
STATE REDUCTION METHODS

FOR AUTOMATIC FORMAL VERIFICATION

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Chung-Wah Norris Ip

December 1996

c
 Copyright 1996 by Chung-Wah Norris Ip

All Rights Reserved

ii

I certify that I have read this dissertation and that in

my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

h signed i

David L. Dill

(Principal Adviser)

I certify that I have read this dissertation and that in

my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

h signed i

Jennifer Widom

I certify that I have read this dissertation and that in

my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

h signed i

John C. Mitchell

Approved for the University Committee on Graduate

Studies:

h stamped i

iii

iv

Dedicated to Ti�any

and my parents

v

vi

Abstract

Validation of industrial designs is becoming more challenging as technology advances

and demand for higher performance increases. One of the most suitable debugging

aids is automatic formal veri�cation. Unlike simulation, which tests behaviors under

a speci�c execution, automatic formal veri�cation tests behaviors under all possible

executions of a system. Therefore, it is able to detect errors that cannot be reliably

repeated using simulation.

However, automatic formal veri�cation is limited by the state explosion problem.

The number of states for practical systems is often too large to check exhaustively

within the limited time and memory that is available. Existing solutions have widened

the range of veri�able systems, but they are either insu�cient or hard to use.

This thesis presents several techniques for reducing the number of states that are

examined in automatic formal veri�cation. These techniques have been evaluated

on high-level descriptions of industrial designs, rather than gate-level descriptions of

circuits, because maximum economic advantage of using veri�cation relies on catching

the most expensive errors as early as possible.

A major contribution of this thesis is the design of simple extensions to the Mur'

description language, which enable us to convert two existing abstraction strategies

into fully automatic algorithms, making these strategies easy to use and safe to apply.

The algorithms rely on two facts about high-level designs: they frequently exhibit

structural symmetry, and their behavior is often independent of the exact number

of replicated components they contain. A static analysis of a Mur' description can

identify these characteristics, and the veri�cation tool (or the user) can then safely

change the description to include appropriate extensions. With the extensions, the

vii

veri�cation tool can automatically remove redundant information in the correspond-

ing state graph, thereby decreasing the number of states necessary to represent the

system.

Reductions of more than two orders of magnitude, in both time and memory

requirements, have been obtained through the use of these two reduction algorithms.

In the cases of two important classes of in�nite systems, in�nite state graphs can be

automatically converted to small �nite state graphs.

Another contribution is the design of a new state reduction algorithm, which relies

on reversible rules (transitions that do not lose information) in a system description.

This new reduction algorithm can be used simultaneously with the other two al-

gorithms, further reducing the time and memory requirements in automatic formal

veri�cation.

These techniques, implemented in the Mur' veri�cation system, have been applied

to many applications, such as cache coherence protocols and distributed algorithms.

With these new techniques, complex systems that used to take more than a few

hundred megabytes of memory and many hours to verify can now be veri�ed in less

than one megabyte of memory and a few minutes.

viii

Acknowledgments

This work would not have been possible without the help of many people. It is

impossible to compose an exhaustive list, which would include almost everyone of my

friends, the fellows in our research group, faculty members, and researchers that I

have met on many occasions.

However, I must give special thanks to my research advisor, Professor David L.

Dill. If not for his encouragement when I �rst arrived at Stanford, I would not

have chosen formal veri�cation as my research area. As a constant source of technical

feedback and encouragement, he has shown me how to conduct research and to present

it. He has also given me the freedom to exercise my creativity. In an ocean of so many

interesting problems, he has helped me keep a consistent direction for my research.

I would also like to thank Professor Jennifer Widom for her guidance when I was

working with her in the class on concurrent programming; and for her serving in my

reading and oral committees. I am also grateful to Professor John C. Mitchell who

kindly served in my reading and oral committees; and to Professor Zohar Manna and

Professor Simon Wong, who kindly served in my oral committee.

Financial support from the following agencies is gratefully acknowledged: the

\Multi-Module Systems" thrust of the Stanford Center for Integrated Systems, Mit-

subishi Electronics Research Laboratories, Semiconductor Research Corporation un-

der contract 95-DJ-389, and the Advanced Research Projects Agency through NASA

grant NAG-2-891. Sun Microsystems provided computers.

ix

Throughout my years at Stanford, many people have encouraged and helped me

through many obstacles. In particular, I would like to thank Andreas Drexler for get-

ting me up to speed with Mur', Elizabeth Wolf for careful readings of the manuscript

on symmetry, Fong Pong for the discussion on the symbolic state model, Ganesh

Gopalakrishnan, Seungjoon Park, Ulrich Stern and Han Yang for suggestions on how

the work on repetition constructors should be presented, and Jens Skakkebaek and

Lauren Trinh for their comments on an earlier draft of my thesis.

On the other hand, the completion of my Ph.D. program at Stanford also relies

on support unrelated to the technical content of my research. My o�ce-mate, Hugh

McGuire, and many others, have put a signi�cant e�ort in creating a friendly and

enjoyable atmosphere at our o�ce. My brothers and sisters in the Chinese Christian

Fellowship at Stanford and the Lord's Grace Church, and other friends have made

my years at Stanford a very memorable and treasured period in my life. My parents

and my wife, Ti�any, have been very supportive; and I am particularly grateful for

my wife's love, care and understanding, especially during busy periods when I have

had to spend extra time working on my JAVA compiler.

Last but not least, everything that I have is given by God, and my eternal gratitude

goes to Him.

C. Norris Ip

December 1996

x

Contents

Abstract vii

Acknowledgments ix

1 Introduction 1

1.1 Motivation and Goal . 1

1.2 Background and Related Work . 3

1.2.1 Formal Veri�cation . 3

1.2.2 Existing Solutions for the State Explosion Problem 4

1.2.3 Beyond Finite State Veri�cation 6

1.3 Summary of the Thesis . 8

2 The Mur' Veri�cation System 13

2.1 Overview . 13

2.1.1 Description Language . 14

2.1.2 Speci�cation . 18

2.1.3 State Graph and Veri�cation Algorithm 19

2.2 Veri�cation of Practical Systems . 22

2.2.1 Directory-Based Cache Coherence Protocols 22

2.2.2 Other Practical Systems . 28

2.2.3 Veri�cation Results . 29

3 Verifying Symmetric Systems 33

3.1 Symmetry . 33

xi

3.2 Automorphisms Induced by Symmetry 35

3.3 Detecting Symmetry . 37

3.4 Extracting Automorphisms . 41

3.5 On-the-Fly Reduction Algorithm . 42

3.6 E�cient Heuristics . 43

3.6.1 Graph Isomorphism Heuristics 45

3.6.2 Avoiding the Graph Isomorphism Problem 48

3.7 Implementation and Results . 49

3.8 Restricted Symmetries . 53

3.9 Comparison with Other Work . 55

4 Verifying Data-Independent Systems 57

4.1 Data-Independence . 57

4.2 Detecting and Exploiting Data-Independence 58

4.3 Implementation and Results . 61

4.4 Comparison with Other Work . 61

5 Verifying Systems with Reversible Rules 63

5.1 Reversible Rules . 63

5.2 Exploiting Reversible Rules . 65

5.3 Improvements . 69

5.3.1 Removing False Error Reports 71

5.3.2 Speeding Up the Reduction Algorithm 73

5.4 Combining Reversible Rules and Symmetry 77

5.5 Implementation and Results . 78

5.6 Checking the Properties of Reversible Rules 79

5.7 Comparison with Other Work . 82

6 Verifying Scalable Systems 87

6.1 Abstraction Using Repetition Constructors 87

6.2 Detecting Repetitive Property . 91

6.2.1 Restrictions for Abstract State Generation 92

xii

6.2.2 Restrictions for Abstract Successor Generation 94

6.3 Automatic Abstraction . 99

6.3.1 Abstract States . 99

6.3.2 Abstract Transitions . 100

6.3.3 On-the-Fly Abstraction Algorithms 104

6.4 Heuristics . 107

6.4.1 Checking Maximal States . 109

6.4.2 Reducing the Number of Non-Maximal States 109

6.5 Combining the Three Reduction Techniques 113

6.6 Implementation and Results . 117

7 Contributions and Future Work 121

7.1 Contributions . 121

7.2 Future Work . 123

A Semantic Analysis and Proofs 125

A.1 Semantics of the Core Mur' Language 125

A.1.1 Abstract Transition Programs 127

A.1.2 Formal Semantics . 127

A.2 Automorphism Induced by Scalarsets 132

A.3 Data Saturation Induced by Data Scalarsets 139

A.4 Repetitive Property Enforced by RepetitiveIDs 147

B Mur' Descriptions 157

Bibliography 177

xiii

List of Tables

2.1 Veri�cation results using the basic algorithm, I 32

2.2 Veri�cation results using the basic algorithm, II 32

3.1 Performance of the graph isomorphism heuristics 48

3.2 Performance of the normalization algorithm 50

3.3 Improvement in performance with scalarset 51

3.4 Ine�ciency in handling symmetry in a message channel 52

3.5 Improvement in performance with multiset 53

4.1 Data saturation . 62

5.1 Comparison of the two reduction algorithms using reversible rules . . 77

5.2 Improvement on performance with singular reversible rules 79

5.3 Improvement on performance with both symmetry and reversible rules 80

5.4 Comparison of partial order and reversible rules, I 83

5.5 Comparison of partial order and reversible rules, II 84

6.1 Performance of the special hashing scheme 110

6.2 Performance of the priority search strategies 112

6.3 Improvement in performance with repetitiveID 119

6.4 Monitoring the progress towards a saturated model 119

xiv

List of Figures

2.1 A Mur' description of a simple mutual exclusion protocol 15

2.2 A simple on-the-
y algorithm used in Mur' 21

2.3 The DASH multiprocessor . 23

2.4 Examples of cache coherence transactions 26

2.5 An counter-example in the DASH protocol 31

3.1 Symmetry in a cache coherence protocol 34

3.2 An example on the use of scalarset 39

3.3 Permutation on state variables . 42

3.4 An on-the-
y symmetry reduction algorithm 44

4.1 An example of data independence and data saturation 59

5.1 Reversible rules in a cache coherence protocol 64

5.2 State explosion due to reversible rules 65

5.3 An on-the-
y reduction algorithm for reversible rules 70

5.4 Potential false error report from reduction using reversible rules . . . 71

5.5 Singular property in a cache coherence protocol 74

5.6 An on-the-
y reduction algorithm for singular reversible rules 76

6.1 Repetitive property in a cache coherence protocol 89

6.2 Manual translation to use repetition constructors 91

6.3 Automatic generation of abstract states 95

6.4 Automatic generation of abstract successors 103

6.5 A simple on-the-
y abstraction algorithm 105

xv

6.6 An e�cient on-the-
y abstraction algorithm 108

6.7 Hashing structure for e�cient comparison of abstract states 110

A.1 Syntax for the Simple Description Language 126

xvi

Chapter 1

Introduction

1.1 Motivation and Goal

Industrial designs are becoming more complicated as technology advances and de-

mand for higher performance increases. Growing complexity causes an increasingly

serious challenge of avoiding design errors: even when a designer exercises the utmost

care, the mere scale of complexity makes it likely that he or she will fail to anticipate

some possible interaction between di�erent components of the system. Furthermore,

these errors may exhibit nondeterministic behaviors, and therefore, will not be reli-

ably repeatable, making testing and debugging using simulation di�cult. Without

e�ective debugging aids, errors in the designs of these systems may go undetected for

a long time.

Locating and correcting design errors may be a time consuming and expensive

process. Indeed, a signi�cant portion of development time for a new product is

typically spent in locating and correcting errors. The later an error is detected, the

harder and the more expensive it is to correct. If ever an error slips into a product

delivered to a customer, the consequence can be major �nancial loss, as was the result

of the Pentium
oating point division bug [Hof95].

1

2 CHAPTER 1. INTRODUCTION

The challenge is therefore to provide an e�ective debugging aid. Formal meth-

ods, with emphasis on formal veri�cation, may be used for this purpose. In par-

ticular, an apt candidate for such a debugging aid is automatic formal veri�ca-

tion [ZWR
+
80, BWHM86, Hol87]. In contrast to the manual methods where major

human involvement is needed, automatic formal veri�cation methods are easy to use

and require little e�ort. When used properly, they can catch design errors quickly,

and provide diagnostic messages in the form of counter-examples.

Automatic formal veri�cation has three components: a speci�cation of the cor-

rectness properties to be veri�ed, a formal model of a system, and an automatic

procedure to determine if the model correctly preserves the correctness properties.

In order to maximize the bene�ts, high-level descriptions of the designs, rather than

gate-level descriptions of circuits, should be used. The high-level models used early

in the design process are simpler than the implementation in the later stages, making

veri�cation computationally feasible, and the most expensive errors are caught as

early as possible, achieving maximum economic advantage.

The major problem with automatic formal veri�cation is that a large amount

of memory and time is often required, because the underlying algorithm in these

methods usually involves systematic examination of all reachable states of the system

to be veri�ed. As the number of reachable states increases rapidly with the size of a

system, the basic algorithm, by itself, becomes impractical: the number of states for

a system is often too large to check exhaustively within the limited time and memory

that is available. This phenomenon is known as the state explosion problem.

Therefore, the goal of this work is to ameliorate the state explosion problem for

veri�cation of high-level descriptions of practical systems:

� The number of states to be checked should be signi�cantly reduced.

� The new algorithm should use as little amount of time and memory as possible.

� The new algorithm should be easy to use and highly automatic.

1.2. BACKGROUND AND RELATED WORK 3

1.2 Background and Related Work

1.2.1 Formal Veri�cation

Formal veri�cation can be traced back to Turing [Tur49], Floyd [Flo67], and

Hoare [Hoa69]. They have veri�ed simple deterministic sequential programs, through

a manual construction of assertional proofs, without computer assistance. The asser-

tional proof consists of a set of assertions, which specify properties at various locations

of the program, and whose correctness is guaranteed by a set of proof rules.

