'€ S(qi) n S(qJ),i .e., a.Rq’, quQ':
t hen Xl(qi, x) = A (at, x) = Xl(qj, x)V x€1+or |*,
But this inplies, since Fl(M) is reduced, q, = q.j
So q) # a; = s(q;) N s(ay) = ¢

2

N
1 Ns(qi) | =35 | os(ay) |
with | s(a,) | > 1 because of (a). Since 1Y; S(ay) S Qwe

This inplies, for an N-state machine J .

=
nc

N
obtain % |s(a;)| < Nand conclude | s(a,) | = 1. Therefore R
N
is a function which we denote by ¢: Q— Q. Further l iL_Jl S(qi) l = N
inplies that ¢ is surjective, and since the range and the domain

are the same set, bijective. Thus v g € Q one can wite

qRep(q).

1) Take a] # a} then ¢ (a}) ~1(az) (bijective ) and
'Xl[cp‘l(qi), x] # 'Xl[cp-l(qg'), x] for some x because F (M)
is reduced. This inplies also 7\'2(%; x) # 'Xg(qg', x) by
definition of cp. So F2(M) i s reduced.

2) The relation R and thus ¢ is uniquely defined. W have
only to prove now ¢ is an automorphism Take any q € Q
then the definition of ¢ inplies

'Xl(q, xx) = Xg[q:(q), x]vx €1 and x € 17 or 1%
Xl[é(q, x), x] = 7\2{‘6[cp(q), x], x}vx €1 and x €11 or 1%,

i.e., 8(gq, x) R 8[p(a), x] Vxe€I1

20




and since R defines ¢ uniquely (i.e., Y q € Q
3 only one g € Q3 qRq', namely q = o(q) ), we get
Sle(a), x] = o[6(a, x)] = 9[6(a, x)] V x €1

and since q was arbitrarily chosen, alsoV q € Q .
3)1f xl#xg,then 3qg, i €Q |

> Ay(a, 1) # A (q, 1)

i.e., o(q) #9. @ is nontrivial.

Note that X # A, @ A and A, nontrivi al

| ¢ nontrivial

Application of the Theorem

As will become clear from the considerations bel ow,
nmost nachines do not have a nontrivial state table automorphism
For such a machine M without nontrivial state table autonorphismns,
every fault F € ¥, with the property that F(M is reduced wll
fall in a separate equivalence class of its own. In nost cases, this
will necessitate separate testing for each of these faults, espe-

cially when no dom nance relations exist.

B. The Autonorphisns of a State Table

The general problemof finding all autonorphisnms of a given
state table is as yet unsolved. The sane holds for the equival ent
task of finding the autonorphisns of a graph, which is an inportant
problem in organic chenistry and many other areas.

Neverthel ess, several heuristic approaches are possible. In
particular, for state tables that are not too large, inspection
"by eye" usually reveals very quickly the nonexistence of a non-

trivial automorphism if such is the case.
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A study of the properties of state table autonorphisms my
sinplify the heuristic approach considerably, since they show what
one should look for first, while searching for autonorphisns.

Weeg, Fleck and Barnes have done a consi derabl e anount of
work in the area of autonorphisns of machines [1k, 15,16, 17].

Let us point out sone of the facts that are relevant to this
probl em

Since a state-table autonmorphisme inplies a bijective
mapping fromthe state set Q onto itself, it is in fact a
pernmutation on Q

LEMMA.  The set AM of all state-table automorphisns for
a machine Mwith N states forms a subgroup of SN (under
conposi tion).

PROCF. Closure, identity, inverses are easily verified,

and the remark above inplies that AC SN.

LEMVA, If Mis strongly connected, then AM is a group
of regular pernutations. By this we mean: the cycles of every
pernutation have equal |ength.

PROCF. Let g and q' be two arbitrary elements of Q
and ¢ a state table autonorphism  Then we can find an input
sequence x € 1° such that q' = B(a, X). Suppose k is the
length of the cycle of ¢ that contains q where ¢ is con-

sidered as a pernutation on Q witten in cycle notation. Then
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k k K — - = k - -
¢ (a)=aqa and ¢ (q') = ¢ [6(a, x)] = b[¢ (a), x] = 8(q, x) = q",
as can be easily seen fromthe definition of §. Therefore, the
length k' of the cycle containing q' satisfies k' < k.

