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Abstract

The client-server con�guration is a popular architecture for modern computing systems,

and for databases in particular. Such a database con�guration involves one or more server

processes that manage a shared repository of persistent data, and handle requests for data

retrieval and update from multiple clients. It is common for client transactions to run on

desktop workstations, and to communicate with the database server using explicit messages

across a local-area or a wide-area network.

A traditional assumption in the design of client-server databases has been that the

clients have limited resources. Accordingly, client functionality has often been restricted to

transmission of queries and updates across the network to the server, and presentation of the

received results to the user. The server is a potential bottleneck in such systems, especially

for large database sizes and many clients. Due to signi�cant advances in computer tech-

nology, today's client workstations are often high-performance machines with substantial

CPU and memory. It is now possible to use the resources of such capable clients for data

caching and query evaluation purposes, so as to reduce the server workload and improve

system performance and scalability.

In this dissertation, we propose and study an associative caching scheme, that we call

A*Cache, for client-server databases. A*Cache supports client-side data bu�ering and local

evaluation of associative queries. The cache at a client dynamically loads query results dur-

ing transaction execution, and uses query predicates to formulate descriptions of the cache

contents. New queries are compared against the cache description using predicate-based

reasoning to determine if the query can be evaluated locally. In contrast to navigational

data access using object or page identi�ers, A*Cache provides predicate-based access to the

cached data, thereby improving data reuse. Descriptions of client caches are also maintained

at the server, which generates noti�cations for updates committed at the central database.
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The clients use these update noti�cations to maintain the validity of their respective caches,

and also to detect con
icting updates of shared data.

The A*Cache system requires dynamic reasoning with predicates, naturally raising ques-

tions about its performance and scalability. The focus of this dissertation is on the feasibility

and performance of our caching scheme in a practical environment. We �rst describe the

architectural framework of A*Cache and its execution model for transactions, and examine

various design issues. We then develop new optimization techniques for A*Cache that can

potentially improve its performance. The behavior of the A*Cache scheme is investigated

through detailed simulation of a client-server database system under several di�erent work-

loads and data contention pro�les. We compare the performance of A*Cache with a system

with no client caching, with a caching scheme based on tuples, and with an optimized ver-

sion of A*Cache. Using an extended version of a standard database benchmark, we identify

scenarios where the A*Cache schemes are bene�cial, resulting in lower query response times

and better scalability, thus demonstrating the e�ectiveness of associative caching.
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Chapter 1

Introduction

The client-server architecture [Elbe94] has proved to be very popular for modern database

systems. This type of con�guration involves one or more server processes that manage a

shared repository of persistent data, and handle requests for data retrieval and update from

multiple client processes. With the current popularity of distributed computing, it is com-

mon for client transactions to be initiated from desktop workstations, and to communicate

with the database server using explicit messages across a local-area or a wide-area network.

1.1 Utilizing Client Resources

A traditional assumption in the design of client-server databases has been that client ma-

chines have very limited resources, and are likely to be fully loaded by local data processing.

Accordingly, the common approach has been to design query-shipping systems [Fran96]. In

these systems, client functionality is restricted to transmission of queries and updates across

the network to the server, and presentation of the received results to the user. All DBMS

tasks, such as query execution and transaction management, occur at the server. Since

client memory or CPU is not taken into consideration for data caching or query evaluation

purposes, such a system is said to have a thin client architecture. Most relational client-

server databases available commercially today fall under this category. Figure 1.1 shows

the overall architecture of a query-shipping system with a single client workstation.

The response of the server is a critical factor in the performance of a query-shipping

system. Server resources are shared among many clients, and can become the bottleneck in

1
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scaling the system to large amounts of data or many clients. Optimizing the performance

of the server has thus been a major focus of commercial systems. Consider, for example,

the Oracle7 database [Orac96], which is a typical relational system with client-server con-

�guration and a query-shipping architecture. Data caching is done on the server-side to

avoid disk tra�c, by using a main-memory `bu�er pool' of cached blocks, and queries can

be parallelized for e�ciency. However, there are no facilities for utilizing client resources.

Signi�cant advances in computer technology have made powerful CPUs and large mem-

ories available at a small fraction of their earlier costs, so that today's clients are often

high-performance machines with substantial processing power. These smart or thick clients

are capable of performing intensive computations on their own, using the database as a re-

mote information source that is accessed only when necessary. Increased client functionality

can potentially improve the performance and scalability of the system by lowering query

response times and o�-loading the server, thereby allowing a larger number of clients.

1.1.1 Dynamic Data Caching at Client Sites

In addition to server bu�ers, easy availability of abundant local memory allows data caching

at client workstations. Client-side data caching can enhance the overall performance of a

client-server database, especially when the operational data spaces of client transactions are

mostly disjoint, and contention on shared data is not excessively high. Dynamic caching of

locally pertinent and frequently used data constitutes a form of replication, whereby each
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client dynamically de�nes its own data space of interest. Unlike static data replication

schemes [Ceri84], dynamic caching is based on queries submitted by client transactions at

runtime, and does not require that a �xed subset of the database be speci�ed a priori.

There are two types of cache reuse in dynamic caching systems: intra-transaction and

inter-transaction. In both of these methods, a single transaction can cache and reuse objects

within its individual scope of execution in order to speed up the response. Inter-transaction

caching additionally allows cached data to be reused by future transactions at the same

client. Although additional costs are involved in maintaining the cache across transaction

boundaries, longer-term reuse of cached items can increase cache utilization, and reduce

network tra�c and query response times.

Caching Based on Object Identity

Object-oriented databases generally assume smart thick clients, and are built using a data-

shipping approach (Figure 1.2). In the data-shipping model, the clients request data pages

or objects from the server, and cache them locally in memory. Cached items are looked

up by their unique identi�ers and reused at client sites, with page or object faults causing

data to be fetched from the server as necessary. Query processing tasks do not occur at

the server, but are distributed to the clients; the server is essentially a page server or an

object server [Dewi90], with transaction management services. Inter-transaction reuse of

the cache is supported by using an identity-based maintenance protocol to either update or

invalidate locally cached copies of objects or pages.

Cache access based purely on identi�ers is adequate for navigational ID-based opera-

tions, such as ReadObject and UpdateObject, which are common in object-oriented databases

[Catt91]. However, local execution of more general associative queries cannot be supported

at the client site in this type of caching scheme. An associative query speci�es a target set

of tuples or objects using predicates on the attributes of a relation or an object class, e.g.,

through a selection condition in the WHERE clause of a SELECT-FROM-WHERE statement in the

database language SQL [ANSI92]. Such queries support value-based access to data, and are

very common in relational databases. Even in object-oriented databases, an initial set of

objects is often retrieved using predicates on the object attributes, with navigational access

occurring subsequently as the objects in the result set are traversed in user memory. Evalu-

ation of associative queries on locally cached data is therefore important for both relational
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and object database systems, and is the subject of the work reported in this dissertation.

Associative Caching

An associative caching scheme supports predicate-based access to cached data, instead of

retrieval only through unique identi�ers. Associative access can improve cache reuse, since

not only navigational but also associative queries may be evaluated on a cache locally. Local

query processing leads to signi�cantly higher utilization of client CPU and memory, and

can potentially improve the performance and scalability of the database system as a whole.

In comparison to identity-based caching, operation of an associative cache is more com-

plex in two major respects: cache containment reasoning and cache consistency mainte-

nance. In the former type of caching, it is obvious whether a desired object is cached or

not, and the server can easily maintain information on which clients have which objects

cached, so that the appropriate clients can be noti�ed when an object is changed. In con-

trast, determining whether an associative query can be answered from the cache requires

reasoning with cached query predicates. It is also not su�cient to consider data items in-

dividually for maintaining the consistency of an associative cache. Instead, predicate-based

reasoning must be employed to determine which client caches are a�ected by an update.
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1.1.2 An Example of Associative Caching: A BUG Database

We introduce an example here to illustrate the concept and utility of associative caching,

and the issues in maintaining such a cache. This example will be elaborated and used

through this dissertation to clarify various points.

The BUG Application

Consider a large software company with a primary Development Center at a single location

and many international Sales and Support o�ces. Suppose that it has a BUG database to

help track software defects encountered by its customers. A bug logged in the database has

a unique bug number, a product number, customer name, priority, current status, and a

problem description. Assume that it is represented using the following relational schema:

BUG(Bug#, Product#, Customer, Priority, LogDate, Description, Status),

where each row records the details of a particular bug.

Usage of the BUG database is as follows. Development and Support personnel are

assigned to speci�c products, so that queries to the database typically retrieve a set of bugs

satisfying a predicate such as (Product=100 AND Status='Open'). Other queries may

gather statistics on bug activity for di�erent products or customers. Bugs may be updated

after review, or in response to customer interaction. Once entered in the database, a bug

cannot be deleted, although its status can be updated to Resolved or to Not a bug.

Let us assume that the BUG database is implemented using a relational client-server

model, and that the central server is at the primary Development Center. Clients may be

located at the Development Center or at any Support site in the world. Clearly, client-side

caching would be bene�cial in this scenario, since the latency to retrieve data from the

central server could be quite substantial otherwise.

Determining Cache Containment

In our BUG example, users access data in an associative manner, e.g., based on the product

information and the status of bugs. Thus, associative access to cached data is required for

e�ective cache reuse at the client.

Suppose that a client C1 caches the result of a query for all open bugs in product num-

ber 100, along with a predicate P describing these tuples:



6 CHAPTER 1. INTRODUCTION

P : (Product# = 100 AND Status='Open').

Assuming that none of these bugs are updated by any client, a subsequent query at the

client C1 for all open bugs in product number 100 with High priority, i.e., those bugs that

satisfy the predicate

Q : (Product# = 100 AND Status = 'Open' AND Priority = 'High'),

can be answered using the local cache associatively. In this case, containment reasoning is

required to detect that predicate Q is a subset of the cached predicate P . Another query

denoted by the predicate R,

R : (Product# = 100),

asking for all bugs in product number 100 can only be partially answered from the cache of

client C1. In this case, the client could request the database either for all bugs in product

number 100, or only for those that are not open; this choice is a new and important opti-

mization decision, called query trimming, that can potentially speed up data transmission

and query processing.

Inserting New Bugs

Assume that a new bug is logged on product number 100. This insertion would cause a

cache storing the predicate R to become incomplete, since the new bug falls under the scope

of this predicate. In this case, either the new tuple could be inserted into the cache, or the

predicate R could be eliminated from it.

E�ect of Updating a Bug

Now assume that a client C2 commits an update that changes the status of a bug in product

number 100 from Open to Closed. This update potentially a�ects all clients that have

cached results, even a client C3 that stores a predicate (Customer = 'Cust1'). For client

C3, updating the modi�ed tuple if it is present in its cache is an appropriate maintenance

action that maintains the validity of its cache. For client C1, the updated tuple previously

belonged to the predicate P , but no longer satis�es it. The tuple may be dropped from the

cache, if no other cached predicate is referring to it.

Thus, the situation can be quite complex if the cached data is out-of-date as a result of

updates committed at the server. For some client transactions, reading data that is some-

what stale might be acceptable; for others, currency of the data could be crucial. Ideally,
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the cache maintenance policy should be 
exible enough to support varying requirements,

such as speci�cation of the maintenance mechanism per client or per query. For example,

results of queries known to be frequently asked could be automatically refreshed, but a

random query result invalidated and eventually purged from the cache.

1.2 Contributions of the Thesis

We propose and study an associative caching scheme that we call A*Cache. A*Cache is

based on query predicates, and supports the execution of associative queries at client sites.

Our focus is on the performance of an A*Cache system in a practical environment. The

goal is to examine, through qualitative analysis and simulation, the trade-o�s involved in

improving the performance of a client-server database through A*Cache.

The con�guration of an A*Cache system is shown in Figure 1.3. Multiple autonomous

client workstations interact with a central server via messages across a network. The per-

sistent data store is resident at the server and transactions are initiated from client sites,

with the server providing facilities for shared data access.

Queries submitted to the server are used to dynamically load data into a client cache,

and predicate-based cache descriptions derived from these queries are stored at both the
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client and the server in order to examine and maintain the cache contents. Figure 1.4 shows

an overview of the architecture of an A*Cache system. Observe that the server in A*Cache

has full query execution capabilities. Thus, A*Cache is neither a pure data-shipping nor

a pure query-shipping system; rather, it is a hybrid of the two architectures [Fran96]. It

attempts to exploit the resources of the client and the server in a 
exible way.

When a transaction submits a new query or update, it is intercepted locally by the

client, and checked for containment against its cache description. The operation may be

executed locally, if the client can determine that the data required by the operation is

entirely available in the cache. On the other hand, a cache miss results in a request to the

server to evaluate and send the required data. The result of this remote query execution is

optionally added to the client cache, and its descriptions at the server and at the client are

updated appropriately.

Client caches may become out-of-date as updates are committed on the central database

at the server, and an appropriate cache maintenance algorithm must be employed in order

to satisfy data consistency requirements of client transactions. In A*Cache, the clients

must register their cached predicates at the server in order to be noti�ed of changes to their

cached data. The server uses these client subscriptions to send noti�cations of committed

updates that are possibly relevant for each cache. In essence, client subscriptions serve as

notify locks [Gray93b, Wilk90], that are based on query predicates. The clients use these
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update noti�cations to refresh or invalidate predicates and data in their respective caches,

and also to detect any con
icting access to data locally read or written.

In this dissertation, we �rst describe the architecture of the A*Cache system, and discuss

various issues, such as concurrency control and cache consistency maintenance, that arise

in its design. We address the performance concerns in using predicate-based reasoning by

identifying new opportunities for optimization, and suggest techniques that promote good

dynamic behavior. For example, descriptions of the cache that are used for determining

cache containment need not be exact and may be conservative, so that all objects claimed to

be in the cache are indeed available in it. It is ine�cient but not incorrect to re-fetch a locally

cached object from the server. On the other hand, the server may use a liberal description

of a client cache, ensuring that a client is informed of all updates relevant for its cache, and

possibly of some irrelevant ones. Other optimizations that can potentially speed up query

evaluation and noti�cation processing, such as predicate indexes in containment reasoning,

predicate merging for compact cache descriptions, query trimming and augmentation to

reduce caching costs, are also discussed.

We describe the steps in transaction execution in an A*Cache system, and the events

that occur in the system in response to the di�erent types of database operations. In this

thesis, a semi-optimistic concurrency control protocol is assumed, in which a client uses

noti�cation messages from the server to detect any con
icting updates of the shared data

by other clients. We demonstrate that serializability of client transactions is retained using

such a concurrency control scheme.

We then investigate the behavior of the A*Cache scheme via detailed simulation of a

relational database system. The performance of A*Cache is evaluated under many di�erent

workloads and compared against other caching systems, such as a standard client-server

system with no client-side caching, and a tuple-caching system that caches only tuples and

no predicates. An optimized version of A*Cache is also examined. Using an extended

version of a database benchmark (the WISCONSIN benchmark [Gray93a]), we identify

scenarios in which the A*Cache-based schemes are bene�cial. The performance bene�ts

are measured in terms of lower query response times, reduced network tra�c, and better

scalability with large number of clients. Our simulation results clearly demonstrate the

bene�ts of associative caching for read-only environments, and for read-write environments

with moderately high write probabilities.
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1.3 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 gives an overview of related

work. We introduce the A*Cache scheme in Chapter 3, and discuss important design issues

such as concurrency control and cache maintenance. In Chapter 4, we suggest new tech-

niques for optimization that can be applied in A*Cache. Chapter 5 examines in detail the

e�ect of various database operations on the system, and shows the serializability of trans-

actions in A*Cache. In Chapter 6, we describe a simulation model for a relational database

system with client-side caching using A*Cache, and also our workload model based on the

WISCONSIN benchmark. Chapters 7 and 8 present the results of our simulation experi-

ments. We summarize our contributions and outline future research issues in Chapter 9.



Chapter 2

Related Work

2.1 Background: The Penguin Project

The need for associative caching arose in the Penguin research project [Wied86, Bars90,

Bars91] at Stanford University. The Penguin system materializes view-objects from data

stored in a relational schema by using data access functions, which specify joins on the

database relations for constructing the view-object. The materialized view-objects can

be traversed navigationally at the client site. Fetching data from the server as relation

fragments instead of a single 
at relation was proposed in [Lee90], and its e�ciency demon-

strated. Local caching is likely to improve the performance of such a system by reducing

the number of remote trips to the server. However, there is no notion of object identi�ers

for Penguin view-objects, and therefore, identity-based caching is inadequate in this case.

Associative caching techniques are required to detect and reuse query results that were

obtained earlier, but are still available for providing a local response to another query.

2.2 A Survey of Caching Schemes for Databases

The utility of data caching in improving system performance is well-accepted in databases.

For example, [Alon90] describes issues in the design and performance of quasi-copies, which

have client-speci�ed coherency conditions that allow local copies to diverge in a `controlled'

fashion.

Over the last few years, caching in client-server environments has been studied quite

extensively, mainly in the context of data-shipping object-oriented databases. We review

11
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below recent research on both navigational and associative caching techniques for client-

server databases.

2.2.1 Identity-Based Caching Systems

In [Fran93], a comprehensive study of inter-transaction caching schemes for object servers

and page servers is presented. Performance of various consistency control methods for

cached data is investigated via simulation. Special locking and maintenance algorithms for

optimization of caching performance in page-server systems are explored in [Care94]. Earlier

works that deal with client caching issues include [Care91a, Fran93, Wang91, Wilk90]. More

recent examples of work in this area are [Lome94, Adya95, Shri96], and [Cast97].

In all of the above schemes, storage, retrieval, and maintenance of cached objects at

client sites are done based on object or page identi�ers. As noted in the Introduction, this

type of caching can only support the navigational identity-based lookup common in object-

oriented databases. Unlike the A*Cache scheme proposed in this dissertation, associative

queries that access data using predicates on relations or object classes cannot be answered

locally at the client in these systems.

Index-Based Associative Access

Limited associative access may be supported in an identity-based client cache by using

indexes de�ned at the server database. If the query uses an indexed attribute, then the

relevant index pages can be examined to determine which objects satisfy the query. These

index pages may be used in either a centralized or a distributed manner. In the centralized

scheme, indexes are managed solely by the server and cannot be cached by clients. A client

submits each associative query to the server, which responds with a list of qualifying object

IDs. The client then locally checks its cache for object availability, and fetches missing

data objects or pages as necessary. The centralized index scheme requires communication

with the server for all index-based queries. A distributed alternative is to allow clients

to cache and maintain indexes locally. This requires the enforcement of a consistency

control protocol on index pages. Because an index page relates to many more objects

compared to a data page, it generally has very high contention, and may be subject to

frequent invalidation or update. Distributed index maintenance is therefore likely to be

expensive even in systems that have low to moderate update activity. Recent studies, such
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as [Basu97, Gott96, Zaha97], have investigated e�ciency issues in accessing and maintaining

cached indexes in client-server object databases.

2.2.2 Associative Caching Schemes

In associative caching schemes, server indexes need not be referenced to answer associative

queries from the data in the cache. Instead, containment reasoning on query predicates is

used to determine whether the cached query is available locally.

Associative access to cached data has been suggested in several studies. For example,

[Fink82] is an early work that examined the reuse of data in common subexpressions of

queries. A predicate-based partial indexing scheme for materialized results of procedure-

valued relation attributes was outlined in [Sell87]. The ideas can be extended to conventional

database systems, but were not developed and explored in that context, or for client-server

architectures. The work of Kamel and King [Kame92] deals with associative caching of

database queries, but is meant for applications that have a pre-determined set of queries

requiring repetitive re-evaluation, such as for integrity constraint checking.

We identify below some associative caching schemes that are more closely related to

A*Cache, and point out the di�erences of these systems with respect to it.

� ADMS�

In [Rous91], a ViewCache scheme that uses the notions of extended logical access path

and incremental access methods was proposed. A workstation-mainframe database

system called ADMS� that is based on the ViewCache scheme is described in [Rous95].

In this system, query results retrieved from the server(s) are cached on local disks of

client workstations. Updates are performed at the server, where update logs are main-

tained for the purpose of cache refresh. Queries against cached data at a client may

result in an explicit refresh request to the server to compute and propagate from these

logs the di�erential changes for the query. Performance of client-side caching schemes

that are based on the ViewCache technique is studied via simulation in [Deli92]. In

the `Enhanced Client-Server' system investigated in this work, fetching incremental

update logs from the server(s) was found to be a bottleneck with increasing number

of clients and updates. The authors then propose and study a log bu�ering scheme

to alleviate the problem.
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The A*Cache scheme is di�erent in several important ways from ADMS�. Firstly,

cache maintenance in A*Cache is based on noti�cations of committed updates rather

than on centralized update logs at the server. Clients participate in noti�cation pro-

cessing to maintain their caches incrementally, and also to detect con
icting access on

shared data. The concurrency control scheme in ADMS� is very di�erent from that

of A*Cache, and uses a \derived-object" lock to protect access to the materialized

views. Additionally, our noti�cation scheme is designed to be 
exible; for example, in

some special cases of data updates, network tra�c may be saved by propagating just

an update command and not the updated data (Section 3.3.5). The client can execute

the update query to refresh its cache. This strategy attempts to split the workload

of maintaining cached results more evenly amongst the clients and the server than

ADMS�.

Another signi�cant di�erence of A*Cache with ADMS� is the data storage scheme

at a client. In A*Cache, the data is placed in partial local copies of database re-

lations, with multiple query results on a single relation being merged by their key

attributes into the same table (Section 3.3.1). This storage structure is compact, and

enables easy maintenance of cached tuples. In contrast, downloaded base relations

and downloaded views in ADMS� are stored in di�erent storage structures, with the

base relation having the same schema as in the database, but the views using pointer

arrays. Therefore, base relations and views at the workstation are maintained di�er-

ently, the latter requiring manipulation of pointers. A special query optimizer was

proposed in ADMS� to identify the relevant ViewCaches and generate alternative

query plans for local query execution.

� BrAID

A caching subsystem that can reason with stored relations and views is proposed in

the BrAID system [Shet91] to integrate AI systems with relational DBMSs. Some

aspects of BrAID that pertain to local query processing, such as query subsumption

and local versus remote query execution, are also relevant for A*Cache. However,

consistency maintenance of multiple client caches in the presence of database updates

is an important issue not addressed in this work.
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� Semantic Caching and WATCHMAN

Recently, two studies [Dar96, Sche96] have examined associative access to a client

cache for read-only scenarios. As noted in these papers, the schemes are related

to A*Cache; however, unlike A*Cache, database updates are not considered. The

semantic caching work presented in [Dar96] focuses on cache replacement policies for

read-only workloads, and examines application of the scheme in a mobile computing

environment. A simulation study is used to demonstrate the bene�ts of this approach

over page-based and tuple-based caching and replacement strategies. A report on the

design of an intelligent cache manager, called WATCHMAN, for caching query results

in data warehousing environments appears in [Sche96]. Algorithms for cache admission

and cache replacement that are based on query result sets instead of individual pages

are investigated. The performance of WATCHMAN is evaluated using the TPC-D

and Set Query benchmarks, and shown to be superior to traditional LRU replacement

policies. However, the environment is limited to read-only workloads, and the e�ects

of database updates and cache maintenance have not been addressed.

2.3 Related Work in Other Areas

Below, we survey work in areas that do not deal directly with caching, but have concepts

related to A*Cache.

2.3.1 Predicate Locking

The A*Cache scheme is reminiscent of predicate locks used for concurrency control [Eswa76],

where a transaction can request a lock on all items that satisfy a given predicate. Predicate

lock implementations have not been very successful, mainly due to their execution cost

[Hunt 79, Gray93b], and because they are pessimistic in nature and can reduce concurrency

excessively. For example, consider two predicates that intersect in the attribute space of

a relation, such as (Product# = 100), and (Status = 'Closed'). Even if there is no

tuple in their intersection for a particular instance of the relation, two di�erent transactions

will nonetheless be prevented from simultaneously write-locking these predicates. This rule

protects against phantoms, but can cause fewer transactions to execute concurrently, and

thus reduce the system performance.



16 CHAPTER 2. RELATED WORK

In contrast, A*Cache uses predicate-based notify locks that are more optimistic, in that

two transactions using cached predicates at di�erent clients con
ict, and are noti�ed by the

server of the con
ict, only when a tuple in the intersection of shared predicates is actually

updated or inserted. A similar scheme called precision locks was proposed in [Jord81] for

centralized systems.

2.3.2 Query Containment

Query containment [Levy95, Sriv96] is a topic closely related to the cache containment

question. Precursors to this work include [Lars87], which examines query evaluation on

a set of derived relations. These techniques can be directly utilized for cache containment

reasoning in A*Cache. E�ciency of the reasoning process is a valid concern, and is addressed

in A*Cache using approximations and indexing techniques (Chapter 4).

2.3.3 Materialized Views

Cache consistency maintenance in A*Cache essentially involves maintaining materialized

views that are the query results stored at client sites. E�cient incremental maintenance of

materialized views has been the subject of much research [Blak86, Ceri91, Gupt93, Gupt95,

Levy93, Stau96, Qian91], and many of these techniques are also applicable in A*Cache. For

example, our update noti�cation scheme involves detecting whether a client cache is a�ected

by an update, and this issue is related to the �ltering of updates that are irrelevant for a

view [Blak89, Levy93]. However, these view maintenance schemes have been designed for

relatively static situations with small numbers of queries or pre-de�ned views. Performance

problems in handling large numbers of dynamic views in a client-server environment, as in

A*Cache, have not been considered in these papers.

Concurrency control of transactions that read materialized views as well as base data

is addressed in [Kawa96], and a serializability theory is introduced for this scenario. Our

concurrency algorithm in A*Cache is based on notify locks, and di�ers from the usual read

and write lock-based approaches investigated in the above study. Additionally, local writes

on the cached views are permitted in A*Cache, with a commit veri�cation scheme to detect

any con
icting updates (Section 3.3.3).
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2.3.4 Distributed and Replicated Databases

Extensive research has been done in the area of data distribution and replication, [Brei92,

Ceri84, Davi85, Ston94] to name only a few. Client-side caching is a form of data replica-

tion, and many similarities exist between A*Cache and replicated or distributed databases,

including a shared motivation to reduce the latency of data access. However, the design

issues for A*Cache with its centralized server model are in some ways quite di�erent from

those of multiple databases operating in a distributed environment:

� Caching in our scheme is performed dynamically based on user queries. A*Cache

does not have a static replication scheme de�ned a priori, and which query results are

cached is determined only at application runtime.

� A client cache does not provide full-
edged database services at the client. Among

other things, this implies that the caches do not support complex protocols for local

logging of updates and crash recovery, thus simplifying their design.

� The client caches operate autonomously, and each client communicates only with

the server. Thus, coordination among di�erent clients occurs indirectly through the

central server, and direct communication among individual clients is not considered.

� Lastly, we have the important di�erence that coupling of the local caches with the

database server is `tight', and the �nal commit must always take place at the server.

The central database is the single `point of truth' as far as persistence and durability

of data is concerned (the `D' in the transactional ACID property [Gray93b]), and the

clients are only have second-class ownership [Fran93] of their cached data.

Despite the above di�erences, a major similarity between A*Cache and distributed

databases is that queries may be executed at multiple sites, which in A*Cache are the

server site and the client that originated the transaction. This mixture of query execu-

tion sites in A*Cache raises similar issues of distributed concurrency control [Ceri84]. In

addition, the consistency concerns in replicated databases on reading potentially out-of-

date copies and the possibility of multiple con
icting updates [Gall95, Wied90] also arise in

A*Cache.
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However, because of the tight coupling with the server in A*Cache, we detect con
icting

updates before transactions can commit. This detection is performed as part of the noti�ca-

tion processing at the client, and also during commit veri�cation at the server (Section 3.1).

Rules for con
ict resolution of multiple updates to replicated data [Care91b] are therefore

not required in A*Cache.

2.3.5 Active Databases and Integrity Constraints

Rule systems for triggers and active databases [Hans93] are related to our noti�cation

scheme, in the sense that e�cient identi�cation of applicable rules is desired for each

database update. Such rules are generally speci�ed in the Condition-Action or Event-

Condition-Action format, where the Condition part is expressed as a predicate over one

or more relations. Hence, detecting the �ring of a rule involves determining satis�ability

of predicates, and similar e�ciency issues as in A*Cache arise in such systems. Integrity

constraint checking [Bune78] is another area that involves similar predicate-based reasoning.

One feature of A*Cache di�erent from active databases is that noti�cation processing

can be approximate as long as it does not cause erroneous behavior. False triggering of a

rule is generally not acceptable in active databases or for integrity constraint checking. Ad-

ditionally, our noti�cation scheme has the capability of directly propagating certain update

commands to clients for local execution on their cached data, instead of propagating the

tuples modi�ed by the update (see Section 3.3.5). Therefore, unlike rule systems in active

databases that handle sets of tuple-level operations [Hans93], the A*Cache noti�cation sys-

tem handles not only instances of modi�ed tuples, but also general predicates involved in

update commands.

2.3.6 Caching in Distributed File Systems

Client-side caching has also been investigated in other areas, such as distributed �le systems,

for improving system performance and scalability. A survey of the many di�erent schemes

appears in [Levy90], one example being the Andrew File System [Howa88]). The unit of

caching may be pages or entire �les, and unlike A*Cache, is based on unique identity of

cached items. A signi�cant di�erence between caching in databases and in �le systems is

that transactions are typically not supported for �les. The burden is generally on the user

to coordinate any con
icting access, which is often done using an auxiliary source control
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mechanism implemented on top of the �le system.

2.3.7 Caching in Shared-Memory Multiprocessors

Extensive research has been done in caching and cache coherence issues for shared-memory

multiprocessors, which typically have private local caches to reduce network tra�c. A large

family of coherence protocols, called snooping protocols [Good83], depend on monitoring

the tra�c on a shared bus to detect updates. Unlike local area networks in client-server

con�gurations, the bus is a cheap and fast broadcast medium. Also, cache lines are typically

counted in tens of bytes, whereas query results from a database are measured in kilobytes.

The communication costs are therefore very di�erent for the two scenarios. Other protocols

studied in this area include directory-based schemes [Agar88], in which location of cached

copies is tracked so that maintenance messages can be directed appropriately. Similarities

exists between this scheme and the noti�cation mechanism in A*Cache; however, the notion

of predicate-based access and update does not arise in shared-memory multiprocessors.

2.3.8 Other Related Areas

We now consider research that is related to ours in a broader perspective.

Data Consistency

A recent paper [Hull96] on data integration de�nes notions of consistency for virtual, ma-

terialized, and hybrid views of database relations. These consistency concepts are also

applicable for A*Cache: virtual views are those queries that are executed at the server,

materialized ones are cached queries, and hybrid ones are those that execute partially at

the client and partially at the server. However, [Hull96] uses a model in which read-only

queries are interleaved with update propagation. A*Cache additionally supports read-write

transactions at client sites. A subject of future research is to extend the consistency model

in [Hull96] to associative caching environments such as A*Cache.

Natural Languages

In the area of natural languages, queries are typically issued in context, allowing elliptical

expression, such as `Where is the meeting that you are attending?' followed by `How long

are you staying there?' or `In which hotel are you staying?'. The work of [Davi82] considered
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these elliptical queries and what they mean for databases, since the context is necessary

to have well-formed queries. [King84] used the knowledge of context as an opportunity for

optimization, taking advantage of the data cached from earlier queries to reduce the search

space for the elliptical successor queries, much in the spirit of our A*Cache work.

2.4 Summary of Chapter

In this chapter, we have reviewed work related to our area of research. We surveyed the cur-

rent work on caching systems in client-server databases, including identity-based schemes

such as [Care94], and index-based studies [Zaha97]. Caching of materialized views, as in

A*Cache, has previously been investigated in the ViewCache system described in [Rous91],

and in BrAID [Shet91]. The di�erences of A*Cache with these schemes have been noted.

