Chapter 7

The SEDL Image Retrieval System

The goal of our content-based retrieval system is to find quickly all database images that
contain a region similar to a given query pattern. In other words, processing a query consists
of solving many pattern problems with the same pattern input. We will illustrate the
general strategy described in this chapter with two specific databases: (1) a color database
of scanned product advertisements, and (2) a shape database of Chinese character bitmaps.
For the color database, the query patterns are product logos. The goal is to find all the
ads for the given product and for products with a similar logo. For the shape database, the
query patterns are characters that occur repeatedly within other Chinese characters. The
goal is to find all the characters that contain strokes similar to those in the query. Examples
of a query pattern and a database image that should be returned for the query are shown

in Figure 7.1 for both the color and the shape case.

Our image retrieval system is called SEDL, which stands for Scale Estimation for
Directed Location. As its name implies, SEDL performs a directed (as opposed to ex-
haustive) pattern search once it has computed an estimate for the size at which the pattern
might occur within an image. If we imagine a search rectangle moving and changing size
and orientation over the image, then this rectangle will eventually converge or settle (SEDL)
on the image area where the system believes the pattern exists. A few promising initial
placements of search rectangles are efficiently computed at query time without having to
examine image areas that obviously do not contain the pattern. The initial size of the search

rectangles is determined by the scale estimate.

In the shape pattern problem solved by SEDL, images (and patterns) are sets of curves
such as might be produced by edgel detection and linking, or by any standard drawing
program. For our Chinese character database, the first preprocessing step is to reduce each

bitmap character to a set of curves by computing its medial axis.
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Figure 7.1: Query Patterns and Related Database Images. Here we show examples of a
query pattern and a database image that should be retrieved in (a) the color advertisement
database, and (b) the shape Chinese character database.
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The image signature used in SEDL is a distribution that records what attributes occur
where in an image, as well as the amount of the attribute present at the recorded location.
For the advertisement database, the attribute is color; for the Chinese character database,
the attribute is orientation (of ink along image curves). In general, a pattern “occurs” in
an image to the extent that there is a transformation of the pattern attribute locations that
aligns similar attributes in the query and image. In the color case, we try to align uniform
color regions in the pattern and query with similar colors. SEDL’s signature distance
function will be small whenever each pattern region is close to an image region of similar
color. In the shape case, we try to align pieces of pattern curves with pieces of image
curves of similar orientations. SEDL’s signature distance function will be small whenever
ink along pattern curves is close to ink along image curves of similar orientation. The image

signatures and signature distance function used in SEDL are the subject of section 7.1.

There are three phases in SEDL: (1) scale estimation, (2) initial placement selection, and
(3) match refinement and verification. See Figure 7.2. In the first phase, only the image
and query attributes (and not their locations in the image plane) are used to estimate
the scale at which the pattern might occur in the image. The scale estimate is computed
using the EMD in attribute space between the image and query signatures marginalized
over position. The scale estimation algorithm is discussed in section 7.2. The goal of the
initial placement phase is to identify efficiently a handful of promising image regions where
the pattern is likely to occur. An image region is “promising” if its color signature is
similar to that of the pattern. The size of the regions examined is determined by the scale
estimate returned by the previous phase. Only the coarse position information of whether
or not an attribute is located in a particular region is used during this phase. The initial
placement phase is described in section 7.3. Finally, for each initial placement of the query
at the estimated scale, we check for positional consistency of the attributes, modifying the
attribute locations by some transformation if this will help improve the match. This last
refinement and verification stage is the subject of section 7.4. We will describe the three
phases in SEDL mainly as applied to the color pattern problem. The chapter concludes
with results of the entire matching process in the advertisement database (section 7.5.1)

and the Chinese character database (section 7.5.2).
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7.1 SEDL’s Image Signatures and Distance Function

The image signature X is a discrete distribution of mass in a combined attribute-position

space:

X = {(X,W),...,( X, Wn) }
= {((Alvpl)vwl)v"'v((AMvPM)va)}7

where distribution point X; = (Aj, Pr) consists of a point A; in attribute space and a point
Py in image position space. The distribution pair (X7, Wr) = ((Ar, Pr), Wr) indicates that
there is a region of size Wy located at P; with attribute Aj. For the advertisement database,
P is the centroid of a region of roughly constant color, its attribute Ay is the average color
in the region, and its weight Wy is the area of the region. This idea is conveyed in the
example in Figure 7.3. For the Chinese character database, Py is the centroid of a small
curve or segment, its attribute Ay is the average orientation along the curve, and its weight
W7 is the length of the curve over which the average is taken. In the shape case, a region
refers to a segment of a curve.

Throughout this chapter, we denote the signature of a database image by X as given

above, and the signature of a query pattern by Y, where

Y = {(V,U1),....,(Yn,Un) }
= {((B17Q1)7U1)7“‘7((BN7QN)7UN)}'

Once again, we assume the normalization Wy = Uy = 1. A query pattern is similar to
part of a database image to the extent that there is a transformation of the pattern region
positions { s } that aligns regions in X and Y that have similar attributes.

In the color case, a small set of dominant image colors {a;}7, is computed by clustering
in color space; in the shape case, a small set of dominant orientations {a;}™, is computed by
clustering image curve orientations. In both cases, all A are members of the set {a;}7,. A
similar statement holds for the attributes B in the pattern attribute X position signature.
The signature creation processes for the color and shape pattern problems are discussed in
sections 7.5.1.1 and 7.5.2.1, respectively.

In order to define a signature distance function, we first define a distance function dap, in
the combined attribute-position space. Given a distance function d, between attributes,

we use a linear combination distance

dap((Av P)? (Bv Q)) = d;ttr(Av B) + /\dPOS(Pv Q)v (7'1)
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Figure 7.3: Signature in Color x Position Space. Not all signature elements are labelled.
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where

dattr(A7 B) lf dattr(A7 B) S T

00 otherwise

daie(A, B) = { and  dpos(P, Q) = [|P = Q|[3-

The attribute distance is set to infinity if it is above some user defined threshold 7. This
is to prevent matching of attributes which are very different but happen to be at the same
position in the image plane. For colors in CIE-Lab space, we use du (A4, B) = ||A— B||2, the
Euclidean distance. For orientations in radians, we use dagi(A, B) = mingez |(A+k7) — B|,
the cyclic L distance with period T' = 7 radians described in section 6.4.1.4. The pixel
locations of region centroids are normalized by dividing by the minimum image dimension.
If, for example, a database image has width W and height H pixels with W < H, then the
column coordinate P, € [0,1] and the row coordinate P, € [0, H/W], where P = (P;, P,).

The factor A in front of the position distance dpos is chosen as follows. Given two
“equal” distances Dag¢r and Do in attribute and position space, and the relative importance
a € (0, 1] of attribute differences versus position differences, we choose A so that (1—«)/a =
(ADpos)/ Dagir- We use oo = 25% attribute and (1 — «) = 75% position. We emphasize the
position information because it was not used in the scale estimation or initial placement
phases, and, if these phases worked correctly, the verification and refinement phase starts
in image areas with similar attributes to those in the pattern. On the other hand, we
want the attribute values to guide our matcher, so we cannot make « too small. We
set Dpos = (0.10)%, which corresponds before normalization to the square of 10% of the
minimum image dimension. In the color case, we set Dyt = 5 CIE-Lab units; in the shape

case, we set Dy = 10° = 0.175 radians.

Armed with the ground distance dy, in the combined attribute-position (what-where)

space, we define the signature distance function SD as
SD(X,Y)=min D(¢, X,Y),
(X,Y) = iy D(6, X, Y)

where

N
D(1, X, Y) = Usdap((Ay(y, Pony)s (B1, Q1))
J=1

and

U ={¢:[1.N] = [1.M]}

is the set of functions from [1..N] to [1..M]. If the image attribute A, s at position Py is
matched to the query attribute Bj; at position ()7, then we pay a cost of the distance in the
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combined attribute-position space times the weight of the query attribute. The allowable
matchings W are unconstrained; each query region ((attribute,position) pair) can match
any image region. Note that this is very much a one way distance — it is small when every
query region is near some image region with a similar attribute value, but not necessarily
vice-versa. Also note that the image weights do not appear in our distance function. These

weights, however, are used explicitly in the scale estimation and initial placement phases.

As mentioned previously, similarity of a query pattern to a database image is judged

modulo a transformation of region locations. Thus we want to compute the distance

g
= i D, X, g(Y
Jemin (¥, X, 9(Y)),

where

9(Y) = { ((B1,9(Q1), ), ..., (BN, 9(@N)), UN) }

only modifies the region locations, not the region attributes. In full, we have

N
SDg(X,Y) = min ZUJdap (Ay(ay Pugn)s (Br, 9(Q))

= gergnipneq; JZ:; UJ(d;ttr(Alb( J) ,Br) + /\dPOS(PdJ ,9(Q)))-
In section 7.4, we show how to find a local minimum of SD¢ (X, Y) using the same alternation
idea behind our EMD iteration. We also discuss how the distance function SDg compares
with the distance function DI used in the ICP registration algorithm (see section 2.5.2)
and with the EMD, including our reasons for choosing SD over these other distance mea-
sures. As with any iterative optimization scheme in a space with local minima, the key to
finding the global minimum is to have a good starting point for the iteration. For us, this
means selecting a good initial transformation ¢(®) € G. In turn, this means selecting a good
initial scale and placement of the pattern within the image. The scale estimation and initial

placement steps are the subjects of the next two sections.