These methods were then applied to concurrent and distributed programs, and

extended to verify temporal behaviors. The analysis of concurrent and distributed

programs follows a similar framework as the method for sequential programs [OG76a,

OG76b, Lam77, AFdR80, LG81]. Temporal logic was introduced as a speci�cation

formalism in formal veri�cation by Pnueli [Pnu77] and further developed by Manna

and Pnueli [MP81, MP83, MP84], and Owicki and Lamport [OL82]. Instead of using

simple assertions as the speci�cation to be veri�ed on a program, the new method

used temporal logic to describe dynamic behaviors, that is, the e�ect of the program

over time.

As the complexity of a program increases, the construction of the assertional proofs

rapidly becomes tedious and error-prone. Therefore, automated theorem provers were

developed to handle most of the tedious application of proof rules, and to make sure

that each step in a proof is correct [WOLB84] (for example, HOL [GM93, Gor85],

the Boyer-Moore theorem prover `nqthm' [BM79] and PVS [ORS92, ORSvH95]).

These techniques provide e�ective means to guarantee the correctness of safety-critical

systems, in which the consequences of an error outweighs the time and the �nancial

investment required to construct the proof.

However, for designs that are not safety critical, the assertional proof and au-

tomated theorem proving techniques are too expensive. Furthermore, if a system

contains an error, it is impossible to construct a proof, and often, no useful diagnostic

information is generated.

On the other hand, automatic formal veri�cation methods, although specialized

for �nite-state systems, are easy to use, and they provide useful diagnostic messages

4 CHAPTER 1. INTRODUCTION

if the system fails to observe the required properties. The basic idea in automatic

formal veri�cation methods is that of state enumeration. Za�ropulo et al. [ZWR
+
80]

originally proposed the state enumeration method for protocol veri�cation. The states

of a �nite-state system can be systematically explored by a simple search algorithm to

check whether bad states can be reached from the initial states. For example, a bad

state can be any state that does not satisfy a user-provided predicate. If a bad state

is reached, a path from an initial state to the bad state provides a useful diagnostic

message to help the designer to correct the error. Many successful applications of this

approach have been reported [BWHM86, Hol87].

Model Checking, based on the state-space exploration technique, is designed to

verify temporal properties of a system. Proposed by Queille and Sifakis [QS81], and

Clarke and Emerson [CE81], model checking uses the reachability state graph as a

Kripke structure, which encodes the set of all possible sequences of states for a system

over computation trees.

Tools using state-space exploration and model checking are e�ective as debug-

ging aids for industrial designs. Examples include SPIN [HP96], COSPAN [HHK96],

SMV [CMCHG96], and Mur' [DDHY92, Dil96]. Because they are fully automatic,

minimal user e�ort and user knowledge about formal veri�cation are required to use

these debugging aids.

1.2.2 Existing Solutions for the State Explosion Problem

The e�ciency of state exploration and model checking methods depends heavily on

the size of the reachability state graph. The larger the reachability state graph,

the more time and memory it takes to verify a system. The biggest obstacle of

these methods is the often unmanageably huge number of reachable states: the state

explosion problem.

However, this problem is a PSPACE-hard problem, and there is no universal solu-

tion. In order to reduce the state explosion problem, several heuristics and solutions

for some narrow classes of problems have been proposed. The most powerful frame-

works are abstraction [BBLS92, BBG+
93, GL93a, GL93b, CGL91, Lon93] and abstract

1.2. BACKGROUND AND RELATED WORK 5

interpretation [CC77, Cou81, Cou90, CC92, DGG94]. These frameworks rely on the

user to provide an appropriate abstraction to remove irrelevant information from a

state space, thereby decreasing the number of states necessary to represent a system.

An abstraction mapping from an original state to an abstract state is required in both

cases, and an abstract interpretation of every operation in the system is required in

the abstract interpretation framework. If the abstraction is appropriate, the smaller

abstract state graph can be used to verify the properties of the system.

There are also fully automatic solutions, such as symbolic model checking, min-

imal state partitioning, and partial order methods. Symbolic model checking meth-

ods [BCM
+
90, CBM89, TSL

+
90] were able to verify a wider range of complex sys-

tems. By representing a large set of states in a compact Binary Decision Diagram

(BDD) [Bry86], a large state space may be stored in a relatively small piece of mem-

ory. Operations on a BDD can execute transitions on a large set of states at the same

time. However, e�cient use of BDDs often depends on some subtle properties of

the systems to be veri�ed. In particular, high-level descriptions of systems represent

an application domain that has been particularly di�cult for BDD-based methods.

In fact, for many high-level descriptions, traditional explicit state enumeration out-

performs the methods using BDDs [HD93a, HD93b, Hu95].

Minimal state partitioning [BFH90, BFH+
92, Fer93, LY92, ACH

+
92] takes advan-

tage of the bisimulation equivalence relation in the state graph. A minimal partition-

ing of the set of possible states (both reachable and unreachable) is generated and

used to verify the system. However, its e�ciency depends on how well sets of states

can be manipulated e�ciently, and therefore, faces similar problems with BDD-based

methods. Furthermore, the examination of the unreachable states often present other

di�culties in applying this method (c.f.[LY92]).

Partial order reduction [Val90, Val91, Val93, God90, GW93, GW94, God95, HP94,

Pel94, Pel96] is a fully automatic method, taking advantage of independent transitions

in an interleaving model of a system. It has aroused signi�cant interest because of its

theoretical intricacy and the good reductions obtained in many systems. However,

for many practical systems, the reduction obtained by only partial order reduction is

still not su�cient.

6 CHAPTER 1. INTRODUCTION

Some fully automatic methods are heuristics that do not reduce the the number

of states examined, but reduce the amount of memory to examine the same number

of reachable states. State space caching methods [Hol85, JJ91] use a �xed amount

of memory, but they may re-visit the same states many time, thereby increasing

the veri�cation time signi�cantly. Supertrace [Hol91a] and hash compaction [WL93,

SD95a] methods are partial search techniques that use a small approximated signature

for each state, and allow a very small probability of omitting some reachable states.

Therefore, these methods may miss errors in a system.

In general, the existing solutions are not su�cient to solve the state explosion

problem in practice. While the abstraction and abstract interpretation frameworks

are powerful enough to verify a lot of designs, the e�ort involved is often not econom-

ically feasible for industrial uses. Automatic methods using BDDs, partitioning, or

partial order are still insu�cient, especially for veri�cation of high level descriptions

of designs. Heuristics, such as state space caching, supertrace, and hash compaction,

may increase veri�cation time or overlook errors; therefore, they should be avoided if

better solutions exist.

1.2.3 Beyond Finite State Veri�cation

Although state exploration and model checking methods rely on the fact that the

state space is �nite, it is often desirable, and sometimes possible, to apply them to

the veri�cation of in�nite systems.

The problem of verifying an in�nite system typically arises during the development

of a scalable system. Although most systems are �nite-state in nature, they are often

designed to be scalable, so that a description gives a family of systems, each member

of which has a di�erent size. Typical examples include cache coherence protocols,

communication protocols, or hardware controllers. Such systems may have a di�erent

data domain (such as the number of bits in a cache line), or a di�erent number of

replicated, identical components (such as the number of processors, address line,

peripherals or entries in a bu�er).

1.2. BACKGROUND AND RELATED WORK 7

In these cases, it is desirable to verify the entire family of systems, independent of

the actual sizes. This is typically achieved by an appropriate abstraction to convert

the in�nite state space to a �nite state space.

Arbitrary Data Domain

The class of data-independent protocols with an arbitrary data domain can be ab-

stracted into �nite systems, as proposed by Wolper [Wol86]. Because the control
ow

of a data-independent protocol does not depend on the exact values of the data, a

temporal statement involving an in�nite data domain can be converted into one with

a �nite set of data. However, Wolper requires the user to recognize that a protocol is

data-independent, and to manually transform the description in order to exploit the

data-independence.

Aggarwal, Kurshan and Sabnani also brie
y mentioned the application of similar

idea to verify an alternative bit protocol [AKS83].

Arbitrary Number of Components

The general problem of verifying systems with an arbitrary number of replicated

components is known to be undecidable [AK86, GS92]. However, several approaches

have been proposed for speci�c instances of the problem. Some of them use induc-

tion over the replicated components and require an invariant process or a network

invariant [KMOS94, CG87, CGJ95, WL89]. Coming up with a proper invariant is

not easy. Although automatic generation of network invariants for certain classes of

systems have been explored, they are very expensive and only apply to a very narrow

range of designs [RS93, BSV94, SG87, GS92].

There are also approaches that do not use induction. Shibata et al. [SHTO93]

presented an algorithm to verify a simple telecommunication system with limited

interaction between the processes. However, the class of problems they can verify

is severely restricted. On the other hand, Graf [Gra94] has a more general method

based on abstraction, which was applied to a simple distributed cache memory, but

it requires substantial manual e�ort to complete the proof.

8 CHAPTER 1. INTRODUCTION

One of the most successful approaches is to use an abstraction that ignores the

exact number of components. For example, Lubachevsky [Lub84] veri�ed a concur-

rent program by collapsing all reachable states into a �xed number of `metastates', in

which the number of processes is represented by N with an unspeci�ed value. Dijk-

stra [Dij85] veri�ed a ring network by representing classes of similar states in regular

expressions. Clarke and Grumberg [CG87] veri�ed an alternating-bit protocol by con-

structing an invariant process that records only the existence of any component in a

certain state. Pong et al. [PD95b, PNAD95, Pon95] veri�ed many cache coherence

protocols by representing classes of similar states in a set of repetition constructors,

recording only whether there are zero, exactly one, one-or-more, or zero-or-more com-

ponents in a certain state.

While these approaches have successfully veri�ed many designs, there are still

many issues to be addressed. First of all, using these methods requires signi�cant

e�ort from the users, because the user has to provide the abstraction mapping, the

abstract transition relations, or even the full abstract model. Secondly, it is di�cult

to determine when the abstraction is appropriate. In some cases, the user may not

realize that the abstraction would be useful, and in other cases, the user may use the

abstraction inappropriately, and generate incorrect veri�cation results. Furthermore,

the abstraction mapping provided by the user may not be the most e�cient way to

generate the abstract state space; heuristics are useful in many cases, but the user

may �nd it error-prone to incorporate the heuristics manually into the abstraction

mapping.

1.3 Summary of the Thesis

This thesis presents several techniques for reducing the number of states that are

examined in automatic formal veri�cation. While these techniques are easy to use

and highly automatic, they generate signi�cant reductions in both time and memory

requirements, and guarantee the correctness of the results.

1.3. SUMMARY OF THE THESIS 9

Detecting Commonly-found Characteristics

A major contribution of this thesis is the design of simple extensions to the Mur'

description language, which enables us to convert two existing abstraction strategies

into fully automatic reduction algorithms, and therefore, make these strategies easy

to use and safe to apply.

The language extensions were designed so that whenever a system can be described

using the extensions, the results of veri�cation using the reduction algorithms are

guaranteed to be correct. For example, a new datatype, called Scalarset, is de�ned

in Chapter 3 to replace an integer subrange that is involved in a restricted set of

operations, and its restrictions guarantee certain symmetries to hold on the state

graph. Scalarset is easy to use: if a description has a subrange involved only in these

restricted operations, the veri�cation tool or the user may convert this subrange into

a scalarset. In this case, it is safe to exploit these symmetries in the veri�cation

algorithm. On the other hand, if a description has a scalarset with operations outside

these restricted operations, the veri�er reports an error. In this case, the user should

either change the scalarset to a subrange, or change the o�ending operation to a legal

scalarset operation.

Exploiting Commonly-found Characteristics

Three fully automatic state space reduction methods are described in this thesis,

two of which are based on existing abstraction strategies [Lub84, AKS83, HJJJ84,

Sta91, CG87, PD95b, PNAD95]. They rely on two characteristics commonly found

in high-level descriptions of designs:

a) Structural Symmetry: A lot of designs are symmetric systems. Their behavior

does not depend on a particular ordering of the components, or the exact value

of the data.

b) Repetitive Property: A lot of designs have a set of replicated components.

Their behavior does not depend on the exact number of the components.

10 CHAPTER 1. INTRODUCTION

The main contribution in these two methods is the technique for detecting these

properties and the fully automatic algorithms that do not require manual translation

of a conventional description into an abstract description.

The third reduction method exploits reversible rules in a system description:

c) Reversible Rules: A lot of designs contain transitions that are reversible: there

is no information lost during the execution of these transitions, and the original

state can be automatically reconstructed from the next state.

This method was developed from scratch. The main contribution is to identify the

appropriate properties and to design the new algorithm to take advantage of these

properties in automatic formal veri�cation.

With the language extensions and the reduction algorithms, veri�cation can be

performed in as little amount of memory and time as possible, with little e�ort from

the users. Given a conventional description of a system with the language extensions,

a veri�er can automatically verify the system using a reduced state space, using one

or more of the three reduction algorithms. Appropriate heuristics are automatically

constructed and adapted to the structure of the system.

Performance of the Reduction Algorithms

The reduction methods in this thesis can be used to verify a wide range of properties.

The reduction using symmetry is sound and complete for LTL and CTL* model

checking and deadlock detection. The reduction using reversible rules is sound and

complete for stuttering-invariant LTL model checking and deadlock detection (sound

but not complete for stuttering invariant 8CTL* model checking). The reduction

using the repetitive property is sound for 8CTL* model checking; however, because

it is an approximation, it may produce false error reports.

The reduction methods are compatible: they can be used at the same time to

achieve even greater savings. Future research is needed to ascertain how well these

methods can be combined with other reduction methods.

These techniques, implemented in the Mur' veri�cation system, have been applied

to many applications, such as cache coherence protocols and distributed algorithms.

1.3. SUMMARY OF THE THESIS 11

With these new techniques, complex systems that used to take more than a few

hundred megabytes of memory and many hours to verify can now be veri�ed in less

than one megabyte of memory and a few minutes.

Furthermore, in the cases of two important classes of in�nite systems, in�nite

state graphs can be converted into �nite state graphs automatically. Reduction using

symmetry can be used to verify data-independent systems with an arbitrary data

domain, and reduction using the repetitive property can be used to verify systems

with an arbitrary number of replicated components.

