
Chapter 3

The Polyline Shape Search

Problem

Shape comparison is a fundamental problem in computer vision because of the importance

of shape information in performing recognition tasks. For example, many model-based

object recognition algorithms work by matching boundary contours of imaged objects ([39,

73, 43, 44, 10, 55]). In addition to this traditional application, shape information is also

one of the major components in some content-based image retrieval systems (see e.g. [51]

and [46]). The goal in such a system is to �nd database images that look similar to a given

query image or drawing. Images and queries are usually summarized by their color, shape,

and texture content. For example, in the illustration retrieval system described in [11], we

suggest a shape index which records what basic shapes (such as line segments, corners, and

circular arcs) �t where in the drawing. The method in this chapter can be used to index

shape information in images once contours have been extracted.

In this chapter, a shape is a polyline in the plane. We consider the following problem:

Given two planar polylines, referred to as the text and the pattern, �nd all approximate

occurrences of the pattern within the text, where such occurrences may be scaled and

rotated versions of the pattern. We call this problem of locating a polyline pattern shape

within a polyline text shape the polyline shape search problem, or PSSP for short. The

PSSP is di�cult because we allow both scaling and partial matching. Allowing scaling of

the input pattern requires us to make precise certain inherent tradeo�s in PSSP matching.

Consider for example, trying to match a line segment pattern into a text polyline. The

pattern will match a segment of the text polyline exactly at a continuum of di�erent scales.

In this case, we only wish to report the maximum length match. In addition, suppose that

the angle between two consecutive segments of the text is very close to 180�. In this case,

33

34 CHAPTER 3. THE POLYLINE SHAPE SEARCH PROBLEM

we may prefer a single longer match with a very small error that spans the two segments

instead of two shorter, zero error, matches for each segment.

Two closely related problems to the PSSP are the segment matching problem ([40, 30,

31]) and the polyline simpli�cation problem ([6, 24, 37, 49, 79]). The segment matching

problem is to �nd approximate matches between a short polygonal arc and pieces of a

longer polygonal arc. In searching for these matches, the short arc is allowed to rotate, but

its length/scale remains constant. The PSSP generalizes the segment matching problem

by allowing scaling. In the polyline simpli�cation problem, a polyline and error bound are

given, and we seek an approximation polyline with the fewest number of segments whose

distance to the given polyline is within the error bound. (This problem is also known in

the literature as the min-# problem.) For a polyline with n vertices, the planar polyline

simpli�cation problem can be solved in O(n2) time if the vertices of the approximation

are required to be a subsequence of the vertices of the given polyline ([6]), and in O(n)

time if the vertices of the approximation can be arbitrary points in the plane but the given

polyline is the graph of a piecewise linear function ([37]). One can think of the polyline

simpli�cation problem as an attempt to �nd long segments within the input polyline, i.e.

the PSSP with a line segment pattern. The PSSP generalizes the polyline simpli�cation

problem because the PSSP allows for any polyline pattern, not just a line segment. PSSP

matches are not required to start and end at vertices of the input text (and hence PSSP

matches may overlap). For a text polyline with n vertices, our algorithm for the PSSP with

a line segment pattern requires O(n2) time.

This chapter is organized as follows. In section 3.1, we describe the framework for our

solution to the PSSP, including the match score for a given scale, orientation, and position

of the pattern within the text. In section 3.2, we derive the orientation of the pattern which

gives the best match for a �xed pattern scale and position. This leaves us with a 2D search

problem in scale-position space (the position is the text arclength at which to begin the

comparsion of the pattern with the text). In section 3.3, we show how a certain set of

lines divides up the scale-position plane into regions in which we have analytic formulae

for our scoring function. In section 3.4, we fully describe our line sweep algorithm for the

PSSP. Section 3.5 shows some results of our algorithm. Finally, we summarize our work

and suggest areas for future work in section 3.6.

The material in this chapter has been published in [13].

3.1. PROBLEM SETUP 35

T

P 0 100 200 300 400 500 600 700 800
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Arclength v. Turning Angle

s

� 	(s) �(s)

(a) (b)

Figure 3.1: PSSP Turning Angle Summaries. (a) Text T above the corner pattern P . (b)

Arclength versus cumulative turning angle functions �(s) and 	(s) for T and P , respectively

(s in points, � in radians).

3.1 Problem Setup

Let T and P denote the text and pattern polylines, respectively. We will use the familiar

arclength versus cumulative turning angle graph in judging the quality of a match. We

denote these summary graphs for the text and pattern as �(s) and 	(s), respectively.

Figure 3.1 shows an example. If T consists of n segments and P consists of m segments,

then �(s) and 	(s) are piecewise constant functions with n and m pieces, respectively. We

denote the text arclength breakpoints as 0 = c0 < c1 < � � � < cn = L, where L is the length

of the text. The value of �(s) over the interval (ci; ci+1) is denoted by �i, i = 0; : : : ; n� 1.

Similarly, we denote the pattern arclength breakpoints as 0 = a0 < a1 < � � � < am = l,

where l is the length of the pattern, and the value of 	(s) over the interval (aj ; aj+1) is j,

j = 0; : : : ; m� 1.