Simlarly, one shows k < k' and thus k' = k.

LEMVA. If Mis strongly connected and T € A then giving

W
T(qo) for any a, € Q specifies 1 conpletely.
PROOF. By assunption, any q € Qcan be witten as
q = é(qo, x) for sonme x € ¥ Therefore T(q) = T[S(qo, x)] =
8[r(a,), x].
The above lemmas can be found, under a slightly different
form in the references nentioned. Let us now introduce sone

lermas that can be used in the heuristic approach for finding state

t abl e aut onor phi sns.
LEMMA. Consider a state machine M= <I, Q &> and |let

b

=Ijur,u. .U T. If ve define M o= <Ij, Q8 Qx1,”

t hen the autonorphismgroup A, is given by AM = A ﬂAMﬂ. N A

My , - M

M
PROOF. Cbvi ous.

This last lemma is very inportant, since it allows us to consider
separate colums of the state table (| 5= {ij}) and thus reduces
the problem of finding the autonorphism group of the state table to
finding the group for each single colum separately, and then taking

the intersection.
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LEMMA. If i €1 is a pernmutation input, i.e., the map
m Q~ Q defined by Tri(q) =68(q, i) is bijective, then m
is an autonorphismfor the ith colum of the state table which
represents the state machine <{i}, Q § IQ x {i}> .

PROOF. &(q, i) = ni(q) for all g in Q Thus,

8[m; (a), 1] =m [m (a)]=m [8(a, 1)] foOr all q in Q

COROLLARY. If the pernutation m in the above Iema has
a single cycle, then the autonorphism group for the ith colum is
the cyclic group generated by .

PROCF.  For any q_, { € Qwe can wite q = nk(qo) for
sone k € N (nonnegative nunbers). Thus, the machine is strongly
connected by q = § (qo,ik), and any arbitrary T of the state
table is then conpletely specified by T(qo). Now t he powers
ﬂk of I-r assign to q, successively all elenents gq of Q
if kranges over 0, 1, . . . . |QI-1. Therefore T nust be

one of these powers.

Remark. In case m is not a single cycle, the situation is

more conplicated. Let us only note here that elenents of a given
cycle can be mapped to el ements of another cycle only in case the

cycles have the sane |ength.

LEMMA. If, in a given colum of the state table, an el enment

q, occurs with multiplicity m and there exists an autonorphism

k
t hat maps a, into ql we nust have m = f

PROCF. Cbvi ous
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Application to heuristics

The two nmain cases considered are nutually exclusive:
either an input i is a permutation input, or in the corresponding
colum sone gq, must occur with nultiplicity m > 1. Not e
further the duality between length of a cycle and multiplicity
of a state.

The | emmas above aid very much in a fast visual check for
aut onor phi sms.  Needl ess to say, they can also be incorporated in
al gorit hns,

Finally, it is clear that state tables w th autonorphisns

are the exception rather than the rule.

c. Exanples of Qutput Equivalent Faults

1) Consider a nachine Mwith output faults Fu and Fg

yielding the machines Fl(M) and FQ(M) shown bel ow.

Fl(M) FE(M)

q 0 1 q 0 1
A [p,0 |J,0 A [ Db,0 [J,0
B |D,0 |K,1 B | o1 |K,O
Cc |a,1 |L,1 C | A0 (L1
D |L,1 (H,0 D|L1 (4,0
E |c,0 |D,0 E |c1 |DO
F |E,0 |B,1 F | E0 |B,1
G le1 [a,1 S@i)M(61) gl go a0 8@,y (a,1)
H |1,1 |E,O H | 1,0 |EO
| |g,1 |c,0 l |61 |c1
J |H,0 |G,O0 J | 51 |G1
K [H,1 |F,0 K | H,0 |F,1
L |J3,0 |1,1 L |J1]|1,0
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Fl(M) is reduced as can be seen as follows. Consi der the

equi val ence relation defined by:
q, = qg(n'), if and only if xl(ql, X) = )\l(qg, WV x €1 ={0,1)

then m' = AJE, FLB, CG, HKDI

under input 0 DHC, EJD, AE, |HLG shows next states, grouped

[ — — —_ 1
1 36, BIK, TA, EFFC as parts of blocks of m

Fl(M) and FE(M> are equivalent, as can be seen from direct
product (Hennie [19],p. 25): denote states of FE(M> with a

prime and consider a 24_state machi ne?