More recent and closely-related studies include the semantic caching scheme of [Dar96], and

the WATCHMAN system of [Sche96]. In contrast to the work reported in this dissertation,

both of these studies consider only read-only access to the database, and focus primarily

on cache replacement policies. We have also compared A*Cache with distributed and repli-

cated databases | data replication schemes are static in these systems, unlike the dynamic

environment of A*Cache.



Chapter 3

A*Cache Architecture

In this chapter, we introduce a client-side caching scheme called A*Cache for client-server

databases, and discuss the issues and trade-o�s in operating such a system. A major feature

of A*Cache is that it allows inter-transaction and associative reuse of locally cached data.

The primary design goals of such an associative cache are twofold: (1) to reduce network

tra�c and query response times by utilizing client resources, and (2) to increase system

throughput and scalability.

3.1 Con�guration of an A*Cache System

The A*Cache environment consists of a database managed by a central server, and multiple

clients that interact with the server across a network. The persistent data store is physically

located at the server, and transactions are initiated from client sites. The server provides

transactional and recovery facilities for the shared database. The system has a non-shared

memory architecture in which the server and the client processes have mutually disjoint local

address spaces, and communication between a client and the server occurs only through

explicit messages across the network.

Data is dynamically loaded from the server database into a cache based on queries

submitted by client transactions, and the current contents of the cache are described by

predicates derived from the query predicates. Thus, the A*Cache scheme essentially sup-

ports client-side caching of multiple views, which are the results of query evaluation during

execution of client transactions.

21
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The characteristics of the A*Cache system are as follows:

� Space for the cache may be allocated either in main memory or on secondary storage,

such as a disk. We make no particular assumptions about the nature of the cache

memory, except that it is private to the client.

� The operation of the clients and their caches are assumed to be autonomous. A client

is not aware of other clients or of their caches; each client communicates only with

the server.

� The server and the clients are each assumed to have query execution capabilities on

the database and individual local caches respectively. Thus, unlike the page or object

servers for OODBs [Dewi90], the server in our scheme does not merely ship data

items to the clients; instead, it may actively participate in query execution. Unlike

traditional relational databases, clients may also take part in query evaluation, thus

making the A*Cache model a `hybrid-shipping' one [Fran96].

� The server is kept informed whether a client is caching data locally, as well as which

query results are being cached.

� Messages are received and processed at the client in the same order as they are sent

from the server, with the network preserving the number and order of messages. These

requirements are currently met by most networks.

� In this thesis, we assume that each client executes transactions sequentially, with at

most one transaction active at any time. This assumption does not a�ect the cache

containment reasoning and maintenance algorithms described in this thesis. The

A*Cache framework can be extended to support simultaneous execution of multiple

transactions at a given client, by having local concurrency control and transaction

isolation capabilities on the shared cache.

3.2 A*Cache Components

In order to manage the operation of the client caches, a server-side subsystem is present

at the central server, and a client-side subsystem exists at each client that uses a local

cache. Figure 3.1 shows the components in an A*Cache system with a single client. We
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describe below the functions performed by these components; details of the interaction of

these components during execution of transactions appear in the next chapter.

Reasoning

Cache
Containment

Notification
Processor 

Execution Engine 

Space Manager

NetworkClient Server

 Application
Queries

Updates

Results

Notifications

Cache Description Handler

Cache Manager

Client Subscription Manager

Commit Verifier

Notifier

Cache

Database

Figure 3.1: Functional Components in an A*Cache System

3.2.1 Client-Side Components

The caching system performs several functions at the client site | it decides whether a

new query result should be cached, how to reclaim space when the cache is full, how to

execute queries locally, and most importantly, whether a new query can be answered using

previously cached results (the cache containment issue). Processing of update noti�cations

sent by the server to maintain the validity of cached data is another important task.

Associated to each client-side caching subsystem is a client cache manager, which con-

sists of six distinct components, as depicted in Figure 3.1:

� Cache Manager

A client application may issue queries and updates to the database, as well as other

commands such as commit, abort, rollback, savepoint etc. These operations on the
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database are intercepted by the Cache Manager, which is the `controller' component

at the client. It is the responsibility of this module to determine the type of database

operation requested by the application, and whether it can be handled locally. If

not, the Cache Manager routes the request to the remote server, and upon receiving

a response, invokes the appropriate client-side modules for processing. The Cache

Manager module consists of sub-components such as a command parser that ana-

lyzes user requests, and a dispatcher that routes the requests appropriately. It also

participates in the commit veri�cation algorithm for our semi-optimistic concurrency

control scheme, to ensure that a committing transaction did not read or write old

data (Section 3.3.3).

� Cache Description Handler

Predicates are inserted into and deleted from the client cache description by the Cache

Description Handler. Modi�cations to the cache description may be required when a

new query result is stored, when a previously cached result is purged from the cache,

and during processing of update noti�cations. This module also keeps track of usage

information for predicates, which is used for space management purposes.

Optimization issues in maintaining cache descriptions are discussed in Section 4.1.

� Cache Containment Reasoning

The function of the Containment Reasoning subsystem is to conservatively (see Sec-

tion 4.1) compare a query against the current cache description, and determine whether

the query result is completely or partially contained in the cache. This module is in-

voked when: (1) a new query is submitted, and (2) a new noti�cation message arrives

from the server. Containment reasoning is required during noti�cation processing to

determine if the cache is a�ected by an update. Algorithms in answering queries from

materialized views [Levy95] can be used for this purpose.

E�ciency issues in reasoning with query predicates for A*Cache are discussed in

Section 4.2.

� Noti�cation Processor

The Noti�cation Processor handles noti�cation messages from the server and is re-

sponsible for propagating the e�ect of each noti�cation on the cache. First, it invokes
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the cache containment reasoning system to determine whether the current cache con-

tents are actually a�ected by the update noti�cation. This step is required since

noti�cation by the server is liberal and involves network delays, so a cached predicate

may have been 
ushed from the client in the meantime due to the replacement of

query results in the cache.

Containment analysis on a noti�cation may have three outcomes: (1) the cache is

not a�ected, (2) only the cache, and not the current transaction, is a�ected, and (3)

both the cache and the current transaction are a�ected. The actions taken in up-

dating cached data depend on the maintenance policy in e�ect and on the contents

of the noti�cation message. A discussion of the design choices available for cache

maintenance appears in Section 3.3.4. In case of a con
ict with the current trans-

action, serializability considerations may require that the transaction be rolled back

(Section 3.3.3).

� Query Execution Engine

Transactions may request data retrieval and update operations operations on the

database. Queries and updates need to be executed locally in the cache in three cases:

(1) when there is a cache hit, (2) in response to an update noti�cation message, and

(3) for reclaiming space from the cache. For cache hits, query execution plans are

constructed at the client, and the query or update is executed on the cached data.

Note that the execution system must also provide local rollback and abort facilities

for local updates made in the cache. It is in e�ect a `lightweight' client-side database

with basic capabilities for transaction execution.

The A*Cache scheme does not require that all cached data be in main memory. Thus,

e�cient local evaluation of frequent queries involving joins or many tuples may require

that appropriate indexes be constructed locally at a client, for either main memory or

secondary storage. These local access paths will depend on data usage at individual

clients, and may be di�erent from those in place at the server. Such indexes de�ned

at the client should be taken into account by the client-side query execution engine

to improve the e�ciency of local data access.

The execution engine at the client only needs to handle retrieval and update of the

cached data. Operations on the database meta-data, such as altering the schema of a
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relation through a DDL command, must be routed to the server.

� Space Manager

It is the responsibility of the Space Manager to control the storage of new query results

in the local data store, and to implement a cache replacement policy when the cache

is full. It decides whether a new query result should be cached, and how to purge

query results. Advanced functionality may include de�ning local access paths on the

cached data to speed up query evaluation and cache maintenance.

Cache replacement in A*Cache is done through a predicate-based algorithm, which

works in conjunction with a reference counting scheme for individual data items.

Algorithms for space management in A*Cache appear in Section 3.3.6.

3.2.2 Server-Side Components

In addition to the cache manager at the client site, special facilities also exist at the server

for the purpose of maintaining the client caches. These server-side modules are depicted in

Figure 3.1, and are described below:

� Client Subscription Manager

The set of predicates cached by a client is recorded as its subscription at the server.

The management of the client subscriptions is handled by the server-side Client Sub-

scription Manager. Whenever a query is executed at the server, the server assumes

by default that the query will be cached by the client. Accordingly, a query predicate

for the cached result is inserted in the subscription of the associated client. This step

must be completed before the query result is transmitted to the client, so that its

cache is noti�ed of all relevant updates. This module also handles client requests for

modifying its subscription, such as deleting a predicate that has been 
ushed from its

cache.

� Commit Veri�er

The commit process at the server must be enhanced to support serializability of trans-

actions that evaluate queries locally at the client. As described in Section 3.3.3, this

function may involve a `handshake' with the client to ensure all applicable noti�ca-

tions have been processed by it, before the commit is �nally con�rmed by the server.
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The commit veri�er interacts with the Cache Manager module at the client to enforce

this additional check on commit requests from client transactions.

� Noti�er

An update propagation system known as the Noti�er operates at the server site, and

communicates with the cache managers at clients to maintain the data in their caches.

The noti�er is triggered whenever a transaction commits updates on the database,

and it uses the cache descriptions recorded by the Client Subscription Manager to

determine which clients are a�ected by the updates made by the transaction. Tech-

niques proposed for incremental maintenance of materialized views [Ceri91, Gupt95]

are applicable in this regard. As discussed in Section 4.1, the noti�cation scheme

follows a `liberal' policy in general, so that each A*Cache client may receive some

irrelevant noti�cations, but is guaranteed to receive all relevant ones.

Apart from the above tasks, the server must also receive and handle updates that were

initially performed on the client cache. Server-side handling of local updates is described

in detail in Section 3.3.3 below, where we discuss the concurrency control protocol and

execution scheme for transactions.

3.3 Design Issues and Trade-o�s in A*Cache

We now explore the various issues in designing an A*Cache system, and discuss the perfor-

mance trade-o�s of implementation choices. The discussion below is in terms of tuples in

relational schemas, but the ideas can be extended to general data types.

3.3.1 Form of Cached Data

An important question is the format of the data stored in the cache. For reasons of e�ciency,

the following scheme is chosen for A*Cache.

In A*Cache, cached data has the same schema as the database, so that each relation

stored in the cache has the same set of attributes as the associated base relation in the

database. User queries are augmented (see Section 4.4) to include key attributes of all

relations in the query, in case they were originally projected out. Non-key attributes pro-

jected out in a query are stored as empty or null in the cached copy of the relation; these
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attributes do not appear in the cache description, and therefore, their values are not used

in local query evaluation.

The cached relations may thus contain a subset of the base relation tuples, and a cached

tuple may also be a sub-tuple of a base tuple, if some attributes were projected out. For

selection and projection queries, new tuples in a result set are merged into the appropriate

local table based on their primary keys, so that a local table is both a tuple-wise and an

attribute-wise union of the tuples belonging to the cached predicates. Any functions that

are applied to the selected items in a query are assumed to be computed locally after the

base data is fetched.

For join queries, there are two options: (1) the join may be performed at the server, and

the result tuples split up into individual relations at the client for the purpose of caching, or

(2) the server could be requested for the semi-join results instead, and the join performed at

the client. The second approach avoids the denormalization of information that is common

in joins, and the resulting increase in network tra�c, but necessitates additional local

processing of the user query. Cost analysis of such a scheme involving relation fragments

was investigated in [Lee90] for data transmission in the Penguin view-object system.

The above scheme aims to reduce storage and maintenance costs for cached data. It

can introduce an extra overhead for join queries, and for selection queries with aggregate

functions, by fetching base data and including the keys of all relations participating in

the join. However, since each cached tuple includes the key attributes, duplication of

tuples is avoided. Update propagation is also simpli�ed, since tuples can be identi�ed and

modi�ed individually. A single tuple that belongs to two or more cached results does not

have to be updated multiple times per noti�cation, since it is not stored in duplicate. In

contrast, a collection of materialized views stored in the form of individual query results

can potentially have much duplication, and may also require that each query result be

maintained separately.

Besides primary keys, an auxiliary reference count is also maintained for each tuple in

the cache to count the number of di�erent cached queries that the tuple belongs to. As

discussed in Section 3.3.6, reference counts are used for the purpose of predicate-based space

reclamation from the cache | a tuple may be purged only when its reference count is zero.
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Example of Cache Storage Scheme

We illustrate the cache storage scheme for di�erent query types through the following ex-

ample.

Consider the BUG database introduced in Chapter 1. Let us assume there is another

relation PRODUCT de�ned as PRODUCT(Product#, Name, Manager), where each row speci�es

the number, name, and manager of a given product.

Figure 3.2 shows the instances of the BUG and PRODUCT relations that are used in

this example.

We use Qj

i
to denote the ith query cached by client j. Suppose that there are three

clients, C1, C2, and C3, that have cached the results of the queries below:

Q1

1
: SELECT *

FROM BUG

WHERE Product# = 100 OR Product# = 300;

Q2

1
: SELECT Bug#, Customer, Priority, LogDate, Description

FROM BUG

WHERE Product# = 100 AND Status = 'Open';

Q2

2
: SELECT Bug#, Product#, Description, Status

FROM BUG

WHERE Customer = 'Cust2';

Q2

3
: SELECT Bug#, Product#, Name, Customer, Priority, LogDate,

Description, Status

FROM BUG, PRODUCT

WHERE Customer = 'Cust2' AND Status = 'Open'

AND BUG.Product# = PRODUCT.Product#;

Figures 3.3, 3.4, and 3.5 show the cache contents for each of the three clients, along

with the reference counts of the cached tuples. Note that the 4th tuple in the cache of client

C2 has a reference count of 2, since it belongs to both the queries Q2

1
and Q2

2
. Data fetched

by these two queries are merged together into the same cached copy of the BUG relation,

using the key Bug# to identify the common tuple uniquely.
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BUG

001

002

Jan 10, 97Low100

High Feb 14, 97

003 Medium Feb 21, 97

004 Low Mar 5, 97

Product# Priority LogDate Description Status

PRODUCT

100

200

300

005 Apr 5, 97 xxxxxxx200

006 200 Apr 15, 97Medium

High

Name ManagerProduct#

xxxxxxx

xxxxxxx

xxxxxxxxx

xxxx xxxx

xxxxx xxx

Open

Closed

Open

Open

Closed

Open

Bug#

Product B

Product C

Amy

Ben

Chuck

Product A

Cust2

Cust2

Cust2

Cust1

Cust1

Cust1

100

200

300

Customer

Figure 3.2: Example Instances of the BUG and PRODUCT Relations
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3.3.2 Class of Queries

Transactions may submit requests for executing queries, and for data insertion, deletion,

and update. Queries may involve one or more relations, while the other commands modify

data only in a single relation. We do not consider updates to multiple relations through

join views, since ambiguity issues may arise in their interpretation [Kell85].

We consider queries that specify their target set of objects using query predicates, as in

the WHERE clause of a SELECT-FROM-WHERE SQL query [ANSI92]. We allow general queries,

such as a SELECT-PROJECT-JOIN operation over one or more relations, with the restriction

that the keys of all relations participating in a query must be included in the query result.

A user query that does not satisfy this constraint may be augmented (see Section 4.4) by a

client to retrieve these keys from the server. Selection criteria in queries may contain negated

terms, such as (Status 6= 'Open'). However, we do not consider queries involving the

di�erence operator; they can be supported in A*Cache at the expense of more complicated

reasoning in cache containment and maintenance.

User-de�ned or built-in aggregate functions, such as max() or avg() on a selected at-

tribute, are not considered here for simplicity. We assume that base data is fetched for

such queries, with the client applying the function locally to generate the �nal result. If any

aggregate function appears in a query predicate and that query result is cached locally, then

extended containment reasoning and incremental maintenance of aggregate views [Sriv96]

must be used for its reuse and refresh. Issues in invoking stored procedures, stored func-

tions, and triggers are also not examined in detail in this dissertation; here, we make the

simplifying assumption that these operations are executed exclusively at the server, and not

on data cached at the client sites. This assumption could be relaxed and stored procedures

could be executed at the client, by enhancing the concurrency control and noti�cation pro-

cedures to optimistically handle con
icting changes to the data and to the de�nition of the

stored procedures themselves.

Query predicates speci�ed as above are classi�ed as point query, range query, or join

query predicates. A point query predicate speci�es a unique tuple (that may or may not

exist) in a single relation, by selecting a single value for each attribute in its primary key,

and possibly values for other non-key attributes as well. For our BUG example, (Bug# =

001 AND Status = 'Open') is a point query that returns the tuple for bug number 001 for
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the database instance shown in Figure 3.2, and (Bug# = 1000) is a point query that has no

associated tuple. Point query predicates arise frequently during navigation among tuples of

di�erent relations through joins based on foreign key references, e.g., a query about a tuple

in the relation PRODUCT based on the matching value in the foreign key Product# of a

bug.

In contrast, a range query over a relation speci�es either a single value or a value range

for one or more attributes, and in general has zero, one, or more tuples in its target set. For

example, (100 � Product# � 200) is a valid range query predicate on the BUG relation;

another example is the query predicate (Status = 'Open'). Note that a point query is

a special case of a range query; we distinguish between the two only because they are

processed somewhat di�erently at the implementation level for reasons of e�ciency.

A query predicate with a join condition, e.g., (BUG.Product# = PRODUCT.Product#),

may in general have one or more attributes speci�ed in terms of the join attributes of other

relations, and can involve one or more relations, possibly multiple times.

3.3.3 Concurrency Control and Execution of Transactions

In order to de�ne the steps in executing a transaction, a concurrency control policy must

�rst be adopted. Several di�erent forms of concurrency control can be employed within our

caching framework, possibly varying by client or even by transaction depending on the data

consistency requirements. Below, we review some terminology for the levels of optimism in

concurrency control [Bern87, Fran93]. A mechanism for concurrency control is called:

� Pessimistic, if it prevents the violation of the speci�ed isolation constraints; lock-based

concurrency control systems are an example of this approach.

� Optimistic, if it detects the violation of the speci�ed constraints, at some time (possibly

at commit) after the constraints have been violated. Multi-version or timestamp-based

concurrency control are examples of optimistic algorithms.

� Semi-optimistic, if it is a neither purely pessimistic nor a purely optimistic scheme. For

example, using update noti�cations from the server in conjunction with an optimistic

policy makes the behavior semi-optimistic, since a transaction may abort before it

reaches its commit point, if noti�ed of con
icting updates that were committed at the

server by another transaction.
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In this thesis, we use the following semi-optimistic protocol for execution of transactions.

It attempts to minimize unnecessary aborts of transactions while reducing communication

with the server, and is suitable for systems without overly contentious data sharing among

clients. The scheme is an extension of the concept of notify locks algorithm studied in

[Wilk90] in the context of identity-based caching.

We assume that the server supports lock-based serializability [Gray93b] of transactions

when there are no local caches in the system. It can be shown that if transactions are

serializable in the original database, they will remain serializable in the presence of A*Cache

using this concurrency control scheme (see discussion in Section 5.3 on this issue). If the

original database provides protection against phantoms (e.g., by locking an index or key

range), the same behavior carries over to this scheme. In fact, phantom protection is

provided for all locally cached predicates in A*Cache because of predicate-based noti�cation.

We also adopt the isolation semantics that uncommitted updates made by an `in-
ight'

transaction should be visible to itself as it executes, both at the server site and at the

client. This isolation semantics is the standard adopted by ANSI SQL [ANSI92].

The client logic for execution of transactions is represented in the 
owchart of Figure 3.6,

and is described below.

Whenever the data required for a query or update is locally available, a client opti-

mistically assumes that its cache is up-to-date | the transaction operates on local copies

of tuples, and locks are not obtained immediately from the server but only recorded locally

at the client. If the data is not available locally, the request is submitted to the server to

fetch it. A request for remote query execution is accompanied by any local (uncommitted)

updates of which the server has not yet been informed. Tuples accessed by the remote

query and by the (uncommitted) updates are read-locked and write-locked respectively in

the usual two-phase manner at the server during remote fetches. The uncommitted updates

are also recorded as such by the server, and made visible to the remote query as it executes.

Transmission of local updates along with remote queries is necessary since a query within

a particular transaction must be able to see the e�ects of all (as yet uncommitted) updates

made by that transaction when the query is evaluated at the remote server site. This is

required by our above assumption of the semantics of in-
ight transactions.
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Figure 3.6: Transaction Execution Logic at Client



36 CHAPTER 3. A*CACHE ARCHITECTURE

A remote query submission may also be accompanied by deferred read-lock requests for

tuples read locally since the last communication with the server. Such locking can help

reduce aborts of transactions due to concurrent con
icting updates by other clients and

subsequent noti�cation, without incurring much extra cost (since they are \piggy-backed"

on remote requests). Note that these lock requests are only for those tuples that have been

accessed via the local cache and not through a remote fetch within the transaction.

A commit at the client sends all remaining updates (and possibly any deferred read-

lock requests) to the server. Observe that if a tuple was �rst read or written locally,

and subsequently locked at the server during a remote fetch or upon a commit request,

then there is a window of time between locally accessing the tuple and acquiring a lock

on it at the server where it may have been modi�ed by other transactions. In order to

prevent missing con
icts due to network delays, the server must ensure that the client has

seen its most recent noti�cation message before the commit is con�rmed and the deferred

updates are posted to the database. As described in [Wilk90], this checking can be done

by assigning a sequential message number to every noti�cation sent from the server to a

client. The Commit Veri�er at the server initiates a handshake with the client to ensure all

applicable noti�cations have been examined by the client, before the commit is declared to

be successful. More details on this concurrency control protocol, including a 
owchart of

the extra commit veri�cation step, appear in Section 5.2.6.

Noti�cation messages for update propagation are issued by the noti�er at the server

upon each successful commit of an update transaction. These messages may abort the

current transaction at a noti�ed client, if the data sets it read and/or wrote locally con
ict

with the updates made at the central database.

The above protocol thus handles cache hits and misses di�erently | for hits, an incre-

mental noti�cation-based semi-optimistic scheme is employed, whereas normal two-phase

locking is done at the server for all cache misses. The reason for the di�erence is that a

cache miss always implies communication with the server, which is utilized also to lock the

tuples appropriately.

When a transaction commits or aborts, all locks held by it are released at the server and

at the client. However, data fetched by the transaction need not be purged upon commit

or abort, and may be retained in the cache for inter-transaction reuse (after rolling back
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any uncommitted updates). For correct maintenance of the cache, the server must be kept

informed of all query predicates cached by the client past a transaction boundary, i.e., past

a commit or abort. In e�ect, these predicates act as predicate-based notify locks, and are

also used for the purpose of update propagation. Note that the cache description at the

client as perceived by a transaction may need to be modi�ed, since the data it updates could

alter its view of the cache. Details of the actions in maintaining the client cache description

appear in Chapter 5, where a correctness proof of the above concurrency control protocol

is also presented.

Other Options for Concurrency Control

It is possible to use other concurrency control schemes that are either more or less optimistic

than the scheme presented above. For example, the level of optimism can be increased by

not obtaining any locks at all for local reads, not even deferred ones. The noti�cation

and commit veri�cation process would still detect con
icts, possibly at a later point in the

execution of a transaction.

For environments with contentious data sharing, a more conservative concurrency con-

trol scheme based on avoidance of con
icts can be used. One alternative is to disallow local

updates. All update requests must then go to the server, which sets write locks on updated

tuples, reducing the chances of con
icting updates. Stricter consistency control could also

be enforced for local reads on the cached data. For example, a query need not be re-executed

at the server if the result is locally available, but the objects involved in answering the query

could be locked at the server. It is possible in A*Cache to do such locking, since keys or

identi�ers of all cached items are available. Predicate-based noti�cation can still be used to

support incremental maintenance of the cached data.

Noti�cations could be also sent to clients at di�erent times. In this thesis, we have

assumed that the noti�cation is performed as transactions commit updates at the database.

However, generation of noti�cations is not considered to be part of an update transaction;

each update transaction simply triggers the separate noti�er process to inspect and process

its updates. This method ensures timely propagation of updates without delaying update

transactions, while attempting to minimize unnecessary aborts of local transactions. The

timing of generating noti�cations could be varied depending on the speci�c requirements of

a system.
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In the above discussion, we assumed that the server enforces fully serializable concur-

rency control, i.e., 3o isolation [Gray93b]. Most commercial systems also support lower

degrees of consistency [Bere95], since performance implications cause many practical appli-

cations to run with reduced consistency levels. For example, 2o provides reads of committed

data only, while 3o is fully serializable with phantom protection [Gray93b]. In Section 5.3,

we discuss the e�ect of reduced isolation levels on A*Cache operation.

3.3.4 Cache Maintenance Issues and Choices

There are several dimensions to the problem of cache maintenance, two major ones being

the method of maintenance, e.g., the question of cache refresh versus invalidation, and the

contents of noti�cation messages. We discuss design issues for these two aspects in this and

the following subsection. The two issues are not independent however, since a choice of one

a�ects the other, as discussed below.

Refresh or Invalidate?

Several alternatives exist for maintaining the cached data as transactions commit updates

at the server, including: (1) automatic refresh upon noti�cation, (2) refresh upon demand

by a subsequent query, (3) invalidation of cached data and predicates upon noti�cation, and

(4) automatic age-based expiration of cached predicates. Both automatic and by-demand

refresh procedures may either be recomputations or incremental, i.e., performed either by

re-execution of the cached query or by di�erential maintenance methods. Which method

performs best depends very much on the usage characteristics of the database, such as the

volume and nature of updates, pattern of local queries, and constraints on query response

times.

In A*Cache, the maintenance method is allowed to be di�erent for each client, and also

for di�erent query results cached at a single client. For example, a client may request that

results of frequently-posed queries be automatically refreshed, and may choose to invalidate

upon update a random query result. Cached query results may also have their method of

maintenance upgraded or downgraded as data access patterns at a client change over time.

This 
exibility in the cache maintenance policy provides the ability to adapt to changing

data usage patterns and varying system loads, which is important for dynamic caching

schemes.
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Applying Propagated Updates

For correct operation, the state of the cache must be `transaction-consistent' at any given

instant. That is, it must possess the all-or-nothing e�ect of data modi�cations made by

transactions. Therefore, all updates committed by a single transaction that are possibly

relevant for a cache C must be sent across the network `batched' by transaction, and must

be applied to the cache C such that all of them are made visible to a client transaction

at the same instant (e�ectively), or that none of them are visible. That is, maintenance

operations to propagate updates must obey transactional semantics at the client site, and

must be appropriately grouped into maintenance transactions.

Actions taken in a maintenance transaction may vary depending on the chosen cache

maintenance policy. It may involve insertion, update, or deletion of data, and/or modi�ca-

tion of the cache description (details of these steps appear in Chapter 5). Maintenance of

queries involving join predicates may require quite complex reasoning, and as demonstrated

in the example below, auxiliary information might be needed from the server to refresh the

join result locally. All cache maintenance operations, such as obtaining auxiliary informa-

tion from the server to refresh cached results or altering the cache description, that result

from the propagation of updates of a single transaction must be performed as part of the

maintenance transaction itself.

Example: Maintaining Cached Joins

Consider a client that has cached the join result BUG 1 PRODUCT through the join query

predicate (BUG.Product# = PRODUCT.Product#). Now suppose that a new bug for product

number 300 is inserted at the server.

The information needed at the client to refresh its cache is dependent on: (1) the

di�erential join involving the new tuple, i.e., the join of the new BUG tuple with the PRODUCT

tuple having Product# = 300, and (2) whether this PRODUCT tuple is available locally. There

are several ways in which this case can be handled:

� The client could invalidate the join result. It is possible for the invalidation to be

temporary, with a di�erential refresh if the same query is posed subsequently.

� If the PRODUCT tuple for product number 300 is not available at the client, then the

`di�erential' join of the new tuple may either be computed at the server and sent
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along with the noti�cation, or it might be requested by the client after receipt and

analysis of the noti�cation message. Refreshing the join result is not possible in this

case using just the new BUG tuple.

� Alternatively, if the exact or conservative cache description shows that the PRODUCT

tuple for product number 300 is locally available at the client (possibly from other

cached query results involving the PRODUCT relation), then insertion of only the new

BUG tuple in the cache is su�cient to refresh the join result.

As shown in the above example, refreshing cached data may require that noti�cation

messages carry not only the updated data, but also other auxiliary information that is

required for the refresh, but is absent at the client. This observation leads us to the topic

of the following subsection.

3.3.5 Contents of a Noti�cation Message

Noti�cation messages from the server could contain a variety of information including: (1)

only the primary keys or identi�ers of updated tuples, or (2) the updated data, or (3)

update commands only, or (4) not only the modi�ed data and update commands, but also

other auxiliary information required to refresh the cache (as in the example on cached joins

above). The question obviously arises as to which noti�cation method is to be chosen for

any given scenario.

Instead of a �xed scheme, contents of noti�cation messages in A*Cache are allowed to

vary, depending on the type of cached queries, the nature of the update, and also on the

cache maintenance policy in e�ect.

Sending only the identi�ers of updated tuples is in general not adequate to maintain the

contents of an associative cache. This scheme works only for noti�cation on data deletion,

and for invalidation-based maintenance. If a tuple identi�ed by its primary key is deleted,

then it may simply be removed from the cache. Cached predicates will still remain valid,

but the transaction executing at the client may abort if it had read the tuple earlier.

If the update was not a delete, sending identi�ers only of updated data may only make

sense in the rather degenerate case where all cached predicates are point queries (Sec-

tion 3.3.2), i.e., data is fetched in based on primary keys which serve as unique identi�ers.
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In our BUG example, such an application would be one that fetches individual bugs by their

(unique) bug number. In this case, noti�cation that a bug has changed can invalidate the

tuple and its point query predicate, and purge them from the cache. However, a range query

predicate, such as (Status = 'Open'), cannot be refreshed using simply the bug number

of a bug. Therefore, the only option upon receiving such a noti�cation is to invalidate all

cached predicates that are not point queries.

When the number of updated tuples is not too large, then the updated data can be

sent in the noti�cation. Each tuple must be compared with the predicates in the cache

description, and rejected if it does not satisfy any predicates in it (Section 5.2). Otherwise,

it must be inserted into the cache, possibly overwriting a previous copy of the tuple (i.e.,

one having the same primary key).

Sending all updated data may be too expensive when many tuples are a�ected by the

update. In such cases, the question arises whether noti�cation could be done in terms of one

or more update commands to be executed on the local cache. In many cases, incremental

refresh of the cache cannot be supported using solely the update command and the locally

cached data. Only invalidation-based cache maintenance is possible in such cases, a cached

predicate being invalidated conservatively whenever it intersects an updated region. How-

ever, in some special cases, sending only the update command to the client is su�cient to

refresh its cache, and this strategy can minimize network tra�c and noti�cation processing

costs. We illustrate this point in the following example.

Consider a client C that caches all and only those bugs in product number 100. Suppose

that the priority of bugs reported by a certain customer for product number 100 is updated

elsewhere using the command:

UPDATE BUG

SET Priority = 'High'

WHERE Customer = 'Cust2' AND Product# = 100;

One option is to transmit all updated bugs in the noti�cation message, so that the cache

at client C can be refreshed using the individual tuples in the noti�cation. However, the

set of tuples on which the update is to be applied is already available at the client, and the

update command can instead be directly executed on its cache to refresh it.



42 CHAPTER 3. A*CACHE ARCHITECTURE

As shown in the above example, a requirement for cache refresh using only the update

command is that the set of tuples on which the update is applied must be currently cached

at the client; in other words, the update must be autonomously computable [Blak89] at the

client site from its set of cached results. In A*Cache, this condition can be detected using

containment reasoning on the cache description and the predicate in the update command.

A point to note is that detection of such autonomously computable updates must be based

on the exact or conservative client cache description. A liberal approximation may falsely

imply that the client has data that is not actually present in its cache.