12 CHAPTER 1. INTRODUCTION

Chapter 2

The Mur' Veri�cation System

Chapter Overview

The reduction methods described in this thesis have been implemented in the Mur'

veri�cation systems [DDHY92, Dil96]. This chapter summarizes Mur' (without these

reductions), and describes several designs that have been veri�ed using Mur'.

2.1 Overview

The Mur' veri�cation system was designed for veri�cation of asynchronous high-

level systems. A number of practical problems, such as protocols, synchronization

algorithms, and memory consistency models, have been veri�ed using Mur', by

researchers and designers in universities and within industry [PNAD95, YGM
+
95,

DDHY92, SD95b, DPN93, PD95a, Par94, WG94, CRL96].

The Mur' veri�cation system consists of two components: the Mur' description

language and the Mur' compiler. The language describes an asynchronous model of

the system to be veri�ed, and the compiler compiles the model into a special purpose

veri�er. This special purpose veri�er uses an explicit state enumeration algorithm to

check the properties of the system, such as error assertions, invariants, and deadlocks.

If the system fails to observe these properties, a counter-example is generated by the

veri�er.

13

14 CHAPTER 2. THE MUR' VERIFICATION SYSTEM

The Mur' description language was designed to be the simplest high level language

that supports nondeterministic, scalable descriptions. Mur' meets these particular

goals (especially simplicity) better than many hardware and protocol description lan-

guages [Bri86, BD87, Ora88, Hol91b, LSU89, TM91]. The Mur' language is inspired

by the Chandy and Misra's Unity language [CM88]. A Mur' description of a system

is typically at a high level of abstraction. Most features in Mur' can be found in

common programming languages, such as Pascal or C, and high-level data structures,

such as arrays and records, are supported. Non-determinism in a system is described

in Mur' by a set of guarded commands, introduced by Dijkstra [Dij76]. The lan-

guage is also designed to be scalable, meaning that it is easy to change a description

to model a larger or smaller system.

The Mur' compiler generates a C++ program from a description in the Mur'

language. The C++ program is then compiled into a special purpose veri�er. The

optimizations performed by the C++ compiler improve the e�ciency in the execution

of the arbitrarily-complex atomic transition rules in the description.

In order to maximize the bene�ts of veri�cation, Mur' is designed to be used as

a debugging tool in the early design stages. The high-level description used early

in the design process is simpler than the implementation in the later stages, making

veri�cation computationally feasible, and the most expensive errors are caught as

early as possible, achieving maximum economic advantage.

2.1.1 Description Language

A Mur' description consists of constant and type declarations, variable declarations,

invariants declarations, and rule declarations. As an example, the Mur' description

of a simple mutual exclusion protocol is shown in Figure 2.1. From this description,

Mur' searches for errors in the corresponding state graph: a state is an assignment

of values to the global variables; the initial states are constructed by executing the

the startstates; and the states reachable from the initial states are generated by

recursively apply the transition rules to the initial states. The veri�er checks that

the invariants are true in every reachable state.

2.1. OVERVIEW 15

const NumProcesses : 2;

type Pid : 1 .. NumProcesses ;

var P : array[Pid] of enum f Critical, NonCritical g;

startstate for i : Pid do P [i] := NonCritical; end

ruleset i : Pid do

rule \Entering Critical Section"

forall j : Pid do P [j] = NonCritical end) P [i] := Critical; end

rule \Leaving Critical Section"

P [i] = Critical) P[i] := NonCritical; end

end

invariant \Mutual Exclusion"

forall i : Pid ; j : Pid do i 6= j ! (P [i] 6= Critical_ P[j] 6= Critical) end

0,0

the reachability state graph

0,1 1,0

0 : NonCritical
1 : Critical

Figure 2.1: A Mur' description of a simple mutual exclusion protocol

16 CHAPTER 2. THE MUR' VERIFICATION SYSTEM

Constant and type declarations:

� Integer constants can be declared at the beginning of the description. In the

mutual exclusion example, the number of processes is declared to be 2.

� The basic types are Booleans, subranges, enumerations, arrays and records. In

the mutual exclusion example, a subrange is used to describe the process-indices,

and an enumeration is used to describe the internal state of a process.

Booleans, subranges and enumerations in Mur' are extended to include a special

unde�ned value ?. A special function IsUnde�ned can be used to check if a

variable has the value ?. Otherwise, access to a variable with the unde�ned

value causes the veri�er to report an error.

Variable declarations:

� The global variables declared are used to describe the states of a system. In the

mutual exclusion example, the global variable is an array of two elements, each

corresponding to a process in the non-critical section or the critical section.

Invariants:

� Invariants are Boolean expressions that reference the global variables. In the

mutual exclusion example, the invariant states that the two processes cannot

be in the critical section at the same time.

Rule declarations:

� Mur' describes the transitions of a system using a set of rules. Each rule is

a guarded command, consisting of a condition and an action. In the mutual

exclusion example, the following rule is used to describe the transition that a

process exits a critical section:

rule \Leaving Critical Section"

P [i] = Critical) P[i] := NonCritical; end

2.1. OVERVIEW 17

The condition in this rule is P [i] = Critical, which makes sure that the process i

is originally in the critical section. The action in this rule is P [i] := NonCritical,

which changes the internal state of the process i from critical to noncritical.

In general, a condition is a Boolean expression consisting of constants, global

variables, arithmetic operators and Boolean operators. The action is a sequence

of statements. The action can also declare local variables before the statements.

� Mur' describes the start states of a system using special rules called startstate,

in which the Boolean condition is by default true. In the mutual exclusion

example, the startstate generates an initial state in which both processes are

in the non-critical section.

� A collection of similar rules can be instantiated using a ruleset over a �nite

range. In the mutual exclusion example, the ruleset instantiates two set of

transition rules, one for each of the processes.

A ruleset can be used to model a family of similar rules, each for a di�erent com-

ponent of the system to be veri�ed, or to model a non-deterministic assignment

of values to a local variable in a particular rule.

� Boolean operators include conventional Boolean operators such as negation,

conjunction, and disjunction. There are also existential and universal quanti�ers

over a �nite range. An example of a universal quanti�er can be found in the

condition of the �rst transition rule, which states that both processes are in the

non-critical section.

Other operators include conventional comparisons (such as equality testing and

greater-than testing) and conventional integer arithmetic operators (such as

addition and multiplication).

� Statements have sequential semantics: assignments take place in the environ-

ment that has been modi�ed by all previous assignments in the same rule.

18 CHAPTER 2. THE MUR' VERIFICATION SYSTEM

The usual assignment, if statement and switch statement are part of Mur'.

There is a restricted for statement that must have compile-time constant loop

bounds, and a restricted while statement that reports an error if the number

of iterations exceeds a bound speci�ed by the user.

A special unde�ned valueUnde�ned can be used to assign ? to any basic type.

An alias statement introduces an identi�er which abbreviates an expression.

Procedures and functions in Mur' are essentially \macros" with parameter

type-checking.

The Mur' language is well-suited for an asynchronous, interleaving model of

concurrency, where atomic steps of individual processes are assumed to happen in

sequence, and one process can perform any number of steps between the steps of

another process. When two steps are truly concurrent, there will be executions that

allow them to happen in either order in the interleaving model. In Mur', concurrent

composition is very easy: to model two processes in parallel, just form a new descrip-

tion using the union of their rules. Coordination among the processes is by shared

variables; to model a message passing system, synchronization and bu�ering must be

handled explicitly.

The Mur' language was designed so that the size of a system can be changed

by changing a single parameter. A Mur' description of a system with n processes

can be written with a declared constant (for example, NumProcesses) of value n.

Then a subrange Processes : 1..NumProcesses can be declared, and the states of

the processes can be stored in an array indexed by Processes. The rules for each

process can be instantiated by a ruleset, and Boolean expressions can be written

using exists and forall quanti�ers. Therefore, a description written in this style can

be scaled by changing only the constant declarations.

2.1.2 Speci�cation

Mur' has several features for specifying design errors. Firstly, it automatically detects

deadlocks, which are de�ned to be states with no successors other than themselves.

2.1. OVERVIEW 19

Secondly, an Error statement can appear in the body of a rule (almost always em-

bedded in a conditional). Executing an Error statement prints a user-supplied error

message and an error trace. This feature is especially useful when some branches of

an If or Switch statements are not intended to be reachable. There is also anAssert

statement, which is an abbreviation for a conditional error statement. Finally, the

user can de�ne invariants in a separate part of the Mur' description. An invariant

is a Boolean expression that is desired to be true in every state. When an invariant

is violated, a user-supplied error message and an error trace are generated.

Although these speci�cation facilities are limited, many real errors have been

detected using these features only. Furthermore, history dependent properties can

be checked by adding explicit state variables and statements to monitor the state

associated with the property. An extension to liveness and fairness properties was

implemented in an earlier release of Mur', to check sequential behaviors such as

livelocks and starvations. However, the latest release (Version 3.0S) does not contain

this extension.

2.1.3 State Graph and Veri�cation Algorithm

The veri�cation algorithm in Mur' explores the state graph described by a Mur'

description, which encodes all possible executions of the system. An execution of the

system is a �nite or in�nite sequence of states q0; q1; : : :, where q0 is a start state of

the description. If qi is any state in the sequence, qi+1 can be obtained by applying

some rule whose condition is true in qi and whose action transforms qi to qi+1. In

general, qi can satisfy the conditions in several rules, so there is more than one

execution (nondeterminism). A simulator for Mur' might choose the rule randomly;

a veri�cation tool must cover all the possibilities.

In order to de�ne the veri�cation algorithm in Mur' more precisely, we need to

de�ne some fundamental concepts.

De�nition 2.1 (state graph) A state graph is a quadruple A = hQ;Q0;�; errori,

where Q is a set of states, Q0 � Q is a set of initial states, error 2 Q is a unique

error state, and � � Q�Q is a transition relation with the property that q = error

whenever (error; q) 2 �.

20 CHAPTER 2. THE MUR' VERIFICATION SYSTEM

The special error state, error, is used as the next state whenever an invariant is

violated or an error statement is executed.

In Mur', a state graph is de�ned implicitly by a set of transition rules, T , where

each rule maps a state to a successor state. Formally, for all q1; q2 2 Q, we have

(q1; q2) 2 � if and only if there exists t 2 T such that q2 = t(q1).

De�nition 2.2 (successor/predecessor) If (q; q0) 2 �, then q0 is a successor of

q, and q is a predecessor of q0.

De�nition 2.3 (path) A �nite sequence of states q0; : : : ; qn is called a path if

q0 2 Q0 and qi is a successor of qi�1 for all 1 � i � n.

De�nition 2.4 (reachability) A state q is reachable if there exists a path q0; : : : ; q.

De�nition 2.5 (deadlock state) A state is a deadlock state if it has no successors

other than itself.

We usually denote (q1; q2) 2 � as q1 �! q2, denote q2 = t(q1) as q1
t
�! q2, and

denote qn = tn(:::t1(q0):::) as q0
t1:::tn
�! qn.

The algorithm in Mur', as shown in Figure 2.2, checks whether error or a dead-

lock state is reachable. It is an on-the-
y algorithm, which generates and explores new

states only when all previous states are known to be error-free. The states are stored

in a hash table, so that it can be decided e�ciently whether or not a newly-reached

state is old (has been examined already) or new (has not been examined already).

New states are stored in a queue of active states (whose successors still need to be

generated). Depending on the organization of this queue, the veri�er does a breadth-

�rst search or a depth-�rst search. Except for the initial states, every state in the

hash table has a pointer to a predecessor. Therefore, if a problem is detected during

the search, an error trace can be generated. Breadth-�rst search is used by default,

because it produces a shortest error trace for an error.

2.1. OVERVIEW 21

Hashtable Reached ;

Queue Unexpanded ;

Boolean Deadlock ;

Simple Algorithm()

begin

Reached = Unexpanded = fq j q 2 StartStateg;
while Unexpanded 6= � do

Remove a state q from Unexpanded;

Deadlock = true;

for each transition rule t 2 T do

if an error statement is executed in t on q then report error; endif;

let q0 = t(q) in

if q0 does not satisfy one of the invariants then report error; endif;

if q0 6= q then Deadlock = false; endif;

if q0 is not in Reached then put q0 in Reached and Unexpanded; endif;

endlet;

endfor;

if Deadlock then report deadlock; endif;

endwhile;

end

Figure 2.2: A simple on-the-
y algorithm used in Mur'

22 CHAPTER 2. THE MUR' VERIFICATION SYSTEM

2.2 Veri�cation of Practical Systems

2.2.1 Directory-Based Cache Coherence Protocols

Two cache coherence protocols are used throughout this thesis for discussions and

evaluations on the performance of the new veri�cation algorithms:

DASH-C the directory-based cache coherence protocol for the

DASH multiprocessor [LLG
+
90].

ICCP an industrial directory-based cache coherence protocol

described in [DDHY92] (an early version of the cache

coherence protocol in Sun S3.mp systems).

The concept of directory-based cache coherence was �rst proposed by

Tang [Tan76]. For each memory block, a directory stores the identities of all re-

mote nodes caching that block. Instead of broadcasting to every processing node,

the node with the physical memory location can send point-to-point invalidation or

update messages to those nodes that are actually caching that block.

These two protocols are used as the main examples in this thesis because they

re
ect the typical complexity and level of abstraction that the Mur' veri�er was

designed for. Unlike so-called snooping protocols that are based on broadcast of

messages on a bus, directory-based cache coherence protocols do not have a single

serialization point for all memory transactions. While this feature is responsible for

their scalability, it also makes them more complex.

The remainder of this section summarizes these two protocols and describes how

they are modeled in Mur', so that they can be used to illustrate the reduction

methods described in subsequent chapters. The complete Mur' descriptions for the

DASH cache coherence protocol can be found in Appendix B. The veri�cation results

without using any reduction techniques are also presented.

2.2. VERIFICATION OF PRACTICAL SYSTEMS 23

Processor

CacheCache

Processor

& Controller
Memory
Directory

Memory

...