Rotating the pattern by angle
 simply shifts its summary graph by
 along the turning

angle axis, while scaling the pattern by a factor � stretches its summary graph by a factor

of � along the arclength axis. Hereafter, a scaled, rotated version of the input pattern will

be referred to as the transformed pattern. The comparison between the transformed pattern

and the text will be done in the summary coordinate system. The text arclength at which

to begin the comparison will be denoted by �. Since the length of the transformed pattern is

�l, the transformed pattern summary graph is compared to the text summary graph from �

to �+�l. Finding the pattern within the text means �nding a stretching, right shift, and up

shift of the pattern summary graph 	(s) that makes it closely resemble the corresponding

36 CHAPTER 3. THE POLYLINE SHAPE SEARCH PROBLEM

0 100 200 300 400 500 600 700 800
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Arclength v. Turning Angle

s

� 	(s) �(s)

0 100 200 300 400 500 600 700 800
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Arclength v. Turning Angle

s

�

	(s) +

�(s)

(a) (b)

0 100 200 300 400 500 600 700 800
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Arclength v. Turning Angle

s

�

	
�
s
�

�
+

�(s)

0 100 200 300 400 500 600 700 800
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Arclength v. Turning Angle

s

�

�(s)

	
�
s��

�

�
+

(c) (d)

Figure 3.2: PSSP Matching in Arclength Versus Turning Angle Space. (a) �(s) and 	(s)

from Figure 1(b). (b) Rotating the pattern by
 shifts its summary graph up by
. (c)

Scaling the rotated pattern by � stretches the summary graph by a factor of �. (d) Finally,

we slide the transformed pattern summary graph over by an amount � to obtain a good

match.

piece of the text summary graph. Figure 3.2 illustrates this intuition. The stretching

(�), up shifting (
), and right shifting (�) of the pattern summary graph 	(s) correspond

to scaling, rotating, and sliding the pattern along the text, respectively. The problem of

�nding the pattern within the text is thus a search problem in the scale-position-rotation

space (�; �;
).

The preceeding discussion tacitly assumes that the pattern and text are both open

polylines. If, for example, the text is closed (i.e. the text is a polygon), then the above

strategy will miss a pattern match that crosses the arbitrary start and �nish text arclengths

s = 0 and s = L which actually correspond to the same point on the text. Such a match

will not be missed if we match the pattern summary curve to a text summary curve which

3.1. PROBLEM SETUP 37

runs from s = 0 to s = 2L, where �(s+L) = �(s) + 2� for s 2 [0; L). Since the underlying

text summary is repeated twice, we need to be careful not to report two identical matches.

In what follows, however, we ignore the issue of open/closed polylines, and simply assume

that our pattern and text are open polylines.

In judging the quality of a match at a given scale, orientation, and position, we need

to consider both the error of the match and the length of the match. Is a long match

with a large error better than a short match with a small error? Using the mean squared

error, for example, indicates an indi�erence to the length of the match. If the pattern

were a single segment, then it would �t with zero mean squared error at a continuum of

di�erent scales and locations along each edge of the text polyline. The mean squared error

metric cannot distinguish among these matches. In order to do so, we will use a match

scoring function which rewards longer matches. When the mean squared error (length)

of two matches is equal, the longer (lower mean squared error) match will have a higher

score than the shorter (higher mean squared error) match. Of course, there is still the

issue of how to compare a match to a shorter (longer), lower mean squared error (higher

mean squared error) match. There is no one correct answer to this balancing question {

the answer depends, for example, on the underlying input noise model. Here we opt for

a simple balancing of match length versus match error which, as we shall see, yields very

good results and is amenable to analysis via standard calculus optimization techniques.

Obviously, other match score functions are possible.

In moving toward our scoring metric, we de�ne the mean squared error e(�; �;
) as

e(�; �;
) =

R �+�l
s=�

�
�(s) �

�
	
�
s��
�

�
+

��2
ds

�l
:

Note that 	((s � �)=�) +
, s 2 [�; � + �l], is the summary graph of the transformed

pattern, starting at text arclength �. The score S(�; �;
) of a match is de�ned in terms of

the mean squared error as

S(�; �;
) =
�l

L(1 + e(�; �;
))
:

The product �l is the length of the match (�; �;
). Our goal is to �nd local maxima of the

score function S over a suitable domain D. This domain is de�ned by restricting the values

of � and � so that the domain of de�nition of the stretched, shifted pattern summary graph

is completely contained in [0; L] (which is the domain of de�nition of the text summary

graph):

D = f (�; �) j � > 0; � � 0; and �l + � � L g:

38 CHAPTER 3. THE POLYLINE SHAPE SEARCH PROBLEM

Although the range of the mean squared error e is [0;1), the range of the score S over the

domain D is [0; 1]. A match of length L with zero mean squared error receives the highest

score of one. Instead of trying to locate local maxima of S in D, we will try to �nd local

minima of its reciprocal

R(�; �;
)� 1

S(�; �;
)
=
L

�l
(1 + e(�; �;
)):

Note that the rotation
 a�ects only the mean squared error portion of the score.

At a local maximum location (��; ��;
�) of S, a small change in pattern scale, orienta-

tion, or position within the text decreases the match score. We do not, however, want to

report all local maxima because two very similar matches may be reported. We want to

report a complete set of independent matches. By independent matches, we mean that any

two reported matches should be signi�cantly di�erent in at least one of the de�ning com-

ponents: scale, orientation, and position. If a pattern �ts very well into a piece of text at a

particular scale, orientation, and position within the text, then the pattern at the same scale

and orientation but with a slightly di�erent position will also �t very well. Both matches

should not be reported. We report only those matches at which S is a local maximum in

a topological neighborhood of the match, where the topological elements are the vertices,

edges, and regions of an arrangement of a certain set of lines in scale-position space. For

example, we output a vertex (�; �) of the arrangement only if it is a better match than

its neighboring vertices and all local maximum locations on adjacent edges. (The complete

algorithm is given in section 3.4.) Using a topological neighborhood instead of a geometric

one is only a heuristic used to achieve our goal of reporting independent matches.

