
A Graph-Oriented Model for Articulation of Ontology

Interdependencies�

Prasenjit Mitra, Gio Wiederhold

Stanford University

Stanford, CA, 94305, U.S.A.

fmitra, giog@db.stanford.edu

Martin L. Kersten

INS, CWI, Kruislaan 413

109 GB Amsterdam, The Netherlands

mk@cwi.nl

Abstract: Ontologies are knowledge structures to explicate the contents, essential properties, and

relationships between terms in a knowledge source. Many sources are now accessible with associ-

ated ontologies. Most prior work on use of ontologies relies on the construction of a single global

ontology covering all sources. Such an approach is not scalable and maintainable especially when

the sources change frequently. We propose a scalable and easily maintainable approach based on

the interoperation of ontologies. To handle user queries crossing the boundaries of the underlying

information systems, the interoperation between the ontologies should be precisely de�ned. Our

approach is to use rules that cross the semantic gap by creating an articulation or linkage between

the systems. The rules are generated using a semi-automatic articulation tool with the help of a

domain expert. To make the ontologies amenable for automatic composition based on the accu-

mulated knowledge rules, we represent them using a graph-oriented model extended with a small

algebraic operator set. ONION, a user-friendly toolkit, aids the experts in bridging the semantic

gap in real-life settings. Our framework provides a sound foundation to simplify the work of do-

� This work was partially supported by a grant from the Air Force O�ce of Scienti�c Research (AFOSR).

main experts, enables integration with public semantic dictionaries, like Wordnet, and will derive

ODMG-compliant mediators automatically.

Keywords: semantic interoperation, ontology algebra, graph-based model

1 Introduction

Bridging the semantic gap to answer end-user queries in a heterogeneous environment is a pre-

requisite and key challenge to support global information systems. The basis for this bridge is

found in an ontology for the knowledge sources involved. An ontology in this context is de�ned

as a knowledge structure to enable sharing and reuse of knowledge by specifying the terms and

relationships among them. Ontologies relate to knowledge sources like dictionaries relate to literary

works. Like the dictionary, the ontology collects and organizes the terms of reference. By analogy

of the de�nitions in a dictionary, which give us the relationships between words, ontologies give

us the relationships between terms. The ontologies considered are consistent, that is, a term in a

ontology does not refer to di�erent concepts within one knowledge base. A consistent vocabulary

is needed for unambiguous querying and unifying information from multiple sources.

Automation of access to broad information resources, as on the world-wide web, requires more

precision than is now a�orded by human focussed browsing mechanisms. The predominant route

is to rely on XML[1] as a carrier of semantic information. By itself, this is not enough. An XML

document can be used to represent a single ontology at best. We focus on such structured worlds

as a starting point, establish how to build semantic bridges between them and use reasoning based

on such semantic information to compose knowledge from multiple knowledge sources.

Bridging the gap between multiple information sources has long been an active area of research.

Previous work on information integration[2] and on schema integration[3] has been based on the

construction of a uni�ed schema. However, uni�cation of schemas does not scale well. Not only does

it lead to a huge and di�cult to maintain schema, but it also, very quickly, calls for identi�cation

of 'sub-domains' and 'namespaces'[4] to make the semantic context of distinct sources explicit.

Instead, we propose to utilize semantic bridges between such contexts as a starting point so that

the source ontologies remain independent. Moreover, in most real-life situations, it su�ces to just

provide the semantic bridges where interaction is required.

Recent progress in automated support for mediated systems, using materialized views, has been

described by [5], [6], [7], and [8]. We share the underlying assumption that a view is a syntactic

representation of a semantic context of an information source. De�nition of such views, however,

requires manual speci�cation. They need to be updated or reconstructed even for small changes

to the individual sources. Our contention is that, in many cases, a application domain-speci�c

ontology articulation rule set will simplify the work involved. Such rule sets are implicitly found in

the standardization e�orts encountered in business chains to enable electronic interaction.

Semantic interoperatibility has been studied in work on heterogeneous databases[9],[10] and

multidatabase systems[11], [12]. One of the strategies used is to merge each system schema into

a reference schema. However, such a strategy su�ers the same drawbacks as the information

integration approach. Relying on the end-user to bridge the semantic gap using a multi-database

query imposes the implicit assumption that all end-users are domain experts. Instead, we envision

a system to propose and manually resolve the semantic gaps between the knowledge sources. Such a

system is driven by a rule set supplied by the domain expert. This tedious task is greatly simpli�ed

by using a tool that uses external knowledge sources to propose relevant semantic bridges. It also

allows the domain expert to provide immediate feedback on potentially ambiguous constructs.