Processor

Cache Cache

Processor

...

Memory

Directory
Memory
& Controller

Interconnection Network

...

Figure 2.3: The DASH multiprocessor: The processors are arranged into clusters, which

communicate with one another through an interconnection network.

The DASH cache coherence protocol (DASH-C)

DASH is a scalable shared-memory multiprocessor developed at Stanford Univer-

sity. It consists of a collection of processing nodes, communicating through a scal-

able interconnection network, as shown in Figure 2.3. A key feature of DASH is its

directory-based cache coherence protocol.

Each processing node contains several processors with individual caches, in which

up-to-date data are cached for fast access from the local processors. Hence, multiple

copies of the same data may appear in various places, and a cache coherence protocol

is needed to guarantee consistency in a particular memory model.

The DASH protocol relies on point-to-point communication through two separate

networks for requests and replies. The aim of separating requests and replies into

two networks is to avoid deadlock in the protocol, but it also introduces complex

interactions that may arise because of messages received out of order.

This architecture is modeled in Mur' as two arrays for the processing nodes and

the physical memory distributed among the nodes, and two bu�ers for the commu-

nication networks. In order to reduce the complexity of the veri�cation problem,

some of the processing nodes are modeled without physical memory, as shown in the

following code (some details are omitted) :

24 CHAPTER 2. THE MUR' VERIFICATION SYSTEM

CONST

HomeCount: 1; -- number of nodes with memory

RemoteCount: 3; -- number of nodes without memory

NodeCount: HomeCount + RemoteCount; -- number of nodes

ChanMax: 2 * ProcCount * HomeCount; -- buffer size in a single channel

TYPE

Node : 1 .. NodeCount; -- an integer subrange from 1 to NodeCount

Home : 1 .. HomeCount; -- an integer subrange from 1 to HomeCount

NodeState : Record ...;

HomeState : Record ...;

Request : Record ...;

Reply : Record ...; -- details omitted

VAR

Nodes : Array [Node] Of ProcState; -- the nodes

Homes : Array [Home] Of HomeState; -- the memory blocks

ReqNet: Array [Node] of Array [Node] of Record -- the request network

Count: 0..ChanMax;

Messages: Array [0..ChanMax-1] of Request;

End;

ReplyNet: Array [Node] of Array [Node] of Record -- the reply network

Count: 0..ChanMax;

Messages: Array [0..ChanMax-1] of Reply;

End;

In the physical memory, each memory block can be in one of three states, as

indicated by the associated directory entry: (i) uncached-remote, that is, not cached

by any remote node; (ii) shared-remote, that is, cached in an unmodi�ed state by

one or more remote nodes; or (iii) dirty-remote, that is, cached in a modi�ed state by

a single remote node. The directory does not maintain information concerning the

processors at the same node. The directory is modeled as:

HomeState:

Record

Mem: Array [Address] of Value;

Dir: Array [Address] of

Record

State: enum { Uncached, Shared_Remote, Dirty_Remote };

SharedCount: 0..DirMax;

Entries: Array [0..DirMax-1] of Node;

End;

End;

In each processing node, the cache coherence among the local processors is main-

tained by a snooping protocol on a local bus. Since the snooping protocol ensures

2.2. VERIFICATION OF PRACTICAL SYSTEMS 25

consistency within the node, each node actually behaves like a single processor with

a single cache.

Each processor contains a memory cache and a Remote Access Cache (RAC). A

cache block in the memory cache may be in one of three states: invalid, shared, or

dirty. The invalid state implies the data is not present in the cache line; the shared

state implies the data is valid, but it may be cached by other processors; and the

dirty state implies that the data is valid, and no other cache contains a copy of the

data. RAC stores the status of outstanding memory requests and remote replies.

Therefore, each node is modeled as:

NodeState: Record

Cache: Array [Home] of Array [Address] of Record

State: enum { invalid, shared, dirty };

Value: value;

End;

RAC: Array [Home] of Array [Address] of Record

State: RAC_State;

Value: value;

InvalidationCount: NodeCount;

End;

End;

There are three basic transactions supported by the DASH cache coherence proto-

col: read, read-exclusive and write-back, with eight kinds of requests. There is also a

direct memory access protocol (DMA read and DMA write) built on top of the basic

transactions, with �ve kinds of requests. Four kinds of replies may be generated by

basic and DMA transactions.

The basic cache transactions for DASH-C

Two typical cache coherence transactions are shown in Figure 2.4. In the �rst scenario,

Node A issues a request for a read-exclusive copy of a particular memory location.

When the request arrives at the home node, the directory is checked. Since the

location is not cached by other nodes, the directory controller sends the data, and

records the fact that Node A has a read-exclusive copy of the memory location.

In the second scenario, after Node A receives the read-exclusive copy, Node B may

request for a shared copy. Because Node A has the most up-to-date copy, the memory

26 CHAPTER 2. THE MUR' VERIFICATION SYSTEM

1
2

READ EX.

REQUEST

REPLY

READ EX.

P1 P2

Mem

Invalid Invalid

P1 P2

Mem

Invalid

P1

Dirty

3

ACK

5
4

FORWARD
REQUEST

READ REQUEST

5
REPLY

Figure 2.4: Examples of cache coherence transactions: In the �rst transaction, processor 1

requests for an exclusive copy of a memory location, and the memory replies with the

appropriate data. In the second transaction, processor 2 requests for a shared copy of the

same location, and the memory forwards the request to the owner of the location.

forwards the request to Node A. Node A then sends two replies, one to Node B with

the up-to-date data, and one to the home node to con�rm the change in status.

Since simultaneous accesses can be made to the same location, the node receiving

the forwarded requests may not have the dirty copy anymore, or it may not be able

to release the copy. In these cases, negative acknowledgment is sent directly to the

requesting node.

In the Mur' description, initiations of requests and receptions of messages are

modeled by rulesets, such as:

Ruleset n : Node ; h : Home; a : Address Do

Rule ``Request data''

...

End

Ruleset Dst : Node ; Src : Node Do

Rule ``Process message''

...

End;

2.2. VERIFICATION OF PRACTICAL SYSTEMS 27

The �rst ruleset instantiates the enclosed rule for each distinct node, each phys-

ical memory, and each address in a physical memory. The second ruleset non-

deterministically chooses a destination node and a source node, so that the enclosed

rule can check whether there is a message from the source node to the destination

node.

The action in each phase of a transaction is modeled in nested switch statements,

such as the following rule, which spontaneously generates a read request:

Rule "Remote Memory Read Request"

(h != n) -- the current node does not contain the

-- physical memory of the requested location.

==>

Begin

Switch RAC_State

Case Invalid_RAC:

-- no pending event

Switch Cache_State

Case Invalid:

-- set outstanding event: waiting for read reply

RAC_State := Read_Pending;

-- send request to home cluster

Send_Read_Request_To_Home(h,n,a);

Else

-- other cache supplies data using snoopy protocol

End;

Case WINV:

-- waiting for invalidation: defer request

Assert (Cache_State = Dirty) "WINV with non-dirty copy";

Case ...

End;

End;

The DMA transactions for DASH-C

Direct memory read and write transactions increase the number of exceptions to the

normal
ow of operations and the likelihood of an error in the protocol. These trans-

actions are modeled in a similar way to the basic transactions, and Mur' was able to

re-discover a bug due to the interaction of basic transactions and DMA transactions:

the DASH design team discovered the same bug, but only after extensive simulation

of the whole multiprocessor.

28 CHAPTER 2. THE MUR' VERIFICATION SYSTEM

An industrial cache coherence protocol (ICCP)

An industrial cache coherence protocol is also included as one of the main examples

in this thesis. In this protocol, the messages in the network may arrive in arbitrary

order. Therefore, more complicated interactions arise between di�erent transactions,

and more synchronization messages are needed to maintain cache coherence. This

protocol is included here to illustrate how Mur' can model an unordered network

with a ruleset to select an arbitrary message:

VAR

Homes: Array [Home] of HomeState;

Nodes: Array [Node] of ProcState;

Net: Record

Count: 0..NetMax;

Ar: Array [0..NetMax-1] of Message;

End;

Ruleset Index: 0..NetMax-1 Do

Rule

(Index < Net.Count) -- is it a valid message?

==>

process_message(Index); -- process the message at slot `Index'

remove_message(Index); -- remove the message and move up all

-- other messages appear after this message

Endrule;

Endruleset;

The reduction algorithms presented in this thesis can take advantage of the un-

ordered network to achieve even better reductions.

2.2.2 Other Practical Systems

Many other systems have been veri�ed using Mur', including abstract algorithms

and multiprocessor implementations [PNAD95, YGM
+
95, DDHY92, SD95b, DPN93,

PD95a, Par94, WG94, CRL96]. The veri�cation results of the following systems

are also presented in subsequent chapters to illustrate the performance of the new

veri�cation algorithms:

2.2. VERIFICATION OF PRACTICAL SYSTEMS 29

PETERSON Peterson's algorithm for the n-process mutual exclusion

problem [Pet81].

MCS1 MCS distributed lock algorithm with atomic com-

pare and swap operation [MCS91].

MCS2 MCS distributed lock algorithm without atomic com-

pare and swap operation [MCS91].

DASH-L A queue-based lock implementation for the Stanford

DASH Multiprocessor [LLG
+
92].

LIST1 A distributed list protocol (version 1) [Dil95]

LIST2 A distributed list protocol (version 2) [Dil95]

2.2.3 Veri�cation Results

In order to verify the systems described in the previous sections, several in-line assert

statements, in-line error statements, and invariants are speci�ed. The in-line assert

and error statements are used to detect any message arriving at a node with an

unexpected state, and any inconsistency among the states of di�erent components.

Invariants are used to check some global properties, such as:

Invariant "Only a single master copy exists"

Forall n1 : Proc ; n2 : Proc ; h : Home ; a : Address Do

! (n1 != n2 & Procs[n1].Cache[h][a].State = Dirty

& Procs[n2].Cache[h][a].State = Dirty)

Endforall;

Invariant "Adequate invalidations with Read Exclusive request"

Forall n1 : Node ; n2 : Node ; h : Home ; a : Address Do

(n1 = n2) | (((Nodes[n1].RAC[h][a].State = WINV)

& (Nodes[n2].Cache[h][a].State = shared))

->(Exists i : 0..ChanMax-1 Do

(i < ReqNet[h][n2].Count

& ReqNet[h][n2].Messages[i].Mtype = INV)

End))

Endforall;

The �rst invariant states that there can be at most 1 dirty cache line for each

address. The second invariant states that whenever a node is waiting for invalidation

30 CHAPTER 2. THE MUR' VERIFICATION SYSTEM

of other shared copies (WINV), all nodes with shared copies of the memory location

should have a pending invalidation message (INV).

The Mur' veri�er
1
was able to detect an error in the DASH protocol with two

remote nodes, after exploring 14,825 states in 63 seconds. The counter-example con-

structed is shown in Figure 2.5.

Inconsistent cache values were obtained because the DMA write request and the

reply with the writable copy were received out-of-order. Node B originally had a

shared copy of the data, and then it proceeded to request a read-exclusive copy of

the data. As an attempt to minimize the number of invalidate requests, an invalidate

request was not sent to node B, since the shared copy will get promoted to a read-

exclusive copy anyway. However, this allows Node B to modify and write back the

data before processing the DMA write request.

Once the protocol was �xed so that an invalidate request is also sent to Node B, no

error was found. Node B can no longer write back the data until it has processed (and

ignored) the invalidate request. Since the requests arrive in order, Node B will have

processed the DMA write request before it processes the invalidate request. Mur'

was able to verify the new protocol with 41848 states in 191s. Mur' also shows that

the other systems in the previous sections satisfy the speci�ed invariants, lead to no

deadlock situation, and do not violate the error assertions.

The veri�cation results are summarized in Table 2.1. However, when we increase

the sizes of the systems modelled in Mur', the number of states increases rapidly.

In order to verify the DASH-C protocol with 3 remote nodes and 3 data values,

the DMA operations are disabled. On the other hand, in order to verify the ICCP

protocol with 5 processors and 1 data value, the maximum number of outstanding

messages in the network is restricted to 7. The veri�cation results for these larger

systems are summarized in Table 2.2.

1The results presented in this thesis have been obtained on a SPARC 20 Workstation using Mur'

Version 2.9S, or an extension of Version 2.9S to include the new reduction algorithms.

2.2. VERIFICATION OF PRACTICAL SYSTEMS 31

Node BMemory

(4) read pending -> shared
(5) updates memory

(6) shared -> write pending

(7) shared by B -> owned by B

(9) modifies its cache to value z

(10) dirty -> invalid

(8) write pending -> dirty

(11) updates memory to value z,
 owned by B -> uncached

(12) invalid -> read pending

(13) uncache -> shared by B

(14) read pending -> shared

(15) updates its cache to value k

(5) DMA write
 of value k

(1) DMA write
of value k

invalid (2) invalid -> read pending(2)read request

(3) uncached -> shared by B (3) read reply

(6) write request

(10) writeback

(12) read request

(13) read reply

Node A

(7) write reply

Error: Inconsistent data value

1. A remote node A issues a DMA write request

2. Another remote node B issues a normal read request

3. Memory receives the read request and sends read data to B

4. B receives read data and updates the cache line.

5. Memory forwards the DMA write from A to B and updates its own copy

6. B issues a normal write request

7. Memory receives the write request and sends a write reply

8. B receives the write reply and updates the cache line

9. B modi�es its cache

10. B issues an explicit writeback request

11. Memory receives the writeback from B and updates its own copy

12. B issues a normal read request

13. Memory receives the read request from B and sends read data to B

14. B receives read data and updates the cache line

15. B receives the DMA write request forwarded from memory and update its copy

16. Memory and B now have inconsistent cache values

Figure 2.5: An counter-example in the DASH protocol: Inconsistent cache values were

obtained because the DMA write request is delayed.