3.2 The Best Rotation

In this section we �x (�; �) and derive the rotation angle
 =
�(�; �) which minimizes

the mean squared error e(�; �;
) and, hence, the reciprocal match score R(�; �;
). This is

straightforward because e is di�erentiable with respect to
:

@e

@

(�; �;
) = 2

0
@
 �

R �+�l
s=�

�
�(s)�	

�
s��
�

��
ds

�l

1
A :

The derivative @e=@
 is equal to zero exactly when

 =
�(�; �) =

R �+�l
s=�

�
�(s)� 	

�
s��
�

��
ds

�l
;

3.3. THE 2D SEARCH PROBLEM 39

the mean value of the di�erence � � 	 (more precisely, �(s) � 	((s � �)=�)) over the

arclength interval of the match. Since @2e=@
2(�; �;
)� 2 > 0, we conclude that for �xed

� and �, the rotation angle that minimizes the mean squared error is
 =
�(�; �) given

above. If we de�ne e�(�; �) � e(�; �;
�(�; �)), then

e�(�; �) =

R �+�l
s=�

�
�(s)�	

�
s��
�

��2
ds

�l
�
0
@R �+�ls=�

�
�(s)� 	

�
s��
�

��
ds

�l

1
A
2

:

The function e�(�; �) is the variance of � �	 over the arclength interval of the match.

3.3 The 2D Search Problem

The result of the previous section allows us to eliminate the rotation parameter from consid-

eration in our score and reciprocal score functions. We de�ne R�(�; �) = R(�; �;
�(�; �)).

Our goal now is to �nd local minima in the domain D of

R�(�; �) =
L

�l

1 +

I2(�; �)

�l
�
�
I1(�; �)

�l

�2!
; (3.1)

where

I1(�; �) =

Z �+�l

s=�

�
�(s) �	

�
s � �
�

��
ds and (3.2)

I2(�; �) =

Z �+�l

s=�

�
�(s) �	

�
s � �
�

��2
ds: (3.3)

Consider the evaluation of the integral I1(�; �) for a �xed pair (�; �). Since � and 	

are piecewise constant functions, this integral can be reduced to a �nite summation of terms

such as the product of (�i � j) with the length of the overlap of the ith arclength interval

(ci; ci+1) of �(s) and the jth arclength interval (aj� + �; aj+1� + �) of 	((s � �)=�). In

precise mathematical terms, we have

I1(�; �) =
n�1X
i=0

m�1X
j=0

(�i � j)�Xij ;

where Xij = j(ci; ci+1) \ (aj� + �; aj+1�+ �)j and jJ j is the length of interval J .

Let lij denote the line aj� + � = ci, i = 0; : : : ; n, j = 0; : : : ; m, in the ��-plane. The

four lines

lij : aj� + � = ci;

40 CHAPTER 3. THE POLYLINE SHAPE SEARCH PROBLEM

li+1;j : aj� + � = ci+1;

li;j+1 : aj+1� + � = ci; and

li+1;j+1 : aj+1� + � = ci+1

divide the ��-plane into regions in which we may write down explicit analytic formulae for

Xij = Xij(�; �) = j(ci; ci+1) \ (aj� + �; aj+1� + �)j. In each region, the formula for the

size of the intersection is (at most) a degree one polynomial in � and �. For example, when

ci < aj� + � < ci+1 < aj+1� + �, it is easy to check that Xij = ci+1 � (aj� + �). This

situation is depicted in Figure 3.3. Note that the given formula for Xij also holds if we

replace < with � in the comparisons between text and transformed pattern breakpoints.

All possible formulae for Xij(�; �) are illustrated in Figure 3.4. Now let L denote the

set of (n + 1)(m + 1) lines lij and let A = A(L) denote the arrangement1 in ��-space of
the lines in L. In each face f of A, we have a degree one polynomial formula for Xij ,

X
f
ij = u

f
ij�+ v

f
ij�+w

f
ij. As explained above, the formula for Xij = Xij(�; �) is determined

by the above{below relationship between (�; �) and each of the four lines lij ; li+1;j; li;j+1,

and li+1;j+1. From this fact, it is easy to see that the above{below relationship of (�; �)

and the line lij a�ects only the four intersection formulae Xij ; Xi�1;j; Xi;j�1, and Xi�1;j�1.

Note that A is an arrangement of non-vertical lines. The slope of lij is �aj � 0, so all

lines have negative or zero slope. Note also that A is degenerate because there are many

pairs of parallel lines (li1;j k li2;j). An arrangement vertex vijpq is the intersection of lij

and lpq. The scaling and sliding (�; �) = vijpq of the pattern lines up exactly two pairs of

breakpoints: aj�+� coincides with ci and aq�+� coincides with cp. An arrangement edge

e is an open segment along some line lij . A scaling and sliding (�; �) 2 e lines up exactly

one pair of breakpoints: aj� + � coincides with ci. For an open arrangement face f , any

scaling and sliding (�; �) 2 f lines up no pairs of breakpoints.

Now �x a face f of the arrangement A and let Yij = �i � j . Then for (�; �) in the

closure �f , the integrals (3.2), (3.3) in the formula for R� can be written as

I
f
1 (�; �) =

n�1X
i=0

m�1X
j=0

X
f
ijYij ; and (3.4)

I
f
2 (�; �) =

n�1X
i=0

m�1X
j=0

X
f
ij(Yij)

2: (3.5)

1For a survey of arrangements, see [19].

3.3. THE 2D SEARCH PROBLEM 41

(a)

aj� + � > ci (above lij)

aj� + � < ci+1 (below li+1;j)

aj+1� + � > ci (above li;j+1)

aj+1� + � > ci+1 (above li+1;j+1)

aj� + � aj+1� + �

ci ci+1

Xij = ci+1 � (aj� + �)

(b)

�

�

ci+1

ci
Xij = ci+1 � (aj� + �)

lij

li+1;j

li+1;j+1li;j+1

(I)

(II)(V)

(IV)

(III)

(VI)

Figure 3.3: The Interval Overlap Xij . (a) Intervals for which ci < aj� + � < ci+1 <

aj+1� + �. In this case, Xij = ci+1 � (aj� + �). (b) The corresponding region in scale-

position space is shown in gray. The formulae for all six regions (I){(VI) bounded by � � 0,

� � 0, lij , li+1;j , li;j+1, and li+1;j+1 are given in Figure 3.4.