mn=AGJAEH, FKLCBF, CI'&', HD KB DE IL'

0 DEHDC', EHJADE, AGEH, IL'HD'LC'GJ'
i nput

1 JA'GJ'DE', BF'IL'KB', LC'AG', EH'FK'HD'GI'

W obtain: {AG' JA' EH' FK' IC' BF' CI' GJ' HD' KB' DE' IL'} = nR*

This represents the relation R, giving directly the auto-

nmor phi sm ¢

1q ‘ABCDEFGHIJKL

| o(a)] GF1 EHKIDLABC |

This is, of course, not the only one, since

-1 . :
89"(a), 1] = ¢ 8[¢" (a), i1=...=9"(q, i) V g €Q
i€l
n € zZ+
but it is uniquely specified by >\1 and >\2 as obtained by the

above procedure

* The states are ordered in such a way that the partitions with
substitution property can be easily recognized

t TR see Hartmanis and Stearns [12], pp. 55-56

26



2) Consider the machine M such that

M = __ 0 1
q
A A
Bt A

Clearly, there exists no nontrivial automorphisms. According to

the theorem for no reduced F,(M does there exist on FJ.(M)

W

such that Fi(M) F. (M), Consider all reduced F,(M) possible

J
(wite only xi):

0 1 0
A 0 A | 00{1 Al |1 A
B8 0 11 BlO ou B 07 B 10105,
0]1 1 01 0
A A 1 A 0
Bl110, B o5 0 18 01,
o1l1 0|1 o1
AlO |0 AlO |1 All |1 All o
Bll |1 Bl |1 Bl |0 B |1 |1
3 5 9 12

We then obtain for the product machine:

- B A B BB
™= AAAB BBy AAAB BBy AAGAGBIBLB oy A ot11t12PPs
AAAAAA. A_AA. AAA__ A. AAA_
i nput 0 ApAAMAA G AARA AR Algitsiehir Aictiiti®etsTy
B.B.B.B, B.B.., B, B B B_B.B. BBBBBB., B, B. . B ,BBB._
1 BB,B;B BB, B B.BBBgB s BrBgBoBiBePior BioP11t12727579

nR = {Al, A2,. Cey 312]. So no two nachines are equivalent; there

exi st not even two equivalent states in product machine.
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This last remark illustrates the follow ng.
THEOREM (GIl [20]) If M and M, are strongly connected

and non-equival ent, then no state in M is equivalent to any state
in M2

The proof is very sinple, so we onit it.

bhserve the fact that Mis strongly connected in this

exanpl e.

D. Case where the Faulty Machines Are Not Reduced

ANTI THECREM The theorem
does not hold in case F,(M) is not reduced.

PROOF.  The theorem breaks down in part 3). (It is not interesting
to consi der Ay = )\2 = trivial case, sSince then state transistions do
not influence output.) A nontrivial case is ()\ﬂ # >\2>

0 1
C,0| Ayl
B | c,0| A,1
A, 1| C,1
F, (M)

The machi nes Fl(M) and F.(M) are equivalent. This can be seen

5
from the equival ences described by the following pairs of states

M) and q5

denoted by < a,,9, >, where gl is a state of Fl(

is a state of F.(M): <A,Cc> <B,C> <C,A> and <C,B>.

S

There is no nontrivial autonorphismfor this machine M
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Before we investigate what happens in the case where Fl(M) i's not
reduced (therefore, FE(M) is not reduced either), we recall [12]:
a partition m on Q has substitution property if and only if
qlsqg(n‘)ierIies t hat 5(q1, i) = 6(q2, i) for all i in I,
W denote the set of partition blocks by Qn.

If mis a partition with substitution property, then the
n-image of Mis the state nachine MTT = <I, Qﬂ, 6n>, wher e,
for all B_ € Qﬂ,

o .
6n(Bn") _BTTIf and only if

c t
G(Bn, i) € B!
THEOREM In case a machine M has no two partitions

m, and m, with substitution property such that ™ £

1 2

but M is isomorphic to M, then the equival ence of two
™
1 2

faults F; and F, inplies the existence of a unique (in the

same sense as before) autonorphism for the state table of the

reduced machi ne of Fl(M). The autonorphism is nontrivial in

case A, #A_ .
Fy F,

PROCF.  The equival ence bet ween F (M) and F (M) inplies

the equival ence of the corresponding reduced machines, denoted by

M, and M, which are, therefore, isonorphic.