Ontologies have been represented using various text-based models[13]. While a text-based model

is easy to construct initially, its lack of structural relationships is a major inadequacy. This becomes

especially crucial if the ontologies have to be presented to a human expert or end-user.

We adopt a graph-based model to represent ontologies. A graph-based model conveys the struc-

tural relationships in an ontology in a simple, clean, elegant and more usable format. The graphical

scheme deployed is a re�nement of the GOOD[14] model, which has been developed to model an

object-oriented DBMS using a graph-based framework.

In this paper, we show how ontologies of individual knowledge sources can be articulated into a

uni�ed ontology using a graphical representation, where semantic bridges are modeled using both

logical rules (e.g., semantic implication between terms across ontologies) and functional rules (e.g.

dealing with conversion functions between terms across ontologies).

The innovation of ONION (ONtology compositION) system is an architecture based on a sound

formalism to support a scalable framework for ontology integration. The architecture provides a

balance between an automated (and perhaps unreliable system), and a manual system speci�ed

totally by a domain expert. It is based on a modular framework that allows for integration of its

other knowledge processing components. The model is simple, yet rich enough to provide a basis

for the logical inference necessary for knowlegde composition and for the detection of errors in the

articulation rules. An ontology algebra is de�ned, which is the machinery to support the ontology

matching process and to realize its implementation.

This paper is further organized as follows. In Section 2 we give an architectural overview of

ONION. In Section 3 we outline the graphical representation of ontologies. Section 4 deals with

the generation of the articulation. In Section 5 we introduce an ontology algebra. Finally, in section

6 we summarize the contributions of the paper.

2 Overview of ONION

In this section we present an overview of the system architecture and introduce our running example.

The ONION architecture, shown in Figure 1, has been designed with strong modularity in mind.

Wrapper

SKAT

Wrapper Wrapper WrapperWrapper

 Rules

Pattern Based
Articulation

Application End-User

Viewer

QUERY ENGINE

Expert

Art. RulesSuggested

RulesUpdated

Articulation
Updated

Viewer

ARTICULATION ENGINE

Articulation
Suggested

O3O1 O2 O4

KB1Knowledge Bases

Pattern Generation,
Matching & Query
Execution Rules

THE ONION DATA LAYER

Expert
Rules

Ont5

Unified

Ontology

KB2 KB3

Ontology Graphs

Query Processor

ArtiGen

Ont4

Art1 Art2

Art3

Ont2Ont1 Ont3

Source Ontologies

Figure 1: The ONION system

It recognizes the need for several underlying knowledge source representations, supporting di�erent

kinds of semantic reasoning components, and integration with query processing engines. By keeping

the model simple and the architecture modular, we hope to achieve greater scalability and incur

less problems in maintenance.

2.1 The onion data layer

The ONION data layer is the primary focus of this paper. It manages the ontology representations,

the articulations and the rule sets involved and the rules required for query processing. Each

ontology, Oi, reects (part of) an external knowledge source. Since ontologies may be represented

in a variety of ways, we expect some transformations to make them amenable for management

within the context of our system. We accept ontologies based on IDL speci�cations and XML-

based documents, as well as simple adjacency list representations.

Most ontology toolkits have inference mechanisms of varying complexities tightly coupled with

the ontologies[15]. Our approach is to separate the logical inference engine from the representation

model for the ontologies. This allows us to accomodate di�erent inferences engines which can deal

with ontology graphs.

The articulations are represented as ontology structures Aj linked with their underlying sources,

i.e., the semantic bridges. The articulation ontology commonly uses concepts and structures inher-

ited from the sources. As such, they can be seen as a new knowledge source for upper layers.

The semantic bridges can be cast as articulation rules Rk, which take a term from Oi and maps

it into a term of Oj using a semantic meaningful label.

2.2 The onion viewer

The onion viewer is a graphical user interface for the onion system. A domain expert initiates

a session by calling into view the ontologies of interest. Then he can opt for a re�nement of an

existing ontology using o�-line information, import additional ontologies into the system, drop an

ontology from further consideration and specify articulation rules.