42 CHAPTER 3. THE POLYLINE SHAPE SEARCH PROBLEM

Xij = ci+1 � (aj� + �)(I)

aj� + � aj+1�+ �

ci ci+1

Xij = (aj+1� + �) � ci(II)

ci ci+1

aj� + � aj+1� + �

Xij = (aj+1 � aj)�(III)

aj� + � aj+1�+ �

ci ci+1

Xij = ci+1 � ci(IV)

aj�+ � aj+1� + �

ci ci+1

Xij = 0(V)

aj� + � aj+1� + �

ci ci+1

Xij = 0(VI)

aj� + � aj+1� + �

ci ci+1

Figure 3.4: All Possible Interval Overlaps Xij . In all cases, Xij = Xij(�; �) is (at most) a

degree one polynomial in � and �. (I) ci � aj� + � � ci+1 � aj+1� + �. (II) aj� + � �
ci � aj+1�+ � � ci+1. (III) ci � aj�+ � � aj+1� + � � ci+1. (IV) aj�+ � � ci � ci+1 �
aj+1� + �. (V) aj�+ � � aj+1�+ � � ci � ci+1. (VI) ci � ci+1 � aj�+ � � aj+1� + �.

3.3. THE 2D SEARCH PROBLEM 43

Substituting X
f
ij = u

f
ij� + v

f
ij� + w

f
ij into these formulae and gathering like terms gives

I
f
1 (�; �) = euf� + evf� + ewf and (3.6)

I
f
2 (�; �) = buf� + bvf� + bwf ; (3.7)

where euf =P
ij u

f
ijYij , buf =P

ij u
f
ij(Yij)

2, and similarly for evf , bvf , ewf , and bwf . Combining
(3.1), (3.6), and (3.7), we can write R� in the closed region �f as

Rf�(�; �) =
L

�3l3
(Af�2 +Bf�� + Cf�2 +Df�+ Ef� + F f) (3.8)

for constants

Af = l2 + lbuf � (euf)2;
Bf = lbvf � 2euf evf ; (3.9)

Cf = �(evf)2; (3.10)

Df = l bwf � 2euf ewf ;
Ef = �2evf ewf ; and (3.11)

F f = �(bwf)2:
Our 2D search problem is to �nd pairs (�; �) 2 D at which R�(�; �) is a local minimum.

3.3.1 Faces

Can a local minimum of R� occur in the interior of a face?
2 We have not been able to rule out

this possibility, although we will argue that local minima inside faces are somewhat rare. We

will also show that every open ball around a face local minimum location (��; ��) contains

other points (�; �) such that R�(�; �) = R�(��; ��). In this sense, there are no strict local

minima of R� inside an arrangement face. Furthermore, the same value R�(��; ��) can

always be found on an arrangement edge or vertex which is adjacent to the face containing

(��; ��). Given the above considerations, we ignore the possibility of face local minima in

our algorithm. In the rest of this section, we argue the previously made claims.

In order to determine if a local minimum of R� can occur inside a face f , we must

examine the function Rf�(�; �) de�ned on �f (see (3.8)).

2In [13], we concluded that there are no local minima of R� inside an arrangement face. Our proof (given

in the appendix of [13]), however, contained an error in the handling of the case evf = 0.

44 CHAPTER 3. THE POLYLINE SHAPE SEARCH PROBLEM

Theorem 1 The function R
f
�(�; �) has no local minima in f if evf 6= 0 or bvf 6= 0. Note

from equations (3.6) and (3.7) that evf and bvf are the coe�cients of � in I
f
1 (�; �) and

I
f
2 (�; �), respectively. Thus, the theorem can be rephrased to say that R

f
�(�; �) has no local

minima if one of the integrals I
f
1 (�; �) or I

f
2 (�; �) depends on �.

Proof. The �rst and second partial derivatives of R
f
� with respect to � are

@R
f
�

@�
=

L

�3l3
(Bf� + 2Cf� + Ef) (3.12)

@2R
f
�

@�2
=

2L

�3l3
Cf :

If evf 6= 0, then Cf = �(evf)2 < 0, and, consequently, @2Rf�=@�
2 < 0 (since � > 0). The

concavity of Rf� with respect to � implies that Rf�(�; �) cannot have a local minimum in

the � direction for any �. Therefore, Rf�(�; �) cannot have a local minimum when evf 6= 0.

So now suppose that evf = 0. From the formulae (3.9), (3.10), and (3.11), we see that

Bf = lbvf , Cf = 0, and Ef = 0 in this case. The �rst derivative (3.12) then reduces to

@R
f
�=@� = (L=(�3l2))bvf . Thus @Rf�=@� = 0 i� bvf = 0. If follows that Rf�(�; �) cannot have

a local minimum when evf = 0 and bvf 6= 0.

We have shown that Rf�(�; �) cannot have a local minimum when evf 6= 0 or (evf = 0

and bvf 6= 0). These conditions are, of course, logically equivalent to evf 6= 0 or bvf 6= 0.

Next, we seek an explicit condition on the text polyline which guarantees that evf 6= 0.