The states of the reduced nmachines are blocks of sone par-

titions w, and m.,, both with substitution property. Fromthe

1 2
assunption, it follows that mo=T, =T and therefore, M and
M2 nmust have the sane state set Qn‘
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Further, A_ #A implies also that the reduced machines
1

F F

2
have different output functions since they have the same state

set Qn and, for all 4, 9, € B_ € Q. B(ql,i),é(qg,i)_

Thus we are reduced to the situation of the previous theorens.

Strongly Connected Machines

1) For a long tine we conjectured that there exists no strongly

connected machine with two different substitution-property partitions,

~

m, and m., such that M M. In case M (thus also MTQ)

1 e 1 > 1
has only two states, this conjecture holds, according to a private
comuni cation from J. U man. In general, however, it is false, as can

be illustrated by the exanple of Table I.

Table |.
MO 1 m, = { 12, 3457 78 ) = { By, B, 83}
1 6 3 1] ] 1]
2| 8l 4 m, = { 3567, 28, Tk } = { By, B, B, )
3| 4, 8
L1507
51 4| 8 M 0 1
6| 1 2 N I
7 1| 2 Bl* B3* BE*
8l 2| 1 x| o % M
B,"| B, B,
133* B % | Bl *
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2) Note that wm does not have a nontrivial autonorphismin

||1 —

the above exanple. However, it seens to be true that the existence

of two different substitution-property partitions m, and m, wth

1 2
M = M inplies the existence of a nontrivial autonorphism for
™M M
M (where m=m . n2) that can be found according to the follow ng
procedur e:
Assune, without |oss of generality, that the bl ocks {Bi} of ™

t
and {Bi] of m, are i ndexed in such a manner that Bi corresponds

i i i x ) i there exists
to Bi in the isonorphism I\/ITTl I\42 Si nce ™ # n2,

at least on pair of blocks B.J and Bé such that B‘j # B;. Therefore
one of these two blocks contains a state q_ that does not belong to

the other one*; wthout loss of generality we can assune qoé Bé but

qoiBj. Furt her, QOEkaor sone k #j.

Now define a map ¢ on the state set Q. of M_as follows:

and define (D) = B_(q ).

let D be a block of QTI‘ such that Dc B G

J

Since M and thus Mn, is strongly connected, for every D' € Qn

there exists a sequence x € |* such that D' = Gn(D, x). Thus we
define:

9(D') = &_[9(D), ]
Qur conjecture is now that ¢ is well defined, i.e., if ;:1 and ;‘2

are two sequences satisfying én(D, 7:1) = 6n(D’ ;2)’ then we have
611[Brr(qo)’ xl) = én[Bn(qo), xg). Once this fact is established,
it is easily shown that ¢ is an autonorphism |et indeed D' be

any el ement of Qs then we have for all x'€ |*:

- e e o e

* |n fact, one can show that BJ. nB; # ¢ inplies mo= T,
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—~
=)
.
"
S~
1

e[6_(D, xx')]

én[cp(D), xx'] (definition of cp and conjecture)

8.{8 [9(D), x], X'}

8. [e(D"), x']

where x is the sequence leading fromD to D'. Note here that cp
is necessarily nontrivial because a, ¢ D and thus ¢(D) = Bﬂ(qo) # D.
Further, ¢ is not always unique, since it depends on the choice of

D and q,-

3) Exampl e.
Using the machine described by Table |, where:

n:nl-ngz{—l,ﬁ,ﬁ,ﬂ,ﬁ,B}:{Dl,..., D)

we obtain the follow ng autonorphisns for MH:

Byl D | gy ®(D;)  9(py) (D) o(p) (D) (D)
s, | o, | 3 D, D D D, D, D,
By | D | 6 D5 D3 D, Dg Dy Py
B | o, | 1 D, D, D, D, D, D,