32 CHAPTER 2. THE MUR' VERIFICATION SYSTEM

system DASH-C with 2 remote nodes ICCP with 3 processors

and 2 data values and 2 data values

size 41,848 150,794

time 191s 96s

system PETERSON MCS1 MCS2 DASH-L LIST1 LIST2

5 procs 4 procs 3 procs 3 clusters 4 nodes 4 nodes

size 628,868 554,221 3,240,032 55,366 560,185 1,382,001

time 1,032s 194s 6454s 188s 175s 1,117s

Table 2.1: Veri�cation results using the basic algorithm, I

system DASH-C with 3 remote nodes ICCP with 5 processors

and 3 data values and 1 data values with

without DMA operations at most 7 outstanding messages

size 210,663 2,093,231

time 1,011s 2,048s

Table 2.2: Veri�cation results using the basic algorithm, II

Chapter 3

Verifying Symmetric Systems

Chapter Overview 1

This chapter describes how structural symmetry can be exploited in automatic formal

veri�cation. In order to use symmetry in a practical veri�cation system, two main

challenges must be met: to detect symmetries and to generate a symmetry-reduced

state graph e�ciently.

These two challenges must be solved without generating the original state graph,

otherwise, we would not bene�t from the reduction. Indeed, if we already had the

original state graph, the symmetry-reduced state graph could be constructed in poly-

nomial time using standard bisimulation minimization algorithm, without even know-

ing the structural symmetries explicitly.

3.1 Symmetry

To illustrate the concept of symmetries, let's examine the cache coherence protocols

described in Section 2.2. Such protocols consider all processors to be identical, and

therefore, all states resulting from permuting the processors are equivalent. For ex-

ample, the states A and B in Figure 3.1 are equivalent, and have similar behavior.

In a manual proof, once we had proved that all states reachable from state A are

1This chapter is based on materials published in [ID93a, ID93b, ID96a].

33

34 CHAPTER 3. VERIFYING SYMMETRIC SYSTEMS

Cache State: Shared
Cache Value: 99

Cache State: Shared
Cache Value: 99

Cache State: Invalid
Cache Value: XX

Cache State: Invalid
Cache Value: XX

Mem State: Shared
Dir: P1
Mem Value: 99

Mem State: Shared
Dir: P2
Mem Value: 99

P1

P2

Mem

Mem

P1

P2

State B

State A

Figure 3.1: Symmetry in a cache coherence protocol: A cache coherence protocol considers

all processors to be identical. While states A and B have di�erent processors caching the

data from the memory, each of them have exactly one processor caching the data, and

exactly one processor having an invalid cache line. Their behaviors in the protocol are

therefore similar.

error-free, we could argue \by symmetry" that all states reachable from state B are

also error-free.

However, if we assign a distinct integer processor-id to represent each processor,

as in the description in the previous chapter, we implicitly impose an ordering on the

processors. In fact, most of the properties of integers are irrelevant for the processor-

ids. It only matters whether two processor-ids are the same; it does not matter

whether one is numerically less than the other, or whether they are consecutive. But

most veri�ers have no way to detect this fact, so they may inspect what is basically

the same state many times.

In addition to the processors, there are several other symmetries for the cache

coherence protocols: addresses, data values, and memory module-ids. The messages

in the unordered network in ICCP also represent another symmetry in the system.

Although their numerical properties are likely to be important at some level of ab-

straction, they are irrelevant for reasoning about the correctness of the protocols at

the level of descriptions in the previous chapter.

3.2. AUTOMORPHISMS INDUCED BY SYMMETRY 35

3.2 Automorphisms Induced by Symmetry

In order to make the idea of symmetry more precise, and to construct the foundation

for proving the soundness and completeness of the reduction theorem, this section

describes the automorphisms induced by symmetry, and the properties of the corre-

sponding quotient graph.

Structural symmetry in a system always generates a set of non-trivial automor-

phisms in the state graph of the system. An automorphism can be de�ned as:

De�nition 3.1 (automorphism) A graph automorphism on a state graph A =

hQ;Q0;�; errori is a bijection h : Q! Q with three properties: for every q1 and q2
in Q, (q1; q2) 2 � if and only if (h(q1); h(q2)) 2 �; for every q in Q, h(q) 2 Q0 if and

only if q 2 Q0; and h(error) = error.

Since an automorphism is a bijection, function inversion and composition preserve

automorphism. Therefore, a group can be generated from a set of automorphisms.

Lemma 3.1 For any set of automorphisms H, the closure G(H) of H [fidg under

inverse and composition is a group.

Any automorphism group G(H) de�nes a symmetry-equivalence relation �H on

the state, such that p �H q if and only if 9h 2 G(H) : p = h(q). This symmetry-

equivalence relation is a congruence relation:

De�nition 3.2 (congruence) A congruence � on a graph is an equivalence relation

on Q such that for all q1; q2 2 Q such that q1 � q2 , if there exists q01 2 Q such that

(q1; q
0
1) 2 �, then there exists q02 2 Q such that q01 � q02 and (q2; q

0
2) 2 �.

Theorem 3.1 The symmetry-equivalent relation �H induced by a set of automor-

phisms H on a state graph A is a congruence relation on A.

Proof. Because of the properties of a group, �H is obviously an equivalence relation.

In addition, for every q1; q2 2 Q with q1 �H q2, there is an automorphism h such

that q2 = h(q1). By de�nition, if there exists q01 2 Q such that (q1; q
0
1) 2 �, then

(h(q1); h(q
0
1)) 2 �, i.e. (q2; h(q

0
1)) 2 �. 2

It should be clear from the de�nition of automorphism that error is congruent only

to itself.

36 CHAPTER 3. VERIFYING SYMMETRIC SYSTEMS

We denote the equivalence class of states congruent to q as [q], and restate the

de�nition of a congruence using this notation:

Lemma 3.2 For all q1; q
0
1 2 Q, if (q1; q

0
1) 2 �, then for all q2 2 [q1], there exists

q02 2 [q01] such that (q2; q
0
2) 2 �.

Therefore, a quotient graph can be constructed from the original state graph using

the symmetry equivalence relation:

De�nition 3.3 (quotient graph) A quotient graph of a graph A =

hQ;Q0;�; errori w.r.t. a congruence � is A=� = hQ0; Q0
0;�

0; error0i, where Q0
=

f[q] : q 2 Qg, Q0
0 = f[q] : q 2 Q0g, error

0
= [error], and �0

= f([p]; [q]) : (p; q) 2 �g.

The quotient graph constructed from the symmetry equivalence relation is called

a symmetry-reduced state graph. Because of the following theorem and lemmas, this

reduced state graph can be used to verify the desired properties of the system.

Theorem 3.2 (reachability) Given a state graph A = hQ;Q0;�; errori with a set

of automorphisms H on A, q is reachable in A if and only if [q] is reachable in A=�H .

Proof.

) Suppose q is reachable in A. Then there exists a path q0; : : : ; qn�1; q in A.

[q0]; : : : ; [qn�1]; [q] is the path to reach [q] in A=�H .

(If [q] is reachable in A=�H , there exists a path [q0]; : : : ; [qn�1]; [q] in A=�H . We

show by induction on the length of the path that q is reachable in A. The base

is obvious: every member of [q0] is reachable, since for all h 2 H, h(q) 2 Q0 if

and only if q 2 Q0. Now consider the path, [q0]; : : : ; [qi�1]; [qi]. By the de�nition

of �
0
, there exist states pi�1 2 [qi�1] and pi 2 [qi] such that (pi�1; pi) 2 �.

Since [pi�1] = [qi�1], by the induction hypothesis, pi�1 is reachable in A, and

there exists a path p0; : : : ; pi�1. Because (pi�1; pi) 2 �, there exists a path

p0; : : : ; pi�1; pi. But pi �H qi, so there exists an automorphism h such that

qi = h(pi). Since p0; : : : ; pi is a path, h(p0); : : : ; h(pi�1); h(pi) is also a path to

qi in A, so the state h(pi) = qi is reachable in A.

2

3.3. DETECTING SYMMETRY 37

Corollary 3.1 (error detection) error is reachable in A if and only if [error] is

reachable in A=�H .

Corollary 3.2 (deadlock detection) If A has a reachable deadlock state q, A=�H

also has a reachable deadlock state [q].

Furthermore, because of Theorem 3.2, the same quotient graph can be used for

LTL model checking, and because the branching structure is also preserved, it can

be used for CTL* model checking [ES96, CEFJ96]. For the de�nitions of LTL and

CTL* model checking, see [Wol87] (c.f. [Lam80, EH83]).

On the other hand, although we have a necessary and su�cient condition for error

detection, we only have a necessary condition for deadlock detection. The di�culty is

that [q] may be a deadlock in A=�H even though there are transitions between states

within [q].

Fortunately, there is an alternative test for deadlocks because, if one of the states

in an equivalence class [q] is a deadlock state in the original state graph, all of the

states in [q] are deadlock states. This fact is restated as the following lemma:

Lemma 3.3 For every state [q] in the quotient A=�H , if there exists one state in [q]

that is not a deadlock state in A, no state in [q] is a deadlock state in A.

Proof. Suppose there is a state q 2 [q] that is not a deadlock state in A, so there

exists q0 6= q such that (q; q0) 2 �. For every p 2 [q], there exists an automorphism h

such that p = h(q). By de�nition, (p; h(q0)) 2 �, but h is a bijection, so p 6= h(q0).

Hence, p cannot be a deadlock state in A, either. 2

This lemma allows us to check whether state q in A is a deadlock by choosing the

most convenient member q0 of its equivalence class [q] in A=�H , and checking whether

q0 has a successor other than itself in A. This check can be done locally, as described

in Section 3.5, so deadlock checking does not require inspecting the original graph A.

3.3 Detecting Symmetry

An important element for symmetry reduction in veri�cation is how to �nd an ap-

propriate set of automorphisms. Instead of relying on the user to provide the auto-

morphisms, we propose to extract automorphisms automatically from a description

38 CHAPTER 3. VERIFYING SYMMETRIC SYSTEMS

of the system to be veri�ed, so that the symmetry-equivalent relations are guaranteed

to be valid.

An appropriate set of automorphisms can be extracted through the use of a new

datatype, called scalarset, which models full symmetry in a system: the behavior of

a program is the same under arbitrary permutations of the elements in a scalarset.

Scalarset is a subtype of conventional integer subrange: a scalarset is involved in a

subset of the conventional subrange operations. The restrictions, presented later in

this section, outlaw non-symmetry operations.

For example, since the mutual exclusion protocol shown in Figure 2.1 never uses

a symmetry-breaking operation on the type Pid, the subrange corresponding to Pid

can be converted to a scalarset of size 2, as shown in Figure 3.2. Using the scalarset

type has the advantage that the compiler can report to the user when a symmetry-

breaking operation has been unintentionally applied. Therefore, a veri�cation tool

would not risk unsoundness by exploiting invalid symmetries. Also the more abstract

description allowed by using scalarsets may have other advantages; for example, in

a more general programming language, a scalarset could be safely re�ned into many

di�erent implementations, such as a subrange type or an enumerated type.

Scalarset enables the veri�er to automatically construct the appropriate

symmetry-equivalent relation. Without scalarset, it would be necessary for users

to write their own procedures to check whether two states are equivalent. Such a

procedure is not guaranteed to be sound, and may also be complicated, error-prone,

and slow. With scalarset, we are able to automatically generate the correct procedure

with appropriate heuristics for fast symmetry equivalence checking.

While scalarset is designed to model full symmetry, in which any permutation of

the scalarset values results in an equivalent state, there are also other kinds of symme-

tries that can occur in a system, such as symmetry in the classical dining philosopher

problems (symmetry with respect to rotation), and additional data types could be

added to support these symmetric types, as presented in Section 3.8. However, full

symmetry is especially important because the savings can approach a factor of N !

for a scalarset of size N (summarized in Section 3.7), as opposed to a factor of N for

rotation. Full symmetry is also prevalent in the applications of practical importance,

3.3. DETECTING SYMMETRY 39

const NumProcesses : 2;

type Pid : scalarset(NumProcesses);

var P : array[Pid] of enum f Critical, NonCritical g;

startstate for i : Pid do P [i] := NonCritical; end

ruleset i : Pid do

rule \Entering Critical Section"

forall j : Pid do P [j] = NonCritical end) P [i] := Critical; end

rule \Leaving Critical Section"

P [i] = Critical) P[i] := NonCritical; end

end

invariant \Mutual Exclusion"

forall i : Pid ; j : Pid do i 6= j ! (P [i] 6= Critical_ P[j] 6= Critical) end

(restricted to the

reachable states)

Original

State Graph

1,0

0,0

0,1 1,0

0,0

0,1

Symmetry-reduced

State Graph

(restricted to the

reachable states)

Figure 3.2: An example on the use of scalarset: Because the operations for Pid are sym-

metric, it can be converted from a subrange to a scalarset.

40 CHAPTER 3. VERIFYING SYMMETRIC SYSTEMS

such as cache coherence. Thus, the remaining discussion concentrates on scalarsets

and full symmetry.

Scalarset Restrictions

The restrictions for scalarset were designed to make sure that, given a program con-

taining a scalarset, any function that permutes the elements of the scalarset consis-

tently throughout a state generates symmetry-equivalent states.

When a new scalarset is declared, the size n is included in the declaration
2
, and

it represents a subrange from 1 to n with the following restrictions:

1. An array with a scalarset index type cannot be indexed by integer constants

and expressions other than a scalarset variable of exactly the same type.

2. Scalarset variables cannot be used as operands of arithmetic operators.

3. Scalarset variables cannot be compared with integer constants, and two scalarset

variables can only be compared using =. In such cases, the two variables being

compared must be of exactly the same type.

4. For all assignments d := t, if d is a scalarset variable, t must be another scalarset

variable of exactly the same type.

5. If a scalarset variable is used as the index of a for statement, the body of the

statement is restricted so that the result of the execution is independent of the

order of the iterations.
3

2In Chapter 4, scalarsets of arbitrary size are discussed for data-independent systems.
3One su�cient (but not necessary) restriction to obtain this property is that the set of variables

written by any iteration be disjoint from the set of variables referenced (read or written) by other

iterations.