De�ne i0(�; �) and i1(�; �) to be the text indices where the transformed pattern graph

domain [�; � + �l] begins and ends:

i0(�; �) = i0 if � 2 [ci0 ; ci0+1) and i1(�; �) = i1 if � + �l 2 [ci1; ci1+1):

See Figure 3.5. For any (�; �) 2 f , no two breakpoints of the text and the transformed

pattern graph line up. This means that i0(�; �) � i
f
0 and i1(�; �) � i

f
1 are constant for

(�; �) 2 f . It also means that If1 (�; �) is di�erentiable with respect to � at points in

f . By (3.2), @If1 =@� = @=@�(
R�+�l
s=� �(s) ds) since

R �+�l
s=� 	((s � �)=�) ds = �

R l
s=0	(s) ds

is independent of �. It is then easy to see from Figure 3.5 that @I
f
1 =@� = �

i
f

1

� �
i
f

0

. But

from (3.6), we also have that @If1 =@� = evf . Therefore evf = �
i
f

1

��
i
f

0

and evf 6= 0 i� �
i
f

1

6= �
i
f

0

.

Combining this fact and Theorem 1, we get

Corollary 1 If �
i
f

0

6= �
i
f

1

, then R
f
� has no local minima in f .

The previous discussion does not eliminate the possibility of a local minimum of Rf� if

i
f
0 = i

f
1 . Fortunately, we have the following lemma.

3.3. THE 2D SEARCH PROBLEM 45

s
ci0 � � + d�

�
i
f
0

ci1

� + �l

(� + d�) + �l
�(s)

�
i
f
1

d
�R �+�l

s=� �(s) ds
�
= (�i1 � �i0)d�

Figure 3.5: The Integral of Text Angle as a Function of Pattern Placement. Consider the

integral I(�) =
R �+�l
s=� �(s)ds, where � is �xed. Clearly, I(�+d�) = I(�)�R �+d�s=� �(s)ds+R �+d�+�l

s=�+�l �(s)ds. If (�; �) is in the open face f , then we can choose d� > 0 small enough so

that (�; �+d�) is still in f , �(�) = �(�+d�) = �
i
f

0

, and �(�+�l) = �(�+d�+�l) = �
i
f

1

.

Here, we have I(� + d�)� I(�) = (�
i
f

1

� �
i
f

0

)d�.

Lemma 1 If i
f
0 = i

f
1, then R

f
� has no local minima in f unless R

f
� � 0.

Proof. If if0 = i
f
1 , then the text turning angle graph �(s) � �i0 over [�; � + �l] for every

pair (�; �) 2 f . From equations (3.2) and (3.3), we can explicitly compute I
f
1 (�; �) and

I
f
2 (�; �). The results are If1 (�; �) = �l(�

i
f

0

�) and I
f
2 (�; �) = �l(�2

i
f

0

� 2�
i
f

0

 + 2),

where = (
R l
s=0	(s) ds)=l and 2 = (

R l
s=0	

2(s) ds)=l. Substituting these results into

equation (3.1) for Rf� , we get R
f
�(�; �) = K=�, where K is constant with respect to �. If

K = 0, then Rf� � 0. If K 6= 0, then @Rf�=@� = �K=�2 6= 0, and hence again Rf� has no

local minima.

The following theorem combines Corollary 1 and Lemma 1.

Theorem 2 If all text cumulative angles �i are distinct, then R
f
� has no local minima in f

unless R
f
� � 0.

Proof. Consider the face f . If i
f
0 = i

f
1 , then the conclusion follows from Lemma 1. If

i
f
0 6= i

f
1 , then �if

0

6= �
i
f

1

by assumption, and the conclusion follows from Corollary 1.

An almost immediate consequence of Theorem 2 is

Corollary 2 If the text contains only right turns or only left turns (e.g. if the text is a

piece of a convex polygon), then R
f
� has no local minima in f unless R

f
� � 0.

46 CHAPTER 3. THE POLYLINE SHAPE SEARCH PROBLEM

Proof. If the text only has right turns, then �0 < �1 < � � � < �m�1; if the text only has

left turns, then �0 > �1 > � � � > �m�1. In either case, the cumulative turning angles �i are

distinct, and the result follows from Theorem 2.

By Theorem 1, if there is a local minimum in f , we must have evf = bvf = 0. In this case,

R
f
� reduces to R

f
�(�; �) = (L=(�3L3))(Af�2 + Df� + F f), which is independent of �. In

order to determine if there is a local minimum in f , we minimize this function with respect

to �. Here @R
f
�=@� = (�L=(�4l3))(Af�2+2Df�+3F f), so there are at most two values of �

at which a local minimum can occur. Obviously, these values can be determined in constant

time. Even if R
f
� has a local minimum in the right halfspace H = f (�; �) : � > 0 g, it may

not occur in the open face f . Although we have not been able to eliminate the possibility

of a local minimum inside a face, we have the following theorem.

Theorem 3 There are no strict local minima of R� in the interior of an arrangement face.

By a strict local minimum at (��; ��) 2 f , we mean that Rf�(��; ��) < R
f
�(�; �) for all

(�; �) 6= (��; ��) in a small enough open ball centered at (��; ��) and contained within f .

Theorem 3 follows from the fact that a local minimum in f implies thatRf� is independent of

� (as argued above). If (��; ��) is the location of such a local minimum, then Rf�(��; ��) =

R
f
�(��; �) 8(��; �) 2 �f . In particular, Rf�(��; ��) = R

f
�(��; �) if (��; �) 2 @f . Therefore, a

small value Rf�(��; ��) will also occur on the edges and/or vertices of f which intersect the

vertical line � = ��.

Let us summarize the results of this section. We have not able to eliminate the possibility

of a local minimum inside an arrangement face. However, such a local minimum cannot

occur unless evf = bvf = 0 (Theorem 1), a fairly restrictive condition which implies that Rf�

does not depend on the shift �. Even if there were a local minimum of R� at (��; ��) 2 f ,
R�(��; ��) will not be strictly smaller than R� at other points in a neighborhood of (��; ��)

(Theorem 3). Furthermore, the value Rf�(��; ��) will also occur on some arrangement edge

or vertex adjacent to f . Since local minima inside faces are somewhat rare, are never strict

local minima, and the same value can always be found on arrangement edges or vertices,

we ignore the possibility of face local minima in our algorithm.

