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Abstract

This thesis is devoted to the Earth Mover's Distance and its use within content-based image

retrieval (CBIR). The major CBIR problem discussed is the pattern problem: Given an

image and a query pattern, determine if the image contains a region which is visually similar

to the pattern; if so, �nd at least one such image region. The four main themes of this work

are: (i) partial matching, (ii) matching under transformation sets, (iii) combining (i) and

(ii), and (iv) e�ective pruning of unnecessary, expensive distance/matching computations.

The �rst pattern problem we consider is the polyline shape search problem (PSSP): Given

text and pattern planar polylines, �nd all approximate occurrences of the pattern within the

text, where such occurrences may be scaled and rotated versions of the pattern. For a text

and a pattern with n and m edges, respectively, we present an O(m2n2) time, O(mn) space

PSSP algorithm. A major strength of our algorithm is its generality, as it can be applied

for any shape pattern represented as a polyline.

The main distance measure studied in this thesis is the Earth Mover's Distance (EMD),

which is an edit distance between distributions that allows for partial matching, and which

has many applications in CBIR. A discrete distribution is just a set of (point,weight) pairs.

In the CBIR context, the weight associated with a particular point in a feature space is

the amount of that feature present in the image. The EMD between two distributions is

proportional to the minimum amount of work needed to change one distribution into the

other, where one unit of work is the amount necessary to move one unit of weight by one

unit of ground distance. We give a couple of modi�cations which make the EMD more

amenable to partial matching: (i) the partial EMD in which only a given fraction of the

weight in one distribution is forced to match weight in the other, and (ii) the � -EMD which

measures the amount of weight that cannot be matched when weight moves are limited to

at most � ground distance units.

An important issue addressed in this thesis is the use of e�cient, e�ective lower bounds

on the EMD to speed up retrieval times. If a system can quickly prove that the EMD is

larger than some threshold, then it may be able to avoid an EMD computation and decrease
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its query time. We contribute lower bounds that are applicable in the partial matching case

in which distributions do not have the same total weight. The e�ciency and e�ectiveness of

our lower bounds are demonstrated in a CBIR system which measures global color similarity

between images.

Another important problem in CBIR is the EMD under transformation (EMDG) prob-

lem: �nd a transformation of one distribution which minimizes its EMD to another, where

the set of allowable transformations G is given. The problem of estimating the size/scale at

which a pattern occurs in an image is phrased and e�ciently solved as an EMDG problem

in which transformations scale the weights of a distribution by a constant factor.

For EMDG problems with transformations that modify the points of a distribution but

not its weights, we present a monotonically convergent iteration called the FT iteration.

This iteration may, however, converge to only a locally optimal EMD value and transfor-

mation. The FT iteration is very general, as it can be applied for many di�erent (ground

distance, transformation set) pairs, and it can be modi�ed to work with the partial EMD, as

well as in some cases in which transformations change both distribution points and weights.

We apply the FT iteration to the problems of (i) illumination-invariant object recognition,

and (ii) point feature matching in stereo image pairs. We also present algorithms that are

guaranteed to �nd a globally optimal transformation when matching equal-weight distribu-

tions under translation (i) on the real line with the absolute value as the ground distance,

and (ii) in any �nite-dimensional space with the Euclidean distance squared as the ground

distance.

Our pattern problem solution is the SEDL (Scale Estimation for Directed Location)

content-based image retrieval system. Three important contributions of this system are (1)

a general framework for �nding both color and shape patterns, (2) the previously mentioned

novel scale estimation algorithm using the EMD, and (3) a directed (as opposed to exhaus-

tive) search strategy. We show that SEDL achieves excellent results for the color pattern

problem on a database of product advertisements, and the shape pattern problem on a

database of Chinese characters. A few promising pattern locations are e�ciently computed

at query time without having to examine image areas that obviously do not contain the

pattern. SEDL uses the � -EMD to help eliminate false positives resulting from di�culties

in trading o�, for example, color and position distances to measure visual similarity.
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Chapter 1

Introduction

The invention of the World Wide Web has brought the need for automated image indexing

and content-based image retrieval (CBIR) to the forefront of image processing and computer

vision research. Although there has been signi�cant progress in CBIR in the past �ve years,

the general problem is far from solved. Semantic image understanding is beyond the scope

of current state-of-the-art CBIR systems. A user who hopes to retrieve all database images

of dogs by presenting a CBIR system with a query dog image is likely to be disappointed.

Today's systems with automated indexing mechanisms record color, texture, and shape

indices in the hope that similarity of these low level features and their locations in the

database and query images will imply a high level semantic relationship. Thus, CBIR users

today must make do with visual similarity instead of semantic similarity.

Measuring visual similarity with an eye toward semantic similarity between images is

still a very di�cult problem. In general, database images of interest are unconstrained input

to a CBIR system. Images may be taken from any distance, at any time of day, under any

weather conditions, under any illuminant, from any angle or viewpoint. Two images of the

same object imaged under di�erent illuminants and from di�erent viewpoints will still look

similar even though corresponding image pixels may be quite di�erent in color. This visual

similarity will persist even when the object is partially occluded from one of the viewpoints.

Comparing images of di�erent scenes, on the other hand, is di�cult even without the

complication of lighting and viewpoint changes. If we ever want to obtain semantic similarity

from measures of visual similarity, then our notion of visual similarity must allow for partial

matching of images. A database image with regions that are similar to regions in a query

image is likely to be related to the query in some way that the user cares about, and is

therefore a good candidate for retrieval. It is common for a semantic relationship to exist

even when only part of the information in the database image matches information in the

1
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Figure 1.1: The Importance of Partial Matching. The left and right images are semantically

related because both contain zebras, but there are no sky and clouds in the right image,

and there are no trees in the left image. Partial matching is crucial in any CBIR system

that aims to capture semantic similarity.

query, and only part of the information in the query matches information in the database

image. The images in Figure 1.1, for example, are semantically related because they both

contain zebras, but there are no sky and clouds in the right image, and there are no trees

in the left image. It is also possible for a semantic relationship to exist when only a very

small fraction of the one image can be matched to the other image. Consider, for example,

the Apple logo image and the Apple advertisement shown in Figure 1.2. The Apple logo is

less than one half of one percent of the advertisement. The ability to �nd even very small

partial matches is important in CBIR.

The image matching problem is to identify all pairs of visually similar subregions from

two images. An e�cient solution to this problem is a holy grail in CBIR. Such region

similarities provide crucial information to a CBIR system that attempts to make reasonable

guesses as to the similarity of the semantic content of images. These guesses may be based

on the relative positions of the similar regions, as well as which regions have no similar

region in the other image. The set of similar regions can also be displayed to the user to

show why a particular database image was retrieved for a given query.

At the heart of virtually any CBIR system is its image distance measure. Such distance

measures usually do not operate directly on the images themselves, but rather on image

summaries or signatures that record information in a form more suitable for e�cient com-

parison. The main distance measure discussed in this thesis is the Earth Mover's Distance
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Figure 1.2: The Importance of a Small Partial Match. The Apple logo image on the left is

semantically related to the Apple advertisement on the right even though the logo covers

less than one half of one percent of the total area of the advertisement.

(EMD). The use of the EMD in image retrieval was pioneered by Rubner, Tomasi, and

Guibas ([69, 67, 65, 68]). This distance measure compares image signatures which are dis-

tributions of mass or weight in some underlying feature space. The weight associated with

a particular point in the feature space is the amount of that feature present in the image,

and a distribution is a set of (point,weight) pairs. The EMD between two distributions is

proportional to the minimum work required to change one distribution into the other. The

morphing process involves moving around mass within the feature space (hence the name of

the distance measure). The notion of work is borrowed from physics. One unit of work is the

amount of work necessary to move one unit of weight by one unit of distance in the feature

space. The EMD framework has been successfully applied in color-based ([69, 67, 65, 68])

and texture-based ([69, 68, 66]) retrieval systems. The di�erences in these two cases are

simply the feature space and the distance measure in the feature space.
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1.1 The Pattern Problem

This thesis is concerned with a slightly simpli�ed version of the image matching problem

which we call the pattern problem.

The Pattern Problem. Given an image and a query pattern, determine if the image

contains a region which is visually similar to the pattern. If so, �nd at least one such image

region.

In contrast to the image matching problem, in the pattern problem we search for the entire

query as a single subregion of the image. A solution to the pattern problem can be used to

build a solution to the image matching problem if a query image can be decomposed into

atomic regions of interest. This is certainly a reasonable assumption in the CBIR context

since the user can manually outline a few relevant regions in the query before submitting

it to the system. A routine that solves the pattern problem can be called with each of the

query regions as the pattern.

The pattern problem is very di�cult because of the combination of partial matching

and scaling. The pattern may occur at any location in the image, and at any size. It is

not known a priori where to look in the image, or how much of the image area around a

given location to examine. Without a good estimate of the scale, it is very di�cult for

an algorithm to conclude that a pattern does not exist at a particular image location. If

the assumed scale of the pattern is too large, then the image location is unfairly penalized

because too much information is being examined, much of which may have no matching

information in the query pattern. If the assumed scale of the pattern is too small, then

much of the pattern information may not be matched because not enough area around the

hypothesized pattern location is being examined. These points are illustrated in Figure 1.3,

where we compare the color signatures for a query pattern and various size rectangular

regions around and within the occurrence of the pattern in a database image.

Another di�cult issue in the pattern problem is e�ciency, even when the scale of the

pattern is known. If the pattern scale is very small, then there are many nonoverlapping

(and therefore independent) image locations to check for the pattern. This leads to an

e�ciency problem in the CBIR context in which a pattern problem must be solved for

many (query, database image) pairs. To compound the problem even further, it is di�cult

to prune a search for a pattern in one image because of a negative search result in another

image. Such pruning is possible in CBIR systems which have a true metric as an image

distance measure. If query Q is far from database image P , and database image P is close
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 1.3: The Importance of Scale. The estimated scale at which a pattern appears

is important because it determines the amount of information in the database image to

compare to the information in the pattern. In row (a), we show the pattern and its color

signature. In row (b), we show the database image and its color signature. In rows (c)-(f),

we show various subregions of the image in (b) along with their color signatures. The EMD

between the pattern signature and each of the image signatures (in CIE-Lab color space

units) is (b) 27.7, (c) 19.8, (d) 5.5, (e) 9.4, (f) 20.8. Note that the subregion shown in (d)

is almost exactly the occurrence of the pattern in the database image.
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to database image R, then the triangle inequality implies that Q is also far from R. Any

distance measure which allows for partial matching, however, will not be a metric because

the triangle inequality can be violated. A query pattern Q may not occur in image P

(d(Q;P ) is large), and image P may have many regions in common with image R (d(P;R)

is small), but the pattern may still occur in image R (d(Q;R) is small) in a region of R

which is not similar to a region in P .

In addition to the sheer number of region comparisons that a brute force approach with

or without accurate scale information would perform, there is also the di�culty that each

such comparison is not straightforward. Even if the system knows the scale at which the

pattern may occur in an image, the pattern may occur rotated in the image with respect to

the example presented to the system. Under general imaging assumptions, the comparison

between regions must allow for a projective transformation between the image region and

the query. In addition to this geometric transformation in image position space, in the

color pattern case we might need to account for a photometric transformation in judging

visual region similarity. The same object imaged under di�erent light sources may have

very di�erent pixel colors, but will still appear very similar to a human observer. In terms

of the underlying imaging system, unknown pattern scale, pose, and color appearance are

the result of unknown camera-to-object distance, unknown camera viewpoint, and unknown

lighting conditions. Also, perceptual color similarity is a complex and ill-understood notion

which depends on context and many other factors; these issues are beyond the scope of this

work.

Once geometric and photometric factors have been accounted for, the match between

images of the same object from di�erent viewpoints and under di�erent illumination con-

ditions will be nearly exact. However, we need to measure similarity and allow for inexact

pattern matches. This raises the di�cult problem of how to combine color and position

information in judging the visual similarity of two color patterns.

1.2 Thesis Overview

This thesis is devoted to the pattern problem in the context of content-based image retrieval.

Four main themes are present:

(i) partial matching,

(ii) matching under transformation sets,

(iii) combining (i) and (ii), and
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(iv) e�ective pruning of unnecessary, expensive distance/matching computations.

In chapter 2, we give some background information to help put this thesis in the context

of previous research. This includes brief descriptions of works with similar goals and that

discuss similar problems to those in our work, as well as a discussion of high level di�erences

in motivation, approach, and technique. In chapter 3, we solve a 1D shape pattern problem

which seeks all (possibly scaled and rotated) approximate occurrences of a pattern polyline

shape within another polyline.

The thesis shift gears a bit in chapter 4 where we discuss the Earth Mover's Distance

and a couple of modi�cations which make it more amenable for use in partial matching

settings. One of these modi�cations is the partial EMD in which only a given fraction of

the total weight in a distribution is forced to match weight in the other distribution. The

other modi�cation is the � -EMD which measures the amount of weight that cannot be

matched when weight moves are limited to at most � units. Also included in this chapter

is an algorithm that uses the EMD to estimate the scale at which a pattern may occur in

an image. The issue of e�ciency is the central theme of chapter 5 in which we present

e�cient lower bounds on the EMD that often allow a system to avoid many more expensive,

exact EMD calculations. These lower bounds were developed and are illustrated within the

context of the color-based retrieval system described in [65].

In chapter 6, we extend the Earth Mover's Distance to allow for unpenalized distri-

bution transformations. We consider the problem of computing a transformation of one

distribution which minimizes its EMD to another, where the set of allowable transforma-

tions is given. The previously mentioned scale estimation problem is phrased and e�ciently

solved as an EMD under transformation (EMDG) problem in which transformations change

the weights of a distribution but leave its points �xed. For EMDG problems with transforma-

tions that modify the points of a distribution but not its weights, we present a monotonically

convergent iteration called the FT iteration. This iteration may, however, converge to only

a locally (cf. globally) optimal EMD value and transformation. The FT iteration is very

general, and is modi�ed to work with the partial EMD mentioned above, as well as in some

cases when transformations modify both distribution points and weights. We also discuss

cases of the EMDG problem which can be solved directly, without our iteration.

In chapter 7, we describe the SEDL (Scale Estimation for Directed Location) content-

based image retrieval system for the pattern problem. The SEDL framework is general

enough to be applied to both the color and shape pattern problems. In the shape case,

images are sets of curves such as might be produced by edgel detection and linking, or by any

standard drawing program. Excellent results for a color database of product advertisements
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and a shape database of Chinese characters are shown.

A key component in SEDL is the previously mentioned scale estimation module. The

output of this module is either an estimate of the pattern scale in the database image or

an assertion that the pattern does not appear in the image. In the initial placement phase

that follows scale estimation, SEDL e�ciently determines a handful of places in the image

where the pattern might occur at the previously estimated scale. This small set of promising

locations mark the starting points for the �nal veri�cation and re�nement phase. For each

initial placement of the query at the estimated scale, SEDL checks for positional consistency

of the underlying attributes (for example, colors), modifying the attribute locations by

some transformation if this will help improve the match. In recognition of the di�culty of

combining attribute and position information, a �nal check using the � -EMD helps eliminate

false positives.

Finally, we conclude in chapter 8 with a thesis summary, main insights, and suggestions

for future work.



Chapter 2

Background

In this chapter, we give a history of previous work which is related to work contained in this

thesis. Along the way, we alert the reader to the high level di�erences between the previous

work and our work.

2.1 The 1D Shape Pattern Problem

The core of this thesis begins in chapter 3 with an algorithm to �nd a polyline shape pattern

within another polyline. Using this algorithm, one can summarize/simplify the description

of a polyline by �nding pieces of the polyline with more compact descriptions such as \line

segment", \corner", or \circular arc".

There are many methods for �nding geometric primitives in polylines. The classic pat-

tern recognition book [56] by Pavlidis is an early computer vision reference for approximat-

ing, within some error bound, polylines with many vertices by polylines with fewer vertices.

Some such approximation algorithms, which essentially �nd line segments within a poly-

line, are given in [56] in the chapter titled \Analytical Description of Region Boundaries

and Curves". Three excellent, contemporary works from the computer vision community

are the Lowe segmentation algorithm ([45]) to divide an edgel chain into straight segments,

the \strider" algorithm of Etemadi ([23]) to �nd straight segments and circular arcs, and

the Rosin and West algorithm ([62]) to identify line segments, elliptical arcs, and other

high-order curves.

The crucial issue in all such segmentation algorithms is where to stop one description

and to begin another. The three works [45], [23], and [62] are all similar in that their

breakpoint selection does not use more usual, curvature-based criteria such as curvature

zero crossings and extrema. Curvature is sensitive to noise, and the mentioned breakpoint

conditions may divide a curve that does not have constant curvature. For example, breaking

9
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descriptors at curvature extrema may result in the division of an elliptical arc into two or

more pieces. Regardless of the breakpoint strategy, a single pass through the polyline data

may not yield very good results. Each of the previously mentioned algorithms also has a

second phase that considers replacing two descriptions of adjacent curve pieces with a single

description over their union.

Etemadi's \strider" segmentation algorithm ([23]) uses a symmetry condition to deter-

mine an initial set of breakpoints. A chain of pixels is labelled as symmetric or asymmetric

using the midpoint R of the pixel chain and the line segment PQ connecting its endpoints.

The line through R and perpendicular to PQ splits PQ into two segments PS and SQ.

The chain from P to Q is in a symmetric state i� the di�erence in lengths of PS and SQ

is less than 1=
p
1 + L2, where L is the length of the chain. Note that circular arcs and

straight segments are symmetric chains. The strider algorithm adds pixels to a chain until

the chain is in an asymmetric state for three consecutive pixel additions. The process then

begins again from the �rst pixel which caused the chain to become asymmetric.

The segmentation algorithms of Lowe ([45]) and Rosin and West ([62]) both use a maxi-

mum deviation criterion to compute breakpoints and a scale invariant \signi�cance" formula

to decide whether to split a chain further. The Rosin and West algorithm is a generaliza-

tion of the Lowe algorithm to handle geometric primitives other than line segments. Lowe's

algorithm recursively computes a segmentation tree for a pixel chain. The entire chain is

approximated by a single segment and then split into two subchains at the pixel which de-

viates most from the approximation.1 The signi�cance of the approximation is the ratio of

the approximation length to the maximum deviation. The splitting algorithm then recurses

on the two subchains. The �nal segmentation into straight lines is computed by traversing

the tree up from the leaves and retaining a segment if it is more signi�cant than its children.

The above idea can be applied using any geometric primitive curve for which there is

a method for �tting such a curve to pixel chain data. The maximum deviation between

the �tted representation and the data can be obtained by computing the maximum of the

minimum distances from each chain pixel to the approximation curve. The signi�cance

measure remains the same ratio of approximation length to maximum deviation. The �rst

step in the Rosin and West strategy ([62]) is to compute a line segment representation

using Lowe's algorithm. The second step applies Lowe's algorithm again to divide the line

segment representation into higher order curves such as ellipses or superellipses. The step

1An earlier use of the idea to split at the point of maximum deviation is the Douglas-Peucker (poly)line

simpli�cation method ([16]). This method approximates a polyline with one of fewer vertices that is within
a given error bound ". If the error in approximating a polyline by a single line segment is greater than ",

then the polyline is split into two at the maximum deviation vertex, and the approximation procedure is

recursively applied to the two smaller polylines.
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one line segmentation is kept at the leaves of the step two segmentation tree, so not all

line segments are necessarily replaced by a higher order curve. Unlike in Lowe's algorithm,

the upward tree traversal considers any two adjacent approximations for combination into

a single approximation (versus considering only approximations with a common parent).

See [62] for algorithm details.

In the computational geometry community, the process of approximating a polyline

with a smaller number of segments is called the min-# problem. Given a polyline and an

error bound, the goal is to compute an approximation polyline with the fewest number of

vertices whose distance to the original polyline is within the error bound. If the vertices

of the approximation are required to be a subset of the n vertices of the original, then

the problem can be solved in O(n2) time using a graph formulation. The main idea is to

construct a graph G with nodes equal to the vertices of the given polyline and where there

is an edge from vi to vj i� the polyline from vi to vj can be approximated within the error

bound by a segment from vi to vj . The number of vertices in the smallest approximation

is equal to the number of edges in a shortest path between the nodes for the �rst and last

vertices. Chan and Chin [6] show how to compute G in O(n2) time (the brute force method

requires O(n3) time). Since a shortest path in G can be computed in O(n2) time, the overall

O(n2) bound follows.

Our work on the 1D shape pattern problem does not look for patterns from a particular

family of curves. Instead the input pattern can be any polyline shape. If the given \image"

polyline has n vertices and the pattern polyline has m vertices, then our algorithm requires

O(m2n2) time. This reduces to O(n2) time if the pattern is of constant size (e.g. m = 2

for a line segment and m = 3 for a corner). Our algorithm was inspired by the Arkin et al.

polygon shape metric work [3]. This work compares two polygons by comparing their

arclength versus turning angle graphs once the total arclength of both polygons has been

normalized to one unit. To make the metric invariant to rotation, the authors allow for

an up-down shift of the turning angle graph; to handle the arbitrariness of the �rst vertex

in a polygon description, the authors allow for a cyclic left-right shift of the turning angle

graph. There is some experimental evidence ([72]) that the turning angle graph is one of

the best shape descriptors for judging perceptual similarity.

We adopt the approach of matching turning angle graphs in our search for a pattern.

For the pattern problem, however, we need to allow for partial matching and changes in

scale (in addition to changes in orientation). Partial matching means that we match the

pattern graph to only a piece of the image graph. To handle a scale change, we allow the

arclength axis to be stretched or contracted before matching the graphs.
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2.2 Focused Color Searching

In the literature, focused color searching refers to the problem of �nding a color pattern or

model within a color image. The goal is to focus on a region of the image which contains

the pattern or ascertain that no such region exists. We refer to this problem as the color

pattern problem.

An early paper in this �eld is by Swain and Ballard ([77]) who introduced the Histogram

Backprojection algorithm. If we denote the image and model color histograms as I = (Ij)
n
j=1

and M = (Mj)
n
j=1, respectively, then the �rst step in Histogram Backprojection is to

compute the quotient histogram R = (Rj)
n
j=1, where Rj =Mj=Ij . The value Rj represents

the probability that an image pixel with color j belongs to an occurrence of the model in the

image, assuming that the model appears in the image. If the model appears in the image,

then Ij =Mj +Cj, where Cj is the number of pixels in the image with color j that are not

part of the model. This analysis assumes that the model described by histogram M is the

same size in pixels as its occurrence within the image described by histogram I (which is

true if the model is cut out from the image). The more \clutter" pixels Cj of color j, the

less likely it is that a random image pixel with color j is part of the model.

The second step in Histogram Backprojection is to replace the image color at every

pixel with its probability of being part of the model, thus forming the backprojection image.

Pixels with color j are replaced by the con�dence value min(Rj; 1). White (con�dence close

to one) regions in the backprojection image are places where the model is likely to occur,

and black (con�dence close to zero) regions are places where the model is unlikely to occur.

The �nal step in the Histogram Backprojection algorithm is to �nd the location of the

maximum value in the backprojected image after it has been convolved with a mask of the

same area as an expected occurrence of the model. This convolution sums con�dence values

over local areas, and the location of the maximum in the result is the place where the model

is most likely to occur.

In the same paper [77], Swain and Ballard also introduce a measure of histogram distance

called Histogram Intersection. The Histrogram Intersection between image histogram I and

model histogram M is de�ned as

H(I;M) =

Pn
j=1min(Ij ;Mj)Pn

j=1Mj

: (2.1)

The numerator of (2.1) is the number of pixels from the model that have corresponding pixels

of the same color in the image. The normalization in the denominator of (2.1) guarantees

0 � H(I;M) � 1. This measure was used to determine the identity of an unknown model
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at a known position in the image. A weighted version of this measure, however, is also at

work behind the scenes of the Histogram Backprojection algorithm to �nd the unknown

location of a known model in an image. Let LS denote the local histogram taken over a

w�h rectangular subregion S of the image. Now suppose that the �nal Backprojection step

uses a w� h rectangular mask of all ones. If we let Sw�h denote the collection of all w� h
image subwindows, then the place where the model is most likely to occur is the solution

to the optimization problem

arg max
S2Sw�h

X
(k;l)2S

1 �min(Mj(k;l)=Ij(k;l); 1) = arg max
S2Sw�h

nX
j=1

LSj min(Mj=Ij ; 1) (2.2)

= arg max
S2Sw�h

nX
j=1

 
LSj

Ij

!
min(Mj ; Ij);

where j(k; l) is the histogram bin index for the image color at pixel (k; l), and we have used

the fact that min(Mj=Ij ; 1) = min(Mj ; Ij)=Ij. The weight quantity L
S
j =Ij is the fraction of

image pixels of color j that appear in window S.

One major problem with the original Swain and Ballard approach is that its �nal con-

volution step essentially assumes the size at which the model occurs in the image. The idea

of Ennesser and Medioni in [22] is to compare histograms of local image areas of di�erent

sizes and locations to the model histogram using weighted Histogram Intersection to mea-

sure histogram similarity. The authors suggest using the weighted Histogram Intersection

formula bHW (LS ;M) =
nX
j=1

Wjmin(L
S
j ;Mj);

with weights Wj = 1=Ij or Wj = Rj =Mj=Ij . Here it is assumed that the model histogram

M is normalized to match the total amount of information in the image subwindow S:Pn
j=1Mj =

Pn
j=1L

S
j . The quantity min(LSj ;Mj) is the number of pixels from the scaled

model that have corresponding pixels of the same color in the image subwindow S. The

weightWj is an attempt to give more importance to colors j that are more distinctive in the

matching process. If the local histogram region S contains the model, then min(LSj ;Mj) =

LSj (remember that the model histogram is normalized to the same total bin count as the

local image histogram) and bHR(L
S ;M) =

Pn
j=1 L

S
j (Mj=Ij), which is the same value used

in the Backprojection algorithm. This last observation follows from (2.2) and that fact that

Mj � Ij (due to the normalization of the size of M).

Ennesser and Medioni's Local Histogramming algorithm looks for model matches as

it slides a local window across the image. For each center location of the local window,

the algorithm increases the size of the window until the weighted Histogram Intersection
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measure given above starts decreasing. There is some amount of manipulation to ensure

that this scale estimation process avoids local maxima as the window is grown, and that a

model is not found in pieces by overlapping local windows. See [22] for some details. The

bottom line, however, is that the Local Histrogramming algorithm tries to �nd the model by

an exhaustive search over scale-position space, where a (scale,position) pair is evaluated by

a weighted Histogram Intersection between a local image histogram and the scaled model

histogram. Swain and Ballard's Backprojection algorithm is an exhaustive search only over

position since they assume the scale parameter. The similarity measure used to check a

position is a weighted Histogram Intersection between the global image histogram and the

model histogram, where the weights are dependent on the position (and assumed scale).

The same exhaustive search over scale-position space using local image histograms is

performed by Vinod et al. in [83, 82], but with an upper bound on the Histogram Inter-

section measure that can be used to prune quickly unattractive (scale,position) pairs. The

Histogram Intersection between the model histogram and two local histograms for image

regions of similar position and scale will be similar since the two regions have many pixels

in common. If the Histogram Intersection between the model and one such local histogram

is small, then the Histogram Intersection between the model and the other local histograms

will also be small. For any two focus regions S and T , the authors show that the Histogram

Intersection measures �S and �T with the model histogramM are related by the inequality

�T � min(jS \ T j; �SjSj) + jT � Sj
jT j :

The goal of the authors' Active Search algorithm is to output image regions that have

a Histogram Intersection with the model of at least some threshold �. The Histogram

Intersection for an image region T need not be computed if the above inequality proves

that it must be less than � using the result of a previous Histogram Intersection with a

region S. See [82] for the details of Active Search. In [83], the authors report that only on

the order of 0:5% of possible focus regions require a Histogram Intersection computation.

Although this is an excellent pruning rate, it can still leave thousands of (scale,position)

pairs to be checked in the three-dimensional scale-position search space, especially if very

small scale model appearances must be found.

None of the works discussed in this section attempt to verify that the positional dis-

tribution of colors in an image window are similar to the positional distribution of the

model or pattern colors. The algorithms only report image regions that have a similar color

histogram to that of the model. In this thesis, we are interested in verifying positional

similarity as well as color similarity. This positional veri�cation is part of the last stage of
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our matching algorithm which also tries to adjust the pattern scale and location to make

the positions match as well as possible.

The �rst phase of our matching algorithm is to estimate, using only color information,

the scale at which the pattern might occur in the image. Although our scale estimation al-

gorithm does not work with a histogram color respresention, its instantiation on histograms

amounts to scaling the model histogram until the point at which further increases in scale

start to decrease similarity to the global image histogram. The Backprojection algorithm as-

sumes the scale is given, while Local Histogramming and Active Search exhaustively search

for the best scale at each position.

Armed with our scale estimate, the second stage of our search stategy seeks to �nd

quickly a very small set of promising positions in the image to check for a positionally

consistent match. By \very small", we mean fewer than �ve image locations. If our rep-

resentation were histogram-based, then these would be the locations of relative maxima in

the backprojected image after being convolved with a mask whose size matches our scale

estimate. Although our algorithm uses constant color image regions instead of pixels as

its basic units of information, the idea of backprojection is still used to identify image re-

gions which are likely to be part of the pattern if it appears in the image. Our notion of

a promising image region is also one in which there is a small distance between the color

histogram of the region and the color histogram of the pattern. However, we only examine

areas around image regions that have high probability of being part of a pattern occurrence

in our search for promising locations (this requires preprocessing before query time). In

other words, we only use the centers of image regions with a high con�dence color as the

centers of regions to be checked as promising, instead of using every pixel in the image as

in the previously described works.

An important improvement in our application of Swain and Ballard's backprojection

idea is the use of a pattern scale estimate in computing the con�dences/probabilities that

an image pixel of a particular color is part of a pattern occurrence. The true probability for

a color c is the number of image pixels with color c that are part of a pattern occurrence

within the image, divided by the total number of image pixels with color c. In [77], Swain

and Ballard use the number of model pixels of color c as the numerator of this ratio. This

gives the correct probabilities if the model is cut out from the image, but it can give very

inaccurate probabilities for more general model inputs.

The most computationally expensive part of our search algorithm is the �nal stage in

which we try to adjust the scale and position at which we believe the pattern occurs within

the image. This stage makes use of both the colors and their spatial distribution in the image

and in the pattern. The adjustment process is started from each of the promising locations
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found in the previous step. The Local Histogramming and Active Search algorithms also

adjust scale in an attempt to get a better Histogram Intersection value, but they do so by

�xed step region growing which does not consider the underlying data (color or position)

to help determine how much to grow.

2.3 From Histogram Intersection to the Earth Mover's Dis-

tance

The major problem with histograms and the common bin-to-bin distance measures de�ned

between histograms is the use of arbitrary bin boundaries. Histogram distance or similarity

measures usually only match pixels in corresponding bins. This is certainly true of the

Histogram Intersection similarity measure described above, as well as a simple L1 distance

between histograms which sums up the absolute di�erence in bin amounts over all the

bins. Two pixels with very similar colors might be placed in adjacent bins if an arbitrary

bin boundary is drawn between the locations in color space. Once this is done, bin-to-

bin histogram comparison measures will never be able to match these two very similar

pixels. The fault here lies both with the representation and the distance measure. Usually

histogram bins are de�ned by a uniform subdivision of the underlying attribute (e.g. color)

space axes. With this uniform subdivision, the bins in every histogram for every image cover

the exact same region in the attribute space. This makes it easy to de�ne distance measures

between two histograms for any two images by simply comparing corresponding bins, but

such bin-to-bin distance measures do not account for the arbitrariness of the histogram

representation.

The notion that is missing in bin-to-bin histogram comparison measures is the distance

between bins. In the color case, a distance between bins speci�es how di�erent the colors

in one bin are from the colors in another bin. This dissimilarity will be relatively low for

bins which cover adjacent regions in the color space. The problem of using regularly spaced

bin boundaries can be overcome to a great extent by allowing matching across bins, and

penalizing according to the distance between bins. This is exactly what is done in the

histogram distance measure

D(I;M) = min
F=(fij)

nX
i=1

nX
j=1

fijdbin(bin i in I; bin j in M); (2.3)

where fij represents the amount of bin i from the image histogram which is matched to bin

j of the model histogram. The distance asks for the minimum cost matching of the mass



2.3. FROM HISTOGRAM INTERSECTION TO THE EARTH MOVER'S DISTANCE17

in the two histograms. Here we have left out some constraints on F = (fij), including the

constraints
Pn
j=1 fij � Ii and

Pn
i=1 fij �Mj which state that the amount of mass from one

histogram that can be matched to a bin of the other histogram cannot exceed the amount

of mass in that bin.

Given the freedom to match across di�erent regions of attribute space, there is no need

to de�ne these regions by a regular subdivision. Such a representation does not taylor itself

to the data in an image and can be quite ine�cient in space. If an image contains no red,

then the bins of the histogram that correspond to shades of red will all have zero color mass.

From this image's point of view there is no need to consider these attribute space regions

in the distance function (2.3). We could compute the histogram of an image using regular

subdivisions of the attribute space, throw away the zero bins, and re-number the nonzero

bins in sequential order. This makes the image summary more e�cient in space, but can

be improved further by de�ning regions in attribute space according to the image data.

Suppose, for example, we want regions in attribute space which are summarized by a single

attribute value to have diameter less than some threshold. Such a cluster of attribute mass

might cross arbitrary bin boundaries even when the bin spacing matches the threshold, thus

representing this cluster by more than one entry. Each image can have a di�erent number

of clusters which cover di�erent regions in attribute space as e�ciently as possible. Thus

we can change the bin-based distance measure (2.3) to the cluster-based measure

D(I;M) = min
F=(fij)

mX
i=1

nX
j=1

fijdcluster(cluster i in I; cluster j in M); (2.4)

Here the image hasm clusters, the model has n clusters, and we must restrict
Pn
j=1 fij � Ii

and
Pm
i=1 fij �Mj . The distance measure (2.4) (once the constraints on F have been fully

speci�ed, and the proper normalization has been applied) represents the Earth Mover's

Distance (EMD) between distributions of mass in an attribute space. A more precise de-

scription of the EMD and the distributions on which it operates will be given in chapter 4.

See the works of Rubner et al. [69, 68] and Gong et al. [26] which e�ectively argue for the use

of clustering over histogramming in color-based image retrieval. Experiments in [68] show

the superiority of the EMD for color-based image retrieval over many bin-to-bin histogram

dissimilarity measures, including Histogram Intersection ([77]), and cross-bin measures, in-

cluding a common quadratic-form distance ([51]).
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2.4 The Earth Mover's Distance

The history of the Earth Mover's Distance begins in 1781 when Gaspard Monge posed the

following optimization problem.

When one must transport soil from one location to another, the custom is

to give the name clearing to the volume of soil that one must transport and the

name �lling (\remblai") to the space that it must occupy after transfer.

Since the cost of the transportation of one molecule is, all other things being

equal, proportional to its weight and the interval that it must travel, and con-

sequently the total cost of transportation being proportional to the sum of the

products of the molecules each multiplied by the interval traversed; given the

shape and position, the clearing and �lling, it is not the same for one molecule

of the clearing to be moved to one or another spot of the �lling. Rather, there

is a certain distribution to be made of the molecules from clearing to �lling,

by which the sum of the products of molecules by intervals travelled will be

the least possible, and the cost of the total transportation will be a minimum.

(Monge in [50], p. 666, as quoted in [60], p. viii)

If c(x; y) denotes the per unit mass cost of transporting material from x 2 A to y 2 B for

equal-volume sets A and B, then Monge's mathematical formulation is to compute

inf
t

Z
x2A

c(x; t(x)) dx

over all volume preserving maps t : A ! B. In this original formulation, c(x; y) is the

Euclidean distance between x and y, the objective function is nonlinear in t, and the set of

admissible transportations t is nonconvex.

A major development in the mass transfer problem (MTP) came in 1942 when Kan-

torovich reformulated the problem as a linear optimization over a convex set. If A and

B are distributions of mass with density functions w(x) and u(y), respectively, then Kan-

torovich asked to compute

inf
f

Z
x

Z
y
c(x; y)f(x; y) dxdy

over all probability density functions f(x; y) with �xed marginals
R
x f(x; y) dx = u(y) andR

y f(x; y) dy = w(x). Here it is assumed that A and B have equal total mass
R
xw(x) dx =R

y u(y) dy. In Kantorovich's formulation, the objective function is linear in f , and the set

of admissible f 's is convex.

When A and B are (�nite) discrete distributions of equal total mass, where A has mass

wi at location xi and B has mass uj at location yj , then Kantorovich's formulation becomes



2.4. THE EARTH MOVER'S DISTANCE 19

the transportation problem ([32]) from mathematical programming: compute

min
F=(fij)

X
i

X
j

fijcij

such that

fij � 0;
X
i

fij = uj ;
X
j

fij = wi;

where cij = c(xi; yj). Here F is a density function on f xi g � f yj g with �xed marginals

w = (wi) and u = (uj).
2 If we think of transforming A into B, the fij is the amount of

mass at xi which 
ows to yj .

In this thesis, we are mainly concerned with the discrete MTP. Readers interested in the

continuous MTP, its history, theory, connection with the discrete MTP, modi�cations, and

applications should see the recent two volume work [60],[61] of Rachev and R�uschendorf, as

well as Rachev's survey paper [59].

Often a result for the �nite, discrete MTP has a corresponding result for the continuous

MTP. For example, in section 5.1.1 we prove that if c(x; y) = jjx�yjj for a vector norm jj�jj or
c(x; y) = jjx�yjj22, then the cost c(�x; �y) between the centroids �x =

P
i wixi and �y =

P
j ujyj

is a lower bound on the EMD between the �nite, discrete distributions f (xi; wi) g and

f (yj ; uj) g (here we assume
P
iwi =

P
j uj = 1). Virtually the same proof with summations

replaced by integrals shows that the distance between the means �x =
R
x xw(x) dx and

�y =
R
y yu(y) dy is a lower bound on the EMD between the probablity distributions w(x)

and u(y). This should not be surprising because an integral is just the limit of a Riemann

sum. The proof of a continuous MTP result can follow the summation manipulations done

in the proof of the discrete MTP result, but care must be exercised to ensure that limit

signs can be interchanged or can \pass though" functions when necessary.

For another example of a property that holds for both the continuous and discrete MTPs,

consider the problem of matching a �nite, discrete distribution f (y1; u1); : : : ; (yn; un) g to a
translate f (y1 + t; u1); : : : ; (yn + t; un) g. In section 6.7.3, we prove that the matching fij =
�ijuj which matches all the mass at yi to the mass at yi+t is optimal. The same proof, which

uses the previously discussed centroid lower bound, shows that f(x; y) = �(x� (y� t))u(y)
is an optimal matching between u(y) and u(y� t). A consequence, for example, is that the

EMD between two uniform normal distributions with means �1,�2 and equal variances is

jj�1 � �2jj22 when c(x; y) = jjx� yjj22.
There are not many explicit results in the literature for the EMD between two continuous

2The discrete formulation follows from the continuous one by putting w(x) =
P

i
wi�(x�xi) and u(y) =P

j
uj�(y � yj), where �(x) is the Dirac delta distribution.
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distributions, but there is a nice result for matching two normal distributions. Let N(�;�)

denote a normal distribution with mean � and covariance matrix �. If c(x; y) = jjx� yjj22,
then (p. 119 in [60],[59],[53],[17])

EMD(N(�1;�1); N(�2;�2)) = jj�1 � �2jj22 + tr(�1 +�2 � 2(�
1=2
2 �1�

1=2
2 )1=2): (2.5)

This result is symmetric in �1 and �2 since it can be shown that tr((�
1=2
2 �1�

1=2
2 )1=2) =

tr((�
1=2
1 �2�

1=2
1 )1=2). For uniform Gaussians in RK with �1 = �21IK and �2 = �22IK ,

formula (2.5) reduces to

EMD(N(�1; �
2
1IK); N(�2; �

2
2IK)) = jj�1 � �2jj22 +K(�1 � �2)

2;

which agrees with our result for the equal-variance case �1 = �2. The result (2.5) is

actually a consequence of a more general theorem which also yields the EMD between

uniform distributions over equal-volume ellipsoids (p. 119 in [60],[17]).

Let us now return to the case of discrete distributions with a discussion of the match

distance between histograms de�ned by Werman, Peleg, and Rosenfeld in 1985 ([86]). The

main contribution of this work is the use of a distance between bins as given in (2.3). The

match distance is de�ned between two histograms H0 = (h0i )
n
i=1 and H1 = (h1i )

n
i=1 with

equal total bin counts
P
i h

0
i =

P
i h

1
i . The unfolding of histogram H = (hi)

n
i=1 is de�ned

to be the multiset UF(H) with hi copies of bin i. For example, the unfolding of the 2D

histogram

H =

2
6664
2 0 0

0 0 1

0 3 0

3
7775 is UF(H) = f (1; 1); (1; 1); (2; 3); (3; 2); (3; 2); (3; 2) g ;

where bins are labelled by (row,column) pairs. The cost of a 1-1 match between UF (H0) and

UF (H1) is the sum of the distances between matching bins. The match distance between

H0 and H1 is the cost of the minimum cost 1-1 matching between the multisets UF (H0)

and UF (H1).

The match distance between H0 and H1 is, in fact, the Earth Mover's Distance between

the distributions
�
(bin i; h0i )

	
and

�
(bin i; h1i )

	
:

min
F=(fij)

nX
i=1

nX
j=1

fijdbin(bin i; bin j)
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such that

fij � 0;
nX
i=1

fij = h0j ;

nX
j=1

fij = h1i :

It turns out that a transportation problem with all integer masses has an optimal 
ow

F = (fij) with only integer values ([32]). Such an optimal 
ow is therefore also an optimal

1-1 matching between UF (H0) and UF (H1).

The match distance is used by Peleg, Werman, and Rom [57] as a uniform framework

for changing the spatial and gray-level resolution of an image. In this work, images are 2D

histograms of photons where the value of bin/pixel (i; j) is its gray level I(i; j). The authors

pose the problem of reducing the number of gray levels in an image from 2G+ 1 (labelled

0::2G) to G+1 as an optimization problem that seeks an image I 0 with gray levels 0::G such

that the match distance between I and 2I 0 is as small as possible, where the bin distance

is the Euclidean distance between pixel locations. This problem is reduced to computing

a minimal sum-of-distances pairing of pixels in I with odd gray level. See [57] and [85] for

details. Since the minimal pairing computation takes time O(m3), where m is the number

of pixels in I with odd gray level, the authors suggest using a linear time algorithm to �nd

an approximately optimal matching.

Peleg, Werman, and Rom also formulate a change in spatial resolution from N pixels

f xi g in I to N 0 pixels f yj g in I 0 as a match distance problem. The �nal gray level at pixel
yj is taken to be a linear combination of the pixels in I : I 0(yj) =

P
i �ijI(xi). The match

distance is used to compute the weights �ij between N
0I and NI 0 (which both have total

mass NN 0). In other words, one multiset has N 0 copies of every pixel in I and the other

multiset has N copies of every pixel in I 0. If the optimal matching is rij , then �ij = rij=N

so that the gray level range of I 0 is the same as that of I . The authors point out that their

formulation is not restricted to rectangular grids and can be adapted to weight some pixels

(for example, those close to an image edge) more heavily than others.

The previously discussed works concentrate on the case when the total mass of the two

distributions is equal. In this thesis, we pay close attention to the partial matching case

in which one distribution is \heavier" than the other. For example, in section 5.1.2 we

use the centroid lower bound between equal-mass distributions to derive a lower bound

on the EMD between unequal-mass distributions. In the unequal-mass case, some of the

mass in the heavier distribution is not matched to mass in the lighter distribution. In this

dissertation, we also focus on the problem of �nding an optimal transformation (from a

prede�ned set of transformations) of the mass locations in one distribution so that its EMD

to another distribution is minimized. Finally, we note that our focus is on the EMD between

distributions of masses located at points. This does not expose the full generality of the
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EMD, for the EMD can be used to compare two weighted collections of any objects for which

there is a notion of distance of between objects to provide the costs in the transportation

problem. We could use the EMD, for example, to compare two distributions of distributions,

where the cost between the lower level distributions is itself an Earth Mover's Distance.

The seminal work which developed the EMD for use in content-based image retrieval is

Rubner's thesis ([64]). We shall refer to his work throughout this dissertation.

2.5 Matching under Transformation Groups

In measuring visual similarity, it is often important to allow some transformation of locations

in feature space before measuring the distance between two collections of attributes. In the

color case, for example, changing the lighting of a scene causes some transformation of

the underlying pixel colors. The images of the same scene under di�erent illuminations

may still look quite similar even though the pixel values may be quite di�erent. Directly

comparing histograms with Histogram Intersection or distributions of color mass with the

EMD will not capture such visual similarity. Another example of the importance of allowing

transformations is when the underlying attribute is (or includes) the image plane position

of ink on a page. Two images of the same object from di�erent distances and viewpoints

will be visually similar despite di�erences in scale, orientation, and image location. Directly

comparing the position of the ink will not capture this visual similarity.

Although not its intended purpose, the EMD de�nes a distance between point sets if

one considers the mass at each point in a set to be one unit. The EMD between point

sets is the minimum of the average distance between corresponding points taken over all

one-to-one correspondences between the sets. In the next two subsections, we consider two

other widely used distances between point sets along with the methods used to compute

these distances under transformation groups.

2.5.1 The Hausdor� Distance

The Hausdor� distance between �nite point sets A = f a1; : : : ; am g and B = f b1; : : : ; bn g
is de�ned as

H(A;B) = max(h(A;B); h(B;A));

where

h(A;B) = max
a2A

min
b2B

�(a; b) (2.6)

is the directed Hausdor� distance from A to B, and �(a; b) is the distance between points

a and b. The directed Hausdor� distance h(A;B) from A to B is small whenever each
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point of A is close to some point in B. The directed distance is appropriate when trying

to �nd a model within an image, since we want all the points in the model set to be

close to some point in the image set, but not necessarily vice-versa. In this case, we use the

directed distance from the model point set to the image point set. The symmetric Hausdor�

distance H(A;B) is small when each point in A is close to some point in B, and each point

in B is close to some point in A. The Hausdor� distance de�nes a metric between �nite

point sets if the underlying point distance � is a metric. The Hausdor� distance can be

computed trivially in O(mn) time, but with some cleverness ([1]) this time can be improved

to O((m+ n) log(m+ n)).

In contrast to the EMD applied to point sets, the Hausdor� distance does not use one-to-

one correspondences between points. In the directed distance computation (2.6), the same

point b 2 B can be the nearest neighbor to many di�erent points a 2 A. This many-to-one
matching can be quite advantageous for problems involving very large point sets which do

not require one-to-one correspondences. To be fair to the EMD, it is more general than the

Hausdor� distance in the sense that it can be used to match distributions, of which point

sets are a special case.

For a transformation group G, the Hausdor� distance under G is de�ned as

MG(A;B) = min
g2G

H(A; g(B)):

In words, we �nd the transformation g 2 G which matches A and g(B) as closely as possible.

The problem of computing the Hausdor� distance under a transformation group has been

considered for various transformation groups G (e.g. translation, Euclidean), with di�erent

norms � (e.g. L2 or L1), and in di�erent dimensions d (e.g. 1, 2, � 3). An O(n logn) time

algorithm for the translation case in one dimension is given in [63]. In [8], Chew et al.

give an algorithm for the translation case with the L1 point distance that runs in time

O(n3 log2 n) in dimension d = 2 in time O(n(4d�2)=2 log2 n) in dimension d � 3. For point

sets in the plane with the L2 distance, the Hausdor� distance under translation can be

computed in O(n3 logn) time ([35]) and the Hausdor� distance under Euclidean transfor-

mations (translation plus rotation) can be computed in O(n5 log n) time ([9]). In presenting

the time bounds, we have assumed that m = O(n).

The Hausdor� matchers of Rucklidge et al. ([36],[70]) are aimed at the practical problem

of �nding a binary model within a binary image. Here the point set de�ned by a binary image

is the nonnegative integer point set which includes exactly the locations of the pixels which

are \on" in the image. In [36], a rotated, translated version of the model can be located,

while in [70] an a�ne transformation of the model is allowed. The underlying distance
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measure is the directed Hausdor� distance under Euclidean transformations in [36], and

the directed Hausdor� distance under a�ne transformations in [70]. Actually, these works

use a more robust version of the Hausdor� distance which prevents outliers from a�ecting

the distance computation. The partial directed Hausdor� distance from the model point

set B to the image point set A is de�ned as

hK(B;A) = Kth
b2Bmin

a2A
�(a; b);

where Kth
b2B denotes the Kth ranked distance of the distances mina2A �(a; b) 8b 2 B, and

0 < K � n = jBj. The user speci�es the fraction f , 0 < f � 1 which determines K = bfnc.
In this way, the user does not need to know the number of points in the model. The fraction

f allows for a fraction 1 � f of the points in the model to be outliers (not near any image

points).

The Hausdor� matchers described in [36] and [70] both search in a discretized trans-

formation space. The search space is limited to a �nite (but usually very large) number of

transformations by the user. The transformation space is discretized into a rectangular grid

so that moving by one grid unit in transformation space produces only a small change in

the transformed model. The authors leverage o� the fact that if the Hausdor� distance is

large for a particular grid transformation, then it will also be large at grid transformations

in a neighborhood of that transformation. This allows some transformations to be elimi-

nated from consideration without explicitly computing the Hausdor� distance. In [36], the

search algorithm loops over all grid transformations and skips transformations that can be

ruled out by Hausdor� distances evaluated at previously visited grid cells. Here \ruled out"

means that it can be proven that a transformation yields a Hausdor� distance which is (1)

larger than a user speci�ed threshold if all matches within a given threshold are desired or

(2) larger than the best Hausdor� distance seen so far if the user only wants the best match

to be reported.