7.2 The Scale Estimation Phase

Our scale estimation algorithm considers only the attributes in an image, not their lo-
cation. It operates on the previously described signature distributions once position has

been marginalized out. If we marginalize the attribute-position distributions X and Y over
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position, we get the attribute distributions

a = {(a,w1),...,(am,wy,)} and

b = {(b,u1),...,(bnyun) },

respectively, where

w; = Z Wi and u; = Z Uj.

I:Ar=a; J:B j=b;

This marginalization throws away the positions of attributes and combines the weights for
the same attribute at different image locations into a single weight for that attribute. If,
for example, the attribute-position image signature X notes 10% red at the top of an image
and 20% red at the bottom, then the attribute signature a simply notes 30% red in the
image. Note that the attribute signatures also have total weight one (wy = uy = 1) since
the attribute-position signatures were normalized to have weight one (Wy = Ux = 1).

Our initial scale estimate is obtained by running the algorithm in section 4.5 on the
attribute signatures a and b. Recall that this estimation algorithm scales down the weights
of the query signature b until there is no further improvement in the EMD between the
image signature a and the modified query signature. The scale ¢” at which this occurs
is taken as the scale estimate if EMD(a, c"b) < 7, where 7 is a threshold on how well the
attributes must match to obtain a visually acceptable match. If not, SEDL assumes that the
pattern does not occur within the image, and the initial placement and refinement phases
are not performed.

The main property of the scale estimation algorithm is that the error that it makes
is roughly equal to the minimum amount of background clutter over all query attributes,
where the amount of background clutter for an attribute is the amount of that attribute
present in the image but not part of the query occurrence. If there is a query attribute that
occurs in the image only within the query occurrence, then the scale estimate will be very
accurate, regardless of the amount of background clutter for other query attributes. Please

refer back to section 4.5 for details and examples from the advertisement database.

7.3 The Initial Placement Phase

All the initial transformations of the query for our iteration will have scale ¢V as returned
by the scale estimation step. The selection of initial placements of the query at scale °

uses the optimal flow FY = (fg) returned by EMD(a, c’b). This flow provides important
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information about what attributes in the image match what attributes in the query. In the
color case, for example, the optimal flow tells us which image colors match which query
colors. Since the EMD achieved by this flow is small (< 7, otherwise this phase would not

be considered), the attributes matched by F° are similar.

The total weight of query attributes that match attribute ¢ in the image is

n
_§ : 0
Uy = IRl

J=1

where the total weight of the scaled query signature is c.

Basically, v defines the query
signature in terms of the image attributes. In the color advertisement database, for example,
we can think of v; as the amount of image color 7 that occurs within the query (assuming
that the scale estimate is fairly accurate). The first step in our initial placement selection
is to compute the probability or confidence that an image region with attribute ¢ is part of

the query pattern (if it occurs within the image). The probability is given by the quotient

The total amount of attribute ¢ in the image is w;, while the amount of attribute ¢ that
occurs within query regions is estimated to be v;. Thus, if we randomly choose an image
pixel from all the pixels with attribute ¢, the probability that this pixel belongs to a query
region is ¢; = v;/w;. The flow feasibility conditions imply v; < w;.

In Figure 7.4, we show an example that illustrates confidences in attributes for the color
pattern problem. Yellow is a 98% confidence color since virtually all the yellow in the
image is needed to match yellow in the scaled query. The confidence for yellow is not 100%
because the pattern is slightly underestimated in scale. About 89% of the purple in the
image is matched to purple in the scaled query. Purple is also a high confidence color. The
confidence for purple is not 100% because the pattern does not include all the purple on

the Ziploc box, and the pattern is slightly underestimated in scale.

For the example in Figure 7.4, white, black, and brown are low confidence colors. Al-
though the white on the Ziploc box within the image is needed to match white in the scaled
query, there is a lot of other white in the image (the writings 71 will keep my sandwich
fresh” and ”Ziploc has the lock on freshness”, the chalk next to the Ziploc box, and the
white on the Ziploc box that is not part of the pattern). The black and brown in the image
are not needed to match any color in the pattern. The main idea in the initial placement
phase is only to examine image regions that contain (relatively) high confidence colors. In

this example, SEDL never needs to examine the upper half of the Ziploc advertisement at
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98%  89% 69%

22% 0% 0%

Figure 7.4: An Example of Color Confidences. The left half of the figure shows a Ziploc
advertisement, along with the Ziploc query pattern scaled according to SEDL’s scale esti-
mate. The right half of the figure shows the confidences computed for various query colors.
See the text for further explanation.

query time since it only contains low confidence colors (black and white).

The result of the first step in the initial placement phase is a set I™ of image attributes
that have significantly high confidence (¢; > /3, with, for example, § = 0.50 = 50%). The
regions in the image plane with high confidence attributes are good places to check further

for initial placements. Pseudocode for this step is shown below.

function G = Initial Transformations(X,a,c, FO [ ;1ax,3)

5™ (0 C_
vi=3 = fijy =1 m

qg=v/w
I"={i:q¢>p} U {argmax;q }

end function

Note that we always include the image attribute of highest confidence in the set I, even
when this maximum confidence is less than the threshold 3.

The second step in the initial placement phase is to compare the image signature in rect-
angular regions of the image plane to the query signature expressed in image attributes (v).
The aspect ratio of the rectangles is equal to the aspect ratio of the bounding box around

the query pattern, while the area of the rectangles is ¢® (the scale estimate computed in
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the previous phase). Let Ry denote the origin-centered rectangle with these dimensions.
This canonical rectangle will be centered at various image attribute positions for signature
comparison. If we denote the image signature over window R by w', then the similarity

measure used is the Histogram Intersection H (w',v) between w’ and v:
m
H(wh, v) = Z min (wf, vg).
=1

The higher this value, the more similar the signature in local area R is to the query signature.
Please refer back to section 2.2 for more details concerning Histogram Intersection.

The locations at which to center Ry are exactly the locations of high confidence image
attributes in I*; we do not try every image location. Thus, the search for promising image
regions is directed (the D in SEDL) by the relatively high confidence (i.e. low background
clutter) colors. We keep track of the best placements in a variable called optPlacements.
Associated with each placement is a Histogram Intersection value. The user supplies the
maximum number /.y of initial similarity transformations to compute. Pseudocode for the

algorithm described thus far is shown below.

function G = Initial Transformations(X,a,c, FO [ ;1ax,3)
v =0 %, it=1,...,m
qg=v/w
I"'={i:q¢>p} U {argmax;q }
optPlacements = {}
foreach i~ ¢ I*
foreach ((Ar, Pr),Wr) € X such that A; = a;»
if (dist(Pr,optPlacements) too small) continue
R=Ry® P; /* center Ry at Pr */
T={((Axk, Px),Wk) : Px € R} /* rectangular range search */
/* compute image attribute histogram over R */
wh=0eR"
foreach ((Ag, Px),Wg) €T
7 = attribute#(Ak)
W = Wi
end foreach
/* compute Histogram Intersection */
HI = H (v, v)

end function

R

Computing the local histogram w'™ requires a 2D rectangular range search for image
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regions inside R. This can be done in output sensitive time O(log M + k) using O (M log M)
space or in time O(vV'M + k) using only O(M) space ([15]), where M is the number of
regions in the image attribute-position distribution, and & is the number of such regions
with location inside R. Both range searching results referred to above require O(M log M)
preprocessing time. Note that we are really computing an approximation to the local image
signature inside R since we count an entire region as inside R if its centroid is in R. Also
note that if a placement is too close to a previously chosen good placement, then we do not
even try the new placement. This is an efficiency consideration that help keeps the running
time low.

It remains to explain exactly why we choose to keep a placement and which previously
chosen placement is discarded. Here are the rules. (1) If optPlacements is full, we do
not include a placement with Histogram Intersection (HI) value less than the minimum HI
value currently in optPlacements. (2) If a placement P is close to a placement P already in
optPlacements, and P has a higher HI value than ]37 then we replace P by P. (3) If the HI
value of P does not exceed the HI value of all similar placements currently in optPlacements,
then we do not include P. (4) If we get this far without deciding the fate of P, then its HI
value is higher than some currently selected placement and there are no nearby placements
in optPlacements. If optPlacements is not full, then we simply add P to optPlacements.
Otherwise, we replace the placement with the lowest HI value with P.