3.3.6 E�ective Management of Space

In this section, we discuss the issues in managing the space of data locally cached at the

client, including the space reclamation policy.

To Cache or Not to Cache

When a new query result is fetched from the server, the space manager is faced with a

choice of whether or not to cache the result set past the termination point of the current

transaction. In order to estimate the long-term bene�ts of caching the new predicate and

tuples, it must perform an approximate cost-bene�t analysis similar to that outlined in

[Ston90]. The A*Cache algorithm is LRU-based, but the analysis is in terms of predicates

and not individual tuples. The algorithm is sketched below, and takes into account the sizes

of cached result sets and their anticipated future usage patterns. Note that one-time costs

of updating the cache descriptions, storing the tuples in the cache, etc., are not taken into

account, since they do not a�ect the long-term bene�ts.

The following parameters play a role in the cost-bene�t analysis:

Si: Size of the result set for the ith cached predicate Pi

Fi: Cost of fetching tuples satisfying Pi from the server

Ri: Cost of accessing and reading the tuples in Pi if cached locally

Ui: Cost of maintaining the tuples in Pi if cached locally

ri: Frequency of usage of predicate Pi at the client

ui: Frequency of updates by other clients that a�ect the tuples in predicate Pi
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The expected cost per unit time, Ti, of the caching the tuples in ith predicate Pi is:

Ti =

8<
:

riRi + uiUi if Pi is cached

riFi if Pi is not cached

Thus, the expected bene�t Bi of caching predicate Pi locally is:

Bi = riFi � (riRi + uiUi):

The above analysis represents a client's view of the costs and bene�ts of caching a

predicate. A more detailed cost model that also considers cost parameters at the server and

other modules in the system, such as the network, may be developed along similar lines.

This extension is a subject of future research.

Reclaiming Space

When the cache is full and space needs to be reclaimed, predicates and tuples are 
ushed

based on a predicate ranking algorithm and tuple reference counts. The rankNi of predicate

Pi is de�ned as the bene�t per unit size:

Ni = Bi=Si:

Cached predicates may be sorted in descending order of their ranks. At any point, only

those predicates in the cache that have ranks equal to or higher than a certain cuto� rank

may be kept in the cache.

Once a predicate P is chosen for elimination, a delete command with query predicate P

can be executed on the cache to determine which tuples are candidates for deletion. Not all

tuples satisfying P can be deleted however, since a tuple may be purged from the cache only

if it does not satisfy any cached predicate for the relation. A reference count is associated

with each cached tuple for this purpose, and it indicates the number of cached predicates

that are currently satis�ed by the tuple. A tuple may be 
ushed from the cache only when

its reference count is 0.
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E�ect on Cache Descriptions

Reclaiming space based on predicate usage as discussed above will result in predicates being

purged from the client cache description. The conservative description at the client must

be changed to account for purging of tuples and predicates, whereas such a change may

optionally be re
ected on the client subscription at the server. Presence of extra predicates

at the server can at most lead to an increase in irrelevant noti�cations to the client. Hence,

updating the client subscription in this case can be treated as a low priority task to be

performed at times of light load, and preferably before too many noti�cations are issued.

This update can be made by sending a `purge predicate' message to the Client Subscription

Manager at the server site.

Thus, only asynchronous coordination with the server is required for purging of predi-

cates from a cache. Incorrect operation can never result as long as the client description at

the server subsumes the cache description at the client. This notion of subsumption of the

conservative cache description by the liberal cache description is formalized in Section 4.1.

3.4 Summary of the A*Cache Scheme

In this chapter, we have introduced A*Cache, a client-side data caching and maintenance

scheme based on query predicates. A major advantage of A*Cache is that it supports

predicate-based access to the cache contents, allowing local execution of associative queries

and e�ective reuse of the cached data. Increased utilization of client resources, less network

tra�c, and better scalability are some of the expected bene�ts of A*Cache over identi�er-

based caching schemes. In order to determine the practicality of using A*Cache in a dy-

namic and `real-time' caching environment, we have examined various design issues and

performance trade-o�s in A*Cache operation. Design decisions made in A*Cache and their

rationale have been explained, and the di�erent choices available for an implementation

have been discussed.



Chapter 4

Optimization Techniques for

A*Cache

Examination and maintenance of the cache via predicate descriptions requires determining

containment and satis�ability of predicates, and concerns about overhead and scalability

may naturally arise over the cost of complexity when reasoning with large numbers of

predicates in a real-time dynamic caching environment. However, there are also new op-

portunities for optimization. To reduce the costs in predicate-based reuse and maintenance

of the cache, e�cient retrieval and approximation techniques can be devised. We describe

several such optimization schemes below.

4.1 Approximate Cache Descriptions

To reduce the complexity of reasoning with predicates, approximations can be applied to

the cache descriptions at the client and server sites.

The cache description at the client site, which is used for determining cache contain-

ment, need not be exact and can be conservative. Data claimed to be in the client cache

must actually be present in it, so that locally evaluated queries do not produce incomplete

results. However, the cache containment reasoning may be more conservative than neces-

sary. Thinking that an object is not in the cache when in fact it is will result in re-fetching

the object from the remote information source; the approach may be ine�cient, but is not

45
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Figure 4.1: Exact, Conservative, and Liberal Cache Descriptions

incorrect. An example of conservative approximation of a query predicate is its simpli�ca-

tion by discarding a disjunctive condition. Such subset approximations are guaranteed to

always produce complete answers.

The server maintains a consolidated subscription of all client caches, and uses it to

generate noti�cations as transactions commit updates. Since the server is a shared resource

of many clients, each of which may be caching tens or even hundreds of query results,

it is crucial to control the complexity of issuing noti�cations. The server may be able

to use approximate descriptions of client caches for this purpose. However, in contrast to

conservative cache descriptions at the client, the approximation used by the server may only

be liberal. That is, occasionally notifying a client of an irrelevant update is not a critical

problem, but failure to notify that a cached object has changed could result in erroneous

behavior. A liberal description is expected to be a simpler superset of the actual one, but

generates all necessary noti�cations.

A simple example of liberal approximation is ignoring projections in a cached query.

Attributes projected out in a query must not be part of a conservative description, but may

optionally be part of the liberal one. Thus, a client could receive updates involving the

projected attributes, even though it is not caching them.

Figure 4.1 shows a pictorial representation of the exact, conservative, and liberal cache

descriptions for cached query predicates on a single relation R with two attributes A1 and

A2.
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We formalize our terminology below using the usual predicate calculus notation. Sup-

pose that there are n clients in the client-server system, with Ci representing the ith client,

1 � i � n. Let QE

i
, QE

i
� 0, be the actual number of query predicates whose results are

cached at client Ci. The superscript E in QE

i
denotes exact.

We denote by PE

ij
the query predicate corresponding to the jth query result cached at

client Ci. The superscript E in PE

ij
represents the fact that these are the exact forms of

cached query predicates, without any approximations applied. Other information related

to a query may be associated with its query predicate, e.g., the list of visible attributes

retained after a projection operation on the selected tuples.

De�nition 1: An exact cache description ECDi for the ith client Ci is de�ned to be

the set of exact query predicates PE

ij
corresponding to all query results cached at the client:

ECDi = fPE

ij
j 1 � j � QE

i
g:

De�nition 2: A conservative cache description CCDi for the ith client Ci is a collection

of zero or more predicates PC

ik
such that the union of these predicates is contained in the

union of the predicates in the exact cache description ECDi for the client. Let Q
C

i
denote

the number of predicates in CCDi. Formally,

CCDi = fPC

ik
j 1 � k � QC

i
g;

where
S
1�k�QC

i

PC

ik
2 CCDi =)

S
1�j�QE

i

PE

ij
2 ECDi:

The superscript C in PC

ik
and QC

i
stands for conservative. CCDi may also be thought

of as the client cache description, since it is used only by client Ci. The symbol =) denotes

the material implication operator, and in the context of query predicates has the following

meaning: if Q =) P , then the result of the query corresponding to predicate Q is contained

in and is computable from the result of the query corresponding to predicate P .

One example of conservative approximation of a query predicate is its simpli�cation by

discarding a disjunctive condition. For other possible di�erences between ECDi and CCDi,

consider some cached BUG tuples that were fetched through a number of point queries, as

well as through a few range queries. CCDi may consist only of the range query predicates,
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whereas ECDi includes all cached predicates, both point and range. CCDi is thus simpler

than ECDi, having eliminated point query predicates. The e�ect of this approximation

is that cached results of point queries are not taken into consideration when determining

cache containment of range queries, likely speeding up the reasoning process. Therefore, if

all BUG tuples for product number 100 have been fetched and cached through separate point

queries, a range query on the BUG relation with query predicate (Product# = 100) will

result in re-fetching these tuples from the server. Such a remote access is only ine�cient

and not incorrect, and will not recur if the range query predicate gets cached in CCDi.

It is important to note that the conservative approximation pertains to the cache de-

scription only, and not to the cache contents. In the above example, individual BUG tuples

cached through point queries are still locally available at client Ci. Although these tuples

cannot be accessed through CCDi, they are still present in the cache and can be used to

answer point queries locally. As long as the server noti�es the client of changes to these

tuples, their local use cannot result in erroneous operation. A conventional index based on

the primary key Bug# of the BUG relation may be constructed locally at the client to speed

up the processing of point queries.

De�nition 3: A liberal cache description LCDi for the ith client Ci is a set of zero

or more predicates PL

ik
such that the union of these predicates contains the union of the

predicates in the exact cache description ECDi for the client. Let Q
L

i
denote the number

of predicates in LCDi. Formally,

LCDi = fPL

ik
j 1 � k � QL

i
g;

where
S
1�j�QE

i

PE

ij
2 ECDi =)

S
1�k�QL

i

PL

ik
2 LCDi:

By the above de�nitions, incorrect operation can never result as long as all operations

on cache descriptions at all clients and at the server always obey the constraint

(8i; 1 � i � n)(CCDi � ECDi � LCDi):

One example of a liberal approximation occurs when a client is noti�ed of a change to

a relation attribute that it does not cache. Another example is the case where a tuple that

could possibly a�ect a cached join result is inserted at the central database. The server
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may be able to eliminate a tuple that is unconditionally irrelevant for the join [Blak89]

(i.e., irrelevant independent of the database state); however, determining whether the tuple

actually a�ects the join result for the particular database instance requires more work. The

client may in this case be informed of the inserted tuple, and can subsequently take actions

based on local conditions at the client site (an example of cached join maintenance is given

in Section 3.3.4).

If server noti�cation is over-liberal, e.g., at the coarse granularity of relations, it may

result in wasted work at client sites; if too detailed, it may have prohibitive overhead at

the server. Hence, it is important to control the degree of liberal approximation at the

server. Ideally, the server should be able to adapt the degree of approximation according to

its current workload. Assuming that the cost of precise update screening is greater at the

server than at the clients, noti�cation may be more liberal at times of high server load in

order to distribute some of the cache maintenance work to the clients. Lighter loads may

allow better �ltering of irrelevant updates at the server. Similar load-balancing techniques

were suggested for maintaining quasi-copies [Alon90] that specify coherency conditions.

4.2 E�cient Containment Reasoning

Since the major motivation for A*Cache is e�ective reuse of local data, it is important

that the process of determining cache containment be intelligent. Answering queries using

views has been a focus of recent research [Levy95, Sriv96], and these algorithms can be

directly used in the reasoning process. In many cases, it is also possible for the reasoning

system to consider semantic information that is speci�c to an application domain, such

as user-de�ned integrity constraints. The utility of using domain-speci�c constraints in

containment reasoning is illustrated in the example below.

Consider a cached result of the join query (BUG 1 PRODUCT), with no attributes pro-

jected out. If the client encounters a subsequent query for all BUG tuples, the general answer

to the query containment question is that only a subset of the required tuples are cached

locally. However, if it is known that all bugs must have a valid product number, then there

are no dangling BUG tuples with respect to this join, and all BUG tuples appear in the join re-

sult. Therefore, the join predicate (BUG.Product# = PRODUCT.Product#)may be replaced

by the simple predicate True on the BUG relation, indicating that all bugs are available in
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Total query length

Trimmed query Available in cache

Figure 4.2: Example of Query Trimming

the cache. Note however, that all PRODUCT tuples may or may not be available, since not

all products have bugs logged against them.

Although using general semantic information may be too complex, simpli�cation of

query predicates using such referential integrity and non-NULL constraints on attribute

domains can be quite e�ective. Techniques developed for semantic query optimization

[Bert92, King84] are applicable in this regard.

4.3 Query Trimming

Query trimming applies in the case of partial cache containment, in which only a part of a

query result is available in the cache. In this situation, the server could be requested only

for the missing portions of the query result, by pruning the locally available parts from the

user query. An example of this scenario is shown in Figure 4.2. Query trimming reduces the

data tra�c across the network, and can potentially decrease the time required to answer a

query.

If the query predicate overlaps multiple predicates in the cache description, then the

query may be trimmed in more than one way. It is an optimization decision whether and

how to trim the query, involving factors such as cost estimates of evaluating and transmitting

the trimmed versus untrimmed result sets, communication costs, and update activity on

the cached data. The decision may be left to the server (by annotating as `optional' parts

of a query that are locally available), with the client appropriately skipping or performing

the local evaluation step. Some strategies for query trimming have been explored in the

context of BrAID [Shet91], and for remainder queries in semantic caching [Dar96].
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4.4 Query Augmentation

Query augmentation is another interesting optimization strategy that can be employed in

A*Cache. A query predicate, or the set of attributes projected by a query, can be augmented

by a client before submission to the server so as to make the query result more suitable for

caching.

User-transparent query augmentation to include relation keys is in many cases a viable

technique for reducing the long-term costs of maintaining cached query results. One major

performance bene�t is that data need not be stored in duplicate. Availability of keys implies

that query results can be split up into constituent sub-tuples of participating relations,

possibly with some non-key attributes projected out, and cached without duplication in

local partial copies of original database relations (see Section 3.3.1 for details of the data

storage scheme at the client).

Apart from fetching relation keys, query augmentation can be applied to also fetch other

attributes that were projected out in the original query, especially if they are not frequently

updated. Such augmentation can be useful in data-browsing applications such as a digital

library, where queries are often re�ned successively to display more detailed data. If all

attributes of a relation are cached, then a re�nement of a previously-posed query can be

handled locally without re-executing it at the server.

As another simple example of a situation where query augmentation is appropriate,

consider the query predicate (Product# 6= 100) on the relation PRODUCT. Suppose that

there are 50 tuples in the current instance of the PRODUCT relation, and that they are

modi�ed infrequently. The query predicate in this case may be augmented to remove the

restriction on product number. Thus, the client fetches all 50 PRODUCT tuples instead of

49; the cost of transmitting and storing one extra tuple is negligible, as is the maintenance

cost in this particular scenario. Savings include simpler containment reasoning at the client

and the server. The pre-fetch will also enable the client to locally answer any future queries

involving all PRODUCT tuples, e.g., the tuples satisfying (Manager = 'Smith').

Possible bene�ts of query augmentation are: (1) simpli�ed cache descriptions at both

the client and the server, (2) reduced costs of storage and maintenance of query results, and

(3) local processing of a larger number of future queries, due to pre-fetching of data and
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the augmented predicate. Overhead due to query augmentation can be signi�cant in some

cases. It may cause: (1) an increase in size and response time of the query, and (2) wastage

of server and client resources in maintenance and storage of information that might never

be referenced by future queries. The cost-bene�t analysis of query augmentation involves

examining the nature (e.g., selectivity, complexity, and size) of the query predicate, data

usage and update patterns, and space availability in the cache.

4.5 Predicate Indexing

The cache description at a client, though conservative, may grow to be quite complex as

many query predicates are locally cached. Predicate indexingmechanisms [Hans90, Same90]

can be used to speed up the examination of predicate descriptions for cache containment

reasoning and noti�cation processing. Predicate indexing can also can be employed at the

server to facilitate generation of noti�cations from client subscriptions.

De�nition of appropriate predicate indexes is a design decision that depends on the

patterns of user queries and updates. R-trees and its extensions are popular indexing

schemes [Rous85]. However, n dimensional indexes may incur much overhead, especially

when not all attributes are used in query predicates. A simple rule for A*Cache might be

to dynamically de�ne a 1-dimensional index on an attribute of a relation whenever cached

predicates can be organized e�ciently along that dimension.

4.6 Predicate Merging

The problem of handling a large number of predicates in a cache description may arise at

both client and server sites. Simpli�cation of cache descriptions through predicate merging

can help reduce the costs of examining and maintaining cached predicates. In this optimiza-

tion technique, groups of overlapping or adjacent predicates that form a single contiguous

region are merged into a single simpli�ed predicate, thus reducing the total number of

predicates in a cache description.

Two or more predicates may be replaced with a single predicate whenever the merged

predicate is equal to the union of the spaces covered by the individual predicates. For

A*Cache, the cache description at a client can be conservative instead of exact, and therefore
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Figure 4.3: Example of Predicate Merging

the merged predicate at a client site can be a proper subset of the union of the constituent

predicates. On the other hand, the server cache description is allowed to be liberal, and

therefore a merged predicate at the server can be a superset of the union of the individual

query predicates. The trade-o� is that communication between the clients and the server

may increase due to conservative or liberal approximations applied to the cache descriptions

in the process of merging predicates.

As an example, consider the following cached predicate on the BUG relation:

P1 : (100 � Product# � 300) AND (LogDate � 2/1/98).

If two new predicates

P2 : (Product# � 100) AND (LogDate � 3/1/98),

and

P3 : (Product# � 200) AND (LogDate � 1/1/98)

are subsequently added to the cache description, the the union of the three predicates can

be reduced to a single equivalent predicate on the BUG relation:

P4 = P
4
= P

1
[ P

2
[ P

3
= (Product# � 100).

Figure 4.3 illustrates the predicate merging scenario in this example.

Well-established algebraic techniques can be applied for merging predicates | two or

more predicates can be checked for merge eligibility using distributive, associative, and com-

mutative laws of the boolean and relational operators. However, purely algebraic techniques

have exponential complexity, since all possible subsets of the set of cached predicates may
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have to be considered in determining the applicability of an algebraic rule. To speed up

the process of detecting which predicates can be merged, predicate indexing techniques and

neighborhood algorithms [Jaro92] in spatial geometry can be employed.

4.6.1 E�ect of Merging on Tuple Reference Counts

Let us now consider the e�ect of predicate merging on tuple reference counts. If there is

no overlap among the predicates being merged, no special action is necessary; otherwise,

reference counts must be appropriately adjusted for those tuples in the intersection of any

two or more predicates being merged. There are two alternative schemes for making this

modi�cation:

� Scheme 1. One way of updating the reference counts is to determine for each tuple in

the �nal merged predicate the number of constituent predicates that are satis�ed by

it. The reference count for such a tuple should be decremented by an amount which

is one less than this number, in order to correctly account for predicate overlaps.

This scheme involves a one-time overhead at the time of predicate merging, but the

reasoning on a per-tuple basis could be expensive when a large number of tuples are

involved.

� Scheme 2. The expense incurred in Scheme 1 above may be deemed to be unnecessary

in a scenario where predicates are frequently merged but not purged as often, in which

case the following alternative scheme may be employed. A predicate merge history

graph may be maintained for each client cache to record which predicates were merged

to produce new predicates. When space needs to be reclaimed by purging a predicate

that was previously generated from other predicates, the constituent predicates can

be individually deleted, so that each predicate decrements by one the reference counts

of those cached tuples that satisfy it. Following our usual rule for reclamation, a tuple

can be removed from the cache if its reference count drops to zero during this process.

The 
ushing of a predicate from a CCD must also update the predicate merge history

graph as necessary.
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4.7 Caching Privileges

To control caching of update-intensive shared regions (update `hotspots'), and to avoid

runaway noti�cation costs at the server as the number of clients increases, clients may be

granted caching rights to a relation or to a part thereof. Denial of caching rights on a

region implies that no noti�cation message will be sent to the client when the region is

updated, even if the client is caching some tuples in it. The client may reuse such cached

data locally with the understanding that the data might be out-of-date. If currency of the

data is important, the query should be re-executed at the server.

Caching privileges may be speci�ed statically if the access pattern is known a priori or

can be anticipated. If the unit of speci�cation of caching rights is an entire relation, the

scheme works in a manner similar to the usual authorization mechanisms for performing a

selection or update on a relation. Permission to cache a query result can be checked at the

server when a query is submitted by a client, the client being informed of the outcome along

with the result set. The right to cache may also be granted on parts of a relation, by de�ning

predicates that specify �xed attribute values or ranges where caching is prohibited for the

clients. Processing of such rather detailed caching rights would be approximate, in the sense

that the server may denote an entire query result as `not eligible for caching' whenever there

is any intersection of the query space with a region where caching is disallowed for the client.

4.8 Summary of Optimization Strategies

In this chapter, we have discussed several optimizations that can be applied in an A*Cache

system. In particular, we have introduced the concept of liberal and conservative cache

descriptions for more e�cient reasoning with cached predicates. Without compromising

the correctness of transaction execution, it is possible for the server to notify liberally and

the client to use its cache conservatively. Such approximations are important for perfor-

mance and scalability when there are many clients or large number of cached predicates

in the system. Predicate indexing and merging can be used by both the server and the

client to organize and manage cached predicates. Predicate indexing techniques developed

in the context of active and spatial databases [Hans90, Sell92, Same90] are also applica-

ble for A*Cache. We suggest query modi�cation techniques such as query trimming and

augmentation to alter user queries for greater e�ciency of query execution and caching.



56 CHAPTER 4. OPTIMIZATION TECHNIQUES FOR A*CACHE

Future work includes the investigation and development of further optimization strategies,

such as special query optimizers for intelligent query trimming, and sophisticated cache

replacement schemes for space management, among other possibilities.

It is important to note that apart from the optimization techniques presented in this

chapter, the concurrency control scheme directly a�ects the performance of the caching

system. As discussed in Chapter 3, di�erent levels of optimism may be chosen in the

concurrency control protocol to re
ect particular data usage and update patterns. For

example, in an environment where there are mostly reads and few writes of data, it may

be most e�cient to choose an optimistic concurrency control scheme, thereby reducing the

costs associated with locking. Intensive updates could require a more pessimistic approach,

in which the cache is only used for local reads but local writes are not supported, all

updates being performed at the server using write locks. In our performance study of

A*Cache through simulation (Chapters 7 and 8), we investigate an alternative protocol

called A*Cache Opt, which performs writes at the server for cache misses, and study its

performance in comparison to A*Cache.



Chapter 5

Transaction Execution in A*Cache

In this chapter, we describe the execution of transactions in A*Cache, and examine the

details of the events that occur in the caching system in response to the di�erent types of

requests submitted by client transactions. We also demonstrate that A*Cache transactions

that execute in conformance with the given model and that obey the speci�ed concur-

rency control protocol do not violate serializability constraints. Finally, we consider some

consistency issues in cases where the server supports lower non-serializable levels of data

isolation.

5.1 Assumptions

The assumptions we make in this thesis about client transactions and update propagation

are noted below. Later in this chapter, we discuss the e�ects of relaxing some of these

assumptions.

� A1. At most one read-write client transaction T executes at a client site at any given

time. We do not consider multiple client transactions utilizing the same A*Cache

simultaneously. The A*Cache framework can be extended to accommodate multiple

users of the cache, but is not considered here for simplicity.

� A2. We assume that the server is lock-based, and that it provides degree 3, i.e., fully

serializable, isolation for all transactions on the database. Degree 3 isolation requires

that a transaction have no dirty reads of uncommitted data, no lost updates, and

additionally that all reads are repeatable during the period of its execution [Gray93b].

57



58 CHAPTER 5. TRANSACTION EXECUTION IN A*CACHE

Read and write locks acquired by a 3o transaction are two-phase `long duration' locks,

in that they are held until the associated transaction terminates (commits or aborts).

Enforcement of repeatable reads at the predicate level requires some variant of predi-

cate locking, such as granular or key-range locks [Gray93b]. A discussion of the e�ect

of reduced isolation levels appears in Section 5.3.4.

� A3. A local transaction is started at the client site upon submission of an application

program. A remote transaction is also initiated at the server database when the

transaction submits a commit request at the client, or earlier if there is a cache miss

causing a remote fetch. The remote transaction lasts until the client transaction

terminates (commits or aborts), and executes the commands submitted for remote

execution.

Without loss of generality, we assume that the concurrency control algorithm outlined

earlier in (Section 3.3.3) is adopted. It is a semi-optimistic scheme that allows local

data reads, which may later be found to have seen stale data. Local operations set

long duration read and write locks appropriately. Noti�cations from the server may

abort a transaction that read or wrote stale data locally. The commit protocol requires

the server to verify with the client that all relevant noti�cations have been processed

before a commit is declared successful (Section 5.2.6). Depending on the outcome of

the remote commit, the local transaction at the client either commits or aborts.

� A4. For correct operation, the data in the cache must be `transaction-consistent' at

any given instant. That is, it must possess the all-or-nothing e�ect of data modi�ca-

tions made by transactions. Therefore, all updates committed by a single transaction

that are possibly relevant for a cache C must be sent across the network `batched'

by transaction, and must be applied to the cache C such that all of them become

visible to a client transaction at the same instant (e�ectively), or that none of them

do. That is, maintenance operations to propagate updates must obey transactional

atomic semantics at the client site, and must be appropriately grouped into mainte-

nance transactions.

If the data written by a maintenance transaction con
icts with the read or write sets of

a transaction currently executing at the client, then the transaction must be aborted,

and possibly restarted.
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5.2 Execution of Transactions

Database operations executed by transactions may a�ect the contents of the central database,

as well as the contents and descriptions of local caches. Client-cache contents and predicate

descriptions at the client and server sites also change dynamically over time, as query results

are cached or purged by the clients. We now consider the steps in executing a transaction

in the context of our concurrency control scheme as noted in assumption A3 in Section 5.1

above. The discussion below is with respect to the cache at the ith client Ci, whose cache

descriptions at the client and the server are denoted by CCDi (conservative) and LCDi

(liberal) respectively. The set of client subscriptions at the server is denoted by SCS.

5.2.1 Query Submission

Consider a SELECT-PROJECT-JOIN query with predicate Q that is submitted at client Ci.

If Q is a point query predicate on a single relation, or can be split up into point queries

on several relations, then the tuple(s) satisfying Q may be found using locally de�ned and

maintained indexes on primary keys of the relation(s) cached at Ci. If the tuples are found,

and have all selected attributes visible, we use them. If not, we have to determine whether

the tuples exist, i.e., whether Q is contained in the scope of the cache, so we treat it as

a range query and handle it as described below. Note that it is useful to record that a

predicate is cached even when there are no tuples satisfying the predicate, since it can be

used to determine locally that the result of a (point or range) query is empty.

If Q is a range or join query predicate, then Q is compared against CCDi. Three

di�erent situations may arise:

� Q is computable from the union of the predicates in CCDi. In this case, all tuples

satisfying Q (if any) are locally accessed in the cache. There is no e�ect on either

CCDi or SCS.

� Q is not computable from the union of the predicates in CCDi. The tuples in this

case must be remotely fetched from the server. As outlined in the concurrency control

protocol above, the request for remote execution is accompanied by any tuples locally

read or updated by the transaction since the last communication with the server. The

server locks the tuples appropriately and also records the uncommitted updates before

executing Q, locking the tuples accessed by it, and returning the result to Ci. The
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new tuples are placed in the cache at Ci, with CCDi being optionally augmented. If

these tuples are cached past the transaction boundary, SCS must be updated before

the locks on the tuples are released at the server (upon transaction commit or abort).

It is not necessary to update SCS at the time the tuples are fetched; locking tuples

at the server provides the usual level of isolation from concurrent transactions.

� Q is partially contained in the union of the predicates in CCDi. As in the preceding

case, the query can be executed remotely at the server. One possible optimization is

to trim the query before submission to eliminate tuples or attributes available locally

at the client. Trade-o�s involved in this type of optimization are discussed brie
y in

Section 4.3.

5.2.2 Data Insertion

Insertion at Client Ci

When a tuple is inserted by a transaction running at client Ci, it is placed locally in the cache

with an uncommitted tag. If the transaction later commits successfully at the server, the

new tuple is inserted into the central database, incorporated into SCS, and the uncommitted

tag is removed at Ci. We have assumed here that the new data is likely to be pertinent for

Ci, and hence is cached by it past the boundary of the current transaction. The insertion

of this tuple may also a�ect caches of clients other than Ci (this case is discussed below).

Note that insertion of a tuple may alter the cache description, as perceived by the

transaction, for cached join results. For example, if a new BUG tuple is inserted with product

number 500, and the client is caching a join result (BUG 1 PRODUCT), then the join result

after insertion of the new tuple is in general not computable locally, unless all PRODUCT

tuples are known to be available. The cache containment reasoning must therefore take into

account the e�ect of uncommitted changes made by a transaction on cached join queries;

selection and projection query results still remain valid after the insertion or deletion of a

tuple.

Insertion at Client Cj

Suppose that a transaction running at client Cj , i 6= j, inserts a tuple t. The tuple is

inserted into the database when the current transaction at Cj commits. The server checks



5.2. EXECUTION OF TRANSACTIONS 61

SCS to determine which clients other than Cj are a�ected by the insertion. Client Ci will

be noti�ed of the change, along with the new tuple, if t is contained in some P , where

P 2 LCDi. If Ci is noti�ed, it inserts the new tuple into its cache whenever it satis�es

any predicate in CCDi, and discards it otherwise. No changes are necessary to either

CCDi or SCS. Alternative courses of action are also possible; e.g., the client may choose

to extend a nearby existing predicate to include the new tuple, or 
ush from CCDi all

predicates invalidated by the insertion (e.g., join predicates). The tuples corresponding to

the invalidated predicates may or may not be removed immediately from the cache. They

may still be used individually for answering point queries locally.

According to the concurrency protocol adopted in this thesis, a transaction running

at client Ci must be aborted if the inserted tuple falls within the purview of any cached

predicate that has been used to evaluate locally one or more queries within this transaction.

5.2.3 Data Deletion

Deletion at Client Ci

Assume that one or more tuples are deleted at client Ci using query predicate Q. If all

tuples satisfying Q are not locally available in the cache, the procedure outlined above for

a selection query is followed for Q. All or only the missing tuples in Q are fetched from the

server after locking them, and locally cached. CCDi may be optionally augmented. Tuples

satisfying Q are then deleted locally in the cache, but marked as uncommitted. The server

is informed of the deleted tuples upon transaction commit (or earlier, if a remote query is

submitted before the commit). The uncommitted tag is removed from the cache if commit

is successful. If the predicate Q is cached past the transaction boundary (even though its

tuples may have been deleted), SCS must be updated before the locks on the tuples are

released.

Retaining predicates in CCDi whose tuples have been deleted can potentially reduce

query response times at the client by allowing local determination of the fact that a subse-

quent query result is empty and avoiding a trip to the remote server. For example, let all

BUG tuples satisfying (Product# � 300) be cached at Ci. If BUG tuples for product number

500 are now deleted by a transaction, then the assertion that the cache holds all BUG tuples

with the property (Product# � 300) is still valid after the deletion. A subsequent query
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for bugs in product number 500 can be evaluated locally, producing 0 tuples in its result

set.

Deletion at Client Cj

Let one or more tuples be deleted using query predicate Q at client Cj , i 6= j. Tuples

satisfying Q are deleted from the database when the current transaction at Cj commits

successfully. The server must again notify clients other than Cj that are a�ected by the

deletion, by comparing Q with SCS. Client Ci will be noti�ed of the deletion if 9P 2 LCDi

such that (Q \ P 6= �).

The noti�cation message may consist of primary keys of deleted tuples, or for large-sized

deletions, simply the delete command itself. If client Ci is noti�ed, it must execute the delete

command on its cache. No changes are required to CCDi or LCDi. A transaction running

at Ci must be aborted if any tuples it read locally get deleted due to the noti�cation.