In [70], the a�ne search space is six-dimensional, so developing e�cient search techniques

is crucial. A multi-level cell decomposition strategy is used instead of a loop over all grid

transformations. The initial space of transformations to search is tiled with rectilinear cells

of equal size (i.e. an equal number of grid transformations inside). If a cell can be proven

not to contain a transformation which needs to be reported to the user, then it is not

searched further. Otherwise, the cell is marked as \interesting". After considering all the

cells at the current level, each of the interesting ones are subdivided and the process is

repeated. This search process is a breadth �rst search in the tree representing the recursive

cell decomposition. In the case when a single match is required (either any match or the
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minimum distance match), a best-�rst search in which we investigate the most promising

interesting cells �rst will help reduce the total search time. See [70] for the measure used

to rank interesting cells.

The same idea of a hierarchical search in a discretized transformation space is used

again by Rucklidge ([71]) to �nd a gray level model in a gray level image. In this work,

the search accounts for an a�ne transformation of the geometry of the gray level pattern.

The pruning strategies given are applicable to a number of block distance functions such

as SSD (sum of squared di�erences) and MAD (mean absolute deviation), and other func-

tions which use the gray level di�erences between corresponding pixels of the image and

the transformed model. Distance functions which compare the gray level of a transformed

model pixel to a neighborhood of the corresponding image pixel can also be accomodated

to account for noise and small shape changes which cannot be captured by an a�ne trans-

formation. The following results were reported: (1) correct identi�cation of a translated

version of a 28 � 70 model within a 640� 480 image examining only 1303 cells versus the

approximately 250000 possible translations, (2) correct registration of a �gure under rigid

motion examining about 7:2� 107 cells compared to the approximately 5� 109 rigid grid

motions, and (3) correct patch-by-patch matching of two a�nely-related images examining

only 6:8� 108 cells compared to over 2� 1013 possible transformations. No running times

were given.

The main strength of the works [36], [70], and [71] is that these methods do not miss

any good matches and are guaranteed to report the globally optimal match under whatever

distance measure (SSD, MAD, etc.) is used. In contrast, our search strategy will move from

any point in transformation space to a locally optimal transformation, with no guarantee

that this transformation is globally optimal. The key to the correctness and e�ciency of

our strategy lies in the e�cient selection of a few good initial transformations from which

to begin our iteration so that it will converge to an optimal or nearly optimal transfor-

mation. The key to the correctness of Rucklidge's works is that all transformations are

potentially considered, while the key to their e�ciency is the ability to prune large areas of

the transformation space without explicitly considering individual transformations.

The pruning rates reported in [36], [70], and [71] are quite impressive, but there are

still many transformations that must be explicitely considered { probably too many for

the application of content-based image retrieval (CBIR) in which hundreds or thousands of

pattern problems must be solved within a minute or so. Given our CBIR motivation, it is

more important for us to solve almost all pattern problems correctly and very quickly, rather

than to solve all pattern problems correctly but more slowly. Another main di�erence in

our approaches is the behavior of our approaches in an area around the best match. Even
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in the case when only the best match must be reported (as opposed to all matches within

a certain threshold), the Rucklidge algorithms must consider many transformations around

the best match because around any good match are other good matches which although

not globally optimal are near optimal enough to be quite di�cult to eliminate without a

closer look. In our approach of following a downhill path in transformation space (i.e. a

sequence of transformations which always improves the EMD value), getting close to the

best match speeds up the convergence of the iteration. If \close" is close enough, the

downhill iteration will move from suboptimal but good matches near the optimal match to

the optimal one, and it will do so without visiting every good match in the neighborhood of

the best one. Finally, we note that we have also extended the EMD for robustness reasons so

that only some mass in the lighter distribution needs to be matched to mass in the heavier

distribution.

2.5.2 The ICP Iteration

The iterative closest point (ICP) iteration ([5]) was developed to register two 3D shapes.

Given a 3D \model" shape and a 3D \data" shape, the goal is to �nd the rotation and

translation of the data shape which registers it with part of the model. Here the wordmodel

is used in the exact opposite of the way it is used in the previous discussion of Hausdor�

matchers { the model shape is searched for the data shape pattern. The model shape can

be represented as the union of any collection of geometric primitives such as points, line

segments, curves, triangles, etc., as long as there is a routine available to compute the point

on a primitive which is closest to a given point. The data shape must be represented as (or

decomposed into) a point set. The distance from the data shape point set B = f b1; : : : ; bn g
to the model shape primitive set A = f a1; : : : ; am g is given by

DICP(B;A) =
nX
j=1

min
a2A

d2(bj; a) =
nX
j=1

min
a2A

min
p2a

jjp� bj jj22;

where d(b; a) is the L2 distance from point b to the closest point on the geometric primitive

a. If we assume that the model is represented as a 3D point set, then the ICP distance

function becomes

DICP(B;A) =
nX
j=1

min
a2A

jja� bj jj22:

The ICP distance from B to A is very similar to the Hausdor� distance from B to A, except

that DICP sums up the distances to the nearest neighbors instead of taking the maximum.
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The ICP iteration is designed to solve the optimization problem

DICP
G (B;A) = min

g2G
DICP(g(B); A) = min

g2G

nX
j=1

min
a2A

jja� g(bj)jj22;

where G = E , the group of Euclidean transformations. The idea here is to alternately

compute (1) the distance minimizing transformation for a �xed set of nearest neighbor

correspondences, and then (2) the nearest neighbor correspondences for a �xed data shape

transformation. More precisely, the two steps are

 (k)(j) = argmin
i
jjai � g(k)(bj)jj22 8j = 1; : : : ; n and (2.7)

g(k+1) = argmin
g2G

nX
j=1

jja (k)(j) � g(bj)jj22: (2.8)

The correspondence  (k) maps the index of a point in g(k)(B) to the index of the closest

point in A. The use of the Euclidean distance squared facilitates the transformation step

because the least squares optimization problem (2.8) has a known, closed-form solution

for G = E (and for many other transformation sets G). It is not di�cult to show that

the sequence < DICP(g(k)(B); A) >k is a monotonically descreasing, convergent sequence

starting with any initial transformation g(0). The least squares registration (2.8) reduces

the average distance between corresponding points during each iteration, while the the

nearest neighbor correspondences reduce the individual distance from the points in the

transformed data shape to corresponding points in the model.

The idea behind the ICP iteration is a very general one. To see this, we shall rewrite

the correspondence step as

 (k) = argmin
 2	

nX
j=1

jja (j) � g(k)(bj)jj22; (2.9)

where 	 is the set of all functions from [1::n] to [1::m]. Since the functions in 	 are

not restricted in any way, the solution to (2.9) makes  (k)(j) 2 [1::m] equal to the index

of the point in A which is closest to g(k)(bj) (as in (2.7)). Computing DICP
G

(B;A) is an

optimization problem over 	 � G. The ICP iteration alternates between �nding the best

 2 	 for a �xed g 2 G, and the best g 2 G for a �xed  2 	. In this way, a path in

	 � G is traced out for which the ICP objective function always decreases or remains the

same. The ICP iteration is an example of the general alternation strategy in which the path

followed in search space always proceeds downhill along subpaths over which some subset

of the search space variables are constant. Mathematically, the alternation idea applies



28 CHAPTER 2. BACKGROUND

to any optimization problem optV=V1[V2[���[VNf(V1; V2; : : : ; VN) for which one can solve

V �
i (V1; : : : ; Vi�1; Vi+1; : : : ; VN) = arg optVif(V1; V2; : : : ; VN).

When the objective function to be minimized is bounded below, the go downhill strategy

employed by the alternation strategy is guaranteed to converge, albeit possibly to only a

local (as opposed to global) minimum (an analogous statement holds for the alternation

strategy applied to maximization problems). This is the case in the ICP iteration since

the distance function to be optimized is nonnegative. Of course, the main drawback of the

alternation strategy is that there is no guarantee of convergence to the global optimum.

Our method for computing the EMD under a transformation set applies the alternation

strategy to obtain a decreasing, convergent sequence of EMD values. As in the ICP problem

of registering shapes, there is a step to determine the best correspondences for a �xed

transformation. The correspondence step in matching distributions with the EMD is more

complicated than (2.9). In the EMD case, there is a real-valued variable fij that indicates

how much mass at location i in one distribution is matched to location j in the the other

distribution. The correspondences F = (fij) must be constrained so that each location does

not match more mass than it possesses. In addition to allowing transformations of mass

locations, we can also handle some sets of transformations which alter both mass locations

and amounts.

The key to the e�ective use of a correspondence-transformation alternation to solve

CBIR matching problems is the selection of a small number of promising transformations

from which to start the iteration. The number must be small for e�ciency reasons, and one

of the initial transformations must be close to the globally optimal one so that one of the

sequences converges to an optimal or to a nearly optimal match. In the case when the whole

model shape matches the data shape, the ICP authors suggest a method for computing a

good initial rotation from eigenshape analyses of the model and data shapes. A promising

initial translation in this case lines up the centroids of the two shapes. This is a good initial

transformation strategy when all the data in the model shape is matched, but comparing

global descriptors such as those mentioned above will not work in the partial matching case

when the data shape matches only some (possibly very small) amount of the model. In this

case, the authors suggest a dense sampling of the transformation space to produce a set of

initial transformations.

Even in the case of partial matching, it may be possible to quickly determine a few very

promising places in an image to look for a pattern. Consider the color pattern problem. If,

for example, there is a yellow blob in the pattern and yellow appears only in a few places

within the image, then one of those few places is likely to contain the pattern if it appears

at all within the image. Even if yellow appears in many places within the image, it may
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be possible to quickly eliminate most of these places based on the other colors surrounding

the yellow. The pattern will not match an image region which has very di�erent colors or

very di�erent ratios of color amounts even if the same colors are present. These two simple

checks do not use the positions of the colors within in an image region. The number of image

regions checked for initial pattern placement can be kept quite low by using only the most

distinctive pattern colors with respect to the image to select these regions. By examining

the amounts of the most distinctive pattern colors in the pattern and in the image, one can

often obtain a very good estimate of the pattern scale. This scale estimate is crucial in the

preceeding discussion since the scale determines how much of the image to compare to the

pattern.

The basic ideas discussed above are also applicable to the shape pattern problem in

which only di�erences in scale and location, not in orientation, are allowed. The orienta-

tion of ink on the page in the shape pattern problem plays the same role as color in the

color pattern problem: the orientation does not change under the allowable transformations.

Distinctive pattern orientations with respect to the image (i.e. orientations which occur in

the image mainly in an image region which contains the pattern) give a lot of leverage in

computing a scale estimate and possible locations of the pattern within the image. Even

if the rotated versions of the pattern are to be located in the image, distinctive relative

orientations may give the needed leverage to determine e�ciently a small set of initial sim-

ilarity transformations. The ideas discussed above are used to select initial transformations

in SEDL, which is our CBIR pattern problem system.

2.6 The FOCUS Image Retrieval System

The FOCUS (Fast Object Color-based qUery System) image retrieval system designed by

Das et al. ([14]) addresses the color pattern problem in the CBIR context. An important

non-technical contribution of the FOCUS work is that it highlights the importance of par-

tial matching in CBIR systems without assumptions about scale, orientation, position, or

background. The system operates in two phases. During the �rst phase, database images

which do not contain all the colors present in the query pattern are eliminated from fur-

ther consideration. The second phase uses spatial color adjacency relationships to �lter the

phase one results.

The preprocessing step for phase one identi�es the peaks in local color (HSV) histograms

measured over a uniform grid of rectangular image subregions. These peaks are recorded as

the colors present in the image. Local histograms are used instead of a global histogram to

help prevent color peaks in the occurrence of a query pattern from being masked or shifted
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by peaks from the background colors. Ideally, one of the local histogram subregions should

be the image area which is exactly the query occurrence since this would guarantee an

image color peak which exactly matches a query color peak. Of course, this cannot be done

because the problem under investigation is to �nd the query. The color peaks for all images

in the database are collected into an indexing structure which supports range queries. Each

peak is tagged with the image and the cell within the image in which it occurs. The phase

one index also includes a frequency table which speci�es the number of images that will be

returned by a range query (over a �xed size range) for every point in a discretization of the

HSV color space.

At phase one query time, the peaks in a global color histogram over the query image

are computed. For each query peak, a range query centered at that peak is performed to

identify all database images with a similar color. Using the frequency table, the query peaks

are processed in order of increasing number of returned images. The image lists for each

query peak are joined to form a list of images that have peaks matching every query peak.

The result of phase one is this list of images along with a set of peak correspondences for

each image on the list.

The preprocessing step for phase two matching builds a spatial proximity graph (SPG)

that captures the spatial adjacency relationships between color regions in an image. The

nodes in an image SPG correspond roughly to (color peak,cell) pairs. The construction

process starts with a list of color peaks for each cell. Two color peaks are connected if it is

possible that their underlying regions are adjacent in the image; there is an edge between

two color peaks if the peaks are in the same cell or if two peaks of the same color are

four-neighbors on the cell grid. There is some collapsing of connected nodes of the same

color to obtain scale invariance. See [14] for details. The edges in an SPG show all possible

pixel level adjacencies that could occur (although the SPG construction does not perform

any pixel level processing), but some false adjacencies may be included.

During phase two, the SPG of each image returned in the phase one result is searched

for an occurrence of the query SPG as a subgraph. If an image SPG does not contain the

query SPG, then it is assumed that the image does not contain the query. The subgraph

search is done after each image SPG node label is replaced by the query color label of the

matching peak (obtained from the phase one result). Image nodes whose color does not

match any query color are eliminated before the search. The reduced image SPG can be

checked for the query subgraph in time O(nm), where n is the size of the query adjacency

matrix and m is the maximum number of occurrences of a color label in the reduced image

SPG (usually � 3 according to [14]). The distance between a query and database image

is given by the sum of HSV distances between query and corresponding image peaks. The
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phase two matching removes images from the phase one result list ordered by this distance

function.

The main high-level di�erence between SEDL and FOCUS is that we use absolute po-

sition information, while Das et al. use relative position information. One positive conse-

quence of using relative information is that adjacencies of color regions remain the same

regardless of the scale, orientation, position, or continuous deformation of a pattern oc-

curence within an image. In the FOCUS work, there is no transformation to estimate in

order to determine if the pattern is present. The search for an optimal transformation is

replaced by the search for a subgraph in the image SPG. Underlying both searches is the

question of which regions can match one another.

In FOCUS, a query region can only match an image region whose color is most similar to

that of the query region (and is within some threshold). Deciding which color in the query

matches which color in the image makes the subgraph isomorphism problem computation-

ally feasible. Position information is used to determine if a pair of image regions can match

a pair of query regions. A pair of adjacent regions cannot match a pair of non-adjacent

regions. In contrast, we decide which regions can match by using a continuous distance

measure that is a weighted combination of color and position distance between regions.

Our notion of a good match is that for each query region there is a nearby image region of

a similar color. This translates into a small combined color-position distance. Of course,

our choice to use such a distance function forces us to make the very di�cult decision of

how much to weigh the individual color and position distances.

The corresponding di�culty in FOCUS is the lack of robustness that may result from

using the possibly-adjacent-to relation { the absence of a single edge in the image SPG

can cause the algorithm to conclude that the pattern does not exist within the image. The

FOCUS answer to this problem is to err on the side of introducing false adjacencies in

favor of missing true adjacencies. Recall that their SPG (spatial proximity graph) captures

all possible spatial adjacencies between image colors. False adjacencies may be introduced

because the graph construction works at the level of cells instead of pixels.

The size of the cell is crucial here. At one extreme, using a single cell equal to the whole

image will give many false adjacencies, but results in a very small SPG to match. In this

case, the nodes of the SPG are all the colors present in the image and there is an edge

between every pair of colors. Also, the likelihood that query color peaks will be masked by

background colors increases as the cell size increases. At the other extreme, using cells which

are pixels results in no false adjacencies but gives very large SPGs that cannot be matched

in times which are acceptable for an image database application. Suppose, for example,

there is an orange and blue checkerboard that �lls one cell. Then this cell contributes a
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blue node connected to an orange node. If we change the cell size to the size of a single

checkerboard square, then each checkboard square contributes one blue or orange node and

all four-neighbors of opposite colors are connected. The challenge faced by the FOCUS

work is to choose the cell size so that there are not too many false adjacencies but so that

the sizes of the SPGs are small enough to match SPGs quickly.

In [14], Das et al. report a recall rate of 90% and a precision of 75% after phase two.

These results are excellent, although the results obtained directly from their web demo

at http://vis-www.cs.umass.edu/~mdas/color_proj.htmlwere not as good (08/17/98).

In section 7.5.1, we show that SEDL achieves better recall and competitive precision results.

FOCUS, however, has a sizeable advantage over SEDL in speed, requiring less than a second

on average for a query in a database of 1200 images of product advertisements and nature

images. SEDL requires an average of about 40 seconds per query on a size 361 subset of

the FOCUS database.

Finally, we note that FOCUS never really veri�es the occurrence of the pattern within

the image. It simply eliminates images that cannot possibly contain the pattern. The hope

is that the pattern is distinctive enough to eliminate almost all images except those that

contain the pattern. In this elimination process, FOCUS does not use the sizes of uniform

color regions or the amounts of colors present. In contrast, SEDL uses this information to

estimate the scale and location of the pattern within the image. Another di�erence is that

SEDL can show the user where it believes the pattern is located, while FOCUS cannot do

so. Such feedback may be useful if users can change system parameters in an attempt to

improve query results. A further discussion of di�erences between SEDL and FOCUS is

given in section 7.5.1.3.



Chapter 3

The Polyline Shape Search

Problem

Shape comparison is a fundamental problem in computer vision because of the importance

of shape information in performing recognition tasks. For example, many model-based

object recognition algorithms work by matching boundary contours of imaged objects ([39,

73, 43, 44, 10, 55]). In addition to this traditional application, shape information is also

one of the major components in some content-based image retrieval systems (see e.g. [51]

and [46]). The goal in such a system is to �nd database images that look similar to a given

query image or drawing. Images and queries are usually summarized by their color, shape,

and texture content. For example, in the illustration retrieval system described in [11], we

suggest a shape index which records what basic shapes (such as line segments, corners, and

circular arcs) �t where in the drawing. The method in this chapter can be used to index

shape information in images once contours have been extracted.

In this chapter, a shape is a polyline in the plane. We consider the following problem:

Given two planar polylines, referred to as the text and the pattern, �nd all approximate

occurrences of the pattern within the text, where such occurrences may be scaled and

rotated versions of the pattern. We call this problem of locating a polyline pattern shape

within a polyline text shape the polyline shape search problem, or PSSP for short. The

PSSP is di�cult because we allow both scaling and partial matching. Allowing scaling of

the input pattern requires us to make precise certain inherent tradeo�s in PSSP matching.

Consider for example, trying to match a line segment pattern into a text polyline. The

pattern will match a segment of the text polyline exactly at a continuum of di�erent scales.

In this case, we only wish to report the maximum length match. In addition, suppose that

the angle between two consecutive segments of the text is very close to 180�. In this case,

33
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we may prefer a single longer match with a very small error that spans the two segments

instead of two shorter, zero error, matches for each segment.

Two closely related problems to the PSSP are the segment matching problem ([40, 30,

31]) and the polyline simpli�cation problem ([6, 24, 37, 49, 79]). The segment matching

problem is to �nd approximate matches between a short polygonal arc and pieces of a

longer polygonal arc. In searching for these matches, the short arc is allowed to rotate, but

its length/scale remains constant. The PSSP generalizes the segment matching problem

by allowing scaling. In the polyline simpli�cation problem, a polyline and error bound are

given, and we seek an approximation polyline with the fewest number of segments whose

distance to the given polyline is within the error bound. (This problem is also known in

the literature as the min-# problem.) For a polyline with n vertices, the planar polyline

simpli�cation problem can be solved in O(n2) time if the vertices of the approximation

are required to be a subsequence of the vertices of the given polyline ([6]), and in O(n)

time if the vertices of the approximation can be arbitrary points in the plane but the given

polyline is the graph of a piecewise linear function ([37]). One can think of the polyline

simpli�cation problem as an attempt to �nd long segments within the input polyline, i.e.

the PSSP with a line segment pattern. The PSSP generalizes the polyline simpli�cation

problem because the PSSP allows for any polyline pattern, not just a line segment. PSSP

matches are not required to start and end at vertices of the input text (and hence PSSP

matches may overlap). For a text polyline with n vertices, our algorithm for the PSSP with

a line segment pattern requires O(n2) time.

This chapter is organized as follows. In section 3.1, we describe the framework for our

solution to the PSSP, including the match score for a given scale, orientation, and position

of the pattern within the text. In section 3.2, we derive the orientation of the pattern which

gives the best match for a �xed pattern scale and position. This leaves us with a 2D search

problem in scale-position space (the position is the text arclength at which to begin the

comparsion of the pattern with the text). In section 3.3, we show how a certain set of

lines divides up the scale-position plane into regions in which we have analytic formulae

for our scoring function. In section 3.4, we fully describe our line sweep algorithm for the

PSSP. Section 3.5 shows some results of our algorithm. Finally, we summarize our work

and suggest areas for future work in section 3.6.

The material in this chapter has been published in [13].
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Figure 3.1: PSSP Turning Angle Summaries. (a) Text T above the corner pattern P . (b)

Arclength versus cumulative turning angle functions �(s) and 	(s) for T and P , respectively

(s in points, � in radians).

3.1 Problem Setup

Let T and P denote the text and pattern polylines, respectively. We will use the familiar

arclength versus cumulative turning angle graph in judging the quality of a match. We

denote these summary graphs for the text and pattern as �(s) and 	(s), respectively.

Figure 3.1 shows an example. If T consists of n segments and P consists of m segments,

then �(s) and 	(s) are piecewise constant functions with n and m pieces, respectively. We

denote the text arclength breakpoints as 0 = c0 < c1 < � � � < cn = L, where L is the length

of the text. The value of �(s) over the interval (ci; ci+1) is denoted by �i, i = 0; : : : ; n� 1.

Similarly, we denote the pattern arclength breakpoints as 0 = a0 < a1 < � � � < am = l,

where l is the length of the pattern, and the value of 	(s) over the interval (aj ; aj+1) is  j,

j = 0; : : : ; m� 1.

Rotating the pattern by angle 
 simply shifts its summary graph by 
 along the turning

angle axis, while scaling the pattern by a factor � stretches its summary graph by a factor

of � along the arclength axis. Hereafter, a scaled, rotated version of the input pattern will

be referred to as the transformed pattern. The comparison between the transformed pattern

and the text will be done in the summary coordinate system. The text arclength at which

to begin the comparison will be denoted by �. Since the length of the transformed pattern is

�l, the transformed pattern summary graph is compared to the text summary graph from �

to �+�l. Finding the pattern within the text means �nding a stretching, right shift, and up

shift of the pattern summary graph 	(s) that makes it closely resemble the corresponding
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Figure 3.2: PSSP Matching in Arclength Versus Turning Angle Space. (a) �(s) and 	(s)

from Figure 1(b). (b) Rotating the pattern by 
 shifts its summary graph up by 
. (c)

Scaling the rotated pattern by � stretches the summary graph by a factor of �. (d) Finally,

we slide the transformed pattern summary graph over by an amount � to obtain a good

match.

piece of the text summary graph. Figure 3.2 illustrates this intuition. The stretching

(�), up shifting (
), and right shifting (�) of the pattern summary graph 	(s) correspond

to scaling, rotating, and sliding the pattern along the text, respectively. The problem of

�nding the pattern within the text is thus a search problem in the scale-position-rotation

space (�; �; 
).

The preceeding discussion tacitly assumes that the pattern and text are both open

polylines. If, for example, the text is closed (i.e. the text is a polygon), then the above

strategy will miss a pattern match that crosses the arbitrary start and �nish text arclengths

s = 0 and s = L which actually correspond to the same point on the text. Such a match

will not be missed if we match the pattern summary curve to a text summary curve which



3.1. PROBLEM SETUP 37

runs from s = 0 to s = 2L, where �(s+L) = �(s) + 2� for s 2 [0; L). Since the underlying

text summary is repeated twice, we need to be careful not to report two identical matches.

In what follows, however, we ignore the issue of open/closed polylines, and simply assume

that our pattern and text are open polylines.

In judging the quality of a match at a given scale, orientation, and position, we need

to consider both the error of the match and the length of the match. Is a long match

with a large error better than a short match with a small error? Using the mean squared

error, for example, indicates an indi�erence to the length of the match. If the pattern

were a single segment, then it would �t with zero mean squared error at a continuum of

di�erent scales and locations along each edge of the text polyline. The mean squared error

metric cannot distinguish among these matches. In order to do so, we will use a match

scoring function which rewards longer matches. When the mean squared error (length)

of two matches is equal, the longer (lower mean squared error) match will have a higher

score than the shorter (higher mean squared error) match. Of course, there is still the

issue of how to compare a match to a shorter (longer), lower mean squared error (higher

mean squared error) match. There is no one correct answer to this balancing question {

the answer depends, for example, on the underlying input noise model. Here we opt for

a simple balancing of match length versus match error which, as we shall see, yields very

good results and is amenable to analysis via standard calculus optimization techniques.

Obviously, other match score functions are possible.

In moving toward our scoring metric, we de�ne the mean squared error e(�; �; 
) as

e(�; �; 
) =

R �+�l
s=�

�
�(s) �

�
	
�
s��
�

�
+ 


��2
ds

�l
:

Note that 	((s � �)=�) + 
, s 2 [�; � + �l], is the summary graph of the transformed

pattern, starting at text arclength �. The score S(�; �; 
) of a match is de�ned in terms of

the mean squared error as

S(�; �; 
) =
�l

L(1 + e(�; �; 
))
:

The product �l is the length of the match (�; �; 
). Our goal is to �nd local maxima of the

score function S over a suitable domain D. This domain is de�ned by restricting the values

of � and � so that the domain of de�nition of the stretched, shifted pattern summary graph

is completely contained in [0; L] (which is the domain of de�nition of the text summary

graph):

D = f (�; �) j � > 0; � � 0; and �l + � � L g:
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Although the range of the mean squared error e is [0;1), the range of the score S over the

domain D is [0; 1]. A match of length L with zero mean squared error receives the highest

score of one. Instead of trying to locate local maxima of S in D, we will try to �nd local

minima of its reciprocal

R(�; �; 
)� 1

S(�; �; 
)
=
L

�l
(1 + e(�; �; 
)):

Note that the rotation 
 a�ects only the mean squared error portion of the score.

At a local maximum location (��; ��; 
�) of S, a small change in pattern scale, orienta-

tion, or position within the text decreases the match score. We do not, however, want to

report all local maxima because two very similar matches may be reported. We want to

report a complete set of independent matches. By independent matches, we mean that any

two reported matches should be signi�cantly di�erent in at least one of the de�ning com-

ponents: scale, orientation, and position. If a pattern �ts very well into a piece of text at a

particular scale, orientation, and position within the text, then the pattern at the same scale

and orientation but with a slightly di�erent position will also �t very well. Both matches

should not be reported. We report only those matches at which S is a local maximum in

a topological neighborhood of the match, where the topological elements are the vertices,

edges, and regions of an arrangement of a certain set of lines in scale-position space. For

example, we output a vertex (�; �) of the arrangement only if it is a better match than

its neighboring vertices and all local maximum locations on adjacent edges. (The complete

algorithm is given in section 3.4.) Using a topological neighborhood instead of a geometric

one is only a heuristic used to achieve our goal of reporting independent matches.

3.2 The Best Rotation

In this section we �x (�; �) and derive the rotation angle 
 = 
�(�; �) which minimizes

the mean squared error e(�; �; 
) and, hence, the reciprocal match score R(�; �; 
). This is

straightforward because e is di�erentiable with respect to 
:

@e

@

(�; �; 
) = 2

0
@
 �

R �+�l
s=�

�
�(s)�	

�
s��
�

��
ds

�l

1
A :

The derivative @e=@
 is equal to zero exactly when


 = 
�(�; �) =

R �+�l
s=�

�
�(s)� 	

�
s��
�

��
ds

�l
;
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the mean value of the di�erence � � 	 (more precisely, �(s) � 	((s � �)=�)) over the

arclength interval of the match. Since @2e=@
2(�; �; 
)� 2 > 0, we conclude that for �xed

� and �, the rotation angle that minimizes the mean squared error is 
 = 
�(�; �) given

above. If we de�ne e�(�; �) � e(�; �; 
�(�; �)), then

e�(�; �) =

R �+�l
s=�

�
�(s)�	

�
s��
�

��2
ds

�l
�
0
@R �+�ls=�

�
�(s)� 	

�
s��
�

��
ds

�l

1
A
2

:

The function e�(�; �) is the variance of � �	 over the arclength interval of the match.

3.3 The 2D Search Problem

The result of the previous section allows us to eliminate the rotation parameter from consid-

eration in our score and reciprocal score functions. We de�ne R�(�; �) = R(�; �; 
�(�; �)).

Our goal now is to �nd local minima in the domain D of

R�(�; �) =
L

�l

 
1 +

I2(�; �)

�l
�
�
I1(�; �)

�l

�2!
; (3.1)

where

I1(�; �) =

Z �+�l

s=�

�
�(s) �	

�
s � �
�

��
ds and (3.2)

I2(�; �) =

Z �+�l

s=�

�
�(s) �	

�
s � �
�

��2
ds: (3.3)

Consider the evaluation of the integral I1(�; �) for a �xed pair (�; �). Since � and 	

are piecewise constant functions, this integral can be reduced to a �nite summation of terms

such as the product of (�i � j) with the length of the overlap of the ith arclength interval

(ci; ci+1) of �(s) and the jth arclength interval (aj� + �; aj+1� + �) of 	((s � �)=�). In

precise mathematical terms, we have

I1(�; �) =
n�1X
i=0

m�1X
j=0

(�i �  j)�Xij ;

where Xij = j(ci; ci+1) \ (aj� + �; aj+1�+ �)j and jJ j is the length of interval J .

Let lij denote the line aj� + � = ci, i = 0; : : : ; n, j = 0; : : : ; m, in the ��-plane. The

four lines

lij : aj� + � = ci;



40 CHAPTER 3. THE POLYLINE SHAPE SEARCH PROBLEM

li+1;j : aj� + � = ci+1;

li;j+1 : aj+1� + � = ci; and

li+1;j+1 : aj+1� + � = ci+1

divide the ��-plane into regions in which we may write down explicit analytic formulae for

Xij = Xij(�; �) = j(ci; ci+1) \ (aj� + �; aj+1� + �)j. In each region, the formula for the

size of the intersection is (at most) a degree one polynomial in � and �. For example, when

ci < aj� + � < ci+1 < aj+1� + �, it is easy to check that Xij = ci+1 � (aj� + �). This

situation is depicted in Figure 3.3. Note that the given formula for Xij also holds if we

replace < with � in the comparisons between text and transformed pattern breakpoints.

All possible formulae for Xij(�; �) are illustrated in Figure 3.4. Now let L denote the

set of (n + 1)(m + 1) lines lij and let A = A(L) denote the arrangement1 in ��-space of
the lines in L. In each face f of A, we have a degree one polynomial formula for Xij ,

X
f
ij = u

f
ij�+ v

f
ij�+w

f
ij. As explained above, the formula for Xij = Xij(�; �) is determined

by the above{below relationship between (�; �) and each of the four lines lij ; li+1;j; li;j+1,

and li+1;j+1. From this fact, it is easy to see that the above{below relationship of (�; �)

and the line lij a�ects only the four intersection formulae Xij ; Xi�1;j; Xi;j�1, and Xi�1;j�1.

Note that A is an arrangement of non-vertical lines. The slope of lij is �aj � 0, so all

lines have negative or zero slope. Note also that A is degenerate because there are many

pairs of parallel lines (li1;j k li2;j). An arrangement vertex vijpq is the intersection of lij

and lpq. The scaling and sliding (�; �) = vijpq of the pattern lines up exactly two pairs of

breakpoints: aj�+� coincides with ci and aq�+� coincides with cp. An arrangement edge

e is an open segment along some line lij . A scaling and sliding (�; �) 2 e lines up exactly

one pair of breakpoints: aj� + � coincides with ci. For an open arrangement face f , any

scaling and sliding (�; �) 2 f lines up no pairs of breakpoints.

Now �x a face f of the arrangement A and let Yij = �i �  j . Then for (�; �) in the

closure �f , the integrals (3.2), (3.3) in the formula for R� can be written as

I
f
1 (�; �) =

n�1X
i=0

m�1X
j=0

X
f
ijYij ; and (3.4)

I
f
2 (�; �) =

n�1X
i=0

m�1X
j=0

X
f
ij(Yij)

2: (3.5)

1For a survey of arrangements, see [19].
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(a)

aj� + � > ci (above lij)

aj� + � < ci+1 (below li+1;j)

aj+1� + � > ci (above li;j+1)

aj+1� + � > ci+1 (above li+1;j+1)

aj� + � aj+1� + �

ci ci+1

Xij = ci+1 � (aj� + �)

(b)

�

�

ci+1

ci
Xij = ci+1 � (aj� + �)

lij

li+1;j

li+1;j+1li;j+1

(I)

(II)(V)

(IV)

(III)

(VI)

Figure 3.3: The Interval Overlap Xij . (a) Intervals for which ci < aj� + � < ci+1 <

aj+1� + �. In this case, Xij = ci+1 � (aj� + �). (b) The corresponding region in scale-

position space is shown in gray. The formulae for all six regions (I){(VI) bounded by � � 0,

� � 0, lij , li+1;j , li;j+1, and li+1;j+1 are given in Figure 3.4.
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Xij = ci+1 � (aj� + �)(I)

aj� + � aj+1�+ �

ci ci+1

Xij = (aj+1� + �) � ci(II)

ci ci+1

aj� + � aj+1� + �

Xij = (aj+1 � aj)�(III)

aj� + � aj+1�+ �

ci ci+1

Xij = ci+1 � ci(IV)

aj�+ � aj+1� + �

ci ci+1

Xij = 0(V)

aj� + � aj+1� + �

ci ci+1

Xij = 0(VI)

aj� + � aj+1� + �

ci ci+1

Figure 3.4: All Possible Interval Overlaps Xij . In all cases, Xij = Xij(�; �) is (at most) a

degree one polynomial in � and �. (I) ci � aj� + � � ci+1 � aj+1� + �. (II) aj� + � �
ci � aj+1�+ � � ci+1. (III) ci � aj�+ � � aj+1� + � � ci+1. (IV) aj�+ � � ci � ci+1 �
aj+1� + �. (V) aj�+ � � aj+1�+ � � ci � ci+1. (VI) ci � ci+1 � aj�+ � � aj+1� + �.
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Substituting X
f
ij = u

f
ij� + v

f
ij� + w

f
ij into these formulae and gathering like terms gives

I
f
1 (�; �) = euf� + evf� + ewf and (3.6)

I
f
2 (�; �) = buf� + bvf� + bwf ; (3.7)

where euf =P
ij u

f
ijYij , buf =P

ij u
f
ij(Yij)

2, and similarly for evf , bvf , ewf , and bwf . Combining
(3.1), (3.6), and (3.7), we can write R� in the closed region �f as

Rf�(�; �) =
L

�3l3
(Af�2 +Bf�� + Cf�2 +Df�+ Ef� + F f ) (3.8)

for constants

Af = l2 + lbuf � (euf)2;
Bf = lbvf � 2euf evf ; (3.9)

Cf = �(evf )2; (3.10)

Df = l bwf � 2euf ewf ;
Ef = �2evf ewf ; and (3.11)

F f = �( bwf )2:
Our 2D search problem is to �nd pairs (�; �) 2 D at which R�(�; �) is a local minimum.

3.3.1 Faces

Can a local minimum of R� occur in the interior of a face?
2 We have not been able to rule out

this possibility, although we will argue that local minima inside faces are somewhat rare. We

will also show that every open ball around a face local minimum location (��; ��) contains

other points (�; �) such that R�(�; �) = R�(��; ��). In this sense, there are no strict local

minima of R� inside an arrangement face. Furthermore, the same value R�(��; ��) can

always be found on an arrangement edge or vertex which is adjacent to the face containing

(��; ��). Given the above considerations, we ignore the possibility of face local minima in

our algorithm. In the rest of this section, we argue the previously made claims.

In order to determine if a local minimum of R� can occur inside a face f , we must

examine the function Rf�(�; �) de�ned on �f (see (3.8)).

2In [13], we concluded that there are no local minima of R� inside an arrangement face. Our proof (given

in the appendix of [13]), however, contained an error in the handling of the case evf = 0.
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Theorem 1 The function R
f
�(�; �) has no local minima in f if evf 6= 0 or bvf 6= 0. Note

from equations (3.6) and (3.7) that evf and bvf are the coe�cients of � in I
f
1 (�; �) and

I
f
2 (�; �), respectively. Thus, the theorem can be rephrased to say that R

f
�(�; �) has no local

minima if one of the integrals I
f
1 (�; �) or I

f
2 (�; �) depends on �.

Proof. The �rst and second partial derivatives of R
f
� with respect to � are

@R
f
�

@�
=

L

�3l3
(Bf� + 2Cf� + Ef) (3.12)

@2R
f
�

@�2
=

2L

�3l3
Cf :

If evf 6= 0, then Cf = �(evf )2 < 0, and, consequently, @2Rf�=@�
2 < 0 (since � > 0). The

concavity of Rf� with respect to � implies that Rf�(�; �) cannot have a local minimum in

the � direction for any �. Therefore, Rf�(�; �) cannot have a local minimum when evf 6= 0.

So now suppose that evf = 0. From the formulae (3.9), (3.10), and (3.11), we see that

Bf = lbvf , Cf = 0, and Ef = 0 in this case. The �rst derivative (3.12) then reduces to

@R
f
�=@� = (L=(�3l2))bvf . Thus @Rf�=@� = 0 i� bvf = 0. If follows that Rf�(�; �) cannot have

a local minimum when evf = 0 and bvf 6= 0.

We have shown that Rf�(�; �) cannot have a local minimum when evf 6= 0 or (evf = 0

and bvf 6= 0). These conditions are, of course, logically equivalent to evf 6= 0 or bvf 6= 0.

Next, we seek an explicit condition on the text polyline which guarantees that evf 6= 0.

De�ne i0(�; �) and i1(�; �) to be the text indices where the transformed pattern graph

domain [�; � + �l] begins and ends:

i0(�; �) = i0 if � 2 [ci0 ; ci0+1) and i1(�; �) = i1 if � + �l 2 [ci1; ci1+1):

See Figure 3.5. For any (�; �) 2 f , no two breakpoints of the text and the transformed

pattern graph line up. This means that i0(�; �) � i
f
0 and i1(�; �) � i

f
1 are constant for

(�; �) 2 f . It also means that If1 (�; �) is di�erentiable with respect to � at points in

f . By (3.2), @If1 =@� = @=@�(
R�+�l
s=� �(s) ds) since

R �+�l
s=� 	((s � �)=�) ds = �

R l
s=0	(s) ds

is independent of �. It is then easy to see from Figure 3.5 that @I
f
1 =@� = �

i
f

1

� �
i
f

0

. But

from (3.6), we also have that @If1 =@� = evf . Therefore evf = �
i
f

1

��
i
f

0

and evf 6= 0 i� �
i
f

1

6= �
i
f

0

.

Combining this fact and Theorem 1, we get

Corollary 1 If �
i
f

0

6= �
i
f

1

, then R
f
� has no local minima in f .

The previous discussion does not eliminate the possibility of a local minimum of Rf� if

i
f
0 = i

f
1 . Fortunately, we have the following lemma.
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s
ci0 � � + d�

�
i
f
0

ci1

� + �l

(� + d�) + �l
�(s)

�
i
f
1

d
�R �+�l

s=� �(s) ds
�
= (�i1 � �i0)d�

Figure 3.5: The Integral of Text Angle as a Function of Pattern Placement. Consider the

integral I(�) =
R �+�l
s=� �(s)ds, where � is �xed. Clearly, I(�+d�) = I(�)�R �+d�s=� �(s)ds+R �+d�+�l

s=�+�l �(s)ds. If (�; �) is in the open face f , then we can choose d� > 0 small enough so

that (�; �+d�) is still in f , �(�) = �(�+d�) = �
i
f

0

, and �(�+�l) = �(�+d�+�l) = �
i
f

1

.

Here, we have I(� + d�)� I(�) = (�
i
f

1

� �
i
f

0

)d�.

Lemma 1 If i
f
0 = i

f
1, then R

f
� has no local minima in f unless R

f
� � 0.

Proof. If if0 = i
f
1 , then the text turning angle graph �(s) � �i0 over [�; � + �l] for every

pair (�; �) 2 f . From equations (3.2) and (3.3), we can explicitly compute I
f
1 (�; �) and

I
f
2 (�; �). The results are If1 (�; �) = �l(�

i
f

0

�  ) and I
f
2 (�; �) = �l(�2

i
f

0

� 2�
i
f

0

 +  2),

where  = (
R l
s=0	(s) ds)=l and  2 = (

R l
s=0	

2(s) ds)=l. Substituting these results into

equation (3.1) for Rf� , we get R
f
�(�; �) = K=�, where K is constant with respect to �. If

K = 0, then Rf� � 0. If K 6= 0, then @Rf�=@� = �K=�2 6= 0, and hence again Rf� has no

local minima.

The following theorem combines Corollary 1 and Lemma 1.

Theorem 2 If all text cumulative angles �i are distinct, then R
f
� has no local minima in f

unless R
f
� � 0.

Proof. Consider the face f . If i
f
0 = i

f
1 , then the conclusion follows from Lemma 1. If

i
f
0 6= i

f
1 , then �if

0

6= �
i
f

1

by assumption, and the conclusion follows from Corollary 1.

An almost immediate consequence of Theorem 2 is

Corollary 2 If the text contains only right turns or only left turns (e.g. if the text is a

piece of a convex polygon), then R
f
� has no local minima in f unless R

f
� � 0.
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Proof. If the text only has right turns, then �0 < �1 < � � � < �m�1; if the text only has

left turns, then �0 > �1 > � � � > �m�1. In either case, the cumulative turning angles �i are

distinct, and the result follows from Theorem 2.

By Theorem 1, if there is a local minimum in f , we must have evf = bvf = 0. In this case,

R
f
� reduces to R

f
�(�; �) = (L=(�3L3))(Af�2 + Df� + F f ), which is independent of �. In

order to determine if there is a local minimum in f , we minimize this function with respect

to �. Here @R
f
�=@� = (�L=(�4l3))(Af�2+2Df�+3F f ), so there are at most two values of �

at which a local minimum can occur. Obviously, these values can be determined in constant

time. Even if R
f
� has a local minimum in the right halfspace H = f (�; �) : � > 0 g, it may

not occur in the open face f . Although we have not been able to eliminate the possibility

of a local minimum inside a face, we have the following theorem.

Theorem 3 There are no strict local minima of R� in the interior of an arrangement face.

By a strict local minimum at (��; ��) 2 f , we mean that Rf�(��; ��) < R
f
�(�; �) for all

(�; �) 6= (��; ��) in a small enough open ball centered at (��; ��) and contained within f .

Theorem 3 follows from the fact that a local minimum in f implies thatRf� is independent of

� (as argued above). If (��; ��) is the location of such a local minimum, then Rf�(��; ��) =

R
f
�(��; �) 8(��; �) 2 �f . In particular, Rf�(��; ��) = R

f
�(��; �) if (��; �) 2 @f . Therefore, a

small value Rf�(��; ��) will also occur on the edges and/or vertices of f which intersect the

vertical line � = ��.

Let us summarize the results of this section. We have not able to eliminate the possibility

of a local minimum inside an arrangement face. However, such a local minimum cannot

occur unless evf = bvf = 0 (Theorem 1), a fairly restrictive condition which implies that Rf�

does not depend on the shift �. Even if there were a local minimum of R� at (��; ��) 2 f ,
R�(��; ��) will not be strictly smaller than R� at other points in a neighborhood of (��; ��)

(Theorem 3). Furthermore, the value Rf�(��; ��) will also occur on some arrangement edge

or vertex adjacent to f . Since local minima inside faces are somewhat rare, are never strict

local minima, and the same value can always be found on arrangement edges or vertices,

we ignore the possibility of face local minima in our algorithm.

3.3.2 Edges and Vertices

Now consider an edge e that bounds face f . We want to know whether R� has a local

minimum at some (�; �) 2 e. For simplicity of computation, we check instead whether R�

has a local minimum at some (�; �) 2 e along the direction of e. This is a weaker condition

than R� having a local minimum at (�; �), and it is this weaker condition that de�nes an
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\edge minimum" in the algorithm presented in the next section. The edge e is part of a

line lij : aj� + � = ci. Combining this line equation with the equation (3.8) for R
f
� , we

get a function Re� (R� restricted to edge e) which is a rational cubic in � (the numerator is

quadratic, but the denominator is cubic):

Re�(�) =
L

�3l3
(�
f
ij�

2 + �
f
ij�+ �

f
ij) if e � lij , e � @f;

where

�
f
ij = Af � ajB

f + a2jC
f ;

�
f
ij = ciB

f � 2ajciC
f +Df � ajEf ; and

�
f
ij = c2iC

f + ciE
f + F f :

Thus we are left with a basic optimization problem. There are at most two local minima

points (��; ��) 2 e for Re� since

dRe�
d�

= � L

�4l3
(�fij�

2 + 2�fij�+ 3�fij):

These edge local minima locations can be determined in constant time given the formula

for Rf� .

The function R� consists of piecewise rational cubic patches glued together at arrange-

ment edges. Local minima of R� may occur at arrangement vertices, so we must also

examine the values of R� at these locations. In fact, in practice we have found that values

at vertices are smaller than minima on incident edges, even with the weaker notion of edge

minimum given above. We shall say a bit more about this at the beginning of the results

section 3.5.

3.4 The Algorithm

The user speci�es a minimum match length matchlenmin and a maximum match length

matchlenmax (default maximum is L), along with a bound on the maximum mean absolute

error maemax of a reported match. It is a bit easier to think in terms of the mean absolute

error than in terms of the mean squared error since the former is in units of radians (or

degrees), while the latter is in units of radians squared. If we let f(s) = j�(s) � (	((s �
�)=�) + 
)j, then the mean absolute error is mae(�; �; 
) =<f; I > =(�l), where <f; g>=R �+�l
s=� f(s)g(s)ds and I(s) � 1. The mean squared error is mse(�; �; 
) = jjf jj2=(�l), where
jjf jj2 =<f; f >. Applying the Cauchy-Schwarz inequality gives (<f; I >)2 � jjf jj2jjI jj2 =
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jjf jj2(�l), from which it follows that mae2(�; �; 
) � mse(�; �; 
). Therefore, the bound

maemax can be guaranteed as long as we require the reported match to have a mean squared

error which is less than or equal to msemax = mae2max.

We say that (�; �) is admissible if the match length �l 2 [matchlenmin;matchlenmax] and

the mean squared error e�(�; �) � msemax. Note that the mean squared error e� =
�l
L
R��1,

and so we can quickly determine the mean squared error from the reciprocal score R�. Of all

admissible locations (�; �), we report only those which are locally the best. An admissible

vertex is reported i� its reciprocal score is less than the reciprocal scores of all adjacent

admissible vertices and of all admissible edge minima locations on adjacent edges. An

admissible edge minimum is reported i� its reciprocal score is less than the reciprocal scores

of all its admissible vertices (at most two) and the other admissible edge minimum (if one

exists) on the same edge. Checking only a constant number of topologically neighboring

elements does not guarantee that two very similar matches (which are geometrically close in

��-space) will not be reported. Using topological closeness instead of geometric closeness

is only a heuristic.

Our algorithm outputs matches during a topological sweep ([21]) over the O(mn) lines lij

in the degenerate arrangement A. Our sweep implementation uses Edelsbrunner's \Simula-
tion of Simplicity" technique ([20]) to cope with the degenerate input. During an elementary

step, the topological sweep line moves from a face f1 into a face f2 through an elementary

step vertex v. Please refer to Figure 3.6. During this step, we �rst compute the formula

v
w4

w3

w1

w2

f1

f2

e1

e2
e4

e3

L1

L2

Figure 3.6: Elementary Step Notation.

for Rf2� (�; �). This requires computing the coe�cients euf2 , evf2 , ewf2 , buf2 , bvf2 , and bwf2
in the formulae (3.6) and (3.7) for the integrals I1(�; �) and I2(�; �), (�; �) 2 �f2. Note

that computing and summing the O(mn) terms in (3.4) and (3.5) during each elementary
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step would require total time O(m3n3) because there are O(m2n2) elementary steps. For-

tunately, only a constant number of terms in (3.4) and (3.5) change when we move from

face f1 to face f2. This is because only a constant number (at most eight) of intersection

formulae X
f
ij are a�ected by above{below relationships involving L1 and L2. Hence, the

values euf2 ; evf2 ; ewf2 ; buf2 ; bvf2 ; bwf2 in (3.6) and (3.7) can be computed in constant time from

the values euf1 ; evf1 ; ewf1 ; buf1 ; bvf1 ; bwf1 , and the formula for Rf2� (�; �) can be computed in O(1)
time from the formula for R

f1
� (�; �). The latter formula was computed when the sweep line

�rst entered face f1.