There are, in fact, two more nontrivial autonorphisns for Mn, namnel y

cp(Dl) = D2 and :p(Dl) = Dy, but these cannot be obtained from the

above procedure since 1 and 2 appear in the same bl ock of Bl‘ and

1 and 4 in the sanme bl ock of B‘3,
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1 2
M 0 1
ha s
D, D5 D3
D,| Dg D,
D, D3 D5
D5 D, D,
Dgl Do D,

4) Concl usi on
If the conjecture stated above holds, then we can concl ude
that, for strongly connected nachines, equivalence of two output
faults, Fl and F,, with A_ #2A always inplies a nontrivial
2 F F,
aut onor phism for the state table of MTT for sone substitution-

property partition m. Here m nmay be the trivial partition m =20

where the blocks are the states of M
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v. EQUI VALENCE AND DOM NANCE

A Conbi national Circuits

LEMVA 1. Dominance induces partial ordering on the equival ence
classes with respect to detection equival ence.
PROCF.  The proof follows fromthe correspondence between

faults and detection sets:

LEMWA 2. For single-output, irredundant networks,

F, ~F i ff Fle.

1 2 - 2
PROOF. Assume F, ~ F. and let x € s_ ; then,
1 2 F1
¢ (x) =8_ (x) # & (x) so x € s and s <€ s8_ . Simlarly,
F) F, A F) F F,
S, €8, so s_ =5 and F, ~ F,. Next assune F) ~ F
F, = "F; F F, 1 2 2

and consider x € {0,1}" (any x)

either x ¢ SFl: s t hen QF (x) = é)\(x) = & (x)

T2 1 2
or x€S_=s then &_ (x) # & (x)
F F, F, A
2 (x) # 8 (x)
2
But, for single output, @& _(x) € {0,1) which forces &_ (x) = &_ (x).
F Fl F2

LEMVA 3. The above does not hold, in general, for multiple-
out put networks.

PROCF. The circuit in Fig. 3realizes
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Referring to this figure, et

Fl = "A stuck at 0"
F, = "B stuck at 1"
Then the only test for Fi, as well as for FE’ is xlI = X, = 1.

Il
o

In the case of[ FI we get 3y|

y2:X1+X2

|F2 we get 3ylle . §
Y2

So in this case SFl = SF2 = {<1,1>}= F, > F,
3 #8% 2 F, o F
1 2
PR
Renar ks. . _ o
1) Cearly Fl ~ F, = FI '”Fg (in proving sufficiency

of lemm 2, a single-fault assunption was not used)

2) Conjectures: (multiple output)

---if reconvergent fanout, every circuit has faults
exhibiting lemm 3

---if no reconvergent fanout, | enma 2 hol ds al ways.

B.  Sequential Circuits

LEMMA 1'. Doninance induces partial ordering on the set

of equival ence classes with respect to detection equival ence.
LEMMA 2'. If two faults are reset equivalent, they are

al so detection equivalent.

Proofs are anal ogous to the conbinational case.
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LEMVA 3', Detection equivalence does not always inply reset
equi val ence.

There are necessary and sufficient conditions for detection
equivalence to inply reset equivalence, but they will not be
di scussed here.

PROOF. Consider the machine Mand its fault versions as

descri bed bel ow

Let [IR]= 1 and p(i) =A (iEIR)
Po (1)
F, = B
p, (1) =A
Fa
Consi der:
M Fl(M) F2(M)
0 |1 o |1 |0 1
A |B,0 [C,1 A [B,1 |C,0 A |D,0 E,1
B |A,1 |C,0 B |4,0 |C,1 B |4,0 C,1
Cc [D,1 |E,1 c |p,0 |E,O C|p1 |c,O
D (4,0 |c,1 D |B,1 |B,0 D [A,1 |E,O
E |D,0 |E,O E |D,0 [A,1 E |D,0 |C,0

Using the method described by Poage and M:Cl uskey [4], we obtain:

0 1
ABA BAD CCE
00O 111
BAD ABA CCE
111 000
CCE D x X E x x
| - _I_—_—S
D x X A X X C X X
o- - -
E x X D x x E x x
o- - o- -




Fromthis table it is clear that SF = S_ . Nevertheless, if

apply the input sequence:
<reset >, 0, 1,1, O, 1

we get as outputs: FI(M); 00000
Fy(M): 00010

so clearly Fl(M) and F2(M) are not reset equivalent.

but FI F,.
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VI.  REMARKS ON MEMORY FAULTS

In this section we discuss the influence of stuck-at faults
in the feedback lines of a sequential circuit on the behavior of the
machi ne. In particular, it will be shown that, for some nachines,
the fundanental properties can be very drastically changed, thus
adding extra conplexity to the problem

Consider now the fault F as defined in section IIl under
"nenory faults". On the set m, the fault F defines a nmap which
we denote by the same synbol as the map defined by (3).