The alternative method is to call upon the articulation engine to visualize possible semantic

bridges based on the rule set already available. The expert can then update the suggested bridges

using the viewer or supply new rules for the generation of the articulation. E�ectiveness of this

method depends on the inference performed by the articulation engine and heuristics embedded

in the existing rule set. Progress in capturing business semantics in products such as Business

Objects, SAP/R3 and Baan, indicate that such rule sets can indeed be derived.

Once �nished, the expert may use the interface to formulate queries or direct the system to

generate wrappers for inclusion in concrete applications using the onion query engine.

2.3 The onion query system

Interoperation of ontologies forms the basis for querying their semantically meaningful intersection

or for exchanging information between the underlying sources.

The former calls for a traditional query engine, which takes a query phrased in terms of an

articulation ontology and derives an execution plan against the sources involved. Given the semantic

bridges, however, query reformulation is often required.

The query system has a graphical user interface, wrappers for applications and a query processor

which uses the query execution rules to reformulate the query and generate its solution.

2.4 The Articulation Engine

The articulation engine is responsible for generating potential articulations between the source

ontologies. Onion is based on the SKAT (Semantic Knowledge Articulation Tool) system developed

in recent years at Stanford[16]. Articulation rules are proposed by SKAT using expert rules and

other external knowledge sources or semantic lexicons (e.g., Wordnet) and veri�ed by the expert.

It uses an inference engine to derive possible alternative articulations.

The articulation generator takes the articulation rules generated by SKAT and generates the

articulation. This is then forwarded to the expert for con�rmation. If the expert suggests changes

or new rules, they are forwarded to SKAT for further generation of new articulation rules. This

process is iteratively repeated until the expert is satis�ed with the generated articulation.

Notational conventions

In the rest of the paper we will use the following terms. The individual ontologies will be referred

to as source ontologies. Articulation rules indicate which terms, individually or in conjunction, are

related in the source ontologies. An articulation ontology contains these terms and the relationships

between them. The term articulation will refer to the articulation ontology and the the rules that

relate terms between the articulation ontology and the source ontologies. The source ontologies

along with the articulation is referred to as the uni�ed ontology.

It is important to note that the uni�ed ontology is not a physical entity but is merely a term

coined to facilitate the current discourse. The source ontologies are independently maintained and

the articulation is the only thing that is physically stored. As shown in, Figure 1, the uni�ed

ontology O5 is constructed from the source ontologies O3 and O4 and the articulation ontology A2.

The articulation consists of A2 and the rules linking it to O3 and O4.

2.5 Motivating Example

To illustrate our graph model of ontologies and articulation, we use selected portions of two ontolo-

gies. The portions of the ontologies carrier and factory related to a transportation application

have been selected (and greatly simpli�ed) (Figure 2). These ontologies model the semantic rela-

tionships `SubclassOf', `AttributeOf', `InstanceOf' and `Semantic Implication' that are represented

as edge labels `S',`A',`I',`SI' respectively. For clarity a few of the most obvious edges have been

omitted.

3 Graphical Representation of Ontologies

The ONION system has been anchored in the seminal work on graph-based databases in[14]. In

this section we introduce its formal setting, the operations that come with it, and how to deploy

the graph-based setting in the running example.

Transportation
Transportation

CargoCarrier

Goods Vehicle

Price
Weight

A A

S S

A

O2 SUV

Buyer

Factory
Truck

PassengerCar

Person

Driver

Cars

MyCar

Price

2000

Price

A

I

S S

ModelI
AAA

Owner

Carrier

Trucks

S

S

Price Owner

Transportation

VehicleCargoCarrier

CarsTrucks

Transportation

A
S

PSToEuroFn

EuroToPSFn

A

SI

SI

SI SI

SI
SI

SI

SI

A A

SI SI

S S

A

Figure 2: Articulation of Ontologies

The Graph-Oriented Model

Formally, an ontology O is represented by a directed labeled graph G = (N;E) where N is a �nite

set of labeled nodes and E is a �nite set of labeled edges. An edge e is written as (n1; �; n2) where

n1 and n2 are members of N and � is the label of the edge. The label of a node n is given by a

function �(n) maps the node to non-null string. In the context of ontologies, the label often maps

to a noun-phrase. The label � of an edge e = (n1, �, n2) is a string given by � = �(e). The

string attached to an edge relates to either a verb in natural language or a pre-de�ned semantic

relationship. The domain of the functions � and � is the universal set of all nodes (from all graphs)

and the range is strings (from all lexicons).