The remaining work during an elementary step over v is straightforward. In Figure 3.6,

e3 and e4 are the arrangement edges with v as left endpoint. These edges are part of the lines

L1 and L2, respectively, and have right endpoints w3 and w4, respectively. From the formula

for Rf2� (�; �), we compute the formulae for R
L1
� (�; �) and RL2� (�; �), as well as the values

R�(v); R�(w3); R�(w4). From the formulae for RL1� (�; �) and RL2� (�; �), we compute the

locations on e3 and e4 of any local minima of R� in the direction of these edges. The above

computations take constant time given the formula for R
f2
� (�; �). During the elementary

step at v, we decide whether to output the vertex v and any local edge minima locations

on e3 and e4. During previous elementary steps, it was determined if it is still possible to

report v by comparing the value of R� at v to the value of R� at w1; w2, and at all edge

minima locations on e1 and e2. The remaining values of R� needed to decide whether or not

to report v are computed during the elementary step over v, as described above. During

this step, we also compute all values of R� needed to decide whether to report any local

edge minima locations on e3 and e4. For each location (�; �) to be reported, we compute


 = 
�(�; �) = I1(�; �)=�l and report the triple (�; �; 
).

The above discussion shows that the elementary step work speci�c to our setting may

be performed in O(1) time. Thus, the total time to perform the topological sweep over

the O(mn) lines lij is O(m
2n2). The total space required by our algorithm is the O(mn)

storage required by a generic topological line sweep which does not store the discovered

arrangement. In the common case of a simple pattern, such as a line segment or corner,

m = O(1) and our algorithm requires O(n2) time and O(n) space.

The �; 
 components of a reported triple (�; �; 
) give the scaling and rotation com-

ponents of a similarity transformation of the pattern which makes it look like a piece of

the text. The � component tells us where along the text this similar piece is located. To

get the translation parameters of the similarity transformation, we sample the transformed

pattern and the corresponding similar piece of the text, and �nd the translation parameters

which minimize the mean squared error between the translated pattern point set and the

text point set.
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Text T Pattern P Matches

(a)

(b)

Figure 3.7: Trading O� Match Length Against Match Error. In both examples, the pattern

is a line segment and the maximum absolute error input parameter maemax = 9�. To help

make individual matches clear, we show a darker, smaller scale version of the pattern slightly

o�set from each match. (a) One match over the length of the entire \noisy" straight line

text is found. (b) Twelve matches, one for each of the sides of the \mountain range", are

found.

3.5 Results

In practice, local edge minima are very rarely reported because there is almost always a

smaller admissible minimum at one of the two edge vertices. Essentially, the algorithm

reports admissible vertices which have a reciprocal score which is lower than any other

adjacent admissible vertex. Recall that arrangement vertices (�; �) give scalings and shifts

of the pattern which cause two of its arclength breakpoints to line up with two of the

text arclength breakpoints. Our experimentation has thus showed that the best matches

of arclength versus turning angle graphs are usually those that line up two pairs of break-

points (as opposed to one pair for points on arrangement edges and zero pairs for points in

arrangement faces).

Figure 3.7 shows two experiments that illustrate the balancing of match error versus

match length. In both cases, the pattern shape is a line segment. In the �rst case, the text

is a \noisy" straight line. The angles between consecutive segments are all nearly 180�.

With maemax = 9�, our algorithm �nds one match over the length of the entire piece of

text. In the second case, the text looks more like a mountain range. The angles between

consecutive segments are far from 
at angles. With maemax = 9�, our algorithm �nds twelve

matches, one for each of the sides of the mountain range.

A successful PSSP algorithm must produce a complete set of independent matches for

given user tolerances. Figures 3.8 shows the result of applying our PSSP algorithm in two

\exact" situations. In the �rst example, the pattern is simply a rotated version of the text.

In the second example, the pattern is a rotated, scaled-down version of a portion of the text.

For both inputs, only the one correct match is reported. Figure 3.9 shows the output of our
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Text T Pattern P Matches

(a)

(b)

Figure 3.8: PSSP Exact Matching Examples. The columns (from left to right) show the

text, pattern, and matches found. With maemax = 9�, our algorithm �nds only the one

exact match in both examples. (a) The pattern is a rotated version of the text. (b) The

pattern is a rotated, scaled version of a piece of the text.
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Text T Pattern P Matches

(a)

(b)

(c)

(d)

Figure 3.9: PSSP Results. As in Figure 3.7, each match is accompanied by a darker, smaller

scale version of the pattern which is slightly o�set from the match. (a) maemax = 15�. Each

of the �ve noisy lines gives rise to exactly one segment match. (b) maemax = 9�. The three

left turn text corners are found with the left turn corner pattern. (c) maemax = 20�. Our

algorithm �nds the two (relatively) long, straight portions of the text. (d) maemax = 9�.

Both left turn text corners are found.
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Text T Pattern P Matches

(a)

(b)

Figure 3.10: More PSSP Results. In both examples, the text is a curve with straight line

and circular portions. (a) The circular arc pattern only matches the circular part of the

text. (b) The line segment pattern only matches the straight parts of the text.

algorithm on four (text, pattern) pairs in which the pattern is either a straight segment or a

corner. In Figure 3.9(b) we clearly see that the order of the vertices in the pattern and text

makes a di�erence in the matches found by our algorithm | the three left turn text corners

are found, but the right turn text corner is missed. To get around this dependence on the

representation of the polyline, we could run our algorithm again on the pattern represented

by vertices in the reverse order (so that the pattern is a right turn instead of a left turn).

In Figure 3.10, we �t a circular arc and straight line pattern into a text curve with both

circular and straight portions. The circular arc does not match the straight portions of the

text, nor does the line segment match the circular portion of the text. In the examples

shown in Figures 3.11 and 3.12, we use our method to summarize the straight line content

of an image.

Obviously, if the pattern shape is not present anywhere within the text (within user

speci�ed tolerances) then a PSSP algorithm should not report any matches. Given the text

and pattern shown in Figure 3.13 our PSSP algorithm reports no matches for maemax = 9�

and matchlenmin set to prevent very tiny matches.

3.6 Summary and Suggestions for Future Work

In this chapter we developed an algorithm to �nd where a planar \pattern" polyline �ts

well into a planar \text" polyline. By allowing the pattern to rotate and scale, we �nd
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(a) (b)

(c) (d)

Figure 3.11: Image Summary by Straight Segments. (a) The image to be summarized is

512� 480. (b) The result of Canny edge detection (� = 6 pixels) and edgel linking is a set

of polylines with a total of 7219 vertices. (c) The result of subsampling each of the polylines

by a factor of 6 leaves a total of 1212 vertices. (d) Finally, �tting a straight segment to

each of the subsampled polylines using our PSSP algorithm gives a set of 50 segments.

As mentioned in the text, checking only a constant number of topologically neighboring

elements before reporting a match (�; �) does not guarantee that two very similar matches

(which are geometrically close) will not be reported. This heuristic is responsible for the

\double edges" in the image summary.
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(a) (b) (c)

Figure 3.12: Another Image Summary by Straight Segments. (a) The \tools" image. (b)

The result of Canny edge detection and edgel linking of the pliers' contour. (c) The result

of �tting a straight segment into the pliers' contour using our PSSP algorithm.

Figure 3.13: PSSP No Matches Example. The text is shown above the pattern. Our PSSP

algorithm reports no matches for maemax = 9� and matchlenmin set to prevent very tiny

matches.
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portions of the text which are similar in shape to the pattern. We dealt with the issue of

match length versus match error by using a match scoring function that balances these two

factors. All comparisons were performed on the arclength versus cumulative turning angle

representations of the polylines. This allowed us to reduce the complexity of the problem: To

compare two planar polylines, we compare their one-dimensional arclength versus turning

angle graphs. In addition, the space operations of scaling, rotation, and sliding the pattern

along the text cause simple changes to the pattern summary graph. Another reduction

in complexity was gained by using the L22 distance to compare the graphs. This allowed

us to eliminate the rotation parameter from the search space, leaving a 2D scale-position

space. Thus, we converted a four-dimensional search problem in the space of similarity

transformations to a two-dimensional search problem in scale-position space.

Our line sweep strategy essentially examines all possible pattern scales and positions

within the text. If, however, the pattern does not �t well at a certain scale and location,

then it will not �t well at nearby scales and locations. Finding \certi�cates of dissimilarity"

which would allow us to prune our (�; �) search space is a topic for future research. Another

idea for speeding up our algorithm is to use the results of pattern searches in coarse versions

of the text (with relatively high error tolerances) to guide searches in �ner versions of the

text, with the �nal search in the text itself. This hierarchical search strategy aims to reduce

the total search time by reducing the number of expensive comparisons between the pattern

and the full text at the expense of many cheaper comparisons with coarser versions of the

text. The two techniques discussed above will help speed up the search for one pattern

within one text. Suppose, however, that we have multiple patterns that we want to �t into

multiple texts. This is the case, for example, if we are trying to summarize an image by

recording which basic shapes/patterns �t where in the image. Can we do better than the

brute force approach of applying our algorithm to each (text, pattern) pair?

The problem considered in this chapter can be generalized in a few di�erent ways. For

example, we may want to �nd a�nely transformed versions of a pattern within a text. In

addition to the shape transformation group, we could expand the class of shapes to include

planar shapes other than polylines, such as circular arcs or cubic splines. Also, we may

want to remove the restriction that the one-dimensional shapes are planar and allow, for

example, polylines in three dimensions. To complete the generalization of the problem, we

could allow the two-dimensional shapes such as polyhedra or spheres. Another possible

topic of further research is to use the ideas in this chapter to develop a metric on polyline

shapes which returns a small distance between two polylines when a scaled, rotated version

of one matches well a portion of the other. See [3][34][54][2] for work on shape metrics.

One strategy for handling other one-dimensional planar pattern and text shapes is to
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apply our method on polyline approximations of the input shapes. An accurate polyline

approximation, however, may require a very large number of segments and our algorithm

uses O(m2n2) time. In choosing the arclength versus turning angle representation of a

shape, we restricted ourselves to one-dimensional planar shapes. In addition, our algorithm

relies heavily on the simple changes to this representation when the underlying polyline

is uniformly scaled and rotated. This no longer holds if we allow, for example, a�ne

transformations of the pattern.

Although our algorithm does not generalize to handle more general shape search prob-

lems, it produces excellent results for planar polylines under similarity transformations.

This very speci�c problem is far from trivial because we match possibly scaled versions of

the pattern to pieces of the text, and we require only the \best" matches to be reported.

The main idea of the algorithm is to divide up the search plane into regions in which it

is (relatively) easy to handle a complex scoring function. This general idea is obviously

applicable to other search problems.
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Chapter 4

The Earth Mover's Distance

(EMD)

A very general distance measure with applications in content-based image retrieval is the

Earth Mover's Distance (EMD) between distributions ([68]). The EMD has been suc-

cessfully used in a common framework for measuring image similarity with respect to

color ([69, 67, 65, 68]) and texture ([69, 68, 66]). In this framework, the summary or

signature of an image is a �nite collection of weighted points. For example, in [69] the

color signature of an image is a collection of dominant image colors in the CIE-Lab color

space ([88]), where each color is weighted by the fraction of image pixels classi�ed as that

color. In [69], the texture signature of a single texture image is a collection of spatial

frequencies in log-polar coordinates, where each frequency is weighted by the amount of

energy present at that frequency. To complete the uniform framework, a distance measure

on weight distributions is needed to measure similarity between image signatures.

The Earth Mover's Distance (EMD) between two distributions is proportional to the

minimum amount of work required to change one distribution into the other. Here one unit

of work is de�ned as the amount of work necessary to move one unit of weight by one unit of

distance. The distance measure between weight locations is known as the ground distance.

The morphing process between equal-weight distributions can be visualized as weight 
owing

from one distribution to the other until the distributions are identical. Figures 4.1(a)-(c)

and 4.2(a)-(c) illustrate the minimum work morphing for three di�erent pairs of equal-weight

distributions.

In chapter 2, we used mass instead of weight in our EMD description because the EMD

optimization problem was originally called the mass transfer problem. We consider the two

terms interchangeable, although our notation given in the next section corresponds better

59
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(a) (b) (c) (d)

Figure 4.1: Example Distributions in 2D. Each of the examples (a), (b), (c), and (d) shows

two distributions, one whose points are centered at the red discs and one whose points are

centered at the blue discs. The area of a disc is equal to the weight at its center point in the

distribution. The pairs (a), (b), and (c) are equal-weight pairs. In (d), the red distribution

is lighter than the blue distribution. This example is the same as (b) with one of the red

weights removed.

with weight, and in physics the units of weight � distance are the same as the units for

work. On the other hand, mass corresponds better with the term Earth Mover's Distance.

This name was suggested by Jorge Stol� ([76]) who got the idea from some CAD programs

for road design which have a function that computes the optimal earth displacement from

roadcuts to road�lls.

An important property of the EMD is that it allows partial matching. When the total

weights of the distributions are unequal, the EMD requires all the weight in the lighter

distribution to be matched to weight in the heavier distribution. Some weight in the heav-

ier distribution, however, will not be matched to weight in the lighter distribution. The

matching process between unequal-weight distributions can be visualized as a 
ow in two

di�erent ways: (i) weight 
ows from the lighter distribution to the heavier distribution

until the lighter distribution becomes a sub-distribution of the heavier one, or (ii) weight


ows from the heavier distribution to the lighter distribution until all the weight in the

lighter distribution has been covered. A type (i) 
ow visualization for the unequal-weight

distributions in Figure 4.1(d) is shown in Figure 4.2(d).

The EMD matching process can also be visualized as �lling holes with piles of dirt. The

holes are located at the points in the lighter distribution, and the dirt piles are located at the

points in the heavier distribution. The volume of a hole or dirt pile is given by the weight

value of its position. In the equal-weight case, either distribution can be used to de�ne the

dirt piles or the holes, and all the dirt is needed to �ll the holes. In the unequal-weight

case, there is dirt leftover once all the holes are �lled.

In the next section, we give the formal de�nition of the Earth Mover's Distance and

discuss some of its properties. The work minimization problem which de�nes the EMD is a
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(a)

(b)

(c)

(d)

Figure 4.2: The EMD Morphing Process. Here we show the least work morphing for the

equal-weight examples (a), (b), (c), and the unequal-weight example (d) in Figure 4.1.

Weight 
ows from the red distributions to matching weight in the blue distributions. The

amount of work done between frames is the same for every pair of adjacent frames shown

(except possibly between the last two frames in each sequence). The EMD is smaller between

pair (a) than pair (b), and smaller between pair (b) than pair (c). In (d), some of the blue

weight is not matched to any red weight.
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type of linear program known as the transportation problem. We discuss the transportation

problem and its connection to the EMD in section 4.2. In section 4.3, we consider some

special cases of matching (i) distributions which de�ne ordinary point sets (section 4.3.1),

and (ii) equal-weight distributions on the real line (section 4.3.2). In section 4.4, we give

a couple of modi�cations to the EMD which make it more amenable to partial matching.

In section 4.4.1, we present the partial EMD which forces only some fraction of the weight

of the lighter distribution to be matched. In section 4.4.2, we discuss the � -EMD which

measures the amount of weight that cannot be matched if we only allow weight to 
ow

over ground distances that do not exceed � . Finally, in section 4.5 we use the EMD to

estimate the size at which a color pattern may appear within an image. Please refer back

to section 2.3 for a comparison of the EMD and bin-to-bin histogram distance measures.

4.1 Basic De�nitions and Notation

We denote a discrete, �nite distribution x as

x = f (x1; w1); : : : ; (xm; wm) g � (X;w) 2DK;m

where X = [ x1 � � � xm ] 2 RK�m and wi � 0, for all i = 1; : : : ; m. Here K is the dimension

of ambient space of the points xi 2 RK , and m is the number of points. The (total) weight

of the distribution x is w� =
Pm
i=1 wi. Given two distributions x = (X;w) 2 DK;m and

y = (Y; u) 2 DK;n, a 
ow between x and y is any matrix F = (fij) 2 Rm�n . Intuitively,

fij represents the amount of weight at xi which is matched to weight at yj . The term 
ow

is meant to evoke the image of weight 
owing from the points in the heavier distribution to

the points in the lighter distribution until all the weight in the lighter distribution has been

covered. If one distribution is known to be heavier than the other, then we shall write that

a 
ow is from the heavier distribution to the lighter distribution. The 
ow F is a feasible


ow between x and y i�

fij � 0 i = 1; : : : ; m; j = 1; : : : ; n; (4.1)
nX
j=1

fij � wi i = 1; : : : ; m; (4.2)

mX
i=1

fij � uj j = 1; : : : ; n; and (4.3)

mX
i=1

nX
j=1

fij = min(w�; u�): (4.4)
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Constraint (4.1) requires the amount of xi matched to yj to be nonnegative. Constraint (4.2)

ensures that the weight in y matched to xi does not exceed wi. Similarly, (4.3) ensures that

the weight in x matched to yj does not exceed uj . Finally, constraint (4.4) forces the total

amount of weight matched to be equal to the weight of the lighter distribution.

Let F(x;y) denote the set of all feasible 
ows between x and y. The work done by a

feasible 
ow F 2 F(x;y) in matching x and y is given by

WORK(F;x;y) =
mX
i=1

nX
j=1

fijdij ;

where dij = d(xi; yj) is the distance between xi and yj . An example ground distance is the

Euclidean distance d(xi; yj) = jjxi�yj jj2. The Earth Mover's Distance EMD(x;y) between

x and y is the minimum amount of work to match x and y, normalized by the weight of

the lighter distribution:

EMD(x;y) =
minF=(fij)2F(x;y) WORK(F;x;y)

min(w�; u�)
: (4.5)

In the next section, we connect the work minimization problem in the numerator of (4.5) to

a special type of linear program called the transportation problem ([32]). The normalization

by the minimum weight makes the EMD equal to the average distance travelled by weight

during an optimal (i.e. work minimizing) 
ow, and ensures that the EMD does not change

if all the weights in both distributions are scaled by the same factor. Examples of feasible

non-optimal and optimal 
ows between equal-weight distributions are shown in Figure 4.3,

and between unequal-weight distributions are shown in Figure 4.4. In the unequal-weight

case, some of the weight in the heavier distribution is unmatched by a feasible 
ow (more

precisely, w� � u� x-weight is unmatched if x is heavier than y).

The EMD is a metric when the total weights of the distributions are equal and the

ground distance between weights is a metric ([68]). The only di�cult part of the proof is

showing the triangle inquality EMD(x; z) � EMD(x;y) + EMD(y; z). One way to morph

x into z is to morph x into y and then y into z. If dirt travels from xi to yj to zk,

then the metric assumption for the ground distance yields d(xi; zk) � d(xi; yj) + d(yj ; zk);

i.e., it is cheaper just to transport the dirt directly from xi to zk . If we use an optimal

matching F � = (f�ij) to change x into y and an optimal matching G� = (g�jk) to change

y into z, then the composite morphing H = (hik) to change x into z cannot cost more

than EMD(x;y)+EMD(y; z). The EMD triangle inequality then follows from the fact that

EMD(x; z) is the minimum cost of any morphing from x to z. The composite 
ow H is
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(a)

w1 = 0:74

x1

w2 = 0:26
x2

u1 = 0:23
y1

u2 = 0:26y2

u3 = 0:51

y3

f13 = 0:51

f22 = 0:26

f11 = 0:23

d11 = 155:7

d13 = 252:3

d22 = 316:3

(b)

w1 = 0:74

x1

w2 = 0:26
x2

u1 = 0:23
y1

u2 = 0:26

y2

u3 = 0:51

y3

f11 = 0:23

f12 = 0:26

f13 = 0:25

f23 = 0:26

d23 = 198:2

d13 = 252:3

d12 = 277:0

d11 = 155:7

Figure 4.3: A Non-Optimal and an Optimal Flow between Equal-Weight Distributions. The

area of the disc around a weight location is equal to the amount of weight at that location.

(a) The amount of work done to match x and y by this feasible 
ow is 0:23� 155:7+0:51�
252:3 + 0:26� 316:3 = 246:7. This 
ow is not optimal. (b) This 
ow is a work minimizing


ow. The total amount of work done is 0:23�155:7+0:26�277:0+0:25�252:3+0:26�198:2 =
222:4. Since the total weight of both x and y is one, the EMD is equal to the minimum

amount of work: EMD(x;y) = 222:4.
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(a)

w1 = 0:74

x1

w2 = 0:26
x2

u1 = 0:23
y1

u2 = 0:51

y2

f12 = 0:51

f21 = 0:23

d21 = 292:9

d12 = 252:3

(b)

w1 = 0:74

x1

w2 = 0:26
x2

u1 = 0:23
y1

u2 = 0:51

y2

f11 = 0:23

f12 = 0:25

f22 = 0:26

d22 = 198:2

d12 = 252:3

d11 = 155:7

Figure 4.4: A Non-Optimal and an Optimal Flow between Unequal-Weight Distributions.

Here x is heavier than y. (a) The amount of work done to match x and y by this feasible


ow is 0:51 � 252:3 + 0:23 � 292:9 = 196:0. For this 
ow, 0.23 of the weight at x1 and

0.03 of the weight at x2 are not used in the matching. This 
ow is not optimal. (b)

This 
ow is a work minimizing 
ow. The total amount of work for this 
ow to cover y

is 0:23� 155:7 + 0:25� 252:3 + 0:26� 198:2 = 150:4. For this 
ow, 0.26 of the weight at

x1 is not used in the matching. Since the total weight of the lighter distribution is 0.74,

EMD(x;y) = 150:4=0:74 = 203:3.
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derived from the 
ows F � and G� as the sum of interval intersections

hik =
nX
j=1

������
2
4i�1X
b{=1 f

�b{j ;
iX
b{=1 f

�b{j
3
5\

2
4k�1X
bk=1 g

�

jbk;
kX
bk=1 g

�

jbk
3
5
������ :

See [68] for the intuition for this formula. Since the Lp (p � 1) distance functions are metrics,

the EMD is a metric between equal-weight distributions whenever the ground distance is

an Lp distance.

Another commonly used distance function is d = L22, the square of the ordinary L2

distance. The L22 distance function does not obey the triangle inequality, but it is a weak

metric between points since

jjp� qjj22 � 2(jjp� rjj22 + jjq � rjj22) 8p; q; r:

Thus, the morphing H from x to z costs no more than 2(EMD(x;y) + EMD(y; z)) when

the gorund distance is L22. It follows that

EMDL
2

2(x; z) � 2(EMDL
2

2(x;y)+ EMDL
2

2(y; z)): (4.6)

Thus, the EMD is a weak metric between equal-weight distributions when d = L22.

When the distributions are not necessarily equal-weight, the EMD is no longer a metric.

If x is lighter than y, then a feasible 
ow matches all the weight in x to part of the weight

in y. If x and z are both lighter than y, then it can happen that EMD(x;y) and EMD(y; z)

are small, but EMD(x; z) is large. This is because x and z might match well two parts of y

that have little or no weight in common. There is no reason that two such parts of y must

be similar under the EMD.

In the examples and discussion given thus far, the EMD measures the distance between

two collections of weighted points based on a ground distance between points. This does

not, however, expose the full generality of the EMD. The coordinates of distribution points

are not used directly in the EMD formulation; only the ground distances between points are

needed. Therefore, there is no need to work in a point feature space; the only requirement

is that ground distances between features can be computed. In general, the EMD is a dis-

tance measure between two sets of weighted objects which is built upon a distance between

individual objects. In this thesis, however, we focus mainly on the case of distributions of

weight in some point feature space.
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4.2 Connection to the Transportation Problem

The transportation problem (TP) is a special type of linear program (LP) which seeks to �nd

the minimum cost way to transport goods from a set of sources or suppliers i = 1; : : : ; m

to a set of destinations or demanders j = 1; : : : ; n. Supplier i has a supply of si units,

and demander j has a demand of dj units. The cost per unit transported from supplier i

to demander j is denoted by cij , and the number of units transported is denoted by xij .

Assuming that the total supply s� =
Pm
i=1 si is equal to the total demand d� =

Pn
j=1 dj ,

the transportation problem is to compute

min
(xij)

mX
i=1

nX
j=1

cijxij

subject to

xij � 0 i = 1; : : : ; m; j = 1; : : : ; n;
nX
j=1

xij = si i = 1; : : : ; m;

mX
i=1

xij = dj j = 1; : : : ; n:

If the total supply and demand are not equal, then it is impossible to satisfy the given

constraints. The equality constraints can be written as

2
6666666666666666664

1 1 � � � 1

1 1 � � � 1

.. .

1 1 � � � 1

1 1 1

1 1 � � � 1

.. .
. . .

. . .

1 1 1

3
7777777777777777775

2
66666666666666666666666666666666664

x11

x12
...

x1n

x21

x22
...

x2n
...

xm1

xm2
...

xmn

3
77777777777777777777777777777777775

=

2
6666666666666666664

s1

s2
...

sm

d1

d2
...

dn

3
7777777777777777775

:
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The structure of this coe�cient matrix can be exploited to improve both the time and space

required by the simplex algorithm on a transportation problem. A detailed description

of the transportation simplex method can be found in [32]. A C-code implementation of

transportation simplex algorithm is currently available at http://robotics.stanford.

edu/~rubner/research.html.

The transportation simplex algorithm can still be applied when the total supply s� is

greater than the total demand d�. The goal is still to �nd the minimum cost way to satisfy

all the demand. In this case, however, there will be some supply left over after the demand

has been satis�ed. The LP for the unbalanced case is

min
(xij)

mX
i=1

nX
j=1

cijxij

subject to

xij � 0 i = 1; : : : ; m; j = 1; : : : ; n;
nX
j=1

xij � si i = 1; : : : ; m;

mX
i=1

xij = dj j = 1; : : : ; n:

In order to apply the transportation simplex method, we convert the unbalanced TP to an

equivalent balanced TP. This is done by adding a dummy demander n + 1 with demand

dn+1 = s��d�, and for which ci;n+1 = 0 for i = 1; : : : ; m. The total demand in the modi�ed

problem is equal to the total supply, and the minimum cost is the same for the balanced

and unbalanced problems. The dummy demander gives the suppliers a place to dump their

leftover supply at no cost.

Let us now connect the workminimization LP to the unbalanced transportation problem.

If, for example, u� � w�, then the work minimization LP can be rewritten as

min
(fij)

mX
i=1

nX
j=1

fijdij

subject to

fij � 0 i = 1; : : : ; m; j = 1; : : : ; n;
nX
j=1

fij � wi i = 1; : : : ; m;
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mX
i=1

fij = uj j = 1; : : : ; n:

This LP is an unbalanced transportation problem, where the supplies are w1; : : : ; wm, the

demands are u1; : : : ; un, and the costs are dij = d(xi; yj). Similarly, if w� � u�, then

the suppliers are from distribution y = (Y; u) and the demanders are from distribution

x = (X;w). In the case of equal-weight distributions, w� = u�, the work LP reduces to

min
(fij)

mX
i=1

nX
j=1

fijdij

subject to

fij � 0 i = 1; : : : ; m; j = 1; : : : ; n;
nX
j=1

fij = wi i = 1; : : : ; m;

mX
i=1

fij = uj j = 1; : : : ; n;

which is a balanced transportation problem. Thus, the work minimization problem in the

numerator of equation (4.5) is a transportation problem, and it can be solved e�ciently by

applying the transportation simplex method.

4.3 Special Cases

In this section, we examine two special cases of the EMD when the input distributions are

restricted in some way. In section 4.3.1, we show that the EMD reduces to an optimal

one-to-one matching of points when all point weights in the two distributions are equal to

one. In section 4.3.2, we consider the case of equal-weight distributions on the real line.

In this case, we give a very e�cient algorithm to compute the EMD in one pass over the

points.

4.3.1 Point Set Matching using the EMD

A point set is a special case of a distribution in which all weights are equal to one. In the

language of the transportation problem, all the supplies and demands are equal to one unit.

A slightly more general restricted input to the transportation problem is one in which all

supplies and demands are equal to integers. Here we can assume that the transportation

problem is balanced, for a dummy demander that absorbs any excess supply will also have
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an integer demand. The integer input restriction adds structure to the transportation

problem in what is usually known as the integer solutions property. This property states

that when all the supplies and demands are integers, all feasible 
ows located at vertices

of the feasible convex polytope F have integer values ([32]). Hence, all optimal feasible

vertex 
ows consist only of integer values when all supplies and demands are integers. The

transportation simplex method returns an optimal vertex 
ow.

Now let us return to the speci�c case when all supplies and demands are equal to one.

From constraints (4.1), (4.2), and (4.3), it follows that 0 � fij � wi and 0 � fij � uj in

every feasible 
ow F = (fij). This means that 0 � fij � 1 in every feasible 
ow between

point sets. Combining this fact with the integer solutions property, there exists an optimal

feasible 
ow F � = (f�ij) at a vertex of F with f�ij 2 f0; 1g 8i; j. As previously noted,

the transportation simplex method will return such a solution. The 
ow values involving

a dummy demander needed to create a balanced transportation problem will be integers,

but need not be binary. This is irrelevant for our purposes since such 
ow variables are

not really part of the solution. The bottom line is that for distributions x 2 DK;m and

y 2 DK;n which are point sets in RK with m � n,

EMD(x;y) =
minF=(fij)2F(x;y)

Pm
i=1

Pn
j=1 fijd(xi; yj)

min(w�; u�)
=

min�2�
Pn
j=1 d(x�(j); yj)

n
;

where � is the set of one-to-one correspondences

� = f � : f 1; : : : ; n g ! f 1; : : : ; m g j �(j1) = �(j2), j1 = j2 g :

Thus, the EMD between point sets measures the average distance between corresponding

points in an optimal one-to-one matching.

It is worthwhile to note that although the transportation simplex method will �nd

an optimal one-to-one matching between point sets, it does not take advantage of the

fact that the supplies and demands are all equal to one. A transportation problem with

such supplies and demands is known as an assignment problem, and there are specialized

algorithms to solve assignment problems ([75]). One word of caution is needed before

applying an assignment problem algorithm instead of a transportation problem algorithm

to match point sets. Creating a balanced assignment problem (i.e. one in which the two

point sets have the same number of points) by adding dummy points to the smaller set

will result in a large increase in the number of problem variables if the two sets have very

di�erent sizes. A transportation problem can be balanced with the addition of only one

dummy demander which creates far fewer dummy variables than in the assignment case.
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Thus for very unbalanced point set matching problems, it may be more e�cient to apply

the transportation simplex method than an assignment problem algorithm which operates

only on balanced problems.

4.3.2 The EMD in One Dimension

Let x = (X;w) 2 D1;m and y = (Y; u) 2 D1;n be distributions on the real line. Assume the

points in x and y are sorted by position:

x1 < x2 < � � �< xm and y1 < y2 < � � � < yn:

We also assume in this section that the ground distance between points is the absolute value

(d = L1).

De�ne the cumulative distribution function (CDF) of x as

W (t) =

8>>><
>>>:

0 if t 2 (�1; x1)Pk
i=1 wi if t 2 [xk; xk+1), 1 � k � m� 1

w� =
Pm
i=1 wi if t 2 [xm;1):

Similarly, the CDF of y is

U(t) =

8>>><
>>>:

0 if t 2 (�1; y1)Pl
j=1 uj if t 2 [yl; yl+1), 1 � l � n� 1

u� =
Pn
j=1 uj if t 2 [yn;1):

If x and y are equal weight, then the minimum work to transform one distribution into the

other is the area between the graphs of the CDFs of x and y. We shall prove this fact later

in this section in Theorem 5. An example is shown in Figure 4.5.

The 
ow naturally de�ned by the CDFs is called the CDF 
ow, and is denoted FCDF =

(fCDFij ). Once again, see Figure 4.5. If we let

Wk = W (xk) =
Pk
i=1wi and

Ul = U(yl) =
Pl
j=1 uj ;

then the CDF 
ow is given by

fCDFij = j[Wi�1;Wi] \ [Uj�1; Uj ]j:

Theorem 4 The 
ow FCDF is a feasible 
ow between equal-weight distributions x and y;
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u1 = 10

w1 = 2 w2 = 3
u2 = 1

w3 = 7

u3 = 2
w4 = 1

0

10

11

12

13

2

5

U(t)

W (t)

t

y1 x1 x2 x3 x4y2 y3

fCDF21 = 3

fCDF11 = 2

fCDF31 = 5

r1 r2 r3 r4 r5 r6 r7

Figure 4.5: The EMD between Equal-Weight Distributions on the Real Line. The cumu-

lative distribution functions (CDFs) for the equal-weight line distributions x and y are

W (t) and U(t), repsectively. The minimum work to transform x into y is equal to the area

between the two CDFs. An optimal transforming 
ow FCDF = (fCDFij ), called the CDF


ow, is shown with directed lines from x-weight to matching y-weight. The CDF 
ow is

fCDF11 = 2, fCDF21 = 3, fCDF31 = 5, fCDF32 = 1, fCDF33 = 1, fCDF43 = 1, and fCDFij = 0 for all

other pairs (i; j). The EMD between x and y is obtained by dividing the minimum work

by the total weight of the distributions (w� = u� = 13 in this example).
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W0 = 0

U0 = 0 U1 U2 Un�1 Un = u� = w�

W1 W2 W3 Wm�1 Wm = w� = u�� � �

� � �

w1 w2 w3 wm

u1 u2 un

Figure 4.6: Feasibility of the CDF 
ow. The length of the x-interval [Wi�1;Wi] is the x-

weight wi, and the length of the y-interval [Uj�1; Uj] is the y-weight uj . It should be clear

from this �gure that
Pn
j=1 f

CDF
ij = wi and

Pm
i=1 f

CDF
ij = uj , where f

CDF
ij = j[Wi�1;Wi] \

[Uj�1; Uj ]j.

i.e., FCDF 2 F(x;y).

Proof. Obviously fCDFij � 0. It remains to show that

nX
j=1

fCDFij = wi and
mX
i=1

fCDFij = uj :

Note that the disjoint (except at interval endpoints) unions

m[
i=1

[Wi�1;Wi] = [0; w�] and
n[
j=1

[Uj�1; Uj ] = [0; u�]

cover exactly the same interval [0; w�] = [0; u�]. See Figure 4.6. It follows that

Pn
j=1 f

CDF
ij =

Pn
j=1 j[Wi�1;Wi]\ [Uj�1; Uj]j

=
���[Wi�1;Wi] \

�Sn
j=1[Uj�1; Uj ]

���� (interior disjointness of [Uj�1; Uj])

= j[Wi�1;Wi] \ [0; u�]j
= j[Wi�1;Wi] \ [0; w�]j
= j[Wi�1;Wi]j ([Wi�1;Wi] � [0; w�])Pn

j=1 f
CDF
ij = wi:

Similar reasoning proves that
Pm
i=1 f

CDF
ij = uj .

Now denote the sorted list of breakpoints x1; x2; : : : ; xm; y1; y2; : : : ; yn as

r1 � r2 � � � � � rm+n:

See Figure 4.5. In order to prove the optimality of FCDF, we need the following lemma.
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rk rk+1

yJ(k+1)yJ(k+1)�1 xI(k) xI(k)+1

rk rk+1

yJ(k+1)yJ(k+1)�1xI(k) xI(k)+1

rk rk+1

yJ(k+1)yJ(k+1)�1 xI(k) xI(k)+1

rk rk+1

yJ(k+1)yJ(k+1)�1xI(k) xI(k)+1

Figure 4.7: Breakpoint Notation Used in Lemma 2. I(k) is the largest i such that xi � rk,

and J(k + 1) is the smallest j such that yj � rk+1. The leftmost and rightmost labelled

points are not necessarily rk�1 and rk+2.

Lemma 2 The feasible 
ow FCDF between equal-weight distributions x and y moves exactly

jW (rk) � U(rk)j weight from x to y over the interval (rk; rk+1). More precisely, it moves

W (rk) � U(rk) x-weight from rk to rk+1 if W (rk) � U(rk) and U(rk)�W (rk) from rk+1

to rk if U(rk) > W (rk).

Proof. Let I(k) be the largest i such that xi � rk, and let J(k + 1) be the smallest j such

that yj � rk+1. The four possible con�gurations are shown in Figure 4.7. Note also that

I(k) + 1 is the smallest i such that xi � rk+1 and J(k + 1) � 1 is the largest j such that

yj � rk. The key observations here are that

WI(k) = W (rk) and UJ(k+1)�1 = U(rk) (4.7)

for all four possible con�gurations.

The amount of x-weight �k!k+1 that 
ows from rk to rk+1 during the feasible 
ow

FCDF is

�k!k+1 =

I(k)X
i=1

nX
j=J(k+1)

fCDFij

=

I(k)X
i=1

nX
j=J(k+1)

j[Wi�1;Wi]\ [Uj�1; Uj]j

=
����[I(k)i=1 [Wi�1;Wi]

�
\
�
[nj=J(k+1)[Uj�1; Uj]

���� (4.8)

= j[0;WI(k)] \ [UJ(k+1)�1; Un]j
= j[0;W (rk)] \ [U(rk); u�]j (by (4.7))

�k!k+1 =

8<
: W (rk)� U(rk) if W (rk) � U(rk)

0 otherwise
: (4.9)

The line (4.8) follows from the previous line by the interior disjointness of the intervals

[Wi�1;Wi] and the interior disjointness of the intervals [Uj�1; Uj]. Similarly, the amount of
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x-weight �k+1!k that 
ows from rk+1 to rk is

�k+1!k =
mX

i=I(k)+1

J(k+1)�1X
j=1

fCDFij

=
mX

i=I(k)+1

J(k+1)�1X
j=1

j[Wi�1;Wi]\ [Uj�1; Uj]j

=
����[mi=I(k)+1[Wi�1;Wi]

�
\
�
[J(k+1)�1j=1 [Uj�1; Uj]

����
= j[WI(k);Wm]\ [0; UJ(k+1)�1]j
= j[W (rk); w�] \ [0; U(rk)]j (by (4.7))

�k+1!k =

8<
: U(rk)�W (rk) if U(rk) > W (rk)

0 otherwise
: (4.10)

The desired result follows from (4.9) and (4.10).

We are now ready to prove the main result of this section.

Theorem 5 If x = (X;w) 2 D1;m and y = (Y; u) 2 D1;n have equal weight w� = u�, then

EMD(x;y) =

R
1

�1
jW (t)� U(t)j dt

w�
:

Furthermore, FCDF is an optimal feasible 
ow between x and y.

Proof. Note that W (t) and U(t) are constant over the interval t 2 [rk; rk+1) for k =

1; : : : ; m + n � 1, W (t) = U(t) � 0 for t 2 (�1; r1), and W (t) = U(t) � w� = u� for

t 2 [rm+n;1). Therefore the integral of the absolute di�erence of the CDFs may be written

as the �nite summation

Z
1

�1

jW (t)� U(t)j dt =
m+n�1X
k=1

Ek ; (4.11)

where

Ek = (rk+1 � rk) jW (rk)� U(rk)j:

Consider the interval (rk; rk+1). At any position t in this interval, the absolute di�erence

jW (t) � U(t)j is equal to jW (rk) � U(rk)j. Suppose that W (rk) > U(rk). Then in any

feasible 
ow from x to y, the net 
ow from rk to rk+1 must be exactly W (rk) � U(rk).

If the net 
ow is less than this amount, then there will be less x-weight than y-weight in

[rk+1;1) after the 
ow is complete. If the net 
ow is more than this amount, then there will

be more x-weight than y-weight in [rk+1;1) after the 
ow is complete. See Figure 4.8(a).
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(a)

W (rk)

U(rk)

>

w� �W (rk)

u� � U(rk)

<

rk rk+1

W (rk)� U(rk)

U(rk)

U(rk)

=

w� � U(rk)

u� � U(rk)

=

rk rk+1

Case. w� = u�, W (rk) > U(rk), w� �W (rk) < u� � U(rk)

(b)

W (rk)

U(rk)

<

w� �W (rk)

u� � U(rk)

>

rk rk+1

U(rk)�W (rk)

U(rk)

U(rk)

=

w� � U(rk)

u� � U(rk)

=

rk rk+1

Case. w� = u�, W (rk) < U(rk), w� �W (rk) > u� � U(rk)

Figure 4.8: Flow Feasibility for Equal-Weight Distributions on the Real Line. x = (X;w)

and y = (Y; u) are distributions in 1D. Here r1 � � � � � rm+n is the position-sorted list

of points in x and y, and W (t) and U(t) are the CDFs for x and y, respectively. (a)

W (rk) > U(rk), w� �W (rk) < u� �U(rk). In this case, a 
ow from x to y is feasible only

if the net 
ow of x-weight from rk to rk+1 is exactly W (rk)� U(rk). (b) W (rk) < U(rk),

w� �W (rk) > u� � U(rk). In this case, a 
ow from x to y is feasible only if the net 
ow

of x-weight from rk+1 to rk is exactly U(rk)�W (rk).

Similar logic shows that if U(rk) > W (rk), then the net 
ow of x-weight from rk+1 to rk

must be exactly U(rk)�W (rk). This case is illustrated in Figure 4.8(b). In either case, the
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amount of work Ek done in moving weight from x over the interval (rk; rk+1) is at least Ek,

and

min
F2F(x;y)

WORK(F;x;y)�
m+n�1X
k=1

Ek: (4.12)

To complete the proof, note that Lemma 2 says that FCDF is a feasible 
ow1 which requires

work
Pm+n�1
k=1 Ek to match x and y. It follows that

min
F2F(x;y)

WORK(F;x;y)�WORK(FCDF;x;y) =
m+n�1X
k=1

Ek: (4.13)

Combining (4.12), (4.13), and (4.11) gives the desired result after normalizing by w� = u�.

Pseudocode to compute the EMD between equal-weight distributions in one dimension

(with ground distance equal to the L1 distance) is given below. This code is a direct

translation of (4.11) and computes the integral by a sweep over the position axis, summing

areas of rectangles with bases rk+1� rk and heights jW (rk)�U(rk)j. Again, see Figure 4.5.

function emd = EMD1(x;y)

/* assumes K = 1, w� = u�, ground distance is L1 */

/* assumes x1 � x2 � � � � � xm, y1 � y2 � � � � � yn */

work = wsum = usum = r = 0

/* �rst increment of work will be 0, regardless of r */

i = j = 1

xnext = x1
ynext = y1
while ((i � m) or (j � n))

if (xnext � ynext)

work += jwsum-usumj*(xnext-r)
wsum += wi
r = xnext

i += 1

xnext = (i � m) ? xi : 1
else

work += jwsum-usumj*(ynext-r)
usum += uj
r = ynext

j += 1

1In [11], it is incorrectly stated that there is a unique feasible 
ow between equal-weight distributions

in 1D. In fact, there may even be more than one optimal feasible 
ow. For example, suppose X = [0 1],
w = [1 1], Y = [1 2], and u = [1 1]. Then FCDF is given by fCDF11 = fCDF22 = 1, fCDF12 = fCDF21 = 0. The

feasible 
ow F � given by f�11 = f�22 = 0, f�12 = f�21 = 1 is also an optimal feasible 
ow between x = (X;w)

and y = (Y; u).
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ynext = (j � n) ? yj : 1
end if

end while

return (work / usum)

end function

Assuming that the points in x 2 D1;m and y 2 D1;n are in sorted order, the routine

EMD1 runs in linear time �(m + n). The combined sorted list r1; : : : ; rm+n of points in x

and y is discovered by walking along the two sorted lists of points. At any time during the

algorithm, there is a pointer to the next x and next y value to be considered. The value

rk+1 then follows in constant time from the value of rk.

The function EMD1 does not compute the optimal CDF 
ow FCDF = (fCDFij ). We can

rewrite the EMD1 routine as shown below so that it also returns the optimal CDF 
ow

with the single EMD value. This code is a direct translation of the fact that
R
1

�1
jW (t) �

U(t)j dt = Pm
i=1

Pn
j=1 f

CDF
ij jxi � yj j (which follows from Theorem 5) and computes the

integral by a sweep over the cumulative-weight axis, summing areas of rectangles with

bases fCDFij and heights jxi � yj j. See Figure 4.9.

function [emd,CDF
ow] = EMD1(x;y)

/* assumes K = 1, w� = u�, ground distance is L1 */

/* assumes x1 � x2 � � � � � xm, y1 � y2 � � � � � yn */

work = prev = CDF
ow.nFlow = 0

i = j = 1

wsum = w1 /* holds Wi */

usum = u1 /* holds Uj */

while ((i � m) and (j � n))

CDF
ow[CDF
ow.nFlow].from = i

CDF
ow[CDF
ow.nFlow].to = j

if (usum � wsum) /* check (Uj � Wi) */

fCDFij = usum-prev

work += fCDFij � jxi � yj j
prev = usum

usum += uj
j += 1

else

fCDFij = wsum-prev

work += fCDFij � jxi � yj j
prev = wsum

wsum += wi
i += 1

end if
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u1 = 10

w1 = 2

w2 = 3

u2 = 1

w3 = 7

u3 = 2

w4 = 1
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fCDF21 fCDF11fCDF31

Figure 4.9: The Inverse CDFs. The area between the inverse CDFs W�1(s) and U�1(s)

over s 2 [0; w�] = [0; u�] is clearly the same as the area between the CDFs W (t) and U(t)

(see Figure 4.5) over t 2 (�1;1).
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CDF
ow[CDF
ow.nFlow].amount = fCDFij

CDF
ow.nFlow += 1

end while

emd = work / usum

return (emd,CDF
ow)

end function

This version of EMD1 also runs in �(m + n) time since there is a constant amount of

computation done at each of the m + n breakpoints W1; : : : ;Wm; U1; : : : ; Un. All 
ow

variables fCDFij not explicitly contained in the variable CDF
ow are equal to zero.

4.4 Modi�cations

We now discuss some useful modi�cations to the EMD. As initially stated, the EMD com-

putation forces all the weight in the lighter distribution to match weight in the heavier dis-

tribution. In section 4.4.1, we extend the EMD to take another parameter 0 < 
 � 1 which

speci�es the fraction of the lighter distribution to be matched. The partial Earth Mover's

Distance computation automatically selects the best weight from the lighter distribution to

match.2 The ability to compute the best partial match is important for robustness in the

presence of outliers and/or missing data.3 The 
 parameter is an attempt to avoid penal-

izing the non-matching parts of two distributions which have a lot in common. Remember

that the goal is to measure visual similarity by matching summary distributions, and visual

similarity may follow from only a partial match. An alternative similarity measure which

accounts for this fact asks \How much weight can be matched when 
ow distances are lim-

ited to at most some given ground distance �?". This restricted Earth Mover's Distance is

the subject of section 4.4.2.

4.4.1 The Partial Earth Mover's Distance

The partial Earth Mover's Distance EMD
 matches only a given fraction 0 < 
 � 1 of the

weight of the lighter distribution or some absolute amount of weight 0 < 
 � min(w�; u�).

The former case in which 
 is a relative quantity is called the relative partial EMD, and

the latter case in which 
 is an absolute quantity is called the absolute partial EMD. In a

2This name may be slightly misleading since the EMD already does partial matching. When one dis-
tribution is heavier than the other, all the weight in the lighter distribution is matched, but some of the

weight in the heavier distribution is unmatched. With the partial EMD, some of the weight of the lighter
distribution is unmatched.

3The EMD is robust to a small amount of outlier mass since the large ground distances needed to match

the outlier mass are weighted by small fractions of mass moved.
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relative partial EMD problem, the amount of weight matched is M(
) = 
min(w�; u�); in

an absolute partial EMD problem, the amount of weight matched is M(
) = 
. In either

case, the conditions for a feasible 
ow are

fij � 0 i = 1; : : : ; m; j = 1; : : : ; n;
nX
j=1

fij � wi i = 1; : : : ; m;

mX
i=1

fij � uj j = 1; : : : ; n; and

mX
i=1

nX
j=1

fij = M(
): (4.14)

The only di�erence in the feasibility conditions for the partial EMD and the ordinary EMD

are in the �nal conditions (4.14) and (4.4) which indicate the total amount of weight to

match. If we denote the set of feasible 
ows between x and y for partial match parameter


 as F
(x;y), then we de�ne the partial EMD as

EMD
(x;y) =
minF=(fij)2F
(x;y) WORK(F;x;y)

M(
)
: (4.15)

Since 
 is given, the denominator of (4.15) is �xed for an EMD
 computation. An example

partial EMD computation is shown in Figure 4.10. In section 4.2, we showed that the work

minimization problem for the ordinary EMD computation can be solved as a transportation

problem. We now show that the same is true for the (relative or absolute) partial EMD

computation. Therefore, the same transportation problem code that is used to compute

the EMD can also be used to compute the partial EMD.

Suppose that x is at least as heavy as y; i.e., w� � u�. Then the work minimization

problem in the numerator of (4.15) is the balanced transportation problem

si = wi i = 1; : : : ; m

sm+1 = u� �M(
)

dj = uj ; j = 1; : : : ; n

dn+1 = w� �M(
)

cij = d(xi; yj) i = 1; : : : ; m; j = 1; : : : ; n

cm+1;j = 0 j = 1; : : : ; n

ci;n+1 = 0 i = 1; : : : ; m

cm+1;n+1 = 1:
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Partial EMD with M(
) = 3

1.6

.4.4

.8 .8

4

4

2.4

.2 .4

1.6

.8

Figure 4.10: Partial EMD Example. The dark gray distribution has total weight 8, while

the light gray distribution has total weight 6.4. An optimal 
ow for the partial EMD when

M(
) = 3 units of weight must be matched is shown by the labelled edges. All ground

distances used in this 
ow are equal, and less than all ground distances not used.