For the refinement stage that comes next, we actually need the similarity transforma-
tion g = (s,6,1,,t,) that transforms the query bounding box into the Rp, for each Py in
optPlacements. Just before computing this transformation for a particular P., we do a
small local search around P, to see if the placement P, can be improved. Pseudocode for

the whole initial placement phase is shown below.

function ¢ = Initial Transformations(X,a,c®, F° [ ax,0)

v =iy %, it=1,...,m

qg=v/w

IF={i:q¢>p} U {argmax;q }

optPlacements = {}

foreach " € I*

foreach ((Ar, Pr),Wr) € X such that A; = a;»
if (dist(Pr,optPlacements) too small) continue
R=Ry® P; /* center Ry at Pr */
T={((Axk, Px),Wk) : Px € R} /* rectangular range search */
/* compute image attribute histogram over R */
wf=0€eR"
foreach ((Ag, Px),Wg) €T
7 = attribute#(Ak)
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Wl = Wi
end foreach
/* compute Histogram Intersection */
HI = H (v, v)
/* accept placement P ? */
if ((size(optPlacements) == [,.x) and
(HI < min HI in optPlacements)) continue
if (HI > HI of similar placement P in optPlacements)
replace P with Px /* replace */
continue
elseif (HI < HI of all similar placements in optPlacements)
continue /* do not add */
end if
if (size(optPlacements) < lpax)
add (Pg,HI) to optPlacements /* add */
else
remove min HI placement in optPlacements /* replace */
add (Pg,HI) to optPlacements
end if
end foreach
end foreach
/* compute similarity transformations to return */
G={}
foreach (P, HI) in optPlacements
/* check small perturbations of placement P */
P = P+ i x (height(Ro)/4) +j x (width(Ro)/4) i=—1,0,1,j=—1,0,1
Prax = argmax;—_1,0,1,j=—1,0,1 Hl(placement P;;)
add (¢ : query bounding box — Ry & Puax) to G
end foreach
return(G)
end function

The only expensive step here is the rectangular range search. The number of outer loop
iterations and range searches is kept small by only considering locations of high confidence

attributes which are significantly different from placements already chosen.

7.3.1 Experiments with the Color Pattern Problem

In this section, we illustrate the performance of the initial placement algorithm for the color
pattern problem. In all of the examples in this section, we use [ = 2 placements and
8 = 0.50 = 50%. The placement with the higher histogram intersection score is shown in
red, while the other placement is shown in black. For each (image,pattern) pair, we give the

attribute-position distribution sizes (M for the image and N for the pattern), the marginal
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attribute distribution sizes (m colors for the image and n colors for the query), and the
running time 75 for the second phase. The time T3 does not include the running time of
the first phase to produce the scale estimate. The parameters given to the scale estimation
algorithm are ¢y, = 0.001 = 0.1%, . = 0.001, and ¢4 = 0.0001 CIE-Lab space units.

The results in Figures 7.5-7.9 are excellent, despite sometimes imperfect scale estimates.
Recall that the scale estimation algorithm uses only the amounts of colors present in the
image and the pattern, and not their positions. When the pattern appears in more than
place in the image, the scale estimate is therefore likely to be greater than the scale of any
single pattern occurrence. This is the case for examples shown in Figure 7.7(c) and Fig-
ures 7.8(a),(d). In each of these overestimated scale, multiple pattern occurrence examples,
the initial placements cover all occurrences of the pattern.

The scale estimate would be guaranteed to be at least the sum of the pattern occurrence
sizes if the occurrences in the image had exactly the same colors as the pattern itself and if
we did not perform the color clustering efficiency step that represents the image and query
as faithfully as possible with as few colors as possible. Figure 7.7(d) shows an example in
which the scale is underestimated. In this example, both initial placements are contained
within the pattern occurrence in the image.

At least one initial placement in all the examples in Figures 7.5 through 7.8 is very
accurate, and in some cases near perfect as in Figure 7.5(c) and Figures 7.6(a),(d). Some-
times the heuristics used for choosing the initial placements without considerable overlap
perform poorly, as in Figure 7.7(a). In Figure 7.9, we show some examples in which we
search for a logo in advertisements for products with a similar logo to that of the query. In
all these examples, the initial placements occur over image regions with color content which

is similar to the color content of the query logo.

7.4 The Verification and Refinement Phase

Recall SEDL’s notion of visual similarity that each pattern region is close to an image
region of similar color or curve orientation (in the shape case). In the verification and
refinement phase, SEDL iteratively improves its estimate for the pattern scale, orientation,
and location, starting from the scale and locations determined by the scale estimation and
initial placement phases. See Figure 7.10 for this main idea illustrated in the color case. The
leftmost column contains a pattern that occurs in the image in the rightmost column. The
pattern and image signatures in color X position space are shown in the middle columns.
There is a similarity transformation ¢g* of the pattern regions that aligns pattern regions

with image regions of similar colors. Our goal is to find ¢* starting from ¢(®) given by the
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InTrRoBuCinGg BonoFe LigHTE

Figure 7.5: Initial Placement Results — Example Set 1. (a) M = 491, m = 20, N = 203,
n =14, T, = 0.012s. (b) M = 1002, m = 41, N = 180, n = 18, T3 = 0.010s. (c) M = 763,
m =35, N =265, n =25, Ty = 0.007s. (d) M =871, m =31, N =84, n = 8, T = 0.008s.
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We're

PSORIASIS:

Figure 7.6: Initial Placement Results — Example Set 2. (a) M = 894, m = 29, N = 160,
n = 14, Ty = 0.021s. The scale estimation and initial placement are near perfect, although
the heuristic for selecting initial placements without sizeable overlap performed poorly. (b)
M =596, m =16, N =127, n =9, T3 = 0.004s. (c) M = 1348, m = 35, N = 325, n = 20,
Ty =0.100s. (d) M =382, m =13, N =228, n = 19, T3 = 0.007s. The lower scoring initial
placement is only slightly offset from the correct placement. The higher scoring placement
is also a good guess at the pattern occurrence given that the exact locations of the colors
inside the rectangle are not used.
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Figure 7.7: Initial Placement Results — Example Set 3. (a) M = 648, m = 20, N = 436,
n =37, T, = 0.005s. (b) M =533, m =22, N =191, n = 12, T5 = 0.005s. Although the
scale is underestimated, the two initial placements are both contained within the pattern
occurrence. (¢) M = 545, m = 27, N = 228, n = 19, T; = 0.004s. The pattern scale
is overestimated due to the occurrence of the pattern at three different image locations.
The two initial placements contain all three pattern occurrences. (d) M = 703, m = 21,
N =436, n = 37, T, = 0.008s. As in (b), the scale is underestimated but the two initial
placements are both contained within the pattern occurrence.
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Figure 7.8: Initial Placement Results — Example Set 4. (a) M = 898, m = 30, N = 354,
n = 36, Ty = 0.023s. The pattern occurs twice and the scale is overestimated. The higher
scoring placement contains both instances of the pattern. (b) M = 669, m = 32, N = 180,
n =18, 15 = 0.003s. (¢) M =873, m =23, N =436, n =37, T, = 0.003s. (d) M = 888,
m = 43, N = 444, n = 43, T; = 0.009s. Both initial placements overlap one pattern
occurrence.
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2

Figure 7.9: Initial Placement Results — Example Set 5. In each of these examples, we search
for a pattern that does not occur within an image. (a) M =410, m =9, N = 325, n = 20,
T3 = 0.008s. The yellow and red of the Cornpops logo matches the yellow and red of the
shredded wheat box. (b) M = 381, m =9, N = 325, n = 20, T3 = 0.006s. The yellow
and red of the Cornpops logo matches the yellow and red of the cheerios box and leggos
beneath the box. (¢) M = 409, m = 9, N = 265, n = 25, T3 = 0.007s. The 100% Bran
boxes contain white, purple, and a little bit of yellow as in the Taco Bell logo. (d) M = 420,
m =9, N =175, n = 10, Ty = 0.009s. The X14 label is similar to the Comet logo in its
color composition.

°o 3

o.

L]

(1@ °

Figure 7.10: The Verification and Refinement Phase. See the text for discussion.
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scale estimation and initial placement phases. Notice the importance of starting close to
an optimal transformation. The pseudo American flag in the upper left-hand corner of the
image contains red, white, and blue just like the query pattern. The search rectangle might

be pulled toward this incorrect pattern if the iteration starts too close to the American flag.

We can use the same alternation idea behind the FT iteration to find at least a local

minimum of our signature distance function under a transformation set:

N
SDg(X,Y) = [ uin JZ::I Us(daser(Ap(y, Ba) + Adpos(Py 1y, 9(Q))) -

For a fixed transformation ¢(¥), we solve

d;ttr Aw (J) BJ) + AdeS(Plb (QJ))) (7-2)

||M2

This is trivial since W is the set of unconstrained matchings from [1..N] to [1..M]. The

solution is

¢(k)(¢]) = arg Ier[m%](d;ttr(AIv BJ) + /\dPOS(va g(k)(QJ))) J=1,...,N. (7'3)

That is, the correspondence step (7.2) involves N nearest neighbor computations over a set
of size M. We shall come back to this computation shortly. The transformation step for a

fixed matching ¥ is to compute the optimal transformation

N
g" ) = arg mi > Us(digee( Ay ()5 Br) + Adpos(Pyi 1y 9(Q)))- (7.4)
=1

In performing the minimization (7.4), we need only compute

g(k‘H) = arg rgneln Z Uydpos( de ,9(Q1)) (7.5)
J=1

since we only allow transformations g of the attribute-position signature that do not modify

the attributes. The minimization (7.5) is easy to compute since we use dpos = L3 in SEDL.