Example Our running example already elicits the graphical structure envisioned. It is composition

of three independent graphs, which each provide a ontological context. The semantic model for the

sources is built around the relationships f "InstanceOf", "SubclassOf", "AttributeOf" g, which are

commonly found in literature. The semantic bridges are indicated with dotted lines and will be

discussed shortly.

The Graph Patterns

A necessary ingredient to manipulate the graphs is a mechanism to identify portions of interest in

a concise manner. Graph patterns can be used for this purpose. We de�ne a pattern P to be a

graph P = (N 0; E0), which matches a subgraph if, apart from a structural match, the labels of the

corresponding nodes and the edges are identical. Formally, graph G1 = (N1; E1) is said to match

into G2 = (N2; E2) if there exists a total mapping function f : N1 ! N2

1. for each node n1 2 N1, �1(n1) = �2(F (n1)).

2. for each edge e1 = (n1; �; n2) 2 E1, there exists an edge e2 = (f(n1); �; f(n2)) 2 E2.

In the ONION toolkit, the patterns are mostly identi�ed by direct manipulation of the graph

representation. For the textual interface we use a straight forward notation with (curly) brackets

to denote hierarchical objects. Variables are indicated with bounded terms.

Example Possible patterns over our transportation world are carrier:car:driver, and truck(O :

owner;model) where variable O binds with a truck owner object. Space limitations prohibit a

further expose of the query facilities using patterns. We refer interested readers to papers on

semi-structured query languages[17, 1].

Graph Transformation Primitives

In order to transform the ontology graphs we de�ne four primitive operations: addition of nodes,

deletion of nodes, addition of edges and deletion of edges. Addition of nodes and edges is used

to generate the articulation and deletion is required to change it in response to changes in the

underlying ontologies. The context of the operations is a graph G = (M;E) where M is the set

of nodes m1; m2; � � � ; mn and subscripts i; j; k 2 f1 � � �ng. The operations are shortly de�ned as

follows:

� Node addition

Given the graph G, a node N and its adjacent edges f(N; alphai; mj)g to add, the NA

operation results in a graph G0 = (M 0; E0) whereM 0 = M[N and E0 = E[f(N; alphai; mj)g

� Node deletion

Let N�M be the node to be deleted and Z = f(N;�i; mjg [fmj ; �i; N)g the edges incident

with N , then the node deletion operation ND, on the graph G, results in a graph G0 =

(M 0; E0) where M 0 = M �N and E0 = E � Z.

� Edge Addition Given a graph and a set of edges SE = f(mi; �j; mk)g to add the edge addition

operation EA[G; SE] results in a graph G0 = (M;E0) where E0 = E [SE.

� Edge Deletion Given a graph and a set of edges SE = f(mi; �j ; mk)g to remove the edge

deletion operation ED[G; SE] results in a graph G0 = (M;E0) where E0 = E � SE.

For the sake of clarity, in the rest of the discussion, we will refer to edges using node labels instead of

the nodes they represent, i.e., instead of saying edge e = (n1; �; n2) where �(n1) = A and �(n2) = B

we will refer to it as the edge e = (A; �;B). This is, typically, not a problem for ontologies that

are consistent, since, in the subclass hierarchies, a term is represented by one node.

4 Articulation of Ontologies

The ontologies in our running example represent three sections of the real world. The carrier

and factory represent two autonomous knowledge sources, while the transport ontology models

an articulation of the semantic interface necessary to relate the other sources. It does not stand on

its own, but captures the semantic objects that help bridge the semantic gap between carrier and

factory.

This observation has some far-reaching consequences. It reduces the articulation problem to

identifying semantically relevant classes and to maintaining the subset-relationship with the un-

derlying sources as semantic bridges. The focus of this section is to build mechanisms to carve out

portions of an ontology, required by the articulation, using graph patterns. To complete the model,

we introduce functional abstractions to convert information as required by the articulation process.

4.1 Ontology Terms and Patterns

An articulation graph OA is built from structures taken from the underlying sources and maintains

information regarding the relationships that exist between them. OA is constructed using both

interactive guidance from the domain expert and deployment of general articulation rules drawn

from a knowledge base using SKAT. Such articulation rules take the form of P) Q where P;Q

are complex graph patterns.