3.3.2 Edges and Vertices

Now consider an edge e that bounds face f . We want to know whether R� has a local

minimum at some (�; �) 2 e. For simplicity of computation, we check instead whether R�

has a local minimum at some (�; �) 2 e along the direction of e. This is a weaker condition

than R� having a local minimum at (�; �), and it is this weaker condition that de�nes an

3.4. THE ALGORITHM 47

\edge minimum" in the algorithm presented in the next section. The edge e is part of a

line lij : aj� + � = ci. Combining this line equation with the equation (3.8) for R
f
� , we

get a function Re� (R� restricted to edge e) which is a rational cubic in � (the numerator is

quadratic, but the denominator is cubic):

Re�(�) =
L

�3l3
(�
f
ij�

2 + �
f
ij�+ �

f
ij) if e � lij , e � @f;

where

�
f
ij = Af � ajB

f + a2jC
f ;

�
f
ij = ciB

f � 2ajciC
f +Df � ajEf ; and

�
f
ij = c2iC

f + ciE
f + F f :

Thus we are left with a basic optimization problem. There are at most two local minima

points (��; ��) 2 e for Re� since

dRe�
d�

= � L

�4l3
(�fij�

2 + 2�fij�+ 3�fij):

These edge local minima locations can be determined in constant time given the formula

for Rf� .

The function R� consists of piecewise rational cubic patches glued together at arrange-

ment edges. Local minima of R� may occur at arrangement vertices, so we must also

examine the values of R� at these locations. In fact, in practice we have found that values

at vertices are smaller than minima on incident edges, even with the weaker notion of edge

minimum given above. We shall say a bit more about this at the beginning of the results

section 3.5.

3.4 The Algorithm

The user speci�es a minimum match length matchlenmin and a maximum match length

matchlenmax (default maximum is L), along with a bound on the maximum mean absolute

error maemax of a reported match. It is a bit easier to think in terms of the mean absolute

error than in terms of the mean squared error since the former is in units of radians (or

degrees), while the latter is in units of radians squared. If we let f(s) = j�(s) � (((s �
�)=�) +
)j, then the mean absolute error is mae(�; �;
) =<f; I > =(�l), where <f; g>=R �+�l
s=� f(s)g(s)ds and I(s) � 1. The mean squared error is mse(�; �;
) = jjf jj2=(�l), where
jjf jj2 =<f; f >. Applying the Cauchy-Schwarz inequality gives (<f; I >)2 � jjf jj2jjI jj2 =

48 CHAPTER 3. THE POLYLINE SHAPE SEARCH PROBLEM

jjf jj2(�l), from which it follows that mae2(�; �;
) � mse(�; �;
). Therefore, the bound

maemax can be guaranteed as long as we require the reported match to have a mean squared

error which is less than or equal to msemax = mae2max.

We say that (�; �) is admissible if the match length �l 2 [matchlenmin;matchlenmax] and

the mean squared error e�(�; �) � msemax. Note that the mean squared error e� =
�l
L
R��1,

and so we can quickly determine the mean squared error from the reciprocal score R�. Of all

admissible locations (�; �), we report only those which are locally the best. An admissible

vertex is reported i� its reciprocal score is less than the reciprocal scores of all adjacent

admissible vertices and of all admissible edge minima locations on adjacent edges. An

admissible edge minimum is reported i� its reciprocal score is less than the reciprocal scores

of all its admissible vertices (at most two) and the other admissible edge minimum (if one

exists) on the same edge. Checking only a constant number of topologically neighboring

elements does not guarantee that two very similar matches (which are geometrically close in

��-space) will not be reported. Using topological closeness instead of geometric closeness

is only a heuristic.

Our algorithm outputs matches during a topological sweep ([21]) over the O(mn) lines lij

in the degenerate arrangement A. Our sweep implementation uses Edelsbrunner's \Simula-
tion of Simplicity" technique ([20]) to cope with the degenerate input. During an elementary

step, the topological sweep line moves from a face f1 into a face f2 through an elementary

step vertex v. Please refer to Figure 3.6. During this step, we �rst compute the formula

v
w4

w3

w1

w2

f1

f2

e1

e2
e4

e3

L1

L2

Figure 3.6: Elementary Step Notation.

for Rf2� (�; �). This requires computing the coe�cients euf2 , evf2 , ewf2 , buf2 , bvf2 , and bwf2
in the formulae (3.6) and (3.7) for the integrals I1(�; �) and I2(�; �), (�; �) 2 �f2. Note

that computing and summing the O(mn) terms in (3.4) and (3.5) during each elementary

3.4. THE ALGORITHM 49

step would require total time O(m3n3) because there are O(m2n2) elementary steps. For-

tunately, only a constant number of terms in (3.4) and (3.5) change when we move from

face f1 to face f2. This is because only a constant number (at most eight) of intersection

formulae X
f
ij are a�ected by above{below relationships involving L1 and L2. Hence, the

values euf2 ; evf2 ; ewf2 ; buf2 ; bvf2 ; bwf2 in (3.6) and (3.7) can be computed in constant time from

the values euf1 ; evf1 ; ewf1 ; buf1 ; bvf1 ; bwf1 , and the formula for Rf2� (�; �) can be computed in O(1)
time from the formula for R

f1
� (�; �). The latter formula was computed when the sweep line

�rst entered face f1.