3.4. EXTRACTING AUTOMORPHISMS 41

3.4 Extracting Automorphisms

Given a description with a scalarset, the automorphisms induced by the corresponding

symmetry can be constructed from the set of permutations on the value of a scalarset.

A permutation on a scalarset is de�ned as follows:

De�nition 3.4 (permutation on values) If � is a scalarset type, a permutation

�� : (� [f?g)! (� [f?g) is a bijection such that ��(?) = ?.

In this de�nition, we use the same symbol � to present the set of values represented

by the scalarset �, excluding the special unde�ned value ?.

Extending this notion of permutation, we can obtain symmetry-equivalent states

by permuting the scalarset entries of a state
4
:

� When the permutation is applied to a scalarset variable, the value is modi�ed

to the corresponding permuted value.

� When an array indexed by a scalarset is permuted, the contents of the array

elements are permuted and the elements are rearranged according to the per-

mutation.

For example, as shown in Figure 3.3, �� permutes a scalarset � of size 4 so that

0 maps to 0, 1 maps to 2, 2 maps to 1, and 3 maps to 3. When �� is used to

permute a state, �� will apply the permutation to each element of the array P , and

then rearrange the positions of the elements. The variable Dir is changed from 1

to 2 accordingly. Therefore, all references to the array P through Dir still give the

corresponding permuted element.

This de�nition of permutation on a state guarantees that the permutations are

automorphisms on the state graph.

Theorem 3.3 (soundness theorem) Given a Mur' description containing a

scalarset �, every permutation �� on the states of the state graph A derived from

the program is an automorphism on A.

4When we refer to \applying a permutation to a state," we are referring to a one-to-one mapping

on the elements of a scalarset, not necessarily a permutation of the state variables.

42 CHAPTER 3. VERIFYING SYMMETRIC SYSTEMS

Dir : α

πα

πα

παstate s’ = (s)

Dir : α
πα

0->0
1->2
2->1
3->3

state s

α P : array [] of αP : array [] of α α

(2)=1

(1)=2

2

1

Figure 3.3: Permutation on state variables: Any permutation on the scalarset values in-

duces a permutation on the state variables, which can be used to construct a symmetry-

equivalent state.

Corollary 3.3 Two states p and q are symmetry-equivalent if there exists a permu-

tation h such that p = h(q).

The proof of Theorem 3.3 is presented in Appendix A.2, which contains the fol-

lowing steps:

1. De�ne precisely how to permute the scalarset values in a state to generate an

equivalent state.

2. Show that equivalent states satisfy the same Boolean expression expressible in

the description language.

3. Show that, if a state q0 is generated by a transition rule f from a state q, every

state equivalent to q0 can be generated by another transition rule similar to f

from a state equivalent to q.

3.5 On-the-Fly Reduction Algorithm

After extracting the appropriate automorphisms from a description, a canonizer can

be automatically generated, and incorporated into the on-the-
y symmetry-reduction

algorithm.

3.6. EFFICIENT HEURISTICS 43

De�nition 3.5 (canonizer) Given a graph A = hQ;Q0;�; errori and a set of au-

tomorphisms H on A, a canonizer � is a function that maps each state q to a unique

member of its equivalence class [q] in A=�H .

The unique member is called the canonical state. A straightforward algorithm

of this canonizer may generate all equivalent states and choose a lexicographical

mimimum state as the canonical state. Heuristics for faster algorithm are presented

in the next section.

The only change to the original veri�cation algorithm is the addition of a canon-

izer, which is highlighted by an underline in Figure 3.4. The new on-the-
y algorithm

only stores canonical states in the hash table, and the search on a state q is cut

o� whenever �(q) is found in the hash table, meaning that an equivalent but not

necessarily identical state has been previously encountered in the search.

Because a deadlock state in the reduced state graph does not imply a dead-

lock state in the original state graph, a deadlock state is determined by checking

whether q0 6= q for every transition rule, but not whether �(q0) 6= q. This test exploits

Lemma 3.3: we choose q as a convenient representative of its equivalence class, and

apply each transition rule to see if q is a true deadlock state in the original state

graph.

3.6 E�cient Heuristics

The complexity of the symmetry-reduction algorithm is directly related to the com-

plexity of the canonizer �. Unfortunately, computing a canonical representative is at

least as hard as testing for graph isomorphism [CFJ93]:

De�nition 3.6 (graph isomorphism) Graph G(V;E) is a graph with vertex set V

and edge set E. Two graphs G1(V1; E1) and G2(V2; E2) are isomorphic if there exists a

one-to-one correspondence � between their vertices and edges such that the incidence

relationship is preserved, that is, (x; y) belongs to E1 if and only if (�(x); �(y)) belongs

to E2.

Theorem 3.4 Finding the canonical state is at least as hard as testing for graph

isomorphism.

44 CHAPTER 3. VERIFYING SYMMETRIC SYSTEMS

Symmetry Algorithm()

begin

Reached = Unexpanded = f�(q) j q 2 StartStateg;

while Unexpanded 6= � do

Remove a state q from Unexpanded;

Deadlock = true;

for each transition rule t 2 T do

if an error statement is executed in t on q then report error; endif;

let q0 = t(q) in

if q0 does not satisfy one of the invariants then report error; endif;

if q0 6= q then Deadlock = false; endif;

if �(q0) is not in Reached then put �(q0) in Reached and Unexpanded; endif;

endlet;

endfor;

if Deadlock then report deadlock; endif;

endwhile;

end

Figure 3.4: An on-the-
y symmetry reduction algorithm: The part highlighted by an

underline represents the main di�erence of this algorithm from the basic algorithm shown

in Figure 2.2.

3.6. EFFICIENT HEURISTICS 45

Proof. Let G1(V1; E1) and G2(V2; E2) be two arbitrary �nite directed graphs of n

nodes. We can represent each graph by an incidence matrix in a variable v of the

type

array [�] of array [�] of 0::1;

where � is a scalarset of size n, and v[x][y] = 1 if and only if (x; y) belongs to the

edge set E1 and E2 respectively.

Therefore, the graphs are isomorphic if and only if �(G1) = �(G2), where � is a

canonizer for states stored in the variable v. 2

No polynomial-time algorithm is known for the testing of graph isomorphism. A

straightforward implementation, which generates all equivalent states and chooses a

lexicographical minimum state as the canonical state, is ine�cient. When compared

to a simple explicit state enumeration algorithm, this naive implementation often

results in signi�cantly increased time, even when there are vast reductions in the

number of states explored, as shown in the results presented in [ID93a, ID93b], and

in Table 3.1.

Two heuristics are described in the remainder of this section. The �rst one has

been adapted from graph isomorphism heuristics. It is exact and guaranteed to

generate a unique representative for each equivalence class. The second one uses an

approximation algorithm, which may generate more than one representative for each

equivalence class, resulting in a potentially larger reduced state graph.

3.6.1 Graph Isomorphism Heuristics

Many heuristics for testing graph isomorphism [Gou88, CK80, CG70, Ebe88, Mit88]

can be used to speed up the construction of a unique representative for each equiva-

lence class. This section describes a simple heuristic based on vertex invariants, and

its adaptation to the symmetry reduction algorithm.

Vertex Invariants

Many graph isomorphism heuristics use vertex invariants, which are the properties

of vertices that must be preserved under automorphism. Formally, a vertex invariant

46 CHAPTER 3. VERIFYING SYMMETRIC SYSTEMS

inv is a function which labels the vertices of an arbitrary graph with integers so that

similar vertices are assigned the same label. Examples of simple vertex invariants

include the in-degree and the out-degree for the speci�ed vertex.

Vertex invariants can be used to speed up the procedure to check whether or

not two graphs are isomorphic. Given a graph G1(V1; E1), a vertex invariant inv

can be used to partition V1 into k classes V 1
1 ; V

2
1 ; :::; V

k
1 , such that vertices in the

same class are assigned the same label by inv. Furthermore, we can arrange the

classes so that the integer label for the vertices in V i
1 is smaller than the label for

the vertices in V j
1 , whenever i < j. If another graph G2(V2; E2) is isomorphic to G1,

the same vertex invariant inv should also partition V2 into k classes V 1
2 ; V

2
2 ; :::; V

k
2 ,

such that V i
2 contains the same number of vertices as V i

1 , and vertices in V i
2 have the

same label as the vertices in V i
1 . Furthermore, the one-to-one correspondence � that

converts G1 to G2 must map each vertex in V i
1 to a vertex in V i

2 . Therefore, if the ith

class has pi vertices, instead of n! mappings, where n is the number of vertices, only

p1!� p2!� :::� pk! mappings need to be checked.

This algorithm for checking whether or not two graphs are isomorphic can be

converted to an algorithm to generate a unique canonical graph �(G) in the set of

graphs isomorphic to a graphG. Instead of n! isomorphic graphs, only p1!�p2!�:::�pk!

isomorphic graphs are generated, and the lexicographically smallest one is chosen as

the canonical graph.

Adaptation to Symmetry Reduction

To use heuristics with vertex invariants in a symmetry-reduction algorithm, we regard

each value in each scalarset as a vertex in a graph. A vertex invariant is de�ned below

to obtain an appropriate partition on the scalarset values, from which a canonical state

can be generated in a shorter time.

A trivial partition fV 1
g is used as the initial partition of the values in the

scalarsets. This partition can be re�ned into better partitions according to the pro-

cedures shown below. The global variables used to store the states are divided into

�ve categories, and each category provides a di�erent way to re�ne a partition. In

3.6. EFFICIENT HEURISTICS 47

these procedures, a symmetry array refers to an array with a scalarset indextype, and

a scalarset variable refers to a variable with a scalarset type.

1. A scalarset variable that is not an element of a symmetric array:

The value i of this variable corresponds to a special vertex. If i belongs to the

class V k
, we can separate V k

into two classes fig and V k
n fig (with the label

of i smaller than the label of the other vertices).

2. A symmetric array in which the elements do not involve any scalarset:

If the ith and jth elements have di�erent values, i and j are labeled di�erently

(ordered by the values in the array elements), and the partition is re�ned so

that they belong to di�erent classes

3. A symmetric array in which the elements are variables of a scalarset

type other than the index type of the array:

This corresponds to a bipartite graph. First of all, if i and j have di�erent in-

degree or out-degree, the partition is re�ned so that i and j belong to di�erent

classes (ordered by the in-degree or the out-degree).

Furthermore, if the ith and jth elements have scalarset values from two di�erent

classes, the partition is re�ned so that i and j belong to di�erent classes (ordered

by the labels of the array elements). This process is repeated until the partition

remains the same.

4. A symmetric array in which the elements are variables of the same

scalarset type as the index type of the array:

This corresponds to a graph in general. The re�nement is performed in the

same way as the previous category, except for an extra case: If the ith element

has value i, and the jth element has value other than j, the partition is re�ned

so that i and j belong to di�erent classes (with the label of i smaller than the

label of j).

48 CHAPTER 3. VERIFYING SYMMETRIC SYSTEMS

system DASH-C DASH-C ICCP ICCP

symmetry 2 clusters 3 clusters & 3 processors 5 processors &

& 2 data 3 data values & 2 data 1 data values with

values w/o DMA values restricted messages

without reduction 191s 1,011s 96s 2,048s

naive canonicalization 480s 2,467s 49s 567s

heuristics canonicalization 154s 200s 24s 28s

Table 3.1: Performance of the graph isomorphism heuristics: While a naive algorithm re-

quires a longer time to generate the canonical state graph, adaptation of graph isomorphism

heuristics can reduce the time to less than 5% of the time required to generate the original

state graph.

5. A variable of complex type:

No re�nement is performed, unless the variable can be broken down into smaller

data structures that belong to the other categories. For example, an array of

records can be broken into a record of arrays with simpler element types, and

some of these arrays may fall into other categories. In such cases, re�nement is

performed for the parts that belong to other categories.

With the partition obtained by these re�nements, a canonical state can be

obtained by exhaustively checking each of the permutations that preserve the

partitioning
5
. Therefore, this heuristic drastically reduces the number of permu-

tations that need to be tried, and results in a faster algorithm, as shown in Table 3.1.

3.6.2 Avoiding the Graph Isomorphism Problem

In some cases, the heuristics for graph isomorphism may not be fast enough. The

following observation is used to make the algorithm even faster:

Observation 3.1 Any function that maps each state to an equivalent state can be

used in place of the canonizer � while maintaining the soundness of the algorithm.

5In fact, if every global variable belongs to categories 1 or 2, only one permutation is performed,

because every permutation that preserves the partitioning generates the same canonical state.

3.7. IMPLEMENTATION AND RESULTS 49

Proof. The veri�cation algorithm will check each equivalence class at least once,

which is su�cient to �nd all errors and deadlocks. 2

Therefore, instead of using a canonizer, a normalizer can be used to map the

states in an equivalence class to a small set of representatives. The e�ciency of a

normalizer depends on how fast it can generate a representative from a state, and

how often it generates a unique representative. Observation 3.1 gives a great deal of

freedom in the choice of a normalizer, which can be fast and domain-speci�c.

The normalizer implemented in Mur' also uses the graph isomorphism heuristic

with vertex invariants to obtain a small set of permutations. However, instead of

checking every one of these permutations to �nd the lexicographically smallest state

as the unique canonical state, only a �xed number of permutations are performed.

Therefore, it avoids the potential exponential complexity in the �nal phase, with the

penalty that two equivalent states may map to two di�erent representatives.

Fortunately, as shown in Table 3.2, the practical results show that about 10 explicit

permutations are su�cient in many cases to map the states that are examined during

the search to unique representatives in their corresponding equivalence class. The

resulting reduced state graph has almost the same size as the canonicalized state

graph, and it is generated in a much shorter time. The intuition is that if every

processor has the same state, no matter how we permute a state, the same state will

be generated. Therefore, instead of wasting time to perform N ! permutations, a �xed

number of permutations (in fact, only 1 in this case) is su�cient to �nd the correct

canonical state.