� � � � � �

� � � � � �

w1 wi wm

u1 uj un w� � 


u� � 


d(xi; yj) 1

0

0

w� + u� � 


w� + u� � 


x1 xi xm

y1 yj yn

Figure 4.11: The Partial EMD as a Balanced Transportation Problem. See the text for an

explanation.

A graphical representation is shown in Figure 4.11. The total supply s� and total demand d�

are both equal to w�+u��M(
). The dummy supplier m+1 is given a supply which equal

to the unmatched weight of y, while the dummy demander n+1 is given a demand which is

equal to the unmatched weight of x. The weight of the dummy supplier is prevented from

matching the weight of the dummy demander with the requirement cm+1;n+1 =1, so all of

the weight of the dummy supplier will be matched at no cost to demanders j = 1; : : : ; n. Of
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the remaining supply w� possessed by suppliers i = 1; : : : ; m, w��M(
) will be matched at

no cost to the dummy demander. Therefore only M(
) weight will be matched at possibly

nonzero cost. An algorithm to solve the transportation problem will �nd the optimal way

to transport this weight from suppliers i = 1; : : : ; m to demanders j = 1; : : : ; n. If x is

lighter than y, then the above formulation with the roles of x and y interchanged allows

the partial EMD work minimization problem to be formulated as a balanced transportation

problem.

In section 4.3.1, we discussed the special case in which the two distributions compared

by the EMD are point sets. The EMD yields an optimal one-to-one matching in which each

point in the smaller set is matched to a point in the larger set. Using the partial EMD

instead of the EMD, we can �nd an optimal matching which matches only some subset of

the points in the smaller set. The total number of points to be matched using EMD
 is

M(
). As long as 
 is selected so that M(
) is an integer, all the supplies and demands

in the corresponding transportation problem will be integers (see the above formulations),

with all the non-dummy supplies and demands equal to one. Applying the transportation

simplex algorithm will yield an optimal one-to-one matching between size M(
) subsets of

the smaller and larger sets. If the distributions x 2 DK;m and y 2 DK;n are point sets in

RK with m � n, then

EMD
(x;y) =
minF=(fij)2F
(x;y)

Pm
i=1

Pn
j=1 fijd(xi; yj)

M(
)

=
min�2�


P
j2domain(�) d(x�(j); yj)

M(
)
;

where �
 is the set of one-to-one partial correspondences

�
 = f � : S ! [1::m] j S � [1::n]; jSj =M(
); �(j1) = �(j2), j1 = j2 8j1; j2 2 S g :

It is important to note that only the number of points to be matched is given; the partial

EMD �gures out the best subsets to match.

4.4.2 The Restricted Earth Mover's Distance

The restricted Earth Mover's Distance � -EMD is a measure of how much weight can be

matched when ground distances for transportation are limited to a threshold � . When

comparing two distributions x = (X;w) and y = (Y; u), the maximum amount of weight

that can be matched if transportation distances dij = d(xi; yj) are unrestricted is M =

min(w�; u�). Let M� denote the maximum amount of weight that can be matched using
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Figure 4.12: � -EMD Example. (left) Equal-weight distributions with distances between

weight locations. (right) If � = 15, then the maximum amount of weight that can be

matched is M� = 0:7. The maximal matching is indicated by the labelled edges. Weight

cannot be matched between the locations which are 20 > � units apart. Since the to-

tal weight of both distributions is one, the fraction of weight that cannot be matched is

� -EMD = 0:3.

only distances dij � � . Then we de�ne the restricted EMD as

� -EMD(x;y) = 1� M� (x;y)

min(w�; u�)
: (4.16)

Note that the � -EMD actually equals the fraction of weight that cannot be matched, with

0 � � -EMD(x;y) � 1, so that � -EMD is a dissimilarity measure rather than a similarity

measure. The extreme values are zero when the maximum amount of weight can be matched,

and one when none of the weight can be matched. An example is shown in Figure 4.12. We

now show that the computation of M� (x;y) is a transportation problem.

The M� (x;y) computation is the linear program

M� (x;y) = max
F2F(x;y)

mX
i=1

nX
j=1

fij [d(xi; yj) � � ];

where

d�(xi; yj) = [d(xi; yj) � � ] =

8<
: 1 if d(xi; yj) � �

0 otherwise
:

The 
ow constraints are the same as for the original EMD computation, but now we sum

up the matched weight fij whenever d(xi; yj) � � . The transportation problem here is

�M� (x;y) = min
F2F(x;y)

mX
i=1

nX
j=1

fij(�d�(xi; yj))

In fact, this is an original EMD computation with ground distances (�d�(xi; yj)). There is
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no restriction in the transportation problem that costs be nonnegative, and the transporta-

tion simplex method makes no such assumption.

4.5 Use in Scale Estimation

In this section, we show how to use the EMD to estimate the scale at which a pattern

appears within an image. Figure 4.13(a) shows an example of the color pattern problem.

Scale estimation is a critical step in solving the pattern problem accurately and e�ciently.

A good scale estimate is important for accuracy because the scale determines how much

information in the image is compared to the pattern; it is important for e�ciency because

trying many scales will be ine�cient, especially if one is interested in �nding very small

occurrences of the pattern. Along with a scale estimate, our method also returns a measure

indicating the distance between the pattern at the predicted scale and the image. If this

distance is large, then the pattern probably does not occur within the image.

We regard an image as a distribution of color mass or curve orientation mass (for the

shape pattern problem) in position space. Our scale estimation method uses the EMD to

compare image summary distributions after marginalizing away position. Ignoring posi-

tion information does throw away useful information, but it reduces the complexity of the

summary distributions and, therefore, allows fast scale estimation. We will show that it is

possible to get very good scale estimates without position information if the pattern has

a single distinctive feature with respect to the image. In the color pattern problem, the

marginalized distribution is a distribution in color space. In order to keep the distribution

size small, the colors of an image are clustered into a small number of groups (approximately

twenty). The weight of a color cluster in CIE-Lab space ([88]) is the fraction of the total

image area classi�ed as that color. Thus the total weight of a summary distribution is one.

Suppose that a pattern occurs in an image as a fraction c� 2 (0; 1] of the total image

area. An example is shown in Figure 4.13(a). Let x and y = (Y; u) denote unit-weight color

signatures of the image and pattern, respectively. See Figure 4.13(b),(d). Since (Y; c�u) is

lighter than x, the EMD �nds the optimal matching between c� of the image color weight

and the color weight in (Y; c�u). Consider the ideal case of an exact pattern occurrence,

with the same color clusters used in x and y for the pattern colors. Then the c� of x's

color weight contributed by the pattern occurrence will match exactly the color weight in

(Y; c�u), and EMD(x; (Y; c�u)) = 0. Furthermore, EMD(x; (Y; cu)) = 0 for c 2 (0; c�] since

there is still enough image weight of each pattern color to match all the weight in (Y; cu). In

general, we will prove that EMD(x; (Y; cu)) decreases as c decreases and eventually becomes

constant for c 2 (0; c0], as shown in Figure 4.13(e). If the graph levels o� at a small EMD,
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Figure 4.13: Scale Estimation { Main Idea. (a) pattern, image, and pattern scaled according

to the scale estimate. (b) pattern signature. (c) pattern signature with weights scaled by

the estimate. (d) image signature. (e) EMD(x; (Y; cu)) versus c.

then the pattern may occur in the image, and we take c0 to be the scale estimate.

The main property of this scale estimation method is that in the ideal case it overes-

timates the scale by the minimum amount of background clutter over all pattern colors,

where the amount of background clutter for a color is the amount of that color present

in the image but not part of the pattern occurrence. Just one pattern color with a small

amount of background clutter is enough to obtain an accurate scale estimate. Consider the

example in Figure 4.13. The scale estimate c0 is such that the amounts of red and yellow

in the scaled pattern signature (Y; c0u) are roughly equal to the amounts of red and yellow

in the image, as shown in Figure 4.13(c). At scale c0, there is still plenty of image weight

to match the other pattern colors in (Y; c0u). If there were a bit more red and yellow in the

image, then the scale estimate c0 would be a bit too high. In this example, red and yellow

have zero background clutter since the only place that they occur in the image is within the

pattern occurrence. Note that an accurate scale estimate is computed even in the presence

of the dark green in the Comet label for which there is a lot of background clutter.

The preceeding discussion tacitly assumes that the pattern occurs only once in the

image. Since our method does not use the positions of colors, it cannot tell the di�erence

between two pattern occurrences at scales c1 and c2, and one larger occurrence at scale
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c1 + c2. In this two pattern occurrence example, the computed scale estimate will be at

least c1 + c2 if the same color clusters are used in x and y for the pattern colors.

We now study of the function E(c) = EMD((X;w); (Y; cu)), where x = (X;w) and

y = (Y; u) are equal-weight distributions with total weight one, and 0 < c � 1. The

distribution (Y; cu) has total weight c � 1. The function E(c) is thus given by

E(c) =
min(fij)2F(x;(Y;cu))

Pm
i=1

Pn
j=1 fijd(xi; yj)

c
;

where (fij) 2 F(x; (Y; cu)) i�

fij � 0 i = 1; : : : ; m; j = 1; : : : ; n;
mX
i=1

fij = cuj j = 1; : : : ; n; and

nX
j=1

fij � wi i = 1; : : : ; m:

Now set hij = fij=c. Then

E(c) = min
(hij)2F((X;

1

c
w);y)

mX
i=1

nX
j=1

hijd(xi; yj);

where (hij) 2 F((X; 1cw);y) i�

hij � 0 i = 1; : : : ; m; j = 1; : : : ; n; (4.17)
mX
i=1

hij = uj j = 1; : : : ; n; and (4.18)

nX
j=1

hij � 1

c
wi i = 1; : : : ; m: (4.19)

Note that

F((X;w=c1);y)� F((X;w=c2);y)() 1

c1
� 1

c2
() c2 � c1: (4.20)

Algebraically, the fact that the feasible region F((X; 1
c
w);y) increases as c decreases (and

vice-versa) is because the �nal m constraints (4.19) involving the wi's get weaker (stronger)

as c decreases (increases). Logically, this fact make sense because the less mass that the

EMD is asked to matched, the more ways there are to perform the matching.

Since E(c) is a minimum over F((X; 1
c
w);y), it follows from (4.20) that E(c) is a non-

decreasing function of c:

E(c1) � E(c2) i� c1 � c2: (4.21)
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In fact, however, we can say something stronger than (4.21). Consider the convex polytope

Q � Rmn de�ned by (4.17) and (4.18), and the convex polytope P (c) � Rmn de�ned

by (4.19), so that

F((X;w=c);y) = Q \ P (c): (4.22)

Q is bounded since its constraints imply that 0 � hij � uj for i = 1; : : : ; m, j = 1; : : : ; n.

The polytope P (c) converges to Rmn as c decreases to zero since 1
c increases to 1. Since

Q is bounded, there is some c0 for which Q � P (c) 8c � c0. From this fact and (4.22), it

follows that

F((X;w=c);y) = Q 8c � c0;

and, hence,

E(c) = E(c0) 8c � c0: (4.23)

Thus E(c) decreases as c decreases, until some point c0 at which the curve 
attens out.

Examples are shown in �gures 4.13(e), 4.15, and 4.16.

To help with the intuition for (4.23), consider a simple color pattern problem example.

Suppose the pattern contains 30% red, 40% white, and 30% blue, and the pattern is 20%

of the image. In the ideal case of perfect color matches, the image has at least 6% red, 8%

white, and 6% blue due to the presence of the pattern. If the pattern is scaled by less than

c = 0:20 = 20%, then its distribution will contain less than 6% red, 8% white, and 6% blue,

and all of this color mass can be matched perfectly to the color masses of the image. The

EMD will be zero for all values 0 < c � 0:20.

We take as our scale estimate the largest c for which there is no real improvement in

the EMD when c is decreased. What constitutes \no real improvement" in the value of the

EMD is given as a parameter "d. There is also a parameter "c to specify the accuracy that

is required for the scale estimate. Finally, the parameter cmin gives the smallest scale to be

examined. The largest c for which there is no improvement in the EMD can be found via

a binary search along the c-axis. See Figure 4.14. The pseudocode given below returns the

scale estimate c0, the EMD value d0 = EMD(x; (Y; c0u)), and an optimal 
ow 
ow0 at the

scale estimate.

function [c0,d0,
ow0] = ScaleEstimate(x,y,cmin,"c,"d)

/* x = (X;w), y = (Y; u) */

/* assumes w� = u� = 1 */

cmax = 1

[dmin; 
owmin] = EMD((X;w); (Y; cminu))

/* loop invariant: cmin � c0 � cmax */
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EMD

c0 1cmin

Figure 4.14: Scale Estimation Algorithm. Binary search narrows down the interval in which

c0 must occur.

while (cmax� cmin > "c)

cmid = (cmin+ cmax)=2

[dmid; 
owmid] = EMD((X;w); (Y; cmidu))

if (jdmid� dminj � "d)

dmin = dmid
cmin = cmid

owmin = 
owmid

else

cmax = cmid
end if

end while

return (cmin,dmin,
owmin)

end function

Here cmin is the smallest scale pattern that the user wants to �nd. If the returned distance

d0 is greater than a user supplied threshold � , then we report that the pattern does not

occur within the image. Otherwise, we take c0 as an estimate of the pattern scale within

the image.

The ScaleEstimate routine requires at most dlog2(1="c)e + 1 EMD computations since

the length of the initial interval [cmin; cmax] = [cmin; 1] is at most one, and this interval is

cut in half after each EMD call within the while loop (the \+1" is from the initial EMD

call at c = cmin outside the loop). If, for example, "c = 0:001, then at most 11 EMD calls

are made before j[cmin; cmax]j � "c. Note that the point sets of the distributions remain

constant (X and Y ) throughout the execution of ScaleEstimate. Thus the cost matrix (cij),

cij = dij = d(xi; yj), for the EMD transportation problems can be computed once at the

beginning of ScaleEstimate and used for all subsequent EMD computations.

If we pass the threshold � to ScaleEstimate, then the routine can exit after the �rst call

EMD((X;w); (Y; cminu)) if this quantity is greater than � . This can happen, for example, if

a large part of the pattern is red, but there is no color similar to red in the image. No matter

how small the value of c, the distances that image color mass must 
ow in color space to
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cover the red pattern mass will be large in this case. Recall that the EMD is equal to the

average ground distance that mass travels during an optimal 
ow. Since a large fraction of

the total mass moved must travel large distances, the average distance moved, and hence

the EMD, will be large. If EMD((X;w); (Y; cminu)) > � , then ScaleEstimate performs only

one EMD computation before concluding that the pattern does not occur in the image.

ScaleEstimate may also bene�t in e�ciency from the use of e�cient, e�ective lower

bounds on the EMD. Only the result of comparing EMD((X;w); (Y; cmidu)) with the cur-

rent dmin is needed to determine in which half of [cmin; cmax] the scale estimate c0 oc-

curs. The actual value of the EMD is not needed if it can be proven by other means that

EMD((X;w); (Y; cmidu)) > dmin (as in the �rst and second frames in Figure 4.14). If so,

ScaleEstimate can update cmax = cmid without performing an EMD computation. Also, if

a lower bound on EMD((X;w); (Y; cminu)) is greater than � , then ScaleEstimate can exit

without performing a single EMD computation. Whether or not ScaleEstimate runs faster

using lower bounds depends on how long the lower bounds take to compute and how often

they succeed in pruning an EMD computation. Lower bounds on the EMD are discussed in

Chapter 5. We now shift from our discussion of e�ciency issues to a more general discussion

of the ScaleEstimate algorithm.

Consider the ideal case of perfectly matching features in the pattern and image. As

previously mentioned, our scale estimation method overestimates the scale by the mini-

mum amount of background clutter over all pattern colors in the ideal case. Suppose, for

example, the pattern distribution is 50% red, 20% white, and 30% blue, and that the pat-

tern represents 20% of the total image area. Then the image has at least 10% red, 4%

white, and 6% blue from the pattern. Suppose the exact distribution of the image is 40%

red, 5% white, 25% blue, 15% green, and 15% yellow. The white mass from the image

will not be covered completely until the pattern distribution is scaled by c = 0:25 = 25%.

After this point, there will be no gain in EMD with further decreases in scale. If the image

had 4% white instead of 5% white, our scale estimate would have been exactly correct at

c0 = 0:20 = 20%.

In general, the reasoning is not so clear cut because corresponding parts of the pattern

and image will not have exactly the same color (and even if the color matches were perfect

in the original images, clustering in color space to produce the small distributions will likely

destroy that perfection), and optimal matching strategies can match color mass from one

color in the pattern to several colors in the image. In practice, we have observed scale

estimates which are a little smaller than predicted by an ideal case analysis. This is true in

the Comet example shown in Figure 4.13, where there is zero background clutter for yellow

and red but the scale is slightly underestimated.
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4.5.1 Experiments with the Color Pattern Problem

Figures 4.15{4.19 illustrate the performance of our scale estimation algorithm for the color

pattern problem, where the patterns are product logos and the images are product adver-

tisements.
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clorox_1 = (X,w), clorox_tmpl = (Y,u)

Figure 4.15: Scale Estimation { Clorox Example. From left to right in the �rst row, we see

the Clorox logo (pattern), a Clorox advertisement, and the Clorox logo scaled according

to the scale estimate given by the graph in the second row. The graph predicts that the

pattern occurs at scale c0 = 1:0% of the image. The top left, top right, and bottom Clorox

logos occupy approximately 0:5%, 0:2%, and 0:5%, respectively, of the Clorox advertisement

area.
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Figure 4.16: Scale Estimation { Pattern Not in the Image. From left to right in the �rst

row, we see the Clorox logo (pattern), a Comet advertisement, and the Clorox logo scaled

according to the scale estimate given by the graph in the second row. The graph predicts

that the pattern occurs as c0 = 1:3% of the image. However, the EMD at scale c0 is

d0 = 17:87 units in CIE-Lab space. This large EMD value indicates that the pattern

probably does not occur within the image.
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(a) (b)

(c) (d)

Figure 4.17: Scale Estimation Results { Example Set 1. In each of the examples, the

advertisement is shown on the left and the scaled (according to our prediction) logo is

shown on the right. Let c0 denote the predicted scale and c denote the (approximate)

measured scale (in terms of fraction of advertisement area). (a) c0 = 2:2%, c = 3:8%. (b)

c0 = 4:2%, c = 6:3%. (c) c0 = 2:6%, c = 4:0%. (d) c0 = 6:3%, c = 7:9%.
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(a) (b)

(c) (d)

Figure 4.18: Scale Estimation Results { Example Set 2. In each of the examples, the

advertisement is shown on the left and the scaled (according to our prediction) logo is

shown on the right. Let c0 denote the predicted scale and c denote the (approximate)

measured scale (in terms of fraction of advertisement area). (a) c0 = 5:1%, c = 3:9%. (b)

c0 = 5:0%, c = 6:0%. (c) c0 = 3:6%, c = 4:7%. (d) c0 = 3:8%, c = 5:7%.
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(a) (b)

(c) (d)

Figure 4.19: Scale Estimation Results { Example Set 3. In each of the examples, the

advertisement is shown on the left and the scaled (according to our prediction) logo is

shown on the right. Let c0 denote the predicted scale and c denote the (approximate)

measured scale (in terms of fraction of advertisement area). (a) c0 = 3:8%, c = 4:3%. (b)

One of the cigarette boxes is c = 4:0% of the image. Our scale estimate c0 = 8:0% is too

large because the pattern occurs twice in the image. (c) c0 = 3:5%, c = 2:4%. (d) The box

of Tide occupies c = 1:4%. Our scale estimate c0 = 3:5% is too large because the pattern

occurs twice in the image.



Chapter 5

Lower Bounds on the EMD

In the content-based retrieval systems described in [65] and [69], the distance between two

images is taken as the EMD between the two corresponding signatures. The query time is

dominated by the time to perform the EMD computations. In a nearest neighbor query,

the system returns the R database images which are closest to the given query. During

query processing, an exact EMD computation need not be performed if there is a lower

bound on the EMD which is greater than the Rth smallest distance seen so far. The goal

is to perform queries in time that grows in a sublinear fashion with the number of database

images. The motivation is system scalability to very large databases.

It is known ([68]) that the distance between the centroids of two equal-weight distri-

butions is a lower bound on the EMD between the distributions if the ground distance is

induced by a vector norm. There are, however, common situations in which distributions

will have unequal total weights. For example, consider once again the color-based retrieval

work described in [65]. Assuming all the pixels in an image are classi�ed, the weight of

every database signature is one. EMD comparisons between unequal-weight distributions

arise whenever the system is presented with a partial query such as: "give me all images

with at least 20% sky blue and 30% green". The query signature consists of two points in

CIE-Lab space with weights equal to 0:20 and 0:30, and therefore has total weight equal to

0:50. Since one cannot assume that all database images and queries will contain the same

amount of information, lower bounds on the EMD between unequal-weight distributions

may be quite useful in retrieval systems.

This chapter is organized as follows. In section 5.1, we extend the centroid-distance

lower bound to the case of unequal-weight distributions. In section 5.2, we present lower

bounds which use projections of distribution points onto random lines through the origin

and along the directions of the axes. In section 5.3, we show some experiments that use our

97
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lower bounds in the previously mentioned color-based image retrieval system.

A preliminary version of most of the material in this chapter is contained in the technical

report [12].

5.1 Centroid-based Lower Bounds

The centroid x of the distribution x = (X;w) 2DK;m is de�ned as

x =

Pm
i=1 wixi

w�
:

In section 5.1.1 we shall prove that the distance between the centroids of equal-weight

distributions is a lower bound on the EMD between the distributions if the ground distance

is induced by a vector norm or if d = L22. There is also, however, a centroid-based lower

bound if the distributions are not equal weight. If x = (X;w) is heavier than y = (Y; u),

then all of the weight in y is matched to part of the weight in x. The weight in x which is

matched to y by an optimal 
ow is a sub-distribution x0 of x. Formally, a sub-distribution

x0 = (X 0; w0) of x = (X;w) 2 DK;m, denoted x0 � x, is a distribution with X 0 = X and

0 � w0 � w:

x0 = f (x1; w01); : : : ; (xm; w0m) g = (X;w0) 2 DK;m; 0 � w0j � wj for i = 1; : : : ; m:

In words, the points of a sub-distribution x0 are the same as the points of x and the weights

of x0 are bounded by the weights of x. One can visualize a sub-distribution x0 � x as the

result of removing some of the dirt in the piles of dirt in x. The minimum distance between

the centroid of y and the locus of the centroid of sub-distributions of x of total weight u�

is a lower bound on EMD(x;y). Details are given in section 5.1.2.

5.1.1 Equal-Weight Distributions

Let us �rst consider the case when the ground distance between points is induced by a

vector norm. This is true, for example, if the ground distance is one of the Lp distances

(p � 1).

Theorem 6 Suppose x = (X;w) 2 DK;m and y = (Y; u) 2 DK;n are distributions of equal

total weight w� = u�. Then

EMDjj�jj(x;y)� jjx� yjj

if the ground distance d(x; y) = jjx� yjj and jj � jj is a norm.
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Proof. The equal-weight requirement implies that for any feasible 
ow F = (fij),

mX
i=1

fij = uj and (5.1)

nX
j=1

fij = wi: (5.2)

Then ������
������
mX
i=1

wixi �
nX
j=1

ujyj

������
������ =

������
������
mX
i=1

nX
j=1

fijxi �
mX
i=1

nX
j=1

fijyj

������
������ ((5:1); (5:2))

=

������
������
mX
i=1

nX
j=1

fij(xi � yj)
������
������

�
mX
i=1

nX
j=1

jjfij(xi � yj)jj (�-inequality)

=
mX
i=1

nX
j=1

fij jjxi � yj jj (fij � 0)������
������
mX
i=1

wixi �
nX
j=1

ujyj

������
������ �

mX
i=1

nX
j=1

fij jjxi � yj jj:

Dividing both sides of the last inequality by w� = u� yields

jjx� yjj �
Pm
i=1

Pn
j=1 fij jjxi � yj jj
w�

(5.3)

for any feasible 
ow F . Replacing F by a work minimizing 
ow gives the desired result.

The centroid lower bound for the equal-weight case also holds when the ground distance

is L22, despite the fact that the square of the Euclidean norm is not itself a norm.

Theorem 7 Suppose x = (X;w) 2 DK;m and y = (Y; u) 2 DK;n are distributions of equal

total weight w� = u�. Then

EMDjj�jj2
2(x;y)� jjx� yjj22;

where the ground distance d(x; y) = jjx� yjj22 and jj � jj2 is the Euclidean norm.
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Proof. Applying the Cauchy-Schwarz inequality (
P
k a

2
k)(
P
k b

2
k) � (

P
k akbk)

2 with ak =p
fij and bk =

p
fij jjxi � yj jj2 gives

0
@ mX
i=1

nX
j=1

fij

1
A
0
@ mX
i=1

nX
j=1

fij jjxi � yj jj22
1
A �

0
@ mX
i=1

nX
j=1

fij jjxi � yj jj2
1
A2

(5.4)

for every feasible 
ow F . The �rst factor on the left-hand side of (5.4) is equal to the total

weight u� = w�. From (5.3) in the proof of Theorem 6, the right-hand side of the inequality

is greater than or equal to jjx� yjj22u2�. Combining these facts with (5.4) shows that

Pm
i=1

Pn
j=1 fij jjxi � yj jj22

u�
� jjx� yjj22

for every feasible 
ow F . Replacing F by an optimal feasible 
ow yields the desired result.

5.1.2 Unequal-Weight Distributions

Let x = (X;w) 2 DK;m and y = (Y; u) 2 DK;n be distributions with w� � u�. In any

feasible 
ow F = (fij) from x to y, all of the weight uj must be matched to weight in x so

that
Pm
i=1 fij = uj , and the total amount of matched weight is

Pm
i=1

Pn
j=1 fij = u�. Let

xF = f (x1;
nX
j=1

f1j); (x2;
nX
j=1

f2j); : : : ; (xm;
nX
j=1

fmj) g = (X;wF ):

Clearly, wF� = u�. By Theorem 6 in the previous section, we know that

EMD(xF ;y) �
������xF � y

������ (5.5)

when the ground distance is induced by a vector norm jj � jj. Note that Theorem 7 implies

that the lower bound (5.5) also holds when d = L22 if we replace jj � jj by jj � jj22.
From (5.5), it follows that

EMD(xF ;y) � min
F 02F(x;y)

������xF 0 � y
������ ; (5.6)

where the minimum is taken over all feasible 
ows F 0 from x to y. Since (5.6) holds for

every feasible 
ow F from x to y, we can replace F by a work minimizing 
ow F � and

obtain

EMD(x;y) = EMD(xF
�

;y) � min
F 02F(x;y)

������xF 0 � y
������ : (5.7)
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The minimum on the right-hand side of the inequality (5.7) can be re-stated as the minimum

distance of the centroid of y to the centroid of any sub-distribution of x of total weight u�:

min
F 02F(x;y)

������xF 0 � y
������ = min

x0 = (X;w0) � x

w0� = u�

������x0 � y
������ : (5.8)

We now argue that (5.8) holds. Clearly, xF
0

is a sub-distribution of x with total weight

u� for every F 0 2 F(x;y). It remains to argue that any sub-distribution x0 � x with

total weight u� is xF
0

for some F 0 2 F(x;y). Let F 0 be any feasible 
ow between the two

equal-weight distributions x0 and y (the set of such feasible 
ows is nonempty). The feasible


ows F(x;y) between x and y are exactly those 
ows which match all u� of y-weight to

u� � w� of x-weight. Therefore, F(x0;y) � F(x;y), and F 0 2 F(x0;y)) F 0 2 F(x;y).
Combining (5.7) and (5.8) gives

EMD(x;y)� min

x0 = (X;w0) � x

w0� = u�

������x0 � y
������ : (5.9)

In section 5.1.2.1 we show how this minimization problem can be formulated as the mini-

mization of a quadratic function (if d = L2) subject to linear constraints. However, solving

this quadratic programming problem is likely to take more time than computing the EMD

itself. In section 5.1.2.2 we show how to compute a bounding box for the locus of the cen-

troid of any sub-distribution of x of total weight u�. The minimum ground distance from

the centroid of y to the bounding box is a lower bound of the EMD, although it is obviously

not as tight as the lower bound in (5.9).

5.1.2.1 The Centroid Lower Bound

Given a distribution x = (X;w) 2 DK;m, the locus of the centroid of sub-distributions of x

of weight �w�, 0 < � � 1, is

C�(x) =

� Pm
i=1 ewixiew� : 0 � ewi � wi; 0 < ew� = �w�

�
:

If we let vi = ewi= ew� and bwi = wi=(�w�), then

C�(x) =

(
mX
i=1

vixi : 0 � v � bw =
1

�

w

w�
; v� = 1

)
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or, in terms of matrix multiplication,

C�(x) = f Xv : 0 � v � bw =
1

�

w

w�
; 1Tv = 1 g: (5.10)

The symbol \1" is overloaded in the constraint 1T v = 1; on the left-hand side it is a vector of

m ones, while on the right-hand side it is simply the integer one. It is easy to see from (5.10)

that

C�1(x) � C�2(x) if �1 � �2:

The locus C�(x) is a convex polytope. The intersection of the 2m halfspaces v � 0 and

v � bw is a box P1. The intersection of P1 with the hyperplane 1Tv = 1 is another convex

polytope P2 of one dimension less. Finally, applying the linear map X to P2 gives the

convex polytope C�(x). In [4], Bern et al. characterize and provide algorithms to compute

the locus CL;H(S) of the centroid of a set S of points with approximate weights, where

weight wi lies in a given interval [li; hi] and the total weight W is bounded as L � W � H .

The locus C�(x) = C1;1(X) if [li; hi] = [0; bwi].
Now suppose that y = (Y; u) 2 DK;n is a lighter distribution than x. In the previous

section we argued that the EMD is bounded below by the minimum ground distance from

y to a point in Cu�=w�(x). We denote this minimum distance as CLOC(x;y) because it

uses the locus of the centroid of sub-distributions of x of weight u�. Thus EMD(x;y) �
CLOC(x;y). If d = L2, then this lower bound can be computed by minimizing a quadratic

objective function subject to linear constraints:

(CLOC(x;y))2 = min
v

jjXv� yjj22

subject to

v � 0

v � bw =
1

u�
w

1Tv = 1:

The above minimization problem consists ofm variables and 2m+1 linear constraints which

are taken directly from (5.10). It can be written more compactly as

(CLOC(x;y))2 = min
p2Cu�=w�(x)

jjp� yjj22; (5.11)

where it is assumed that u� � w�.
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5.1.2.2 The Centroid Bounding Box Lower Bound

As previously mentioned, the computation of the CLOC lower bound as described in the

previous section is likely to require more time than an exact EMD computation. Yet the

centroid locus C�(x) can still be very useful in �nding a fast to compute lower bound on

the EMD. The idea is to precompute a bounding box B�(x) for C�(x) for a sample of

� values, say � = 0:05k for k = 1; : : : ; 20. When given a lighter query distribution y at

query time, the minimum distance from y to the bounding box B�y(x) is a lower bound on

EMD(x;y), where �y is the largest sample � value which does not exceed the total weight

ratio u�=w� (the correctness of �y follows from the containment property (5.14)). We call

this lower bound the CBOX lower bound (the C stands for centroid and the BOX comes

from bounding box), and it is formally de�ned as

CBOX(x;y) = min
p2Bu

�
=w

�(x)
jjp� yjj; (5.12)

where, once again, it is assumed that u� � w�. This lower bound computation will be

very fast because the bounding boxes are precomputed and the query time computation of

the minimum distance of the point y to the box B�y(x) is a constant time operation (it is

linear in the dimension K, but does not depend on the number of points in x or y). When

d = L22, we replace the norm jj � jj in (5.12) with jj � jj22.

If we write the matrix X in terms of its rows as

X =

2
6664
rT1
...

rTK

3
7775 2 RK�m; then Xv =

2
6664
rT1 v
...

rTKv

3
7775 2 RK :

The computation of an axis-aligned bounding box for the centroid locus C�(x) can be

accomplished by solving the 2K linear programs

ak = min
v

rTk v; bk = max
v

rTk v k = 1; : : : ; K

subject to

v � 0

v � bw =
1

�w�
w (5.13)

1Tv = 1:
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Each of these linear programs has m variables and 2m + 1 constraints. The axis-aligned

bounding box for the centroid locus C�(x) is

B�(x) =
KY
k=1

[ak; bk]:

As with the true centroid loci C�(x), we have a containment property for the bounding

boxes B�(x):

B�1(x) � B�2(x) if �1 � �2: (5.14)

This fact can be veri�ed by observing that the constraints over which the minima ak

and maxima bk are computed get weaker as � decreases (the only constraint involving

� is (5.13)). Note also that the box B�(x) includes its \interior" so that the lower bound

CBOX(x;y) is zero if y lies inside B�y(x). Using the CBOX lower bound instead of the

CLOC lower bound trades o� computation speed for pruning power since the former is

much faster to compute, but1

EMD(x;y)� CLOC(x;y)� CBOX(x;y):

Nevertheless, the pruning power of the CBOX lower bound will be high when the query

distribution is well-separated from many of the database distributions (which implies that

the centroids will also be well-separated).

5.2 Projection-based Lower Bounds

For v on the unit sphere SK�1 in RK , the projection projv(x) of the distribution x =

(X;w) 2 RK;m along the direction v is de�ned as

projv(x) = f (vTx1; w1); (vTx2; w2); : : : ; (vTxm; wm) g = (vTX;w) 2 D1;m:

In words, the projection along v is obtained by using the lengths of the projections of the

distribution points along v and leaving the corresponding weights unchanged. The following

lemma shows that the EMD between projections is a lower bound on the EMD between the

original distributions. See Figure 5.1.

Lemma 3 Let v 2 SK�1. Then EMDL2(x;y)� EMDL1(projv(x); projv(y)).

1The inequality CLOC(x;y) � CBOX(x;y) follows from the fact that B�(x) � C�(x) (since B�(x) is a

bounding box for C�(x)) and the de�nitions (5.11) and (5.12).
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v

jjxi � yjjj2

xi
yj

jvTxi � vTyjj � jjxi � yjjj2

Figure 5.1: The Projection Lower Bound. The EMD with d = L2 between two distributions

is greater than or equal to the EMDwith d = L1 between the projections of the distributions

onto a line through the origin. This is because all ground distances decrease or remain the

same after projection. See Lemma 3 and its proof.

Proof. This theorem follows easily from the de�nition of the EMD and the fact that

jvTxi � vT yj j = jvT (xi � yj)j
= jjvjj2 jjxi � yj jj2 j cos�v;(xi�yj)j
= jjxi � yj jj2 j cos �v;(xi�yj)j

jvTxi � vT yj j � jjxi � yj jj2:

The following theorem is an immediate consequence of Lemma 3.

Theorem 8 Let V = fv1; : : : ; vLg � SK�1 and

PMAX(V;x;y) = max
v2V

EMD(projv(x); projv(y))

Then EMD(x;y)� PMAX(V;x;y).

For this lower bound to be of practical use, we must be able to compute it e�ciently. In

section 4.3.2, we presented a straightforward, �(m + n) time algorithm to compute the

EMD between equal-weight distributions on the real line. In combination with Theorem 8,

this algorithm provides the means to compute quickly a lower bound on the EMD between
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two equal-weight distributions.

One pruning strategy is to pick a set of random directions V along which to perform

projections, and apply Theorem 8 to obtain a lower bound. The hope is that the di�erences

between two distributions will be captured by looking along one of the directions in V .

Another pruning strategy is to use the set of orthogonal axis directions for the set V . The

following corollary is an immediate consequence of Theorem 8.

Corollary 3 Let E = fe1; : : : ; eKg � SK�1 be the set of axis directions, and let

PAMAX(x;y) = PMAX(E;x;y):

Then EMD(x;y)� PAMAX(x;y).

Looking along the space axes is intuitively appealing when each axis measures a speci�c

property. For example, suppose that distribution points are points in the CIE-Lab color

space ([88]). If two images are very di�erent in terms of the luminance values of pixels, then

comparing the signature projections along the L-axis will reveal this di�erence and allow

the system to avoid an exact EMD computation.

When the projection directions are the coordinate axes, we can prove a lower bound

which involves the sum of the EMDs along axis directions.

Theorem 9 If

PASUM(x;y) =
1p
K

KX
k=1

EMD(projek (x); projek (y));

then EMD(x;y)� PASUM(x;y).

Proof. The proof uses the fact that jjajj2 � (1=
p
K)jjajj1 for any vector a 2 RK ([25]). It

follows that

mX
i=1

nX
j=1

fij jjxi � yj jj2 � 1p
K

mX
i=1

nX
j=1

fij jjxi � yj jj1

=
1p
K

mX
i=1

nX
j=1

fij

KX
k=1

���x(k)i � y(k)j

���
=

1p
K

KX
k=1

mX
i=1

nX
j=1

fij

���x(k)i � y(k)j

���
mX
i=1

nX
j=1

fij jjxi � yj jj2 � 1p
K

KX
k=1

mX
i=1

nX
j=1

fij

���x(k)i � y(k)j

��� ;
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where the superscript (k) denotes the kth component of a vector. Therefore,

min
F2F(x;y)

mX
i=1

nX
j=1

fij jjxi � yj jj2 � min
F2F(x;y)

1p
K

KX
k=1

mX
i=1

nX
j=1

fij

���x(k)i � y
(k)
j

���
� 1p

K

KX
k=1

min
F2F(x;y)

mX
i=1

nX
j=1

fij

���x(k)i � y
(k)
j

���
=

1p
K

KX
k=1

(min(w�; u�)� EMD(projek(x); projek(y)))

=
1p
K

min(w�; u�)
KX
k=1

EMD(projek(x); projek(y))

min
F2F(x;y)

mX
i=1

nX
j=1

fij jjxi � yj jj2 � 1p
K

min(w�; u�)
KX
k=1

EMD(projek(x); projek(y)):

Dividing both sides of the last inequality by min(w�; u�) gives the desired result.

Note that PASUM(x;y) may be rewritten as

PASUM(x;y) =
p
K

 PK
k=1 EMD(projek (x); projek (y))

K

!
:

This alternate expression makes it clear that PASUM(x;y) is a better lower bound than

PAMAX(x;y) i� the square root of the dimension times the average axis projection distance

is greater than the maximum axis projection distance.

Our projection bounds require EMD computations between distributions on the real line.

In section 4.3.2, we gave a very e�cient algorithm to compute the EMD between equal-

weight distributions (with the L1-distance as the ground distance). If the distributions have

di�erent total weight, we must fall back on the transportation simplex method to compute

the 1D EMD. Using arguments similar to those used in section 4.3.2, we can, however,

compute a lower bound on the EMD between unequal-weight distributions on the line. The

idea to determine intervals over which certain amounts of mass must 
ow in any feasible


ow.

Once again consider the interval (rk; rk+1), and WLOG assume w� > u� and that x-

weight is moved to match all the y-weight. When there is more x-weight than y-weight in

both (�1; rk] and [rk+1;1), then there will be feasible 
ows in which no x-weight travels

through (rk; rk+1). If there is more x-weight than y-weight in (�1; rk], but less x-weight
than y-weight in [rk+1;1), then (u��U(rk))�(w��W (rk)) of the x-weight must be moved

from rk to rk+1 in order to cover the y-weight in [rk+1;1). See Figure 5.2(a). If there is

less x-weight than y-weight in (�1; rk], but more x-weight than y-weight in [rk+1;1),
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(a)

W (rk)

U(rk)

>

w� �W (rk)

u� � U(rk)

<

rk rk+1

(u� � U(rk))� (w� �W (rk))

(w� � u�) + U(rk)

U(rk)

>

u� � U(rk)

u� � U(rk)

=

rk rk+1

Case. w� > u�, W (rk) > U(rk), w��W (rk) < u� � U(rk)

(b)

W (rk)

U(rk)

<

w� �W (rk)

u� � U(rk)

>

rk rk+1

U(rk)�W (rk)

U(rk)

U(rk)

=

w� � U(rk)

u� � U(rk)

>

rk rk+1

Case. w� > u�, W (rk) < U(rk), w��W (rk) > u� � U(rk)

Figure 5.2: Flow Feasibility for Unequal-Weight Distributions on the Real Line. x = (X;w)

and y = (Y; u) are distributions in 1D with w� > u�. All y-weight must be covered by

x-weight. (a) W (rk) > U(rk), w� �W (rk) < u� � U(rk). In any feasible 
ow from x to y,

at least (w� �W (rk))� (u� � U(rk)) of x-weight must travel from rk to rk+1 during the


ow. (b) W (rk) < U(rk), w� �W (rk) > u� � U(rk). In any feasible 
ow from x to y, at

least U(rk)�W (rk) of x-weight must travel from rk+1 to rk during the 
ow.
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then U(rk) �W (rk) of the x-weight must be moved from rk+1 to rk in order to cover the

y-weight in (�1; rk]. This case is illustrated in Figure 5.2(b). Under the assumption that

w� > u�, it cannot be the case that there is less x-weight than y-weight in both (�1; rk]
and [rk+1;1).

Pseudocode for the lower bound described in the previous paragraph is given below.

The routine is named FSBL because the lower bound follows simply from 
ow feasibility

(FeaSiBiLity) conditions.

function emdlb = FSBL(x;y)

/* assumes K = 1, w� � u�, ground distance is L1 */

/* assumes x1 � x2 � � � � � xm, y1 � y2 � � � � � yn */

work = wcumsum = ucumsum = r = 0

/* �rst increment of work will be 0, regardless of r */

wsum =
Pm
i=1 wi

usum =
Pn
j=1 uj

i = j = 1

xnext = x1
ynext = y1
while ((i � m) or (j � n))

next = min(xnext,ynext)

if (usum-ucumsum > wsum-wcumsum)

work += ((usum-ucumsum)-(wsum-wcumsum))*(next-r)

elseif (ucumsum > wcumsum)

work += (ucumsum-wcumsum)*(next-r)

end if

if (xnext � ynext)

wcumsum += wi
i += 1

xnext = (i � m) ? xi : 1
else

ucumsum += uj
j += 1

ynext = (j � n) ? yj : 1
end if

r = next

end while

return (work / usum)

end function

We have argued that

Theorem 10 If x and y are distributions on the real line, then EMD(x;y)� FSBL(x;y).
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If w� = u�, then (u� � U(rk) > w� �W (rk)) � (W (rk) > U(rk)), (u� � U(rk)) � (w� �
W (rk)) = W (rk)� U(rk), and the routine computes the exact value EMD(x;y).

Theorem 11 If x and y are equal-weight distributions on the real line, then EMD(x;y) =

FSBL(x;y).

Assuming that the points in x 2 D1;m and y 2 D1;n are in sorted order, the routine FSBL

runs in linear time �(m + n). The combined sorted list r1; : : : ; rm+n of points in x and

y is discovered by walking along the two sorted lists of points. At any time during the

algorithm, there is a pointer to the next x and next y value to be considered. The value

rk+1 then follows in constant time from the value of rk.

The FSBL lower bound may be substituted for the EMD function in the PMAX,

PAMAX, and PASUM lower bounds to obtain e�cient to compute, projection-based lower

bounds

PMAXFSBL(V;x;y) = max
v2V

FSBL(projv(x); projv(y))

= PMAX(V;x;y) when w� = u�

PAMAXFSBL(x;y) = max
k=1;:::;K

FSBL(projek(x); projek(y))

= PAMAX(x;y) when w� = u�

PASUMFSBL(x;y) =
1p
K

KX
k=1

FSBL(projek (x); projek (y))

= PASUM(x;y) when w� = u�

in which x and y are not necessarily equal weight. The second equality in each of the three

pairs of equalities follows directly from Theorem 11 and the de�nitions of PMAX(V;x;y),

PAMAX(x;y), and PASUM(x;y).

5.3 Experiments in Color-based Retrieval

In this section, we show some results of using the lower bounds CBOX, PMAXFSBL,

PAMAXFSBL, and PASUMFSBL in the color-based retrieval system described in [65]. This

system summarizes an image by a distribution of dominant colors in the CIE-Lab color

space, where the weight of a dominant color is equal to the fraction of image pixels which

are classi�ed as that color. The input to the system is a query and a number R of nearest
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images to return. The system computes the EMD between the query distribution and each

of the database distributions. The ground distance is d = L2.

If the query is a full image (e.g. an image in the database), then the query distribution

and all the database distributions will have total weight equal to one. In this query-by-

example setting, the system �rst checks the distance between distribution centroids before

performing an exact EMD computation. If the centroid distance is larger than the Rth

smallest distance seen before the current comparison, then the system does not compute

the EMD and simply considers the next database image. An R-nearest neighbor database

image to the query cannot be missed by this algorithm because the centroid distance is a

lower bound on the EMD between equal-weight distributions. When the query is a partial

query (such as \give me all the images with at least 20% sky blue"), the system in [65]

performs an exact EMD computation between the query and every database image.

To use the CBOX lower bound for partial queries, some additional preprocessing is

needed. At database entry time, the distribution x = (X;w) of an image is computed and

stored, as well as the centroid bounding boxes B�(x) for � = 0:05k, k = 1; : : : ; 20. Given a

query distribution y = (Y; u) of weight u� � w�, let �y denote the largest sample � value

which does not exceed the total weight ratio u�=w�. The system computes the distance

between y and the nearest point in B�y(x). This is the CBOX lower bound. To use the

PMAXFSBL lower bound, a set V of L (speci�ed later) random projection directions and

the L position-sorted projections of each database distribution along the directions in V

are computed and stored at database load time. At query time, the query distribution is

also projected along the directions in V . To use the PAMAXFSBL and PASUMFSBL lower

bounds, theK position-sorted projections of each database distribution along the space axes

are computed and stored at database entry time. At query time, the same axis projections

are performed on the query distribution.

There are many factors that a�ect the performance of our lower bounds. The most

obvious is the database itself. Here, we use a Corel database of 20000 color images which

is dominated by outdoor scenes. The order in which the images are compared to the query

is also important. If the most similar images to a query are processed �rst, then the Rth

smallest distance seen will be relatively small when the dissimilar images are processed, and

relatively weak lower bounds can prune these dissimilar images. Of course, the purpose of

the query is to discover the similar images. Nonetheless, a random order of comparison

may help ensure good performance over a wide range of queries. Moreover, if a certain type

of query is more likely than others, say, for example, queries with large amounts of blue

and green (to retrieve outdoor images containing sky and grass), then it would be wise to

pre-determine a good comparison order to use for such queries. In the results that follow,
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however, the comparison order is the same for all queries, and the order is not specialized

for any particular type of query.

The number R of nearest images to return is yet another factor. For a �xed comparison

order and query, the number of exact EMD calculations pruned is inversely related to

the size of R. This is because the Rth smallest distance (against which a lower bound is

compared) after comparing a �xed number images is an increasing function of R. In all

the upcoming experiments, the number of nearest images returned is �xed at R = 20. In

terms of the actual lower bounds, a system may be able to achieve better query times by

using more than one bound. For example, a system might apply the CBOX lower bound

�rst, followed by the more expensive PASUMFSBL bound if CBOX fails, followed by an even

more expensive exact EMD computation if PASUMFSBL also fails. The hope is that the

lower bound hierarchy of CBOX, PASUMFSBL, and EMD speeds up query times in much

the same way that the memory hierarchy of primary cache, secondary cache, and main

memory speeds up memory accesses. Our experiments, however, apply one lower bound

per query. For the PMAXFSBL lower bound, the number L of random directions must be

speci�ed. This parameter trades o� between pruning power and computation speed. The

more directions, the greater the pruning power, but the slower the computation. In our

work, we use the heuristic L = 2K (without quanti�able justi�cation), where K is the

dimension of the underlying point space (so L = 6 in the color-based system).

All experiments were conducted on an SGI Indigo2 with a 250 MHz processor, and

query times are reported in seconds (s). The exact EMD is computed by the transportation

simplex method as described by Hillier and Lieberman in [32]. The color signature of

a typical database image has eight to twelve points. The time for an EMD calculation

between two such images varies roughly between half a millisecond and one millisecond

(ms). The EMD computation time increases with the number of points in the distributions,

so EMD computations involving a partial query distribution with only a few points are,

in general, faster than EMD computations between two database images. The time for an

EMD computation between a database image and a partial query with three or fewer points

is typically about 0:25ms.

We begin our experiments with a few very simple queries. Each of these queries consists

of a distribution with exactly one color point in CIE-Lab space. The results of the three

queries
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(a)

(b)

Lower Bound # Pruned Query Time (s)

NONE 0 2.210

CBOX 19675 0.193

PMAXFSBL 19715 0.718

PAMAXFSBL 19622 0.441

PASUMFSBL 18969 0.536

Figure 5.3: Query C.1.1 { 20% Blue. (a) query results. (b) query statistics.

C.1.1 at least 20% (sky) blue ,

C.1.2 at least 40% green , and

C.1.3 at least 60% red

are shown in Figure 5.3, Figure 5.4, and Figure 5.5, respectively. In these examples, all

the lower bounds result in query times which are less than the brute force query time, and

avoid a large fraction of exact EMD computations. The CBOX and PASUMFSBL bounds

gave the best results on these three queries.