The construct P) Q is read as "an Q object semantically belongs to the class P", or " P

semantically implies Q". In a pure object-oriented setting, this amounts to restricting the semantic

bridges considered to be a "directed subset" relationship. We shortly discuss the kind of articulation

rules encountered and the method to represent them in onion.

Semantic Implication Bridges

The rule O1:A) O2:B where A and B are simple node identi�ers is cast into the single edge (A,

"SIBridge", B) between the ontology structures. It models the case that an A object is a semantic

specialization of B and is the simpliest semantic bridge considered.

Pre�xing the terms with their respective ontologies is a consequence of a linear syntax adhered

to in this paper. In onion a simple click and drag approach resolves this naming problem.

Example. The articulation rule (carrier:Car) factory:V ehicle) is translated to an edge addition

operation, i.e. EA[OU; f(carrier:Car; "SIBridge"; transport:V ehicle)(factory:V ehicle; "SIBridge"; transport:V

The �rst edge indicates that carrier:Car is a specialization of transport:V ehicle. The other two

edges establish the equivalence of factory:V ehicle and transport:V ehicle

In spite of the term V ehicle not occurring in carrier, modeling of such an articulation enables

us to use information regarding cars in carrier and to integrate knowledge about all vehicles from

carrier and factory (at least as far as this is semantically valid).

Example. Alternatively, new terms can be added to the articulation graph using the cascaded

short hand (carrier:Car) transport:PassengerCar) factory:V ehicle). To model this rule, the

articulation generator adds a node PassengerCar to the transport ontology. It then adds the edges

(carrier:Car; "SIBridge"; transport:PassengerCar) and (transport:PassengerCar; "SIBridge"; factory:Vehicl

Articulation rules are not con�ned to bridging ontologies. They can also be used to structure the

articulation graph itself, in order to obtain a more coherent description. Likewise, the notational

convenience of multi-term implication is broken down by articulation generator into multiple atomic

implicative rules.

Example. The rule (transport:Owner) transport.Person)resultsintheadditionofanedge; tothearticulationontolo

Conjunction and disjunction

The operands for the semantic implication can be generalized to encompass graph pattern predi-

cates. Their translation into the onion data layer amounts to introducing a node to represent the

sub-class derived and taking this as the target for the semantic implication. A few examples su�ce

to illustrate the approach taken.

Example The compound rule ((factory:CargoCarrier ^ factory:V ehicle)) carrier:Trucks) is

modeled by adding a node, N , to represents all vehicles that can carry cargo, to the articulation

ontology. The default label for N is the predicate text, which can be overruled by the user using a

more concise and appropriate name for the semantic class involved. In our example, we introduce

a node labeled CargoCarrierV ehicle and edges to indicate that this is a subclass of the classes

V ehicle, CargoCarrier and Trucks. Furthermore, all subclasses of V ehicle that are also subclasses

of CargoCarrier, e.g, Truck, are made subclasses of CargoCarrierV ehicle. This is intuitive since

a CargoCarrierV ehicle is indeed a vehicle, it carries cargo and is therefore also a goods vehicle.

Articulation rules that involve disjunction of terms, like, (factory:V ehicle) (carrier:Cars _

carrier:Trucks)) are modeled by adding a new node in the articulation ontology labelled CarsTrucks

and edges that indicate that the classes carrier:Cars, carrier:Trucks and factory:V ehicle are sub-

classes of transport:CarsTrucks. Intuitively, we have introduced a term CarsOrTrucks which is

a class of vehicles that are either cars or trucks and the term V ehicle implies (is a subclass of)

CarsOrTrucks.

Functional Rules

Di�erent ontologies often contain terms for the same concept, but are expressed in a di�erent metric

space. Normalization functions can be used to associate such terms in a convenient way.

Example. The price of cars expressed in terms of Dutch Guilders and Pound Sterling might need

to be normalized with respect to, say the Euro, before they can be integrated. The choice of the

Euro - the normalized currency - is made by the expert (or politician!). We expect the expert to

also supply the functions to perform the conversions both ways i.e. from Dutch Guilders to Euro

and back.

Given the ontology graphs, and rules like (DGToEuroFn() : carrier:DutchGuilders) transport:Euro),

we create an edge (carrier:DutchGuilders; "DGToEuroFn()"; transport:Euro) to the articulation

ontology from carrier. The query processor will utilize these normalizations functions to trans-

form terms to and from the articulation ontology in order to answer queries involving the prices of

vehicles.