5.2.4 Data Update

Update at Client Ci

If one or more tuples are updated at client Ci using query predicate Q, then the actions

taken by client Ci and the e�ects on CCDi and SCS are similar to the deletion case

above, except that the update may move some tuples from one cached predicate to another

predicate (which may or may not already be cached at Ci), depending upon the attributes

updated. If such tuples are cached beyond the completion of the transaction, either the

individual tuples or a single modi�ed predicate [Blak89] describing tuples after the update

must be inserted in SCS, and may optionally be inserted into CCDi.

Update at Client Cj

If one or more tuples are updated using query predicate Q at client Cj , i 6= j, then the

updated tuples, or simply the corresponding update command for large-sized updates, are

sent to the server when or before the transaction issues a commit request at the client.

The server posts the changes to the central database if the commit is successful. The

noti�cation procedure is more complex than that for the delete case above, since the values

of the changed tuples both before and after the update must be considered to determine
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which client caches are a�ected. The set of clients to be noti�ed by the server depends not

only on the query predicate, but also on the updated attributes (exact algorithms appear

in [Blak89]).

Note that all updated tuples that no longer satisfy any cached predicate should be

discarded by Ci, or else LCDi at the server must be augmented to include them. Precise

screening of each updated tuple with respect to the cache can be done locally at a client

site instead of at the central server, thereby distributing some work in maintaining cached

results to individual clients. The trade-o� is between local computation as opposed to global

communication.

5.2.5 Transaction Abort

If a transaction submits an abort request, then the local transaction is aborted, and all

uncommitted changes made by the transaction are undone. If the transaction had performed

any remote operations, then a request is sent to the server to also abort the corresponding

remote transaction. If the transaction had not made any updates, then tuples fetched

by it from the server can be placed in the cache, after appropriately extending the client

subscription at the server.

5.2.6 Transaction Commit

When a transaction commits at client Ci, the server is informed of all local updates that

have not yet been communicated to it. The propagation of updates can either be in the

form of updated tuples and corresponding update commands, or for large-sized updates, in

the form of update commands only so as to minimize network tra�c and message processing

costs. Ci is noti�ed of the result of the commit operation. If the commit was successful

(according to the message numbering scheme described below), the uncommitted tags on

tentatively updated data are removed from the cache by Ci; otherwise, the changes are

undone. In either case, all locks held by the transaction are released at the server, after

the server has updated SCS to record all new predicates and tuples cached by the client

beyond the transaction.
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Commit Veri�cation using Noti�cation Message Numbers

Our commit veri�cation algorithm uses a message numbering scheme, which is similar to the

notify locks algorithm presented in [Wilk90] in the context of identity-based caching. The

server sends noti�cation messages to clients informing them of potential con
icts. However,

due to network delays and asynchronous noti�cation, it is possible that some noti�cation

messages sent by the server may not have reached the client by the time a transaction

submits a commit request. To ensure serializability of transactions, a special commit veri-

�cation step is required by the clients and the server, as described below.

Commit Processing Steps at a Client

The 
owchart in Figure 5.1 shows the actions taken by a client during processing

of a commit request. We make use of three variables: Client Max, Server Max, and

LastMsg#. These three variables denote the following quantities:

� Client Max: The sequence number of the last noti�cation message processed at the

client.

� Server Max: The number of the last noti�cation message sent by the server to the

client, which is possibly greater than Client Max due to network delays.

� LastMsg#: A variable used to denote the sequence number of the last noti�cation

that needs to be processed in order to verify a commit request.

The steps in the 
owchart are described below in terms of these three variables.

� Step C1. The currently running transaction T submits a commit request. This is the

initial event that triggers this algorithm. The client responds by executing Step C2,

with the variable LastMsg# set to the value Client Max.

� Step C2. Check if there are any noti�cation messages from the server with a sequence

number equal to or greater than the speci�ed LastMsg#. If there are no such pending

noti�cations, proceed to Step C3; otherwise, go to Step C4.

� Step C3. Send any local updates made by transaction T to the server, along with the

sequence number Client Max of the last noti�cation message processed by the client.

Go to Step C6.
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� Step C4. Process noti�cation messages from the server till the sequence number of the

last noti�cation received equals or exceeds the speci�ed LastMsg#. Set the value of

LastMsg# to the sequence number of the last noti�cation (Client Max) processed

at the client, and go to Step C5.

� Step C5. Updates made by noti�cations may or may not have con
icted with the

updates made by transaction T . If there are any con
icts, then abort transaction T ,

notify the server of the abort, and terminate commit processing; otherwise, go to Step

C6.

� Step C6. Wait for a response from the server. If the server sends a veri�cation request,

go to step C7; otherwise, go to Step C7.

� Step C7. A veri�cation request was received from the server. It contains the sequence

number Server Max of the last noti�cation message sent to this client. Set the value

of LastMsg# to Server Max, and go back to Step C2 to process more noti�cations.

� Step C8. If the server accepted the commit request, then commit transaction T and

make its updates permanent in the client cache; otherwise, abort the transaction T .

Terminate the algorithm.

Commit Processing at the Server

The 
owchart in Figure 5.2 shows the server actions taken in con�rming a commit

request from a transaction running at the client. We use the variables Client Max and

Server Max to denote the same quantities as de�ned above for commit processing at the

client. The steps in the server algorithm are described below.

� Step S1. The server receives a commit request from the transaction T currently

running at client C. This is the initial event that triggers this algorithm. The commit

request contains the sequence number Client Max of the noti�cation message last

processed by the client. The server starts commit processing by executing Step S2.

� Step S2. Compare the sequence number Client Max sent by the client with the

value Server Max of the last noti�cation message sent by the server to this client. If

Server Max is greater than Client Max, then go to Step S7; otherwise, proceed to

Step S3.
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� Step S3. Check if the transaction T performed any updates that are yet to be re
ected

at the server. If yes, proceed to Step S4; else go to Step S6 to accept the commit

request.

� Step S4. Obtain write locks for the modi�ed tuples and apply the updates made

by transaction T to the locked tuples. After the last lock has been obtained, and

while they are being held, another check of message sequence numbers is required.

This check is necessary since other transactions may have committed updates in the

meantime that invalidated the read/write set of the committing transaction. Proceed

to Step S5.

� Step S5. Clear any pending updates in the noti�er queue, and check if any more

noti�cations were sent to client C. If yes, go to Step S7; else proceed to Step S6 to

accept the commit request.

� Step S6. Post the updates made by transaction T to the database, and trigger the

noti�er to check the e�ect of these committed updates on other clients. Inform client

C that the commit is accepted, and terminate commit processing of transaction T .

� Step S7. Send a commit veri�cation request to client C, with the sequence number

Server Max of the last noti�cation message sent to C. Wait for the client to respond,

and proceed to Step S8 upon receiving a reply.

� Step S8. If the client con�rms the commit request (specifying its last sequence number

Client Max), then go to Step S2. Otherwise, proceed to Step S9.

� Step S9. Abort transaction T , and inform client C that the commit did not suc-

ceed. Undo any (uncommitted) updates made by T , and release any locks held by it.

Terminate this algorithm.

The proof of correctness of the above transaction execution scheme can be formalized

in terms of preserving the serializability of transactions. This proof is presented in the next

section.

5.3 Serializability of Transactions

In this section, we demonstrate that A*Cache transactions executed in conformance with

the steps given in this chapter do not violate serializability constraints. In order to be
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serializable, a transaction must have the following properties [Gray93b]:

� (1) No dirty reads of data changed by other uncommitted transactions,

� (2) No unrepeatable reads of individual tuples as well as of predicate-based queries,

� (3) No lost updates due to multiple uncoordinated writes.

We will now show that all of these three conditions are satis�ed by transactions that

execute using A*Cache, given that the server supports serializable transactions, and that

the assumptions (A1) through (A4) stated in Section 5.1 hold.

5.3.1 No Dirty Reads

This condition is met trivially, since A*Cache always stores committed updates in the cache.

Only the updates made by a transaction itself are made visible to it as it executes at the

client or at the server, and these changes are undone if the transaction subsequently aborts.

Uncommitted changes of other transactions are not present locally, and by assumption (A2)

above, are also not perceived at the remote server.

5.3.2 No Unrepeatable Reads

We will show that all reads in the presence of A*Cache are repeatable, both for individual

tuples and for predicate-based queries.

Let us �rst consider an individual tuple X , and assume that there is an unrepeatable

read in a transaction T1. There are four possibilities: (1) X was read both times at the

server, (2) X was �rst read remotely and then read locally, (3) X was �rst read locally at

the client and then remotely at the server, and (4) both reads of X happened locally at the

client.

By our assumption (A2), the server supports long duration read and write locks for all

remote reads, and therefore, case (1) is not possible.

Now consider case (2). The server sets a long duration read lock on X upon the remote

read operation, say at time t
1
, and returns a value X 0 for X . Say the transaction T1 reads

a di�erent value X 00 of the same tuple later at the client, with the cache read setting a local

read lock at the client. For the two reads to be di�erent, updates made by one or more
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transactions must have changed the older value X 00 to X 0, before the read lock was acquired

on it by T1 at the server at time t
1
. These updates must not have been re
ected on the

cache at the time of the local read. If the noti�cation message for these updates arrives

before T1 submits its commit request, then by our assumption (A3) in Section 5.1, T1 will

be aborted at the client. Otherwise, T1 will continue to execute operations either at the

client and/or at the server, and will �nally submit a request for commit to the server, say

at time t
2
� t

1
.

During processing of the commit request, the commit veri�cation algorithm given above

(Section 5.2.6) will be invoked to check that all noti�cations for updates made by other

transactions that can a�ect potentially transaction T1 have been sent to the client and

examined for con
icts. Since the tuple X was modi�ed at some time before it was locked

at t
1
, which is less than the commit request time t

2
, the update noti�cation for the tuple

X must be processed by the client before the commit is accepted. The processing of this

noti�cation message will detect a con
ict with the local read lock set at the client, and the

commit request of transaction T1 will therefore be refused.

Cases (3) and (4) can be reasoned using similar logic as above, proving that unrepeatable

reads of individual tuples is not possible in A*Cache.

The repeatability of predicate-based queries in A*Cache can also be established similarly.

The noti�cation and cache maintenance algorithms at the server and at the client reason at

the level of query predicates, and therefore detect any update con
icts on query predicates

that were evaluated locally. Our commit veri�cation scheme ensures that such detection

occurs before a transaction is allowed to commit. Hence, repeatable reads are guaranteed

not only at the level of individual data items, but also at the level of query predicates.

5.3.3 No Lost Updates

Lost updates may result from one transaction over-writing an update made by another

transaction, as in the following sequence of operations:

Transaction T2: Read X /* X has a value 1 */

Transaction T1: Write X /* sets X to 2 */

Transaction T2 Write X /* T2 overwrites the value written by T1 */
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The above sequence is a bad Read-Write-Write sequence, causing T1's update of X to

be lost, since the value written by T2 is based on an earlier read of X by T2. A bad Write-

Write-Write can also cause an update to be lost. As discussed in [Gray93b], a lost update

can be prevented in a centralized system by setting long duration write locks.

There are two cases to consider for updates in the client-server environment of A*Cache:

cache hits and cache misses. In the case of a cache miss in A*Cache, long duration write

locks will be set by the server on the set of tuples to be updated. Our commit veri�cation

algorithm will detect any con
icting updates that occur after the transaction started and

before these locks were obtained, thus precluding the possibility of a lost update.

For cache hits, long duration write locks are only set locally. However, local updates are

transmitted to the server \piggy-backed" with the next remote request, and thereafter the

same reasoning as in the cache miss case applies. Compared to a cache miss, the window of

time between performing a local update and obtaining a write lock at the server is larger in

the case of cache hits, raising the chances of a con
ict. Other than this increased optimism

for cache hits, there is no di�erence in the con
ict detection algorithm for the two cases. It

follows therefore that any lost updates will be detected in A*Cache for both cache hits and

cache misses, and the transaction will be aborted if necessary.

5.3.4 E�ect of Reduced Consistency Levels at the Server

A 3o transaction has `complete' isolation from the activities of other concurrently executing

transactions, whereas lesser consistency levels may see some e�ects of concurrently executing

transactions. Support for repeatable reads at the level of individual data items provides level

of isolation that is slightly lower than 3o, and is sometimes referred to as 2:99o [Gray93b].

To be completely serializable, the repeatable read property must also be satis�ed by the

sets of data items returned by the predicate-based reads made by a transaction, such as

using SELECT-FROM-WHERE SQL queries. This property is also known as phantom protection

[Gray93b], where the appearance or disappearance of phantom records from any predicate-

based read is prevented over the duration of the transaction.

Full serializability is often too expensive for practical environments. Most commercial

systems do not support predicate locks directly, and transactions desiring full serializability

must lock entire tables. This overhead is often too restrictive, and therefore, lower levels of
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isolation are popular in practice [Bere95, Orac95].

We now consider the e�ect of lower levels of isolation at the server on the operation

of A*Cache. Note that transactions that execute with less than 2o isolation may read

uncommitted data, and therefore data written by themmay be invalid and inconsistent. It is

therefore not common for 0o and 1o transactions to update any data [Gray93b]. In A*Cache,

the client cache contains committed data only, and hence, it preserves the same consistency

of data as at the server, and supports 2o isolation by default. Only the uncommitted e�ects

of a locally executing transaction are visible to itself, which is the usual isolation semantics

for SQL.

Notice however that alternating local and remote reads could cause a client transaction

to switch between past and present states of the database. Although the 2o read committed

property is preserved, the chronology of database states is not guaranteed to be maintained.

This behavior could cause a problem in cases where a `read forward' property is required

for the data. Therefore, in the presence of client caching, 2o isolation may be extended to

include the chronology property, as de�ned in [Hull96].

Besides reading committed data in a chronological order, a transaction might addition-

ally want to specify currency conditions for local reads. For example, a transaction might

require that reads of cached data be no more than an hour old. The operation of A*Cache

can be easily extended to handle such currency speci�cations. If the server has generated

and sent noti�cations of all updates committed before an hour, and these noti�cations have

all been processed by the client, then the cached data meets the speci�ed currency con-

straints. The former condition must be veri�ed by the server, and the latter condition can

be checked using the sequential numbering scheme for noti�cation messages. Note however

that updates made by such transactions may violate integrity constraints on the database,

since they might operate on stale data.

As a special case, consider the isolation level 2o with no lag. This level of isolation

essentially speci�es that each local read return the same result as a corresponding remote

read. This behavior may be implemented in a variety of ways, including optimistically

allowing potentially stale local reads to occur, but aborting the transaction at a later point

if the speci�ed lag is found to have been violated. Repeatability of reads at the level of

predicates is not required however, since the consistency level is only 2o.
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5.4 Summary of Execution Scheme

In this chapter, we have described in detail the execution mechanism of transactions in an

A*Cache system. First, we listed the assumptions that apply to our discussion. Actions

taken by the server and the clients for data reads, updates (inserts, deletes, and modi�ca-

tions), and upon termination of transactions (commit or abort), were then speci�ed. An

extra veri�cation step is required at commit in order to detect any con
icts with local op-

erations on cached data. Our commit veri�cation algorithm uses numbering of noti�cation

messages, and is based on the scheme for notify locks in [Wilk90]. We demonstrated that our

transaction execution scheme is correct in that it preserves serializability. Finally, we con-

sidered some consistency issues for servers that support lower non-serializable levels of data

isolation. Future avenues for work include development of appropriate consistency models

for lower levels of data isolation in the presence of client-side caching, and formalizing the

operation of A*Cache in such scenarios.



Chapter 6

Simulation Model and

Experimental Setup

In this chapter, we develop transaction execution and workload models for our simulation

study. The steps involved in executing transactions in A*Cache have been described in

detail in the preceding chapters of this dissertation. Below, we specify in pseudo-code the

algorithms used in our simulation environment. These algorithms re
ect the architecture

and operation of A*Cache as described earlier, and additionally, they also specify the trans-

action execution and caching policies chosen for our simulation. These policies de�ne the

algorithms adopted for various system tasks such as space management and cache main-

tenance. The transaction execution model is supplemented by the workload model, which

represents the patterns of data access and update by di�erent clients. Thus, our model of

the workload de�nes the data contention parameters that are of interest in our simulation.

In order to have a relative comparison of our performance results for A*Cache, we also

simulate the operation of three other types of client-server databases. Two of these schemes,

namely, No-Cache and Tuple-Cache, are alternatives to A*Cache, and the third, called

A*Cache Opt, is an optimized extension of the basic A*Cache model. Procedures for caching

and transaction execution in these three schemes are described, and the di�erences in their

query and update processing strategies are noted. These di�erences will be signi�cant in

subsequently interpreting our simulation results.

Next, queueing models of the various logical processes in the operation of the no-caching

and caching systems are presented. The physical con�gurations of the simulated systems

74
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are speci�ed in terms of the resources of the clients, the server, and the network. The

default settings of the simulation parameters corresponding to these physical resources are

also provided. We then describe the workload model adopted for the experiments in our

performance study. The basic framework of this model is a subset of the standard Wisconsin

benchmark [Gray93a], extended with the data locality and contention models of [Care94]

to represent the di�erent data access and update patterns of multiple clients in a database

system.

Some implementation notes on our C++/CSIM coding of the simulator appear towards

the end of this chapter. Finally, we discuss our experimental methodology and the validation

process that was followed to test the correctness of our simulator implementation.

6.1 Assumptions for Simulation

Following are the assumptions that are adopted for transactions in our simulation environ-

ment:

� We assume that the client stores data in main memory. Client-side disk caching is

not considered in our study. Presence of disks at clients will a�ect the local data

capacity and response time, but is not expected to alter the relative performance of

the di�erent data caching schemes.

� Update noti�cations always refresh the cache. As discussed in Section 3.3.4, it is

also possible to have invalidation-based cache maintenance schemes. This type of

maintenance is not investigated in our simulation study; examining the performance

of such schemes is the subject of future work.

� Transactions are always aborted if a con
ict is detected with concurrent updates.

Thus, full serializability of transactions is enforced through noti�cation message num-

bers, as described in Section 5.2.6.

6.2 Execution Model in A*Cache Simulation

The execution model for A*Cache has been described in detail in the preceding chapters

of this dissertation. In this section, we outline using pseudo-code the algorithms used for
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executing transactions in our simulation environment. For the purpose of the simulation,

speci�c policies must be chosen for various system tasks such as space management and

cache maintenance, and these policies de�ne the particular actions taken on an event oc-

curring in the system. For example, an LRU policy is used for cache replacement, which

removes data that is the least recently used when the cache is full. Note that although

we have generally adopted `standard' policies such as FIFO queues and LRU replacement,

the choice of these policies is speci�c to our simulation; alternative policies may be chosen

in other simulated systems or in real-life implementations, possibly resulting in di�erent

performance pro�les.

The transaction processing algorithms in an A*Cache system are given below in two

parts: �rst, the actions taken by a client are de�ned, and then the server-side logic is

speci�ed.

6.2.1 Client-Side Logic

At the client, a cache hit causes local evaluation using data in the cache, whereas a cache

miss fetches from the server all tuples that are to be read or updated, which are then cached

and processed locally. Partial hits are treated as cache misses in this basic A*Cache model.

Local updates are 
ushed to the server upon submission of a remote read request, since an

'in-
ight' transaction must be able to view its own updates as it executes remote operations

at the server. As noted in Section 3.3.3, this behavior represents the isolation semantics for

standard ANSI SQL, and this policy is also adopted in A*Cache.

/* **********************************************************

* Client-side logic for transactions in A*Cache simulation *

* **********************************************************/

For each request R submitted by a transaction, do

{ If R is a query or an update, then

{ /** cache hit case **/

If R is completely contained in the cache, then

Execute R locally;

Else

{ /** Cache miss case.

** Note: Basic A*Cache doesn't consider partial cache hits
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**/

Send R and any local updates to the server;

Fetch all tuples accessed by the query predicate of R;

/* **************************************************

* Simulation policies for cache space management: *

* store tuples and predicates upon fetch; *

* purge tuples using LRU predicates *

* **************************************************/

Store new tuples in cache, reclaming space if necessary;

If space was reclaimed, then

{ Update cache description;

Send message to server specifying purged predicates;

}

If R is an update, then

{ /* ************************************************

* Simulation policy for updates: *

* update tuples locally if cached; *

* flush local updates with next remote request *

* ************************************************/

Update tuples locally;

}

}

Else if R is a commit, then

{ Send any local updates to server with commit request;

Verify commit if necessary;

If commit accepted by server, then

{ Make updates permanent in cache;

Commit transaction;

}

Else

{ /* ****************************************************

* Simulation policy for transaction serializability: *

* abort on conflict with updates of other clients *
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* ****************************************************/

Undo local updates;

Abort transaction;

}

}

Else if R is an abort, then

{ Send abort message to server;

Undo local updates;

Abort transaction;

}

}

Observe that in the above algorithm, we have chosen a simple cache loading policy, in

which all new results fetched from the server are inserted into the cache, after reclaiming

space as necessary. In a practical scenario, this policy could be re�ned to analyze the

long-term bene�ts of caching the query results (Section 3.3.6), before deciding to store

them locally. The client must also implement a cache replacement scheme in order to

accommodate newly fetched data. In our simulation, we use an LRU mechanism at the level

of predicates along with reference counts for individual tuples, as described in Section 3.3.6.

The reference count maintained for each tuple in the cache denotes the number of predicates

that refer to a certain tuple. Before the space for a tuple is reclaimed through a predicate,

it is �rst checked that its reference count is not greater than one; otherwise, the tuple is not

removed. It is possible to employ more sophisticated algorithms for space management, as

in [Dar96], but they are not considered in our study.

In addition to the process that executes transactions at the client, there is a parallel

client process which handles noti�cation messages received from the server. This update

handling process is interleaved with the process executing transactions, and follows the logic

below:

/* *******************************************************************

* Client-side logic for update notifications in A*Cache simulation *

* *******************************************************************/

For each notification message N received from the server, do

{ If N conflicts with any reads or writes of the current transaction, then
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{ /* ******************************************************

* Simulation policy for transaction serializability: *

* abort on conflict with updates of other clients *

* ******************************************************/

Send abort message to server;

Undo local updates;

Abort current transaction;

}

If N affects the current cache contents, then

{ /* **********************************************

* Simulation policy for cache maintenance: *

* refresh updated data from notifications *

* **********************************************/

Update cache description if necessary;

Update modified tuples in the cache;

}

}

The above noti�cation handling algorithm used in our simulation enforces full serializ-

ability of transactions, so that client transactions are aborted when con
icts are detected

with data updates made by other clients. Variations of this concurrency control policy

are possible in the general A*Cache scheme (see discussion in Section 3.3.3), but are not

considered in our simulation. The cache maintenance policy chosen in our simulation study

refreshes cached data that has been updated. Thus, noti�cation messages contain the new

image of the data after update. In the general A*Cache framework, it is also possible to have

invalidation-based maintenance schemes, as discussed in Section 3.3.4. Maintenance based

on invalidation is not investigated in our simulation study; examining the performance of

such schemes is the subject of future work.

6.2.2 Server-Side Logic

The server processes the requests submitted by client transactions, and generates update

noti�cations for a�ected clients as updates are committed to the database. Generation of

update noti�cations is done using the predicate descriptions of the cache contents of each
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client. The server is also responsible for verifying at transaction commit that serializability

constraints were not violated.

/* *************************************************************

* Server-side logic for client requests in A*Cache simulation *

* *************************************************************/

For each request R submitted by client C, do

{ If R is a query or an update, then

{ /* **********************************************

* Server policy for data retrieval: *

* Read-lock tuples *

* **********************************************/

Read-lock and retrieve required tuples;

/* *********************************************************

* Server policy for client subscriptions: *

* register new predicate before sending data to client *

***********************************************************/

Register access predicate for R in subscription of client C;

Release read locks;

Send the result tuples to client C;

}

Else if R specifies purged predicates, then

{ Update subscription of client C;

}

Else if R is an abort, then

{ Undo any updates made by the transaction;

Abort transaction;

}

Else if R is a commit then

{ Write-lock updated tuples;

Verify commit with client C using notification message numbers;

/* *****************************************************

* Server policy for transaction serializability: *

* Abort if commit is not verified by client *
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* *****************************************************/

If commit verification fails, then

{ Deny commit request;

Undo any updates made by the transaction;

Abort transaction;

}

If commit succeeds, then

{ Post updates to database;

Release all locks;

Send `commit OK' message to client C;

For each update, do

{ For each client C1 != C with registered subscription S1, do

{ If any predicate in S1 is affected by the update, then

{ Mark C1 as 'affected';

/* ******************************************

* Server policy for notifications: *

* send updates in notification message *

* ******************************************/

Add updated data to notification message for C1;

}

}

}

Send update notifications to all clients marked 'affected';

}

}

}

As outlined in the above algorithm, the server obtains short-duration read locks as it

retrieves the tuples for a query or an update. These locks are released after retrieval of the

tuples, but the access predicate for the command is recorded by the server. Observe that the

server always registers a new predicate in the client subscription before sending the result

of a remote query. This behavior is in accordance with our choice of the cache loading

policy for our simulation, in which all results fetched from the server are cached locally.

Other cache loading policies are possible in A*Cache (see discussion in Section 3.3.6) but
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are not considered in our performance study. Also note that in our simulation environment,

the updated data is sent in the noti�cation message. This scheme supports the cache

maintenance policy chosen for our simulation, in which update noti�cations always refresh

the cached data.

Note that the execution model described above represents basic A*Cache operation,

with no optimizations. For example, partial cache hits are not considered. This basic

model will be extended in the next section (Section 6.3) to incorporate some optimizations

aimed at improving its performance.

6.3 Alternate Caching Schemes for Performance Compari-

son

In order to analyze and interpret the experimental results, one or more schemes must be

chosen to serve as the bases for comparison. For our simulation study, we consider the

following three types of client-server systems as alternatives to A*Cache:

1. A database with no client-side caching, hereafter called No-Cache;

2. A system that we call Tuple-Cache, which caches only tuples at clients without any

predicate descriptions, and

3. A scheme named A*Cache Opt, which is an optimized extension of the basic A*Cache

model.

Query and update processing algorithms for these three schemes are described below, and

the di�erences in their handling of cache hits and misses are noted in particular.

6.3.1 A Client-Server Database with No Caching

A client-server system with no caching at client sites serves as a simple baseline for com-

parison of our experimental results. In this system, called the No-Cache scheme, queries

and updates are always executed at the server, and there is no update noti�cation required

from the server. Thus, no cost is incurred in cache containment reasoning or maintenance,

or in transaction aborts due to update con
icts. As in most commercial databases, central

read/write locks acquired at the server are used for concurrency control.
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6.3.2 A Client-Server Database with Tuple-Based Caching

In this caching scheme, called the Tuple-Cache scheme, it is assumed that the client cache

stores only tuples and does not maintain the associated query predicates. Therefore,

whether the result of an associative query is contained in the cache cannot be determined

locally, and the server must be contacted for each query to fetch the zero or more missing

tuples in its result. Consider, for our BUG database example introduced in Section 1.1.2,

that the client executes the following query:

SELECT *

FROM BUG

WHERE Product# = 100;

Execution of the above query will cause all the bugs for Product 100 to be placed in

the client cache. However, if the same query or a query that de�nes a subset of the original

query, such as

SELECT *

FROM BUG

WHERE Product# = 100 AND Status = 'Open';

is submitted again, then the client in Tuple-Cache cannot determine locally that it has the

entire query result. Unlike A*Cache, it does not store the query predicate (Product# = 100)

describing the tuples, and thus cannot perform cache containment reasoning locally. Only

the server can determine (possibly using indexes) which tuples belong in the query result,

and the set of tuples that are missing from the cache. In other words, the Tuple-Cache

scheme recognizes cache hits only at the level of individual tuples and not entire queries,

and a round-trip to the server is necessary to process every associative query or update.

In the Tuple-Cache scheme, we assume that the contents of each client cache is repre-

sented by a list of unique identi�ers for the cached tuples. Such a list is used at the client

site for query execution and space management purposes, and is also maintained by the

server. The list at the server site serves two purposes: (1) to determine which tuples in a

query result are missing from the client cache, and (2) to �lter out update noti�cations that

are irrelevant for a client.

The algorithms given below describe in pseudo-code the actions taken by clients and

the server to process transactions in the Tuple-Cache scheme.
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/* **************************************************************

* Client-side logic for transactions in Tuple-Cache Simulation *

* **************************************************************/

For each request R submitted by a transaction, do

{ If R is a query or an update then

{ Send R and any local updates to the server;

Fetch from the server any missing tuples for R;

/* *****************************************************

* Simulation policy for Tuple-Cache space management: *

* store tuples upon fetch; *

* purge LRU tuples *

* *****************************************************/

Store new tuples in cache, reclaiming space if necessary;

If R is an update, then

Update tuples locally;

}

Else if R is a commit then

{ Send any local updates to server with commit request;

Verify commit if necessary;

If commit accepted by server, then

{ Make updates permanent in cache;

Commit transaction;

}

Else

{ /* ****************************************************

* Simulation policy for transaction serializability: *

* abort on conflict with updates of other clients *

* ****************************************************/

Undo local updates;

Abort transaction;

}

}

Else if R is an abort then
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{ Send abort message to server;

Undo local updates;

Abort transaction;

}

}

In the above algorithm, note that updates are made locally at a client after fetching

the tuples missing from its cache. This update scheme is chosen for Tuple-Cache, since

it is comparable to the update-handling mechanism in the basic A*Cache model. In the

latter scheme, a cache miss causes a remote fetch of all tuples to be updated, which are

then updated locally; cache hits in A*Cache also produce local updates. In contrast, for

Tuple-Cache, cache miss is the automatic default for each query or update, the tuples being

processed locally after the initial step of fetching any missing tuples from the server.

The client must also implement a space management policy. In our simulation of Tuple-

Cache, all newly fetched tuples from the server are cached locally, and space is reclaimed

using an LRU scheme at the level of tuples.

In addition to the query and update processing tasks, the client in a Tuple-Cache scheme

must maintain the cached tuples to re
ect database updates. As in A*Cache, the server

sends update noti�cations for tuples cached by the client, which are used to refresh the

locally cached tuples. Noti�cation processing in Tuple-Cache is simpler compared to an

A*Cache client, since old copies of the modi�ed tuples are directly replaced with their new

images. Unlike A*Cache, there are no cached predicates to be analyzed and maintained by

the client, since only tuples are stored in this type of cache. The noti�cation processing

algorithm in Tuple-Cache is therefore a simpler version of the A*Cache algorithm given in

Section 6.2.1, the simpli�cation being that cached predicates are not involved in the process.