The next set of examples consists of randomly generated partial queries. The results for

the �ve queries
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(a)

(b)

Lower Bound # Pruned Query Time (s)

NONE 0 3.043

CBOX 19634 0.233

PMAXFSBL 10172 2.552

PAMAXFSBL 16222 1.124

PASUMFSBL 18424 0.754

Figure 5.4: Query C.1.2 { 40% Green. (a) query results. (b) query statistics.

(a)

(b)

Lower Bound # Pruned Query Time (s)

NONE 0 2.920

CBOX 19621 0.240

PMAXFSBL 15903 1.505

PAMAXFSBL 17125 0.871

PASUMFSBL 18182 0.785

Figure 5.5: Query C.1.3 { 60% Red. (a) query results. (b) query statistics.
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(a)

(b)

Lower Bound # Pruned Query Time (s)

NONE 0 4.240

CBOX 18704 0.496

PMAXFSBL 17989 1.323

PAMAXFSBL 17784 1.035

PASUMFSBL 18418 0.832

Figure 5.6: Query C.2.1 { 13.5% Green, 3.4% Red, 17.8% Yellow. The total weight of the

query is u� = 34:7%. (a) query results. (b) query statistics.

C.2.1 13.5% green, 3.4% red, 17.8% yellow ,

C.2.2 26.0% blue, 19.7% violet ,

C.2.3 16.8% blue, 22.2% green, 1.8% yellow ,

C.2.4 22.8% red, 24.2% green, 17.3% blue , and

C.2.5 13.2% yellow, 15.3% violet, 15.3% green

are shown in Figure 5.6 through Figure 5.10, respectively. The CBOX lower bound

gives the best results for queries C.2.1 and C.2.2, but its performance drops by an order of

magnitude for C.2.3, and it is completely ine�ective for C.2.4 and C.2.5. Indeed, the CBOX

lower bound pruned only 1 of 20000 database images for query C.2.5. The CBOX behavior

can be explained in part by the locations of centroids of the query distributions and the

database distributions. See Figure 5.11. Roughly speaking, the e�ectiveness of the CBOX

bound is directly related to the amount of separation between the database distributions

and the query distribution, with larger separation implying a more e�ective bound. The
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(a)

(b)

Lower Bound # Pruned Query Time (s)

NONE 0 3.812

CBOX 18631 0.453

PMAXFSBL 16472 1.452

PAMAXFSBL 17032 1.010

PASUMFSBL 17465 1.037

Figure 5.7: Query C.2.2 { 26.0% Blue, 19.7% Violet. The total weight of the query is

u� = 45:7%. (a) query results. (b) query statistics.

(a)

(b)

Lower Bound # Pruned Query Time (s)

NONE 0 4.073

CBOX 1631 3.999

PMAXFSBL 10550 3.235

PAMAXFSBL 11690 2.648

PASUMFSBL 15386 1.612

Figure 5.8: Query C.2.3 { 16.8% Blue, 22.2% Green, 1.8% Yellow. The total weight of the

query is u� = 40:8%. (a) query results. (b) query statistics.
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(a)

(b)

Lower Bound # Pruned Query Time (s)

NONE 0 3.969

CBOX 26 4.158

PMAXFSBL 3606 4.342

PAMAXFSBL 3399 4.010

PASUMFSBL 12922 2.324

Figure 5.9: Query C.2.4 { 22.8% Red, 24.2% Green, 17.3% Blue. The total weight of the

query is u� = 64:3%. (a) query results. (b) query statistics.

(a)

(b)

Lower Bound # Pruned Query Time (s)

NONE 0 3.375

CBOX 1 3.560

PMAXFSBL 9608 2.924

PAMAXFSBL 10716 2.381

PASUMFSBL 15562 1.492

Figure 5.10: Query C.2.5 { 13.2% Yellow, 15.3% Violet, 15.3% Green. The total weight of

the query is u� = 43:8%. (a) query results. (b) query statistics.
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Figure 5.11: Distribution Centroids for Corel Database Images and Example Queries. The

centroids of the color signature distributions of a random subset of 5000 images in the Corel

database are plotted as dots, and the centroids for the queries C.2.* and C.3.* are plotted

as stars. The locations of blue (C.1.1), green (C.1.2), red (C.1.3), yellow, and violet are

plotted as x's.
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query C.2.1 consists almost entirely of green and yellow. As one can see from Figure 5.11,

the centroid of C.2.1 is very isolated from the database centroids. The approximately equal

amounts red, green, and blue in query C.2.4 result in a centroid which is close to a large

number of database centroids. The same statement holds for query C.2.5 which has green

and yellow in one corner of the CIE-Lab space, and violet at the opposite corner.

The distances of the centroids for C.2.2 and C.2.3 to the database centroids are (i) about

the same, and (ii) are smaller than the distance for C.2.1 and larger than the distances for

C.2.4 and C.2.5. Observation (ii) helps explain why the performance of CBOX on C.2.2 and

C.2.3 is worse than the performance on C.2.1, but better than the performance on C.2.4

and C.2.5. Observation (i) might lead one to believe that the CBOX performance should be

about the same on C.2.2 and C.2.3. The statistics, however, show that this is not the case.

To understand why, we must remember that the queries are partial queries. The relevant

quantity is not the centroid of a database distribution, but rather the locus of the centroid

of all sub-distributions with weight equal to the weight of the query. Consider images with

signi�cant amounts of blue and green, and other colors which are distant from blue and

green (such as red). The other colors will help move the distribution centroid away from

blue and green. However, a sub-distribution of such an image which contains only blue and

green components will have a centroid which is close to blue and green, and hence close to

the centroid of C.2.3. The distance between the query centroid and this image centroid may

be large, but the CBOX lower bound will be small (and, hence, weak). From Figure 5.11

and the results of C.2.2 and C.2.3, one can infer that there are many more images that

contain blue, green, and signi�cant amounts of distant colors from blue and green than

there are images that contain blue, violet, and signi�cant amounts of distant colors from

blue and violet. The centroid is a measure of the (weighted) average color in a distribution,

and the average is not an accurate representative of a distribution with high variance (i.e.

with colors that span a large portion of the color space).

The projection-based lower bounds PMAXFSBL, PAMAXFSBL, PASUMFSBL compare

two distributions by comparing the distributions projected along some set of directions.

There is hope that these bounds will help when the CBOX bound is ine�ective. In queries

C.2.3, C.2.4, and C.2.5, the projection-based lower bounds prune far more EMD calculations

than the CBOX bound. However, pruning a large number of EMD calculations does not

guarantee a smaller query time than achievable by brute force because of the overhead of

computing a lower bound when it fails to prune an EMD calculation. In all the random

partial queries C.2.*, the query times for PMAXFSBL, PAMAXFSBL, and PASUMFSBL

were less than the query times for brute force processing, except for the PMAXFSBL and

PAMAXFSBL bounds in query C.2.4. In particular, the PASUMFSBL bound performed very
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(a)

(b)

Lower Bound # Pruned Query Time (s)

NONE 0 15.768

CBOX 19622 0.535

PMAXFSBL 19635 1.522

PAMAXFSBL 19548 1.062

PASUMFSBL 18601 1.847

Figure 5.12: Query C.3.1 { Sunset Image. (a) query results. (b) query statistics.

well for all the queries. Since the projection-based lower bounds are more expensive to

compute than the CBOX lower bound, they must prune more exact EMD calculations than

CBOX in order to be as e�ective in query time.

The queries in the �nal two examples of this section are both images in the Corel

database. The results of the queries

C.3.1 and

C.3.2

are shown in Figure 5.12 and Figure 5.13, respectively. The distributions for queries

C.3.1 and C.3.2 contain 12 and 13 points, respectively. Notice that the brute force query

time for the C.3.* queries is much greater than the brute force query time for the C.1.*

and C.2.* queries. The di�erence is that both the query and the database images have a

\large" number of points for the C.3.* queries. All the lower bounds perform well for query

C.3.1, but the CBOX lower bound gives the lowest query time. Recall that the CBOX lower

bound reduces to the distance between distribution centroids for equal-weight distributions.

The centroid distance pruned many exact EMD calculations for C.3.1 because most of the
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(a)

(b)

Lower Bound # Pruned Query Time (s)

NONE 0 14.742

CBOX 9571 8.106

PMAXFSBL 15094 5.893

PAMAXFSBL 13461 6.741

PASUMFSBL 17165 3.343

Figure 5.13: Query C.3.2 { Image with Trees, Grass, Water, and Sky. (a) query results. (b)

query statistics.

weight in the distribution is around yellow and orange, far from the centroids of the database

images (as one can see in Figure 5.11). The blue, green, and brown in query C.3.2 span a

larger part of the color space than the colors in C.3.1, the query centroid is close to many

database centroids (once again, see Figure 5.11), and the centroid distance lower bound

does not perform as well as for C.3.1. The projection-based lower bounds, however, each

give a better query time for query C.3.2 than the centroid-distance bound. Recall that

the lower bounds PMAXFSBL, PAMAXFSBL, and PASUMFSBL reduce to the stronger lower

bounds PMAX, PAMAX, and PASUM for equal-weight distributions. The PASUMFSBL

lower bound yields a tolerable query time for query C.3.2.
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Chapter 6

The EMD under Transformation

Sets

A major challenge in image retrieval applications is that the images we desire to match

can be visually quite di�erent. This can happen even if these images are views of the

same scene because of illumination changes, viewpoint motion, occlusions, etc.. Consider

for example, recognizing objects by their color signatures. A direct comparison of color

histograms or an EMD between color signatures of imaged objects does not account for

lighting di�erences. In [28], Healey and Slater show that an illumination change results in

a linear transformation of the image pixel colors (under certain reasonable assumptions).

In a similar result, sensor measurements of multispectral satellite images recorded under

di�erent illumination and atmospheric conditions di�er by an a�ne transformation ([27]).

The general problem of comparing features modulo some transformation set also arises

in texture-based and shape-based image retrieval. In [69], the texture content signature of a

single texture image is a collection of spatial frequencies, where each frequency is weighted

by the amount of energy at that frequency. If the frequency features are represented in log-

polar coordinates, then scaling the texture results in a feature translation along the log-scale

axis, while rotating the texture results in a feature translation along the cyclic orientation

axis. These translations must be taken into account by a texture distance measure which

is invariant to scaling and/or rotation.

For shape-based retrieval, suppose we summarize the shape content of an image as a

collection of curves or feature points in the image. Then changes in viewpoint and/or view-

ing distances will result in changes in the coordinates of the extracted features, even though

we are looking at an image of the same scene. Allowing for a transformation is necessary,

for example, in matching point features in stereo image pairs. Even if the viewpoint and

123
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viewing distance for two images of the same scene are roughly the same, the images may

have been acquired at di�erent resolutions or drawn with di�erent drawing programs which

use di�erent units and have di�erent origin points. Direct comparison of summary feature

coordinates is not likely to capture the visual similarity between the underlying images.

The Earth Mover's Distance under a transformation set is the minimum EMD between

one distribution and a transformed version of the other distribution, where transformations

are chosen from a given set. The allowable transformations of a distribution are dictated by

the application. Sets of distribution transformations can be divided into three classes: those

with transformations that change (I) only the weights, (II) only the points, and (III) both the

weights and the points of a distribution. This chapter focuses on class (II) transformation

sets. The previously mentioned applications of lighting-invariant object recognition, scale

and orientation-invariant texture retrieval, and point feature matching in stereo image pairs

use class (II) sets.

Some applications may call for class (III) sets. Suppose, for example, that a distribution

point captures the location and properties of an image region, and that its corresponding

weight is the region area. The EMD between two such distributions implicitly de�nes

similar images as those in which regions of similar size and properties are close to one

another. This measure will not capture visual similarities present at di�erent scales within

two images unless we allow for a transformation of both region locations and areas. Such

transformations change both the points and weights of a distribution.

We have already seen an application involving a class (I) set. The scale estimation

problem described in section 4.5 is formulated as the EMD under transformation (EMDG)

problem

c0 = maxarg mingc2G EMD(x; gc(y)) ; (6.1)

where G = f gc : gc(y) = gc(Y; u) = (Y; cu); 0 < c � 1 g. In words, G consists of transfor-

mations gc that scale down the weights of a distribution by a factor c. The EMDG problem

is the boxed minimization in (6.1). Analysis of the function E(c) = EMD(x; (Y; cu)) in sec-

tion 4.5 revealed a lot of structure: E(c) decreases as c decreases until it becomes constant

for all c less than or equal to some c0. The scale estimate is c0, which is the largest weight

scale c that minimizes the EMD between x and (Y; cu). Please refer back to section 4.5 for

more details and an e�cient solution to (6.1) which takes full advantage of the structure of

E(c).

This chapter is organized as follows. In section 6.1, we give some basic de�nitions and

notation, including a formal de�nition of the Earth Mover's Distance under a transformation

set and related measures. In section 6.2, we give a direct, but ine�cient, algorithm to



6.1. DEFINITIONS AND NOTATION 125

compute a globally optimal (
ow,transformation) pair that yields the EMD under class

(II) transformation sets. In section 6.3, we give an iteration for class (II) sets that always

converges monotonically, although it may converge to a transformation which is only locally

(as opposed to globally) optimal. The FT iteration is applicable to any transformation set

for which there is an algorithm to minimize a weighted sum of distances from one point set

to a transformed version of the other. This optimal transformation problem, which is also a

required subroutine for the direct algorithm, is the subject of section 6.4. In section 6.5, we

show how the FT iteration may still be applied for a useful class (III) transformation set.

In section 6.6, we consider some speci�c combinations of transformation set, ground

distance function, and feature space for which a globally optimal transformation can be

computed directly, without the aid of our iteration. We return to the FT iteration in

section 6.7, where we consider questions of convergence to only a locally optimal transfor-

mation. In section 6.8, we cover two miscellaneous topics: the tradeo�s in choosing between

the L22 and L2 ground distances, and the growth rate of the EMD with respect to trans-

formation parameters. Although the former topic is discussed in the context of the EMDG

problem, other criteria are also considered. Finally, in section 6.9 we apply the FT itera-

tion to the problems of (i) illumination-invariant object recognition, and (ii) point feature

matching in stereo image pairs.

In [12], we proposed the previously mentioned iteration for the case of translation.

6.1 De�nitions and Notation

The Earth Mover's Distance under transformation set G is de�ned as

EMDG(x;y) = min(min
g2G

EMD(x; g(y));min
g2G

EMD(g(x); y)); (6.2)

where g(x) is the result of applying the transformation g 2 G to the distribution x. In the

case that

(i) the transformations in G only modify the distribution points,

(ii) G is a transformation group (and therefore every element of G has an inverse element),

and

(iii) the ground distance d satis�es d(x; g(y)) = d(g�1(x); y) for all g 2 G,

we have EMD(x; g(y)) = EMD(g�1(x);y)), and de�nition (6.2) reduces to

EMDG(x;y) = min
g2G

EMD(x; g(y)) = min
g2G

EMD(g(x);y)): (6.3)
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Condition (ii) is satis�ed, for example, when G = T , the group of translations, and when G =

E , the group of Euclidean transformations (rotation plus translation). It is not satis�ed by

the set of similarity transformations S (uniform scaling plus rotation plus translation), linear

transformations L, and a�ne transformations A (linear plus translation). Transformations

that shrink a point set to a single point (scale parameter is zero) do not have inverses.

Condition (iii) is satis�ed, for example, with G = T and ground distance d equal to any

Lp distance function, and with G = E and the ground distance d equal to the L2 distance

function.

We can combine the partial matching allowed by EMD
 and the transformations allowed

by EMDG . The partial Earth Mover's Distance under transformation set G is de�ned as

EMD

G
(x;y) = min(min

g2G
EMD
(x; g(y));min

g2G
EMD
(g(x); y)): (6.4)

In the case that conditions (i), (ii), and (iii) hold, de�nition (6.4) reduces to

EMD

G
(x;y) = min

g2G
EMD
(x; g(y)) = min

g2G
EMD
(g(x);y)): (6.5)

Using the partial EMD under a transformation set may be useful, for example, in matching

point features in stereo image pairs. The fraction parameter 
 compensates for the fact

that only some features appear in both images, and the set parameter G accounts for the

appropriate transformation between corresponding features.

We shall now prove that the EMD under a transformation set is a metric when conditions

(i), (ii), and (iii) are satis�ed and the EMD itself is a metric. Recall that the EMD is a

metric on distributions when the ground distance is a metric and the distributions have

equal total weight. For a precise statement of the theorem, we need to de�ne equivalence

classes on distributions under the group G. Two distributions x and y are in the same

G-equivalence class i� x = g(y) for some g 2 G. The equivalence class E(x) that contains
distribution x is

E(x) = f g(x) : g 2 G g:

We say that two distributions x and bx are G-equivalent i� x; bx 2 E(x), and we denote this

equivalence as x � bx. Note that
EMDG(x;y) = EMDG(bx; by) 8x � bx;y � by:
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The EMD under a transformation group is then well de�ned on G-equivalence classes by

EMDG(E1; E2) = EMDG(x;y); 8x 2 E1;y 2 E2: (6.6)

Theorem 12 The EMD under a transformation group G is a metric on distribution G-
equivalence classes when conditions (i), (ii), and (iii) are satis�ed and the EMD itself is a

metric on distributions.

Proof. Obviously, EMDG(E1; E2) � 0 for every pair of G-equivalence classes E1 and E2

because the EMD is nonnegative. We need to show that EMDG(E1; E2) = 0 i� E1 =

E2. The nontrivial direction is to show that EMDG(E1; E2) = 0 implies E1 = E2. Fix

equivalence class representatives x 2 E1 and y 2 E2. If EMDG(E1; E2) = 0, then by

de�nitions (6.3) and (6.6) there exists g 2 G such that EMD(x; g(y)) = 0. Since the EMD

is a metric, we must have x = g(y). It follows that E1 = E2. The symmetry of EMDG

follows from the symmetry of the EMD. Finally, we need to show that the triangle inequality

holds. Suppose E1, E2, and E3 are equivalence classes with representative distributions x,

y, and z, and that

EMDG(E1; E2) = EMD(gx(x);y) and (6.7)

EMDG(E2; E3) = EMD(y; gz(z)): (6.8)

Here gx and gz are the transformations of x and z that yield the minimum value in (6.3).

Since gx(x) � x and gz(z) � z, it follows from (6.3) and (6.6) that

EMDG(E1; E3) � EMD(gx(x); gz(z)):

But the EMD is a metric between distributions, so it obeys the triangle inequality and

EMD(gx(x); gz(z)) � EMD(gx(x);y)+ EMD(y; gz(z)):

Combining the previous two inequalities with (6.7) and (6.8) gives the triangle inequality

EMDG(E1; E3) � EMDG(E1; E2) + EMDG(E2; E3)

that we desire.

For simplicity, we write about EMDG(x;y) in the remaining sections of this chapter as

if it were just ming2G EMD(x; g(y)).
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6.2 A Direct Algorithm

The transformed distribution g(y) = (g(Y ); u) 2 DK;n has the same weights as the original

distribution y. Thus F(x;y) = F(x; g(y)) and

EMDG(x;y) =
ming2G;F2F(x;y)WORK(F;x; g(y))

min(w�; u�)
: (6.9)

Clearly, it su�ces to minimize the work h(F; g) = WORK(F;x; g(y)) over the region

R(x;y) = f (F; g) : F 2 F(x;y); g 2 G g = F(x;y)� G.
The function h(F; g) is linear in F . It follows that for g �xed, the minimum value

minF2F(x;y) h(F; g) is achieved at one of the vertices (dependent on g) of the convex polytope

F(x;y). If we let V (x;y) = f v1(x;y); : : : ; vN (x;y) g denote this �nite set of vertices,

then

min
(F;g)2R(x;y)

h(F; g) = min
k=1;:::;N

min
g2G

h(vk(x;y); g): (6.10)

Assuming that we can solve the innermost minimization problem on the right-hand side

of (6.10), we can compute the numerator in (6.9) by simply looping over all the vertices in

V (x;y). Only a �nite number of 
ow values must be examined to �nd the minimum work.

Although this simple strategy guarantees that we �nd a globally optimal transforma-

tion, it is not practical because N is usually very large even for relatively small values

of m and n. The worst case complexity of the number of vertices in the feasible convex

polytope for a linear program is exponential in the minimum of the number of variables

and constraints.1 The beauty of the simplex algorithm for solving a linear program is that

it provides a method for visiting vertices of the feasible polytope in such a way that the

objective function always gets closer to its optimal value, and the number of vertices vis-

ited is almost always no larger in order than the maximum of the number of variables and

the number of constraints ([58]). In the next section, we give an iterative algorithm that

generates a sequence of (
ow,transformation) pairs for which the amount of work decreases

or remains constant at every step.

6.3 The FT Iteration

The work function h(F; g) to minimize depends on both a 
ow vector F and a transformation

g. Given either variable, we can solve for the optimal value of the other. This leads us to

an iteration which alternates between �nding the best 
ow for a given transformation, and

1For a balanced transportation problem with m suppliers and n demanders, there are mn variables and

m+ n constraints (not including the nonnegativity constraints on the variables).
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Figure 6.1: FT Iteration Example. See the text for an explanation.

the best transformation for a given 
ow. The 
ow step establishes correspondences that

minimize the work for a �xed con�guration of distribution points, while the transformation

step moves the distribution points around so that the work is minimized for a given set of

correspondences. By alternating these steps we obtain a sequence of (
ow,transformation)

pairs for which the amount of work decreases or remains constant at every step.

In this section, we consider distribution transformations that alter only the points of

a distribution, leaving distribution weights unchanged. If g is such a transformation, then

F(x; g(y)) = F(x;y) since y and g(y) have the same set of weights. Consider the following

iteration that begins with an initial transformation g(0):

F (k) = arg

0
@ min
F2F(x;g(k)(y))=F(x;y)

mX
i=1

nX
j=1

fijd
�
xi; g

(k)(yj)
�1A ; (6.11)

g(k+1) = arg

0
@min
g2G

mX
i=1

nX
j=1

f
(k)
ij d(xi; g(yj))

1
A : (6.12)

The minimization problem on the right-hand side of (6.11) is the familar transportation

problem. For now, we assume that there is an algorithm to solve for the optimal transfor-

mation in (6.12). This problem is the subject of section 6.4. Since this iteration alternates

between �nding an optimal Flow and an optimal Transformation, we refer to (6.11) and

(6.12) as the FT iteration. It can be applied to equal-weight and unequal-weight distribu-

tions.

Figure 6.1(a) shows an example with a dark and a light distribution that we will match

under translation starting with g(0) = 0. The best 
ow F (0) for g(0) is shown by the labelled

arcs connecting dark and light weights. This 
ow matches half (.5) the weight over a large

distance. We should expect the best translation for F (0) to move the .7 dark weight closer to
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the .8 light weight in order to decrease the total amount of work done by F (0). Indeed, g(1)

aligns these two weights as shown in Figure 6.1(b). The best 
ow F (1) for this translation

matches all of the .7 dark weight to the .8 light weight. No further translation improves the

work { g(2) = g(1) and the FT iteration converges.

The 
ow and transformation iterates F (k) and g(k) de�ne the WORK and EMD iterates

WORK(k) =
mX
i=1

nX
j=1

f
(k)
ij d

�
xi; g

(k)(yj)
�
= WORK

�
F (k);x; g(k)(y)

�
;

EMD(k) =
WORK(k)

min(w�; u�)
:

The order of evaluation is

g(0) �! F (0)| {z }
WORK(0); EMD(0)

�! g(1) �! F (1)| {z }
WORK(1); EMD(1)

�! � � � :

By (6.11), we have

WORK(k+1) =
mX
i=1

nX
j=1

f
(k+1)
ij d

�
xi; g

(k+1)(yj)
�

�
mX
i=1

nX
j=1

f
(k)
ij d

�
xi; g

(k+1)(yj)
�
: (6.13)

In detail, F (k) 2 F(x;y) = F(x; g(k)(y)), while F (k+1) 2 F(x;y) = F(x; g(k+1)(y)) is
optimal for g(k+1) over all 
ows in F(x;y). Therefore using F (k+1) with g(k+1) results in

less work than using F (k) with g(k+1). From (6.12), we know

WORK(k) =
mX
i=1

nX
j=1

f
(k)
ij d

�
xi; g

(k)(yj)
�

�
mX
i=1

nX
j=1

f
(k)
ij d

�
xi; g

(k+1)(yj)
�
: (6.14)

Combining (6.13) and (6.14),

WORK(k+1) �WORK(k):

The decreasing sequence WORK(k) is bounded below by zero, and hence it converges ([38],

pp. 49{50). There is, however, no guarantee that the work iteration converges to the global

minimum of h(F; g) = WORK(F;x; g(y)).
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Using the exact same iteration with F
(x;y) in place of F(x;y) will also yield a decreas-
ing sequence of WORK values (and, hence, a decreasing sequence of EMD values). This is

because F
(x; g(y)) = F
(x;y) when g does not change distribution weights. Therefore,

the FT iteration can also be used in an attempt to compute the partial EMD under trans-

formation when the transformations do not change the weights of a distribution. Please

refer back to section 4.4.1 for the details of the partial EMD.

6.3.1 Similar Work

The FT iteration is similar to the ICP (Iterative Closest Point) algorithm ([5]) used to

register 3D shapes. The computation of the optimal 
ow between distributions in the FT

iteration plays the role of the computation of closest \model shape" points to the \data

shape" points in the ICP iteration. Both these steps determine correspondences used to

compute a transformation that improves the EMD/registration. There are, however, a

number of important di�erences between the two algorithms and the contexts in which

they are applied.

As we noted in section 4.3.1, the EMD provides a distance between point sets (which are

distributions in which all weights are equal to one) as well as general distributions. The ICP

algorithm is used to register a data shape de�ned as a point set with a model shape de�ned

by a set of geometric primitives such as points, line segments, curves, etc.. If the model shape

is also de�ned as a set of points, then the ICP algorithm also seeks to minimize the distance

between two point sets under a transformation. The notion of point set distance de�ned

by the EMD, however, is di�erent than the notion of distance used in the ICP formulation.

The ICP algorithm's correspondence step computes the nearest neighbor in the model shape

for each data shape point, and sums up all these distances. The same model shape point

may be the nearest neighbor of many data shape points in the distance sum computation.

Therefore, the ICP algorithm uses a Hausdor�-like distance between point sets. In contrast,

when EMDG is used to match point sets under a transformation, the constraints that de�ne

the EMD imply a one-to-one matching of the points (see section 4.3.1). The correspondence

step for the FT iteration requires the solution of an assignment problem, whereas the

correspondence step in the ICP algorithm matches each data shape point independently

to its closest model shape point. The unconstrained matching in the ICP algorithm will

obviously be faster to compute than the constrained matching speci�ed by the EMD, but

the two iterations are trying to minimize di�erent point set distance metrics.

Using our EMD framework instead of the ICP framework to match point sets under

a transformation has the advantage that it can �nd the best subsets (with size speci�ed
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by 
) of the given sets to match. In fact, the partial match parameter 
 can be used to

align di�erent sub-distributions (subsets) of two distributions (point sets) using di�erent

transformations. For example, one could �nd the transformation that works well for 
 =

20% of the data, remove the matched data, and repeat. The ICP algorithm could also be

applied in this piecewise manner, but the user must select the subsets of the data shape to

be matched, not just the subset size as in the partial EMD case.

Limiting our comparison of the FT iteration and the ICP iteration to point sets is unfair

to the FT iteration since the EMD can be used to match distributions of mass which are

more general than point sets. The mass at a point in one distribution can be matched to

the mass at many points in the other distribution, and vice-versa. The FT iteration in

general provides a many-to-many matching of distribution points, while the ICP iteration

(applied to a model shape point set) gives a many-to-one matching of model shape points

to data shape points, and the FT iteration applied to point sets gives a one-to-one matching

of points in the two sets. Furthermore, the amount of mass matched between two points is

used to weight the distance between the points; all the point distances have weight one in

the ICP iteration and the FT iteration applied to point sets. The many-to-many matching

speci�ed by the EMD is constrained by the distribution masses in such a way that the

matching process represents a morphing of one distribution into the another. As we shall

see in section 6.5, the FT iteration as presented thus far can be modi�ed to handle the

case in which transformations are allowed to modify both the distribution points and their

corresponding masses.

Another well-known application of the alternation idea is the Expectation-Maximization

or EM algorithm ([47, 48]) for computing mixture models in statistics. In this problem,

observed data are assumed to arise from some number of parametrized distributions. The

goal is to determine which data come from which distributions and to compute the param-

eter values of the distributions. The EM algorithm alternates between �nding the expected

assignments2 of the data to the distributions with �xed de�ning parameters (the E-step),

and �nding the maximum likelihood estimate of the parameter values given the expected

assignments (the M-step). The function to be optimized in this case is a likelihood function,

and the optimization problem is a maximization.

2The E-step computes the expected value E[Zij ] = P (Zij = 1), where Zij = 1 if the jth observation

arises from the ith distribution, and Zij = 0 otherwise.
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6.3.2 Convergence Properties

One way for the WORK iteration to converge is if F (k) is returned in step (6.11) as an opti-

mal 
ow for g(k), and g(k+1) = g(k) is returned in step (6.12) as an optimal transformation

for F (k). Denote the indicator function for this event as MUTUAL
�
F (k); g(k)

�
, since F (k)

is optimal for g(k), and g(k) is optimal for F (k). It is clear that

MUTUAL
�
F (k); g(k)

�
)

8>>><
>>>:

g(k) = g(k+1) = � � � ;
F (k) = F (k+1) = � � � ; and

WORK(k) = WORK(k+1) = � � � :

The WORK iteration converges to either a local minimum or a saddle point value if

MUTUAL
�
F (k); g(k)

�
is true.3

Now suppose that the routine that solves the linear program (LP) in (6.11) always re-

turns a vertex of F(x;y). The simplex algorithm and the transportation simplex algorithm,

for example, always return a vertex of the feasible polytope. This is possible since there

is always a vertex of the feasible polytope at which a linear objective function achieves its

minimum. With the assumption that the 
ow iterates are always vertices of F(x;y), there
will be only a �nite number of points (F; t) that the WORK iteration visits because there

are a �nite number of 
ow iterates, and each transformation iterate (other than the initial

transformation) must be an optimal transformation returned for one of the 
ow iterates. It

follows that there are only a �nite number of WORK values generated. Since the WORK it-

eration is guaranteed to converge, the WORK iterates must stabilize at one of these WORK

values. Suppose

WORK(k) = WORK(k+1) = � � � : (6.15)

Since there are only a �nite number of pairs (F; t) visited, condition (6.15) implies that

there must be a repeating cycle of pairs:

�
F (k); g(k)

�
; : : : ;

�
F (k+r�1); g(k+r�1)

�
;
�
F (k+r); g(k+r)

�
=
�
F (k); g(k)

�
; : : : :

3If g(k) occurs in the interior of R(F (k)) =
�
g : F (k) 2 arg minF2F WORK(F;x; g(y))

	
, then

(F (k); g(k)) cannot be a saddle point and the WORK iteration converges to a local minimum of
WORK(F;x; g(y)). The argument is toward the end of section 6.7.4, the paragraph beginning \Let us

now explicitly connect ...". In general, the possibility convergence to a saddle point cannot be eliminated.
All we know is that along the F axis though g(k), the minimum occurs at F (k), and along the g axis

though F (k), the minimum occurs at g(k). This does not imply anything about the value of WORK close to

(F (k); g(k)) along a \diagonal" through (F (k); g(k)).
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For r > 1, the WORK iteration converges even though the 
ow and transformation itera-

tions do not converge. However, such a nontrivial (
ow,transformation) cycle is unstable

in the sense that it can be broken (for any real problem data) by perturbing one of the

transformation iterates by a small amount. In practice, the WORK iteration almost al-

ways converges because a length r = 1 cycle occurs. A cycle of length r = 1 starting at�
F (k); g(k)

�
is exactly the condition MUTUAL

�
F (k); g(k)

�
, and we previously argued that

the WORK iteration converges to a critical value in this case.

Finally, let us note that the WORK sequence will stabilize at the global minimum once

F (k) = F �, where (F �; g�) is optimal for some g�. This is because g(k+1) and g� both

solve (6.12), so h(F (k); g(k+1)) = h(F �; g�), which is the global minimum of the WORK

function. Since h can only decrease or remain the same with successive 
ow and transfor-

mation iterates, and h can never be less than the global minimum of the WORK function,

we must have

h(F �; g�) = WORK(k+1) = h(F (k+1); g(k+1)) = WORK(k+2) = h(F (k+2); g(k+2)) = � � � :

Similarly, if the transformation iteration ever reaches a transformation g(k) = g� at which the

minimum value of WORK occurs with some 
ow F �, then the WORK iteration converges

to the global minimum. Here we need the fact that F (k) and F � both solve (6.11).

Let us summarize the results of this section. The WORK iteration always converges.

We can arrange to have all 
ow iterates at the vertices of F(x;y). In this case, the

(
ow,transformation) iterates must cycle. A cycle of length r > 1 will almost never occur,

and a cycle of length r = 1 implies that the (
ow,transformation) sequence converges to a

critical point and, therefore, that the WORK sequence converges to either a local minimum

or a saddle point value. Thus, in practice the WORK iteration almost always converges to

a critical value. If the 
ow iteration ever reaches a vertex at which the minimum WORK

occurs with a suitable choice of transformation, then the WORK iteration converges to the

global minimum. Global convergence will also occur if the transformation iteration ever

reaches a transformation at which the minimum WORK occurs with a suitable choice of


ow.

Although we do not explore the possibility here, perhaps convergence of the FT itera-

tion can be accelerated by using the EMD values at the past few transformation iterates

to predict the transformation at which the EMD will be minimized. If the predicted trans-

formation causes an increase in the EMD, we could discard the prediction and just use

the solution to (6.12) as usual to de�ne the next transformation iterate. This approach

successfully accelerated the convergence of the previously mentioned ICP iteration ([5]).
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6.4 The Optimal Transformation Problem

Now consider the problem (6.12) of solving for the optimal transformation for a �xed F =

(fij):

min
g2G

mX
i=1

nX
j=1

fijd(xi; g(yj)): (6.16)

If we let

[a1 � � �aN ] = [x1 � � �x1x2 � � �x2 � � �xm � � �xm]; (6.17)

[b1 � � �bN ] = [y1 � � �yny1 � � �yn � � �y1 � � �yn]; and (6.18)

[c1 � � � cN ] = [f11 � � �f1nf21 � � �f2n � � �fm1 � � �fmn]; (6.19)

where N = mn, then the optimal transformation problem (6.16) can be rewritten as

min
g2G

NX
k=1

ckd(ak; g(bk)): (6.20)

In this form, the optimal transformation problem can be stated as follows: given a weighted

correspondence between point sets, �nd a transformation of the points in one set that

minimizes the weighted sum of distances to corresponding points in the other set.4 We

now discuss the solution of the optimal transformation problem for translation, Euclidean,

similarity, linear, and a�ne transformations with d equal to the L2-distance squared, as

well as the optimal translation problem with the L2-distance, the L1-distance, and a cyclic

L1-distance (to be explained shortly).

6.4.1 Translation

Suppose that G = T , the group of translations. If

d(xi; yj + t) = d(xi � yj ; t); (6.21)

then (6.20) can be written as

min
t2RK

NX
k=1

ckd(ak � bk; t):

4Note that some structure is lost in the rewrite from (6.16) to (6.20). In the setting of the FT iteration,

the N points ak consist of n copies of the set fxig
m

i=1, and the N points bk consist of m copies of the set

fyjg
n

j=1.
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Note that condition (6.21) holds for any Lp distance function d, as well as d = L22. This

minimization problem asks for a point t which minimizes a sum of weighted distances to a

given set of points. We show how to solve this minisum problem when d is the L2-distance

squared, the L1-distance, and the L2-distance in sections 6.4.1.1, 6.4.1.2, and 6.4.1.3, re-

spectively.

In section 6.4.1.4, we solve the optimal translation problem when points are located on

a circle, and ground distance is the length of the shorter arc connecting two points. This

problem arises, for example, when applying the FT iteration to compute an orientation-

invariant EMD between texture signatures in log-polar frequency space ([69, 68]). The

polar coordinates for spatial frequency (fx; fy) are (s; �), where the scale s =
q
f2x + f2y

and the orientation � = arctan(fy; fx). Roughly speaking, distributions are of the form

x = f((bsi; �i); wi)gmi=1, where bsi = log si and the ith element indicates that the texture has

a fraction wi of its total energy at scale si and orientation �i.

If we denote the distribution for another texture as f((b�j ;  j); uj)gnj=1, then the tex-

ture distance min� EMD(x; f((b�j;  j+� ); uj)g) is invariant to texture orientation. The
optimal translation problem is

min
� 

mX
i=1

nX
j=1

fij(jbsi � b�j j+ j�i � ( j +� )j2�) = (6.22)

mX
i=1

nX
j=1

fij jbsi � b�j j+min
� 

mX
i=1

nX
j=1

fij j�i � ( j +� )j2�;

where the absolute value subscript indicates distances are measured modulo 2�. The mini-

mization problem on the right-hand side of (6.22) is the subject of section 6.4.1.4.

Notice that using the logarithm of the scale in the texture signatures implies that a scale

change by factor k results in a shift by bk = log k along the log-scale axis. A scale-invariant

texture distance measure is minbk EMD(x; f((b�j + bk;  j); uj)g). The optimal translation

problem in this case is

minbk
mX
i=1

nX
j=1

fij(jbsi � (b�j + bk)j+ j�i �  j j2�) = (6.23)

mX
i=1

nX
j=1

fij j�i �  j j2� +minbk
mX
i=1

nX
j=1

fij jbsi � (b�j + bk)j:

The L1 minimization problem on the right-hand side of (6.23) is solved in section 6.4.1.2.

Finally, the texture distance minbk;� EMD(x; f((b�j + bk;  j +� ); uj)g) is invariant to
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both texture scale and orientation. The associated optimal translation problem

minbk;� 
mX
i=1

nX
j=1

fij(jbsi � (b�j + bk)j+ j�i � ( j + � )j2�) = (6.24)

minbk
mX
i=1

nX
j=1

fij jbsi � (b�j + bk)j+min
� 

mX
i=1

nX
j=1

fij j�i � ( j +� )j2�

can be solved by solving the minimization problems on the right-hand side of (6.24) sepa-

rately. In general, of course, the separability of the L1 distance into a sum of component

distances means that we can solve the optimal translation problem under L1 in any number

of dimensions, where each dimension may have a di�erent wrap around period or no wrap

around at all.

6.4.1.1 Minimizing a Weighted Sum of Squared L2 Distances

If d is the L2-distance squared, then it is well-known that the unique optimal translation is

given by the centroid di�erence

t�L22
= a � b =

PN
k=1 ckak

c�
�
PN
k=1 ckbk

c�
:

This result is easily proven using standard calculus.

6.4.1.2 Minimizing a Weighted Sum of L1 Distances

In this section, we consider the minisum problem when d is the L1-distance. The minimiza-

tion problem is

min
p

nX
i=1

wijjp� pijj1 = min
p

nX
i=1

wi

KX
k=1

���p(k) � p(k)i
��� (6.25)

= min
p

KX
k=1

 
nX
i=1

wi

���p(k) � p(k)i ���
!

min
p

nX
i=1

wijjp� pijj1 =
KX
k=1

 
min
p(k)

nX
i=1

wi

���p(k) � p(k)i
���
!
;
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where p(k) and p
(k)
i are the kth components of p and pi, respectively.

5 Thus, a solution to

the problem in one dimension gives a solution to the problem in K dimensions by simply col-

lecting the optimal location for each of the one-dimensional problems into a K-dimensional

vector. We shall see that an optimal location for the one-dimensional problem in dimension k

is the (weighted) median of the values p
(k)
1 ; : : : ; p

(k)
n . A point p at which the minimum (6.25)

is achieved is thus called a coordinate-wise median of p1; : : : ; pn (with weights w1; : : : ; wn).

Now suppose p1 � p2 � � � � � pn are points along the real line, and we want to minimize

g(p) =
nX
i=1

wijp� pij:

Let p0 = �1 and pn+1 = +1. Then

g(p) =
lX
i=1

wi(p� pi) +
nX

i=l+1

wi(pi � p) for p 2 [pl; pl+1]; l = 0; : : : ; n:

Over the interval [pl; pl+1], g(p) is a�ne in p:

g(p) =

0
@ lX
i=1

wi �
nX

i=l+1

wi

1
A p+

0
@ nX
i=l+1

wipi �
lX

i=1

wipi

1
A for p 2 [pl; pl+1]:

If we let

ml =
lX

i=1

wi �
nX

i=l+1

wi (6.26)

denote the slope of g(p) over [pl; pl+1], then �w� = m0 < m1 < � � � < mn = w� (assuming

wi > 0 8i), and ml+1 = ml + 2wl+1. The function g(p) is a continuous piecewise linear

function with slope increasing from a negative value at �1 to a positive value at +1,

and as such it obviously has a minimum value at the point when its slope �rst becomes

nonnegative. Let

l� = min f l : ml � 0 g:

If ml� 6= 0, then the unique minimum value of g(p) occurs at pl� . Otherwise, ml� = 0 and

the minimum value of g(p) is achieved for p 2 [pl�; pl�+1]. See Figure 6.2. In the special

case of equal-weight points, the minimum value occurs at the ordinary median value of the

points. If wi � w, then it follows easily from (6.26) that ml = w(2l� n). If n is odd, then

l� = dn=2e, ml� > 0, and the unique minimum of g(p) occurs at the median point pdn=2e.

5In this section and the next, weights are denoted by wi instead of ck, the total number of points is

denoted by n instead of N , and the summation of weighted distances is over the variable i instead of k. The

points pi are the di�erences ak � bk .



6.4. THE OPTIMAL TRANSFORMATION PROBLEM 139

(a)

20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

p(1)

8

p(2)

4

p(3)

4

p(4)

2

p(5)

3

p(6)

3

p(7)

4

(51,570)

Minisum Problem: L1−Distance on the Line

p

g(
p)

(b)

20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

p(1)

8

p(2)

4

p(3)

4

p(4)

2

p(5)

3

p(6)

3

p(7)

8

(51,734) (61,734)

Minisum Problem: L1−Distance on the Line

p

g(
p)

Figure 6.2: The Minisum Problem on the Line with Unequal Weights. (a) p =
[27; 40; 51; 61; 71; 81; 92], w = [8; 4; 4; 2; 3; 3; 4]: l� = 3, ml� > 0, and there is a unique

minimum at p3 = 51. (b) p = [27; 40; 51; 61; 71; 81; 92], w = [8; 4; 4; 2; 3; 3; 8]: l� = 3,
ml� = 0, and the minimum occurs at every value in [p3; p4] = [51; 61].
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Figure 6.3: The Minisum Problem on the Line with Equal Weights. (a) p =

[27; 40; 51; 61; 71; 81; 92], w = [4; 4; 4; 4; 4; 4; 4]: l� = 4, ml� > 0, and there is a unique
minimum at the ordinary median p4 = 61. (b) p = [27; 40; 51; 71; 81; 92], w = [4; 4; 4; 4; 4; 4]:

l� = 3, ml� = 0, and the minimum occurs at every value in the interval [p3; p4] = [51; 71].

See Figure 6.3(a). If n is even, then l� = n=2, ml� = 0, and the minimum value of g(p) is

attained for every point in the interval [pn=2; p(n=2)+1]. See Figure 6.3(b).
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6.4.1.3 Minimizing a Weighted Sum of L2 Distances

The next minisum problem that we consider is when d is the L2-distance function:

min
p

nX
i=1

wijjp� pijj2 (6.27)

A point p at which this minimum is achieved is called a spatial median of the points p1; : : : ; pn

(with weights w1; : : : ; wn). The minimization problem (6.27) has a long history ([87]), and

has been referred to by many names, including the Weber problem, the Fermat problem,

the minisum problem, and the spatial median problem. In [87], Wesolowsky suggests the

Euclidean Minisum Problem.

A basic iteration procedure that solves (6.27) was proposed in 1937 by Weiszfeld ([84]).

Consider the objective function

g(p) =
nX
i=1

wijjp� pijj2:

If the points p1; : : : ; pn are not collinear, then g(p) is strictly convex and has a unique

minimum. If p1; : : : ; pn are collinear, then an optimal point must lie on the line through

the given points (if not, one could project the claimed optimal point onto the line, thereby

decreasing its distance to all the given points, to obtain a better point). In this case, the

algorithm given in section 6.4.1.2 for points on the real line can be used (the L2-distance

reduces to the absolute value in one dimension).

The objective function is di�erentiable everywhere except at the given points:

@g

@p
(p) =

nX
i=1

wi(p� pi)
jjp� pijj2

if p(k) 6= p1; : : : ; pn:

Setting the partial derivative to zero results in the equation

nX
i=1

wi(p� pi)
jjp� pijj2

= 0;

which cannot be solved explicitly for p. The Weiszfeld iteration replaces the p in the

numerator by the (k + 1)st iterate p(k+1) and the p in the denominator by the kth iterate

p(k), and solves for p(k+1):

p(k+1) =

8><
>:
P

n

i=1
wijjp

(k)�pijj
�1
2 piP

n

i=1
wijjp(k)�pijj

�1
2

if p(k) 6= p1; : : : ; pn

pi if p(k) = pi

:
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Here are some facts about this iteration (assuming the input points are not collinear).

� The iteration always converges. ([42])

� If no iterate p(k) is equal to one of the given points, then the iteration converges to

the global minimum location of g(p). ([42])

� The iteration can fail to converge to the global minimum location for a continuum of

starting values p(0) because some iterate p(k) becomes equal to a non-optimal given

point. ([7])

� If the optimal location is not at one of the given points, then convergence will be

linear. ([41])

� If the optimal location is at one of the given points, then convergence can be linear,

superlinear, or sublinear. ([41])

Since convergence to the global minimum location is not guaranteed, the iteration should

be run more than once with di�erent starting points.

It is conjectured in [7] that if the starting point is within the a�ne subspace P spanned

by the given points, then the Weiszfeld iteration is guaranteed to converge to the global

minimum location for all but a �nite number of such starting points. If this conjecture is

true, then the iteration will converge with high probability to the optimal location if one

chooses a random starting point in P . Note that P is the entire space Rd if the n�1 vectors
pn � p1; pn � p2; : : : ; pn � pn�1 span all of Rd. If the given points are random, this event

is very likely to occur if n � 1 � d. In regards to speeding up convergence, see [18] for an

accelerated Weiszfeld procedure.

6.4.1.4 Minimizing a Weighted Sum of Cyclic L1 Distances

In this section, we study the optimal translation problem on the real line when the feature

domain is circular. In other words, we assume the feature points are real numbers which

are de�ned only modulo T . Also, we assume the ground distance is the cyclic L1-distance

dL1;T (x; y) = min
k2Z
j(x+ kT )� yj:

If we identify feature values with arclengths on a circle of perimeter T , then dL1;T (x; y)

measures the smaller of the two arclengths that connect x to y along the circle. It is easy

to prove that 0 � dL1;T (x; y) � T=2. The intuition here is that a point should never

have to travel more than half the circle to arrive at another point. Suppose, for example,
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that features are angles in radians (T = 2�), x = �=4 = 45�, and y = 11�=6 = 330�.

Then dL1;T (x; y) = dL1;T (�=4; 11�=6) = 5�=12 = 75�, where the minimum is achieved

at k = 1. It should also be clear that dL1;T is cyclic with period T in both arguments:

dL1;T (x+ T; y) = dL1;T (x; y+ T ) = dL1;T (x; y).

In order to apply the FT iteration for translation with the cyclic L1-distance, we need

to minimize

WORK(F;x;y� t) =
mX
i=1

nX
j=1

fijdL1;T (xi; yj + t):

over t. As is the L1 case in section 6.4.1.2, the multidimensional case in RK can be solved

by solving K one-dimensional problems.6 Therefore, consider the minimization problem

min
t2R

WORK(F;x;y� t) = min
t2R

mX
i=1

nX
j=1

fij min
k2Z
j(xi + kT )� (yj + t)j (6.28)

given a �xed 
ow F . Since dL1;T is cyclic with period T , the WORK function is cyclic in t

with period T : WORK(F;x;y�(t+T )) = WORK(F;x;y� t). Therefore, for every feasible

ow F there will be a WORK minimizing translation t 2 [0; T ). We can also assume that

xi; yj 2 [0; T ) since these numbers need only be de�ned up to a multiple of T when using

ground distance dL1;T .

The inner minimization of (6.28) can be trivially rewritten as

min
k2Z
j(xi + kT )� (yj + t)j = min

k2Z
jkT � (yj + t� xi)j:

If we restrict xi; yj ; t 2 [0; T ), then (yj + t�xi) 2 (�T; 2T ). The above minimum will never

be achieved outside the set f �1; 0; 1; 2 g, so

min
k2Z
j(xi + kT )� (yj + t)j = min

k2f �1;0;1;2 g
j(xi + kT )� (yj + t)j for xi; yj; t 2 [0; T ):

If we let

h(t) = h(F;x;y; t) =
mX
i=1

nX
j=1

fij min
k2f �1;0;1;2 g

jkT � (yj + t � xi)j; (6.29)

then we have argued that

min
t2R

WORK(F;x;y� t) = min
t2[0;T )

h(t) if xi; yj 2 [0; T ):

We now consider the function h(t) in more detail.