If we let D) = D(xp(*) X, g(¥)(Y)), then it is easy to show that

0 < DD < D) v, (7.6)
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Indeed,

(7.2) = D® = D(u® X, ¢P(Y))
= D) X, g (Y))

DU+, X, gM(Y))  and

>

from which (7.6) follows. Hence, we have a monotically convergent sequence < D) >
The result of the previous initial placement phase is a handful (typically < 5) of initial
transformations ¢(®) from which to begin the above iteration.

Now that we have presented the iteration and proved its convergence, let us return to
the correspondence step computation (7.3). A brute force computation of ¥ (*) requires com-
puting dap((Ar, Pr), (B, Qyg)) for all MN pairs (I,J) € [1..M] x [1..N]. This computation

time can be greatly improved by reorganizing the computation (7.3) as

s = arg'rﬁin]@ min (da,A1 Ba) + Ms(Prg (@) T =10 N
1ell..m cAr=a;

= arg min (d;m(ai, By)+ A min  dpos(Pp, g(k)(QJ)))) J=1,...,N
1€[1..m] I:Ar=a;

The point sets P' = { P; : Aj = a; } can be preprocessed to allow Euclidean nearest neigh-

bor searches in time O (log |P?|). This allows us to compute 1»(¥)(.J) in time O(3"7, log | P*|).

Since log is a concave function, Jensen’s inequality! implies

%ilog 1P| < log (%i |Pi|) ~ log (%) .
i=1 i=1

Therefore, S"7 log | PY| = O(mlog(M/m)) and we can compute the entire vector /(%) in
time O(Nmlog(M/m)). If there is any doubt that mlog(M/m) is much smaller than M,
just note that M — mlog(M/m) = m((M/m) — log(M/m)).

Combining attribute and position distance in a measure of visual similarity is a very
difficult task. The use of a linear combination of the two distances with a constant weighting
factor A is a computationally efficient, reasonably effective solution. We shall discuss this
solution and its problems in terms of the color case.

The use of the linear combination dap, (see (7.1)) in the signature distance function Dg
captures the fact that two patterns with very similar color regions in very similar locations
will appear visually similar. Setting color distances above some threshold to oo prevents a
small matching cost between nearby regions of very different colors, and heavily penalizes

such obvious visual dissimilarities. The threshold 7 cannot be too small, however, since we

m

'For a concave function f, Jensen’s inequality states that Z:Zl aif(z:) < f(Z:l.=1 a;z;) if a; > 0Viand
Z:‘Z1 a; = 1. With a; = L, we get Z:Zl flz) < f(E Z:Zl ;).
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need to allow for inexact pattern matches.

The function d,, reasonably trades off small changes in position distance with small
changes in color distance, but it does not prevent larger tradeoffs which may lead to a small
signature distance without visual similarity; all region pairs ((4, P), (B, Q)) with the same
value dap((A, P), (B,Q)) = dli.(A, B) + Adpos(P, Q) contribute the same penalty in the
signature distance. SEDL’s use of a linear combination of color and position distance iden-
tifies near exact pattern matches, captures many inexact matches, and identifies obviously
dissimilar patterns, but can lead to false positives. Although some of these false positives
will be eliminated in the step described below, there is still room for improvement in SEDL’s
use of color and position information. For example, the perceived color of a region depends

on the color of its surrounding regions, but d,, does not take this into account.

Once the alternating iteration (7.2),(7.4) converges, SEDL checks that at least some
fraction of the attribute weight inside the final search rectangle R, can be matched to
pattern attribute weight over moderate distances in attribute space. This final check is
in recognition of the difficulty of trading off attribute and position distance, and helps
eliminate false positives. A visually similar match between areas implies somewhat similar

attribute signatures for those areas.

The final check in the verification and refinement phase is performed using the 7-EMD
described in section 4.4.2. Recall that the 7-EMD measures the fraction of weight in the
lighter distribution which cannot be matched to weight in the heavier distribution using only
ground distances that do not exceed 7 units. Let x/* be the approximate image attribute
distribution inside R, (computed by a range search as described in section 7.3), and let y.
be the pattern attribute distribution scaled by the final scale value ¢, (the area of R.). Then
the last step in the verification and refinement phase is to check that T-EMD(x"*y.) < 7.
If not, then R, is eliminated from further consideration. We cannot choose 7 or 5 too small
since inexact matches require some tradeoffs in attribute and position distance, and we do
not want to incorrectly reject such matches. For the product advertisement database, we
use 7 = 0.5, requiring that at least 50% of the color weight to be matched; for the Chinese
character database, we use n = 0.75, requiring at least 25% of the orientation weight to be

matched.

We now discuss our choice of distance function SD in relation to the ICP algorithm used

to register shapes. Recall that the ICP algorithm uses the distance function

N
D'P(X,Y) = min > ||Pysy — Qull3,
¢e\1; J=1



204 CHAPTER 7. THE SEDL IMAGE RETRIEVAL SYSTEM

where X and Y are the point sets

X:{Plv"'7PM} and Y:{Q177QN}

The ICP iteration seeks to solve the optimization problem

Dg"(X,Y) = min DF(X, Y) gergnibneqj Z 1Py — 9(Qu)II5.
If we eliminate the weights U; and the attribute part of the ground distance d,p, then
our distance function SD reduces to D'°F and SDg reduces to DIgCP. In fact, the weights
Uy are effectively eliminated when our framework is applied to shape-based retrieval since
we compute average orientations over equal-sized portions of image curves to produce the
image signature, and the weight of an attribute is equal to the (constant) length over which

the averages are computed.

The use of orientation attributes which are not modified by any transformation is a very
important improvement over the ICP algorithm when registration considers only changes
in scale and location (and not orientation). The ICP framework matches only by ink on
the page. By using the orientation of the ink, we can avoid matching query ink that is
physically close to image ink, but that will not produce a good visual match between the
underlying shapes. The point here is applicable in a more general setting than our shape
setting: using attributes which are unmodified during iteration gives the matcher something
constant upon which to anchor its matching and transformation decisions. In fairness to

the ICP algorithm, it is specifically designed to handle differences in orientation.

Another natural question to raise at this time is why we choose to compare the attribute-
position distributions X and Y with the function SD instead of the EMD. The main answer
is speed. We can use the results in section 6.5 on allowing weight-altering transformations
to compute the EMD under a transformation set in which the scale changes both the
distribution points and the weights (which represent image areas in the color case). This
requires several EMD computations for a single comparison under a transformation set. Our
distributions are so large, however, that the time for even a single EMD computation per
(query,image) pair is too much for a content-based retrieval system which must maintain
some interactivity with the user. Even if we could compute the EMD for SEDL’s large
signatures in an acceptable time, it is still an imperfect measure of image similarity because
our representation is imperfect. All masses are concentrated at the centroids of image
regions. For large regions, it would be a more accurate representation to spread the mass

uniformly over the region. We do not, however, know how to compute the EMD between
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two such continuous distributions.

SEDL’s color x position signatures are defined (roughly) by the largest possible uniform
color regions. If a single red pattern region is represented in the image as three adjacent re-
gions of slightly different reds, there may be a relatively large, unjustified matching penalty
using SEDL’s signature distance. To help reduce the effects of such problems, region dis-
tances are weighted by pattern region area, the theory being that large pattern regions are
more stable in appearance and easier to detect as a single region within the image. The
excellent results obtained show that this strategy is effective. In the shape case, SEDL
avoids such representation problems to a large extent by using a fine sampling of image
curves. This strategy is feasible because the shape data is one-dimensional. A fine sam-
pling over the 2D image plane, however, would produce color X position too large to match

in acceptable times for retrieval.

7.5 Results

In this section, we show the results of the entire matching process for the color advertisement

database and the shape Chinese character database.

7.5.1 The Product Advertisement Color Database

The advertisement database and product logos used in the experiments in this section were
obtained from the web site http://vis-www.cs.umass.edu/"mdas/color_proj.html for
the FOCUS work by Das et al. ([14]). The twenty five product logos used as queries are
shown in Figure 7.11. The database contains 361 advertisements for products with and

without corresponding query logos.

7.5.1.1 Creating Signatures

In what follows, a signel (signature element) refers to a single element ((Ay, Pr), Wy) in the
color x position signature X = {((A, P;), W)}, of an image. The signature creation
process consists of three steps: (1) clustering in color space to reduce the number of colors
in an image, (2) connecting pixels with the same color label to form an initial set of signels,
and (3) combining same-colored signels which are close together in the image to form the
final set of signels which define the image signature in color x position space.