To guarantee transaction serializability in the tuple-caching environment, the server

must still ensure that tuples within the scope of the query predicates of a currently-running

client transaction are not updated by another transaction. This requirement is true for

all the caching systems we consider here, including Tuple-Cache, and can be enforced in

a variety of ways. In our simulation of Tuple-Cache, we have adopted the following semi-

optimistic concurrency control scheme with a commit veri�cation step to detect con
icts,

which is similar to the policy chosen for A*Cache:
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/* *****************************************************************

* Server-side logic for client requests in Tuple-Cache simulation *

* *****************************************************************/

For each request R submitted by a client C, do

{ If R is a query or an update then

{

Determine the set of tuples S required to execute R;

Check list of tuples T cached by C;

/* ******************************************

* Server policy for data retrieval: *

* Read-lock tuples *

* ******************************************/

Read-lock and retrieve tuples in the set (S-T);

Record the access predicate for R;

Release read locks;

Send tuples in the set (S-T) to client C;

}

Else if R is an abort, then

{ Undo any updates made by the transaction;

Abort transaction;

}

Else if R is a commit, then

{ Write-lock updated tuples;

Verify commit with client C using message numbers;

/* *****************************************************

* Server policy for transaction serializability: *

* Abort if commit is not verified by client *

* *****************************************************/

If commit verification fails, then

{ Deny commit request;

Undo any updates made by the transaction;

Abort transaction;

}
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If commit succeeds, then

{ Post updates to database;

Release locks;

Send commit OK message to client C;

For each updated tuple t, do

{

For each client C1 != C, do

{ If tuple t is cached by C1, or

it affects the current transaction at C1, then

{ Mark C1 as 'affected';

/* ******************************************

* Server policy for notifications: *

* send updates in notification message *

* ******************************************/

Add tuple t to notification message for C1;

}

}

}

Send update notifications to all clients marked 'affected';

}

}

}

As outlined in the above algorithm, the server obtains short-duration read locks as it

retrieves the tuples for a query or an update. These locks are released after retrieval of the

tuples, but the access predicate for the command is recorded by the server. Tuples that

are in the result set but are missing from the cache are then sent to the client. If another

transaction originating from a di�erent client now commits updates, the server checks for

serializability violations using a commit veri�cation scheme as in A*Cache. Upon each

successful commit, the server sends to a client all modi�ed tuples that are either stored

in the client cache, or that a�ect the transaction currently running at the client. The

latter condition is detected using the access predicates recorded at the server for in-
ight

transactions. As in A*Cache, this concurrency control scheme is semi-optimistic in nature,

with a transaction being possibly aborted upon noti�cation of a con
icting update.
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For associative queries, the Tuple-Cache scheme can be e�ective only if the queries use

indexed attributes, which is the case in our simulation workload (Section 6.6). For such

queries, the server can use its index pages to determine the set of tuples in a query result,

thereby avoiding full-
edged query execution on the database. In other words, tuples in the

result set that are missing from the client cache can be detected using the indexed attribute,

and only these tuples are retrieved from the database. In this sense, the Tuple-Cache scheme

is related to the index-based associative caching systems discussed in Section 2.2.1, with the

di�erence that in Tuple-Cache, indexes are located and maintained centrally at the server

and are not cached by clients. Thus, the issue of distributed caching and maintenance of

index pages at client sites does not arise for Tuple-Cache.

6.3.3 An Optimized Extension of A*Cache

This scheme, which we call A*Cache Opt, introduces two optimizations in the basic A*Cache

model described earlier:

� An optimization for queries to utilize partial cache hits. This optimization consists

of detecting partial containment in the client cache, and fetching only the missing

tuples from the server. Considering partial hits on the client cache can reduce the

data tra�c across the network compared to the basic A*Cache scheme.

� An optimization on a cache miss for update operations. In this optimized scheme, a

cache hit is handled in the same way as in the basic A*Cache scheme, with updates

being performed locally and 
ushed to server with the next remote request. However,

a cache miss is handled di�erently | it is executed completely at the server, since a

network round-trip is necessary in any case. In contrast, the basic A*Cache scheme

fetches all tuples required for the update, even if some are already present in the cache,

and performs the requested update locally, subsequently 
ushing these updates to the

server.

This extended update policy for a cache miss in A*Cache Opt minimizes the chances

of a transaction being aborted by update noti�cation from the server, since remote

updates at the server acquire long-duration write locks for the modi�ed tuples. The

A*Cache Opt scheme is therefore less optimistic about data writes than the basic

A*Cache and Tuple-Cache schemes, and can result in fewer transaction aborts.
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The A*Cache Opt scheme thus utilizes a cache miss as an opportunity to optimize

network tra�c and also to reduce data update con
icts among di�erent clients.

In our simulation of the A*Cache Opt scheme, for each remote query or update, the

server sends all tuples that were either updated or were missing from the cache back to the

client, which caches them locally. As in A*Cache, the access predicate for the operation

is registered in the client subscription at the server before transmission of the results to

the client, and the cache description at the client is updated prior to the tuples being

stored locally. These operations are consistent with the cache loading policy chosen for our

simulation, in which new tuples are always stored after they are fetched from the server.

For updates executed remotely by the client, we assume that other predicates previously

cached by the client are not modi�ed. This assumption is correct for the workloads chosen

for our simulation (described below in Section 6.6), since the updated attributes are distinct

from those attributes that are used to access the data for a query or an update. Thus, for

a remote update in our simulation, storing a new access predicate and the updated tuples

is su�cient for correct operation | a previously-cached tuple might possibly be modi�ed

by such an update, but other predicates cached earlier at the client are not a�ected.

Noti�cation generation and processing in the A*Cache Opt scheme is the same as in

basic A*Cache. Processing of update noti�cations is predicate-based, so that query results

and tuples cached at the client can be correctly refreshed as updates are committed at the

database.

6.4 Simulation Models

In this section, we present simulation models for the No-Cache and A*Cache systems using

queueing networks. First, we state the execution policies chosen for our simulation envi-

ronment. We then describe the No-Cache model with data caching at clients, and then

extend this model to A*Cache. Our models are based on the database simulation model

originally presented in [Agra87]. This model was later extended to the client-server scenario

in studies such as [Fran93, Wilk90, Wang91]. To represent the architecture and operation of

A*Cache, we extend the basic client-server model of [Wilk90] with caching sub-systems at

the clients and the server. Our extensions take into account the client-side caching facilities,
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data retrieval and maintenance costs for the cache, as well as the costs of processing update

noti�cations at the server and clients.

6.4.1 Logical Queueing Model of a No-Cache System

Figure 6.1 shows the logical queueing model for a No-Cache system. For brevity, only one

client is shown; however, multiple client modules are used in our simulation experiments.

The various functional modules represent the logical processes that cooperate to execute

transactions, and the queue associated with a functional module holds pending requests for

service.

The operation of the system shown in Figure 6.1 is explained below in terms of its

logical modules. Module names have been abbreviated in the �gure for clarity, and each

abbreviation is noted in parentheses in the description of the corresponding module.

Each client is modeled as follows. It has an application module (APP ) that processes

data downloaded from the database. Queries and updates to the database are generated by

the Workload Generator (WLG), which creates a new database transaction upon request

by the client application. All queries and updates are sent to the server through the Send

Queue of the Network module (NET ), and the results received from the server are directed

from the Receive Queue of the network to the application module.

The network model adopted in our simulation is a simple one. It consists of a single

service (shown split into two queues, Send and Receive, in the �gure) with First-Come-

First-Served discipline that handles data and messages sent from the clients to the server,

and vice-versa. A simple model is adequate for the purposes of our simulation study, since

we focus on the relative performances of the various caching schemes, and not on the details

of network operation. The network bandwidth and the CPU costs of message processing

are parameters in our simulation, and for the purposes of this thesis, they provide su�cient

control over the behavior of the network resource.

At the server, a data read or write request arriving through the network is inserted into

the Ready Queue, in which it awaits service. A multi-programming level is de�ned at the

server to limit the maximum number of client requests that can be active at a time, and be

competing for system resources simultaneously. This limit is enforced by theMPL module.
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Thus, a job remains waiting in the Ready Queue until the number of active requests become

less than that speci�ed by the multi-programming level. The MPL module helps control

the amount of concurrent data access at the server.

Active jobs that need to acquire locks are queued for service at the Concurrency Con-

trol Manager (CCM); this module processes all lock requests using the standard lock-

compatibility matrix (details of this locking algorithm can be found in [Gray93b]). A query

or an update �rst tries to get all locks that are necessary for its execution. If a lock request is

denied, then the job waits in the blocked queue until the lock is available. The Concurrency

Control Manager also implements a deadlock detection mechanism that looks for cycles in

a Waits-For graph maintained for active jobs, using the algorithm described in [Gray93b].

In case a cycle is found among blocked jobs, the job that consumed the least amount of

processing time is aborted, and all its locks released. In this case, the Concurrency Con-

trol Manager sends an Abort message to Server Bu�er process (BUF ), which performs the

necessary clean-up for the writes made by the transaction, and then forwards the Abort

message through the Network module to the client application.

When all locks have been successfully obtained for a query or an update, the request is

passed through the Bu�er module to the Remote Execution Unit (REX) at the server. This

Execution Unit processes the request by sending tuple read or write requests, as appropriate,

to the Bu�er module. The Bu�er process checks its list of pages cached in main memory,

and in case of a miss, submits a disk read request to the Disk module (DSK). When the

read is complete, the disk page is loaded into the main memory of the server bu�er. The

Execution module then takes over further processing, and either applies a query predicate to

the tuple or performs an update, as appropriate, storing any modi�ed tuples in the bu�er.

After the last tuple in a query or an update has been processed, the results are sent back

to the client via the Network module. The client application module processes the returned

results, and �nally submits a commit request. A successful commit causes the update log

records of the transaction to be written out to the server disk, and then releases all locks

acquired by the transaction. Pages updated by the client remain in the server bu�er, to

be written out to disk by a DBWriter process (not shown in the �gure), that runs in the

background and 
ushes pages periodically or on demand when the bu�er is full. At the

client, the completion of a commit request causes a new transaction to be generated by the

Workload Generator, and the cycle repeats.
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6.4.2 Logical Queueing Model of A*Cache

A queueing model that represents the logical processes in A*Cache is depicted in Figure 6.2.

The model for this system is an extension of the No-Cache one, with additional modules

at the client and the server to support data caching at the client. These extra modules are

shown shaded in the �gure, and are described below.

Queries and updates are generated by the Workload Generator (WLG) and submitted

to the Cache module (CH), which checks its cache description to determine whether the

required data is available locally in the cache. In the case of a cache miss where the data

is not found locally, a request is sent to the server through the Send Queue of the Network

module (NET ), and the results received from the server are placed in the cache.

The cached predicates and tuples are managed by the local Cache module at the client,

which also maintains the cache description and tuple reference counts for space reclamation.

Space may need to be recovered when a new predicate and its associated tuples are inserted

into the cache, and previously cached predicates must be 
ushed as necessary. In our

simulation, we use an LRU policy at the level of predicates for cache replacement. When

a predicate is aged out of the cache, each associated tuple that has a reference count of

0 (i.e., has no references by any other cached predicate) is also 
ushed (as described in

Section 3.3.6). Removing predicates from the cache causes the Cache module to submit a

Purge message through the Send Queue of the Network module to the server, indicating

that the client subscription at the server is to be updated to remove the speci�ed predicate.

Local data availability implies execution of the query or update at the client, and a

request for execution on the local store is forwarded to the Local Execution Module (LEX)

at the client. This Execution Module submits data read and write requests to the cache,

sending the results of the operation to the Application module for processing. After the

client application has processed all the data, it sends a commit request to the server via

a Commit message submitted to the Send Queue of the Network module. Transaction

commits are veri�ed by a Commit Manager (COM) at the server, which communicates

with the client if necessary, to ensure that serializability constraints were not violated for

the transaction. As described in Section 3.3.3, sequence numbers of noti�cation messages

are used for this purpose.

During remote execution at the server on a cache miss, the job is entered into the queue



9
4

C
H
A
P
T
E
R
6
.
S
IM
U
L
A
T
IO
N
M
O
D
E
L
A
N
D
E
X
P
E
R
IM
E
N
T
A
L
S
E
T
U
P

Subscription
Manager

Client

Client Network Server

Blocked Queue

MPL

lock refused

NF

Read/write request

Ready Queue

commit/abort
read/ write/

Concurrency
Control Queue

Buffer Queue

read/write

re
ad

/w
ri

te
 d

on
e

updates

COM

Workload
Generator

WLG

Notifier Queue
Disk Queue

lock 
granted

DSK

NET

NET

APP

Send Queue

Receive Queue

CCM

BUF

CSM

results

abort

query/update/

query/update/
commit

REX

NP
Updates

results

CHLEX

commit/abort/purge

abort

Local Exec

Cache Queue

re
su

lts

Remote Exec Queue

commit/
results/

abort

commit queuecommit verify/done

Shaded modules denote special components introduced for the A*Cache scheme.

F
igu

re
6
.2
:
L
o
g
ica

l
Q
u
e
u
e
in
g
M
o
d
e
l
o
f
a
n
A
*
C
a
c
h
e
S
y
ste

m



6.4. SIMULATION MODELS 95

of the Client Subscription Manager (CSM) module after the last tuple in a query or an

update has been processed, and before the results have been sent to the client. The CSM

module is responsible for registering and removing query predicates in client subscriptions.

After a new subscription has been registered, the results of the operation are routed from

the server to the client by queueing them at the Receive Queue of the Network module.

The client Application module processes the returned results, and �nally submits a commit

request, provided it was not already aborted by noti�cation of con
icting updates.

Additionally, there is a Noti�er process (NF) at the server that is activated at each

commit to generate noti�cations by checking the updates made by the transaction against

the client subscriptions registered by the Client Subscription Manager. The Noti�er process

searches for overlap of client subscriptions with updated predicates in order to generate the

appropriate noti�cations. Client caches that are found to be a�ected by an update are sent

all tuples updated by the committed transaction, so that the cached data can be refreshed

by the client.

The client also has a Noti�cation Processor (NP ) module that receives update messages

sent by the server through the Network. The Noti�cation Processor uses containment

reasoning in the Cache module to determine if the update a�ects the cache contents, and

to update the cached results if necessary. A transaction that is currently executing at the

client could also be aborted by noti�cation of a con
icting update in order to maintain the

serializability property. In this case, the Cache module generates an Abort message that is

sent to the server through the Network module. This message is also sent to the Application

module, which rolls back and restarts the transaction.

Logical queueing model for the Tuple-Cache system is similar to the A*Cache model

described above | the functional modules are the same, but as discussed in Section 6.3,

there are di�erences in query and update processing. For example, cache containment

reasoning in Tuple-Cache is performed at the server using central indexes, and noti�cation

and space management are based on individual tuples and not query predicates. Likewise,

the model of A*Cache Opt has the same functional modules as A*Cache, with di�erent a

query processing policy for partial cache hits and remote execution of updates on a cache

miss, as described in Section 6.3 above.
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6.5 Physical Resource Model

In this section, we describe the various physical resources in the system, such as the CPU, the

disk, and the network, and the associated simulation parameters. Most of these resources

are common to all of the four caching schemes that we investigate, the major exception

being the cache module and associated containment checking and query execution costs,

which are relevant only for the A*Cache scheme and its extension A*Cache Opt.

In the following description, the simulation parameter corresponding to each resource

is noted beside it within parentheses. We also specify the default values of the input

parameters used in our experimental setup; these values have been carefully chosen to

represent a typical environment of current client-server databases. Some of the parameters

are varied in our experiments, and these variable parameters are noted as applicable. An

experiment may vary a certain parameter around its default value while other parameters

are held �xed, in order to investigate the system sensitivity to this parameter. Unless

otherwise noted, an experiment in which a given parameter is held invariant uses its default

setting speci�ed in the tables below.

6.5.1 Client Con�guration

There are a variable number, NumClients, of clients in the system. Each client has a single

CPU with ClientCPU MIPS, which is modeled as a First-Come-First-Served service, and

a main-memory cache of variable size (CacheSize bytes). The unit of data storage in the

cache is a tuple of size TupleSize bytes. The instruction cost of comparing two predicates

for overlap or containment is represented by the parameter CompInst, which comes into

play during cache containment reasoning and noti�cation processing. In Table 6.1 below

we list the client parameters and their default settings.

The costs of caching and transaction processing at the client are modeled in terms of

the parameters noted in Table 6.1. For example, the worst-case cost of detecting cache

containment in the A*Cache and A*Cache Opt schemes is represented by the following

formula:

ContainCost =
(Number of cached predicates) � CompInst

ClientCPU
instructions

Thus, the cost of containment reasoning varies depending on the number of queries
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Parameter Description Usage Default Value

NumClients Number of clients in the system Variable 10

ClientCPU Instruction rate of client CPU Variable 25 MIPS

CacheSize Size of client cache Variable 5% of database

TupleSize Size of each tuple Fixed 200 bytes

AccessInst Cache access cost per tuple Fixed 50 instructions

SelectInst Per-tuple cost of applying a predicate Fixed 100 instructions

ApplInst Tuple-processing cost in application Fixed 1000 instructions

CompInst Compare two predicates for overlap or
containment

Variable 1000 instructions

Table 6.1: Client Parameters and their Default Settings

already stored at the client; in the worst-case, all predicates have to be checked, with no

containment or overlap being found with respect to the current query.

6.5.2 Network Con�guration

The parameters of the network resource are shown in Table 6.2. The network packet, which

is the unit of data transfer across the network, has a size of PacketSize bytes. The network

is a simple First-Come-First-Served service that models tra�c in both directions, with a

delay that depends on the NetBandwidth parameter that speci�es the speed of the network

in MBits/sec. The CPU costs of sending and receiving messages across the network are also

taken into consideration. The network costs of message transmission include the actual wire

time, as represented by the NetBandwidth parameter, a �xed CPU cost of MsgInst, plus a

per-packet CPU cost PacketInst.

Parameter Description Usage Default Value

NetBandwidth Bandwidth of the network Variable 10 MBits/sec.

PacketSize Size of a message packet Fixed 4096 bytes

MsgInst Per-message send/receive cost Fixed 20,000 instructions

PacketInst Per-packet send/receive cost Fixed 12,000 instructions

Table 6.2: Network Parameters and their Default Settings
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6.5.3 Server Con�guration

The resources on the server side consist of a single CPU with ServerCPUMIPS, and a single

disk having an average page access time of DiskSpeed milliseconds. A main-memory bu�er

of Bu�erSize bytes is utilized for avoiding disk tra�c. Pages of �xed size 4 Kbytes each are

read from the disk into the bu�er pool following an LRU page replacement policy. The CPU

and disk are each modeled as a First-Come-First-Served single-server single-queue service.

Each disk access involves a CPU cost of DiskInst instructions. Costs are assigned for lock

and unlock actions on tuples (LockInst), and for applying a selection predicate to a tuple

(SelectInst). The server parameters and their default settings are shown in Table 6.3.

Parameter Description Usage Default Value

ServerCPU Instruction rate of Server CPU Variable 50 MIPS

BufferSize Size of the server bu�er Variable 25% of database

PageSize Size of a data page Fixed 4096 bytes

DiskSpeed Average time to access a disk page Fixed 6.5 msecs.

DiskInst CPU cost for a disk I/O Fixed 5000 instructions

LockInst Per-tuple cost of lock/unlock Fixed 400 instructions

SelectInst Per-tuple cost of applying a predicate Fixed 100 instructions

RegInst Subscribe/unsubscribe a predicate Fixed 100 instructions

CompInst Compare two predicates for overlap or
containment

Variable 1000 instructions

Table 6.3: Server Parameters and their Default Settings

The server in the A*Cache and A*Cache Opt systems noti�es clients of database updates

based on their registered subscriptions. The cost to register or de-register a predicate in the

subscription is RegInst. During noti�cation of updates by the server, costs are incurred in

comparing each update predicate with the predicates in client subscriptions for inclusion

or overlap; this cost is represented by the CompInst parameter, which is also used at the

client to model cache containment and noti�cation processing costs.

In our simulation, if an update predicate is found to overlap the registered subscription

for a client, then all updated tuples for that update command are sent to that client;

individual tuples or other predicates in the subscription of that client are not checked.

Thus, some updated tuples may not actually be cached by the client, and are ignored by it
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upon receipt. This behavior is an example of the liberal noti�cation mechanism discussed

earlier in Section 4.1. In the worst case, an update in the A*Cache and A*Cache Opt

schemes causes inspection of the subscriptions of all clients but the client i making the

update, incurring a cost of:

NotifyCost =

P
c6=i(# of predicates cached by c) � CompInst

ServerCPU
instructions

6.6 Workload Model

In this section, we describe the workload model adopted for our simulation experiments.

The choice of the workload is critical in a performance study, since it determines the results

to a large extent. We have carefully selected a workload pro�le that allows us to examine

the costs and bene�ts of our caching schemes in a client-server scenario representative of

real systems.

6.6.1 Database Benchmarks

Database benchmarks were developed in order to provide common environments for per-

formance evaluation studies, in terms of well-de�ned system con�gurations and controlled

patterns of workload. A benchmark usually consists of a synthetic workload that models

the characteristics of a particular application domain. A synthetic benchmark, such as the

one used in our study, has a close resemblance to a real environment, but is easy to create,

and de�nes a relatively simple yet representative scenario for interpreting the simulation

results meaningfully.

In our simulation study, we base our workload model on the Wisconsin benchmark

[Gray93a]. This benchmark is a well-known standard one, and is suitable for our study, since

it is directed towards relational databases, and uses associative queries. The benchmark

covers many di�erent query types, including projections and joins. We focus on a speci�c

subset of this benchmark, namely, on clustered and unclustered selections that access data

through associative predicates, and extend it to include associative updates. Although join

and projection queries can be supported in A*Cache (see earlier discussion in Sections 3.3.2

and 3.3.4), we have omitted these two types of queries in our simulation for simplicity, and

for easier interpretation of the simulation results. Examples of our queries and updates are

provided below.
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6.6.2 A Wisconsin-Style Database Setup

We assume a single relation with 10,000 tuples of 200 bytes each in a Wisconsin-style setting

[Gray93a]. The relation has two uniquely indexed attributes Unique1 and Unique2 that are

unclustered and clustered respectively. These attributes are unique for each tuple in the

relation. Each query is a linear range selection either on Unique1 or on Unique2, its length

in terms of the number of tuples retrieved being a variable quantity. A sample query is

shown below:

SELECT * FROM table

WHERE attribute BETWEEN lower AND upper;

In the above query, attribute is either Unique1 (indexed and unclustered) or Unique2

(indexed and clustered). The lower and upper quantities are boundaries that de�ne the

length of the query in terms of the number of retrieved tuples.

Updates in the Wisconsin benchmark are based on unique records, and hence are not

suitable for our associative caching scenario. We have instead incorporated associative

updates in our model, using the associative queries de�ned in the benchmark as a basis for

our extension. A sample update command appears below:

UPDATE table

SET update_attribute = value

WHERE access_attribute BETWEEN lower AND upper;

In the above update, access attribute is either Unique1 or Unique2, depending on

whether the case is unclustered or clustered. For the updates in our workload, we assume

that the update attribute is di�erent from both Unique1 and Unique2, so that index up-

dates are not involved (i.e., values of Unique1 and Unique2 attributes are not modi�ed by

the update).

6.6.3 Representation of Locality and Contention

We extend the Wisconsin benchmark to integrate the locality models of [Fran93, Care94],

which represent locality of data reference and update contention on data shared among

di�erent clients.
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The database is logically split into a hot region and a cold one. Each client owns a

section of the hot region. With respect to the BUG example introduced in Section 1.1.2,

the hot region can be considered to be the set of active bugs that have been logged within

the last three months. The rest of the BUG database consists of bugs that are either closed

or obsoleted, and thus constitutes the cold region which is not accessed as frequently.

Data access probabilities HotAccess and ColdAccess are de�ned for the hot and cold re-

gions of the database respectively. Update probabilities HotTransWrite and ColdTransWrite

are also associated with transactions that execute in the hot and cold regions respectively.

These quantities are de�ned on a per-transaction basis, and are set to the same value for

every client. The parameter HotTransWrite denotes the probability that a transaction in

the client-speci�c hot region is a read-write transaction, and ColdTransWrite represents

the same quantity for the shared cold region. Additionally, the parameter HotTupleUpdate

denotes the probability that a read-write transaction in the hot region updates a tuple read

by it, while ColdTupleUpdate denotes the same quantity for a read-write transaction in the

shared cold region. Contention of shared data can be controlled either by increasing the

value of ColdAccess, or by increasing the update probabilities appropriately.

Table 6.4 shows our workload parameters. In order to make a large set of experiments

feasible, we kept the database small and scaled the client cache and the database bu�er sizes

proportionately. As with all caching studies, not the absolute values but only the relative

ratios of these di�erent sizes are relevant for performance.

The Private Data Access Model

In the Private access model [Fran93, Care94], the hot range of a client i is de�ned by the

following linear interval of tuples:

�
DBsize �HotRatio

NumClients
� (i� 1);

DBsize �HotRatio

NumClients
� i

�
:

The cold region is the same for all clients, and is de�ned by:

[HotRatio �DBsize;DBsize) :

The access pattern of this model is illustrated in Figure 6.3. The hot region of a client
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Parameter Description Usage Default

Value

DBsize Database size Fixed 10,000 tuples

TupleSize Tuple size Fixed 200 bytes

QueryLength Query length as % of DBsize Variable 0.1%

HotRatio Hot region as % of DBsize Fixed 50%

HotAccess Access frequency of client-speci�c hot
region

Variable 80%

ColdAccess Access frequency of client-speci�c cold
region (=1�HotAccess)

Variable 20%

HotTransWrite Probability that a transaction in the hot
region writes data

Variable 20%

ColdTransWrite Probability that a transaction in the
cold region writes data

Variable 20%

HotTupleUpdate Probability that a read-write transac-
tion in the hot region updates a tuple

Fixed 50%

ColdTupleUpdate Probability that a read-write transac-
tion in the cold region updates a tuple

Fixed 50%

Table 6.4: Workload Parameters and their Default Settings

is private to it, in that it does not overlap with the cold region of any other client. The

per-client cold region is equal to the cold region of the entire database. Thus, each client

has a non-shared hot region, the same cold region as all other clients, and a portion of the

database that it does not use (which is the union of the hot regions of all the other clients).

In terms of the BUG example introduced in Chapter 1, the Private access model �ts

the scenario where a client has its own 'internal' set of bugs that is not readable or writable

by anyone else. The Private model also re
ects the case of organizational specialization in

an enterprise; for instance, each separate department in a school may create its own special

region of data that, though residing in a common database, is either not available for use

by any other department, or not of interest to them.

The HotCold Data Access Model

In the HotCold access model [Fran93, Care94], the hot region of client i is de�ned exactly

as in the Private case above, but the remainder of the table represents the cold region of

client i. Thus, the hot region of a client is part of the cold region of all other clients, but



6.6. WORKLOAD MODEL 103

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

Client 1 Client 2 Client n

Hot region

Cold region

Not used

Tuple #
0

DBsize*
HotRatio

DBsize-1

Figure 6.3: Data Access Pattern for the Private Model

the hot regions of the di�erent clients are mutually disjoint. This access model is depicted

in Figure 6.4.

The HotCold model is quite appropriate for the BUG example described in Section 1.1.2.

Users may have their own area of interest, depending on the product they deal with, but

they might also be interested in bugs logged for other products in the database.

In addition to the Private and HotCold models, we consider two other data access

patterns, namely, the Hicon and Uniform access models. These two access patterns are not

representative of common real-life scenarios, but are included here as bases of comparison

for the results of our performance study. These access models are described below.

The HiCon Data Access Model

The HiCon access model [Fran93, Care94] de�nes a single hot region of the database that

is common to all clients. The rest of the database constitutes the cold region of each client.

This access pattern is shown in Figure 6.5. The hot region is de�ned by the following linear



104 CHAPTER 6. SIMULATION MODEL AND EXPERIMENTAL SETUP

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

���
���
���
���

���
���
���
���

Client 2 Client nClient 1Tuple #
0

DBsize*
HotRatio

DBsize-1

Hot region

Cold region

Figure 6.4: Data Access Pattern for the HotCold Model

interval of tuples:

[0; HotRatio �DBsize) :

For our BUG database example, the HiCon model represents a scenario where some

common bugs are heavily updated by multiple concurrent users. Although this situation is

unlikely to occur in practice, it re
ects high update contention on shared data. Another

scenario where the HiCon model applies is the case of index updates. Indexes are normally

the heavily-used 'hot spots' in a database; if many new tuples are inserted in the database

concurrently by di�erent users, or the indexed attributes are updated, then the indexes

would be subject to high contention.

The Uniform Data Access Model

In the Uniform access model, there are no speci�c hot or cold regions. The queries of each

client are directed uniformly to all attribute values. Figure 6.6 shows the Uniform access

pattern.

In Table 6.5, we summarize the hot and cold ranges of the clients in the four di�erent

access models described above.
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Figure 6.5: Data Access Pattern for the HiCon Model

6.7 Implementation Notes for the Simulator

The simulator is implemented in C++/CSim [Mesq94], and consists of about 5000 lines of

code. C++/CSIM is a discrete event-driven simulation language based on C++. Below we

provide an overview of the relevant CSIM features as used in our implementation of the

simulator.

� A CSIM program models a simulation system as a set of processes that interact with

each other using events or mailboxes. The CSIM system simulates the parallel opera-

tion of multiple active processes, even though they are in fact executing sequentially

on a single processor. For example, each client is modeled as a separate process,

operating in parallel with other client processes.

� Resources in the simulation system that provide certain services, such as a CPU or

a disk, are modeled directly as single-server-single-queue facilities in CSIM. A CSIM

facility has built-in support for management of its service queues in which processes

wait while the server is busy. A process can reserve, hold, or use a facility for a

speci�c amount of time, with the order of service depending on the policy de�ned

for the facility. For our simulation, the disk and CPUs use First-Come-First-Served

service discipline.
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Client 1 Client 2 Client nTuple #
0

DBsize-1

Uniform access

Figure 6.6: Data Access Pattern for the Uniform Model

� Completion of a service request is indicated by a CSIM event. Thus, events are used

to synchronize the operations of CSIM processes. For example, if a page is not found

in the bu�er, a request to read the page is submitted to the Disk facility. When the

read is completed (depending on the jobs in the disk queue), a `ReadComplete' event

occurs. This event indicates to the bu�er that the page can now be placed in the

main memory of the bu�er pool.

� Noti�cation in our caching systems is triggered by a transaction commit. This scenario

is modeled using CSIM mailboxes. A mailbox is a container for sending and receiving

CSIM messages that allow processes to communicate asynchronously. In our simula-

tion, the Noti�er is a server process that `wakes up' upon receiving a message in its

mailbox from a client transaction that has successfully committed its updates. Once

the message has been deposited in the noti�er mailbox, the client transaction contin-

ues on, while the Noti�er starts generating noti�cation for all other clients based on

their registered subscriptions.

The cache containment reasoning logic in a client process is implemented as follows.

For our workloads, the query predicates are linear integer intervals on either the attribute

Unique1 or on Unique2, corresponding to range queries on these attributes. Thus, in our

simulation of the A*Cache and A*Cache Opt schemes, the predicate of each query stored in
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Access

Model

Hot Range for Client i Cold Range for Client i

Private [r � (i� 1); r � i) ; r = HotRatio�DBsize
NumClients

[HotRatio �DBsize;DBsize)

HotCold [r � (i� 1); r � i) ; r = HotRatio�DBsize
NumClients

Rest of the table

HiCon [0; HotRatio �DBsize) Rest of the table

Uniform [0; DBsize) |

Table 6.5: Hot and Cold Ranges for Di�erent Access Models

the cache description is in the form of an integer interval on the attribute constrained by the

query. The predicates are organized by their query attribute, either Unique1 or Unique2.

Within each attribute category, the set of predicates is maintained as a doubly-linked list

in reverse order of entry. When examining the cache description for query containment

and update noti�cations, the list of cached predicates for the matching attribute is scanned

in sequence. If the interval ranges of one or more cached predicates together contain the

new predicate, then cache containment reasoning indicates a complete hit. If there is an

overlap of the query interval with cached predicates, a partial hit is detected in the case of

A*Cache Opt scheme.

Predicates that represent a new query to be inserted in the cache description at a client

are placed at the head of an LRU list called the ageList. Thus, the predicates that are used

less often migrate towards the tail of this list. When the cache is full, as many predicates

as necessary are purged from the tail of the ageList, and the new predicate is inserted at

the head of the list.

Further details on the implementation of the simulator can be found in [Poes97].
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6.8 Experimental Methodology

There are three basic ways of investigating the behavior of a complex system| using analyt-

ical means, empirically through experiments, or by simulation. Analytical examination can

provide fast and accurate results, provided that the underlying model is small and tractable.

The A*Cache system, unfortunately, is too complex to be modeled analytically. In contrast,

empirical investigation requires observation of system behavior through carefully-designed

experiments, which are run either on a real implementation of the system, or on a simulated

one. Developing a real A*Cache system was beyond the scope of this thesis, so we had to

investigate system behavior using detailed simulation.