F:om =M, (h=m- [T |)

M=<1,0 Q56 Ar>=<1,0 Qpbd,r, >=FM
where F(M) is defined as the result of the follow ng transformation

on the nodel of M(Fig. Ib):

a) delete all fi > F( [i) # N and correspondi ng nenory
el ements (del ays)

b) for each of these Zi, the corresponding input to the
conbi national logic is fixed at the value F( li) and
the conbinational function is redefined on the renaining
variabl es only.
The set QF is obtained fromQ by deleting in each
a4 =<y, Yy «er, ¥, >€Q thosey, that correspond to F( [i) # N.
The correspondi ng map Cp Q- QF will be called "fault projection

function."

Ve also define a nmap T Q- Q

rF:<yl’ yg;. ';ym>H<Yi;Y2';o e Y 2
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as follows: y_.'lzyi in case F([i)zN
. :
y; - F([i), ot herwi se.

Fromthis it is possible to find a bijective map b : Q ~ rF(Q)E Q (5)

F
such that the diagram of Fig. 4a commutes. The reader can consult
Arbib [11] for the concept, "conmuting diagrant.

It is also easy to verify that bF i'S unique. In fact, bF
does nothing else than insert the "defective" Yy with the corres-
pondi ng val ues of F([i) # Nin the representation of q:<...>€QF.

The nmaps bF and Cp will be used throughout this section.

DEFI NI TI ON. A machine M=<1, 0, Q 6, A > describes a
machine M' = < 1', 0', Q'", 6', A'™> iff there exist maps:

10 @ ~Q
1:Q=Q
2

.I’—«oI
.

= = I = =

0= 0
3
such that &§'(q) i') = hi(é[hl(q'), t}e(i')]}
M(aj 1) = h{Alny(a’), h, (111D,

i.e., the diagranms of Fig. 4b comute.

THEOREM 1. M descri bes F(M)

PROCF. If the machine F(M is in state q', then the machine
Min presence of the fault Fis in the state a5 def i ned by

q. = bF(q') according to the definition (5)of b. The next state of

B
M is then é[bF(q'), i] and for F(M) this is thus cF{é[bF(q'), il}.
W obtain GF(q i) = cF{é{bF(q'), i) (6a)

Simlarly  Ag(a', i) = Alby(a'), i] (6b)
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“ G
Q, rQ)sQ

QxI'— g Q x I X\ . o
h, |h, h; h] thz h;
Q x | 5 Q Q x | A O
(b)
Qp x | — o Q;
S ¢
Qx| ——=q

Fig. 4: (a) To define by (b) A machine M describing M';

(c) To illustrate when F(M) 1is the homomorphic image of M
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Taki ng now h, = b

1 F

L

hl = cF

h2 = identity map on |
h3' = identity map on 0,

we see that mdescribes F(M in the sense defined above.

Remark. The relationship between M and F(M is not, in

general, a hononor phi smsince the diagramof Fig. L4Lc does not, in
general, conmute. It can be shown that the diagram commutes

in case the "fault partition" n defined by q, = qe(TTF)

F’
if and only if CF(ql) = cF(qE), has substitution property.

EXAMPLE. F([3) = 0 ¥F(4)) = F(L)) = N (a = (0,1}, m = 3)

Sy Yp Y37 S Yy Yo Y37 q' g
0 0 0 10 0 00 000
0 0 1 1 1 0
011 1 0 1 01 010
010 0 1 0
110 0 1 0 1 110
111 1 1 0
101 0 0 1 10 100
10 0 1 1 1

This table yields, using (6a), the state table for F(M:

q' 6'(a', 1)

00 10

01 01

11 01

10 11
e
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Let us now consider the influence of nenmory faults on the
strongly connectedness of machines. The following point will be
useful in proving a theorem on this subject.