6The period can be di�erent in each dimension.
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In order to better understand h(t), we can partition the real line into intervals over

which argmink2f �1;0;1;2 g jkT � (yj + t � xi)j is constant. If we let zij = xi � yj , then

jkT � (yj + t� xi)j = jkT + zij � tj, and

arg min
k2f �1;0;1;2 g

jkT + zij � tj =

8>>>>><
>>>>>:

�1 if �1 � t < �1
2
T + zij

0 if �1
2T + zij � t < 1

2T + zij

1 if 1
2
T + zij � t < 3

2
T + zij

2 if 3
2T + zij � t < +1

:

The plan now is to divide each of the above intervals into two parts: one in which kT+zij < t,

and the other in which kT+zij � t. This will allow us to express mink2f �1;0;1;2 g jkT+zij�tj
as a linear function in t over these subintervals (i.e. we can eliminate the min operator and

the absolute value function). Toward this end, de�ne the intervals

Iijkl = [(k + l
2)T + zij ; (k+

l+1
2 )T + zij) i = 1; : : : ; m; j = 1; : : : ; n;

k = �1; 0; 1; 2; l= �1; 0;
(k; l) 6= (�1;�1); (k; l) 6= (2; 0);

Iij(�1)(�1) = [�1;�T + zij) i = 1; : : : ; m; j = 1; : : : ; n; and

Iij20 = [2T + zij ;+1) i = 1; : : : ; m; j = 1; : : : ; n:

Here

Iij(�1)(�1) [ Iij(�1)0 = [�1;�1
2
T + zij ];

Iijk(�1) [ Iijk0 = [(k� 1

2
)T + zij ; (k+

1

2
)T + zij) k = 0; 1; and

Iij2(�1) [ Iij20 = [
3

2
T + zij ;+1);

so that argmink2f �1;0;1;2 g jkT + zij � tj = k� for t 2 Iij(k�)(�1) [ Iij(k�)0. Furthermore,

min
k2f �1;0;1;2 g

jkT + zij � tj =

8<
: k�T + zij � t if t 2 Iij(k�)(�1)
t� k�T � zij if t 2 Iij(k�)0

:

The above notation will now be used to rewrite h(t) in a form that makes its structure more

apparent.

We can get rid of the absolute value and minimization in (6.29) with the following
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algebraic manipulations:

h(t) =
mX
i=1

nX
j=1

fij min
k2f �1;0;1;2 g

jkT + zij � tj

=
mX
i=1

nX
j=1

fij

2X
k=�1

0X
l=�1

[t 2 Iijkl]jkT + zij � tj

=
mX
i=1

nX
j=1

fij

2X
k=�1

([t 2 Iijk(�1)](kT + zij � t) + [t 2 Iijk0](t� kT � zij))

h(t) =

0
@ mX
i=1

nX
j=1

fij

2X
k=�1

([t 2 Iijk0]� [t 2 Iijk(�1)])

1
A t+ (6.30)

0
@ mX
i=1

nX
j=1

fij

2X
k=�1

([t 2 Iijk(�1)]� [t 2 Iijk0])(kT + zij)

1
A :

If we let eijkl = (k + l
2)T + zij , then the breakpoint set

E = f eijkl : i 2 [1::m]; j 2 [1::n]; k 2 [�1::2]; l 2 [�1::0]; (k; l) 6= (�1;�1) g

divides the real line into intervals over which the coe�cient of t and the coe�cient of 1 = t0

in (6.30) are constant. On each such interval, the equation of h(t) is that of a line. Therefore,

h(t) is a piecewise linear function of t.

The minimum of h(t) over [0; T ) can be computed by visiting the breakpoints eijkl in

sorted order, updating the line equation for h(t) as we go along. The line function for h(t)

at t = �1 is given by

h(�1) =

0
@� mX

i=1

nX
j=1

fij

1
A t+

0
@�T mX

i=1

nX
j=1

fij +
mX
i=1

nX
j=1

fijzij

1
A :

This follows from (6.30) and the fact that �1 2 Iij(�1)(�1). Thus the sweep algorithm sets

the initial slope m to m0 and the initial intercept b to b0, where

m0 = �
mX
i=1

nX
j=1

fij and b0 = �T
mX
i=1

nX
j=1

fij +
mX
i=1

nX
j=1

fijzij :

There are two types of elementary steps over a breakpoint t = eijkl. In the case l = �1,
the sweep line moves from Iij(k�1)0 into Iijk(�1). By subtracting the Iij(k�1)0 terms and

adding in the Iijk(�1) terms in (6.30), we see that the updates to the slope and intercept
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when l = �1 are

m  m� fij + (�fij) = m� 2fij and (6.31)

b  b� (�fij((k� 1)T + zij)) + fij(kT + zij)

= b+ fij((2k � 1)T + 2zij): (6.32)

In the case l = 0, the sweep line moves from Iijk(�1) into Iijk0. From (6.30), we see that

the updates to the slope and intercept when l = 0 are

m  m� (�fij) + fij = m+ 2fij and (6.33)

b  b� fij(kT + zij) + (�fij(kT + zij))

= b� 2fij(kT + zij): (6.34)

The sweep algorithm maintains the minimum value seen so far as it proceeds from

t = �1 to t = 1. The value of the function h(t) is checked at any breakpoint 0 � t =

eijkl < T at which the slope of the line equation for h(t) changes from negative to positive.

The locations of such sign changes in slope are local minimum locations for h(t) in [0; T ).

Computing h at a local minimum location t = eijkl is done via h(eijkl) = meijkl + b, where

m and b are the slope and intercept after the update for passing eijkl. Since we want to

compute the minimum of h(t) over t 2 [0; T ), we must also check the value of h(0) when

we have the formula for h(t) over the interval that contains zero. Finally, we can stop the

sweep once we reach a breakpoint eijkl � T .

One �nal note to make is that at most m + n � 1 of the mn values fij , i = 1; : : : ; m,

j = 1; : : : ; n, are nonzero if F = (fij) is an optimal vertex 
ow, as is returned by the

transportation simplex algorithm ([32]). There is no reason to stop the sweep at eijkl for

which fij = 0 since the values of m and b do not change at these points (see the update

formulae (6.31){(6.34)). This is obvious since the summation for h(t) in (6.29) is the same

with or without the (i; j)th term when fij = 0. The desired minimum can be computed by

sweeping over the set

E0 = f eijkl : fij 6= 0; i 2 [1::m]; j 2 [1::n]; k 2 [�1::2]; l 2 [�1::0]; (k; l) 6= (�1;�1) g

instead of the set E. Note that jEj = 7mn, while jE0j � 7(m + n � 1). The sorting of

the points in E0 takes time O((m+ n) log(m + n)), and then the sweep over the points in

E0 takes time O(m + n) since only a constant amount of work needs to be done at each

elementary step.



6.4. THE OPTIMAL TRANSFORMATION PROBLEM 147

6.4.2 Euclidean and Similarity Transformations

The optimal transformation problem for G = E , the group of Euclidean transformations,

and d = L22 is

min
(R;t)2E

NX
k=1

ckjjak � (Rbk + t)jj22;

where R is a rotation matrix. For a �xed R, the optimal translation must be t�(R) = a�Rb.
Thus, the optimal Euclidean problem reduces to

min
R

NX
k=1

jjbak �Rbbkjj22 = min
R
jj bA� R bBjj2F; (6.35)

where the columns of bA and bB are the vectors bak = pck(ak � a) and bbk = pck(bk � b), and
jj � jjF denotes the Frobenius matrix norm ([25]). Here we have also used the assumption

that the ck are nonnegative. The best rotation problem (6.35) is solved completely in [81].

The minimization problem (6.35) is easier to solve if we only require that R is orthogonal

(i.e. we drop the requirement det(R) = 1). Under this assumption, (6.35) is known as the

orthogonal Procrustes problem ([25]). If U�V T is an SVD of bA bBT , then the minimum value

is jj bAjj2F + jj bBjj2F � 2tr(�), and is achieved at R = UV T .

The optimal transformation problem for G = S, the set of similarity transformations,

allows for an additional scaling factor:

min
(s;R;t)2S

NX
k=1

ckjjak � (sRbk + t)jj22:

The special case of this problem in which ck � 1=N is solved in [81] using the solution

to (6.35). It is not di�cult to repeat the analysis for general ck and solve the optimal

similarity problem as we have posed it, but we omit the details.

6.4.3 Linear and A�ne Transformations

Finally, we consider the optimal transformation problem for linear and a�ne transforma-

tions with the L2-distance squared. When G = L, the set of linear transformations, the
optimal transformation problem becomes

min
L2L

NX
k=1

ckjjak � Lbkjj22:
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Assuming that ck � 0, an equivalent formulation is

min
L2L

NX
k=1

jjbak � Lbbkjj22 = min
L2L
jj bA� L bBjj2F;

where the columns of the matrices bA and bB are the vectors bak = pckak and bbk = pckbk.
An optimal linear transformation is L� = bA bBy, where bBy is the pseudo-inverse ([25]) of bB.
In the case G = A, the set of a�ne transformations, the optimal transformation problem

allows for an additional translation:

min
(L;t)2A

NX
k=1

ckjjak � (Lbk + t)jj22:

The optimal translation for a �xed L is t�(L) = a � Lb. Hence, with eak = ak � a andebk = bk � b,

min
(L;t)2A

NX
k=1

ckjjak � (Lbk + t)jj22 = min
L2L

NX
k=1

ckjjeak � Lebkjj22;
and the a�ne problem reduces to the linear problem.

6.5 Allowing Weight-Altering Transformations

When a transformation g changes the weights of the distributions that it acts upon, in

general F(x;y) 6= F(x; g(y)). This is because the constraints that de�ne the feasible 
ows
between two distributions depend on the weights in the distributions. Recall that there

were two steps in proving that WORK sequence is decreasing when distribution weights

are unchanged: (1) F (k+1) is a better 
ow for g(k+1) than the 
ow F (k), and (2) g(k+1) is

a better transformation for F (k) than the transformation g(k). The inequality (6.14) which

expresses step (2) still holds when distribution weights are not �xed. This is because g(k+1)

is optimal for 
ow F (k) over all allowable transformations, and g(k) is one of the allowable

transformations. The inequality (6.13) which expresses step (1), however, may not hold

when distribution weights are changed. The 
ow F (k+1) is optimal for transformation

g(k+1) over all 
ows in F(x; g(k+1)(y)), but 
ow F (k) may not be in the set F(x; g(k+1)(y))
{ the 
ow F (k) was chosen from the set F(x; g(k)(y)).

It is easy to see that inequality (6.13) will hold if

F(x; g(k+1)(y)) � F(x; g(k)(y)); (6.36)

for then F (k) 2 F(x; g(k)(y)) implies F (k) 2 F(x; g(k+1)(y)). Thus when we have an
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\increasing" sequence of feasible regions as speci�ed by condition (6.36), we are guaranteed

to get a decreasing WORK sequence. This, however, is not the end of the story because we

are really after a decreasing EMD sequence. Remember that EMD(k) is equal to WORK(k)

divided by the smaller of the total weights of x and g(k)(y), and the weight g(k)(y) is no

longer constant over k.

The problem outlined above is that the WORK and the EMD sequences are not related

by a constant multiplicative factor. We can get around this problem by a change of variables

that moves the minimum total weight normalization factor into the de�nition of the 
ow.

An example of such a change of variables has already been given in section 4.5 on scale

estimation, where the change of variables is bfij = fij=c and c is the total weight of the

lighter of the two distributions being compared (in section 4.5, we used hij instead of bfij as
the new variables). This change of variables yielded a collection of transportation problems

(one for each c) with increasing feasible regions F((X;w=c);y) as c is decreased. It followed
that E(c), the EMD between x and the transformed y as a function of the transformation

parameter c, decreases as c decreases. In this case, the distribution transformations are

transformations that scale down all the weights in the distribution by a factor c and leave

the distribution points unchanged.

The same change of variables allows the FT iteration to be applied with some sets of

transformations which alter both the weights and the points of distributions. Such trans-

formations may be needed, for example, if a distribution point contains the position of an

image region with some property and the corresponding weight is the region area; applying

a similarity transformation with non-unit scale to region positions causes a change in region

areas. Next we show how to apply the FT iteration in this case, where a distribution point

is (L; a; b; x; y) in a combined CIE-Lab color space and image position space. The feature

point (L; a; b; x; y) with weight w is meant to indicate that there is a region in the image

plane with area w that has centroid (x; y) and color (L; a; b).

We denote the distribution summaries of the image and the pattern as

x = f (x1; w1); : : : ; (xm; wm) g = f ((a1; p1); w1); : : : ; ((am; pm); wm) g; and

y = f (y1; u1); : : : ; (yn; un) g = f ((b1; q1); u1); : : : ; ((bn; qn); un) g;

respectively, where xi = (ai; pi) divides feature point xi into its color components ai and

position components pi, and yj = (bj; qj) divides feature point yj into its color components

bj and position components qj . We assume that the ground distance dcp in the combined
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color-position space is given by

dcp(x; y) = dcp((a; p); (b; q)) = dL2(a; b) + �dL22
(p; q);

where the parameter � trades o� between distance in color space and distance in position

space.7 We also assume that the weight normalization w� = u� = 1. Finally, we denote

similarity transformations by g = (s; �; t). The action of g on distribution y is de�ned by

g((bj; qj); uj) = ((bj ; sR�qj + t); �s2uj);

where � is a constant factor relating the scale s in positional units to the corresponding

scale in area units (which need not be exactly the square of the position units since we have

assumed u� = 1). In the analysis that follows, we de�ne the area scale c = �s2.

Our EMD under similarity transformation problem is

EMDS(x;y) = min
g2S

min
F2F(x;g(y))

Pm
i=1

Pn
j=1 fij(dL2(ai; bj) + �dL22

(pi; g(qj)))

c
:

If we let bfij = fij=c, then the problem becomes

EMDS(x;y) = min
g2S

minbF2bF(x;g(y))
mX
i=1

nX
j=1

bfij(dL2(ai; bj) + �dL22
(pi; g(qj)));

where the feasible region bF(x; g(y)) = F((X;w=c);y) as de�ned in section 4.5 by condi-

tions (4.17), (4.18), and (4.19).

The minimization problems to be solved by the FT iteration are

bF (k) = arg

0
@ minbF2 bF(x;g(k)(y))

mX
i=1

nX
j=1

bfij(dL2(ai; bj) + �dL22
(pi; g

(k)(qj)))

1
A ; (6.37)

g(k+1) = arg

0
@min
g2S

mX
i=1

nX
j=1

bf (k)ij (dL2(ai; bj) + �dL22
(pi; g(qj)))

1
A : (6.38)

Since g does not change the color component of a distribution point, we can compute g(k+1)

7If colors are represented in CIE-Lab space, then the Euclidean distance is the natural choice for a

distance in color space. The analysis that follows, however, does not require the distance in color space to

be L2.
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de�ned in equation (6.38) by solving

g(k+1) = arg

0
@min
g2S

mX
i=1

nX
j=1

bf (k)ij dL22
(pi; g(qj))

1
A : (6.39)

Section 6.4.2 discusses the solution to this optimal similarity transformation problem. Solv-

ing for bF (k) in (6.37) is still a transportation problem.

If we de�ne

EMD(k) =
mX
i=1

nX
j=1

bf (k)ij (dL2(ai; bj) + �dL22
(pi; g

(k)(qj)));

then, as previously argued, we will get a decreasing EMD sequence if we can guarantee

bF(x; g(k+1)(y)) � bF(x; g(k)(y)) 8k: (6.40)

If g(k) = (s(k); �(k); t(k)), then (6.40) will hold if s(k+1) � s(k) 8k. So the FT iteration will

yield a decreasing EMD sequence if we only allow scale to decrease as the iteration proceeds.

For the speci�c case of allowing a similarity transformation, this can be accomplished as

follows. In computing g(k+1), �rst perform the minimization over the set of similarity

transformations as in (6.39) to get a similarity transformation (s(k+1); �(k+1); t(k+1)). If

s(k+1) � s(k), then set g(k+1) = (s(k+1); �(k+1); t(k+1)). Otherwise, set g(k+1) to the best

Euclidean transformation with �xed scale s(k) : g(k+1) = (s(k); �(k+1); t(k+1)) where

(�(k+1); t(k+1)) = arg

0
@min
g2E

mX
i=1

nX
j=1

bf (k)ij dL22
(pi; g(s

(k)qj))

1
A :

This optimal Euclidean transformation problem is discussed in section 6.4.2.

6.6 Some Speci�c Cases

There are some speci�c cases of transformation set, ground distance function, and feature

space that are worth mentioning in our discussion of the EMD under transformation sets.
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6.6.1 The Equal-Weight EMD under Translation with d = L2
2

Recall from section 6.4.1.1 that if d is the L2-distance squared, then the unique optimal

translation for a �xed 
ow is given by the centroid di�erence

t�L22
= a � b =

PN
k=1 ckak

c�
�
PN
k=1 ckbk

c�
;

where the ak, bk, and ck are de�ned by the distribution points and the �xed 
ow as

in (6.17), (6.18), and (6.19). In terms of the original points and 
ow vector,

t�
L22

=

Pm
i=1

Pn
j=1 fijxiPm

i=1

Pn
j=1 fij

�
Pm
i=1

Pn
j=1 fijyjPm

i=1

Pn
j=1 fij

: (6.41)

If x and y are equal-weight distributions (and 
 = 1), then
Pm
i=1 fij = uj ,

Pn
j=1 fij = wi,

and
Pm
i=1

Pn
j=1 fij = w� = u� for any feasible 
ow F = (fij). Using these facts in

equation (6.41) shows that the best translation for any feasible 
ow F = (fij) is t
�
L22

= x�y.
Therefore, the FT iteration described in section 6.3 is not needed in the equal-weight case

to compute EMDT ;L22
(x;y). Instead, simply translate y by x�y (this lines up the centroids

of x and y) to get by and compute EMD(x; by).

6.6.2 The Equal-Weight EMD under Translation on the Real Line

In this section, we assume that the ground distance is the absolute value between points on

the real line (d = L1). Recall the de�nition in section 4.3.2 of the CDF 
ow FCDF between

two equal-weight distributions x = (X;w) and y = (Y; u) on the real line:

fCDFij = j[Wi�1;Wi] \ [Uj�1; Uj ]j;

where
Wk = W (xk) =

Pk
i=1wi and

Ul = U(yl) =
Pl
j=1 uj :

Here the points and corresponding weights in the distributions are numbered according to

increasing position along the real line: x1 < � � � < xm and y1 < � � � < yn. In Theorem 5,

we showed that the CDF 
ow FCDF is an optimal 
ow between x and y if d = L1. Now

denote the translation of y by t as

y� t = f (y1 + t; u1); (y2 + t; u2); : : : ; (yn + t; un) g:
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y1 x1 x2 x3 x4y2 y3

fCDF11

fCDF21

fCDF31

0
y1x1 x2 x3 x4y2 y3

fCDF11

fCDF21

fCDF31

(a) (b)

Figure 6.4: The Equal-Weight EMD under Translation in 1D with d = L1. The same 
ow

FCDF is optimal for (a) x and y, and (b) x and y� t. We re-use the labels yj in (b) instead
of using yj + t in order to make all the labels �t in the given space.

Since the sorted order of the points of y� t is the same as the sorted order of the points of
y, and the weights of y � t are the same as the weights of y, the CDF 
ow between x and

y is the same as the CDF 
ow between x and y � t. By Theorem 5, this CDF 
ow is also

an optimal 
ow between x and y � t. See Figure 6.4 for an example.

Now for �xed t, the optimal transformation step (6.11) in the FT iteration is to compute

�(t) = min
F2F(x;y)

WORK(FCDF;x;y� t):

Since the CDF 
ow is optimal for every t 2 R,

�(t) =
mX
i=1

nX
j=1

fCDFij jxi � (yj + t)j:

Rewriting the 2D index as a 1D index, we have

�(t) =
NX
k=1

fCDFk jzk � tj:

Functions of this form were studied extensively in section 6.4.1.2 where we gave the solution

to this \minisum problem" on the line. This solution gives us the EMD under translation
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since

EMDT (x;y) =
minF2F(x;y);t2RWORK(FCDF;x;y� t)

min(w�; u�)
=

mint2R �(t)

min(w�; u�)
:

The function �(t) is piecewise linear with monotonic slope increasing from a negative value

at t = �1 to a positive value at t = +1 (see Figures 6.2 and 6.3). Thus, �(t) is convex

and has its minimum at a point t at which the slope �rst becomes nonnegative.

Once the m points in x and the n points in y have been sorted, the CDF 
ow FCDF can

be computed in �(m+n) time using the second algorithm labelled EMD1 given on page 78

in section 4.3.2. The result of this algorithm is an array of �(m + n) records containing

a pair (i; j) and the 
ow value fij . Any pair (i; j) not appearing in this array has 
ow

value fij = 0. To compute the optimal translation (and the actual value of the EMD under

translation) using the results in section 6.4.1.2, we need to �nd the �rst index k at which

the slope mk ,

m0 = �
NX
k=1

fCDFk = �w� = �u�;

mk+1 = mk + 2fCDFk+1 ;

is greater than or equal to zero. This can be done by sorting the returned 
ow pairs (i; j) by

increasing 1D index k in time �((m+n) log(m+n)), and then tracking the slope mk while

marching through the previously sorted 
ow array in time O(m + n) (the array traversal

can stop once it reaches k such that mk � 0). This algorithm to compute the EMD under

translation between equal-weight distributions on the line requires �((m + n) log(m+ n))

time.

6.6.3 The Equal-Weight EMD under G with m = n = 2

In this section, we consider the problem of matching equal-weight distributions x and y with

two points each (m = n = 2) under a general transformation set G, where g 2 G changes

only the points in a distribution. Without loss of generality, we assume the unit-weight

normalizations w� = u� = 1.

The conditions which de�ne the feasible 
ow set F(x;y) = F(x; g(y)) are f11 � 0,

f12 � 0, f21 � 0, f22 � 0, and

f11 + f12 = w1; (6.42)

f21 + f22 = w2 = 1� w1; (6.43)
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f11 + f21 = u1; (6.44)

f12 + f22 = u2 = 1� u1: (6.45)

Using (6.42){(6.45), we can write all 
ow variables in terms of f11:

f12 = w1 � f11
f21 = u1 � f11; and

f22 = 1� w1 � f21 = 1� (w1 + u1) + f11:

9>>>=
>>>;

(6.46)

From (6.46), we see that

max(0; (w1+ u1)� 1) � f11 � min(u1; w1) (6.47)

is a necessary condition for F = (fij) to be feasible since 
ow variables must be nonnegative.

Also, every f11 which satis�es (6.47) de�nes a feasible 
ow F according to equations (6.46).

Thus, we have argued that the set of feasible 
ows F(x;y) is also de�ned by conditions (6.46)
and (6.47).8

Using (6.46), we may write the work done by F to match x and y as

WORK(F;x;y) = f11d11 + f12d12 + f21d21 + f22d22

= ((d11+ d22)� (d12 + d21))f11

+ (w1d12 + u1d21 + (1� (w1 + u1))d22):

When we allow a transformation g 2 G, the point distances dij become functions dij(g) of
g, and we have

WORK(F;x; g(y)) = ((d11(g) + d22(g))� (d12(g) + d21(g)))f11 (6.48)

+ (w1d12(g) + u1d21(g) + (1� (w1 + u1))d22(g)):

Since w� = u� = 1,

EMDG(x;y) = min
F2F(x;y);g2G

WORK(F;x; g(y)): (6.49)

From (6.48), we see that the minimum in (6.49) must be achieved at one of two feasible

8Note that F(x;y) de�ned by (6.47) is nonempty. Since distribution weights are nonnegative, we have
min(u1; w1) � 0. Without loss of generality, suppose w1 � u1. Then min(u1; w1)�((w1+u1)�1) = 1�u1 � 0

(since u� = 1, u1 � 0 implies u1 � 1), and hence min(u1; w1) � max(0; (w1+ u1)� 1). The case u1 � w1 is

similar.
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ows F 1 or F 2. More precisely, an optimal F for a given g is

f11 =

8<
: f111 = min(u1; w1) if d11(g) + d22(g) < d12(g) + d21(g)

f211 = max(0; (u1+ w1)� 1) if d11(g) + d22(g) � d12(g) + d21(g)
;

where f12, f21, and f22 follow from (6.46).

Since we know that the minimum in (6.49) is achieved at one of the 
ows F 1 or F 2

given above, we can compute

EMDG(x;y) = min

�
min
g2G

WORK(F 1;x; g(y));min
g2G

WORK(F 2;x; g(y))

�

by solving an optimal transformation problem for each of F 1 and F 2.

6.7 Global Convergence in F � G?

This section is devoted to the following question: Under what conditions does the FT it-

eration converge to the global minimum of WORK(F;x; g(y)) : F(x;y) � G �! R�0?

There are many parameters here, including (1) the transformation set G, (2) the ground
distance d, (3) the dimension of the underlying points, (4) whether or not x and y are

equal-weight distributions, and (5) the distributions x and y themselves. Here we shall

only consider transformations which modify the distribution locations but not their corre-

sponding weights.

In section 6.7.1, we consider the problem for unequal-weight distributions x and y. We

call this the \partial matching" case because some of the weight in the heavier distribution

will be unmatched. In di�erent regions of G, di�erent parts of the heavier distribution may

be used in an optimal 
ow, and this makes it impossible to prove a guarantee of global

convergence.

In section 6.7.2, we argue that the FT iteration is guaranteed to converge to the global

minimum of WORK(F;x; g(y)) if either (1) there is a transformation g� which is the unique

optimal transformation for every feasible 
ow, or (2) there is a feasible 
ow F � which is

the unique optimal 
ow for every transformation. These may seem like highly constrained

situations, but we have already encountered an example of (1), namely the EMD under

translation between equal-weight distributions with ground distance d = L22. We also

discuss the e�ect of removing the uniqueness requirement from (1) and (2).

In section 6.7.3, we consider the case of matching a distribution to a translated version

of itself. The EMD under translation is obviously zero in this perfect matching case. We

brie
y describe experiments which show that in practice the FT iteration converges to the
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global minimum of zero.

In section 6.7.4, we demonstrate that there can be transformations which are locally

but not globally optimal even for equal-weight comparisons. We give an example of equal-

weight distributions in the plane with two points each (m = n = 2) for which there are

local minima in F � T for the L2 and L1 ground distances. We also show that the WORK

function with the L22 distance can have local minima if G is the group of rotations.

If there are local minima in F � G, then it is hard to have a guarantee of convergence

to the global minimum. If there is a local minimum at (F 0; g0), then g0 is locally optimal

for F 0, and F 0 is locally optimal for g0. But holding g = g0 �xed yields a WORK function

which is linear in F , so a locally optimal 
ow for g0 must be a globally optimal 
ow for

g0. In many cases there are no local minima of the WORK function in g when F is held

�xed (e.g. when G = T , d = Lp), so a locally optimal transformation for F 0 is a globally

optimal transformation for F 0. We have already seen that the FT iteration gets stuck at

(F; g) when F and g are mutually optimal for each other.

6.7.1 Partial Matching

When one distribution is heavier than the other, some of the mass in the heavier distribution

is unmatched in a feasible 
ow. In di�erent regions of G, di�erent parts of the heavier

distribution may be used in an optimal 
ow. This fact allows one to develop examples that

possess local minima.

Imagine a distribution x composed of two spatially separated sub-distributions bx and ex
which are equal-weight, say 1

2w� each. Now consider matching x to a distribution y with

weight u� = 1
2w�. Of all the transformations g which place g(y) in the bx part of the point

space, there will be an optimal transformation bg�. If the sub-distributions bx and ex are

separated enough, the corresponding 
ows will not involve any mass from ex. Similarly, of
all the transformations g which place g(y) in the ex part of the point space, there will be an

optimal transformation eg�. Assuming that bg�(y) does not match bx equally as well as eg�(y)
matches ex, one of bg� and eg� is only a locally optimal transformation. Figures 6.5 and 6.6

show examples in 1D and 2D, respectively.

We can also create examples in which there are as many local minima as we like if we

allow the ratio u�=w� to be arbitrarily small. If x is L well-separated copies y � tl of y,
then EMD(x;y � tl) = 0 for l = 1; : : : ; L. We can produce � L � 1 only locally optimal

translations by slightly perturbing the points in each copy of y. In general, there may be

no overlap in the mass of the heavier distribution used to match the mass in the lighter

distribution in di�erent parts of the transformation space.
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Figure 6.5: A Local Minimum in a 1D Partial Matching Case. (a) Distributions over the
real line x and y are shown on the bottom line in blue and red, respectively. Translating

y by t1 = �6 gives EMD(x;y � t1) = :6(0) + :1(3) + :3(1) = :6, while translating y by
t2 = 7 gives EMD(x;y � t2) = :2(2) + :5(1) + :3(1) = 1:2. The translation t1 yields the
global minimum, while the translation t2 yields a local minimum as one can see from (b)

the graph of EMD(x;y� t) v. t.
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Figure 6.6: A Local Minimum in a 2D Partial Matching Case. (a) Distributions over the

plane x and y are shown in blue and red, respectively. Translating y by t1 = [�3 4]T

gives EMD(x;y � t1) = :5(0) + :1(2) + :4(2) = 1:0, while translating y by t2 = [3 4]T

gives EMD(x;y� t2) = :5(0) + :3(
p
2) + :2(2)

:
= :824. The translation t2 yields the global

minimum, while the translation t1 yields a local minimum as one can see from (b) the graph

of EMD(x;y� t) v. t.
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6.7.2 One Optimal Flow or Transformation

If g� is the unique optimal transformation for every feasible 
ow, then the WORK sequence

converges to the global minimum work value in only a couple of iterations:

g(0) �! F (0) �! g(1) = g� �! F (1) �! g(2) = g� �! F (2);

where WORK(F (1);x; g(1)(y)) = WORK(F (1);x; g(2)(y)) = WORK(F (2);x; g(2)(y)) is the

global minimum. We have already encountered such a case. For equal-weight distributions

with G = T and d = L22, t
� = �x� �y is the unique optimal translation for every feasible 
ow.

If there is a unique optimal 
ow F � for every transformation, then the WORK sequence

also converges to the global minimum work value in only a couple of iterations:

g(0) �! F (0) = F � �! g(1) �! F (1) = F � �! g(2) �! F (2) = F �;

where WORK(F (1);x; g(1)(y)) = WORK(F (1);x; g(2)(y)) = WORK(F (2);x; g(2)(y)) is the

global minimum. We have seen a case which comes close to meeting this requirement. For

equal-weight distributions on the real line with G = T and d = L1, the CDF 
ow FCDF

is optimal for every t 2 T , although it is not necessarily the unique optimal 
ow for every

t 2 T . We have been unable to rule out (even in this speci�c case) the possibility that

� bF and F � are both optimal for some g(k) = bg,
� bF is returned by the transportation problem solver instead of F �,

� bg is optimal for F (k) = bF ,
� bg is returned by an optimal transformation solver as optimal for F (k), and

� ( bF; bg) is not a globally optimal (
ow,transformation) pair.

In this case, the FT iteration converges to ( bF; bg) which is not globally optimal. We have

also been unable to rule out the analogous possibility in the case when one transformation

g� is optimal for for every 
ow, but g� is not the unique optimal transformation for every


ow.

Now suppose that F � is an optimal 
ow for every transformation. If the FT iteration

ever reaches a transformation g(k) for which F � is the unique optimal 
ow, then the iteration

will converge to the global minimum work value. Here we are guaranteed that F (k) = F �,

and we argued in section 6.3.2 that the FT iteration converges to the global minimum

if the 
ow sequence ever reaches a globally optimal 
ow. Similarly, if g� is an optimal
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transformation for every 
ow, then the FT iteration converges to the global minimum if it

ever reaches a 
ow F (k) for which g� is the unique optimal transformation.

6.7.3 A Perfect Match under Translation

It is clear that EMDT (y;y��y) = 0, where the translation that best aligns y and y��y
is t� = ��y. Is the FT iteration guaranteed to converge to the global minimum in this

perfect matching case? We begin exploring this question by considering the EMD between

y and y��y without allowing a translation.

Theorem 13 The EMD between a distribution and a translation of the distribution is

EMD(y;y��y) =

8<
: jj�yjjp if d = Lp (p � 1), and

jj�yjj22 if d = L22
:

Proof. The 
ow F ID de�ned by f IDij = �ijuj , where �ij = 1 if i = j and �ij = 0 if i 6= j,

gives normalized WORK values

WORK(F ID;y;y��y)

u�
=

8<
: jj�yjjp if d = Lp (p � 1), and

jj�yjj22 if d = L22
:

Since the EMD is the normalized WORK value for the optimal 
ow, we have

EMD(y;y��y) �

8<
: jj�yjjp if d = Lp (p � 1), and

jj�yjj22 if d = L22
: (6.50)

Is there a feasible 
ow which requires less work than the size of �y for either ground

distance? The answer is \no". By the centroid lower bound theorems 6 and 7 (and the fact

that y ��y = y+ �y), we know that

EMD(y;y��y) �

8<
: jj�yjjp if d = Lp (p � 1), and

jj�yjj22 if d = L22
: (6.51)

The result follows from the opposite inequalities (6.50) and (6.51).

It is somewhat surprising that no matter how small or large the shift �y, there is no better


ow than matching a point to its translate.

If two points yk and yl have equal weights uk = ul � �, then F ID will not be the unique

optimal 
ow between y and y��y if �y = yl � yk and d = Lp. In this case, the following
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slight modi�cation bF of F ID is also an optimal feasible 
ow:

bfij =
8>>><
>>>:
ui if i = j, i 6= k, i 6= l,

uk = ul � � if (i; j) = (k; l) or (i; j) = (l; k), and

0 otherwise:

When d = Lp and �y = yl � yk , we have

dkk = d(yk; yk + �y) = jj�yjjp;
dll = d(yl; yl +�y) = jj�yjjp;
dkl = d(yk; yl +�y) = 2jj�yjjp; and

dlk = d(yl; yk +�y) = 0:

In order to match the mass at yk and yl, the 
ow F ID spends an amount of work equal to

�dkk + �dll = 2jj�yjjp�, while the 
ow bF spends the same amount of work �dkl + �dlk =

2jj�yjjp� in a di�erent way.

If we replace �y by �y + t, then we see that F ID is an optimal 
ow between y and

(y��y)� t = y� (�y+ t) for every translation t. Global convergence of the FT iteration

is guaranteed when F ID is the unique optimal 
ow for every t (see section 6.7.2). From

the above discussion, however, we know that F ID will not be the unique optimal 
ow for

t = (yl � yk) � �y if uk = ul. On the other hand, F ID is optimal for every t, so it is

potentially returned as F (k) for every translation iterate t(k). F ID might be returned even

when it is not the unique optimal 
ow for t(k). Of course, once the FT iteration reaches a


ow iterate F (k) = F ID, the corresponding WORK sequence immediately converges to the

global minimum WORK of zero.

The transportation simplex algorithm used to compute F (k) is an iterative algorithm.

There are a few common rules for computing an initial feasible solution to the transportation

problem, including the northwest corner rule, Vogel's method, and Russell's method ([32]).

Applying the northwest corner rule to the transportation problem speci�ed by y and (y �
�y)� t results in F ID as the initial feasible solution for every t. Since F ID is optimal, the

transportation simplex algorithm will return F ID for every t when the northwest corner rule

is used. In this case, the FT iteration is guaranteed to converge to the global minimum.

The northwest corner rule is faster than Vogel's and Russell's methods, but it produces

an initial solution which is usually not as close to optimal. Consequently, more iterations

are usually required with the northwest corner rule. In general, the transportation simplex

algorithm will �nd an optimal solution faster using Vogel's or Russell's method because

fewer iterations will be required. In constrast to the northwest corner rule, these methods
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use the transportation problem costs (which are the ground distances in the EMD context)

to compute an initial solution.

The EMD code that we use in our work applies Russell's method. The initial solution

computed by this method is not necessarily F ID, so there is no guarantee that the trans-

portation simplex algorithm will return F ID if there is another optimal 
ow. In practice,

however, the FT iteration always converged to the global minimum of zero in hundreds of

randomly generated, perfect-translation examples with d = L2. In these random examples,

the points in y were chosen with coordinates uniformly distributed in [0; 1], and we varied

the point space dimension (1, 2, and higher dimensions), whether points all have the same

weight or not (if not, then the weight vector u is random), and whether �y + t(0) is the

di�erence between two points in y or not (if not, then the initial translation t(0) is random).

6.7.4 Equal-Weight Comparisons with Local Minima

In section 6.7.1, we showed examples of unequal-weight comparisons with local minima.

These local minima arose because di�erent parts of the heavier distribution were used in

an optimal 
ow for di�erent areas of the transformation space. In this section, we show

that there can be local minima even when all the mass in one distribution must be matched

to all the mass in the other distribution everywhere in transformation space. This is the

matching requirement imposed by the EMD when the distributions are equal-weight.

The main example of this section consists of two distributions over the plane, each

having two points (m = n = 2). See Figure 6.7(a). We seek to match these distributions

under translation using the L2 and L1 ground distances.

In section 6.6.3, we analyzed the m = n = 2 matching problem under G. Recall that

there are two feasible 
ows F 1 and F 2 such that

F 1 2 argminF2F(x;y)WORK(F;x; g(y)) if d11(g) + d22(g) � d12(g) + d21(g) and

F 2 2 argminF2F(x;y)WORK(F;x; g(y)) if d11(g) + d22(g) � d12(g) + d21(g):

Here dij(g) = d(xi; g(yj)). If G = T and d = Lp or d = L22, then dij(t) = d(xi; yj + t) =

d(�ij ; t), where �ij = xi � yj .
Now consider the sets

T1 = f t : d11(t) + d22(t) < d12(t) + d21(t) g and

T2 = f t : d11(t) + d22(t) > d12(t) + d21(t) g :

If T1 = ;, then F 2 is optimal for every t 2 T ; if T2 = ;, then F 1 is optimal for every
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Figure 6.7: A Local Minimum in a 2D Equal-Weight Case. (a) Distributions x and y over

the plane are shown in blue and red, respectively. (b) The translation t = [0 2]T of y is
locally optimal for both d = L2 and d = L1. The optimal 
ow for this translation is the

same for both ground distances, as is the EMD: EMD(x;y�t) = :6(0)+:4(4) = 1:6. (c) The
globally optimal translation of y for d = L2 is t = [0 :258]T . This yields EMD(x;y� t) =
:4
p
12 + :2582 + :2(2� :258) + :4

p
12 + :2582

:
= 1:175. (d) The globally optimal translation

of y for d = L1 is t = [0 0]T . This yields EMD(x;y� t) = :4(1) + :2(2) + :4(1) = 1:2.
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t 2 T . In our example, x1 = (�1; 0), x2 = (0; 2), y1 = (0; 0), y2 = (�1; 2), �11 = [�1 0]T ,
�12 = [0 �2]T , �21 = [0 2]T , and �22 = [1 0]T . For d = L22, it is easy to check that

(d11(t) + d22(t))� (d12(t) + d21(t)) = �6 for every t 2 T .9 Thus T2 = ;, and (as expected)

the FT iteration converges to the global minimum on this example with d = L22.

In general with d = L2 or d = L1, both T1 and T2 will be nonempty. This, however,

does not imply that there are local minima. With d = L2 or d = L1, the functions

WORK(F 1;x;y � t) and WORK(F 2;x;y � t) are convex in t. If the global minima of

these functions occur in T1 and T2, respectively, then the larger of these values is a local

minimum of WORK(F;x;y� t) and the smaller is the global minimum. This is precisely

what happens in the example of Figure 6.7(a). A local minimum can also exist along the

boundary between T1 and T2 where d11(t)+d22(t) = d12(t)+d21(t). More generally, a local

minimum may occur in the interior of a transformation space region with constant optimal


ow, or along the boundary between two such regions.

Figure 6.7(b) shows y translated by a locally optimal translation t = [0 2]T for both

d = L2 and d = L1, along with the corresponding optimal 
ow for both cases. The globally

optimal translations for the L2 and L1 distances are given in Figures 6.7(c) and 6.7(d),

respectively. Finally, graphs of EMD(x;y � t) versus t for the L2 and L1 distances are

shown in Figures 6.8 and 6.9, repectively. In Figure 6.10, we show that the locally optimal

and globally optimal translations occur in regions of the translation space for which there

are di�erent optimal 
ows. We also prove that t = [0 2]T is locally optimal for both the L2

and L1 ground distances.

Let us now explicitly connect a local minimum in �(g) over G with a local minimum of

WORK(F;x; g(y)) over F � G. Suppose that a local minimum of �(g) occurs at g0 in the

interior of a region R(F �) = f g : F � 2 argminF2F WORK(F;x; g(y)) g. In words, g0 is

inside the region of transformation space with constant optimal 
ow F �. Then there exists

a neighborhood NG
" (g

0) 2 G around g0 of size " > 0 such that NG
" (g

0) � R(F �) and �(g) �
�(g0) for every g 2 NG

" (g
0). For every (F; g) 2 F �NG

" (g
0), we have WORK(F;x; g(y)) �

WORK(F �;x; g(y)) = �(g) � �(g0) = WORK(F �;x; g0(y)). The �rst inequality follows

from the optimality of F � over NG
" (g

0), whereas the second inequality follows from the local

optimality of g0 over NG
" (g

0). Since WORK(F;x; g(y)) � WORK(F �;x; g0(y)) for every

(F; g) 2 F �NG
" (g

0), there is a local minimum of WORK(F;x; g(y)) at (F �; g0). Of course,

this logic depends upon being able to �t an open neighborhood inside R(F �), where F � is

optimal for g0. This cannot be done, for example, if R(F �) is the single point g0. A similar

9The fact that this quantity is independent of t is not speci�c to the particular example of this section.

With d = L2
2, (d11(t) + d22(t))� (d12(t) + d21(t)) = �2(xT1 y1 + xT2 y2 � xT1 y2 � xT2 y1) for every t 2 T . It

follows that there will be one 
ow which is optimal for every translation.
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Figure 6.8: Graphs of EMD v. t Showing a Locally Optimal Translation for d = L2. (a)
EMD v. t for the 2 � 2 example shown in Figure 6.7(a) with d = L2. There is a locally

optimal translation at t = [0 2]T , while the globally optimal translation is t = [0 :258]T . (b)
A slice of the graph in (a) at tx = 0.
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Figure 6.9: Graphs of EMD v. t Showing a Locally Optimal Translation for d = L1. (a)
EMD v. t for the 2 � 2 example shown in Figure 6.7(a) with d = L1. There is a locally

optimal translation at t = [0 2]T , while the globally optimal translation is t = [0 0]T . (b) A
slice of the graph in (a) at tx = 0.
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Figure 6.10: A Closer Look at a Locally Optimal Translation. The translation t = [0 2]T is

locally optimal in the example shown in Figure 6.7(a) for d = L2 and d = L1. For both these
ground distances, EMD(x;y� t) = 1:6 (see Figure 6.7(b)). (a) Here we show y translated

by t + v = [0 2]T + v, where jjvjj is small. (b) All translations in the darkest gray area
have the same optimizing 
ow shown in part (a) for d = L2. Here EMD(x;y� (t + v)) �
:6jjvjj2 + :4(4 � jjvjj2) = :2jjvjj2 + 1:6. Since the EMD is 1.6 when v = 0, we see that

there is a local minimum at t = [0 2]T . The global minimum at t = [0 :258]T occurs
in an area of translation space where a di�erent 
ow is optimal. (c) All translations in

the darkest gray area have the same optimizing 
ow shown in part (a) for d = L1. Here
EMD(x;y � (t + v)) � :6(jvxj + jvyj) + :4(jvxj + (4 � jvyj)) = 1:0jvxj + :2jvyj + 1:6. Since

the EMD is 1.6 when v = 0, we see that there is a local minimum at t = [0 2]T . The
global minimum at t = [0 0]T occurs in an area of translation space where a di�erent 
ow

is optimal.
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connection can be made between a local minimum of 
(F ) at F 0 2 F and a local minimum

of WORK(F;x; g(y)) over F �G if we can �t an open neighborhood inside the set S(g�) of

feasible 
ows which have g� as their optimal transformation, where g� is optimal for F 0.

Of the L1, L2, and L22 ground distances, only the L22 distance is guaranteed to yield

a WORK function in which a locally optimal translation must be globally optimal. The

globally optimal translation for d = L22 is the one that lines up the centroids of the two

distributions. The centroid of a weighted point set is the point from which the weighted

sum of L22 distances to the points in the set is minimized. Recall from section 6.4.1.3 that

the spatial and coordinate-wise medians are the points from which the weighted sum of

L2 and L1 distances, respectively, are minimized. In general, the optimal translation to

match two distributions with the EMD, however, is not the spatial median for d = L2 and

is not the coordinate-wise median for d = L1. Indeed, the spatial medians for x and y are

(0; 2) and (0; 0), respectively, and the coordinate-wise medians are also (0; 2) and (0; 0). In

both cases, the locally optimal translation t = [0 2]T lines up the medians, but the globally

optimal translation does not.

The magic of the EMD under translation with d = L22 does not extend to the EMD under

rotation with d = L22. In the plane, we seek a rotation angle � such that EMD(x; R�y) is

minimized. Even when the L22 ground distance is used, there can be only locally optimal

rotation angles. This is clearly shown in Figure 6.11 which contains plots of the EMD versus

� for the example in Figure 6.7(a).

6.8 Odds and Ends

We have not yet discussed the choice of ground distance function used in EMD computa-

tions. In section 6.8.1, we consider the tradeo�s in choosing betwen the Euclidean distance

and the Euclidean distance squared. One criterion of comparison is solving EMD under

transformation problems, although we consider the ground distance choice for other criteria

as well. In section 6.8.2, we brie
y consider the question: how fast can the EMD between

one distribution and a transformed version of another change with respect to the trans-

formation parameters. If the EMD for a given transformation is large, then the EMD for

a nearby transformation will also be large if the EMD does not change too quickly. This

information may allow a search for an optimal transformation to eliminate a region of the

search space without computing the EMD for many transformations in that region.
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Figure 6.11: Graphs of EMD v. � Showing a Locally Optimal Rotation for d = L22. (a)
EMD v. � for the 2� 2 example shown in Figure 6.7(a) with d = L22. (b) The globally and

locally optimal rotations lie in regions of the rotation space for which there are di�erent
optimal 
ows. The di�erence function (d11(�) + d22(�))� (d12(�) + d21(�)) and its absolute

value are the dashed and dotted plots, respectively. The plot of the absolute value shows
where the di�erence function becomes zero and the optimal 
ow changes.
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6.8.1 L2
2 versus L2

The EMD takes a \ground distance" function between points and builds upon it a distance

function between sets of weighted points. An appropriate ground distance is application-

dependent. In the case where the points are located in the CIE-Lab color space, it is natural

to use the Euclidean distance as the ground distance since this feature space was specially

designed so that perceptual color distance is well-approximated by the L2 distance. In other

feature spaces, the choice may not be so clear. When there is no clear reason to prefer one

ground distance over another, it is worth considering the L2-distance squared even though

L22 is not a point metric.

When comparing equal-weight distributions we would like the EMD to be metric so

that we cannot have the non-intuitive situation in which two distributions are similar to

a third but not to each other. Using an Lp ground distance guarantees that the EMD

is a metric between equal-weight distributions. Although this is not the case for L22, the

EMD is at most a factor of two away from satisfying the triangle inequality for three given

distributions. See section 4.1, formula (4.6).

Another criterion for comparing ground distances is the availability of e�cient, e�ective

lower bounds to prune unnecessary EMD computations. In section 5.1.1, we showed that the

centroid distance lower bound between equal-weight distributions is valid for both the Lp

and L22 ground distances. In section 5.1.2, we used the bound for equal-weight distributions

to get a bound on the EMD between unequal-weight distributions. We showed that the

minimum ground distance between the centroid of the lighter distribution y and the centroid

of any sub-distribution of x with the same weight as y is a lower bound on EMD(x;y).

Recall that this CLOC lower bound and the more practical CBOX lower bound apply with

any ground distance for which the equal-weight centroid bound holds, and this includes

d = L22 as well as d = L2.

Using L22 also has many advantages in computing the EMD under transformation sets.

Consider, for example, the problem of computing the EMD under translation. Applying the

FT iteration requires a solution to the optimal translation problem. We gave algorithms

for this problem for each of the L1, L2 and L
2
2 point distances, but even in the equal-weight

case there can be locally optimal translations that are not globally optimal when d = L1 or

d = L2 is used. In the equal-weight case with d = L22, there are no translations which are

only locally optimal. The L22 distance has an even bigger advantage in the FT iteration for

higher order transformation sets such as the sets of Euclidean, similarity, linear, and a�ne

transformations. Sum-of-squares optimization problems are well-studied in mathematics,

and there are solutions to the optimal transformation problem for each of the listed sets
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yl

xk

xi = yj

matchings

xi $ yl, xk $ yj

xi $ yj, xk $ yl

Figure 6.12: Matching Pairs of Points. The two possible matchings of f xi; xk g to f yj ; yl g.
Here xi = yj .

(see sections 6.4.2{6.4.3).

The fact that L22 is not a point metric often allows more \natural" optimal 
ows than

for Lp metrics. Consider matching point sets with the EMD. If two points from di�erent

sets are on top of each other, then there is always an optimal 
ow which pairs these two

points. This is easily seen with the aid of Figure 6.12. If d = Lp, then by the triangle

inequality d(xi; yl) + d(xk; yj) � d(xk; yl). Thus matching xi $ yl, xk $ yj is at least as

expensive as matching xi $ yj , xk $ yl. In fact, if xi(= yj), xk, and yl are not collinear,

then the matching with the zero cost correspondence xi $ yj is strictly less expensive.