The remaining work during an elementary step over v is straightforward. In Figure 3.6,

e3 and e4 are the arrangement edges with v as left endpoint. These edges are part of the lines

L1 and L2, respectively, and have right endpoints w3 and w4, respectively. From the formula

for Rf2� (�; �), we compute the formulae for R
L1
� (�; �) and RL2� (�; �), as well as the values

R�(v); R�(w3); R�(w4). From the formulae for RL1� (�; �) and RL2� (�; �), we compute the

locations on e3 and e4 of any local minima of R� in the direction of these edges. The above

computations take constant time given the formula for R
f2
� (�; �). During the elementary

step at v, we decide whether to output the vertex v and any local edge minima locations

on e3 and e4. During previous elementary steps, it was determined if it is still possible to

report v by comparing the value of R� at v to the value of R� at w1; w2, and at all edge

minima locations on e1 and e2. The remaining values of R� needed to decide whether or not

to report v are computed during the elementary step over v, as described above. During

this step, we also compute all values of R� needed to decide whether to report any local

edge minima locations on e3 and e4. For each location (�; �) to be reported, we compute

 =
�(�; �) = I1(�; �)=�l and report the triple (�; �;
).

The above discussion shows that the elementary step work speci�c to our setting may

be performed in O(1) time. Thus, the total time to perform the topological sweep over

the O(mn) lines lij is O(m
2n2). The total space required by our algorithm is the O(mn)

storage required by a generic topological line sweep which does not store the discovered

arrangement. In the common case of a simple pattern, such as a line segment or corner,

m = O(1) and our algorithm requires O(n2) time and O(n) space.

The �;
 components of a reported triple (�; �;
) give the scaling and rotation com-

ponents of a similarity transformation of the pattern which makes it look like a piece of

the text. The � component tells us where along the text this similar piece is located. To

get the translation parameters of the similarity transformation, we sample the transformed

pattern and the corresponding similar piece of the text, and �nd the translation parameters

which minimize the mean squared error between the translated pattern point set and the

text point set.

50 CHAPTER 3. THE POLYLINE SHAPE SEARCH PROBLEM

Text T Pattern P Matches

(a)

(b)

Figure 3.7: Trading O� Match Length Against Match Error. In both examples, the pattern

is a line segment and the maximum absolute error input parameter maemax = 9�. To help

make individual matches clear, we show a darker, smaller scale version of the pattern slightly

o�set from each match. (a) One match over the length of the entire \noisy" straight line

text is found. (b) Twelve matches, one for each of the sides of the \mountain range", are

found.

3.5 Results

In practice, local edge minima are very rarely reported because there is almost always a

smaller admissible minimum at one of the two edge vertices. Essentially, the algorithm

reports admissible vertices which have a reciprocal score which is lower than any other

adjacent admissible vertex. Recall that arrangement vertices (�; �) give scalings and shifts

of the pattern which cause two of its arclength breakpoints to line up with two of the

text arclength breakpoints. Our experimentation has thus showed that the best matches

of arclength versus turning angle graphs are usually those that line up two pairs of break-

points (as opposed to one pair for points on arrangement edges and zero pairs for points in

arrangement faces).

Figure 3.7 shows two experiments that illustrate the balancing of match error versus

match length. In both cases, the pattern shape is a line segment. In the �rst case, the text

is a \noisy" straight line. The angles between consecutive segments are all nearly 180�.

With maemax = 9�, our algorithm �nds one match over the length of the entire piece of

text. In the second case, the text looks more like a mountain range. The angles between

consecutive segments are far from
at angles. With maemax = 9�, our algorithm �nds twelve

matches, one for each of the sides of the mountain range.

A successful PSSP algorithm must produce a complete set of independent matches for

given user tolerances. Figures 3.8 shows the result of applying our PSSP algorithm in two

\exact" situations. In the �rst example, the pattern is simply a rotated version of the text.

In the second example, the pattern is a rotated, scaled-down version of a portion of the text.

For both inputs, only the one correct match is reported. Figure 3.9 shows the output of our

3.5. RESULTS 51

Text T Pattern P Matches

(a)

(b)

Figure 3.8: PSSP Exact Matching Examples. The columns (from left to right) show the

text, pattern, and matches found. With maemax = 9�, our algorithm �nds only the one

exact match in both examples. (a) The pattern is a rotated version of the text. (b) The

pattern is a rotated, scaled version of a piece of the text.

52 CHAPTER 3. THE POLYLINE SHAPE SEARCH PROBLEM

Text T Pattern P Matches

(a)

(b)

(c)

(d)

Figure 3.9: PSSP Results. As in Figure 3.7, each match is accompanied by a darker, smaller

scale version of the pattern which is slightly o�set from the match. (a) maemax = 15�. Each

of the �ve noisy lines gives rise to exactly one segment match. (b) maemax = 9�. The three

left turn text corners are found with the left turn corner pattern. (c) maemax = 20�. Our

algorithm �nds the two (relatively) long, straight portions of the text. (d) maemax = 9�.

Both left turn text corners are found.

3.6. SUMMARY AND SUGGESTIONS FOR FUTURE WORK 53

Text T Pattern P Matches

(a)

(b)

Figure 3.10: More PSSP Results. In both examples, the text is a curve with straight line

and circular portions. (a) The circular arc pattern only matches the circular part of the

text. (b) The line segment pattern only matches the straight parts of the text.

algorithm on four (text, pattern) pairs in which the pattern is either a straight segment or a

corner. In Figure 3.9(b) we clearly see that the order of the vertices in the pattern and text

makes a di�erence in the matches found by our algorithm | the three left turn text corners

are found, but the right turn text corner is missed. To get around this dependence on the

representation of the polyline, we could run our algorithm again on the pattern represented

by vertices in the reverse order (so that the pattern is a right turn instead of a left turn).

