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Abstract

This thesis is devoted to the Earth Mover’s Distance and its use within content-based image
retrieval (CBIR). The major CBIR problem discussed is the pattern problem: Given an
image and a query pattern, determine if the image contains a region which is visually similar
to the pattern; if so, find at least one such image region. The four main themes of this work
are: (i) partial matching, (ii) matching under transformation sets, (iii) combining (i) and

(ii), and (iv) effective pruning of unnecessary, expensive distance/matching computations.

The first pattern problem we consider is the polyline shape search problem (PSSP): Given
text and pattern planar polylines, find all approximate occurrences of the pattern within the
text, where such occurrences may be scaled and rotated versions of the pattern. For a text
and a pattern with n and m edges, respectively, we present an O(m?n?) time, O(mn) space
PSSP algorithm. A major strength of our algorithm is its generality, as it can be applied

for any shape pattern represented as a polyline.

The main distance measure studied in this thesis is the Farth Mover’s Distance (EMD),
which is an edit distance between distributions that allows for partial matching, and which
has many applications in CBIR. A discrete distribution is just a set of (point,weight) pairs.
In the CBIR context, the weight associated with a particular point in a feature space is
the amount of that feature present in the image. The EMD between two distributions is
proportional to the minimum amount of work needed to change one distribution into the
other, where one unit of work is the amount necessary to move one unit of weight by one
unit of ground distance. We give a couple of modifications which make the EMD more
amenable to partial matching: (i) the partial EMD in which only a given fraction of the
weight in one distribution is forced to match weight in the other, and (ii) the 7-EMD which
measures the amount of weight that cannot be matched when weight moves are limited to

at most 7 ground distance units.

An important issue addressed in this thesis is the use of efficient, effective lower bounds
on the EMD to speed up retrieval times. If a system can quickly prove that the EMD is

larger than some threshold, then it may be able to avoid an EMD computation and decrease



its query time. We contribute lower bounds that are applicable in the partial matching case
in which distributions do not have the same total weight. The efficiency and effectiveness of
our lower bounds are demonstrated in a CBIR system which measures global color similarity
between images.

Another important problem in CBIR is the EMD under transformation (EMDg) prob-
lem: find a transformation of one distribution which minimizes its EMD to another, where
the set of allowable transformations G is given. The problem of estimating the size/scale at
which a pattern occurs in an image is phrased and efficiently solved as an EMDg problem
in which transformations scale the weights of a distribution by a constant factor.

For EMDg problems with transformations that modify the points of a distribution but
not its weights, we present a monotonically convergent iteration called the FT iteration.
This iteration may, however, converge to only a locally optimal EMD value and transfor-
mation. The FT iteration is very general, as it can be applied for many different (ground
distance, transformation set) pairs, and it can be modified to work with the partial EMD, as
well as in some cases in which transformations change both distribution points and weights.
We apply the FT iteration to the problems of (i) illumination-invariant object recognition,
and (ii) point feature matching in stereo image pairs. We also present algorithms that are
guaranteed to find a globally optimal transformation when matching equal-weight distribu-
tions under translation (i) on the real line with the absolute value as the ground distance,
and (ii) in any finite-dimensional space with the Euclidean distance squared as the ground
distance.

Our pattern problem solution is the SEDL (Scale Estimation for Directed Location)
content-based image retrieval system. Three important contributions of this system are (1)
a general framework for finding both color and shape patterns, (2) the previously mentioned
novel scale estimation algorithm using the EMD, and (3) a directed (as opposed to exhaus-
tive) search strategy. We show that SEDL achieves excellent results for the color pattern
problem on a database of product advertisements, and the shape pattern problem on a
database of Chinese characters. A few promising pattern locations are efficiently computed
at query time without having to examine image areas that obviously do not contain the
pattern. SEDL uses the 7-EMD to help eliminate false positives resulting from difficulties

in trading off, for example, color and position distances to measure visual similarity.
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