Figure 6.13 gives examples in 1D and 2D to illustrate our previous point. The 1D

example in Figure 6.13(a) is due to Jorge Stol� ([76]). Both 
ows shown in Figure 6.13(a)

are optimal for d = L1 and d = L2, each requiring 6 units of work. The 
ow on the left

costs 36 work units with d = L22, while the more natural 
ow on the right costs 6 work units

and is the unique optimal 
ow for d = L22. Figure 6.13(b) shows an example in 2D. The


ow on the left is optimal for d = L1 and d = L2, and it is the unique optimal 
ow since the

duplicate point (0; 0) is not involved in a collinearity with two other points from the two

sets. The 
ow on the right is the unique optimal 
ow for d = L22. The two point sets are

close to di�ering by a translation. The correspondences on the right are a lot better for the

FT iteration to �nd the globally optimal translation. Using an Lp ground distance results in

\greedy" 
ows which may give wrong correspondences to the optimal transformation step

of the FT iteration.

6.8.2 Sensitivity and Growth Rate

The EMD is insensitive to small perturbations of mass locations. After all, the EMD is a

weighted average distance between points, and small changes in point locations result in

small changes in inter-point distances. More precisely, we have the following result.
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(a)

0 1 2 3 4 5 6 0 1 2 3 4 5 6

(b)
(0; 0)

(1;�1)(�3=2;�1)

(�2; 0)

(�2=3; 4=3)

(0; 0)

(1;�1)(�3=2;�1)

(�2; 0)

(�2=3; 4=3)

Figure 6.13: Optimal Point Set Matchings under L2 and L
2
2. The matchings are indicated

by dark lines connecting the points. (a) This is a 1D example where the point sets have
been o�set vertically for clarity. The left and right 
ows are both optimal for L2, while the

right 
ow is the unique optimal 
ow for L22. (b) In this 2D example, the left 
ow is the
unique optimal 
ow for L2 and the right 
ow is the unique optimal 
ow for L22.
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Theorem 14 If

jd(xi; g(yj))� d(xi; yj)j � D(g) 8i; j; (6.52)

then

jEMD(x; g(y))� EMD(x;y)j � D(g): (6.53)

Proof. Condition (6.52) implies

d(xi; g(yj)) � d(xi; yj) + D(g) 8i; j and (6.54)

d(xi; yj) � d(xi; g(yj)) + D(g) 8i; j: (6.55)

We shall use (6.54) to show that EMD(x; g(y))� EMD(x;y) � D(g). Inequality (6.55)

implies EMD(x;y)� EMD(x; g(y))� D(g) in a completely analogous fashion. Combining

these two results yields (6.53).

From (6.54), it follows that

X
i

X
j

fijd(xi; g(yj)) �
X
i

X
j

fijd(xi; yj) +D(g)min(w�; u�) 8F 2 F(x;y):

The left-hand side of the inequality decreases with the replacement of F by an optimal 
ow

F �(g) = (f�ij(g)) between x and g(y). Thus

X
i

X
j

f�ij(g)d(xi; g(yj)) �
X
i

X
j

fijd(xi; yj) +D(g)min(w�; u�) 8F 2 F(x;y):

The result follows by dividing both sides by min(w�; u�), and replacing F by an optimal


ow between x and y.

Note that this result holds regardless of whether or not x and y have equal total weight.

For any Lp norm, we have the reverse triangle inequality j jjAjjp�jjBjjp j � jjA�Bjjp.10

In particular,

j jjxi � (yj + t)jjp � jjxi � yj jjp j � jjtjjp:

Thus, Theorem 14 implies11

���EMDjj�jjp(x;y� t1)� EMDjj�jjp(x;y� t2)
��� � jjt1 � t2jjp: (6.56)

10Short proof. Apply the triangle inequality twice: (1) jjAjjp�jjBjjp � jjA�Bjjp, and (2) jjBjjp�jjAjjp �
jjB �Ajjp = jjA� Bjjp.

11The result (6.56) is of the same form (6.53) if we put z = y � t2. Then z � (t1 � t2) = y � t1 and

t = t1 � t2.
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In [36], Huttenlocher et al. use an analogous result for the Hausdor� distance to prune

translations during the search for a binary model pattern within a binary image. If

EMDjj�jjp(x;y� t1) � �, then EMDjj�jjp(x;y� t2) � �� jjt1 � t2jjp.
Now consider matching planar distributions with d = L2. How fast can EMD(x; R�y�t)

change with respect to the Euclidean transformation (R�; t)? Here we have

j jjxi � (R�yj + t)jj2 � jjxi � yj jj2 j � jjyj �R�yj � tjj2 � jjyj � R�yj jj2 + jjtjj2;

where the �rst and second inequalities follow from the reverse and the ordinary triangle

inequalities, respectively. But jjyj � R�yj jj2 � j�j jjyjjj2 because the length of the arc

from yj to R�yj is at least the distance between these two points. We can therefore apply

Theorem 14 with D = jjtjj2 + j�j(maxj jjyjjj2). The larger the quantity maxj jjyj jj2, the
weaker the bound (6.53). If we do not replace jjyj jj2 by maxj jjyjjj2 in D, then following

the proof of Theorem 14 shows12

���EMDjj�jj2(x; R�1y� t1)� EMDjj�jj2(x; R�2y � t2)
��� �

jjt1 � t2jj2 + j�1 � �2j
X
j

(uj=u�)jjyjjj2 if u� � w�:

Here we pay an average (instead of worst case) rotational penalty, where each point's norm

contribution is weighted by its fraction of the total distribution mass.

6.9 Some Applications

In this section, we apply the FT iteration described in section 6.3 to the problems of

illumination-invariant object recognition and point feature matching in stereo image pairs.

All experiments were conducted on an SGI Indigo2 with a 250 MHz processor. The algo-

rithms to solve the transportation problem ([32], pp. 213{229), and the optimal translation,

Euclidean, and similarity transformation problems are implemented in C, while the solutions

to the optimal linear and a�ne problems are written in Matlab.13

6.9.1 Lighting-Invariant Object Recognition

Under the assumption of a trichromatic system with a three-dimensional linear model for

the surface re
ectance functions of object surfaces, Healey and Slater ([28]) showed that

12More precisely, use the facts that j jjxi� (R�1
yj + t1)jj2 � jjxi� (R�2

yj + t2)jj2 j � jj(R�2
yj �R�1

yj) +

(t2 � t1)jj2 � j�2 � �1j jjyjjj2 + jjt2 � t1jj2, and
P

i
fij = uj for any feasible 
ow F = (fij) when u� � w�.

13Thanks to Yossi Rubner for providing his transportation problem code.
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(B)alloon (C)halk (D)ragon (L)emur (P)lant (T)iger (W)aldo

Figure 6.14: Lighting-Invariant Object Recognition { A Small Object Database. An object
database imaged under white, yellow, green, and red light is shown in rows 1, 2, 3, and 4,

respectively. For some objects, color signatures are computed over only the area outlined in
red as shown in row 1. The color signatures for all images of the same object are computed

over the same image area, although we only show the red rectangle in the images taken
under white light.

an illumination change results in a linear transformation of image pixel colors.14 In the

following experiment, we use a subset of the objects used in [28]. There are four images of

each object, one under nearly white illumination and the other three under yellow, green,

and red illumination.15 Figure 6.14 shows the seven database objects imaged under white,

yellow, green, and red light.

As in [69], we summarize each image by a set of dominant colors (without regard to

position) obtained by clustering in color space, where a color is weighted by the fraction of

image pixels classi�ed as that color. We use the clustering algorithm described in [65] in the

RGB color space with a minimum bucket size of 16 units in R, G, and B, and we discard

clusters with weight less than 0.5%. This produced color signatures with an average of 27

colors.

Our experiment consists of using each image as the query, where the desired distance

between images is the EMD under a linear transformation of the corresponding color signa-

tures (with the L2-distance squared as the ground distance between points in RGB space).

To compare a database signature x to a query signature y, we applied the FT iteration

twice (with G = L): once to transform y so that it is as close as possible to x, and once

14This result also holds for images of scenes with more than one object if all surfaces of all objects have

the same basis re
ectance functions.
15Thanks to David Slater for providing these images.
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BW BY BG BR CW CY CG CR DW DY DG DR LW LY LG LR
W 1 3 2 3 1 4 2 3 1 2 3 2 1 4 6 2

Y 3 1 3 5 4 1 3 2 2 1 2 4 4 1 4 4

G 2 2 1 2 2 3 1 4 3 3 1 3 3 2 1 3
R 5 5 4 1 3 2 4 1 4 4 4 1 2 3 2 1

� 11 11 10 11 10 10 10 10 10 10 10 10 10 10 13 10
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W 1 4 2 3 1 3 2 2 1 4 3 3

Y 4 1 3 2 3 1 3 3 2 1 2 2
G 2 3 1 5 2 2 1 4 4 2 1 4

R 3 2 5 1 4 4 7 1 3 3 4 1

� 10 10 11 11 10 10 13 10 10 10 10 10

Figure 6.15: Lighting-Invariant Object Recognition { Query Results. The label at the top of

each column shows the query image. The row labels are the illuminants (W)hite, (Y)ellow,
(G)reen, and (R)ed. The entry in position (Z;AX) is the rank of image AZ in the result for

query image AX . For example, the dragon image for the yellow illuminant is returned as
the second closest image when the query image is the dragon image for the green illuminant

(Z = Y ,A = D,X = G { see the boxed entry). The number at the bottom of each column
is the total of the ranks in that column, where 10 is the ideal value. The query precision
is perfect for 21 of the 28 queries, and the average rank sum is 10.4. One run of the FT

iteration required an average of 7:4 steps and 4:6 seconds to converge.

to transform x so that it is as close as possible to y. Both trials were started with the

initial transformation equal to the identity map. We use the smaller of these results as

the distance between x and y. The minimum result is equal to EMDL(x;y) if a globally

optimal transformation is found, and is greater than EMDL(x;y) otherwise. Ideally, the

closest images to the image of an object are the other three images of the same object.

Figure 6.15 shows the results of our experiment.16 These results are excellent, but not

perfect as in [28]. It is possible that we are not �nding the globally optimal transformation

in some comparisons. Also, the linear transformation model loses accuracy when we replace

the color of a pixel by the centroid of a cluster in color space.

6.9.2 Feature Matching in Stereo Images

As we described in section 6.1, the partial EMD under a transformation set can be used

to compute the best partial matching of two point sets when one set is free to undergo

16The results obtained with all signatures computed over entire images are very similar to the given results.
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some transformation.17 This is exactly the problem we have in matching features extracted

from images of the same scene taken from di�erent viewpoints. The fraction parameter


 compensates for the fact that only some features appear in both images, and the set

parameter G accounts for the appropriate transformation between corresponding features.

In our experiments, we extract 50 features of a gray level image using an algorithm due to

Shi and Tomasi ([74]).18 The points in the distribution summary of an image are its feature

locations (measured in pixels), and the weight of each point is one.19 The ground distance

is the L2-distance squared between image coordinates. We set 
 = 0:5, so only 25 of the 50

features per image will be matched. Each of the three examples given below uses a di�erent

transformation set G, although the initial transformation used in the FT iteration is the

identity map in all cases.

In our �rst example, we match features in two images of a motion sequence in which the

camera moves approximately horizontal and parallel to the image plane. Figure 6.16(top)

shows the results of applying the FT iteration with G = T in an attempt to minimize the

partial EMD under a translation of the point features. For this camera motion, all image

points translate along the same direction, but the amount of translation for an image point

is inversely proportional to the depth of the corresponding scene point ([80]). Thus, the

model of a single translation vector is not accurate in general. It is accurate for a set of

features that correspond to scene points with roughly the same depth. In this example, the

FT iteration matched features on objects toward the back of the table.

The images in the example depicted in Figure 6.16(middle) are also from a motion

sequence. Here, however, the camera motion is a forward motion perpendicular to the

image plane. The match results shown are the result of applying the FT iteration with

G = S in an attempt to minimize the partial EMD under a similarity transformation. In

our �nal example, we match features extracted from images of a toy hotel taken from two

di�erent viewpoints. Here we apply the FT iteration with G = A in an attempt to minimize

the partial EMD under an a�ne transformation of feature locations. The match results are

shown in Figure 6.16(bottom). In all three cases, it appears that the FT iteration converged

to a globally optimal transformation. In many examples, however, running the iteration

once leads to only a locally optimal solution.

17Recall that the same code used to solve the transportation problem can be used to solve the assignment

problem and to compute the partial EMD.
18Thanks to Stan Birch�eld for his implementation of this feature extraction algorithm.
19Using the gray levels in a small area around a feature in addition to its location may improve matching

results. However, corresponding pixels in images of a scene from di�erent viewpoints may have gray level

di�erences which are not small. Therefore, using gray level information may hurt matching results if we do

not account for such di�erences.
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Figure 6.16: Point Feature Matching in Stereo Images { Results. The �rst two columns

in each row show two images and the locations of 50 features in each image. The last
column shows the result of matching the features using the FT iteration with an initial
transformation equal to the identity map. Here 
 = 0:5, so only 25 features are matched in

each example. We report the number of steps S and the time T in seconds (s) for the FT
iteration to converge. (top) G = T , S = 11, T = 1:77s. (middle) G = S, S = 4, T = 1:08s.

(bottom) G = A, S = 8, T = 36:21s.
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Chapter 7

The SEDL Image Retrieval System

The goal of our content-based retrieval system is to �nd quickly all database images that

contain a region similar to a given query pattern. In other words, processing a query consists

of solving many pattern problems with the same pattern input. We will illustrate the

general strategy described in this chapter with two speci�c databases: (1) a color database

of scanned product advertisements, and (2) a shape database of Chinese character bitmaps.

For the color database, the query patterns are product logos. The goal is to �nd all the

ads for the given product and for products with a similar logo. For the shape database, the

query patterns are characters that occur repeatedly within other Chinese characters. The

goal is to �nd all the characters that contain strokes similar to those in the query. Examples

of a query pattern and a database image that should be returned for the query are shown

in Figure 7.1 for both the color and the shape case.

Our image retrieval system is called SEDL, which stands for Scale Estimation for

Directed Location. As its name implies, SEDL performs a directed (as opposed to ex-

haustive) pattern search once it has computed an estimate for the size at which the pattern

might occur within an image. If we imagine a search rectangle moving and changing size

and orientation over the image, then this rectangle will eventually converge or settle (SEDL)

on the image area where the system believes the pattern exists. A few promising initial

placements of search rectangles are e�ciently computed at query time without having to

examine image areas that obviously do not contain the pattern. The initial size of the search

rectangles is determined by the scale estimate.

In the shape pattern problem solved by SEDL, images (and patterns) are sets of curves

such as might be produced by edgel detection and linking, or by any standard drawing

program. For our Chinese character database, the �rst preprocessing step is to reduce each

bitmap character to a set of curves by computing its medial axis.

181
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(a)

(b)

Figure 7.1: Query Patterns and Related Database Images. Here we show examples of a
query pattern and a database image that should be retrieved in (a) the color advertisement

database, and (b) the shape Chinese character database.
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The image signature used in SEDL is a distribution that records what attributes occur

where in an image, as well as the amount of the attribute present at the recorded location.

For the advertisement database, the attribute is color; for the Chinese character database,

the attribute is orientation (of ink along image curves). In general, a pattern \occurs" in

an image to the extent that there is a transformation of the pattern attribute locations that

aligns similar attributes in the query and image. In the color case, we try to align uniform

color regions in the pattern and query with similar colors. SEDL's signature distance

function will be small whenever each pattern region is close to an image region of similar

color. In the shape case, we try to align pieces of pattern curves with pieces of image

curves of similar orientations. SEDL's signature distance function will be small whenever

ink along pattern curves is close to ink along image curves of similar orientation. The image

signatures and signature distance function used in SEDL are the subject of section 7.1.

There are three phases in SEDL: (1) scale estimation, (2) initial placement selection, and

(3) match re�nement and veri�cation. See Figure 7.2. In the �rst phase, only the image

and query attributes (and not their locations in the image plane) are used to estimate

the scale at which the pattern might occur in the image. The scale estimate is computed

using the EMD in attribute space between the image and query signatures marginalized

over position. The scale estimation algorithm is discussed in section 7.2. The goal of the

initial placement phase is to identify e�ciently a handful of promising image regions where

the pattern is likely to occur. An image region is \promising" if its color signature is

similar to that of the pattern. The size of the regions examined is determined by the scale

estimate returned by the previous phase. Only the coarse position information of whether

or not an attribute is located in a particular region is used during this phase. The initial

placement phase is described in section 7.3. Finally, for each initial placement of the query

at the estimated scale, we check for positional consistency of the attributes, modifying the

attribute locations by some transformation if this will help improve the match. This last

re�nement and veri�cation stage is the subject of section 7.4. We will describe the three

phases in SEDL mainly as applied to the color pattern problem. The chapter concludes

with results of the entire matching process in the advertisement database (section 7.5.1)

and the Chinese character database (section 7.5.2).
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(1) Scale Estimation

Query Image
Scaled

Query

(2) Initial Placement Selection (3) Veri�cation & Re�nement

Figure 7.2: The Three Phases in SEDL.
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7.1 SEDL's Image Signatures and Distance Function

The image signature X is a discrete distribution of mass in a combined attribute-position

space:

X = f (X1;W1); : : : ; (XM ;WM) g

= f ((A1; P1);W1); : : : ; ((AM ; PM);WM) g ;

where distribution point XI = (AI ; PI) consists of a point AI in attribute space and a point

PI in image position space. The distribution pair (XI ;WI) = ((AI ; PI);WI) indicates that

there is a region of size WI located at PI with attribute AI . For the advertisement database,

PI is the centroid of a region of roughly constant color, its attribute AI is the average color

in the region, and its weight WI is the area of the region. This idea is conveyed in the

example in Figure 7.3. For the Chinese character database, PI is the centroid of a small

curve or segment, its attribute AI is the average orientation along the curve, and its weight

WI is the length of the curve over which the average is taken. In the shape case, a region

refers to a segment of a curve.

Throughout this chapter, we denote the signature of a database image by X as given

above, and the signature of a query pattern by Y, where

Y = f (Y1; U1); : : : ; (YN ; UN) g

= f ((B1; Q1); U1); : : : ; ((BN ; QN); UN) g :

Once again, we assume the normalization W� = U� = 1. A query pattern is similar to

part of a database image to the extent that there is a transformation of the pattern region

positions f QJ g that aligns regions in X and Y that have similar attributes.

In the color case, a small set of dominant image colors faigmi=1 is computed by clustering
in color space; in the shape case, a small set of dominant orientations faigmi=1 is computed by
clustering image curve orientations. In both cases, all AI are members of the set faigmi=1. A
similar statement holds for the attributes BJ in the pattern attribute � position signature.

The signature creation processes for the color and shape pattern problems are discussed in

sections 7.5.1.1 and 7.5.2.1, respectively.

In order to de�ne a signature distance function, we �rst de�ne a distance function dap in

the combined attribute-position space. Given a distance function dattr between attributes,

we use a linear combination distance

dap((A; P ); (B;Q)) = d�attr(A;B) + �dpos(P;Q); (7.1)
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((purple; P1);W1)

((violet; P5);W5)

((white; P2);W2)

((yellow; P4);W4)

((purple; P3);W3)

P5

P4

P2

Figure 7.3: Signature in Color � Position Space. Not all signature elements are labelled.
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where

d�attr(A;B) =

8<
: dattr(A;B) if dattr(A;B) � �

1 otherwise
and dpos(P;Q) = jjP �Qjj22:

The attribute distance is set to in�nity if it is above some user de�ned threshold � . This

is to prevent matching of attributes which are very di�erent but happen to be at the same

position in the image plane. For colors in CIE-Lab space, we use dattr(A;B) = jjA�Bjj2, the
Euclidean distance. For orientations in radians, we use dattr(A;B) = mink2Z j(A+k�)�Bj,
the cyclic L1 distance with period T = � radians described in section 6.4.1.4. The pixel

locations of region centroids are normalized by dividing by the minimum image dimension.

If, for example, a database image has width W and height H pixels with W � H , then the

column coordinate Px 2 [0; 1] and the row coordinate Py 2 [0; H=W ], where P = (Px; Py).

The factor � in front of the position distance dpos is chosen as follows. Given two

\equal" distancesDattr andDpos in attribute and position space, and the relative importance

� 2 (0; 1] of attribute di�erences versus position di�erences, we choose � so that (1��)=� =

(�Dpos)=Dattr. We use � = 25% attribute and (1� �) = 75% position. We emphasize the

position information because it was not used in the scale estimation or initial placement

phases, and, if these phases worked correctly, the veri�cation and re�nement phase starts

in image areas with similar attributes to those in the pattern. On the other hand, we

want the attribute values to guide our matcher, so we cannot make � too small. We

set Dpos = (0:10)2, which corresponds before normalization to the square of 10% of the

minimum image dimension. In the color case, we set Dattr = 5 CIE-Lab units; in the shape

case, we set Dattr = 10�
:
= 0:175 radians.

Armed with the ground distance dap in the combined attribute-position (what-where)

space, we de�ne the signature distance function SD as

SD(X;Y) = min
 2	

D( ;X;Y);

where

D( ;X;Y) =
NX
J=1

UJdap((A (J); P (J)); (BJ ; QJ));

and

	 = f  : [1::N ]! [1::M ] g

is the set of functions from [1::N ] to [1::M ]. If the image attribute A (J) at position P (J) is

matched to the query attribute BJ at position QJ , then we pay a cost of the distance in the
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combined attribute-position space times the weight of the query attribute. The allowable

matchings 	 are unconstrained; each query region ((attribute,position) pair) can match

any image region. Note that this is very much a one way distance { it is small when every

query region is near some image region with a similar attribute value, but not necessarily

vice-versa. Also note that the image weights do not appear in our distance function. These

weights, however, are used explicitly in the scale estimation and initial placement phases.

As mentioned previously, similarity of a query pattern to a database image is judged

modulo a transformation of region locations. Thus we want to compute the distance

SDG(X;Y) = min
g2G

SD(X; g(Y))

= min
g2G; 2	

D( ;X; g(Y));

where

g(Y) = f ((B1; g(Q1)); U1); : : : ; ((BN ; g(QN)); UN) g

only modi�es the region locations, not the region attributes. In full, we have

SDG(X;Y) = min
g2G; 2	

NX
J=1

UJdap((A (J); P (J)); (BJ ; g(QJ)))

= min
g2G; 2	

NX
J=1

UJ(d
�
attr(A (J); BJ) + �dpos(P (J); g(QJ))):

In section 7.4, we show how to �nd a local minimum of SDG(X;Y) using the same alternation

idea behind our EMD iteration. We also discuss how the distance function SDG compares

with the distance function DICP
G used in the ICP registration algorithm (see section 2.5.2)

and with the EMD, including our reasons for choosing SD over these other distance mea-

sures. As with any iterative optimization scheme in a space with local minima, the key to

�nding the global minimum is to have a good starting point for the iteration. For us, this

means selecting a good initial transformation g(0) 2 G. In turn, this means selecting a good

initial scale and placement of the pattern within the image. The scale estimation and initial

placement steps are the subjects of the next two sections.

7.2 The Scale Estimation Phase

Our scale estimation algorithm considers only the attributes in an image, not their lo-

cation. It operates on the previously described signature distributions once position has

been marginalized out. If we marginalize the attribute-position distributions X and Y over
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position, we get the attribute distributions

a = f (a1; w1); : : : ; (am; wm) g and

b = f (b1; u1); : : : ; (bn; un) g ;

respectively, where

wi =
X

I:AI=ai

WI and uj =
X

J:BJ=bj

UJ :

This marginalization throws away the positions of attributes and combines the weights for

the same attribute at di�erent image locations into a single weight for that attribute. If,

for example, the attribute-position image signature X notes 10% red at the top of an image

and 20% red at the bottom, then the attribute signature a simply notes 30% red in the

image. Note that the attribute signatures also have total weight one (w� = u� = 1) since

the attribute-position signatures were normalized to have weight one (W� = U� = 1).

Our initial scale estimate is obtained by running the algorithm in section 4.5 on the

attribute signatures a and b. Recall that this estimation algorithm scales down the weights

of the query signature b until there is no further improvement in the EMD between the

image signature a and the modi�ed query signature. The scale c0 at which this occurs

is taken as the scale estimate if EMD(a; c0b) � � , where � is a threshold on how well the

attributes must match to obtain a visually acceptable match. If not, SEDL assumes that the

pattern does not occur within the image, and the initial placement and re�nement phases

are not performed.

The main property of the scale estimation algorithm is that the error that it makes

is roughly equal to the minimum amount of background clutter over all query attributes,

where the amount of background clutter for an attribute is the amount of that attribute

present in the image but not part of the query occurrence. If there is a query attribute that

occurs in the image only within the query occurrence, then the scale estimate will be very

accurate, regardless of the amount of background clutter for other query attributes. Please

refer back to section 4.5 for details and examples from the advertisement database.

7.3 The Initial Placement Phase

All the initial transformations of the query for our iteration will have scale c0 as returned

by the scale estimation step. The selection of initial placements of the query at scale c0

uses the optimal 
ow F 0 = (f0ij) returned by EMD(a; c0b). This 
ow provides important
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information about what attributes in the image match what attributes in the query. In the

color case, for example, the optimal 
ow tells us which image colors match which query

colors. Since the EMD achieved by this 
ow is small (� � , otherwise this phase would not

be considered), the attributes matched by F 0 are similar.

The total weight of query attributes that match attribute i in the image is

vi =
nX
j=1

f0ij ;

where the total weight of the scaled query signature is c0. Basically, v de�nes the query

signature in terms of the image attributes. In the color advertisement database, for example,

we can think of vi as the amount of image color i that occurs within the query (assuming

that the scale estimate is fairly accurate). The �rst step in our initial placement selection

is to compute the probability or con�dence that an image region with attribute i is part of

the query pattern (if it occurs within the image). The probability is given by the quotient

0 � qi =
vi

wi
� 1:

The total amount of attribute i in the image is wi, while the amount of attribute i that

occurs within query regions is estimated to be vi. Thus, if we randomly choose an image

pixel from all the pixels with attribute i, the probability that this pixel belongs to a query

region is qi = vi=wi. The 
ow feasibility conditions imply vi � wi.
In Figure 7.4, we show an example that illustrates con�dences in attributes for the color

pattern problem. Yellow is a 98% con�dence color since virtually all the yellow in the

image is needed to match yellow in the scaled query. The con�dence for yellow is not 100%

because the pattern is slightly underestimated in scale. About 89% of the purple in the

image is matched to purple in the scaled query. Purple is also a high con�dence color. The

con�dence for purple is not 100% because the pattern does not include all the purple on

the Ziploc box, and the pattern is slightly underestimated in scale.

For the example in Figure 7.4, white, black, and brown are low con�dence colors. Al-

though the white on the Ziploc box within the image is needed to match white in the scaled

query, there is a lot of other white in the image (the writings "I will keep my sandwich

fresh" and "Ziploc has the lock on freshness", the chalk next to the Ziploc box, and the

white on the Ziploc box that is not part of the pattern). The black and brown in the image

are not needed to match any color in the pattern. The main idea in the initial placement

phase is only to examine image regions that contain (relatively) high con�dence colors. In

this example, SEDL never needs to examine the upper half of the Ziploc advertisement at



7.3. THE INITIAL PLACEMENT PHASE 191

98% 89% 69%

22% 0% 0%

Figure 7.4: An Example of Color Con�dences. The left half of the �gure shows a Ziploc

advertisement, along with the Ziploc query pattern scaled according to SEDL's scale esti-
mate. The right half of the �gure shows the con�dences computed for various query colors.

See the text for further explanation.

query time since it only contains low con�dence colors (black and white).

The result of the �rst step in the initial placement phase is a set I� of image attributes

that have signi�cantly high con�dence (qi � �, with, for example, � = 0:50 = 50%). The

regions in the image plane with high con�dence attributes are good places to check further

for initial placements. Pseudocode for this step is shown below.

function G = InitialTransformations(X,a,c0,F 0,lmax,�)
vi =

Pn
j=1 f

0
ij , i = 1; : : : ; m

q = v=w

I� = f i : qi � � g [ f argmaxi qi g
...

end function

Note that we always include the image attribute of highest con�dence in the set I�, even

when this maximum con�dence is less than the threshold �.

The second step in the initial placement phase is to compare the image signature in rect-

angular regions of the image plane to the query signature expressed in image attributes (v).

The aspect ratio of the rectangles is equal to the aspect ratio of the bounding box around

the query pattern, while the area of the rectangles is c0 (the scale estimate computed in
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the previous phase). Let R0 denote the origin-centered rectangle with these dimensions.

This canonical rectangle will be centered at various image attribute positions for signature

comparison. If we denote the image signature over window R by wR, then the similarity

measure used is the Histogram Intersection H(wR; v) between wR and v:

H(wR; v) =
mX
i=1

min(wRk ; vk):

The higher this value, the more similar the signature in local area R is to the query signature.

Please refer back to section 2.2 for more details concerning Histogram Intersection.

The locations at which to center R0 are exactly the locations of high con�dence image

attributes in I�; we do not try every image location. Thus, the search for promising image

regions is directed (the D in SEDL) by the relatively high con�dence (i.e. low background

clutter) colors. We keep track of the best placements in a variable called optPlacements.

Associated with each placement is a Histogram Intersection value. The user supplies the

maximum number lmax of initial similarity transformations to compute. Pseudocode for the

algorithm described thus far is shown below.

function G = InitialTransformations(X,a,c0,F 0,lmax,�)
vi =

Pn
j=1 f

0
ij , i = 1; : : : ; m

q = v=w

I� = f i : qi � � g [ f argmaxi qi g
optPlacements = fg
foreach i� 2 I�

foreach ((AI ; PI);WI) 2X such that AI = ai�

if (dist(PI ,optPlacements) too small) continue
R = R0 � PI /* center R0 at PI */
T = f ((AK ; PK);WK) : PK 2 R g /* rectangular range search */

/* compute image attribute histogram over R */
wR = 0 2 Rm

foreach ((AK ; PK);WK) 2 Tb{ = attribute#(AK)

wRb{ += WK

end foreach

/* compute Histogram Intersection */
HI = H(wR; v)
...

end function

Computing the local histogram wR requires a 2D rectangular range search for image
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regions inside R. This can be done in output sensitive time O(logM +k) using O(M logM)

space or in time O(
p
M + k) using only O(M) space ([15]), where M is the number of

regions in the image attribute-position distribution, and k is the number of such regions

with location inside R. Both range searching results referred to above require O(M logM)

preprocessing time. Note that we are really computing an approximation to the local image

signature inside R since we count an entire region as inside R if its centroid is in R. Also

note that if a placement is too close to a previously chosen good placement, then we do not

even try the new placement. This is an e�ciency consideration that help keeps the running

time low.

It remains to explain exactly why we choose to keep a placement and which previously

chosen placement is discarded. Here are the rules. (1) If optPlacements is full, we do

not include a placement with Histogram Intersection (HI) value less than the minimum HI

value currently in optPlacements. (2) If a placement P is close to a placement bP already in

optPlacements, and P has a higher HI value than bP , then we replace bP by P . (3) If the HI

value of P does not exceed the HI value of all similar placements currently in optPlacements,

then we do not include P . (4) If we get this far without deciding the fate of P , then its HI

value is higher than some currently selected placement and there are no nearby placements

in optPlacements. If optPlacements is not full, then we simply add P to optPlacements.

Otherwise, we replace the placement with the lowest HI value with P .

For the re�nement stage that comes next, we actually need the similarity transforma-

tion g = (s; �; tx; ty) that transforms the query bounding box into the RP� for each P� in

optPlacements. Just before computing this transformation for a particular P�, we do a

small local search around P� to see if the placement P� can be improved. Pseudocode for

the whole initial placement phase is shown below.

function G = InitialTransformations(X,a,c0,F 0,lmax,�)

vi =
Pn
j=1 f

0
ij , i = 1; : : : ; m

q = v=w

I� = f i : qi � � g [ f argmaxi qi g
optPlacements = fg
foreach i� 2 I�

foreach ((AI ; PI);WI) 2X such that AI = ai�

if (dist(PI ,optPlacements) too small) continue

R = R0 � PI /* center R0 at PI */
T = f ((AK ; PK);WK) : PK 2 R g /* rectangular range search */
/* compute image attribute histogram over R */

wR = 0 2 Rm

foreach ((AK ; PK);WK) 2 Tb{ = attribute#(AK)
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wRb{ += WK

end foreach

/* compute Histogram Intersection */
HI = H(wR; v)
/* accept placement PK? */

if ((size(optPlacements) == lmax) and
(HI � min HI in optPlacements)) continue

if (HI > HI of similar placement bP in optPlacements)

replace bP with PK /* replace */
continue

elseif (HI � HI of all similar placements in optPlacements)
continue /* do not add */

end if

if (size(optPlacements) < lmax)
add (PK ,HI) to optPlacements /* add */

else

remove min HI placement in optPlacements /* replace */

add (PK ,HI) to optPlacements
end if

end foreach

end foreach

/* compute similarity transformations to return */
G = fg
foreach (P;HI) in optPlacements

/* check small perturbations of placement P */
Pij = P + i� (height(R0)=4) + j � (width(R0)=4) i = �1; 0; 1; j = �1; 0; 1
Pmax = argmaxi=�1;0;1;j=�1;0;1HI(placement Pij)
add (g : query bounding box 7! R0 � Pmax) to G

end foreach

return(G)

end function

The only expensive step here is the rectangular range search. The number of outer loop

iterations and range searches is kept small by only considering locations of high con�dence

attributes which are signi�cantly di�erent from placements already chosen.

7.3.1 Experiments with the Color Pattern Problem

In this section, we illustrate the performance of the initial placement algorithm for the color

pattern problem. In all of the examples in this section, we use lmax = 2 placements and

� = 0:50 = 50%. The placement with the higher histogram intersection score is shown in

red, while the other placement is shown in black. For each (image,pattern) pair, we give the

attribute-position distribution sizes (M for the image and N for the pattern), the marginal
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attribute distribution sizes (m colors for the image and n colors for the query), and the

running time T2 for the second phase. The time T2 does not include the running time of

the �rst phase to produce the scale estimate. The parameters given to the scale estimation

algorithm are cmin = 0:001 = 0:1%, "c = 0:001, and "d = 0:0001 CIE-Lab space units.

The results in Figures 7.5{7.9 are excellent, despite sometimes imperfect scale estimates.

Recall that the scale estimation algorithm uses only the amounts of colors present in the

image and the pattern, and not their positions. When the pattern appears in more than

place in the image, the scale estimate is therefore likely to be greater than the scale of any

single pattern occurrence. This is the case for examples shown in Figure 7.7(c) and Fig-

ures 7.8(a),(d). In each of these overestimated scale, multiple pattern occurrence examples,

the initial placements cover all occurrences of the pattern.

The scale estimate would be guaranteed to be at least the sum of the pattern occurrence

sizes if the occurrences in the image had exactly the same colors as the pattern itself and if

we did not perform the color clustering e�ciency step that represents the image and query

as faithfully as possible with as few colors as possible. Figure 7.7(d) shows an example in

which the scale is underestimated. In this example, both initial placements are contained

within the pattern occurrence in the image.

At least one initial placement in all the examples in Figures 7.5 through 7.8 is very

accurate, and in some cases near perfect as in Figure 7.5(c) and Figures 7.6(a),(d). Some-

times the heuristics used for choosing the initial placements without considerable overlap

perform poorly, as in Figure 7.7(a). In Figure 7.9, we show some examples in which we

search for a logo in advertisements for products with a similar logo to that of the query. In

all these examples, the initial placements occur over image regions with color content which

is similar to the color content of the query logo.

7.4 The Veri�cation and Re�nement Phase

Recall SEDL's notion of visual similarity that each pattern region is close to an image

region of similar color or curve orientation (in the shape case). In the veri�cation and

re�nement phase, SEDL iteratively improves its estimate for the pattern scale, orientation,

and location, starting from the scale and locations determined by the scale estimation and

initial placement phases. See Figure 7.10 for this main idea illustrated in the color case. The

leftmost column contains a pattern that occurs in the image in the rightmost column. The

pattern and image signatures in color � position space are shown in the middle columns.

There is a similarity transformation g� of the pattern regions that aligns pattern regions

with image regions of similar colors. Our goal is to �nd g� starting from g(0) given by the
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(a) (b)

(c) (d)

Figure 7.5: Initial Placement Results { Example Set 1. (a) M = 491, m = 20, N = 203,
n = 14, T2 = 0:012s. (b) M = 1002, m = 41, N = 180, n = 18, T2 = 0:010s. (c) M = 763,

m = 35, N = 265, n = 25, T2 = 0:007s. (d) M = 871, m = 31, N = 84, n = 8, T2 = 0:008s.
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(a) (b)

(c) (d)

Figure 7.6: Initial Placement Results { Example Set 2. (a) M = 894, m = 29, N = 160,
n = 14, T2 = 0:021s. The scale estimation and initial placement are near perfect, although

the heuristic for selecting initial placements without sizeable overlap performed poorly. (b)
M = 596, m = 16, N = 127, n = 9, T2 = 0:004s. (c) M = 1348, m = 35, N = 325, n = 20,

T2 = 0:100s. (d)M = 382,m = 13, N = 228, n = 19, T2 = 0:007s. The lower scoring initial
placement is only slightly o�set from the correct placement. The higher scoring placement

is also a good guess at the pattern occurrence given that the exact locations of the colors
inside the rectangle are not used.
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(a) (b)

(c) (d)

Figure 7.7: Initial Placement Results { Example Set 3. (a) M = 648, m = 20, N = 436,

n = 37, T2 = 0:005s. (b) M = 533, m = 22, N = 191, n = 12, T2 = 0:005s. Although the
scale is underestimated, the two initial placements are both contained within the pattern

occurrence. (c) M = 545, m = 27, N = 228, n = 19, T2 = 0:004s. The pattern scale
is overestimated due to the occurrence of the pattern at three di�erent image locations.
The two initial placements contain all three pattern occurrences. (d) M = 703, m = 21,

N = 436, n = 37, T2 = 0:008s. As in (b), the scale is underestimated but the two initial
placements are both contained within the pattern occurrence.
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(a) (b)

(c) (d)

Figure 7.8: Initial Placement Results { Example Set 4. (a) M = 898, m = 30, N = 354,

n = 36, T2 = 0:023s. The pattern occurs twice and the scale is overestimated. The higher
scoring placement contains both instances of the pattern. (b) M = 669, m = 32, N = 180,

n = 18, T2 = 0:003s. (c) M = 873, m = 23, N = 436, n = 37, T2 = 0:003s. (d) M = 888,
m = 43, N = 444, n = 43, T2 = 0:009s. Both initial placements overlap one pattern

occurrence.
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(a) (b)

(c) (d)

Figure 7.9: Initial Placement Results { Example Set 5. In each of these examples, we search

for a pattern that does not occur within an image. (a) M = 410, m = 9, N = 325, n = 20,
T2 = 0:008s. The yellow and red of the Cornpops logo matches the yellow and red of the

shredded wheat box. (b) M = 381, m = 9, N = 325, n = 20, T2 = 0:006s. The yellow
and red of the Cornpops logo matches the yellow and red of the cheerios box and leggos
beneath the box. (c) M = 409, m = 9, N = 265, n = 25, T2 = 0:007s. The 100% Bran

boxes contain white, purple, and a little bit of yellow as in the Taco Bell logo. (d)M = 420,
m = 9, N = 175, n = 10, T2 = 0:009s. The X14 label is similar to the Comet logo in its

color composition.

Q1

Q2
Q3

Q4 g�

g(0)

Figure 7.10: The Veri�cation and Re�nement Phase. See the text for discussion.
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scale estimation and initial placement phases. Notice the importance of starting close to

an optimal transformation. The pseudo American 
ag in the upper left-hand corner of the

image contains red, white, and blue just like the query pattern. The search rectangle might

be pulled toward this incorrect pattern if the iteration starts too close to the American 
ag.

We can use the same alternation idea behind the FT iteration to �nd at least a local

minimum of our signature distance function under a transformation set:

SDG(X;Y) = min
g2G; 2	

NX
J=1

UJ (d
�
attr(A (J); BJ) + �dpos(P (J); g(QJ))):

For a �xed transformation g(k), we solve

 (k) = min
 2	

NX
J=1

UJ(d
�
attr(A (J); BJ ) + �dpos(P (J); g

(k)(QJ))): (7.2)

This is trivial since 	 is the set of unconstrained matchings from [1::N ] to [1::M ]. The

solution is

 (k)(J) = arg min
I2[1::M ]

(d�attr(AI ; BJ) + �dpos(PI ; g
(k)(QJ))) J = 1; : : : ; N: (7.3)

That is, the correspondence step (7.2) involves N nearest neighbor computations over a set

of size M . We shall come back to this computation shortly. The transformation step for a

�xed matching  (k) is to compute the optimal transformation

g(k+1) = argmin
g2G

NX
J=1

UJ (d
�
attr(A (k)(J); BJ) + �dpos(P (k)(J); g(QJ))): (7.4)

In performing the minimization (7.4), we need only compute

g(k+1) = argmin
g2G

NX
J=1

UJdpos(P (k)(J); g(QJ)) (7.5)

since we only allow transformations g of the attribute-position signature that do not modify

the attributes. The minimization (7.5) is easy to compute since we use dpos = L22 in SEDL.

If we let D(k) = D( (k);X; g(k)(Y)), then it is easy to show that

0 � D(k+1) � D(k) 8k: (7.6)
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Indeed,

(7:2) ) D(k) = D( (k);X; g(k)(Y)) � D( (k+1);X; g(k)(Y)) and

(7:4) ) D( (k+1);X; g(k)(Y)) � D( (k+1);X; g(k+1)(Y)) = D(k+1);

from which (7.6) follows. Hence, we have a monotically convergent sequence < D(k) >.

The result of the previous initial placement phase is a handful (typically � 5) of initial

transformations g(0) from which to begin the above iteration.

Now that we have presented the iteration and proved its convergence, let us return to

the correspondence step computation (7.3). A brute force computation of  (k) requires com-

puting dap((AI ; PI); (BJ ; QJ)) for all MN pairs (I; J) 2 [1::M ]� [1::N ]. This computation

time can be greatly improved by reorganizing the computation (7.3) as

 (k)(J) = arg min
i2[1::m]

�
min

I : AI=ai
(d�attr(AI ; BJ) + �dpos(PI ; g

(k)(QJ )))

�
J = 1; : : : ; N

= arg min
i2[1::m]

�
d�attr(ai; BJ) + � min

I : AI=ai
dpos(PI ; g

(k)(QJ)))

�
J = 1; : : : ; N:

The point sets P i = f PI : AI = ai g can be preprocessed to allow Euclidean nearest neigh-

bor searches in time O(log jP ij). This allows us to compute  (k)(J) in time O(
Pm
i=1 log jP ij).

Since log is a concave function, Jensen's inequality1 implies

1

m

mX
i=1

log jP ij � log

 
1

m

mX
i=1

jP ij
!
= log

�
M

m

�
:

Therefore,
Pm
i=1 log jP ij = O(m log(M=m)) and we can compute the entire vector  (k) in

time O(Nm log(M=m)). If there is any doubt that m log(M=m) is much smaller than M ,

just note that M �m log(M=m) = m((M=m)� log(M=m)).

Combining attribute and position distance in a measure of visual similarity is a very

di�cult task. The use of a linear combination of the two distances with a constant weighting

factor � is a computationally e�cient, reasonably e�ective solution. We shall discuss this

solution and its problems in terms of the color case.

The use of the linear combination dap (see (7.1)) in the signature distance function DG

captures the fact that two patterns with very similar color regions in very similar locations

will appear visually similar. Setting color distances above some threshold to 1 prevents a

small matching cost between nearby regions of very di�erent colors, and heavily penalizes

such obvious visual dissimilarities. The threshold � cannot be too small, however, since we

1For a concave function f , Jensen's inequality states that
P

m

i=1
�if(xi) � f(

P
m

i=1
�ixi) if �i � 0 8i andP

m

i=1
�i = 1. With �i �

1
m
, we get 1

m

P
m

i=1
f(xi) � f( 1

m

P
m

i=1
xi).
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need to allow for inexact pattern matches.

The function dap reasonably trades o� small changes in position distance with small

changes in color distance, but it does not prevent larger tradeo�s which may lead to a small

signature distance without visual similarity; all region pairs ((A; P ); (B;Q)) with the same

value dap((A; P ); (B;Q)) = d�attr(A;B) + �dpos(P;Q) contribute the same penalty in the

signature distance. SEDL's use of a linear combination of color and position distance iden-

ti�es near exact pattern matches, captures many inexact matches, and identi�es obviously

dissimilar patterns, but can lead to false positives. Although some of these false positives

will be eliminated in the step described below, there is still room for improvement in SEDL's

use of color and position information. For example, the perceived color of a region depends

on the color of its surrounding regions, but dap does not take this into account.

Once the alternating iteration (7.2),(7.4) converges, SEDL checks that at least some

fraction of the attribute weight inside the �nal search rectangle R� can be matched to

pattern attribute weight over moderate distances in attribute space. This �nal check is

in recognition of the di�culty of trading o� attribute and position distance, and helps

eliminate false positives. A visually similar match between areas implies somewhat similar

attribute signatures for those areas.

The �nal check in the veri�cation and re�nement phase is performed using the � -EMD

described in section 4.4.2. Recall that the � -EMD measures the fraction of weight in the

lighter distribution which cannot be matched to weight in the heavier distribution using only

ground distances that do not exceed � units. Let xR� be the approximate image attribute

distribution inside R� (computed by a range search as described in section 7.3), and let y�

be the pattern attribute distribution scaled by the �nal scale value c� (the area of R�). Then

the last step in the veri�cation and re�nement phase is to check that � -EMD(xR�;y�) < �.

If not, then R� is eliminated from further consideration. We cannot choose � or � too small

since inexact matches require some tradeo�s in attribute and position distance, and we do

not want to incorrectly reject such matches. For the product advertisement database, we

use � = 0:5, requiring that at least 50% of the color weight to be matched; for the Chinese

character database, we use � = 0:75, requiring at least 25% of the orientation weight to be

matched.

We now discuss our choice of distance function SD in relation to the ICP algorithm used

to register shapes. Recall that the ICP algorithm uses the distance function

DICP(X;Y) = min
 2	

NX
J=1

jjP (J) �QJ jj22;
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where X and Y are the point sets

X = f P1; : : : ; PM g and Y = f Q1; : : : ; QN g :

The ICP iteration seeks to solve the optimization problem

DICP
G (X;Y) = min

g2G
DICP(X;Y) = min

g2G; 2	

NX
J=1

jjP (J) � g(QJ)jj22:

If we eliminate the weights UJ and the attribute part of the ground distance dap, then

our distance function SD reduces to DICP, and SDG reduces to DICP
G . In fact, the weights

UJ are e�ectively eliminated when our framework is applied to shape-based retrieval since

we compute average orientations over equal-sized portions of image curves to produce the

image signature, and the weight of an attribute is equal to the (constant) length over which

the averages are computed.

The use of orientation attributes which are not modi�ed by any transformation is a very

important improvement over the ICP algorithm when registration considers only changes

in scale and location (and not orientation). The ICP framework matches only by ink on

the page. By using the orientation of the ink, we can avoid matching query ink that is

physically close to image ink, but that will not produce a good visual match between the

underlying shapes. The point here is applicable in a more general setting than our shape

setting: using attributes which are unmodi�ed during iteration gives the matcher something

constant upon which to anchor its matching and transformation decisions. In fairness to

the ICP algorithm, it is speci�cally designed to handle di�erences in orientation.

Another natural question to raise at this time is why we choose to compare the attribute-

position distributions X and Y with the function SD instead of the EMD. The main answer

is speed. We can use the results in section 6.5 on allowing weight-altering transformations

to compute the EMD under a transformation set in which the scale changes both the

distribution points and the weights (which represent image areas in the color case). This

requires several EMD computations for a single comparison under a transformation set. Our

distributions are so large, however, that the time for even a single EMD computation per

(query,image) pair is too much for a content-based retrieval system which must maintain

some interactivity with the user. Even if we could compute the EMD for SEDL's large

signatures in an acceptable time, it is still an imperfect measure of image similarity because

our representation is imperfect. All masses are concentrated at the centroids of image

regions. For large regions, it would be a more accurate representation to spread the mass

uniformly over the region. We do not, however, know how to compute the EMD between
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two such continuous distributions.

SEDL's color � position signatures are de�ned (roughly) by the largest possible uniform

color regions. If a single red pattern region is represented in the image as three adjacent re-

gions of slightly di�erent reds, there may be a relatively large, unjusti�ed matching penalty

using SEDL's signature distance. To help reduce the e�ects of such problems, region dis-

tances are weighted by pattern region area, the theory being that large pattern regions are

more stable in appearance and easier to detect as a single region within the image. The

excellent results obtained show that this strategy is e�ective. In the shape case, SEDL

avoids such representation problems to a large extent by using a �ne sampling of image

curves. This strategy is feasible because the shape data is one-dimensional. A �ne sam-

pling over the 2D image plane, however, would produce color � position too large to match

in acceptable times for retrieval.

7.5 Results

In this section, we show the results of the entire matching process for the color advertisement

database and the shape Chinese character database.

7.5.1 The Product Advertisement Color Database

The advertisement database and product logos used in the experiments in this section were

obtained from the web site http://vis-www.cs.umass.edu/~mdas/color_proj.html for

the FOCUS work by Das et al. ([14]). The twenty �ve product logos used as queries are

shown in Figure 7.11. The database contains 361 advertisements for products with and

without corresponding query logos.