Simulation is a powerful yet complex technique for performance evaluation. As is evident

from the discussion in the preceding sections, there are many parameters in the model that

can be varied experimentally. In order that the simulation results are meaningful, careful

consideration must be given to several factors:

� The system model must be a su�ciently accurate representation of the real system,

and yet be tractable. The process of simulation modeling inevitably involves some

simpli�cations and approximations over the real system; however, these simpli�cations

should be chosen such that they do not substantially impact the relative performance

of the schemes being studied.

For example, consider the assumption we make in our simulation that the client stores

data in main memory only. In a real system, disks might also be employed at client

sites. However, none of our caching algorithms depend on the speci�c nature of

the client-side data store. The performance �gures would certainly be di�erent in the

presence of client-side disks; however, the relative performance of the di�erent caching

schemes is not expected to be a�ected by this assumption.

� Workloads are another important consideration. Ideally, a trace of a real system

should be used as input. However, this approach is in
exible, and the required data

can be hard to obtain. We have used a workload based on a real database benchmark,

and extended it with the well-de�ned locality and contention models of [Care94] for

multiple clients.

� Input parameter settings and their scope of variation must be chosen with care, since

they directly in
uence the experimental results and conclusions. In our case, we
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have based the parameter values on realistic systems, as well as on prior performance

studies of client-server systems, e.g. [Fran93, Wilk90].

� Output parameters must be de�ned appropriately, their behavior corroborated with

the help of other output measures, and checked for statistical validity. For example,

the behavior observed in an experiment with respect to the response time must be

supported by other output parameters, such as server costs, network tra�c, and disk

accesses. Therefore, for all our experiments, we examine multiple output parameters

to ensure consistency of the results. Also, all experiments were performed for a large

number (500 or more) queries at each client, so as to minimize transient e�ects of the

warmup of client caches and the server bu�er. The server bu�er was also populated

randomly with pages at start-up, to reduce the time required to reach steady state.

� Finally, the implementation of the simulator must be carefully debugged and vali-

dated, to avoid producing invalid results and false conclusions. We have analyzed in

detail the execution traces of `small' experiments, in order to verify the correctness

of simulator operation. Additionally, the operation of the No-Cache simulator was

validated against a commercial database system, as described in Section 6.9 below.

6.9 Validation of the Simulator

The behavior of the simulator without client-side caching and for read-only workloads has

been validated by running experiments against a commercial relational database. The goal

of the validation procedure is to verify that our model of the system with no client-side

caching behaves reasonably close (within �20%) of a real database system. Below, we

provide a brief description of the validation environment and results | full details can be

found in [Poes97]. 1

6.9.1 System Con�guration

The database system used for the validation is the Oracle 7.3.2 database, in a single-client

single-server con�guration. Both the client and server processes were on the same machine,

1This part of the research is joint work with Meikel Poess and Kurt Shoens | Meikel ran validation

experiments on the simulator developed jointly by the two of us, and Kurt Shoens performed the experiments

on Oracle.
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so that network costs were not involved. The Oracle 7.3.2 server ran on a 50 MIPS HP

735 machine with a 125MHz clock and the OS THP 10.0 operating system. It had a 50K

bytes main-memory bu�er for bu�ering disk pages of size 4KBytes each. The simulator

parameters were tuned to match the characteristics of the real database system as closely

as possible.

6.9.2 Queries

A single database relation with two indexed attributes, one clustered and the other un-

clustered, was created. Two types of queries were considered in our validation experiments

| clustered and unclustered selections. Since only one client was present, the multi-client

data locality and contention model (i.e., Private, HotCold, or HiCon access) was ignored,

queries being targeted uniformly over all the tuples in entire database relation.

The database relation had 300,000 tuples, and the result returned by each type of query

was 1% of the relation (i.e., 30,000 tuples). Note that the size of the database relation was

scaled up 30 times in the validation experiments, compared to the database size (10,000

tuples) used in the subsequent experiments for performance evaluation. The size of each

tuple was the same in both the validation and performance experiments, i.e., 200 bytes.

Thus, the size of the database for the validation experiments was 300,000*200, i.e., 60

MBytes, and 2 MBytes for the simulation experiments. This scaling up was necessary to

minimize the e�ect of �le bu�ering by the underlying operating system in the HP machine

running the database server.

6.9.3 Validation Methodology

Query traces were generated for the validation experiments using a Workload Generator.

The generated queries were run on the Oracle database, and our simulator was run in a

trace-driven mode. For the validation experiments, two output parameters were measured,

namely, the query response time and the number of disk I/O operations. The experimental

results in terms of these two parameters are given below.
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6.9.4 Validation Results

Query Response Times

The query response times of the simulated system and for the Oracle database are shown

in columns 2 and 3 of Table 6.6. The di�erence in the two numbers appears in column 4,

while column 5 shows the di�erence as a percentage of the response time of the simulated

system. As can be seen from the table, the percentage di�erence is about 13%, being well

within our target of 20%.

Query

Type

Query Response Time Di�erence (Simulated - Oracle)

Simulated Oracle Total Relative to
simulation

Clustered

Selection

2.92 secs. 3.04 secs. -0.12 secs. 4.11%

Unclustered

Selection

116.20 secs. 101.14 secs. 15.06 secs. 12.96%

Table 6.6: Query Response Times in Validation Experiments

Number of Disk Reads

The number of disk reads that occurred in the simulated and Oracle systems are reported

in Table 6.7. A signi�cant di�erence (about 19%) is observed in the case of the clustered

selection query. The total di�erence in terms of the number of disk reads is 761, but the

relative deviation is high because there are only about 3,200 reads needed in the simulation

to compute the entire query from the clustered data.

Further details on the validation experiments and results can be found in [Poes97].

6.10 Summary of Chapter

In this chapter, we have described the simulation models and experimental setup used in our

performance study. Our simulation model for A*Cache is an extension of the client-server

model used in [Care94]. We de�ned three alternate caching schemes for comparison of our

results, namely, No-Cache, Tuple-Cache, and A*Cache Opt. Di�erences in the query and
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Query

Type

Number of Disk Reads Di�erence (Simulated - Oracle)

Simulated Oracle Absolute Relative to
simulation

Clustered
selection

3211 3972 -761 19.16%

Unclustered
selection

39892 37392 2500 6.6%

Table 6.7: Disk Reads in Validation Experiments

update handling policies of these schemes with A*Cache were noted. Queueing models for

the logical processes in the simulated systems were presented. Characteristics of the physical

resources in the system were speci�ed in terms of simulation parameters. We then de�ned

a workload model for performance evaluation. Our model of the workload is based on

the single-user Wisconsin benchmark [Gray93a], extended with the locality and contention

models proposed for multiple clients in [Care94]. Four di�erent types of workloads, Private,

HotCold, HiCon, and Uniform, are chosen to represent di�erent contention pro�les among

the clients. Some implementation issues for our simulator were also discussed, including the

validation process that was followed to test the correctness of our simulator by comparing

it against a commercial database system.



Chapter 7

Performance Analysis of

Read-Only Workloads

In order to study the performance of A*Cache, we conducted a variety of simulation exper-

iments under di�erent data access and update conditions. In this chapter, we report the

results of read-only experiments in which transactions do not modify data, and hence there

are no costs for update noti�cation and cache maintenance. The read-only results are inter-

esting in their own right, because they allow us to observe and analyze the system behavior

with fewer factors in play, and provide a basis for interpreting the results of our subsequent

experiments with read-write workloads. In many practical settings, read activity greatly

exceeds update loads, and the read-only results are of interest in these situations.

The material in this chapter is organized as follows. First, we brie
y review the major

di�erences in the query processing strategies of our four caching schemes. Next, we specify

the performance metrics that are used to evaluate and compare the behavior of the di�erent

simulated systems. We then focus on the Private access model de�ned in Chapter 6, and ex-

plore in depth the e�ects of various system and workload parameters. Results are reported

graphically for several di�erent output parameters, and the behavior observed in each ex-

periment is analyzed. Many experiments were also performed with the other data access

models, namely the HotCold, HiCon, and Uniform models; some interesting results from

these experiments are presented. Finally, we summarize the conclusions of our performance

analysis for workloads in the read-only environment.

113
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7.1 Comparison of Query Processing Strategies

Each of the four schemes, No-Cache, Tuple-Cache, A*Cache, and A*Cache Opt, processes

queries quite di�erently. Below, we provide a summary of our discussion on this issue in

the previous chapter.

� No-Cache always requests the server for data, since it has no client-side caching.

� Tuple-Cache stores tuples at the client, but it does not maintain any predicate-based

cache descriptions. Therefore, a client cannot determine locally if the result of an

associative query is available in the cache, and must request the server for missing

tuples, if any. Thus, the cost of a network trip to the server is incurred by every query,

with only those tuples that are missing from the cache being sent by the server as the

query result.

� The basic A*Cache scheme uses its predicate-based cache description to determine

cache hits at the level of entire queries. For local hits, a round-trip to the server

is obviated, thereby saving network tra�c and server processing costs. However,

partial hits to the cache are not considered in the basic A*Cache scheme. The server

is requested for the entire query result, causing higher data tra�c on the network

compared to Tuple-Cache.

� A*Cache Opt, like the basic A*Cache scheme, also has the ability to use its predicate

descriptions for determining cache hits of associative queries, thus avoiding remote

trips to the server. Additionally, the A*Cache Opt scheme takes advantage of par-

tial cache hits to request the server for only those tuples that are missing from its

cache. Thus, it incorporates the same optimization for fetching remote data as in

Tuple-Cache, saving disk reads and network tra�c, and re-using cached tuples more

e�ectively.

The distinguishing characteristics of query processing methods in the four types of sim-

ulated systems are summarized in Table 7.1 below:

7.2 Read-Only Performance Metrics

Our primary performance metric is the response time, measured in terms of the time that

elapses between the start of a transaction at the client and the time at which it commits
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Query Processing

Characteristic

No-Cache Tuple-

Cache

A*Cache A*Cache Opt

Tuples cached at client
p p p

Local containment check of
assocative queries

p p

Fetch missing tuples only
p p

Predicate descriptions at
the clients and at server

p p

List of cached tuples at the
clients and at server

p

Need server indexes for
cache containment check

p

Table 7.1: Comparison of Query Processing Methods

successfully. In order to understand the details of system behavior, we also track several

other important simulation output, such as the hit ratios of the client caches and the server

bu�er, utilizations of client and server CPUs, the server disk and the network, the number of

disk reads and writes, overhead for predicate comparisons, etc. Table 7.2 lists some output

parameters that were monitored in our simulation experiments with read-only workloads.

One or more of these output metrics will be used to analyze and explain our experimental

results.

Output

Parameter

Description Unit

ResponseTime Transaction start time { end time Secs. per transaction

DiskReads Number of disk reads Number

DiskUtil Utilization (busy time) of disk % of elapsed time

CacheHitRatio Ratio of queries evaluated in cache % of total queries

Bu�erHitRatio Ratio of tuples found in server bu�er % of bu�er accesses

NetworkVolume Data and message tra�c on network Kbytes per transaction

NetworkUtil Utilization (busy time) of network % of elapsed time

ServerUtil Utilization (busy time) of server CPU % of elapsed time

ClientUtil Utilization (busy time) of client CPU % of elapsed time

Table 7.2: Output Parameters for Read-Only Workloads
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7.3 E�ect of Client and Workload Parameters

In this section, we report the results of experiments done by varying several client and

workload parameters in the Private access model, such as the size of the client cache,

clustered and unclustered selection of data, hot data access probability, speed of the client

CPU, and the cost of predicate comparison.

7.3.1 Cache Size

In this set of experiments, the size of the client cache is varied from 0% up to 40% of the

database size, while the rest of the input parameters have their default settings shown in

the Tables 6.1, 6.2, 6.3, and 6.4. For example, the frequency HotAccess with which the

client-speci�c hot region is accessed is set to 80%. In this experimental environment, the

size of the hot region of each of the 10 clients is equal to 5% of the database size, and the

size of the shared cold portion of the database is 50%. Thus, the hot regions of all 10 clients

taken together is 50% of the database. The size of the server bu�er is �xed at 25% of the

database, and is not varied in these experiments.

Varying Cache Size for Clustered Data Selection

In the experiments with clustered data access, queries use the clustered attribute Unique1.

Figure 7.1 shows the change in ResponseTime and DiskReads as the size of the client

cache is varied from 0 to 40% of the database size. For the same experiment, the behavior

of two other output parameters, namely NetV olume and ServerUtil, are also shown in the

�gure.

For all the three caching schemes, a large drop in the output parameters shown here

occurs in the 0% to 5% region of the cache size, a smaller drop being observed in the 5%

| 10% region. The improvement in performance essentially saturates for cache sizes 15%

and larger, the response time of all the caching schemes being over 60% better than the

No-Cache case. Recall that for the environment of these experiments, a cache size of 5%

is large enough to hold the entire hot region of a client, to which 80% of all accesses by

the client are directed. Therefore, cache sizes smaller than 5% cannot hold all the tuples in

the hot region of a client, causing remote trips and signi�cant deterioration in the response

time. Increasing the cache size to 5% produces rapid improvement due to higher cache hit
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Figure 7.1: Varying CacheSize, Private Clustered Access
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ratios. A cache size larger than 5% causes the client to store cold data in addition to its

hot data, further reducing the number of remote trips, disk accesses, network volume, and

response times.

In terms of the other output parameters, cache sizes beyond 10% result in at least

75% less disk reads than the No-Cache case, with the corresponding network volume being

about 70% less. The fewer disk reads are due to more cache hits for larger caches, indicating

e�ective use of the client-side data. The signi�cant reduction in network tra�c is expected

in the read-only scenario, since there is no network cost for cache maintenance and update

noti�cation.

However, beyond a cache size of 10%, the response time saturates for all three caching

schemes, showing no signi�cant improvement with larger caches (upto 40% of the database

size). This asymptotic behavior is a result of our experimental environment, in which cold

data is spread uniformly over 95% of the database and is accessed 20% of the time; even

a cache size of 40% is not large enough to signi�cantly improve the cache hit ratio for the

cold region. Additionally, the commit in all our schemes happens at the server, and hence

in every scheme, a certain number of messages and server cycles are consumed for each

transaction, even when all data is found locally in the cache. The response time therefore

always has a remote component, and is never determined completely by local processing

costs at the client.

Now, comparing the relative performance of the three caching schemes, we �nd that for

our experimental environment, query response time is the smallest for the A*Cache Opt

method throughout the entire range of cache sizes. Performance of the basic A*Cache

scheme is about the same as Tuple-Cache for cache sizes of 0 through 10%, beyond which

Tuple-Cache starts to perform better than A*Cache, and �nally does as well as A*Cache Opt

for cache sizes 25% and larger. This behavior can be explained with the help of the other

output parameters, DiskReads, NetworkV olume, and ServerUtil shown in the �gure.

A*Cache Opt has the lowest number of disk reads and network tra�c throughout the ex-

perimental range of cache sizes, while Tuple-Cache and A*Cache have about the same values

for these parameters between 0 and 10% cache size. The disk reads in Tuple-Cache decrease

with increasing cache sizes, being about the same as A*Cache Opt for cache sizes 25% and

larger. The reason for this disk access pattern is that Tuple-Cache must reference server
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index pages for each query, thereby having more index pages in the server bu�er than ei-

ther of the A*Cache schemes. Therefore, the e�ective size of the server bu�er is reduced for

Tuple-Cache, and fewer data pages are stored in it; this cost o�sets the savings resulting

from fetching missing tuples only.

In terms of network volume, Tuple-Cache must send each query to the server for cache

containment check, thereby sending more messages than both the A*Cache schemes. In

contrast, basic A*Cache fetches all tuples in a query even when there is a partial cache hit,

thereby incurring extra network cost in data transmission compared to Tuple-Cache. The

relative di�erence in response times between Tuple-Cache and basic A*Cache is prominent

for 15% and larger cache sizes, since the cache hit ratio is large enough to cause the savings in

data volume for Tuple-Cache to o�set its larger number of network trips and yield signi�cant

bene�ts. A*Cache Opt performs the best, since it supports both local cache containment

reasoning like A*Cache, and like Tuple-Cache, also utilizes partial cache hits to reduce the

data volume across the network.

With respect to the utilization of the server CPU, No-Cache has the highest CPU usage

compared to the response time, while values for all the caching schemes are at least 30%

lower for cache sizes 15% and larger. Tuple-Cache uses the CPU less heavily than basic

A*Cache, because it does not read tuples in the result that are already present at the client.

In fact, the CPU utilization in Tuple-Cache is even lower than A*Cache Opt for cache sizes

25% and larger. This behavior is due to the server cost of maintaining a large number of

predicates for large-sized caches in the A*Cache schemes. As an example, consider a 30%

cache size in our simulation. For this set of experiments, each query is .1% of the database

size, with records 200 byte long, producing query results of 1 Kbyte each. Thus, when the

cache size is 30% (600 KBytes), each of the 10 clients holds 600 query predicates. In our

simulation, predicates are simple integer intervals but they are not indexed, so that the

server has to examine a non-trivial number of predicates for a client when it is informed

that a particular query result has been purged from the cache. This cost increases the server

CPU load for bigger cache sizes in the A*Cache schemes, since our simulation does not use

any optimization techniques for indexing or merging the predicates in a cache description.

The cost of maintaining cache descriptions in the A*Cache schemes are expected to decrease

with such optimizations, improving their performance for large cache sizes.
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Figure 7.2: Varying CacheSize, Private Unclustered Access

Varying Cache Size for Unclustered Data Access

In these experiments, queries use the unclustered attribute Unique2 to select tuples. Un-

clustered data access causes many more data pages to be accessed for a given query, dimin-

ishing the e�ectiveness of the server bu�er and causing more disk reads compared to the

clustered case. Therefore, the bene�ts of client-side caching are more prominent compared

to clustered access.

Figure 7.2 shows the e�ects of varying CacheSize for unclustered reads, using default

settings for all other parameters. A comparison with Figure 7.1 for the clustered results

veri�es that the number of disk reads are 10 times greater for unclustered access, and the

response time is correspondingly an order of magnitude larger. A*Cache Opt is again found
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to have the best response time, followed by Tuple-Cache and then basic A*Cache. Note

that for cache sizes below 15%, the di�erence in response times between Tuple-Cache and

basic A*Cache is more pronounced than in the clustered case. This interesting di�erence in

response time characteristics is explained as follows. Consider the basic A*Cache scheme

�rst. According to the execution model described in Section 6.2, on a cache partial cache hit,

basic A*Cache fetches all tuples in the query result from the server, irrespective of whether

some of these tuples are already in the client cache. The larger number of tuples accessed

causes more disk reads, especially since reuse of pages in the server bu�er is reduced for

unclustered page access patterns. Thus, the cost of a cache miss is higher in the unclustered

case, and reduces the relative performance of basic A*cache. The A*Cache Opt scheme

does not have this problem because of its partial cache hit optimization. In the scenario

of this unclustered set of read-only experiments, A*Cache Opt yields better response times

compared to the Tuple-Cache scheme for cache sizes between 5 and 20%, and is nearly the

same as Tuple-Cache for caches of other sizes.

Another interesting issue is the observed di�erence in server CPU utilization depending

on whether data access is clustered or unclustered. For the clustered case (Figure 7.1), the

server CPU utilization decreases steadily with increasing cache sizes, as more of the query

processing costs are distributed to the clients. For unclustered access (Figure 7.2), CPU

utilization at the server increases as cache size is increased. This increase is due to the

unclustered pattern of page reads causing many more disk accesses than in the clustered

pattern, so that processing at the server is more disk-bound than CPU-bound for small

cache sizes. As the client cache size is increased, more tuples are found in the cache for the

hot regions of clients, resulting in fewer server disk accesses and comparative increase in

the server CPU time with respect to the total elapsed time for a query.

7.3.2 Hot Access Probability

In this set of experiments, the probability HotAccess of reading data in the hot region is

varied for all the clients from 0% to 100%. Access frequency of the cold region changes

accordingly. The rest of the input parameters have their default settings shown in the

Tables 6.1, 6.2, 6.3, and 6.4. Each client cache is thus 5% of the database size. Results for

both clustered and unclustered access modes are reported below.
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Figure 7.3: Varying HotAccess, 5% CacheSize, Private Clustered Access

Varying Hot Access for Clustered Selection

Figure 7.3 presents the results of varying HotAccess in the case of clustered data retrieval.

For all the four schemes, the query response times schemes are found to �rst increase, reach

a peak around 30% HotAccess, and then decrease as more accesses occur in the client-

private regions. This interesting response pattern seems rather unexpected, but is due to

the nature of the Private workload model, and can be explained as follows.

For HotAccess values below 10%, most data accesses occur in the shared cold region of

the database, which is 50% of the database. For these experiments, the server bu�er is 25%

of the database, i.e., nearly half of the cold region. Therefore, the bu�er hit ratio is high

small values of HotAccess, the bu�ered pages being e�ectively shared by all clients. The
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cold region is much larger than the client cache size of 5%. Hence, the local caches are not

very e�ective, with the result that the response times of the caching schemes are nearly the

same as the No-Cache case for HotAccess values upto 20%. The caching schemes start to

perform better than No-Cache beyond 20% HotAccess, since data cached locally is better

reused.

As HotAccess is increased beyond 20%, more reads occur on client-private data, so the

server bu�er utilization falls due to reduced sharing of bu�er space among di�erent clients.

This drop in the bu�er hit ratio initially results in larger number of disk reads and higher

response times. When the ratio of access to client-private non-shared data is increased

further beyond 30%, data in the client caches is reused more often, producing higher cache

hit ratios, less network tra�c, and fewer disk reads, and a corresponding drop in query

response. In the No-Cache case, data used by each client �ts better into the server bu�er,

so disk tra�c is reduced, although the improvement is not as signi�cant as in the caching

schemes. Unlike local caches, this way of using the server bu�er is dependent on the number

of clients.

With regard to the relative performance of the three caching schemes, A*Cache Opt

performs the best in terms of query response, disk reads, and network tra�c, followed by

Tuple-Cache, and then A*Cache. Network volume and server CPU utilization of A*Cache

is higher compared to the other two caching schemes, because on a cache miss, it fetches

all result tuples in a query, even though some of the tuples might already be present in the

cache.

Varying HotAccess for Unclustered Selection

Figure 7.3 presents the results of varying the hot access probability from 0% to 100% for

unclustered reads. The behavior of the ResponseTime, DiskReads, NetworkVolume, and

ServerUtil output parameters are shown here.

Comparison with the results for the clustered case reveals interesting di�erences in

behavior, as discussed below:

� Query response times are an order of magnitude larger than those in the clustered

case. Unclustered disk access and poor server bu�er utilization are reasons for this

behavior.
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Figure 7.4: Varying HotAccess, 5% CacheSize, Private Unclustered Access

� The response of No-Cache is almost constant over the entire range 0 | 100% of

HotAccess values. This behavior is also re
ected in the disk reads, and is a result

of the unclustered mode of data access. Compared to the clustered case, many more

disk pages are accessed for each query involving the unclustered attribute. Thus, the

server bu�er cannot be e�ectively utilized.

� All three caching schemes demonstrate signi�cant improvement in performance over

the No-Cache case, the bene�ts increasing with larger values of HotAccess. For exam-

ple, for 75% HotAccess the response time for A*Cache is 50% smaller than No-Cache,

while A*Cache Opt and Tuple-Cache are about 20% better than A*Cache. The ben-

e�ts of local caching are better realized for the unclustered case, since data lookup in

the local stores is independent of the data clustering on disk.

� The 'peak' e�ect on the response time and disk reads observed in Figure 7.3 for the

clustered case is missing here. This di�erence is due to the e�ect of unclustered access

on the server bu�er hit ratio. Queries on unclustered attributes examine many more

disk pages than clustered, and so the server bu�er is much less e�ective than for

clustered queries. The peak in the clustered case is primarily caused by a drop in

the server bu�er reuse as access to the shared cold region is decreased, causing more

disk reads. However, in the unclustered case, the bu�er hit ratio is low (about 22%)

to start with, and does not fall appreciably as HotAccess is increased. Instead, the

number of disk reads falls steadily in the caching schemes, as data in the local caches

is reused more often, reducing the dependency on the server bu�er.
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Figure 7.5: Varying Predicate Comparison Cost, Private Clustered Access

7.3.3 Predicate Comparison Cost

In Figure 7.5, we show the e�ects of varying the cost of predicate comparison from 20,000

to 120,000 instructions in the basic A*Cache and A*Cache Opt schemes, with two di�erent

settings, 5% and 10%, for the cache size. The measured CacheHitRatio in the �rst case was

constant at about 50%, and in the second case, at about 60%. From the graph for A*Cache,

we see that as the predicate comparison cost increases beyond 70,000 instructions, both

con�gurations of A*Cache perform worse than the No-Cache scheme. This deterioration

in performance is due to the larger cost of cache containment reasoning, which after about

70,000 instructions, outweighs the cost of remote trips to the server. The performance can

be improved with suitable predicate indexing and merging techniques (Chapter 4), which

are not used in our simulation.

Another observation that can be made from the results in Figure 7.5 is that the larger

cache size of 10% performs worse than the smaller cache for a predicate comparison cost of

about 60,000 instructions and above. This result is expected, since a larger cache causes

more predicates to be cached and compared during cache containment reasoning, thus

increasing the cost of local processing.

The corresponding results for A*Cache Opt also appear in Figure 7.5. The response

time for A*Cache Opt is better than that of A*Cache, and the cross-over with No-Cache

therefore occurs at higher values of the predicate comparison cost.
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Figure 7.6: Varying Network Speed, 5% CacheSize, Private Unclustered Access

7.3.4 Client CPU

A number of additional experiments were performed to detect the sensitivity of the system

response to other parameters, such as the ClientCPU, HotRatio, and RecordSize. Decreas-

ing the MIPS of the client CPU was found to have little impact on the system response,

unless it fell very signi�cantly (below 5 MIPS). Client CPU utilization was low in all cases,

showing that the client was not overloaded with local caching tasks. The performance e�ect

of varying server CPU was much more pronounced, which is expected since the server is a

shared resource.

7.4 E�ect of Network Speed

Figure 7.6 shows the e�ect of varying the network speed on the ResponseTime and on

NetworkUtil outputs for a 5% cache size. The NetworkSpeed parameter is varied from

0.1 MBits/sec to 2.5 MBits/sec. Because all of the caching schemes have less network

tra�c than No-Cache, they perform better for increasing values of network speed. The

performance gains saturate at a network speed of about 0.5MBits/sec for the environment

chosen for this set of experiments. As discussed in Section 7.1, A*Cache transfers more data

from the server than the other two caching schemes, and its response time is accordingly

higher.
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Figure 7.7: Varying Bu�erSize, Private Unclustered Access

7.5 E�ect of Server Parameters

Server resources are shared among many clients, and therefore a�ect the system performance

to a large extent. In this section, we examine the e�ect of varying the parameters of the

resources at the server site, such as the bu�er size, and disk speed, and the CPU MIPS.

7.5.1 Bu�er Size

Figure 7.7 shows the e�ect of varying the size of the server bu�er for unclustered data

access, i.e., for queries that use the attribute Unique2 to access data. The cache size is set

to 200 Kbytes, which is 10% of the database, and the bu�er size is varied from 10% to 50%

of the database. Rest of the input parameters have their default settings. The response

time of all the schemes improves with increasing bu�er size. However, as is evident from

the �gure, all three client-side caching schemes are much less sensitive to the server bu�er

size compared to No-Cache. This behavior is desirable, since it reduces the dependency

of the system performance on shared resources at the central server. Similar bene�ts are

observed in the clustered case, although the absolute values of the query response time are

much smaller for clustered access.

7.5.2 Disk Speed

Figure 7.8 shows the e�ect on system performance of varying the speed of the disk at the

server from 2 milliseconds to 16 milliseconds for unclustered data access. In this experiment,
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Figure 7.8: Varying Disk Speed, Private Unclustered Access

the cache size is set to 200 Kbytes, which is 10% of the database, and all other parameters

have their default settings. Response times for all the schemes increases as the disk gets

slower. However, all the schemes with client-side caching are less sensitive to the disk speed

than No-Cache, since the server disk is not accessed whenever data is read locally in the

cache. Similar results are obtained for the clustered case. These results are analogous to

those obtained for the server bu�er, essentially reinforcing the conclusion that client-side

caching schemes are less sensitive to the availability of central resources.

7.5.3 Server CPU

Figure 7.9 shows the e�ect of varying the speed of the server CPU on the query response

time and server CPU utilization. In this set of experiments, the server CPU speed is varied

from 5 MIPS to 75 MIPS, with all other input parameters having their default settings.

From the graphs, we see that No-Cache has the slowest response time, and is also

the most sensitive among all the schemes to smaller values of the server MIPS. Tuple-

Cache performs better than No-Cache, and about the same as A*Cache for CPU speeds

25 MIPS and higher. For lower values of the CPU speed, A*Cache Opt and Tuple-Cache

are comparable. A*Cache Opt performs the best for values of server speed greater than 25

MIPS, since it utilizes its cache most e�ectively, making fewer remote requests compared

to both A*Cache and Tuple-Cache.
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Figure 7.9: Varying Server CPU, 5% CacheSize, Private Clustered Access

7.6 Scalability Experiments

For a database system to perform well, it must not only provide good response to varying

system loads, but it must also scale with respect to the additional clients and queries. In

our simulation, we examined the scalability of the four types of client-server systems for

increasing values of query length and number of clients. These results are presented below.

7.6.1 Query Length

Figure 7.10 shows the behavior of the systems when the query length is varied from 0.1%

to 1.3% of the database, with CacheSize being at its default setting of 5% of the database

size. All other input parameters are also set to their default values. Data is accessed using

the clustered attribute Unique2, the number of tuples in a result set increasing with larger

query lengths.

It can be observed from the graphs in Figure 7.10 that the output parameter CacheHi-

tRatio for both A*Cache schemes rises with increasing query lengths from about 30% at

0.1% query length, to 60% at 1% query length. Larger queries have larger predicate inter-

vals that are more likely to overlap with each other, resulting in a greater number of cache

hits. This behavior causes a slower growth in the query response time for increasing query

lengths in the two A*Cache schemes, as seen in the �gure. In contrast, the response time for

the No-Cache scheme increases rapidly with larger query length, as does the number of disk

reads it performs. Tuple-Cache has approximately the same performance characteristics as
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Figure 7.10: Varying Query Length, Private Clustered Access
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Figure 7.11: Varying Number of Clients, Private Unclustered Access

A*Cache in this scenario, increasing slower than No-Cache with larger queries. However,

Tuple-Cache does not beat A*Cache Opt in performance, since it uses extra network trips

and server cycles to detect cache containment at the server. A*Cache Opt performs best

among all four schemes, having the smallest increase in response time for queries with larger

results sets.

7.6.2 Number of Clients

The demands on the shared resources increase directly with more clients, and therefore,

the e�ect on system performance of increasing clients is an important scalability issue. In

the following set of experiments, we vary the number of clients in the system from 5 to 45

with 10% CacheSize, keeping all other parameters �xed at their default values. Figure 7.11

presents the results of these experiments, showing the e�ects on response time and server

CPU utilization.

As can be seen from these graphs, the query response times for all four systems increases

with larger number of clients. However, the systems with client-side caching scale much

better with increasing load. The reason is that CPU and memory of additional clients are

utilized in the caching schemes, and the load on the shared server resource is therefore much

less than in the No-Cache case. This result is analogous to that obtained for other shared

resources such the server bu�er and the disk; the performance characteristics in all three

sets of experiments establish the better scalability of the client-side caching schemes, as

well as their reduced sensitivity to critical central resources, compared to systems with no
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Figure 7.12: Varying CacheSize, HotCold Access, Clustered and Unclustered

caching.

7.7 Experiments with the HotCold Workload

In this section, we describe the some of the results of our experiments with the HotCold

workload type. Unlike the Private access model, hot regions are not exclusive to clients in

the HotCold scenario, and are therefore subject to shared access. In general, the HotCold

read-only results are quite similar to the Private model, since the only di�erence between the

two is in the nature of cold access. Below we report the results of two sets of experiments,

one varying the cache size and the other varying the hot access probability, in the HotCold

access model.