In Figure 3.10, we �t a circular arc and straight line pattern into a text curve with both

circular and straight portions. The circular arc does not match the straight portions of the

text, nor does the line segment match the circular portion of the text. In the examples

shown in Figures 3.11 and 3.12, we use our method to summarize the straight line content

of an image.

Obviously, if the pattern shape is not present anywhere within the text (within user

speci�ed tolerances) then a PSSP algorithm should not report any matches. Given the text

and pattern shown in Figure 3.13 our PSSP algorithm reports no matches for maemax = 9�

and matchlenmin set to prevent very tiny matches.

3.6 Summary and Suggestions for Future Work

In this chapter we developed an algorithm to �nd where a planar \pattern" polyline �ts

well into a planar \text" polyline. By allowing the pattern to rotate and scale, we �nd

54 CHAPTER 3. THE POLYLINE SHAPE SEARCH PROBLEM

(a) (b)

(c) (d)

Figure 3.11: Image Summary by Straight Segments. (a) The image to be summarized is

512� 480. (b) The result of Canny edge detection (� = 6 pixels) and edgel linking is a set

of polylines with a total of 7219 vertices. (c) The result of subsampling each of the polylines

by a factor of 6 leaves a total of 1212 vertices. (d) Finally, �tting a straight segment to

each of the subsampled polylines using our PSSP algorithm gives a set of 50 segments.

As mentioned in the text, checking only a constant number of topologically neighboring

elements before reporting a match (�; �) does not guarantee that two very similar matches

(which are geometrically close) will not be reported. This heuristic is responsible for the

\double edges" in the image summary.

3.6. SUMMARY AND SUGGESTIONS FOR FUTURE WORK 55

(a) (b) (c)

Figure 3.12: Another Image Summary by Straight Segments. (a) The \tools" image. (b)

The result of Canny edge detection and edgel linking of the pliers' contour. (c) The result

of �tting a straight segment into the pliers' contour using our PSSP algorithm.

Figure 3.13: PSSP No Matches Example. The text is shown above the pattern. Our PSSP

algorithm reports no matches for maemax = 9� and matchlenmin set to prevent very tiny

matches.

56 CHAPTER 3. THE POLYLINE SHAPE SEARCH PROBLEM

portions of the text which are similar in shape to the pattern. We dealt with the issue of

match length versus match error by using a match scoring function that balances these two

factors. All comparisons were performed on the arclength versus cumulative turning angle

representations of the polylines. This allowed us to reduce the complexity of the problem: To

compare two planar polylines, we compare their one-dimensional arclength versus turning

angle graphs. In addition, the space operations of scaling, rotation, and sliding the pattern

along the text cause simple changes to the pattern summary graph. Another reduction

in complexity was gained by using the L22 distance to compare the graphs. This allowed

us to eliminate the rotation parameter from the search space, leaving a 2D scale-position

space. Thus, we converted a four-dimensional search problem in the space of similarity

transformations to a two-dimensional search problem in scale-position space.

Our line sweep strategy essentially examines all possible pattern scales and positions

within the text. If, however, the pattern does not �t well at a certain scale and location,

then it will not �t well at nearby scales and locations. Finding \certi�cates of dissimilarity"

which would allow us to prune our (�; �) search space is a topic for future research. Another

idea for speeding up our algorithm is to use the results of pattern searches in coarse versions

of the text (with relatively high error tolerances) to guide searches in �ner versions of the

text, with the �nal search in the text itself. This hierarchical search strategy aims to reduce

the total search time by reducing the number of expensive comparisons between the pattern

and the full text at the expense of many cheaper comparisons with coarser versions of the

text. The two techniques discussed above will help speed up the search for one pattern

within one text. Suppose, however, that we have multiple patterns that we want to �t into

multiple texts. This is the case, for example, if we are trying to summarize an image by

recording which basic shapes/patterns �t where in the image. Can we do better than the

brute force approach of applying our algorithm to each (text, pattern) pair?

The problem considered in this chapter can be generalized in a few di�erent ways. For

example, we may want to �nd a�nely transformed versions of a pattern within a text. In

addition to the shape transformation group, we could expand the class of shapes to include

planar shapes other than polylines, such as circular arcs or cubic splines. Also, we may

want to remove the restriction that the one-dimensional shapes are planar and allow, for

example, polylines in three dimensions. To complete the generalization of the problem, we

could allow the two-dimensional shapes such as polyhedra or spheres. Another possible

topic of further research is to use the ideas in this chapter to develop a metric on polyline

shapes which returns a small distance between two polylines when a scaled, rotated version

of one matches well a portion of the other. See [3][34][54][2] for work on shape metrics.

One strategy for handling other one-dimensional planar pattern and text shapes is to

3.6. SUMMARY AND SUGGESTIONS FOR FUTURE WORK 57

apply our method on polyline approximations of the input shapes. An accurate polyline

approximation, however, may require a very large number of segments and our algorithm

uses O(m2n2) time. In choosing the arclength versus turning angle representation of a

shape, we restricted ourselves to one-dimensional planar shapes. In addition, our algorithm

relies heavily on the simple changes to this representation when the underlying polyline

is uniformly scaled and rotated. This no longer holds if we allow, for example, a�ne

transformations of the pattern.

Although our algorithm does not generalize to handle more general shape search prob-

lems, it produces excellent results for planar polylines under similarity transformations.

This very speci�c problem is far from trivial because we match possibly scaled versions of

the pattern to pieces of the text, and we require only the \best" matches to be reported.

The main idea of the algorithm is to divide up the search plane into regions in which it

is (relatively) easy to handle a complex scoring function. This general idea is obviously

applicable to other search problems.

58 CHAPTER 3. THE POLYLINE SHAPE SEARCH PROBLEM