For all m and all finite sets of the formo=(0, 1, . . . . |o|-1}
there exists a single cycle pernutation § on Q = cm, with the property

that g and {(q) differ only in a single conponent y.

| for any q € Q

We will not provide a proof for this. It is, in fact, a consequence
of a stronger result, where ¢ has to satisfy the extra requirement that
t he di fference between the vy that are unequal in g and y(q) is
alwayslmodulo.c’. See also the related naterial about "unit distance
codes" in ref. [s5].

The fol I owi ng exanpl e shows, for m= 3, one of the pernutations {
that satisfy this stronger requirenent.

EXAWPLE. W describe ¢ by arbitrarily taking q, = < 000 >
and listing all ¢j(qo) as j ranges over 0, 1, . . . . |Q]-1

o) = 2 yields the table

i = 012 ... 7

Y3 —0000TTTI1I
Yo 00111100
Yy 01100110

while | o | = 3yields

i = 012 ... .. .. 26
Y3 012210012210001221112221T000
Yo 000111222222100011100122210
Yy 000000000111111111222222222

ho



It is useful to look at the paths qo,w(qo),. . . in 3-dimensional
space, since it shows how these sequences are fornmed and how the

fact stated above can be proven in general.

THEOREM 2
1) For all m there exist a large class of strongly-connected
machi nes such that every single fault F € 5q destroys the strongly
connect edness.
2) For all m there exist strongly connected machines M
such that F(M is strongly connected for all F € ?Q-
PROCF.
Part 1 Let 8§ be defined as foll ows:

§(a, 1) = Y(q) for sone 14 € |
q for all other i # 1

This corresponds to a very wide class of strongly-connected ({ has a
single cycle) machines. Let F be an arbitrary single fault defined
by F([k) = a € 0.

The definition of ¢ inplies the existence of a state
q=<yl . ... Ve =% - . ¥, > such that
y(qa) a < Y @ ,.,yﬁ e mare v, >_. For F(M this inplies that
cp(a) = cqi(a) = ' € Q and b (a') = q.

The next-state function for the faulty machine gives, for g,

SF(q', i) = cFé[bF(q'), i] {from(6a)}

cFé(q, i)

c (q) in case i # 1y

gl

cF¢(q) incase i =1i,.
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Therefore, the only state reachable fromgq' € QF is q
itself, and therefore, F(M is not strongly connected. This
process is illustrated in Fig. 5 for{ o ]: 2, m= 2, and Yo,
stuck at zero

Part 2. Consider a machine Mwith Q=1 and &(q, i) =i

for all g and i inI. It is easily verified that Mis strongly

connected and also that, in F(M), any q' € QF can be reached from

any other state of C& by applying an input satisfying c,(i) = q'.
O course, many less trivial machines with this property can

be found easily.

Consequences for the study of equivalence and dominance. This

theorem clearly illustrates the need for having several reset states
available in order to have a sound basis for conparing faulty nachines
It would be inaccurate to say that two faulty machines are (reset)

equi val ent based on only one single reset state from which only a

smal | portion of the actual states can be reached

Ly



o
Cammc>
¥

(b)

Fig. 5: To illustrate Theorem 2 of Section V.
(a) A strongly connected nmachine M

(b) The machine F(M) after the fault F = (line [,
stuck at 0) occurred.

Note that the input labeling in Mcan be changed arbi-
trarily as long as the graph renmains deterninistic.
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VIT.  CONCLUSI ON

From this paper, three main ideas have become clear. First
the possibility that output faults are equival ent, w thout being
functionally equivalent for the output function, can be investigated
directly fromthe structure of the state table only. This gives
certain information on the equival ence classes

Second, it has been shown for both conbinational (mainly to
denmonstrate the parallel) and sequential networks that reset equiva-
| ence and detection equivalence are not always the same thing

Finally, the invalidity of the assunption that a strongly
connected machine is still strongly connected after a fault occurs
has been denonstrated by exhibiting sone | arge class of machines for
which it is clearly false. Another consequence is the need to have
a reset circuitry in order to be able to conpare such nachines in a
meani ngful  way.

It has also becone apparent that extrene caution is needed
when conparing nachines, i.e., the basis for conparison nmust be
specified very precisely, and as insensitive to faults as possible

Further research is being done to find conditions under which
faulty machines are equivalent under faults of a certain class
Also, the relationship between reset and detection equivalence is

being further investigated
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