4.2 Structure of the Articulation Ontology

The construction of the articulation ontology, as detailed above, mainly involved introducing nodes

in the articulation ontology and edges between these nodes and nodes in the source ontologies.

There are very few edges between the nodes in the articulation ontology, unless explicit articulation

rules were supplied linking them. Such implication rules are essential if the articulation expert

envisages a new structure for the articulation ontology. The expert can cut and paste portions

of Oi and indicate that the structure of OA is to be similar to these portions using either the

graphical interface or pattern-based rules. We then generate the structure between the nodes in

the articulation ontology based primarily on the transitive closure of the edges in the ontology O1

and other inference among the articulation rules although all transitive semantic implications are

not shown unless requested by the expert.

5 An Ontology Algebra

We de�ne an algebra to enable interoperation between ontologies using the articulation ontology,

The input to the operators in the algebra are the ontology graphs. Unary operators like �lter

and extract work on a single ontology. They are analogous to the select and project operations

in relational algebra. They help us de�ne the interesting areas of the ontology that we want to

further explore. Given an ontology and a graph pattern an unary operation matches the pattern

and returns selected portions of the ontology graph. Binary operators include union, intersection

and di�erence. They take as input two ontologies and the articulation rules and output another

ontology constructed based on the articulation.

5.1 Union

Answering user queries involves consulting more than one knowledge source and composing knowl-

edge from them if required. In the most general case, where the query-plan indicates that more

than one knowledge base needs to be consulted, queries should be directed to the union of the

ontologies. We use the two sources and the articulation ontology to glue the sources together.

The union operator takes two ontology graphs, a set of articulation rules and generates a uni�ed

ontology graph where the resulting uni�ed ontology comprises of the two original ontology graphs

connected by the ontology articulation as outlined in the previous section.

The ontology union OU of source ontologies O1 and O2 is de�ned as O1 [rules O2 = OU . Let

O1 = (N1; E1);O2 = (N2; E2) be the graphs representing the source ontologies, OA = (NA;EA)

represents the articulation ontology, BridgeEdges is the set of edges connecting nodes between OA

and either O1 or O2, as computed by the articulation generator to model the articulation rules and

OU be the graph representing the uni�ed ontology. OU = (N;E;) is such that N = N1[N2[NA

and E = E1[E2[EA[BridgeEdges

5.2 Intersection

The intersection operator takes two ontology graphs, a set of articulation rules and produces the

articulation ontology graph. The articulation ontology graph consists of the nodes added by the

articulation generator representing the articulation rules and the edges between these nodes. The

edges that are between these nodes and nodes in the source ontologies are not included since those

nodes are not part of the articulation ontology graph. The intersection, therefore, produces an

ontology that can be further composed with other ontologies.

The ontology intersection OI of source ontologies O1 and O2 is de�ned as O1 \rules O2 = OI

where OI = OA as generated by the articulation generator.

5.3 Di�erence

The di�erence of two ontologies (O1 � O2) is de�ned as the terms and relationships of the �rst

ontology that have not been determined to exist in the second.

Example. Assume the only articulation rule that exists is (carrier:Car => factory:V ehicle). It is

intuitively clear that the di�erence between the ontologies carrier and factory should not contain

cars. Therefore, the articulation generator deletes the node Car and all nodes that can be reached

by a path from Car, but not by a path from any other node. All edges incident with any deleted

node is also deleted.

Now the di�erence (factory � carrier) will contain the node 'Vehicle' (provided no other rule

indicates that an equivalent class or superclass of vehicle exists in carrier.) Although, the the

�rst source contains knowledge about cars, which are vehicles, the expert rule does not identify

which vehicles in the second source are cars. To compute the di�erence, only cars need to be

deleted from the second source and not any other type of vehicle. Since, with the given rules,

there is no way to distinguish the cars from the other vehicles in the second knowledge source,

the articulation generator takes the more conservative option of retaining all vehicles in the second

ontology. Therefore, the node 'Vehicle' is not deleted.

The di�erence, OD, of two ontologies O1 and O2 is de�ned as O1 - O2 = OD. Let O1=(N1,

E1), O2=(N2, E2) be the graphs representing the source ontologies, OA=(NA, EA) is the graph

representing the articulation ontology. OD=(N,E) represents the ontology OD such that n belongs

to N if

� n belongs to N1 and n does not belong to N2

� and 8n0 belonging to NA, no rule of the form (O1:n => OA:n0) exists.

and an edge e�E if e�E1 and if e = (n1; �; n2), n1�N and n2�N .