7.5.1.1 Creating Signatures

In what follows, a signel (signature element) refers to a single element ((AI ; PI);WI) in the

color � position signature X = f((AI ; PI);WI)gMI=1 of an image. The signature creation

process consists of three steps: (1) clustering in color space to reduce the number of colors

in an image, (2) connecting pixels with the same color label to form an initial set of signels,

and (3) combining same-colored signels which are close together in the image to form the

�nal set of signels which de�ne the image signature in color � position space.

The color clustering step uses an algorithm due to Rubner et al. ([65]) which averages

pixel colors together when the colors are contained in a small enough rectangular region

of the color space. As in [65], we use the perceptual CIE-Lab color space ([88]). The
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Berry Berry
Kix

Blueberry
Morning

Breathe Right Casting Clorox

Comet Cornpops Cortaid Dannon Fresh Step

Great Grains
Golden

Raisin Crisp
Hidden Valley

Ranch
Jello Kix

Apple Merit Misty Pert
Reynolds
Oven Bags

Scholl Sun Crunchers Taco Bell Tide Ziploc

Figure 7.11: Queries for the Color Product Advertisement Database.
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L component is a luminance channel, the a component is a red-green channel, and the

b component is a blue-green channel. The CIE-Lab space is perceptual in the sense that

Euclidean distance in this space matches perceptual distance between two colors that are

not very di�erent. The initial box which contains all colors (0 � L � 100, �120 � a � 120,

�120 � b � 120) is subdivided alternately along each dimension of the color space until the

box region size is small enough so that the average color inside the box approximates well all

colors inside the box. There is a second stage of the clustering algorithm that merges similar

clusters that were broken by �xed boundaries used in the �rst clustering stage. See [65]

for details. By choosing the \small enough" threshold properly, we can usually reduce the

image to a small number (5{40) of colors with very little loss of color accuracy. By reduce,

we mean replace the color at each image pixel with the nearest color cluster representative.

After an image is reduced, we compute all sets of connected pixels with the same color

label using Heckbert's seed �ll algorithm ([29]). Each of these sets is an initial region in a

region-merging process whose ultimate goal is to de�ne the image signature in color � po-

sition space. Associated with each region is a color signature for the pixels contained in

the region, along with the position centroid for the region pixels of each color cluster. The

color signature for an initial region contains only one color.

When two regions Ri, i = 1; 2, are merged into R = R1SR2, we must combine their

color signatures and compute the position centroids in R of each color cluster. This is

straightforward. Suppose that the image is reduced to n colors c1; c2; : : : ; cn, and that region

Ri, i = 1; 2, has color signature x(Ri) =
�
ki1; : : : ; k

i
n

	
, where kij is the number of pixels in

region Ri with color cj . Also, let p
i
j denote the centroid of the pixels in Ri with color cj (if

kij > 0). Then x(R) = f k1; : : : ; kn g, where kj = k1j + k
2
j , and pj = (k1j p

1
j + k2j p

2
j)=(k

1
j + k2j )

if k1j + k2j > 0. Here pj is the centroid of all pixels in R = R1SR2 with color cj .

Each �nal region contributes a number of color � position signels ((color, position),

weight) equal to the number of colors contained within the region. For example, if R as

given above is a �nal region, then we get a color � position signel ((cj; pj); kj) for each

kj > 0. The role of a region is to de�ne which image pixels of the same color are okay to

combine into one signel. Note that merging two regions with no color clusters in common

does not change the color � position signature derived from the set of all regions.

The region merging process maintains a priority queue of all region adjacencies. The

next pair of regions to be merged is the adjacent pair with the smallest priority. If we

denote the area of a region R by area(R), then the priority for region adjacency (R1; R2) is

priority(R1; R2) = EMD(x(R1);x(R2))�min(area(R1); area(R2)): (7.7)
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Here we assume that all region color signatures have been normalized to have total weight

equal to one before the EMD is computed. Given our color clustering and seed �ll steps

to produce the initial set of regions, what ordering on region merges does the priority (7.7)

imply?

Consider the situation before any region merging has been performed. The connection of

pixels with the same color label typically results in many tiny initial regions of a few pixels

or less (more about this later). It is even common to have single pixel initial regions. On

the other hand, the EMDs between adjacent initial regions cannot be very small. The EMD

between two adjacent initial regions cannot, for example, be zero because this implies that

the adjacent initial regions have the same color and, therefore, would have been connected

by the seed �ll algorithm. Furthermore, the colors of the initial regions are the result of

clustering in color space in which colors within a certain distance from each other are merged

into a single cluster. Therefore, the EMD between two adjacent initial regions cannot be

arbitrarily small.

If the EMD between adjacent regions is, for example, at least e units in CIE-Lab space,

then the size of the smaller region in any region adjacency with priority at most p is at

most p=e. The minimum priority during the region merging process tends to increase as

the process proceeds since the EMDs between adjacent regions and the region sizes both

tend to increase. While adjacencies with priority less than p are being processed, regions

of size more than p=e are very unlikely to be merged with an adjacent region (the merging

process would need to create an adjacency with EMD less than e units for this to happen).

The result is that, despite the symmetry in the priority (7.7), region adjacencies with a

large EMD and a small minimum size are generally eliminated before adjacencies with a

small EMD and large minimum size. Of course, among adjacencies with small size the

priority (7.7) gives preference to eliminating those with small EMD over those with large

EMD. The causes of these small size adjacencies in the initial set of regions are discussed

next.

The �rst region adjacencies that will be eliminated are those with similar colored regions

in which at least one of the regions is very small (the EMD factor and the area factor are

both small). Such adjacencies typically arise in areas of the image that have a gradual

shading change. The color clustering algorithm may choose two color clusters to represent

the lighter and darker colors in such an area, but what happens to the colors which are

roughly equidistant from these clusters in color space is much less clear. The color clustering

algorithm does not use the positions of the colors in the image plane, so it cannot use a

connectedness criterion to help make this decision. Furthermore, the Euclidean distance

is only an approximation to perceptual distance in the CIE-Lab color space. If a color
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is close perceptually to two color clusters, the distances in CIE-Lab space to the clusters

will be small but might not properly distinguish which cluster is perceptually closer. A

conceptual group of same-colored pixels may be disconnected into several very small groups

of connected pixels; there may even be some pixels that are not connected to any pixels of

the same color label. Such a fragmented group is likely to be contained in a larger region

with a similar color. By merging the very small fragment regions into the larger surrounding

region, the fragments are combined into one signel as desired.

The next set of region adjacencies that will be eliminated are those with fairly di�er-

ent color descriptors in which at least one of the regions is very small (the EMD factor

is relatively large, but the area factor is small). Such adjacencies typically arise in the

advertisements when there is very small lettering in the advertisement. Such lettering is

usually placed on a relatively high contrast background to aid legibility. For the purposes

of our system, summarizing a paragraph of tiny black lettering with one signel of black at

the position centroid of the paragraph is a wise compression since we know a priori that we

are not interested in such tiny scale features. This compression is exactly what happens as

each individual letter (connected black pixels) region is merged with its background region.

A mistake is made if a merge is performed between two regions with large, spatially

separated signels of the same color. In this case, the weight of the combined signel in the

�nal signature will be large and its position will be inaccurate. If there are large amounts

of the same color in the regions, then the regions themselves must be relatively large and

the EMD between the regions will be relatively small. Adjacencies with large regions and

small EMD are, as mentioned above, generally processed after those with at least one small

region.

The big question, of course, is when to stop the merging process. Currently we use a

very simple criterion which halts the region merging once a pre-speci�ed number of regions

has been reached. In a general image database setting, we may or may not have the time

and resources to pick a di�erent number of regions for each image entered into the database.

For all images in the advertisement database, we stop when there are 128 regions. This

number was found acceptable for the complexity of a general advertisement. Examples of

the �nal regions for three database images are shown in Figure 7.12. The problem of �nding

a \natural" stopping point is a very di�cult one, even with a speci�ed range of feature scales

in which we are interested. For us, \natural" means that the correct conceptual grouping

has been done. For all the query logos, we stop the region merging process when there are

32 regions.

It is interesting to see the results of allowing the region merging process to proceed down

to two image regions. See Figure 7.13. The priority (7.7) produces a natural hierarchy of
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Figure 7.12: Region Merging Results. (left) Original image. (right) The original image

reduced to 128 regions. Each region is colored with the average color of its pixels.



7.5. RESULTS 211

(a)
(2 regions) (4 regions) (8 regions)

(16 regions) (32 regions) (64 regions)

(b)
(2 regions) (4 regions) (8 regions)

(16 regions) (32 regions) (64 regions)

(c)
(2 regions) (4 regions) (8 regions)

(16 regions) (32 regions) (64 regions)

Figure 7.13: More Region Merging Results. Here we show results of allowing the region

merging process to proceed down to two image regions. (a) Cornpops advertisement on the
top left of Figure 7.12. (b) Fresh Step advertisement on the middle left of Figure 7.12. (c)

Reynolds Oven Bag advertisement on the bottom left of Figure 7.12.
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segmentations over varying levels of detail (the number of regions).

7.5.1.2 Query Results

We now present some results of SEDL's pattern problem strategy applied to the advertise-

ment database. The \correct" answers for a given product logo are the advertisements for

that product. Some exceptions have been made for advertisements that contain a version

of the product logo which is substantially di�erent in color from the query logo. See Fig-

ure 7.14(a),(b) for example ads that we will not penalize SEDL or FOCUS for missing. At

the same time, we retain more challenging cases when the advertisement does not contain

the exact logo but is close enough that a good system should be able to handle the small

di�erences. See Figure 7.14(c),(d) for two such examples. The �rst column in Figure 7.15

shows in parentheses the number of correct answers for each query logo. The FOCUS results

were obtained directly from the FOCUS web demo at http://vis-www.cs.umass.edu/~

mdas/color_proj.html on 8/17/98. See section 2.6 for a review of the FOCUS retrieval

system.

The recall of a query for a given number R of returned images is the number of correct

retrievals in the top R retrievals divided by the number of correct answers. From the �rst

and second columns in Figure 7.15, we see, for example, that SEDL's recall for the Dannon

query is 3=4 = 75% and for the Clorox query is 5=5 = 100%.

The precision, on the other hand, is a measure of the spread of the correct images

returned. If there were four correct retrievals in the top twenty, then a query result is more

precise if the correct retrieval ranks are 1, 2, 3, and 4 than if the ranks are 3, 7, 10, and

12. Some researchers measure the precision as the number of correct retrievals divided by

the rank of the last correct retrieval. This measure, however, does not distinguish between

the rank sets 1,2,3,12 and 9,10,11,12; both have precision 4=12 = 33% under the previous

de�nition. We use a de�nition that accounts for the distribution of ranks by weighing ranks

close to one more heavily than ranks closer to R. If there are n correct retrievals in the top

R with ranks 1 � r1 < r2 � � � < rn, then the precision is

� =

Pn
i=1(R+ 1� ri)Pn
i=1(R+ 1� i) : (7.8)

Here we give rank 1 a weight of R, rank 2 a weight of R�1, and, in general, rank j a weight
of R + 1 � j. The denominator in (7.8) normalizes the precision so that 0 < � � 1, with

� = 1 indicating perfect precision (ri � i). If there are no correct retrievals (i.e. n = 0),

then we set � = 1 since this bad result is already punished in the recall statistics. The goal,

of course, is to obtain simultaneously high recall and precision.
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(a) (b)

(c) (d)

Figure 7.14: Tough Advertisements to Retrieve. (a) The layout of the Breathe Right logo

occurrence is the same as that of the query logo, but the colors are di�erent. (b) The
advertisement is for \Fresh Step Scoop", while the logo is for \Fresh Step". The layout for

the labels of these two products is quite di�erent. (c) The labels for \Ziploc Sandwich Bags"
(the query) and \Ziploc Vegetable Bags" (in the advertisement) are very similar but not

exactly the same. (d) The Tide advertisement does not contain the Tide box (the query),
but it does contain the core Tide logo at the top center.
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Query
SEDL

Ranks

FOCUS

Ranks

Berry Berry Kix (2) 8 2, 4
Blueberry Morning (4) 1, 3, 20 1, 3, 4, 9

Breathe Right (3) 1, 2, 3 1, 2, 3
Casting (4) 1, 5, 13 1, 2

Clorox (5) 1, 3, 4, 7, 8 1, 2, 3
Comet (2) 1, 2 |

Cornpops (2) 1, 3 12, 13
Cortaid (2) 1, 2 2, 8

Dannon (4) 1, 3, 5 1
Fresh Step (2) 1, 2 1, 3
Great Grains (2) 2, 4 3

Golden Raisin Crisp (2) 1, 15 1, 2
Hidden Valley Ranch (9) 1, 2, 6, 11 1, 5

Jello (2) 1, 2 1
Kix (3) 1, 5, 11 1

Apple (3) 1, 4 1, 2, 9
Merit (6) 1, 2, 4, 5, 12, 13 1

Misty (6) 1, 2, 3, 14 |
Pert (2) 1, 11 |

Reynolds Oven Bags (5) 1, 2, 3, 9 1, 2, 3, 5
Scholl (4) 1, 2, 9 |

Sun Crunchers (3) 1 1, 9

Taco Bell (2) 1, 2 1, 4
Tide (7) 1, 2, 8, 12 1, 6, 15, 24, 39

Ziploc (4) 1, 2, 14 1, 2, 4

Figure 7.15: Query Results for the Color Advertisement Database. The FOCUS ranks are
phase two results. An \|" entry means that there were no correct answers in the returned

images.
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In the experiments described in this section, the database searched by SEDL is a subset

of the database used in the FOCUS web demo. We selected 361 advertisements of the

1200 advertisements and nature images in the FOCUS database.2 In all the examples in

section 7.3.1, using lmax = 2 initial transformations was su�cient to �nd the pattern occur-

rences. There are, however, some examples that require a couple more initial placements

to �nd the pattern. Here we use lmax = 4 initial placements. As in the scale estima-

tion experiments in section 4.5.1, we set the smallest scale in which we are interested to

cmin = 0:001 = 0:1%. Finally, for e�ciency reasons we do not proceed with the match

veri�cation for a particular initial transformation if the �rst distance iterate D(0) is very

large. If this happens, we simply discard the initial placement.

For SEDL's recall and precision statistics, we use R = 20 images (approximately 5.5%

of the SEDL database). To be fair to FOCUS, we use R = 40 images (about 3.3% of the

FOCUS database)3 Figure 7.15 shows the ranks of the correct retrievals for both SEDL and

FOCUS after phase two, while Figure 7.16 gives the summary recall and precision statistics.

SEDL's total recall of 77.8% is higher than the FOCUS total recall of 53.3%. Both systems

achieved high precision with R which is very small compared to the database size. The

average FOCUS precision was 96%, while SEDL's average precision was 88%. The �nal

column in Figure 7.16 shows the time SEDL takes for each query. SEDL's average query

time is 40.0 seconds. FOCUS has a sizeable advantage over SEDL in speed, requiring less

than a second on average for a query in their larger database of 1200 images. There is more

to say, however, about the di�erences between SEDL and FOCUS than just comparing

statistics. We return to this comparison in section 7.5.1.3 after we show some SEDL query

results.

Figures 7.17{7.24 show the �rst �ve or ten images returned by SEDL for several of

the query logos. These �gures also show the scale, orientation, and location where SEDL

believes that the pattern occurs in some of the correct retrievals. Many more examples of

where SEDL �nds the pattern are given in Figures 7.25{7.27. In general, SEDL is very

accurate in localizing the patterns. Most of the pattern occurrences are not rotated from

their logo form. By allowing an orientation with this database, we are making SEDL's

job more di�cult. Sometimes the orientation is far from correct (e.g. see the Taco Bell

advertisement in the bottom-right of Figure 7.24). No comparison of accuracy with FOCUS

2For the query logos, 18 of the 25 are exactly the same as those used in the FOCUS demo. Small
modi�cations were made to the other 7 logos to eliminate areas not part of the actual logo and to make a

rectangular pattern. The seven logos which are di�erent are Comet, Cortaid, Dannon, Apple, Merit, Misty,
and Tide. The di�erences are small and the results are still fair to compare.

3Only two ranks for correct retrievals by FOCUS were greater than 20, with the maximum being 39 (see

the ranks for the Tide query in Figure 7.15).
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Query
SEDL

Recall

FOCUS

Recall

SEDL

Precision

FOCUS

Precision

SEDL
Query Time

(secs)

Berry Berry Kix 1/2 2/2 0.65 0.96 38.2
Blueberry Morning 3/4 4/4 0.68 0.95 20.0

Breathe Right 3/3 3/3 1.00 1.00 41.7
Casting 3/4 2/4 0.77 1.00 37.0

Clorox 5/5 3/5 0.91 1.00 33.6
Comet 2/2 0/2 1.00 1.00 33.6

Cornpops 2/2 2/2 0.97 0.72 58.5
Cortaid 2/2 2/2 1.00 0.91 26.6

Dannon 3/4 1/4 0.97 1.00 118.2
Fresh Step 2/2 2/2 1.00 0.98 32.0
Great Grains 2/2 1/2 0.92 0.95 37.3

Golden Raisin Crisp 2/2 2/2 0.67 1.00 35.8
Hidden Valley Ranch 4/9 2/9 0.86 0.96 28.2

Jello 2/2 1/2 1.00 1.00 14.7
Kix 3/3 1/3 0.81 1.00 34.2

Apple 2/3 3/3 0.95 0.95 3.1
Merit 6/6 1/6 0.85 1.00 25.9

Misty 4/6 0/6 0.86 1.00 40.2
Pert 2/2 0/2 0.77 1.00 60.2

Reynolds Oven Bags 4/5 4/5 0.93 0.99 110.8
Scholl 3/4 2/4 0.89 1.00 7.4

Sun Crunchers 1/3 2/3 1.00 0.91 33.7

Taco Bell 2/2 2/2 1.00 0.97 21.6
Tide 4/7 5/7 0.82 0.63 103.0

Ziploc 3/4 3/4 0.81 0.99 4.4

average
70/90
:
=

77.8%

48/90
:
=

53.3%

0.88 0.96 40.0

Figure 7.16: Recall, Precision, and Timing Results for the Color Advertisement Database.
The FOCUS statistics are for phase two ranks.
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is possible since FOCUS does not compute the scale or location of the pattern.

7.5.1.3 SEDL versus FOCUS

In FOCUS, adjacency graph vertices and edges are computed based on a grid imposed on

an image, as described in detail in section 2.6. All the blue, for example, in a single grid

cell is treated as one region, and there are edges between di�erent color vertices within

the same cell and neighboring cells. This reduces the number of graph vertices, but leads

to false adjacencies which can cause false matches. The FOCUS authors did an excellent

job of choosing the cell size so that the graphs are small enough to match quickly, yet still

descriptive enough to yield excellent precision.

SEDL uses the amounts of colors, the sizes of regions, and (roughly) the centroids of

uniform color regions, while FOCUS uses only the existence of colors and the possibility that

two di�erent color regions are adjacent. We believe that at least the amount of information

used in SEDL will be necessary for large databases, and we speculate that FOCUS will

need much better position localization, which means fewer false adjacencies in larger graphs

requiring more time to match, to maintain high precision. Perhaps the shapes of regions

(not used in SEDL or FOCUS) will also be needed as the database size increases. Of course,

using too much information may reduce the recall rate since inexact matches need to be

allowed. The issue of which and how much information needed for large databases is far

from settled.

Finally, recall that the SEDL framework is general enough to be applied to both the

color and shape pattern problems, whereas the FOCUS system is speci�c to the color case.

7.5.2 The Chinese Character Shape Database

In this section, we apply our general pattern retrieval strategy to �nd shape patterns within

a database of 2000 Chinese characters. A small sample of the images in this database is

shown in Figure 7.28. This collection of Chinese characters is an ideal database to test

our ideas because there are many patterns that occur throughout the database at di�erent

scales and locations. Our shape summary of a character is the medial axis of the set of

black pixels which de�ne the character. The results shown in Figure 7.29 were computed

using algorithms and software by Ogniewicz and K�ubler ([52]). The skeletons are a very

good one-dimensional summary of the characters.
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Figure 7.17: Advertisement Query Result { Clorox. (top) Clorox query logo. (middle) The
top ten images returned by SEDL. The Clorox advertisements are at positions 1, 3, 4, 7,

and 8. (bottom-left) The match is excellent (rank=1st). (bottom-right) One of the Clorox
logo occurrences is found, but the �nal scale is slightly too big (rank=3rd).
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Figure 7.18: Advertisement Query Result { Breathe Right. (top) Breathe Right query logo.
(middle) The top �ve images returned by SEDL. The Breathe Right advertisements are
at positions 1, 2, and 3. (bottom-left) The pattern occurence is correctly located, but the

orientation is incorrect (rank=1st). (bottom-right) The match is perfect (rank=2nd).
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Figure 7.19: Advertisement Query Result { Comet. (top) Comet query logo. (middle) The
top �ve images returned by SEDL. The Comet advertisements are at positions 1 and 2.

(bottom-left) The �nal pattern placement has the correct orientation and is nearly perfect
(rank=1st). (bottom-right) The pattern is correctly located, but the �nal scale should be

a little bit larger (rank=2nd).



7.5. RESULTS 221

Figure 7.20: Advertisement Query Result { Fresh Step. (top) Fresh Step query logo. (mid-

dle) The top �ve images returned by SEDL. The Fresh Step advertisements are at positions
1 and 2. (bottom-left) The match is excellent (rank=1st). (bottom-right) The match is

good, but the orientation is incorrect (rank=2nd).
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Figure 7.21: Advertisement Query Result { Jello. (top) Jello query logo. (middle) The
top �ve images returned by SEDL. The Jello advertisements are at positions 1 and 2.
(bottom-left) The match is perfect (rank=1st). (bottom-right) The �nal placement overlaps

a signi�cant amount of the pattern occurrence, but the scale is too small (rank=2nd).
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Figure 7.22: Advertisement Query Result { Apple. (top) Apple query logo. (middle) The
top �ve images returned by SEDL. The Apple advertisements are at positions 1 and 4.

(bottom-left),(bottom-right) SEDL's algorithm located even these very small scale occur-
rences of the pattern (ranks=1st,4th).
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Figure 7.23: Advertisement Query Result { Reynolds Oven Bags. (top) Reynolds Oven

Bags query logo. (middle) The top ten images returned by SEDL. The Reynolds Oven Bags
advertisements are at positions 1, 2, 3, 9. (bottom-left) The match is excellent (rank=1st).

(bottom-right) The �nal pattern placement is within the pattern occurrence at a scale which
too small (rank=2nd).
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Figure 7.24: Advertisement Query Result { Taco Bell. (top) Taco Bell query logo. (middle)

The top �ve images returned by SEDL. The Taco Bell advertisements are at positions 1
and 2. (bottom-left) As in the previous Reynolds Oven Bags query, the pattern is correctly

located but with an underestimated scale (rank=1st). (bottom-right) The �nal pattern
placement overlaps a large fraction of the pattern occurence, but the orientation is incorrect

(rank=2nd).
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Figure 7.25: Veri�cation and Re�nement Results { Example Set 1. (top-left) Pert query.

The �nal transformation has the correct scale and translation, but the orientation is slightly
o� (rank=1st). (top-right) Pert query. The identifed image area has a similar overall

color to the Pert logo, but this �nal pattern placement is incorrect (rank=11th). (bottom-
left) Cornpops query. The position and orientation are correct, but the scale is too small
(rank=3rd). (bottom-right) Cornpops query. The �nal transformation is nearly perfect

(rank=1st).
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Figure 7.26: Veri�cation and Re�nement Results { Example Set 2. (top-left) Misty query.
The �nal pattern placement is perfect (rank=1st). (top-right) Misty query. The pattern
occurrence is correctly located, but the scale is too small and the orientation does not

follow the slope of the box (rank=2nd). (bottom-left) Casting query. The match is nearly
perfect (rank=1st). (bottom-right) Casting query. The �nal scale is too small, but the �nal

placement has the correct 90� orientation (rank=5th).
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Figure 7.27: Veri�cation and Re�nement Results { Example Set 3. (top-left) Dannon query.

The �nal position is between two occurrences of the Dannon logo (rank=1st). (top-right)
Hidden Valley Ranch query. The match is excellent (rank=1st). (bottom-left) Scholl query.
This match is also excellent, although the scale should be a little greater and the orientation

is slightly o� (rank=1st). (bottom-right) Tide query. The �nal position is between two
occurrences of the Tide logo (rank=1st).
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Figure 7.28: Sample Images from the Chinese Character Database. The images are bitmaps.

Figure 7.29: Medial Axis Shape Summaries. The shape summary of a Chinese character

bitmap is the medial axis of the set of black pixels which de�ne the character. Here we
show the summaries for the characters in Figure 7.28.
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7.5.2.1 Creating Signatures

The signature creation process operates on the medial axis shape summaries of the char-

acters. The medial axis of a character is represented as a collection of polylines in the

image plane. For each polyline, we compute the average position and average orientation of

nonoverlapping pieces or samples of a �xed length. The average orientations for an image

are clustered to produce a small set of representative orientations f a1; : : : ; an g. These

orientations are the points in the orientation signature of an image. The weight wi of each

orientation cluster ai is the total polyline length which is classi�ed as having orientation ai.

The orientation of a polyline sample is the orientation cluster which is closest to the aver-

age sample orientation. The weightWI of (AI ; PI) = (orientation cluster, average position)

in the orientation � position signature is the sample length, which is the same for every

sample except possibly those at the end of a polyline. The orientation signature is the

orientation � position signature marginalized over position.

The same sample length L = 10 points is used for every image in the database, where

each database image is contained in a square of size 256 points � 256 points. This results in

a relatively dense sampling of the medial axis polylines of a character. Ideally, a database

image and a query image are sampled so that the query sample intervals correspond exactly

to the sample intervals for the query occurrence within the image. If this were the case,

then the average image and query positions would di�er by exactly a scaling and translation

(assuming that an exact pattern copy with the same orientation appears within the image).

Of course this scale and translation is precisely the information that we seek, so it is not

possible to obtain the perfect signatures for matching. The average number of orientation

clusters is 21.8, while the average number of points in the orientation � position signature

is 119.8.

7.5.2.2 Query Results

The query results shown in this section are the result of matching image and query signa-

tures under the transformation set G which allows changes in scale and location but not in

orientation, and ground distance d = L1;�, the cyclic L1 distance with period T = �. We

use a cyclic distance so that there is a small distance between an orientation close to 0 and

an orientation close to �. The minimum scale parameter is set to 0.25=25% of the total

length of the character medial axis. We choose two initial transformations from which to

begin the phase 3 iteration that veri�es positional consistency and adjusts the scale and

location of the match. Finally, we do not allow matches between signels whose orientations

di�er by more than � = 20�.
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Each of Figures 7.30{7.44 shows the results of a single query into the Chinese character

database. The query pattern and its top thirty matches are shown in top row of these

�gures. In the bottom row, we show where SEDL believes that the query occurs in a

selected subset of the matches. Overall, the results of our pattern retrieval algorithm in the

Chinese character database are excellent. Almost all the top matches for a query contain

the query pattern or a pattern which is very similar to the query pattern. Occurrences of

a query are usually well localized, although there are a few examples in which the pattern

scale is too large (see e.g. Figure 7.30(iv) and Figure 7.36(viii)) and/or the pattern location

is slightly in error (see e.g. Figure 7.32(i) and Figure 7.39(ii)).

There are two points to keep in mind when examining the query results. First, there is

no penalty for extra ink on the page that obscures the pattern occurrence; one may have

to look closely to see that the pattern is indeed present. This is the case, for example, in

Figure 7.30(viii), Figure 7.33(iii), and Figure 7.33(viii). Second, SEDL just matches ink on

the page and does not take note of whether or not strokes are connected, or how strokes

are connected. Consider the example shown in Figure 7.31(vii) in which the scale of the

pattern occurrence is overestimated. This overestimation is understandable because the

boxed region contains ink in a very similar layout to that of the query pattern. SEDL does

not know that the right part of the query pattern should be one continuous stroke. It only

sees that there is ink of the correct orientation in roughly the correct position, and it pays

a small price for the incorrect location. A similar example is given in Figure 7.31(vi). The

fact that a pattern which is similar to the query pattern appears is merely a coincidence

of the juxtaposition of two separate parts of the retrieved character. Neither part alone

contains the query. Of course, there are examples in which no matter how hard one looks,

nothing similar to the query pattern is present. Examples of such errors are shown in

Figure 7.30(vi) and Figure 7.36(vii). Our combination of orientation and position distances

produces a small overall distance even though the higher level structure of the pattern is

clearly not present in these cases.

The running time for each of the queries in Figures 7.30{7.44 is shown in Figure 7.45.

The average time for a single query into our 2000 character database is 95.7 seconds. Thus

the average time to compare one (query,image) pair is approximately 0.05 seconds.

7.5.2.3 Possible Modi�cations

SEDL's signature distance function is asymmetric. The distance is small whenever each

piece of all pattern curves is near a similarly-oriented piece of an image curve. There is no

penalty for image ink which does not match pattern ink. As we saw in the previous section,
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(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Figure 7.30: Chinese Characters Query Result { Example 1. (top) the query pattern and
the top thirty matches. (bottom) some selected query localization results. The ranks of
these selected retrievals in (top) are: (i) 5th, (ii) 9th, (iii) 18th, (iv) 21st, (v) 24th, (vi)

26th, (vii) 29th, (viii) 34th (not shown in (top)).

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Figure 7.31: Chinese Characters Query Result { Example 2. (top) the query pattern and
the top thirty matches. (bottom) some selected query localization results. The ranks of

these selected retrievals in (top) are: (i) 2nd, (ii) 8th, (iii) 11th, (iv) 13th, (v) 17th, (vi)
21st, (vii) 25th, (viii) 29th.
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(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Figure 7.32: Chinese Characters Query Result { Example 3. (top) the query pattern and
the top thirty matches. (bottom) some selected query localization results. The ranks of

these selected retrievals in (top) are: (i) 2nd, (ii) 6th, (iii) 8th, (iv) 11th, (v) 15th, (vi) 18th,
(vii) 21st, (viii) 27th. The scale is slightly overestimated in (ii). In this case, the query

pattern appears �ve times (the large square and the four smaller squares contained inside
the big one) and SEDL �nds the largest occurrence.

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Figure 7.33: Chinese Characters Query Result { Example 4. (top) the query pattern and

the top thirty matches. (bottom) some selected query localization results. The ranks of
these selected retrievals in (top) are: (i) 2nd, (ii) 8th, (iii) 12th, (iv) 15th, (v) 23rd, (vi)

27th, (vii) 30th, (viii) 37th (not shown in (top)).
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(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Figure 7.34: Chinese Characters Query Result { Example 5. (top) the query pattern and

the top thirty matches. (bottom) some selected query localization results. The ranks of
these selected retrievals in (top) are: (i) 3rd, (ii) 9th, (iii) 10th, (iv) 13th, (v) 17th, (vi)

21st, (vii) 26th, (viii) 29th.

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Figure 7.35: Chinese Characters Query Result { Example 6. (top) the query pattern and

the top thirty matches. (bottom) some selected query localization results. The ranks of
these selected retrievals in (top) are: (i) 5th, (ii) 9th, (iii) 11th, (iv) 16th, (v) 19th, (vi)

22nd, (vii) 24th, (viii) 27th. A pattern similar to the query occurs in (iii) and (v) because
of the juxtaposition of two separate parts of the characters. In both cases, the surrounding

ink obscures the pattern appearance.
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(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Figure 7.36: Chinese Characters Query Result { Example 7. (top) the query pattern and

the top thirty matches. (bottom) some selected query localization results. The ranks of
these selected retrievals in (top) are: (i) 3rd, (ii) 10th, (iii) 14th, (iv) 18th, (v) 20th, (vi)
23rd, (vii) 29th, (viii) 30th.

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Figure 7.37: Chinese Characters Query Result { Example 8. (top) the query pattern and

the top thirty matches. (bottom) some selected query localization results. The ranks of
these selected retrievals in (top) are: (i) 2nd, (ii) 10th, (iii) 14th, (iv) 16th, (v) 18th, (vi)

24th, (vii) 26th, (viii) 28th. It is di�cult to see the pattern occurrence in (iv) and (viii)
because of its surroundings.
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(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Figure 7.38: Chinese Characters Query Result { Example 9. (top) the query pattern and
the top thirty matches. (bottom) some selected query localization results. The ranks of

these selected retrievals in (top) are: (i) 2nd, (ii) 5th, (iii) 12th, (iv) 15th, (v) 20th, (vi)
21st, (vii) 25th, (viii) 28th.

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Figure 7.39: Chinese Characters Query Result { Example 10. (top) the query pattern and
the top thirty matches. (bottom) some selected query localization results. The ranks of

these selected retrievals in (top) are: (i) 3rd, (ii) 10th, (iii) 12th, (iv) 15th, (v) 19th, (vi)
24th, (vii) 27th, (viii) 30th.
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(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Figure 7.40: Chinese Characters Query Result { Example 11. (top) the query pattern and
the top thirty matches. (bottom) some selected query localization results. The ranks of

these selected retrievals in (top) are: (i) 6th, (ii) 10th, (iii) 13th, (iv) 15th, (v) 17th, (vi)
21st, (vii) 24th, (viii) 29th. The extra horizontal lines in (iv) make it di�cult to see the
pattern occurrence.

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Figure 7.41: Chinese Characters Query Result { Example 12. (top) the query pattern and
the top thirty matches. (bottom) some selected query localization results. The ranks of

these selected retrievals in (top) are: (i) 3rd, (ii) 8th, (iii) 14th, (iv) 16th, (v) 18th, (vi)
26th, (vii) 28th, (viii) 30th.
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(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Figure 7.42: Chinese Characters Query Result { Example 13. (top) the query pattern and

the top thirty matches. (bottom) some selected query localization results. The ranks of
these selected retrievals in (top) are: (i) 5th, (ii) 7th, (iii) 15th, (iv) 17th, (v) 23rd, (vi)

25th, (vii) 27th, (viii) 30th. Most of these examples show inexact matches of the query and
a region of a database character. The di�erences in appearance are relatively small except

for example (vii).

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Figure 7.43: Chinese Characters Query Result { Example 14. (top) the query pattern and
the top thirty matches. (bottom) some selected query localization results. The ranks of

these selected retrievals in (top) are: (i) 4th, (ii) 6th, (iii) 11th, (iv) 14th, (v) 19th, (vi)
23rd, (vii) 27th, (viii) 30th.
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(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Figure 7.44: Chinese Characters Query Result { Example 15. (top) the query pattern and
the top thirty matches. (bottom) some selected query localization results. The ranks of

these selected retrievals in (top) are: (i) 2nd, (ii) 10th, (iii) 13th, (iv) 15th, (v) 19th, (vi)
23rd, (vii) 25th, (viii) 29th.

such \extra" ink in the vicinity of the pattern occurrence can obscure the visual similarity

between that area of the image and the pattern. The local image signature computed during

the �nal � -EMD check of the veri�cation and re�nement phase can be used to solve this

extra ink problem if it is indeed considered a problem for a particular application. A penalty

can be added to the signature distance which is proportional to the di�erence between the

total amount of image ink inside the �nal search rectangle and the amount of ink in the

scaled pattern. An implementation of this idea should err on the side of smaller rather than

larger penalties since the computed pattern scale and location will not be perfect.

A big di�erence between the shape and color cases is that, as currently implemented,

SEDL does not �nd rotated versions of a given shape pattern within an image. Instead, it

uses curve orientations to direct or guide its search for a possibly scaled version of the given

pattern. A possible solution to �nd rotated shape patterns within the SEDL framework is

to use relative orientations instead of absolute orientations ([33]). For example, we might

compute the attribute portion of a signel by taking the di�erence in tangent orientations

at the endpoints of a short curve piece instead of the average orientation over the curve

piece. SEDL's search for a possibly rotated, scaled version of a given shape pattern can

be directed by the relative orientation attribute since relative orientations will not change

when a similarity transformation is applied to the pattern curves.
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Time (secs)
Query Phase 1 Phase 2 Phase 3 Total

39.7 7.6 37.2 84.5

40.4 9.8 77.5 127.7

16.2 13.9 86.2 116.3

40.0 8.4 30.3 78.7

14.1 12.6 33.2 59.9

36.4 9.4 37.8 83.6

46.6 8.9 72.4 127.9

26.1 14.4 103.4 143.9

40.4 9.6 75.0 125.0

46.5 8.4 62.7 117.6

24.3 11.6 50.7 86.6

45.3 8.9 54.1 108.3

41.3 9.0 60.5 110.8

32.8 8.7 30.5 72.0

22.7 7.9 31.7 62.4

Average 95.7

Figure 7.45: Query Times for the Chinese Character Database.
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Conclusion

Image matching for content-based image retrieval (CBIR) applications is fundamentally

di�erent from image matching in the more traditional computer vision areas of stereopsis

and tracking. In stereo, most of the information in one image has matching information

in the other image (missing information results when part of the scene is visible from one

viewpoint but not the other). The search for a correspondence to a feature in one image

can be limited to the associated epipolar line in the other image. Also, the lighting for

the two images is usually the same. In tracking, consecutive frames are nearly identical.

Estimates of feature velocity can be used to predict where in the next frame a feature will

appear, thus limiting the search space in �nding correspondences. As in stereo, the lighting

is usually constant during tracking. In contrast, the images we desire to match in CBIR can

be visually quite di�erent because most of the information in one image may not have any

matching information in the other; images are not usually of the same scene. Also, a region

in one image might match any region in another. The matching process may be further

complicated by di�erences in illumination that cause the same object to appear di�erently

in two images.

It is now time to take a step back and see what we have done, how it �ts into the

broader picture of image retrieval and image comparisons, and what remains to be done for

the di�cult image matching problems in CBIR.

8.1 Thesis Summary and Discussion

The pattern problem is di�cult because partial matching and transformations are allowed.

The scale component of a transformation plays a critical role here because it determines

how much information in the image to compare to the pattern. A system might incorrectly

conclude that a pattern is not present at some image location if the system's scale estimate

241
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is very inaccurate. We believe that a good estimate for pattern scale is essential for the

e�ciency and correctness of a pattern problem solution, and we developed a novel scale

estimation algorithm that uses the Earth Mover's Distance (EMD) between two attribute

distributions.

The image and pattern signatures used throughout this thesis are distributions of mass

in some feature space, where the amount of mass placed at a feature space point is the

amount of that feature present in the image. We used a combined color-position feature

space for the color pattern problem, and a combined orientation-position feature space for

the shape pattern problem. In our scale estimation algorithm, we used a color feature space

and an orientation feature space for the color and shape cases, respectively. These choices

re
ect our general strategy to obtain fast scale estimates by matching attribute-position

distributions after marginalizing away position information.

The EMD is a general tool to measure the distance between distributions. Because

we believe that mass distributions in a feature space are excellent image signatures for

the pattern problem, we devoted a large part of this dissertation to the EMD, including

modi�cations to aid in partial matching, lower bounds to aid in CBIR query e�ciency,

and computation under transformation sets. We made the EMD more amenable to par-

tial matching with changes that (i) force only part of the mass in both distributions to be

matched (the partial EMD), and (ii) measure the amount of mass that cannot be matched

if there is a limit on the distance in feature space between allowable matches (the � -EMD).

We extended the centroid lower bound to the partial matching case, and we developed

projection-based lower bounds which are also applicable to partial matching. Finally, we

made an extensive study of computing the EMD under transformation sets, including theo-

retical analysis, documentation of the di�culty of the problem, the FT iteration to compute

at least a locally optimal transformation (for a large class of transformation sets), cases with

special structure that allow us to compute directly a globally optimal transformation, and

the previously mentioned scale estimation algorithm that �nds the scale of one distribution

that minimizes its EMD to another.

The use of an iteration to compute the EMD under a transformation set re
ects our

decision on a major choice in the design of a pattern problem algorithm. Motivated by

the importance of the pattern problem in CBIR, we believe that it is more important to

solve many pattern problems quickly with the chance of a small number of errors than to

solve every pattern problem correctly but more slowly. Although the FT iteration is not

guaranteed to �nd a globally optimal transformation, its chances are greatly improved if

the initial transformation is close to optimal. The combination of SEDL's scale estimation

and initial placement methods is an e�cient, very e�ective algorithm for computing a small
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set of promising pattern regions within an image.

SEDL uses a simpler distance function than the EMD for e�ciency reasons. This dis-

tance still allows partial matching under a transformation set, but it gives up the notion

of morphing one distribution into a subset of the other in order to handle large image and

pattern signatures. Our ideal distance measure involves this morphing notion, but also

requires a change in the distribution representation. Currently, each mass in feature space

is placed at a single point in that space. A region which is mainly blue, for example, is

summarized by a mass at the point (blue, region centroid) in color � position space. Our

ideal representation places masses over continuous regions in the feature space. Instead of

summarizing a blue segmentation region as above, we could uniformly distribute mass over

the entire extent of the region in position space. This is a more faithful representation of

the blue region than mass concentrated at a single (color, position) point.

Given image signatures which are continuous mass distributions in feature space, we

need a continuous version of the EMD to compute morphing distances. In section 2.4, we

mentioned work in computing the EMD between two normal distributions and between two

uniform distributions over elliptical volumes. We are, however, unaware of more general

work on the continuous EMD which is capable of matching distributions such as those we

have just proposed.

In an e�ort to understand why the continuous formulation is better than the discrete

one, let us consider matching two distributions of color clusters with the EMD. In one

image, a clustering algorithm might produce two clusters of somewhat similar reds, while

in another image the matching red may be represented as a single cluster which is roughly

the average red color of the corresponding two clusters. The EMD is not sensitive to such

a non-canonicality of its input. In this example, it only pays a small cost to match the red

mass because all three clusters are located close to one another in color space. Of course,

the EMD would pay zero cost if both representations had one cluster with identical reds.

As long as the representation is accurate, it a�ects the e�ciency of the EMD computation

but not the correctness of the result.

Using continuous mass distributions in attribute � position space with a continuous

EMD aims for the same e�ect as above. Suppose, for example, that there are two matching

green areas from two di�erent images. The e�ect of representing the area as one region

of green in the �rst image and two adjacent regions of similar greens in the other will be

negligible under the continuous EMD. This e�ect may not be negligible if mass is placed

only at region centroids because the centroid of the green region in the �rst image may be far

away from the centroids of the green regions in the other image if the regions are large. To

help reduce the impact of such problems, SEDL weighs region distances by pattern region
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area, the theory being that large pattern regions are more stable in appearance and easier

to detect as a single region within the image. The excellent results obtained show that this

strategy is e�ective, but it is still desirable to have a distance function which is provably

robust to non-canonicalities of the representation, yet fast enough to maintain reasonable

interactivity with the user. In the shape case, SEDL avoids such representation problems

to a large extent by using a �ne sampling of image curves. This strategy is feasible because

the shape data is one-dimensional, but a �ne sampling over the 2D image plane, however,

would produce color signatures too large to match in acceptable times for retrieval.

An extreme example in the color case is comparing (for the same image) a segmentation

in which every pixel is a region and one which aims for the largest possible \uniform" color

regions. The EMD between continuous distributions in color � position space derived from

these segmentations should be small. With a continuous formulation, the segmentation

used to produce a color � position signature is an e�ciency issue, but not a correctness

issue. It may be possible to match two continuous distributions of masses more quickly

if there are fewer masses, but the EMD should be roughly the same if one distribution is

replaced by another whose masses cover the same areas of the feature space. Computing

the EMD between continuous distributions, or a good approximation if the exact answer is

too expensive to compute, is a di�cult but worthwhile future research problem.

8.2 Future Work

Developing partial matching distance measures that allow for scale-altering transformations

is a crucial problem in CBIR because semantic image similarity often follows from only a

partial match of unknown size. The road toward practically useful CBIR systems, however,

still has a number of interesting and di�cult challenges ahead.

Speed and Scalability to Large Databases

Users will demand semantic retrieval ability, but will not wait more than a few seconds

for query results. Simple matching schemes on global image statistics will be fast, but are

unlikely to return images which are semantically related to a given query. Speed issues

must be addressed, but correctness issues are more important since there is no point in

computing undesirable answers rapidly. Perhaps a breakthough will come when algorithms

�nd complicated patterns as quickly as they �nd simple ones ([78]). This is not the case in

SEDL, but intuitively a complicated pattern is more distinctive than a simpler one, and this

distinctiveness should make it easier to �nd the pattern or discover that it is not present.

It is not straightforward to avoid explicit query-image comparisons via clustering database
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images (and comparing a query to cluster representatives) because partial match distance

measures do not obey the triangle inequality and may be asymmetric.

Object Recognition in Cluttered Scenes

The experiments discussed in this thesis allow for changes in either camera pose or lighting,

but not both at the same time. For example, our object recognition experiments use images

of an object under di�erent illuminants but taken with the same camera pose. In the

color pattern retrieval experiments, we allow certain changes in object pose but do not

account for changes in lighting. SEDL's pattern search is directed by the colors of regions,

so big di�erences in lighting for the database and query images would cause a problem.

A completely general pattern problem algorithm would allow for both photometric and

geometric factors. In fact, some viewpoint di�erences may mean that di�erent parts of an

object may be visible in the query and database images. Thus, a pattern problem algorithm

may also have to allow for partial matching of the query pattern. Allowing all these factors

at once makes it di�cult to rule out a pattern occurrence at a particular location. Maybe

the pattern is present but the system's scale estimate is inaccurate, or all the information

in the query should not be matched, or a color correction must be made to account for

lighting.

Combination of Di�erent Search Modalities

Another important issue in pattern problem algorithms is the use of more than one modality

in judging visual similarity, for example region shapes and colors. Although SEDL is a

uniform framework for the color and shape pattern problems, it does not use both color

and shape information together. A good pattern problem algorithm that uses both color

and shape should know when to use which information. Consider, for example, searching

for a grayscale Apple logo within a color advertisement. The outline of the apple will match,

but the colors will not. The problem of combining di�erent types of information to measure

perceptual similarity is a di�cult one. For example, how much do the shapes of regions

contribute to the perceptual similarity or dissimilarity of two color patterns?

Shape Representations and Distance Measures

We used the word shape in this thesis to mean a salient image curve or region boundary,

and we considered the problem of measuring distances between individual shapes and sets

of shapes. In the former problem, we represented shapes by their arclength versus turning

angle curves and measured distance as sums of orientation di�erences between correponding
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points along two curves. Of course, there are many other possible representations and

distance measures, including comparison of coe�cients in a Fourier decomposition, control

points in a B-spline representation, moments in an area-based representation, or the amount

of energy to deform one shape into another, just to name a few. We represented a set of

curves as a set of (curve point, orientation) pairs obtained by a dense sampling of the curves.

As in the single shape case, the distance between two sets of shapes was measured as a sum

of orientation di�erences between corresponding points.

Our choices of representation and distance measures were motivated by the need to

handle partial matching and transformations, but there may be better representations and

distances for CBIR. The best choice may depend upon the application domain; nature im-

ages, product advertisements, Chinese characters, textbook drawings, and CAD models, for

example, might all require di�erent representations and distances. Perhaps the continuous

EMD can be used as a common distance measure for di�erent representations of both single

shapes and sets of shapes, where mass is spread uniformly along curves or over regions. A

B-spline representation, for example, describes the distribution of mass as a collection of

uniform distributions over B�ezier arcs. Is the morphing distance provided by the continuous

EMD a perceptual one? For comparisons of one shape to another, maybe using the EMD

to compare distributions of energy in frequency space will yield a perceptual measure of

shape similarity, as it does in the texture case ([69, 68, 66]).

Image Browsing

We did not touch on the subject of navigating in the space of database images, but this is

also an important mode of user interaction with a system. A user may not know exactly

what he/she wants, but instead would like to browse the images. Navigation according

to global color similarity is accomplished quite e�ectively by embedding images in a low

(two or three) dimensional space such that distances in this space approximate well Earth

Mover's Distances between image color signatures ([67, 69, 65]). How can this be done when

there is no inherent metric structure imposed by the image distance function as for partial

match distance measures, and when there are many dimensions along which images di�er.

Perhaps a solution to the general image matching problem of �nding all pairs of similar

regions from two images can help. Imagine a graph structure on database images where

there are many links connecting two images, one for each pair of similar regions. These links

may help navigate locally, but how can we give a user the big picture of database contents

when the underlying image space has high dimension?
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The Image Matching Problem

Solutions to the more general image matching problem will take us further toward semantic

image retrieval than solutions to the pattern problem. As mentioned in the introduction,

an algorithm for the pattern problem may be useful as a subroutine within an algorithm

for the image matching problem. But a solution to the image matching problem is far from

the end of the story. It is also a major challenge to interpret the results to provide semantic

retrieval. This involves looking at positions of similar regions within the database and

query images. For example, blue above green in a nature image likely indicates a scene of

grass against sky, while blue below green probably means a scene of grass leading to water.

Perhaps arti�cial intelligence knowledge representations and learning algorithms will prove

useful here.

8.3 Final Thoughts

In the midst of all the technical details and interesting problems that arise in content-

based image retrieval, we should not forget that the ultimate goal is to allow users to �nd

information reliably and e�ciently. Image-based and text-based search should complement

one another to advance toward this goal. At the present, there is little collaboration between

the traditional, text-oriented database community and the image-oriented computer vision

and image understanding communities, but this will need to change if we are to produce

the best possible information retrieval systems.
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