7.7.1 Varying Cache Size

Figure 7.12 shows the response time changes with varying cache size, for both clustered and

unclustered access. All other input parameters are set to their default values.

Comparing these results against the Private results from Figures 7.1 and 7.2, we �nd

that all the four schemes behave very much the same as in Private. No-Cache has the worst

performance, with the bene�ts of caching more prominent for unclustered access. As in the

Private scenario, A*Cache Opt performs the best in both clustered and unclustered access,

reusing its cached data most e�ectively.

Notice that for smaller cache sizes, 6% or less, A*Cache performance is comparable
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Figure 7.13: Varying HotAccess, 5% CacheSize, HotCold Clustered and Unclustered

to that of Tuple-Cache for clustered access, while it is worse than Tuple-Cache for the

same range of cache sizes in the unclustered case. This behavior is also manifested for the

Private workload, and can be explained as follows. In the clustered case, there are fewer

disk accesses for a query, since tuples in a result set are grouped together in a small number

of pages. For unclustered data, there are many more disk accesses per query compared

to clustered. Recall from our discussion of query processing strategies in Section 7.1 that

A*Cache does not take into account partial cache hits, thus fetching all tuples in the result

set. This feature of A*Cache causes many more disk reads for small cache sizes in the

unclustered case, slowing down its performance with respect to Tuple-Cache. On the other

hand, the di�erence in the number of disk reads is much smaller in the clustered case,

making A*Cache performance about the same as Tuple-Cache for cache sizes 6% or lower.

7.7.2 Varying HotAccess

In this set of experiments, the hot access probability is varied from 0% to 100%, with the

cache size being at its default setting of 5%. All other input parameters have their default

values. The results are shown in Figure 7.13, for both clustered and unclustered access, the

behavior being similar to that obtained for Private access.

Notice that the 'peak' e�ect observed in the Private clustered case (Figure 7.3) is missing

in the HotCold clustered results. The reason for the di�erence in HotCold behavior is

precisely that the hot region of a client in the HotCold model is shared as part of the cold

region of other clients. Recall that the peak in the Private clustered scenario is caused
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Figure 7.14: Varying CacheSize, HiCon Clustered and Unclustered Access

by reduced sharing in the server bu�er as client-private hot regions are accessed more

frequently. For HotCold however, increasing HotAccess from low values does not cause the

server bu�er reuse to deteriorate as much as in the Private case, thus providing a steady

improvement in the response time.

7.8 Experiments with the HiCon Workload

This section presents the results of some of our experiments with the HiCon workload. Recall

that this workload has a common shared hot region, and is primarily intended to model

shared high contention scenarios for data writes. We include some read-only results for this

workload below, in order to provide a reference for the subsequent read-write experiments.

7.8.1 Varying CacheSize

Figure 7.14 shows the e�ect of varying the cache size for both clustered and unclustered

data access in the HiCon workload model. In this set of experiments, all other input

parameters have their usual default values, as noted in the Tables 6.1, 6.2, 6.3, and 6.4.

For this environment, the HotRatio is 50%, splitting the database equally between hot and

cold regions, with 80% of accesses being directed by all clients to the common hot region.

A*Cache Opt and Tuple-Cache schemes perform the best in this scenario, causing far fewer

disk reads than the No-Cache and also the basic A*Cache schemes.

Observe that the bene�ts of A*Cache Opt and Tuple-Cache as compared to basic
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Figure 7.15: Varying HotAccess, HiCon Clustered Access

A*Cache are more signi�cant in the HiCon unclustered case than in clustered. In the

environment of these HiCon experiments, the common hot region is 50% of the database,

which is large compared to the size of the client cache (5%). Therefore, the cache miss rate

is higher than for the Private or HotCold experiments with 5% hot regions. Additionally,

the cost of a cache miss in the unclustered case is higher for A*Cache, since it fetches all

tuples in a result set, causing more disk reads than A*Cache Opt and Tuple-cache. Due

to these reasons, a degradation in A*Cache performance occurs for the unclustered envi-

ronment, and even for the clustered one, in which A*Cache performs about the same as

No-Cache for cache sizes about 10% and smaller.

7.8.2 Varying HotAccess

In this set of experiments for the HiCon model, the hot access probability is varied from 0%

to 100%, with the cache size being at its default setting of 5%. All other input parameters

have their default values. The results for clustered and unclustered cases are shown in

Figures 7.15 and 7.16 respectively.

The response time and disk reads in Figures 7.15 and 7.16 show interesting peak e�ects,

the maximum occurring at 50% value of the HotAccess probability. This behavior is a result

of the environment of these HiCon experiments, in which the HotRatio is 50%, splitting

the database equally between hot and cold regions. For low values of HotAccess, the server

bu�er mostly holds pages from the common cold region. As access to the cold region is

decreased, pages are accesses more uniformly from the entire database, causing a decrease
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Figure 7.16: Varying HotAccess, HiCon Unclustered Access

in the e�ectiveness of the server bu�er. For a HotAccess value of 50%, half of the queries

use the cold region and the other half use the hot, so that the entire database is accessed

equally and the hit ratio of the server bu�er (25% of the database) is the lowest. As access

switches over to the hot region, reuse of pages in the bu�er rises again, reaching the same

values with 100% hot access as with 0%.

Another interesting observation from Figures 7.15 and 7.16 is that the bene�ts of

A*Cache Opt and Tuple-Cache over basic A*Cache and No-Cache are much larger in the

unclustered case than in the clustered. Again, the reason for this behavior is that the cost

of a cache miss is much higher for basic A*Cache than Tuple-Cache or A*Cache Opt, since

it fetches entire query results and not just the missing tuples, and this cost is much larger

for unclustered disk access than clustered, due to poor utilization of the server bu�er for

unclustered use.

7.9 Experiments with the Uniform Workload

The Uniform workload portrays uniformly random access to the entire region of the database.

Although this workload is rare in practical situations, we examine some results here in order

to compare its behavior against the other workload types.
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Figure 7.17: Varying CacheSize, Uniform Clustered and Unclustered

7.9.1 Varying CacheSize

In this set of experiments, the cache size is varied for both clustered and unclustered uniform

access to the entire database. As in the results presented above for the other workloads,

basic A*Cache is much less e�ective than Tuple-Cache or A*Cache Opt, due to its higher

cost of cache miss. This di�erence is more signi�cant for the unclustered case, since the

server bu�er utilization is poor for queries using an unclustered attribute. It is also seen

that for the clustered case, Tuple-Cache performs the best, even better than A*Cache Opt.

This result can be attributed to the fact that for uniform access spread over the database,

predicate-level hits to the cache are rare, thereby decreasing the cache hit ratio for the

A*Cache schemes. The overhead of examining and maintaining the predicate-based cache

description becomes signi�cant, causing Tuple-Cache to perform better in this scenario.

7.9.2 Varying Bu�erSize

The e�ect of the server bu�er size is quite pronounced for the Uniform scheme, as shown in

the Figure 7.18 below. This is because the page access pattern for the database is random,

and the bu�er size has a direct relationship with the number of disk reads. Note that

all the caching schemes are less sensitive to bu�er size than No-Cache, with A*Cache Opt

providing the best response time in the environment of these experiments.
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Figure 7.18: Varying Bu�erSize, Uniform Clustered and Unclustered

7.10 Summary of Read-Only Experiments

In this chapter, we have examined the behavior of the four simulated systems, No-Cache,

Tuple-Cache, A*Cache, and A*Cache Opt, for read-only transactions in the Private, Hot-

Cold, HiCon, and Uniform access models. The read-only scenario inherently favors the

caching schemes over the No-Cache architecture, since there are no maintenance costs in-

curred at the shared server and on the network. Our experimental results veri�ed that

A*Cache Opt performs the best for most read-only environments, followed by Tuple-Cache,

and then basic A*Cache. Bene�ts for all the three caching schemes are substantial when

shared resources are at premium, or when data access on the disk is unclustered, since the

local client cache is most e�ective in these cases. However, when the predicate compari-

son cost is increased, the cost of cache containment reasoning also rises, and it can exceed

the savings from local containment checking and query execution in the A*Cache schemes.

For our experimental environment with a cache size 5% of the database, the cross-over of

A*Cache performance with No-Cache happened for a cost of about 70,000 instructions per

predicate comparison. Such values of the predicate comparison cost are extreme. Further-

more, this limit can be reduced by suitable indexing and merging of the query predicates

in a cache description; such optimizations were not used in our simulation.



Chapter 8

Performance Analysis of

Read-Write Workloads

In this chapter, we consider client transactions that both read and update data. First, we

brie
y review the important di�erences in update-handling procedures of our four caching

schemes. We then specify our performance metrics, and present our experimental results,

focusing primarily on the update characteristics. We explore and compare the behavior

of the four caching schemes, considering particularly the costs of cache maintenance and

its e�ect on response times. We conclude this chapter with a summary of our results for

read-write workloads.

8.1 Comparison of Data Update Strategies

Each of the four caching schemes, No-cache, Tuple-Cache, A*Cache, and A*Cache Opt,

handles data writes quite di�erently. Below, we provide a summary of our discussion on

this issue in earlier chapters.

With respect to the steps taken by a client on a request for data update, the following

di�erences exist among the four systems:

� No-Cache always performs its updates at the server, just as it does its queries.

� In the basic A*Cache scheme, a cache miss causes a request to be sent to the server,

to fetch all the rows in its result set. Partial cache hits are handled in the same way

139
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as cache misses. Upon return from the server on a cache miss, or after a cache hit,

the client performs updates locally. These updates are up-loaded to the server at the

next remote trip made by the transaction. For our simulation, a transaction consists

of a single query or update, and hence updates are sent to the server along with the

commit request.

� As described in Section 6.3.2, Tuple-Cache follows a procedure similar to basic A*Cache.

It �rst fetches zero or more missing tuples required for the update from the server, and

then makes local updates that are sent to the server on commit. The initial round-trip

to the server to detect missing tuples is always necessary for associative queries, since

Tuple-Cache does not store predicate descriptions of its cache contents.

� The extended A*Cache Opt scheme de�ned in Section 6.3.3 handles cache hits and

misses quite di�erently. A cache hit is handled in the same way as in basic A*Cache,

with the client performing the updates locally. On the other hand, a cache miss or a

partial cache hit causes a round-trip to the server, which is also used to perform the

updates centrally. All updated tuples, as well any unmodi�ed tuples that satis�ed the

access predicate but are missing from the client cache, are returned as the result.

A characteristic of the associative queries used in our simulation environment is that

the updated attributes do not occur in the predicates used to access data (Sec-

tion 6.6.2). Thus, the remote updates in A*Cache Opt do not cause predicates pre-

viously cached by the client to be changed. Only the new access predicate is inserted

in the client and server cache descriptions as the client application continues its data

processing, and �nally submits a commit request if not aborted by noti�cation of

con
icts.

Handling of update noti�cations is another area where the schemes di�er substantially.

We list below the speci�c actions taken by the server and the clients with respect to update

noti�cations.

� No-Cache has no client-side caching, and consequently, no generation or processing of

update noti�cations.

� Both A*Cache schemes, the basic A*Cache and A*Cache Opt, describe and maintain

their caches in terms of query predicates. In e�ect, this feature requires the mainte-

nance of the cached materialized views. Update noti�cation messages are generated
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by the server to inform the clients of modi�cations to the database, and of potential

con
icts with currently-executing transactions. Registered client subscriptions, that

are based on query predicates, are used by the server to detect possible overlap of up-

dated regions with cached predicates, and to �lter out updates that are irrelevant for a

client. Note that this �ltering is at the level of predicates, and not based on individual

tuples. Thus, it is possible that some modi�ed tuples sent in a noti�cation message

are not pertinent for the client cache; such tuples are discarded at the client upon

receipt. The predicate-level �ltering of updates can produce increased data volumes

for A*Cache updates, since the server noti�cation is liberal in terms of tuples.

Clients in the A*Cache and A*Cache Opt schemes process noti�cation messages re-

ceived from the server as follows. If the update is no longer relevant for the client

cache (e.g., due to purging of cached predicates for space reclamation), and also does

not a�ect the currently-running transaction, then the message is ignored. Otherwise,

the relevant cached tuples, and possibly also the cached predicates, are updated to

re
ect the changes, with the current transaction being aborted on a con
ict. For the

updates in our simulation environment, attributes that are modi�ed do not a�ect the

predicates used to access the data. Hence, only those tuples that are a�ected by the

noti�cation are updated in the cache; previously-cached predicates do not need to be

altered.

� Tuple-Cache also uses a noti�cation mechanism to refresh its cache. In contrast to

both of the A*Cache schemes, the noti�cation in Tuple-Cache is based on tuples, and

not on cached predicates. The server maintains a list of tuple identi�ers for the data

stored at each client. Whenever a transaction commits updates at the server, the

set of tuples it modi�ed is compared against the list of tuples cached by each client.

If a cached tuple was updated, or the modi�cations a�ect the set of tuples read or

written by a currently-running client transaction, then the new values of the relevant

tuples are delivered in a noti�cation message to the client. The client refreshes its

cached tuples using these new values, and aborts the current transaction in case of a

con
icting update that violates serializability.

The distinguishing characteristics of update handling methods in the four types of

caching systems are summarized in Table 8.1 below:
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Update Processing

Characteristic

No-Cache Tuple-

Cache

A*Cache A*Cache Opt

Local update at client on
cache hit

p p p

Remote fetch + local up-
date on cache miss

p p

Remote update at server
on cache miss

p p

Update noti�cation from
the server

p p p

Tuple-level �ltering of
updates by server

p

Maintain predicates
p p

Refresh updated tuples
p p p

Table 8.1: Comparison of Update Handling Methods

8.2 Read-Write Performance Metrics

For the read-write scenario, update-related simulation parameters are introduced in addition

to those in the read-only environment. As described in Section 6.6, these parameters |

namely, HotTransWrite, ColdTransWrite, HotTupleUpdate, and ColdTupleUpdate | deal

with write probabilities of transactions and tuples. These input parameters have the default

settings noted in Table 6.4 in Section 6.6. In our read-write experiments, the values of these

parameters are varied around their default settings and the e�ects are observed.

Table 8.2 lists the output parameters that are monitored in our simulation experiments

for read-write workloads. As in the case of read-only experiments, our primary performance

metric is the response time. Additional simulation output related to data writes, such as

the number and network cost of noti�cations, number of disk writes, etc., are measured

for the read-write transactions. These parameters are summarized in Table 8.2, which also

includes the output parameters described earlier in Section 7.2 for our experiments in the

read-only environment.
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Output

Parameter

Description Unit

ResponseTime Transaction start time | end time Secs. per transaction

DiskReads Number of disk reads Number

DiskWrites Number of disk writes Number

DiskUtil Utilization (busy time) of the disk % of elapsed time

CacheHitRatio Ratio of queries evaluated in cache % of total queries

Bu�erHitRatio Ratio of tuples found in server bu�er % of tuples accessed

NumNotify Number of noti�cations Number

NumAborts Number of transaction aborts Number

NetworkVolume Data and message tra�c on network Kbytes per transaction

NetworkNotify Noti�cation tra�c on network Kbytes per transaction

NetworkUtil Utilization (busy time) of the network % of elapsed time

ServerUtil Utilization (busy time) of server CPU % of elapsed time

ClientUtil Utilization (busy time) of client CPU % of elapsed time

Table 8.2: Output Parameters for Read-Write Workloads

8.3 Experiments with the Private Workload

In this section, we report the results of experiments done by varying client and workload

parameters in the Private access model, such as the size of the client cache, clustered

and unclustered selection of data, hot data access probability, and the cost of predicate

comparison. Transactions both read and write data, triggering cache maintenance activity

at the clients and the server.

8.3.1 Varying Cache Size

In this set of experiments, the size of the client cache is varied from 0% through 20% of

the database size. The read-only results of Chapter 7 demonstrate that performance does

not improve much for caches larger than 10%, and hence we choose to examine 20% or

smaller cache sizes. The rest of the input parameters have their default settings shown in

the Tables 6.1, 6.2, 6.3, and 6.4. For example, the frequency HotAccess with which the

client-speci�c hot region is accessed is 80%, and the size of the server bu�er is �xed at 25%

of the database. In this experimental environment, the size of the private hot region of each

of the 10 clients is equal to 5% of the database size, and the size of the shared cold portion
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of the database is 50%.

Varying Cache Size for Updates via Clustered Index

Figure 8.1 shows the response time, network volume, number of noti�cations, and server

CPU utilization with varying cache size. The transaction write probability is set to its

default value of 20% for access in both hot and cold regions, the tuple update probability

of a read-write transaction being 50%. From the �gure, it is seen that for cache sizes larger

than 5%, A*Cache Opt performs better than all the other schemes in terms of the response

time, network volume, number of noti�cations, and server CPU utilization. As the cache

size is increased, more cold data is stored at a client, which is only accessed 20% of the time

for this experimental environment. This fact, coupled with the increased cost of update

noti�cation for cold shared data in large caches, o�sets the savings from local data reuse,

and the performance improvement essentially saturates at a cache size of 15%.

Another observation that can be made from Figure 8.1 is that the number of noti�-

cations of the three caching schemes rise with increasing cache sizes, Tuple-Cache having

the highest number of noti�cations, followed by A*Cache, and then A*Cache Opt. The

reason for this di�erence lies in the di�erent update handling policies followed for the three

di�erent schemes. As discussed in Section 6.3.2, Tuple-Cache fetches only those tuples from

the server that are missing from its cache. With respect to concurrency control, this be-

havior implies that read locks are not obtained for tuples residing in the cache. In contrast,

basic A*Cache fetches all missing tuples in a query that is not completely contained in the

cache, increasing the network data volume but at the same time, locking the tuples at the

server. Acquiring remote locks on tuples serves to reduce con
icting concurrent updates

by di�erent clients, which would otherwise result in transaction aborts upon noti�cation.

For A*Cache Opt, updates are performed entirely at the remote server in the case of a

cache miss or a partial cache hit, thereby also acquiring the necessary locks and reducing

con
icts. As a result of this di�erence in the update policy, a consistent trend in most of

the read-write experiments is that Tuple-Cache has a higher number of noti�cations and

transaction rollbacks than either of the two A*Cache schemes, with A*Cache Opt having

the least number of noti�cations of the three.
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Figure 8.1: Varying Cache Size, 20% Update Transactions, Private Clustered Access
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Figure 8.2: Varying Cache Size, 20% Update Transactions, Private Unclustered Access

Varying Cache Size for Updates via Unclustered Index

Figure 8.2 shows the e�ects of data updates made using the unclustered attribute Unique2

for a 20% ratio of update transactions. Again, all the three caching schemes perform

better than No-Cache, with A*Cache Opt being the best, followed by Tuple-Cache and

A*Cache. As in the read-only case, the response times are an order of magnitude larger for

the unclustered updates compared to clustered, since many more disk accesses are made

for an unclustered query, reducing the e�ectiveness of the server bu�er. The performance

improvement saturates after a cache size of about 15% is reached, for the same reasons as

noted in the clustered case above.

8.3.2 Varying Write Probability

In the Private model, the hot region of a client is not shared, and update con
icts happen

only on the shared cold portion of the database. Thus, varying the amount of hot writes

does not change the number of noti�cations generated for other clients. In this section,

we report the results of experiments that vary the ColdTransWrite probability for Private

workloads. This parameter speci�es the percentage of transactions that update data in the

cold region, and therefore determines the contention encountered by di�erent clients on the

shared cold region of the Private access model.
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Figure 8.3: Varying Cold Write Probability, Private Unclustered Access

Varying ColdTransWrite

Figure 8.3 shows the e�ects of varying the ColdTransWrite probability. The value of the

HotTransWrite parameter is set to 0, indicating that hot data is only read and not updated,

while all other input parameters have their usual default settings from Tables 6.1, 6.2, 6.3,

and 6.4.

As the ratio of update transactions in the cold region is increased, the response times

of all the four schemes increase, and also the number of noti�cations and server CPU

utilization. A*Cache Opt has the best performance, while Tuple-Cache and A*Cache are

comparable. Due to its update policy of locking and fetching missing tuples only, Tuple-

Cache has the highest number of noti�cations, which balances its savings in terms of reduced
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Figure 8.4: Varying CacheSize, 40% Update Transactions, Private Clustered and Unclus-

tered

data volume on the network on a remote fetch. A*Cache fetches all tuples in a result set,

but has fewer noti�cations precisely because the tuples are locked at the server before the

fetch. Notice that the server CPU utilization for all the caching schemes is greater than

that of No-Cache. There are two reasons for this behavior: (1) because unclustered access

makes a job more disk-bound than CPU-bound for No-Cache, and (2) because the server

processor generates noti�cations for updates in A*Cache, A*Cache Opt, and Tuple-Cache.

8.3.3 Varying CacheSize with 40% Update Transactions

In this set of experiments, 40% of all transactions perform updates, irrespective of whether

they access the cold region or the hot region. That is, the values of both the ColdTransWrite

and HotTransWrite parameters are set to 40%, the per-tuple update probability of a read-

write transaction being at its usual setting of 50%.

For the clustered case, it can be observed that Tuple-Cache actually performs the best

for cache sizes larger than about 7%, while A*Cache Opt is the best for all values of cache

size in the unclustered case. This di�erence in behavior arises from that fact that the server

response is slower for unclustered data access compared to clustered, and thus the cost of

predicate-based noti�cation is relatively more expensive for the clustered case.
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Figure 8.5: Varying HotAccess, Private Unclustered Access

8.3.4 Varying Hot Access Probability

This set of experiments varies the probability HotAccess of using data in the hot region

of the client, with a HotTransWrite value of 0 and a ColdTransWrite of 20%. Thus, no

transactions update hot data, but 20% of transactions in the shared cold region perform

updates. The cache size is set to 10% of the database. Figure 8.5 shows the response time

and number of noti�cations generated for this experimental environment.

Response time of all the caching schemes is seen to decrease nearly linearly with increas-

ing hot access, while the improvement for No-Cache is minimal. The Private workload has

a non-shared hot region for each client which is 5% of the database size, and it �ts entirely

into the client cache (10% of the database in these experiments). Thus, for the caching

schemes, the shared server bu�er is accessed only for the shared cold region. In contrast,

the non-shared hot data in the No-Cache scheme also resides in the server bu�er, thereby

decreasing its e�ciency. The unclustered scenario of this experiment compounds this ef-

fect, since many more disk pages are accessed for a query compared to the clustered case,

and occupy pages in the server bu�er. The net e�ect is that performance of the No-Cache

scheme does not improve signi�cantly with increasing hot access.
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8.3.5 E�ect of Other Parameters

Many other experiments were performed to examine the e�ects of varying the network

speed, server bu�er size, speed of the central disk, and server CPU. Analogous to the read-

only environment, performance of all the caching schemes is less sensitive to availability

of shared resources than the No-Cache con�guration. Scalability experiments varying the

query length and the number of clients were also performed. The results observed in the

read-only scenario also extend to the read-write case, although the cache maintenance costs

somewhat o�set the savings from local data processing. For moderate values of the update

probability (20% update transactions with 50% tuple writes), substantial bene�ts are still

realized for all the caching schemes.

8.4 Experiments with the HotCold Workload

We now examine the behavior of transactions in the HotCold access model. Results are

expected to be similar to that of Private, since the two access models are closely related.

A di�erence between the two models is that for HotCold, each client's hot region is part of

the cold region of other clients, so that unlike the Private access model, update contention

exists also on the hot regions.

8.4.1 Varying CacheSize

Figure 8.6 show the e�ects of varying the cache size in the HotCold access model for unclus-

tered data access. The experiment uses 20% values for HotTransWrite and ColdTransWrite

parameters, so that 20% of the transactions in both the hot and cold regions perform data

updates.

The results are similar to that obtained for Private workloads, although the number

of noti�cations is larger in HotCold. All the caching schemes perform better than the

No-Cache, and A*Cache Opt provides the best response in both the 20% and 40% update

scenarios with unclustered access.

8.4.2 Varying HotTransWrite

Figure 8.7 shows the e�ects of varying the probability of transactions that write data in the

hot region, with unclustered access of data. It is seen that the response time increases for
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Figure 8.6: Varying CacheSize, 20% and 40% Update Transactions, HotCold Unclustered
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Figure 8.7: Varying HotTransWrite, HotCold Unclustered Access

all the schemes, although the caching schemes do much better than No-Cache. As expected,

the number of noti�cations of the three schemes is also seen to increase for higher data write

probabilities.

8.5 Experiments with the HiCon Workload

This section presents the results of some of our experiments with the HiCon workload. This

workload has a common shared hot region, and represents high contention for data writes.

For our experimental environment, the HotRatio is 50%, splitting the database equally

between hot and cold regions.
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Figure 8.8: Varying CacheSize, 20% HotTransWrite, HiCon Unclustered Access

8.5.1 Varying CacheSize

Figure 8.8 presents the results of varying the cache size in the HiCon workload model with

unclustered access. The experiment uses 20% values for HotTransWrite and ColdTran-

sWrite, so that 20% of the transactions in both the hot and cold regions perform data

updates. The probability HotAccess of accessing the hot region is set to its default value of

80%, and all other input parameters have their usual default settings.

It can be observed that A*Cache actually performs the worst in the above high-contention

scenario for cache sizes up to 15% of the database size. Tuple-Cache does better with increas-

ing cache sizes, surpassing the No-Cache scheme at around 12% cache size. A*Cache Opt

provides the best response time, and also the least number of noti�cations. This result can

be attributed to the fact that A*Cache Opt performs updates at the server on cache misses,

while Tuple-Cache and A*Cache fetch the required tuples and update them locally. The

cache hit ratio is low in this experimental setting, and hence the remote update strategy of

A*Cache Opt proves to be bene�cial for this high-contention environment, acquiring central

locks and reducing data con
icts.

8.5.2 Varying Hot Access

Figure 8.9 shows the e�ect of varying the hot access probability from 10% to 100%, with the

cache size being at its default setting of 5%. All other input parameters have their default

values, with 20% update transactions in the hot and cold regions of the database.
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Figure 8.9: Varying HotAccess, HiCon Unclustered Access

A*Cache is again observed to perform the worst, with No-Cache and Tuple-Cache having

comparable response times. A*Cache Opt has the best response, and also the least num-

ber of noti�cations, because its policy of remote updates on a cache miss pays o� in this

experimental environment. The 'peak' e�ect in the read-only scenario (Figure 7.16) is also

present in the read-write case. Recall that this e�ect is caused by the nature of the HiCon

access and pattern of server bu�er reuse in our experimental environment. It is interesting

to observe the reverse 'trough' e�ect in terms of the number of noti�cations. The minimum

number of noti�cations occurs around 50% hot access, when access is split uniformly across

the whole database, producing the least number of data update con
icts among the di�erent

clients. Because of its remote update policy on cache miss, A*Cache Opt has the fewest

update con
icts of the three caching schemes in the setting of these experiments.

8.6 Summary of Read-Write Results

In this chapter, we have presented the results of simulation experiments with read-write

workloads. The di�erences in the update handling strategies of the four caching schemes

were summarized at the beginning of the chapter. These di�erences help us interpret the

behavior observed in our simulation experiments. The e�ect of various parameters have

been analyzed for all four workload types, Private, HotCold, HiCon, and Uniform. For

moderately high amount of updates (about 20%) in the shared regions of the Private and

HotCold workloads, the caching schemes still provide good performance bene�ts. Non-

shared writes among the clients yield better improvements for all the caching schemes,
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since noti�cation messages are not sent. In general, utilization of the server CPU is higher

for the caching schemes because of the cost of generating noti�cations, while the number

of disk accesses is lower due to caching. The trade-o� is between update noti�cations and

local data processing, with larges caches generating more noti�cation tra�c. The HiCon

scheme represents high data contention on a common shared region, and its performance is

therefore the most a�ected by the amount of shared data writes.

With regard to the di�erent caching schemes, A*Cache Opt provides the best overall

performance for most of our simulation experiments, followed by Tuple-Cache and then

A*Cache. We use simple range queries in our workloads, the query predicates being integer

intervals. For more complex queries, increased cost of predicate comparison deteriorates the

performance of the A*Cache schemes, since noti�cation generation and processing happens

at the level of cached predicates. In contrast, the Tuple-Cache scheme is dependent on

the use of server indexes, and also requires tuple-level �ltering of update noti�cations at

the server. The trade-o� between the di�erent caching schemes lies in the complexity of

reasoning with query predicates, and the pattern of data reads and writes. The results

obtained in our simulation experiments demonstrate that substantial bene�ts are obtained

for all the caching schemes even when data update probabilities are moderately high, upto

40% in some scenarios (Figure 8.6). However, performance deteriorates for high write

contention on a shared region, such as the environment of Figure 8.8.



Chapter 9

Conclusions and Future Work

Client-server con�guration is a popular architecture for modern databases. For such en-

vironments, local caching of data potentially o�ers substantial performance bene�ts by

utilizing the computing power and storage capacity of today's powerful clients. In this dis-

sertation, we have introduced the concept of associative client-side caching based on query

predicates. Associative access implies that the data can be retrieved using predicates on

the attribute values of cached items, and not merely through their unique identi�ers. The

A*Cache scheme studied in this thesis uses client memory and CPU to process associative

queries locally, e�ectively exploiting the locality of data reference.

In A*Cache, query results are loaded dynamically into a local store, and cache descrip-

tions derived from query predicates are used to describe the cache contents. In contrast

to identi�er-based caching, the predicate descriptions in A*Cache allow associative queries

from subsequent transactions to be examined locally for containment, and executed at the

client if the data is available. Central indexes de�ned at the server are therefore not required

for local containment reasoning, and the clients can independently de�ne local access paths

depending on their speci�c data usage patterns. The goal is to reduce network tra�c and

response times, and to distribute the server load to the clients, thereby increasing system

performance and scalability.

In the �rst half of the dissertation, we described in detail the framework for our A*Cache

system. First, we introduced the notion of associative caching through a motivating exam-

ple. We then presented the architecture of an A*Cache system in terms of the various

functional modules at the clients and at the server. An execution model for transactions

155
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was de�ned with respect to a concurrency control scheme that supports serializable trans-

actions in A*Cache. In order to support local execution of queries, the usual lock-based

concurrency control protocol for centralized client-server systems is extended with update

noti�cation messages from the server, and an extra commit veri�cation step is included

to detect violations of serializability constraints. Thus, the concurrency control scheme is

semi-optimistic in nature, allowing local query execution but possibly causing a transaction

to abort if commit veri�cation fails. We have shown the correctness of our transaction

execution scheme by demonstrating that it preserves serializability.

We have also examined e�ciency and design issues for good dynamic behavior in

A*Cache, and identi�ed new opportunities for optimization. For instance, the client can

be conservative in reasoning about its cache contents, while the server must be liberal in

notifying clients of cache updates. Such an optimization can potentially reduce the cost

of cache containment reasoning and maintenance, without compromising the correctness of

transaction execution. We introduce query trimming and query augmentation as techniques

that can be used to rewrite the user query to better utilize the cache. Query trimming elim-

inates from a remote query submission those portions of the query for which data is locally

available, while query augmentation fetches essential data such as relation keys for easier

maintenance of the cache. Other optimizations such as merging and indexing of the query

predicates in a cache description can also be employed to reduce the complexity of reasoning

with predicates.

In the latter half of the dissertation, we studied the performance of A*Cache through

simulation in order to determine the viability and characteristics of our proposed scheme

in a dynamic caching environment. In order to compare our performance results, we in-

troduced three other client-server database systems, namely, No-Cache, Tuple-Cache, and

A*Cache Opt. The No-Cache system has a traditional con�guration, with server-side pro-

cessing of all database operations and no data caching or query execution at clients. Tuple-

Cache is a caching system that stores tuples only without any predicate-based cache de-

scriptions, causing query containment checks to be performed at the server with the help

of central indexes. In Tuple-Cache, only the tuples missing from a result set are fetched

back from the server. A*Cache Opt is an extended version of the basic A*Cache scheme.