The color clustering step uses an algorithm due to Rubner et al. ([65]) which averages
pixel colors together when the colors are contained in a small enough rectangular region

of the color space. As in [65], we use the perceptual CIE-Lab color space ([88]). The
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Figure 7.11: Queries for the Color Product Advertisement Database.
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L component is a luminance channel, the a component is a red-green channel, and the
b component is a blue-green channel. The CIE-Lab space is perceptual in the sense that
Euclidean distance in this space matches perceptual distance between two colors that are
not very different. The initial box which contains all colors (0 < L < 100, —120 < a < 120,
—120 < b < 120) is subdivided alternately along each dimension of the color space until the
box region size is small enough so that the average color inside the box approximates well all
colors inside the box. There is a second stage of the clustering algorithm that merges similar
clusters that were broken by fixed boundaries used in the first clustering stage. See [65]
for details. By choosing the “small enough” threshold properly, we can usually reduce the
image to a small number (5-40) of colors with very little loss of color accuracy. By reduce,

we mean replace the color at each image pixel with the nearest color cluster representative.

After an image is reduced, we compute all sets of connected pixels with the same color
label using Heckbert’s seed fill algorithm ([29]). Each of these sets is an initial region in a
region-merging process whose ultimate goal is to define the image signature in color X po-
sition space. Associated with each region is a color signature for the pixels contained in
the region, along with the position centroid for the region pixels of each color cluster. The

color signature for an initial region contains only one color.

When two regions R, i = 1,2, are merged into R = R'|J R?, we must combine their
color signatures and compute the position centroids in R of each color cluster. This is
straightforward. Suppose that the image is reduced to n colors ¢1, ¢3, . . ., ¢,, and that region
R, i = 1,2, has color signature x(R') = { Kook }, where k; is the number of pixels in
region R® with color c;. Also, let pé denote the centroid of the pixels in R with color c; (if

k; >0). Then x(R) = { ki,...,k, }, where k; = k} + k%, and p; = (kjp} 4+ k3p?)/ (k] + k3)

it
if k]l + ka > 0. Here p; is the centroid of all pixels in R = R'(J R? with color ¢;.

Each final region contributes a number of color x position signels ((color, position),
weight) equal to the number of colors contained within the region. For example, if R as
given above is a final region, then we get a color X position signel ((¢;,p;),k;) for each
k; > 0. The role of a region is to define which image pixels of the same color are okay to
combine into one signel. Note that merging two regions with no color clusters in common

does not change the color X position signature derived from the set of all regions.

The region merging process maintains a priority queue of all region adjacencies. The
next pair of regions to be merged is the adjacent pair with the smallest priority. If we

denote the area of a region R by area(R), then the priority for region adjacency (R', R?) is

priority (R', R?) = EMD(x(R'), x(R?)) x min(area(R"), area(R?)). (7.7)
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Here we assume that all region color signatures have been normalized to have total weight
equal to one before the EMD is computed. Given our color clustering and seed fill steps
to produce the initial set of regions, what ordering on region merges does the priority (7.7)
imply?

Consider the situation before any region merging has been performed. The connection of
pixels with the same color label typically results in many tiny initial regions of a few pixels
or less (more about this later). It is even common to have single pixel initial regions. On
the other hand, the EMDs between adjacent initial regions cannot be very small. The EMD
between two adjacent initial regions cannot, for example, be zero because this implies that
the adjacent initial regions have the same color and, therefore, would have been connected
by the seed fill algorithm. Furthermore, the colors of the initial regions are the result of
clustering in color space in which colors within a certain distance from each other are merged
into a single cluster. Therefore, the EMD between two adjacent initial regions cannot be
arbitrarily small.

If the EMD between adjacent regions is, for example, at least e units in CIE-Lab space,
then the size of the smaller region in any region adjacency with priority at most p is at
most p/e. The minimum priority during the region merging process tends to increase as
the process proceeds since the EMDs between adjacent regions and the region sizes both
tend to increase. While adjacencies with priority less than p are being processed, regions
of size more than p/e are very unlikely to be merged with an adjacent region (the merging
process would need to create an adjacency with EMD less than e units for this to happen).
The result is that, despite the symmetry in the priority (7.7), region adjacencies with a
large EMD and a small minimum size are generally eliminated before adjacencies with a
small EMD and large minimum size. Of course, among adjacencies with small size the
priority (7.7) gives preference to eliminating those with small EMD over those with large
EMD. The causes of these small size adjacencies in the initial set of regions are discussed
next.

The first region adjacencies that will be eliminated are those with similar colored regions
in which at least one of the regions is very small (the EMD factor and the area factor are
both small). Such adjacencies typically arise in areas of the image that have a gradual
shading change. The color clustering algorithm may choose two color clusters to represent
the lighter and darker colors in such an area, but what happens to the colors which are
roughly equidistant from these clusters in color space is much less clear. The color clustering
algorithm does not use the positions of the colors in the image plane, so it cannot use a
connectedness criterion to help make this decision. Furthermore, the Euclidean distance

is only an approximation to perceptual distance in the CIE-Lab color space. If a color
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is close perceptually to two color clusters, the distances in CIE-Lab space to the clusters
will be small but might not properly distinguish which cluster is perceptually closer. A
conceptual group of same-colored pixels may be disconnected into several very small groups
of connected pixels; there may even be some pixels that are not connected to any pixels of
the same color label. Such a fragmented group is likely to be contained in a larger region
with a similar color. By merging the very small fragment regions into the larger surrounding
region, the fragments are combined into one signel as desired.

The next set of region adjacencies that will be eliminated are those with fairly differ-
ent color descriptors in which at least one of the regions is very small (the EMD factor
is relatively large, but the area factor is small). Such adjacencies typically arise in the
advertisements when there is very small lettering in the advertisement. Such lettering is
usually placed on a relatively high contrast background to aid legibility. For the purposes
of our system, summarizing a paragraph of tiny black lettering with one signel of black at
the position centroid of the paragraph is a wise compression since we know a priori that we
are not interested in such tiny scale features. This compression is exactly what happens as
each individual letter (connected black pixels) region is merged with its background region.

A mistake is made if a merge is performed between two regions with large, spatially
separated signels of the same color. In this case, the weight of the combined signel in the
final signature will be large and its position will be inaccurate. If there are large amounts
of the same color in the regions, then the regions themselves must be relatively large and
the EMD between the regions will be relatively small. Adjacencies with large regions and
small EMD are, as mentioned above, generally processed after those with at least one small
region.

The big question, of course, is when to stop the merging process. Currently we use a
very simple criterion which halts the region merging once a pre-specified number of regions
has been reached. In a general image database setting, we may or may not have the time
and resources to pick a different number of regions for each image entered into the database.
For all images in the advertisement database, we stop when there are 128 regions. This
number was found acceptable for the complexity of a general advertisement. Examples of
the final regions for three database images are shown in Figure 7.12. The problem of finding
a “natural” stopping point is a very difficult one, even with a specified range of feature scales
in which we are interested. For us, “natural” means that the correct conceptual grouping
has been done. For all the query logos, we stop the region merging process when there are
32 regions.

It is interesting to see the results of allowing the region merging process to proceed down

to two image regions. See Figure 7.13. The priority (7.7) produces a natural hierarchy of
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Figure 7.12: Region Merging Results. (left) Original image. (right) The original image
reduced to 128 regions. Each region is colored with the average color of its pixels.
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Figure 7.13: More Region Merging Results. Here we show results of allowing the region
merging process to proceed down to two image regions. (a) Cornpops advertisement on the
top left of Figure 7.12. (b) Fresh Step advertisement on the middle left of Figure 7.12. (c)
Reynolds Oven Bag advertisement on the bottom left of Figure 7.12.
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segmentations over varying levels of detail (the number of regions).

7.5.1.2 Query Results

We now present some results of SEDL’s pattern problem strategy applied to the advertise-
ment database. The “correct” answers for a given product logo are the advertisements for
that product. Some exceptions have been made for advertisements that contain a version
of the product logo which is substantially different in color from the query logo. See Fig-
ure 7.14(a),(b) for example ads that we will not penalize SEDL or FOCUS for missing. At
the same time, we retain more challenging cases when the advertisement does not contain
the exact logo but is close enough that a good system should be able to handle the small
differences. See Figure 7.14(c),(d) for two such examples. The first column in Figure 7.15
shows in parentheses the number of correct answers for each query logo. The FOCUS results
were obtained directly from the FOCUS web demo at http://vis-www.cs.umass.edu/"
mdas/color_proj.html on 8/17/98. See section 2.6 for a review of the FOCUS retrieval
system.

The recall of a query for a given number R of returned images is the number of correct
retrievals in the top R retrievals divided by the number of correct answers. From the first
and second columns in Figure 7.15, we see, for example, that SEDL’s recall for the Dannon
query is 3/4 = 75% and for the Clorox query is 5/5 = 100%.