3.7 Implementation and Results

Implementation

Symmetry reduction can be easily implemented in a veri�cation tool with an explicit

state enumeration algorithm. Except for the symmetry-equivalent checking proce-

dure �, there is no change to the algorithm or the data structure. Except for the

limited storage for the local variables used in �, no extra storage is required. The

50 CHAPTER 3. VERIFYING SYMMETRIC SYSTEMS

Symmetry on LIST1 3 remote cells 4 remote cells

and a network and a network

of 7 messages of 8 messages

Original size 8,893 560,185

Reduced size (Canonicalization) 1,069 13,044

Reduced size (Normalization) 1,077 13,497

Original time 5s 175s

New time (Canonicalization) 81s 4,056s

New time (Normalization) 11s 214s

Table 3.2: Performance of the normalization algorithm: A normalizer which checks 10

permutations requires a much shorter time to generate a reduced state graph that is almost

the same size as the canonical state graph generated by a canonizer.

error trace on the original state graph can be reconstructed easily from the trace on

the reduced state graph.

Veri�cation Results

The reduction in the size of the state graph is closely related to the sizes of the

equivalence classes. The larger the average size of the equivalence classes, the larger

the reduction. With the permutations for a scalarset of size N; an equivalence class

has a maximum of N ! states. Therefore, the state space is at most reduced by a factor

of N !. Using multiple symmetries, we increase the size of the equivalence classes. For

n scalarsets with sizes N1; : : : ; Nn, the state space is at most reduced by a factor of

N1!�N2!� : : :�Nn!.

Savings close to maximum reduction are often realized for systems consisting of

N replicated components, such as processors, as shown in Table 3.3. The rationale

behind this observation is as follows: if the components are involved in reasonably

complex operations, there are many situations where none of the components have

exactly the same state. Hence, every non-trivial permutation of the state will result

in a distinct state in the original state space, so the sizes of the equivalence classes

are close to N !.

However, there are some cases where N ! reductions are not realized. For example,

consider a network channel modeled by an array of size N , where only the �rst n

3.7. IMPLEMENTATION AND RESULTS 51

system DASH-C DASH-C ICCP ICCP

symmetry 2 clusters & 3 clusters & 3 processors & 5 processors &

2 data values 3 data values 2 data values 1 data values

w/o DMA with restricted messages

Original size 41,848 210,663 150,794 2,093,231

Reduced size 10,466 8,251 12,577 18,962

Reduction 75% 96.1% 91.7% 99.1%

Original time 191s 1,011s 96s 2,048s

New time 154s 200s 24s 28s

Speedup 19% 80% 75% 98.7%

Theoretical 75% 97.2% 91.7% 99.2%

maximum reduction

System PETERSON MCS1 MCS2 DASH-L LIST1 LIST2

Symmetry 5 procs 4 procs 3 procs 3 clusters 4 nodes 4 nodes

Original size 628,868 554,221 3,240,032 55,366 560,185 1,382,001

Reduced size 6,770 23,636 540,219 9,313 23,410 57,616

Reduction 98.9% 95.7% 83.3% 83.2% 95.8% 95.8%

Original time 1,032s 194s 6,454s 188s 175s 1,177s

New time 12s 21s 384s 96s 15s 53s

Speedup 98.8% 96.5% 94% 49% 91.4% 95.5%

Theoretical 99.2% 95.8% 83.3% 83.3% 95.8% 95.8%

maximum reduction

Table 3.3: Improvement in performance with scalarset: Close to N1!� :::�Nk! reductions

are obtained, where Ni is the size of the ith scalarset.

52 CHAPTER 3. VERIFYING SYMMETRIC SYSTEMS

Symmetry on LIST1 3 remote cells 4 remote cells

and a network and a network

of 7 messages of 8 messages

Original size 8,893 560,185

Reduced size (Canonicalization) 1,069 13,044

Reduction (Canonicalization) 88% 97.7%

Theoretical Maximum Reduction 99.9% 99.9%

Original time 5s 175s

New time (Canonicalization) 81s 4,056s

Table 3.4: Ine�ciency in handling symmetry in a message channel: The reduction obtained

is less than N !, where N is the size of the scalarset representing the indices of the messages.

A naive canonizer spends a large amount of time in permuting the empty messages; a

normalizer was able to reduce the time to reasonable amount.

elements store the actual messages in the channel, and the remaining elements contain

empty messages. If the network does not preserve message orders, the ordering of

the elements does not matter, and a scalarset can be used to index the array. But

the reduction won't be close to N ! because permuting the empty messages always

generates the same state. A naive algorithm would spend a large amount of time

permuting the empty messages.

Such behaviors are demonstrated by the veri�cation of ICCP, LIST1, and LIST2,

all of which have an unordered network. The results for LIST1 are shown in Table 3.4,

which show that a canonizer is very slow in this case, and the reductions are not close

to the theoretical maximum.

Because of this ine�ciency in modeling unordered channels using scalarsets, a new

datatype, called Multiset, has been implemented to specify this situation. A multiset

is also referred as a bag. It is essentially an array indexed by an anonymous scalarset

type. A choose construct is used to nondeterministically select an element from a

multiset and bind a parameter to a reference to the selected element. A special add

construct and a special remove construct are used to put in and take out elements

from the multiset. This new datatype allows the canonizer to ignore the permutation

of the empty elements in the array, speeding up the veri�cation by more than 90%,

as shown in Table 3.5.

3.8. RESTRICTED SYMMETRIES 53

Symmetry on LIST1 3 remote cells 4 remote cells

and a network and a network

of 7 messages of 8 messages

Original time 5s 175s

New time (Canonicalization on Scalarset) 81s 4,056s

New time (Normalization on Scalarset) 11s 214s

New time (Canonicalization on Scalarset & Multiset) 3s 15s

Table 3.5: Improvement in performance with multiset: The multiset allows optimization

in the canonizer that speeds up the veri�cation by more than 90%.

3.8 Restricted Symmetries

Previous discussion in this chapter has concentrated on full symmetry represented

by a scalarset, where every permutation on the scalarset value corresponds to an

automorphism on the state graph. However, there are other classes of symmetries as

well, such as re
exive ring symmetry, non-re
exive ring symmetry, and stabilization.

This section describes these symmetries and explains how they can be detected

in a way similar to full symmetry. The proofs are omitted, but they follow the same

sequence of analysis as the proof for scalarsets.

Non-Re
exive Ring Symmetry

A typical example for non-re
exive ring symmetry is a unidirectional local area ring

network, in which each node has a predecessor and a successor.

To model a non-re
exive ring symmetry, a set of non-re
exive ring-indices � of

size N can be de�ned as a scalarset with two extra operations: given a ring-index i,

pred(i) gives the value i� 1 mod N and succ(i) gives the value i+ 1 mod N . The

corresponding set of permutations from which the automorphisms can be constructed

is the automorphism group G(H), where H is the permutation mapping i to i +

1 mod N . The maximum reduction of a set of non-re
exive ring-indices is N.

54 CHAPTER 3. VERIFYING SYMMETRIC SYSTEMS

Re
exive Ring Symmetry

A typical example for re
exive ring symmetry is the classical dining philosopher

problem, in which each philosopher communicates directly to two neighbors only.

To model a re
exive ring symmetry, a re
exive ring-indices � of size N can be

de�ned as a scalarset with an associated set called neighbor. The elements of the set

neighbor are the functions pred and succ, similar to the ones for non-re
exive ring

symmetry. However, they cannot be accessed directly: any operation involving pred

should have a corresponding operation for succ, as shown in the following example:

Type philosopher : ReflexiveRing (N);

Var Phil : Array [philosopher] Of Record

gotfork : Array [neighbour(philosopher)] Of Boolean;

End;

Ruleset i: philosopher;

side1: neighbour(philosopher);

side2: neighbour(philosopher) Do

Rule ``get fork''

side1(i) != side2(i)

& Phil [side1(i)] . gotfork [side2(i)] = false

==>

Phil [i] . gotfork [side1(i)] = true;

End;

End;

Ruleset i: philosopher

side: neighbour(philosopher) Do

Rule ``release fork''

Phil [i] . gotfork [side(i)] = true

==>

Phil [i] . gotfork [side(i)] = true;

End;

End;

The corresponding set of permutations from which the automorphisms can be

constructed is the automorphism group G(H), where H consists of two permutations,

one of them mapping i to i�1 mod N and and the other mapping i to i+1 mod N .

The maximum reduction of a non-re
exive ring-indices is 2N.

3.9. COMPARISON WITH OTHER WORK 55

Stabilization

Sometimes, one or more of the components in a system may be special, and a scalarset

cannot be used. Emerson and Sistla [ES93] called this stabilization. For example,

proving a property about only processor 1 means that processor 1 is special, and any

permutation mapping 1 to other values will not induce an automorphism.

The stabilization concept has been implemented in Mur' using a union operator.

A union concatenates a few enumerations and scalarsets together to form a new data

type. For example, in a cache coherence protocol, if some of the components contain

the physical memory, and some of them don't, it may be modeled as:

TYPE

Remote : Scalarset (ProcCount - HomeCount) ;

Home : Scalarset (HomeCount) ;

Proc : Union (Home, Remote) ;

Therefore, both the remote nodes and the home nodes may be reordered among

themselves, but a remote node cannot be mapped into a home node.

3.9 Comparison with Other Work

Previous Work on Symmetry

The basic idea of exploiting symmetries to reduce a state space in automatic veri�ca-

tion is not new. Lubachevsky used symmetry for automatic veri�cation of a particular

class of concurrent programs in 1984 [Lub84]. Aggarwal, Kurshan and Sabnani have

applied symmetries for the veri�cation of an alternating bit protocol [AKS83]. It was

also described by Huber et al. [HJJJ84] for high-level Petri nets, and Starke [Sta91]

for deadlock and liveness checking in P/T nets.

However, the problems of detecting symmetry and extracting symmetry-equivalent

relations automatically were not addressed, which makes application of symmetry-

reduction di�cult in practice.

Minimal State Partitioning

Instead of using structural symmetry in a system, the basic minimal state partition-

ing methods [BFH90, BFH
+
92, Fer93, LY92, ACH

+
92] take advantage of bisimulation

56 CHAPTER 3. VERIFYING SYMMETRIC SYSTEMS

relations on a state graph. Although symmetry and bisimulation relations are similar

concepts, the resulting algorithms are di�erent. Instead of generating the reduced

state graph incrementally and checking the properties on-the-
y, minimal state par-

titioning methods recursively partition the set of states being examined, according to

the transition relations of the system.

Partial Order Methods

Although both symmetry and partial order take advantage of equivalent structures in

a state graph, there is no direct relationship between these two methods. Symmetry

considers equivalent relations among di�erent states, whereas partial order considers

equivalent relations among di�erent paths. There are cases in which partial order

generates no reduction, but symmetry generates a large reduction, and vise versa.

Other Applications of Symmetry

Although the symmetry-reduction algorithm in Mur' only veri�es simple safety

properties and deadlock, symmetry has been applied to other types of veri�ca-

tion as well [Eme96]. Huber et al. [HJJJ84], Starke [Sta91], and Kensen [Jen96]

have applied symmetry in the reachability analysis of Petri Nets. Clarke, Filkorn

and Jha [CFJ93, CEFJ96] applied the idea to BDD-based symbolic model check-

ing [BCM
+
90, CBM89, TSL

+
90]. Emerson and Sistla [ES93, ES96] applied the idea

to CTL* model checking [CES86]. Jackson et al. [JJD96] used a similar idea of an

unordered set for software simulation. Indeed, the idea of symmetry reduction is

widely applicable to di�erent kinds of systems, models of concurrency, and veri�ca-

tion techniques.

Chapter 4

Verifying Data-Independent

Systems

Chapter Overview 1

Data-independent systems can be veri�ed using the same technique described in

the previous chapter. Furthermore, this chapter describes how symmetry-reduction

leads to a fully automatic veri�cation of data-independent systems with arbitrary,

unbounded, or in�nite data domains.

4.1 Data-Independence

The cache coherence protocols described in Section 2.2 can be regarded as data-

independent systems. The control
ow of the protocols does not depend on the

actual value of the data in a cache line. No computation is performed on the data

value, and the correctness of the protocol depends only on whether two pieces of data

are consistent or not.

To better illustrate data-independent systems and the e�ect of symmetry-

reduction on these systems, let's consider the (somewhat contrived, but simple) pro-

ducer/consumer example in Figure 4.1. In this example, a state consists of the values

in the producer, the channel, and the consumer. Initially, everyone has the same

1This chapter is based on materials published in [ID93a, ID93b, ID96a].

57

58 CHAPTER 4. VERIFYING DATA-INDEPENDENT SYSTEMS

data. When the producer has the same value as the consumer, it may produce a new

value, as speci�ed by the �rst rule. The value is then passed to the channel by the

second rule, and �nally passed to the receiver by the third rule. For this protocol,

the data in the channel should be equal to either the one in the producer or the one

in the consumer, as speci�ed by the invariant.

Because the operations on Data belong to the scalarset operations described in

Section 3.3, it is modeled as a scalarset, and the symmetry reduction can be used to

obtain a reduced state graph for veri�cation.

As shown in Figure 4.1, the reduced state graph for n data values, where n � 2, is

isomorphic to the reduced state graph for 2 data values. This phenomenon is called

data saturation, and the corresponding state graphs are called saturated models.

4.2 Detecting and Exploiting Data-Independence

Data-independent systems can often be described by a scalarset, and the data satu-

ration phenomenon is guaranteed to happen if this scalarset is a data scalarset:

De�nition 4.1 (data scalarset) A scalarset � is a data scalarset in a source pro-

gram P if � is not used as array indices or for statement indices.

Because of the strong relationship between the usual notion of data-independence

and the symmetry in a data scalarset, we de�ne data-independence as:

De�nition 4.2 (data-independence) A protocol is data-independent with respect

to a particular data domain, if the data domain can be declared as a data scalarset.

The data saturation phenomenon in a system descibed by a data scalarset can be

formalized as follows:

Theorem 4.1 (data saturation) If P is a Mur' description, � is the name of a

data scalarset in P , and P1 and P2 are programs identical to P except that � is

declared to be of size N1 in P1 and N2 in P2, then there exists a positive integer N�

such that the symmetry-reduced state graphs of P1 and P2 are isomorphic whenever

N1 � N� and N2 � N�.