Like A*Cache, it performs local containment reasoning using the predicate description of a

cache. However, unlike A*Cache, A*Cache Opt also takes into account partial cache hits,
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executing a trimmed query at the server to fetch only those tuples that are not available at

the client. A*Cache Opt uses an additional optimization for updates, in which data writes

are performed remotely at the server in the case of a cache miss. These di�erences in the

query and update processing strategies of the di�erent caching schemes are discussed in

detail in Chapters 7 and 8, since they are important for interpreting our simulation results.

We developed simulation models for the three types of caching systems by extending an

existing client-server model with client-side data storage and appropriate logical modules

for cache management. A suitable workload model was also designed for our associative

caching scenario. Our model of the workload is based on a standard database benchmark,

namely, the single-user Wisconsin benchmark [Gray93a], extended with the multi-user data

locality and contention models of [Fran93, Care94]. The system parameters and data usage

pro�les were chosen carefully, so as to be representative of real systems. The discrete-event

simulation language C++/CSIM was used to implement the simulator. Our implemen-

tation of the simulator was validated against a commercial database system, by running

generated query traces against the database and on the simulator. The validation process

was performed for read-only queries with a single client, and was used to establish that the

simulator behavior was reasonably close to that of a real database system.

Finally, numerous experiments were run on the simulator in order to study the e�ects

of various parameters. Our goal was to verify through simulation the e�ectiveness of our

associative caching scheme for workloads that represent typical multi-client environments,

and to compare its performance against the No-Cache and Tuple-Cache systems. Below,

we summarize our conclusions in this regard.

For all read-only scenarios, the performance of all the three caching systems is found to

be better with respect to No-Cache, since there is no cost involved in update noti�cations.

The bene�ts are more pronounced for large caches, slow networks, and data access through

an unclustered index, because large caches produce less data tra�c on the network, and

local query processing is independent of the data clustering on server disk. The caching

systems also provide signi�cant bene�ts when the private hot region of a client �ts entirely

in its cache, since the shared server bu�er is bypassed for this access to data in this por-

tion. Additionally, all three caching schemes are less sensitive to changes in shared system

resources, such as the server bu�er, central disk, server CPU, and the network speed. The
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caching schemes therefore scale much better with larger number of clients compared to the

No-Cache case.

Now, comparing the relative performance of the three caching schemes, we �nd that

the basic un-optimized version of A*Cache performs worse than Tuple-Cache in general.

As discussed in Section 7.1, Tuple-Cache incurs an extra network trip to perform its cache

containment checks at the server using central indexes, but it fetches only those tuples

in the result set that are missing from its cache. Thus, network tra�c in Tuple-Cache is

smaller than in basic A*Cache, which fetches entire query results, disregarding the local

availability of individual tuples. A*Cache Opt exhibits the best overall performance over a

wide range of workloads, having the least query response time, network tra�c, and number

of disk accesses. This result is not surprising, since A*Cache Opt minimizes disk reads and

network tra�c for partial hits, and for full hits on the cache, it does not consume any server

cycles in checking for tuple availability, thereby yielding the best results.

In a few cases, such as for the large cache sizes in Figures 7.1 and 7.2, and the scenario

shown in Figure 7.4, Tuple-Cache performance is comparable to that of A*Cache Opt. For

large caches, there are many predicates in the client cache description, so that local con-

tainment checking and predicate management at the server consumes more CPU cycles,

o�setting the cost of an extra network trip in Tuple-Cache. Also, when the cost of pred-

icate comparison is increased, then local containment checks and maintenance of cache

descriptions are more expensive, causing the response time of the A*Cache schemes to rise

accordingly. Beyond a certain limit (75,000 | 80,000 instructions in our experimental set-

ting of Figure 7.5) of the predicate comparison cost, the A*Cache schemes can perform worse

than both No-Cache and Tuple-Cache. It must be kept in mind however, that the index-

based cache containment check in Tuple-Cache is e�ective only when queries use indexed

attributes to access data; otherwise, full-
edged query execution is required at the server

to determine the tuples in a result set, reducing the bene�ts of local caching. Predicate-

based cache descriptions in the A*Cache schemes can handle more general query predicates

than Tuple-Cache, since containment reasoning is performed on the predicates themselves,

without using central indexes to determine the result set. In this sense, schemes using the

A*Cache framework are more powerful than index-based caching methods like Tuple-Cache.

With respect to the di�erent types of workloads, Private and HotCold access models

have very similar results. Performance characteristics for Private access are slightly better
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than HotCold when the cache is large enough to hold the hot region for a client, since

for the Private workload, the hot region is used exclusively by a single client, and the

cold region is also smaller compared to HotCold. Gains from caching are poor in the

Uniform environment, because data is accessed randomly over the entire database, and the

e�ectiveness of the client cache and server bu�er are signi�cantly reduced.

Next, consider read-write environments in which transactions can modify data. Low to

moderate values of write probabilities provide similar bene�ts as in the read-only scenario,

while a larger volume of updates causes an increase in cache maintenance costs, and a

corresponding reduction in the bene�ts of local caching. The trade-o� is between update

noti�cations and local data processing, with larger caches causing more cache hits but

also more noti�cation tra�c. As shown in Figures 8.1 and 8.6 for Private and HotCold

workloads, all the three caching schemes perform better than No-Cache for 20% update

transactions and 50% tuple update probability. Similar results are observed even with 40%

update transactions (Figures 8.4 and 8.6) in our experimental setting. Although scenarios

certainly exist where the costs of caching outweigh its bene�ts, our simulation study has

established that it is bene�cial to have associative caching on the clients even for moderately

high update contention.

The relative di�erences in the performance characteristics of the three caching schemes

in the read-write scenario are a result of complex interplay between the various factors

involved in their handling of data updates and noti�cations. As discussed in Section 8.1,

the three caching schemes handle data updates quite di�erently, and accordingly exhibit

signi�cant di�erences in their performance. In comparison to server-based containment

checks in the Tuple-Cache scheme that incurs extra network round-trips, the predicate-

based noti�cations in A*Cache and A*Cache Opt are CPU-intensive at the server, and can

also have larger data volume for a single noti�cation. The latter condition can occur in the

two A*Cache schemes, since �ltering of relevant updates is at the level of cached predicates,

and some updated tuples that are irrelevant for a cache can be sent over to a client. In

contrast, noti�cation in Tuple-Cache is based on tuples, and not on query predicates, thus

being less expensive in certain scenarios, as for example in Figure 8.4. In the A*Cache

schemes, the costs of maintaining the local data and predicates increase with the predicate

comparison cost, as well as with other factors such as the size of the cache and the number

of data updates, causing deterioration in performance. However, as noted in the discussion
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on read-only results above, Tuple-Cache assumes data access based on server indexes, and

is therefore applicable for a smaller class of queries than the predicate-based A*Cache and

A*Cache Opt schemes.

There is another subtle di�erence between the Tuple-cache and A*Cache schemes, which

depends on our choice of the concurrency control protocol, and a�ects the performance in

the presence of update transactions. Recall from Section 5.2.6 that Tuple-Cache fetches only

those tuples from the server that are missing from its cache. In terms of concurrency control,

this behavior implies that read locks are not obtained for tuples residing in the cache. In

contrast, basic A*Cache fetches all missing tuples in a query that is not completely contained

in the cache, increasing the network volume but at the same time, locking the tuples at

the server. In a read-only scenario, the extra network cost of fetching unnecessary tuples

dominates in A*Cache, and its performance is generally worse than Tuple-cache. However,

when updates are being performed, acquiring the locks on tuples serves to reduce con
icting

updates by clients, which would otherwise have to be resolved by aborting transactions upon

noti�cation. For A*Cache Opt, updates are performed entirely at the remote server in the

case of a cache miss or a partial cache hit, thereby also acquiring the necessary locks and

reducing con
icts. As a result of these di�erences in the update policy, a consistent trend in

most of the read-write experiments is that Tuple-Cache has a higher number of noti�cations

and transaction rollbacks than either of the A*Cache schemes, with A*Cache Opt having

the least number of noti�cations of the three.

The contention characteristics are also di�erent for each of our access models, Private,

HotCold, HiCon and Uniform, producing di�erent performance pro�les. For example, in

the Private access model, the hot region of a client is not shared, and update con
icts

happen only on the shared cold portion of the database. In contrast, the HotCold model

permits cold access to the hot region of a client by others, thus generating noti�cations also

for the hot data stored in a client cache. Therefore, the number of noti�cations produced

in the HotCold scenario is larger than in Private, for the same distribution of hot data

among clients. The HiCon access model represents high contention on a shared hot region.

As expected, the number of noti�cations generated in this scenario can be large, with a

corresponding decrease in the response time (Figure 8.8). However, A*Cache Opt can still

yield bene�ts in this high-con
ict scenario (see Figure 8.9), since it performs updates at the

server on a cache miss, thus acquiring central locks and reducing the chances of concurrent
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writes to the same data.

In conclusion, this dissertation has proposed and analyzed an associative caching scheme

based on query predicates. The execution model for transactions in this caching scheme

has been de�ned, and its preservation of the serializability property demonstrated. We

have examined, both qualitatively and through simulation, the costs and bene�ts of our

proposed scheme in a dynamic caching environment, and for workloads that are representa-

tive of data usage in client-server environments. Our simulation results clearly demonstrate

the e�ectiveness of associative caching for read-only environments, and also for read-write

scenarios with moderately high data update probabilities.

9.1 Future Work

Many important issues related to associative caching remain unexplored in this dissertation.

Interesting questions can arise in the design and implementation of an associative caching

system based the techniques presented here. Below, we discuss a few such issues, and outline

directions for future research.

� Management of cache space

In Chapter 3, we brie
y discussed e�ective management of space by a client. For our

simulation, we adopted a cache replacement policy based on purging of least recently

used predicates. More advanced space management techniques, such as the ones stud-

ied in [Dar96, Sche96], can be employed and their e�ects on A*Cache performance

investigated. Additionally, analytical models can be developed for simple but rep-

resentative scenarios. For environments in which data usage patterns are not static

but change dynamically, the client could maintain local data usage statistics and use

intelligent 'learning' techniques to achieve e�ective space utilization.

� Maintenance of cached data

For our simulation study, we assumed that the cache is always refreshed using up-

date noti�cations. Alternative policies for cache maintenance are discussed brie
y in

Section 3.3.4. Further work remains to be done in comparing di�erent cache mainte-

nance strategies. For instance, instead of refreshing the cache, the client may choose

to invalidate updated data. Possible re�nements of the update-always and invalidate-

always schemes include invalidating the cached data in a 'cold' region and updating
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only the 'hot' data for the client. Other intelligent techniques for cache maintenance,

and their adaptation to dynamic usage patterns, can also be devised.

Mobile computing and the World Wide Web are other environments where the asso-

ciative caching framework of A*Cache is applicable. For mobile clients, local caches

should be capable of disconnected operation, updating the stale data upon re-connect.

Likewise, Web clients might desire update noti�cations upon demand, instead of au-

tomatic transmission of updates from the server. Investigating the performance of

A*Cache in these new environments is an open area of research.

� Local query execution

For our simulation, we assumed that the local store uses main memory only. If

the cache size is large, clients could store data on local disks, thereby altering the

performance characteristics. The techniques presented in this thesis can be extended

directly to apply to this scenario. When the results are large, or involve joins between

multiple relations, the creation of indexes on data cached at the client can also improve

the turn-around time of local query processing. Dynamic tailoring of indexes based on

data usage patterns at a client can be based on the adaptive optimization techniques

presented in [Derr92].

� Optimizations in reasoning with predicates

In Chapter 4, we presented some optimization techniques that can be applied for

reasoning with predicates in cache descriptions. For example, the client can be con-

servative in its cache containment checks, while the server must be liberal in generating

noti�cations. Heuristics for such approximation techniques, and e�cient query con-

tainment algorithms for determining cache containment are topics for future e�orts.

Predicate indexing and merging can also be used by both the server and the client

to organize and manage cached predicates. Predicate indexing techniques developed

in the context of active and spatial databases [Hans90, Same90] are applicable for

A*Cache.

� Weak consistency models for client caching

For the purposes of this dissertation, we adopted a semi-optimistic concurrency control

protocol that performs an extra commit veri�cation step to detect any violations of
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transaction serializability. Future avenues of research include the development of

appropriate consistency models for lower levels of data isolation in the presence of

client-side caching, and formalizing the execution model of A*Cache in such scenarios.

Work done in the context of distributed databases [Davi85, Wied90], and on view

consistency [Hull96, Zhug95] can be adapted to the client caching environment.

� Development of a prototype

Clients with large memories and fast CPU's are a technical reality today. Based on

the work reported in this dissertation, it is feasible to develop a prototype system

with associative client-side caching and server noti�cations. In fact, our colleagues

Marie-Anne Neimat and Kurt Shoens at Times Ten are interested in developing such

a prototype, using a main memory database as the client-side cache and a commercial

database server as the central data store. In the absence of direct support for client

caching at the server, replication facilities commonly provided by databases could be

used to generate the required noti�cation messages for cache maintenance.



Bibliography

[Adya95] A. Adya, R. Gruber, B. Liskov, and U. Maheswari, \E�cient Optimistic Concurrency

Control Using Loosely Synchronized Clocks"; Proceedings of the ACM SIGMOD Inter-

national Conference on Management of Data, San Jose, CA, May 1995.

[Agar88] A. Agarawal, R. Simoni, J. Hennessey, and M. Horowitz, \An Evaluation of Directory

Schemes for Cache Coherence"; Proceedings of the 15th International Symposium on

Computer Architecture, Honolulu, June 1988.

[Agra87] R. Agrawal, M.J. Carey, and M. Livny, \Concurrency Control Performance Modeling:

Alternatives and Implications"; ACM Transactions on Database Systems, Vol. 12, No.

4, December 1987.

[Alon90] R. Alonso, D. Barbara, and H. Garcia-Molina, \Data Caching Issues in an Information

Retrieval System"; ACM Transactions on Database Systems, Vol. 15, No. 3, September

1990.

[ANSI92] ANSI X3.135-1992, \American National Standard for Information Systems | Database

Language | SQL"; November 1992.

[Atlu95] V. Atluri, E. Bertino, and S. Jajodia, \A Theoretical Formulation of Degrees of Isola-

tion"; Technical Report, George Mason University, VA, 1995.

[Bars90] T. Barsalou and G.Wiederhold, \Complex Objects for Relational Databases"; Computer

Aided Design, Vol. 22, No.8, 1990.

[Bars91] T. Barsalou, N. Siambela, A. M. Keller, and G. Wiederhold, \Updating Relational

Databases through Object-Based Views"; Proceedings of the ACM SIGMOD Interna-

tional Conference on Management of Data, Denver, CO, May 1991.

[Basu97] J. Basu, M. Poess, and A. M. Keller, \Performance Evaluation of Centralized and Dis-

tributed Index Schemes for a Page Server OODBMS"; Technical Report No. STAN-CS-

TN-97-55, Computer Science Department, Stanford University, March 1997.

164



BIBLIOGRAPHY 165

[Bere95] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O'Neil, and P. O'Neil, \A Critique of

ANSI SQL Isolation Levels"; Proceedings of the ACM SIGMOD International Conference

on Management of Data, May 1995, San Jose, CA.

[Bern87] P.A. Bernstein, V. Hadzilacos, N. Goodman, Concurrency Control and Recovery in

Database Systems; Addison-Wesley, Reading, Massachusetts, 1987.

[Bert92] E. Bertino and D. Musto, \Query Optimization by Using Knowledge about Data Se-

mantics"; Data & Knowledge Engineering, Vol. 9, No. 2, 1992.

[Blak86] J.A. Blakeley, P.-A. Larson, and F. W. Tompa, \E�ciently Updating Materialized

Views"; Proceedings of the ACM SIGMOD International Conference on Management

of Data, Washington, DC, May 1986.

[Blak89] J.A. Blakeley, N. Coburn, and P.-A. Larson, \Updating Derived Relations: Detecting

Irrelevant and Autonomously Computable Updates"; ACM Transactions on Database

Systems, Vol. 14, No. 3, 1989.

[Brei92] Y. Breibart, H. Garcia-Molina, and A. Silberschatz, \Overview of Multidatabase Trans-

action Management"; The VLDB Journal, Vol. 1, No. 2, Oct. 1992.

[Bune78] P.O. Buneman and E.K. Clemons, \E�ciently Monitoring Relational Databases"; ACM

Transactions on Database Systems, Vol. 4, No. 3, September 1979.

[Care91a] M. Carey, M. Franklin, M. Livny, and E. Shekita, \Data Caching Tradeo�s in Client-

Server DBMS Architecture"; Proceedings of the ACM SIGMOD International Confer-

ence on Management of Data, Denver, CO, May 1991.

[Care91b] M. Carey andM. Livny, \Con
ict Detection Tradeo�s for Replicated Data"; ACM Trans-

actions on Database Systems, Vol. 16, No. 4, December 1991.

[Care94] M. Carey, M.J. Franklin, and M. Zaharioudakis, \Fine-Grained Sharing in a Page Server

OODBMS"; ACM SIGMOD International Conference on Management of Data, Min-

neapolis, MI, May 1994.

[Cast97] M. Castro, A. Adya, B. Liskov, A.C. Myers, \HAC: Hybrid Adaptive Caching for

Distributed Storage Systems"; Symposium on Operating Systems Principles, St. Malo,

France, October 1997.

[Catt91] R.G.G. Cattell, Object Data Management; Addison-Wesley, Reading, Massachusetts,

1991.

[Ceri91] S. Ceri and J. Widom, \Deriving Production Rules for Incremental View Maintenance";

Proceedings of the 17th International Conference on Very Large Data Bases, Barcelona,

Spain, September 1991.



166 BIBLIOGRAPHY

[Ceri84] S. Ceri and G. Pelagatti, Distributed Databases:Principles and Systems; McGraw-Hill,

New York, 1984.

[Davi82] J. Davidson, \Natural Language Access to Databases: User Modeling and Focus"; Pro-

ceedings of the CSCSI/SCEIO Conference, Saskatoon, Canada, May 1982.

[Davi85] S. Davidson, H. Garcia-Molina, D. Skeen, \Consistency in Partitioned Networks"; ACM

Computing Surveys, Vol. 17, No. 3, September 1985.

[Derr92] M. A. Derr, \Adaptive Optimization In A Database Programming Language"; PhD the-

sis, Technical Report No. STAN-CS-92-1460, Computer Science Department, Stanford

University, December 1992.

[Elbe94] B. Elbert and M. Bobby, Client/Server Computing, Architecture, Application, and Dis-

tributed Systems Management; Artech House, Boston, London, 1994.

[Dar96] S. Dar, M. J. Franklin, B. Jonsson, D. Srivastava, and M. Tan, \Semantic Data Caching

and Replacement"; Proceedings of the 22nd International Conference on Very Large Data

Bases, Bombay, India, September, 1996.

[Deli92] A. Delis and N. Roussopoulos, \Performance and Scalability of Client-Server Database

Architectures"; Proceedings of the 18th International Conference on Very Large Data

Bases, Vancouver, B.C., Canada, 1992.

[Dewi90] D.J. DeWitt, D. Maier, P. Futtersack, and F. Velez, \A Study of Three Alternative

Workstation-Server Architectures for Object-Oriented Database Systems"; Proceedings

of the 16th International Conference on Very Large Data Bases, Brisbane, Australia,

1990.

[Eswa76] K.P. Eswaran, J.N. Gray. R.A. Lorie, and I.L. Traiger, \The Notions of Consistency and

Predicate Locks in a Database System"; Communications of the ACM, Vol. 19, No. 11,

1976.

[Fink82] S.J. Finkelstein, \Common Subexpression Analysis in Database Applications"; Proceed-

ings of the ACM SIGMOD International Conference on Management of Data, Orlando,

Florida, June 1982.

[Fran93] M.J. Franklin, \Caching and Memory Management in Client-Server Database Systems";

PhD thesis, Technical Report No. 1168, Computer Sciences Department, University of

Wisconsin-Madison, 1993.

[Fran93] M.J. Franklin, M.J. Carey, and M. Livny, \Local Disk Caching for Client-Server Database

Systems"; Proceedings of the 19th International Conference on Very Large Data Bases,

Dublin, Ireland, August 1993.



BIBLIOGRAPHY 167

[Fran96] M.J. Franklin, B.T. Jonsson, and D. Kossmann, \Performance Tradeo�s for Client-

Server Query Processing"; Proceedings of the ACM SIGMOD International Conference

on Management of Data, 1996.

[Gall95] R. Gallersdorfer and M. Nicola, \Improving Performance in Replicated Databases

through Relaxed Coherency"; Proceedings of the 21st International Conference on Very

Large Data Bases, Zurich, Switzerland, Sept. 1995.

[Good83] J. Goodman, \Using Cache Memory to Reduce Processor Memory Tra�c"; Proceedings

of the 10th International Symposium on Computer Architecture, Stockholm, Sweden,

June 1983.

[Gott96] V. Gottemukkala, E. Omiecinski, and U. Ramachandran, \Relaxed Index Consistency

for a Client-Server Database"; Proceedings of the International Conference on Data En-

gineering, Birmingham, U.K., 1996.

[Gray93a] J. Gray, The Benchmark Handbook for Database and Transaction Processing Systems;

Morgan Kaufmann Publishers, Inc., San Mateo, USA, 1993.

[Gray93b] J. Gray and A. Reuter, \Isolation Concepts"; in Transaction Processing: Concepts and

Techniques, Morgan Kaufmann Publishers, San Mateo, CA, 1993.

[Gray94] J. Gray, R. Lorie, G. Putzolu, and I. Traiger, \Granularity of Locks and Degrees of

Consistency in a Shared Database"; in Readings in Database Systems, Second Edition,

Chapter 3, Michael Stonebraker, Ed., Morgan Kaufmann 1994 (paper was originally

published in 1977).

[Gupt93] A. Gupta, I.S. Mumick, and V.S. Subrahmanian, \Maintaining Views Incrementally";

Proceedings of the ACM SIGMOD International Conference on Management of Data,

Washington, DC, May 1993.

[Gupt95] A. Gupta and I. S. Mumick, \Maintenance of Materialized Views: Problems, Techniques,

and Applications"; IEEE Data Engineering Bulletin, Vol. 18, No. 2, June 1995.

[Hans90] E.N. Hanson, M. Chaabouni, C.H. Kim, and Y.W. Wang, \A Predicate Matching Al-

gorithm for Database Rule Systems"; Proceedings of the ACM SIGMOD International

Conference on Management of Data, Atlantic City, NJ, May 1990.

[Hans93] E.N. Hanson and J. Widom, \Rule Processing in Active Database Systems"; Interna-

tional Journal of Expert Systems Research and Applications, Vol. 6, No. 1, 1993.

[Howa88] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham, and

M. West, \Scale and Performance in a Distributed File System"; ACM Transactions on

Computer Systems, Vol. 6, No. 1, February 1988.



168 BIBLIOGRAPHY

[Hull96] R. Hull and G. Zhou, \A Framework for Supporting Data Integration Using the Ma-

terialized and Virtual Approaches"; Proceedings of the ACM SIGMOD International

Conference on Management of Data, June 1996, Montreal, Canada.

[Hunt 79] H.B. Hunt III, and D.J. Rosenkrantz, \The Complexity of Testing Predicate Locks";

Proceedings of the ACM SIGMOD International Conference on Management of Data,

May 1979.

[Jaro92] J. W. Jaromczyk and G.T. Toussaint, \Relative Neighborhood Graphs and Their Rela-

tives"; Proceedings of the IEEE, Vol. 80, No. 9, September 1992.

[Jord81] J.R. Jordan, J. Banerjee, and R.B. Batman, \Precision Locks"; Proceedings of the ACM

SIGMOD International Conference on Management of Data, Ann Arbor, MI, April 1981.

[Kame92] N. Kamel, and R. King. \Intelligent Database Caching Through the Use of Page-Answers

and Page-Traces"; ACM Transactions on Database Systems, Vol. 17, No. 4, 1992.

[Kawa96] A. Kawaguchi, D. Lieuwen, I.S. Mumick, D. Quass, and K.A. Ross, \Concurrency Con-

trol Theory for Deferred Materialized Views"; Proceedings of the International Confer-

ence on Database Theory (ICDT), 1997.

[Kell85] A.M. Keller, \Updating Relational Databases through Views"; PhD thesis, Technical Re-

port No. STAN-CS-85-1040, Computer Science Department, Stanford University, Febru-

ary 1985.

[Kell94] A.M. Keller and J. Basu, \A Predicate-based Caching Scheme for Client-Server Database

Architectures"; Proceedings of the Third International Conference on Parallel and Dis-

tributed Information Systems (PDIS), Austin, Texas, September 1994.

[Kell96] A.M. Keller and J. Basu, \A Predicate-based Caching Scheme for Client-Server Database

Architectures"; The VLDB Journal, Vol. 5, No. 1, Jan 1996.

[King84] J.J. King, \Query Optimization by Semantic Reasoning"; University of Michigan Press,

Ann Arbor, MI, 1984.

[Lars87] P.-A. Larson and H.Z. Yang, \Computing Queries from Derived Relations: Theoretical

Foundation"; Research Report CS-87-35, Computer Science Department, University of

Waterloo, 1987.

[Lee90] B. S. Lee, \E�ciency in Instantiating Objects from Relational Databases Through

Views"; PhD thesis, Technical Report No. STAN-CS-90-1346, Computer Science De-

partment, Stanford University, December 1990.

[Levy90] E. Levy and A. Silbershatz, \Distributed File Systems: Concepts and Examples"; ACM

Computing Surveys, Vol. 22, No. 4, December 1990.



BIBLIOGRAPHY 169

[Levy93] A. Levy and Y. Sagiv, \Queries Independent of Updates"; Proceedings of the 19th In-

ternational Conference on Very Large Data Bases, Dublin, Ireland, August 1993.

[Levy95] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava, \Answering Queries Using

Views"; Proceedings of the Fourteeth Symposium on Principles of Database Systems

(PODS), San Jose, CA, May 1995.

[Li89] K. Li and P. Hudak, \Memory Coherence in Shared Virtual Memory Systems"; ACM

Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

[Lome94] D. Lomet, \Private Locking and Distributed Cache Management"; Proceedings of the

Third International Conference on Parallel and Distributed Information Systems, Austin,

TX, September 1994.

[Mesq94] Mesquite Software, \C++/CSim User's Guide"; Austin, Texas, USA, August 1994.

[Orac95] Oracle Corporation, \Concurrency Control, Transaction Isolation and Serializability in

SQL92 and Oracle7"; White Paper, Part No. A33745, July 1995.

[Orac96] Oracle Corporation, Oracle 7 Server Concepts Manual, April 1996.

[Poes97] M. Poess, \Simulation Analysis of SQL*Cache"; Diplomarbeit, University of Karlsruhe,

Germany, January 1997.

[Riss 77] J. Rissanen, \Independent Components of Relations"; ACM Transactions on Database

Systems, Vol. 2, No. 4, December 1977.

[Rose80] D.J. Rosenkrantz and H.B. Hunt, \Processing Conjunctive Predicates and Queries";

Proceedings of the 6th International Symposium on Very Large Databases, New York,

NY, 1980.

[Rous85] N. Roussopoulos and D. Leifker, \Direct Spatial Search on Pictorial Databases Using

Packed R-Trees"; Proceedings of the ACM SIGMOD International Conference on Man-

agement of Data, Austin, 1985.

[Rous86] N. Roussopoulos and H. Kang, \Principles and Techniques in the Design of ADMS�";

IEEE Computer, December 1986.

[Rous91] N. Roussopoulos, \The Incremental Access Method of View Cache: Concepts, Algo-

rithms, and Cost Analysis"; ACM Transactions on Database Systems, Vol. 16, No. 3,

1991.

[Rous95] N. Roussopoulos, C.M. Chen, and S. Kelly, \The ADMS Project: Views R Us"; IEEE

Data Engineering Bulletin, Vol. 18, No. 2, June 1995.

[Same90] Hanan Samet, Spatial Data Structures; Addison-Wesley, Reading, Massachusetts, 1990.



170 BIBLIOGRAPHY

[Sche96] P. Scheuermann, J. Shim, and R. Vingralek, \WATCHMAN: A Data Warehouse Intelli-

gent Cache Manager"; Proceedings of the 22nd International Conference on Very Large

Data Bases, Bombay, India.

[Sell87] T. Sellis, \Intelligent Caching and Indexing Techniques for Relational Database Sys-

tems"; Technical Report CS-TR-1927, Computer Science Department, University of

Maryland, College Park, MD, 1987.

[Sell92] T. Sellis and C.-C. Lin, \A Geometric Approach to Indexing Large Rule Bases"; in

Advances in Database Technology - EDBT '92. 3rd International Conference on Extend-

ing Database Technology Proceedings, A. Pirotte, C. Delobel, and G. Gottlob (editors),

Berlin, Germany, Springer-Verlag, 1992.

[Shet91] A.P. Sheth and A.B. O'Hare, \The Architecture of BrAID: A System for Bridging AI/DB

Systems"; Proceedings of the Seventh International Conference on Data Engineering,

Kobe, Japan, April 1991.

[Shri96] L. Shrira, B. Liskov, M. Castro, and A. Adya, \Fragment Reconstruction: A New Cache

Coherence Scheme for Split Caching Storage Systems"; Workshop on Persistent Objects,

Cape May, New Jersey, USA, May 1996.

[Sriv96] D. Srivastava, S. Dar, H.V. Jagadish, and A.Y. Levy, \Answering Queries with Aggre-

gation Using Views"; Proceedings of the 22nd International Conference on Very Large

Data Bases, Bombay, India, September 1996.

[Stau96] M. Staudt and M. Jarke, \Incremental Maintenance of Externally Materialized Views";

Proceedings of the 22nd International Conference on Very Large Data Bases, Bombay,

India, September 1996.

[Ston90] M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos, \On Rules, Procedures,

Caching, and Views in Data Base Systems"; Proceedings of the ACM SIGMOD In-

ternational Conference on Management of Data, Atlantic City, NJ, May 1990.

[Ston94] M. Stonebraker, \Mariposa: A New Architecture for Distributed Data"; IEEE Confer-

ence on Data Engineering, Houston, 1994.

[Ullm90] J. D. Ullman, Principles of Database and Knowledge-Base Systems, Volumes 1 and 2,

Computer Science Press, Inc., 1988.

[Wang91] Y. Wang and L.A. Rowe, \Cache Consistency and Concurrency Control in a Client-

Server DBMS Architecture"; ACM SIGMOD International Conference on Management

of Data, Denver, CO, May 1991.

[Wied86] G. Wiederhold, \Views, Objects, and Databases"; IEEE Computer, December 1986.



BIBLIOGRAPHY 171

[Wied90] G. Wiederhold and X. Qian, \Consistency Control of Replicated Data in Federated

Databases"; Proceedings of the IEEE Workshop on Management of Replicated Data,

Houston, Texas, Nov. 1990.

[Qian91] X. Qian and G. Wiederhold, \Incremental Recomputation of Active Relational Expres-

sions"; IEEE Transactions on Knowledge and Data Engineering, Vol. 3, No. 3, September

1991.

[Wilk90] K. Wilkinson and M.-A. Neimat, \Maintaining Consistency of Client-Cached Data";

Proceedings of the 16th International Conference on Very Large Data Bases, Brisbane,

Australia, 1990.

[Zaha97] M. Zaharioudakis and M. Carey, \Highly Concurrent Cache Consistency for Indices

in Client-Server Database Systems";, Proceedings of the ACM SIGMOD International

Conference on Management of Data, Tucson, Arizona, May 1997.

[Zhug95] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J.Widom, \View Maintenance in a Ware-

housing Environment"; Proceedings of the ACM SIGMOD International Conference on

Management of Data, San Jose, CA, May 1995.