The precision, on the other hand, is a measure of the spread of the correct images
returned. If there were four correct retrievals in the top twenty, then a query result is more
precise if the correct retrieval ranks are 1, 2, 3, and 4 than if the ranks are 3, 7, 10, and
12. Some researchers measure the precision as the number of correct retrievals divided by
the rank of the last correct retrieval. This measure, however, does not distinguish between
the rank sets 1,2,3,12 and 9,10,11,12; both have precision 4/12 = 33% under the previous
definition. We use a definition that accounts for the distribution of ranks by weighing ranks
close to one more heavily than ranks closer to R. If there are n correct retrievals in the top

R with ranks 1 < ry < rg--- < r,, then the precision is

(Rt 1-)
S (R0

(7.8)

Here we give rank 1 a weight of R, rank 2 a weight of R — 1, and, in general, rank j a weight
of R4+ 1 —j. The denominator in (7.8) normalizes the precision so that 0 < p < 1, with
p = 1 indicating perfect precision (r; = ). If there are no correct retrievals (i.e. n = 0),
then we set p = 1 since this bad result is already punished in the recall statistics. The goal,

of course, is to obtain simultaneously high recall and precision.
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Figure 7.14: Tough Advertisements to Retrieve. (a) The layout of the Breathe Right logo
occurrence is the same as that of the query logo, but the colors are different. (b) The
advertisement is for “Fresh Step Scoop”, while the logo is for “Fresh Step”. The layout for
the labels of these two products is quite different. (c) The labels for “Ziploc Sandwich Bags”
(the query) and “Ziploc Vegetable Bags” (in the advertisement) are very similar but not
exactly the same. (d) The Tide advertisement does not contain the Tide box (the query),
but it does contain the core Tide logo at the top center.
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Query SEDL FOCUS
Ranks Ranks
Berry Berry Kix (2) 8 2,4
Blueberry Morning (4) | 1, 3, 20 1,3,4,9
Breathe Right (3) 1,2,3 1,2,3
Casting (4) 1, 5,13 1,2
Clorox (5) 1,3,4,7,8 1,2,3
Comet (2) 1,2 —
Cornpops (2) 1,3 12,13
Cortaid (2) 1,2 2,8
Dannon (4) 1,3,5 1
Fresh Step (2) 1,2 1,3
Great Grains (2) 2,4 3
Golden Raisin Crisp (2) | 1, 15 1,2
Hidden Valley Ranch (9) | 1, 2, 6, 11 1,5
Jello (2) 1,2 1
Kix (3) 1,5, 11 1
Apple (3) 1,4 1,2,9
Merit (6) 1,2,4,5,12,13 | 1
Misty (6) 1,2, 3,14 —

Pert (2) 1, 11 —
Reynolds Oven Bags (5) | 1, 2,3, 9 1,2,3,5
Scholl (4) 1,2,9 —

Sun Crunchers (3) 1 1,9
Taco Bell (2) 1,2 1,4
Tide (7) 1,2,8, 12 1, 6, 15, 24, 39
Ziploc (4) 1,2, 14 1,2, 4

Figure 7.15: Query Results for the Color Advertisement Database. The FOCUS ranks are

phase two results. An “—”

images.

entry means that there were no correct answers in the returned
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In the experiments described in this section, the database searched by SEDL is a subset
of the database used in the FOCUS web demo. We selected 361 advertisements of the
1200 advertisements and nature images in the FOCUS database.? In all the examples in
section 7.3.1, using lax = 2 initial transformations was sufficient to find the pattern occur-
rences. There are, however, some examples that require a couple more initial placements
to find the pattern. Here we use [,.x = 4 initial placements. As in the scale estima-
tion experiments in section 4.5.1, we set the smallest scale in which we are interested to
Cmin = 0.001 = 0.1%. Finally, for efficiency reasons we do not proceed with the match
verification for a particular initial transformation if the first distance iterate D(©) is very
large. If this happens, we simply discard the initial placement.

For SEDL’s recall and precision statistics, we use R = 20 images (approximately 5.5%
of the SEDL database). To be fair to FOCUS, we use R = 40 images (about 3.3% of the
FOCUS database)® Figure 7.15 shows the ranks of the correct retrievals for both SEDL and
FOCUS after phase two, while Figure 7.16 gives the summary recall and precision statistics.
SEDL’s total recall of 77.8% is higher than the FOCUS total recall of 53.3%. Both systems
achieved high precision with R which is very small compared to the database size. The
average FOCUS precision was 96%, while SEDL’s average precision was 88%. The final
column in Figure 7.16 shows the time SEDL takes for each query. SEDL’s average query
time is 40.0 seconds. FOCUS has a sizeable advantage over SEDL in speed, requiring less
than a second on average for a query in their larger database of 1200 images. There is more
to say, however, about the differences between SEDL and FOCUS than just comparing
statistics. We return to this comparison in section 7.5.1.3 after we show some SEDL query
results.

Figures 7.17-7.24 show the first five or ten images returned by SEDL for several of
the query logos. These figures also show the scale, orientation, and location where SEDL
believes that the pattern occurs in some of the correct retrievals. Many more examples of
where SEDL finds the pattern are given in Figures 7.25-7.27. In general, SEDL is very
accurate in localizing the patterns. Most of the pattern occurrences are not rotated from
their logo form. By allowing an orientation with this database, we are making SEDL’s
job more difficult. Sometimes the orientation is far from correct (e.g. see the Taco Bell

advertisement in the bottom-right of Figure 7.24). No comparison of accuracy with FOCUS

2For the query logos, 18 of the 25 are exactly the same as those used in the FOCUS demo. Small
modifications were made to the other 7 logos to eliminate areas not part of the actual logo and to make a
rectangular pattern. The seven logos which are different are Comet, Cortaid, Dannon, Apple, Merit, Misty,
and Tide. The differences are small and the results are still fair to compare.

#Only two ranks for correct retrievals by FOCUS were greater than 20, with the maximum being 39 (see
the ranks for the Tide query in Figure 7.15).
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Query SEDL | FOCUS SEDL FOCUS QuSIffDTLime
Recall Recall Precision Precision
(secs)
Berry Berry Kix 1/2 2/2 0.65 0.96 38.2
Blueberry Morning 3/4 4/4 0.68 0.95 20.0
Breathe Right 3/3 3/3 1.00 1.00 41.7
Clasting 3/4 2/4 0.77 1.00 37.0
Clorox 5/5 3/5 0.91 1.00 33.6
Comet 2/2 0/2 1.00 1.00 33.6
Cornpops 2/2 2/2 0.97 0.72 58.5
Cortaid 2/2 2/2 1.00 0.91 26.6
Dannon 3/4 1/4 0.97 1.00 118.2
Fresh Step 2/2 2/2 1.00 0.98 32.0
Great Grains 2/2 1/2 0.92 0.95 37.3
Golden Raisin Crisp 2/2 2/2 0.67 1.00 35.8
Hidden Valley Ranch 4/9 2/9 0.86 0.96 28.2
Jello 2/2 1/2 1.00 1.00 14.7
Kix 3/3 1/3 0.81 1.00 34.2
Apple 2/3 3/3 0.95 0.95 3.1
Merit 6/6 1/6 0.85 1.00 25.9
Misty 4/6 0/6 0.86 1.00 40.2
Pert 2/2 0/2 0.77 1.00 60.2
Reynolds Oven Bags 4/5 4/5 0.93 0.99 110.8
Scholl 3/4 2/4 0.89 1.00 7.4
Sun Crunchers 1/3 2/3 1.00 0.91 33.7
Taco Bell 2/2 2/2 1.00 0.97 21.6
Tide 4/7 5/7 0.82 0.63 103.0
Ziploc 3/4 3/4 0.81 0.99 4.4
70/90 | 48/90
average = = 0.88 0.96 40.0
77.8% 53.3%

Figure 7.16: Recall, Precision, and Timing Results for the Color Advertisement Database.
The FOCUS statistics are for phase two ranks.
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is possible since FOCUS does not compute the scale or location of the pattern.

7.5.1.3 SEDL versus FOCUS

In FOCUS, adjacency graph vertices and edges are computed based on a grid imposed on
an image, as described in detail in section 2.6. All the blue, for example, in a single grid
cell is treated as one region, and there are edges between different color vertices within
the same cell and neighboring cells. This reduces the number of graph vertices, but leads
to false adjacencies which can cause false matches. The FOCUS authors did an excellent
job of choosing the cell size so that the graphs are small enough to match quickly, yet still

descriptive enough to yield excellent precision.

SEDL uses the amounts of colors, the sizes of regions, and (roughly) the centroids of
uniform color regions, while FOCUS uses only the existence of colors and the possibility that
two different color regions are adjacent. We believe that at least the amount of information
used in SEDL will be necessary for large databases, and we speculate that FOCUS will
need much better position localization, which means fewer false adjacencies in larger graphs
requiring more time to match, to maintain high precision. Perhaps the shapes of regions
(not used in SEDL or FOCUS) will also be needed as the database size increases. Of course,
using too much information may reduce the recall rate since inexact matches need to be
allowed. The issue of which and how much information needed for large databases is far

from settled.