6 Conclusion

We have outlined a scalable framework for a system that enables interoperation between knowledge

sources to reliably answer user queries. The approach ensures minimal coupling between the sources,

so that the sources can be developed and maintained independently. We believe that this approach

greatly reduces costs to the applications composing knowledge from a large number of sources that

are frequently updated like the world-wide web.

This paper highlights a sound formalism used to represent ontologies graphically. Resolution of

semantic heterogeneity is addressed using expert rules. Semantic relationships are �rst represented

using �rst-order logic based articulation rules. These rules are then modeled using the same graph-

ical representation. This representation is simple, easy to visualize and provides the basis for a tool

that generates the articulation by resolving semantic heterogeneity semi-automatically.

The main innovation in ONION is that it captures semantic relationships using logical rules

concisely. We then show how this can be modeled using a graph-oriented model as the data layer.

This clean representation helps in separating the data layer with the inference engine.

The system architecture provides the ability to plug in di�erent semantic reasoning components

and inference engines which can make the task of the expert easier. How such components can

use external knowledge sources and lexicons to suggest a better articulation is being currently

investigated as part of completing the implementation of the ONION toolkit.

7 Acknowledgements

Thanks are due to Jan Jannink for his help in developing some of the basic ideas.

References

[1] Extensible markup language (xml) 1.0 http://www.w3.org/tr/rec-xml, Feb 1999.

[2] C.A. Knoblock, S. Minton, J.L. Ambite, N. Ashish, P.J. Modi, Ion Muslea, A.G. Philpot, and

S. Tejada. Modeling web sources for information integration. In Proceedings of the Fifteenth

National Conference on Arti�cial Intelligence, Madison, WI, 1998.

[3] P. Buneman, S. Davidson, and A. Kosky. Theoretical aspects of schema merging. In G. Goos

and J. Hartmanis, editors, Advances in Database Technology - EDBT '92, Proc. 3rd Interna-

tional Conference on Extending Database Technology, number 580 in Lecture Notes in Com-

puter Science, pages 152{167. EDBT, Springer-Verlag, Mar. 1992.

[4] Resource description framework (rdf) model and syntax speci�cation,

http://www.w3.org/tr/rec-rdf-syntax/, February 1999.

[5] M.R. Genesereth, A.M. Keller, and O.M. Duschka. Infomaster: An information integration

system. In ACM SIGMOD '97, pages 539{542. ACM, 1997.

[6] The information manifold, http://portal.research.bell-labs.com/orgs/ssr/people/levy/paper-

abstracts.html#iga.

[7] A.T. McCray, A.M. Razi, A.K. Bangalore, A.C. Browne, and P.Z. Stavri. The umls knowledge

source server: A versatile internet-based research tool. In Proc. AMIA Fall Symp, pages

164{168, 1996.

[8] The stanford-ibm manager of multiple information sources, http://www-

db.stanford.edu/tsimmis/.

[9] P. Scheuermann, C. Yu, A. Elmagarmid, H. Garcia-Molina, F. Manola, D. McLeod, A. Rosen-

thal, and M. Templeton. Report on the workshop on heterogenous database systems. In ACM

SIGMOD RECORD 19,4, pages 23{31, December 1989.

[10] A.P. Sheth and J.A. Larson. Federated database systems for managing distributed, heteroge-

nous, and autonomous databases. In ACM Computing Surveys, pages 183{236, 1994.

[11] M. Siegel and S. Madnick. A metadata approach to solving semantic conicts. In Proc. of the

17th International Conference on Very Large Data Bases, pages 133{145, 1991.

[12] The context interchange project, http://context.mit.edu/ coin/.

[13] Cyc knowledge base, http://www.cyc.com/.

[14] M. Gyssens, J. Paredaens, and D. Van Gucht. A graph-oriented object database model. In

Proc. PODS, pages 417{424, 1990.

[15] Ontolingua, http://www-ksl-svc.stanford.edu:5915/doc/project-papers.html.

[16] P Mitra, G Wiederhold, and J Jannink. Semi-automatic integration of knowledge sources. In

Proc. of the 2nd International Conference On Information Fusion { FUSION'99, July 1999.

[17] Y. Papakonstantinou, H. Garcia-Molina, and Widom J. Object exchange across heterogeneous

information sources, March 1995.