Finally, recall that the SEDL framework is general enough to be applied to both the

color and shape pattern problems, whereas the FOCUS system is specific to the color case.

7.5.2 The Chinese Character Shape Database

In this section, we apply our general pattern retrieval strategy to find shape patterns within
a database of 2000 Chinese characters. A small sample of the images in this database is
shown in Figure 7.28. This collection of Chinese characters is an ideal database to test
our ideas because there are many patterns that occur throughout the database at different
scales and locations. Our shape summary of a character is the medial axis of the set of
black pixels which define the character. The results shown in Figure 7.29 were computed
using algorithms and software by Ogniewicz and Kiibler ([52]). The skeletons are a very

good one-dimensional summary of the characters.
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Figure 7.17: Advertisement Query Result — Clorox. (top) Clorox query logo. (middle) The
top ten images returned by SEDL. The Clorox advertisements are at positions 1, 3, 4, 7,
and 8. (bottom-left) The match is excellent (rank=1st). (bottom-right) One of the Clorox
logo occurrences is found, but the final scale is slightly too big (rank=3rd).
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Figure 7.18: Advertisement Query Result — Breathe Right. (top) Breathe Right query logo.
(middle) The top five images returned by SEDL. The Breathe Right advertisements are
at positions 1, 2, and 3. (bottom-left) The pattern occurence is correctly located, but the
orientation is incorrect (rank=1st). (bottom-right) The match is perfect (rank=2nd).
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Figure 7.19: Advertisement Query Result — Comet. (top) Comet query logo. (middle) The
top five images returned by SEDL. The Comet advertisements are at positions 1 and 2.
(bottom-left) The final pattern placement has the correct orientation and is nearly perfect

(rank=1st). (bottom-right) The pattern is correctly located, but the final scale should be
a little bit larger (rank=2nd).
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Figure 7.20: Advertisement Query Result — Fresh Step. (top) Fresh Step query logo. (mid-
dle) The top five images returned by SEDL. The Fresh Step advertisements are at positions
1 and 2. (bottom-left) The match is excellent (rank=1st). (bottom-right) The match is
good, but the orientation is incorrect (rank=2nd).
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Figure 7.21: Advertisement Query Result — Jello. (top) Jello query logo. (middle) The
top five images returned by SEDL. The Jello advertisements are at positions 1 and 2.
(bottom-left) The match is perfect (rank=1st). (bottom-right) The final placement overlaps
a significant amount of the pattern occurrence, but the scale is too small (rank=2nd).
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— Apple. (top) Apple query logo. (middle) The
top five images returned by SEDL. The Apple advertisements are at positions 1 and 4.
(bottom-left),(bottom-right) SEDL’s algorithm located even these very small scale occur-
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Figure 7.23: Advertisement Query Result — Reynolds Oven Bags. (top) Reynolds Oven
Bags query logo. (middle) The top ten images returned by SEDL. The Reynolds Oven Bags
advertisements are at positions 1, 2, 3, 9. (bottom-left) The match is excellent (rank=1st).
(bottom-right) The final pattern placement is within the pattern occurrence at a scale which
too small (rank=2nd).
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Figure 7.24: Advertisement Query Result — Taco Bell. (top) Taco Bell query logo. (middle)
The top five images returned by SEDL. The Taco Bell advertisements are at positions 1
and 2. (bottom-left) As in the previous Reynolds Oven Bags query, the pattern is correctly
located but with an underestimated scale (rank=1st). (bottom-right) The final pattern
placement overlaps a large fraction of the pattern occurence, but the orientation is incorrect

(rank=2nd).
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Figure 7.25: Verification and Refinement Results — Example Set 1. (top-left) Pert query.
The final transformation has the correct scale and translation, but the orientation is slightly
off (rank=1st). (top-right) Pert query. The identifed image area has a similar overall
color to the Pert logo, but this final pattern placement is incorrect (rank=11th). (bottom-
left) Cornpops query. The position and orientation are correct, but the scale is too small
(rank=3rd). (bottom-right) Cornpops query. The final transformation is nearly perfect
(rank=1st).
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Figure 7.26: Verification and Refinement Results — Example Set 2. (top-left) Misty query.
The final pattern placement is perfect (rank=1st). (top-right) Misty query. The pattern
occurrence is correctly located, but the scale is too small and the orientation does not
follow the slope of the box (rank=2nd). (bottom-left) Casting query. The match is nearly
perfect (rank=1st). (bottom-right) Casting query. The final scale is too small, but the final
placement has the correct 90° orientation (rank=>5th).
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Figure 7.27: Verification and Refinement Results — Example Set 3. (top-left) Dannon query.
The final position is between two occurrences of the Dannon logo (rank=1st). (top-right)
Hidden Valley Ranch query. The match is excellent (rank=1st). (bottom-left) Scholl query.
This match is also excellent, although the scale should be a little greater and the orientation

is slightly off (rank=1st). (bottom-right) Tide query. The final position is between two
occurrences of the Tide logo (rank=1st).
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Figure 7.28: Sample Images from the Chinese Character Database. The images are bitmaps.
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Figure 7.29: Medial Axis Shape Summaries. The shape summary of a Chinese character
bitmap is the medial axis of the set of black pixels which define the character. Here we
show the summaries for the characters in Figure 7.28.
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7.5.2.1 Creating Signatures

The signature creation process operates on the medial axis shape summaries of the char-
acters. The medial axis of a character is represented as a collection of polylines in the
image plane. For each polyline, we compute the average position and average orientation of
nonoverlapping pieces or samples of a fixed length. The average orientations for an image
are clustered to produce a small set of representative orientations { ay,...,a, }. These
orientations are the points in the orientation signature of an image. The weight w; of each
orientation cluster a; is the total polyline length which is classified as having orientation a;.
The orientation of a polyline sample is the orientation cluster which is closest to the aver-
age sample orientation. The weight Wy of (Ar, Pr) = (orientation cluster, average position)
in the orientation X position signature is the sample length, which is the same for every
sample except possibly those at the end of a polyline. The orientation signature is the
orientation X position signature marginalized over position.

The same sample length L = 10 points is used for every image in the database, where
each database image is contained in a square of size 256 points x 256 points. This results in
a relatively dense sampling of the medial axis polylines of a character. Ideally, a database
image and a query image are sampled so that the query sample intervals correspond exactly
to the sample intervals for the query occurrence within the image. If this were the case,
then the average image and query positions would differ by exactly a scaling and translation
(assuming that an exact pattern copy with the same orientation appears within the image).
Of course this scale and translation is precisely the information that we seek, so it is not
possible to obtain the perfect signatures for matching. The average number of orientation
clusters is 21.8, while the average number of points in the orientation X position signature

is 119.8.

7.5.2.2 Query Results

The query results shown in this section are the result of matching image and query signa-
tures under the transformation set G which allows changes in scale and location but not in
orientation, and ground distance d = Lj , the cyclic L; distance with period 7' = 7. We
use a cyclic distance so that there is a small distance between an orientation close to 0 and
an orientation close to 7. The minimum scale parameter is set to 0.25=25% of the total
length of the character medial axis. We choose two initial transformations from which to
begin the phase 3 iteration that verifies positional consistency and adjusts the scale and
location of the match. Finally, we do not allow matches between signels whose orientations

differ by more than 7 = 20°.
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Each of Figures 7.30-7.44 shows the results of a single query into the Chinese character
database. The query pattern and its top thirty matches are shown in top row of these
figures. In the bottom row, we show where SEDL believes that the query occurs in a
selected subset of the matches. Overall, the results of our pattern retrieval algorithm in the
Chinese character database are excellent. Almost all the top matches for a query contain
the query pattern or a pattern which is very similar to the query pattern. Occurrences of
a query are usually well localized, although there are a few examples in which the pattern
scale is too large (see e.g. Figure 7.30(iv) and Figure 7.36(viii)) and/or the pattern location
is slightly in error (see e.g. Figure 7.32(i) and Figure 7.39(ii)).

There are two points to keep in mind when examining the query results. First, there is
no penalty for extra ink on the page that obscures the pattern occurrence; one may have
to look closely to see that the pattern is indeed present. This is the case, for example, in
Figure 7.30(viii), Figure 7.33(iii), and Figure 7.33(viii). Second, SEDL just matches ink on
the page and does not take note of whether or not strokes are connected, or how strokes
are connected. Consider the example shown in Figure 7.31(vii) in which the scale of the
pattern occurrence is overestimated. This overestimation is understandable because the
boxed region contains ink in a very similar layout to that of the query pattern. SEDL does
not know that the right part of the query pattern should be one continuous stroke. It only
sees that there is ink of the correct orientation in roughly the correct position, and it pays
a small price for the incorrect location. A similar example is given in Figure 7.31(vi). The
fact that a pattern which is similar to the query pattern appears is merely a coincidence
of the juxtaposition of two separate parts of the retrieved character. Neither part alone
contains the query. Of course, there are examples in which no matter how hard one looks,
nothing similar to the query pattern is present. Examples of such errors are shown in
Figure 7.30(vi) and Figure 7.36(vii). Our combination of orientation and position distances
produces a small overall distance even though the higher level structure of the pattern is
clearly not present in these cases.

The running time for each of the queries in Figures 7.30-7.44 is shown in Figure 7.45.
The average time for a single query into our 2000 character database is 95.7 seconds. Thus

the average time to compare one (query,image) pair is approximately 0.05 seconds.

7.5.2.3 Possible Modifications

SEDL’s signature distance function is asymmetric. The distance is small whenever each
piece of all pattern curves is near a similarly-oriented piece of an image curve. There is no

penalty for image ink which does not match pattern ink. As we saw in the previous section,
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Figure 7.30: Chinese Characters Query Result — Example 1. (top) the query pattern and
the top thirty matches. (bottom) some selected query localization results. The ranks of
these selected retrievals in (top) are: (i) 5th, (ii) 9th, (iii) 18th, (iv) 21st, (v) 24th, (vi)
26th, (vil) 29th, (viii) 34th (not shown in (top)).
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Figure 7.31: Chinese Characters Query Result — Example 2. (top) the query pattern and
the top thirty matches. (bottom) some selected query localization results. The ranks of
these selected retrievals in (top) are: (i) 2nd, (ii) 8th, (iii) 11th, (iv) 13th, (v) 17th, (vi)
21st, (vii) 25th, (viii) 29th.
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Figure 7.32: Chinese Characters Query Result — Example 3. (top) the query pattern and

the top thirty matches. (bottom) some selected query localization results.

The ranks of

these selected retrievals in (top) are: (i) 2nd, (ii) 6th, (iii) 8th, (iv) 11th, (v) 15th, (vi) 18th,

(vil) 21st, (viii) 27th. The scale is slightly overestimated in (ii).

In this case, the query

pattern appears five times (the large square and the four smaller squares contained inside

the big one) and SEDL finds the largest occurrence.
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Figure 7.33: Chinese Characters Query Result — Example 4. (top) the query pattern and

the top thirty matches. (bottom) some selected query localization results.

The ranks of

these selected retrievals in (top) are: (i) 2nd, (ii) 8th, (iii) 12th, (iv) 15th, (v) 23rd, (vi)

27th, (vil) 30th, (viii) 37th (not shown in (top)).
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Figure 7.34: Chinese Characters Query Result — Example 5. (top) the query pattern and
the top thirty matches. (bottom) some selected query localization results. The ranks of
these selected retrievals in (top) are: (i) 3rd, (ii) 9th, (iii) 10th, (iv) 13th, (v) 17th, (vi)

21st, (vii) 26th, (viii) 29th.
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Figure 7.35: Chinese Characte

rs Query Result — Example 6. (top) the query pattern and

the top thirty matches. (bottom) some selected query localization results. The ranks of
these selected retrievals in (top) are: (i) 5th, (ii) 9th, (iii) 11th, (iv) 16th, (v) 19th, (vi)

22nd, (vii) 24th, (viii) 27th. A

pattern similar to the query occurs in (iii) and (v) because

of the juxtaposition of two separate parts of the characters. In both cases, the surrounding

ink obscures the pattern appea

rance.
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Figure 7.36: Chinese Characters Query Result — Example 7. (top) the query pattern and

the top thirty matches. (bottom) some selected query localization results.

these selected retrievals in (top) are: (i) 3rd, (ii) 10th, (iii) 14th, (iv) 18th,

23rd, (vii) 29th, (viii) 30th.
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Figure 7.37: Chinese Characters Query Result — Example 8. (top) the query pattern and

the top thirty matches.

24th, (vil) 26th, (viii) 28th. It is difficult to see the pattern occurrence in
because of its surroundings.

(bottom) some selected query localization results.
these selected retrievals in (top) are: (i) 2nd, (ii) 10th, (iii) 14th, (iv) 16th,

The ranks of
(v) 18th, (vi)

(iv) and (viii)
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Figure 7.38: Chinese Characters Query Result — Example 9. (top) the query pattern and
the top thirty matches. (bottom) some selected query localization results. The ranks of
these selected retrievals in (top) are: (i) 2nd, (ii) 5th, (iii) 12th, (iv) 15th, (v) 20th, (vi)
21st, (vii) 25th, (viii) 28th.

. X
Tk
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W (ii) (iii) (iv) (v) ) (i) (viii)

Figure 7.39: Chinese Characters Query Result — Example 10. (top) the query pattern and
the top thirty matches. (bottom) some selected query localization results. The ranks of
these selected retrievals in (top) are: (i) 3rd, (ii) 10th, (iii) 12th, (iv) 15th, (v) 19th, (vi)
24th, (vii) 27th, (viii) 30th.
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Figure 7.40: Chinese Characters Query Result — Example 11. (top) the query pattern and
The ranks of
these selected retrievals in (top) are: (i) 6th, (ii) 10th, (iii) 13th, (iv) 15th, (v) 17th, (vi)
21st, (vil) 24th, (viii) 29th. The extra horizontal lines in (iv) make it difficult to see the

the top thirty matches.

pattern occurrence.

(bottom) some selected query localization results.
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Figure 7.41: Chinese Characters Query Result — Example 12. (top) the query pattern and
The ranks of
these selected retrievals in (top) are: (i) 3rd, (ii) 8th, (iii) 14th, (iv) 16th, (v) 18th, (vi)

the top thirty matches.

26th, (vii) 28th, (viii) 30th.

(bottom) some selected query localization results.
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(vii)

B

A

(vii)

Figure 7.42: Chinese Characters Query Result — Example 13. (top) the query pattern and

the top thirty matches. (bottom) some selected query localization results.

The ranks of

these selected retrievals in (top) are: (i) 5th, (i) 7th, (iii) 15th, (iv) 17th, (v) 23rd, (vi)
25th, (vii) 27th, (viii) 30th. Most of these examples show inexact matches of the query and
a region of a database character. The differences in appearance are relatively small except

for example (vii).
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Figure 7.43: Chinese Characters Query Result — Example 14. (top) the query pattern and

the top thirty matches.

(bottom) some selected query localization results.
these selected retrievals in (top) are: (i) 4th, (ii) 6th, (iii) 11th, (iv) 14th, (v) 19th, (vi)
23rd, (vii) 27th, (viii) 30th.

The ranks of
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Figure 7.44: Chinese Characters Query Result — Example 15. (top) the query pattern and
the top thirty matches. (bottom) some selected query localization results. The ranks of
these selected retrievals in (top) are: (i) 2nd, (ii) 10th, (iii) 13th, (iv) 15th, (v) 19th, (vi)
23rd, (vii) 25th, (viii) 29th.

such “extra” ink in the vicinity of the pattern occurrence can obscure the visual similarity
between that area of the image and the pattern. The local image signature computed during
the final 7-EMD check of the verification and refinement phase can be used to solve this
extra ink problem if it is indeed considered a problem for a particular application. A penalty
can be added to the signature distance which is proportional to the difference between the
total amount of image ink inside the final search rectangle and the amount of ink in the
scaled pattern. An implementation of this idea should err on the side of smaller rather than
larger penalties since the computed pattern scale and location will not be perfect.

A big difference between the shape and color cases is that, as currently implemented,
SEDL does not find rotated versions of a given shape pattern within an image. Instead, it
uses curve orientations to direct or guide its search for a possibly scaled version of the given
pattern. A possible solution to find rotated shape patterns within the SEDL framework is
to use relative orientations instead of absolute orientations ([33]). For example, we might
compute the attribute portion of a signel by taking the difference in tangent orientations
at the endpoints of a short curve piece instead of the average orientation over the curve
piece. SEDL’s search for a possibly rotated, scaled version of a given shape pattern can
be directed by the relative orientation attribute since relative orientations will not change

when a similarity transformation is applied to the pattern curves.
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Time (secs)
Query | Phase 1 | Phase 2 | Phase 3 | Total
T 39.7 7.6 37.2 84.5
ﬂ—’ 40.4 9.8 77.5 127.7
[:I 16.2 13.9 86.2 116.3
A 40.0 8.4 30.3 78.7
E" 14.1 12.6 33.2 59.9
é)‘ 36.4 9.4 37.8 83.6
éz‘ 46.6 8.9 72.4 127.9
? 26.1 14.4 103.4 | 143.9
jj 40.4 9.6 75.0 125.0
j{ 46.5 8.4 62.7 117.6
::l: 24.3 11.6 50.7 86.6
X 45.3 8.9 54.1 108.3
/%] 41.3 9.0 60.5 110.8
)\ 32.8 8.7 30.5 72.0
—l" 22.7 7.9 31.7 62.4
Average 95.7

Figure 7.45: Query Times for the Chinese Character Database.