4.2. DETECTING AND EXPLOITING DATA-INDEPENDENCE 59

type Data : scalarset(2);

var Producer : Data;Channel : Data;Consumer : Data;

ruleset v : Data do

startstate \Initial state with consistent data"

Producer := v ;Channel := v ;Consumer := v end

rule \Producer generates new data"

Producer = Consumer) Producer := v end

end

rule \Send the new data when the producer has a new and di�erent value."

Producer 6= Channel) Channel := Producer end

rule \Receive the new data when the channel has a new and di�erent value."

Channel 6= Consumer) Consumer := Channel end

invariant \Consistent Data"

(Producer = Channel j Channel = Consumer)

1,1,1 n,n,n

.

.
.
.

1,0,0

0,1,1

.

.
.
.

0,0,1

1,1,0 1,0,0

0,1,1

1,1,0

0,0,1

1,1,1

Symmetry-reduced
State Graph for Pn
(restricted to the
reachable states)

Symmetry-reduced
State Graph for P2
(restricted to the
reachable states)

2,0,0

2,1,1

0,n,n 1,n,n

2,2,0

2,2,1

0,0,n 1,1,n

. . .

. . .

. . .

. . .

. . .

. . .

. . .

0,0,0 0,0,0

Figure 4.1: An example of data independence and data saturation: Because the operations

for Data are symmetric, Data is modeled as a scalarset. Furthermore, the symmetry-reduced

state graph for a scalarset of size n > 2 is isomorphic to the one for a scalarset of size 2.

60 CHAPTER 4. VERIFYING DATA-INDEPENDENT SYSTEMS

The isomorphic state graphs obtained by symmetry-reduction are called saturated

models. A complete proof of this theorem is given in Appendix A.3. The essence of

the proof can be described as follows:

Because the data scalarset is not used in array indices, regardness of the

exact size of the data scalarset, the global variables have a �xed number

of variables with the data scalarset type. Let this number be N . For

example, the system described in Figure 4.1 has three variables with data

scalarset types.

Therefore, regardless of the exact size of the scalarset, a state can have at

most N di�erent values. We can always �nd a permutation � such that

these N values are mapped to the values from 1 to N . This permutation

generates an equivalent state with values from 1 to N only. For the system

described in Figure 4.1, we can use the equivalent state with values 1 and

2 only as the canonical state for a symmetry-equivalence class.

On the other hand, during the execution of a transition rule, a Boolean

expression like

exists i1; i2; :::; ik : data do i1 6= i2 6= ::: 6= ik end

can be used to distinguish whether or not the size of the scalarset is no

less than k. Taking the N global variables of the data scalarset type

into account, a Boolean expression can be used to distinguish whether or

not the data scalarset has N + k elements or more. However, it cannot

distinguish whether or not the data scalarset has N + k elements or N +

k + 1 elements, and similarly for data scalarset of larger sizes.

Although the bound given in the intuition is based on the number of data scalarset

locations in global variables and the bounded variables, data saturation typically

happens for a much smaller data scalarset. A simple run-time check can be used to

determine when data saturation has occurred. Consider a Mur' description with a

maximum of k bounded variables of a data scalarset type. If the data scalarset has

4.3. IMPLEMENTATION AND RESULTS 61

size z, and a state has n distinct data values, the veri�er can compare z and n + k

to check for saturation. If for all reachable states in the reduced state graph, z is

smaller than n+ k, the reduced state graph is not a saturated model. Otherwise, the

veri�cation result is valid for all systems with data scalarset size larger than z.

Therefore, it is possible to add a declaration for a scalarset of unknown cardinality

to the description language, and to verify any system described by such scalarsets

using symmetry reduction:

Theorem 4.2 A system with a data scalarset of unspeci�ed size can be veri�ed by

the veri�cation of n systems, having data scalarsets of size 1 to n, where n is size of

the scalarset when saturation occurs.

4.3 Implementation and Results

Implementation

The only change to the symmetry reduction algorithm is the addition of the run-time

check for saturation.

Veri�cation Results

As shown in Table 4.1, the veri�cation results con�rmed the data saturation phe-

nomenon. Both DASH-C and ICCP become saturated as the size of the data domain

increases, and the reduced state graphs for systems with 4 or more data values are

isomorphic.

4.4 Comparison with Other Work

The approach presented in this chapter is analogous to the approach suggested by

Aggarwal et al. [AKS83] and Wolper [Wol86], which are summarized in Section 1.2.3.

But their work requires the user to recognize that a protocol is data-independent

and to transform the description manually in order to exploit data independence. In

contrast to their methods, the use of data scalarsets requires no extra work for the

user. The �nite state space construction can be done automatically by the veri�er,

and the soundness of the algorithm is guaranteed.

62 CHAPTER 4. VERIFYING DATA-INDEPENDENT SYSTEMS

of possible data values 1 2 3 4 5 : : : n

DASH-C (3 processors) without DMA operations

Original size 26,925 91,254 210,663 exceeding 400,000 states

Reduced size 4,575 7,741 8,251 8,276 8,276 : : : 8,276

ICCP (4 processors) with restriction in the number of messages

Original size 200,913 762,114 2,034,099 exceeding 3,000,000 states

Reduced size 8,534 16,169 18,619 18,851 18,851 : : : 18,851

Table 4.1: Data saturation: As the size of the data scalarset increases beyond 4, the size

of the reduced state graph stops increasing. The reduced state graphs for data scalarsets

of sizes beyond 4 are actually isomorphic.

Recently, Hojati and Brayton [HB95] exploited a similar idea to data path abstrac-

tion. Their de�nition of data-independent circuits can be considered as a particular

instance of our de�nition, in which equality testing of two pieces of data is only allowed

in the properties to be veri�ed, but not in the transitions of the system. On the other

hand, they have extended the idea of data-independence to semi-data-independence,

in which other comparisons between two pieces of data are allowed. In both cases,

they have proven theorems that are similar to the data saturation theorem: Their

theorems state that systems with su�ciently large data domains have the same error

behavior.

Chapter 5

Verifying Systems with Reversible

Rules

Chapter Overview 1

This chapter de�nes reversible rules, and describes how they can be exploited in au-

tomatic formal veri�cation. The key property of a reversible rule is that the original

state before executing the rule can be re-constructed from the successor after execut-

ing the rule. Because of this property, the successor does not need to be stored in the

memory; the original state can be re-constructed to represent the successor.

Two improvements to this basic scheme are also presented to remove false error

reports and to reduce veri�cation time.

5.1 Reversible Rules

In this section, we illustrate the key property of reversible rules by an example in a

cache coherence protocol. As shown in Figure 5.1, suppose a processor has an invalid

cache entry for a memory location and there is no outstanding request. The processor

has two choices of actions: it can send a request for a shared copy, or send a request

for an exclusive copy of the memory location. After either of these two transitions,

the original state can be reconstructed by removing the message from the network and

1This chapter is based on materials published in [ID96b].

63

64 CHAPTER 5. VERIFYING SYSTEMS WITH REVERSIBLE RULES

P1 P2

RR

Memory

RP ...
PnPn-1

remove RR
change RP to I remove WR

change WP to I

P1 P2

Memory

...
PnPn-1

P1 P2

Memory

...
PnPn-1

I

WP

WR

I : Invalid cache line
RP : Read Pending
WP : Write Pending
RR : Read Request
WR : Write Request

network of messages

network of messages network of messages

Write RequestRead Request

Figure 5.1: Reversible rules in a cache coherence protocol: The original state can be

reconstructed by removing the message from the network and changing the internal state

of the processor back to invalid.

changing the internal state of the processor back to invalid. Therefore, the transition

rules corresponding to these transitions are called reversible rules.

Reversible rules often contribute to the state explosion in the state graph, because

they are often local to the processors, that is, the executions of these rules are not

a�ected by the environment of the processor. For example, the two reversible rules

shown in Figure 5.1 generate 3
n
states from a state of n processors with invalid

cache lines
2
. As shown in Figure 5.2, many similar subgraphs are generated by these

reversible rules, and each subgraph is originated from a unique state.

The unique state from which each subgraph is generated is called the progenitor

of the subgraph. The other states in the subgraph are called transient states. In

order to reduce the memory usage in veri�cation, transient states are not stored in

the memory. When a transient state is generated during the construction of the

state graph, we can reverse-execute the reversible rules a few time to re-construct the

2If the processors are symmetric, (n+ 1)(n+ 2)=2 equivalence classes are generated.

5.2. EXPLOITING REVERSIBLE RULES 65

 (I, I)

(w, I)(I, w)(I, r)(r, I)

(r, r) (r, w) (w, r) (w, w)

(I, a)

(r, a) (w, a)

(I, b)

(r, b) (w, b)

(a, I)

(a, r) (a, w)

I : a processor with Invalid
 cache line
r : a processor with read
 request pending
w : a processor with write
 request pending
a, b : a processor in some other
 states
(a, b), etc :
 a state with two processors,
 one in state a, and one in state b

Reachability State Graph

Figure 5.2: State explosion due to reversible rules: A set of reversible rules generates a

lot of similar subgraphs in the reachability state graph, causing the number of states to

explode as the number of processors increases.

progenitor, and store only the progenitor in the memory. The precise de�nitions of

reversible rules and the reduction algorithm are presented in the next section.

5.2 Exploiting Reversible Rules

In order to use the idea of reversible rules in automatic formal veri�cation, we need

to de�ne precisely the required property of reversible rules. Based on this de�nition,

we can design an algorithm to generate a reduced state graph in such a way that an

error state is reachable in the original state graph only if a corresponding error state

is reachable in the reduced state graph.

66 CHAPTER 5. VERIFYING SYSTEMS WITH REVERSIBLE RULES

First of all, a reversible rule allows us to re-construct the original state before

executing the rule:

De�nition 5.1 (reversible rule) If a rule set T generates a state graph

hQ;Q0;�; errori, a rule r 2 T is a reversible rule if and only if

� for all q 2 Q, if q 6= error, then r(q) 6= error.

� there exists a function r� such that for all q 2 Q, if there exists a unique q0 2 Q

such that q0 6= q ^ r(q0) = q, then r�(q) = q0. Otherwise, r�(q) = q.

� there exists an integer n such that for all q 2 Q, we have (r�)n+1
(q) = (r�)n(q).

As mentioned in the last section, the executions of these rules often depend only on

the local state of a processor. Furthermore, the execution of a reversible rule usually

won't enable another reversible rule; in fact, it often disables another reversible rule.

This property is captured as follows:

De�nition 5.2 (commutative reversible rule set) If a rule set T generates a

state graph hQ;Q0;�; errori, the subset U � T is a commutative reversible rule

set if and only if

� every rule in U is a reversible rule; and

� for all q 2 Q and r1; r2 2 U , we have r�1(r
�
2(q)) = r�2(r

�
1(q)).

Although this property often results in large subgraphs in the original state graph,

it also allows us to �nd a unique representative for each subgraph, called the progen-

itor, which eliminates the need to store the whole subgraph in memory:

De�nition 5.3 (progenitors) If a rule set T generates a state graph

hQ;Q0;�; errori, and U � T is a commutative reversible rule set, a state q 2 Q is a

progenitor if and only if for every r 2 U; r�(q) = q. A progenitor q is a progenitor of

a state q0 if and only if there exist r1; :::; rn 2 U , such that q
r1;:::;rn
�! q0.

For example, if every reversible rule generates a new request message, a state with

no request in the network is a progenitor.

The properties of a commutative reversible rule set guarantee that the progenitor

is unique, and we denote the corresponding progenitor for a state q as �(q). The

states that are not progenitors are called transient states.

5.2. EXPLOITING REVERSIBLE RULES 67

Theorem 5.1 (uniqueness of progenitor) If a rule set T generates a state graph

hQ;Q0;�; errori, and U = fr1; :::; rmg � T is a commutative reversible rule set,

there exists integer n such that for all q 2 Q, the unique progenitor �(q) for q is

(r�m)
n
(:::((r�1)

n
(q)):::).

Proof. First of all, we choose n to be the integer such that for all ri 2 U and q 2 Q,

(r�i)
n+1

(q) = (r�i)
n
(q), and de�ne �(q) to be (r�m)

n
(:::((r�1)

n
(q)):::). We can show that

�(q) is a progenitor of q and that it is unique.

Progenitor: Because U is a commutative reversible rule set, we can rearrange the

order of application of r�i such that for all 1 � i � m,

�(q) = (r�i)
n
((r�m)

n
(:::((r�i+1)

n
((r�i�1)

n
(:::(r�1)

n
(q)):::)

Because for all q0 2 Q, (r�i)
n+1

(q0) = (r�i)
n
(q0), we have r�i (�(q)) = �(q). There-

fore �(q) is in fact a progenitor.

Uniqueness: Given any progenitor q0 of q, there exist r01; :::; r
0
k 2 U such that q0 =

r
0�
k (:::(r

0�
1 (q)):::). Since we can rearrange the order of application of r

0�
i , we can

group the identical rules together and get q0 = (r�m)
km
(:::((r�1)

k1
(q)):::) for some

ki � 0. There are two cases to consider:

km < n:

Since q0 is a progenitor, we have q0 = (r�m)
n�km

(q0) Therefore, q0 =

(r�m)
n�km

((r�m)
km
(:::((r�1)

k1
(q)):::)) = (r�m)

n
(:::((r�1)

k1
(q)):::) Repeat the ar-

gument for every ri 2 U , we have q
0
= (r�m)

n
(:::((r�1)

n
(q)):::) = �(q).

km > n:

Since, for all p 2 Q and 1 � i � k, rn+1
i (p) = rni (p), we have

q0 = (r�m)
n+(km�n)

(:::((r�1)
k1
(q)):::) = (r�m)

n
(:::((r�1)

k1
(q)):::). Repeat the

argument for every ri 2 U , we have q
0
= (r�m)

n
(:::((r�1)

n
(q)):::) = �(q).

2

68 CHAPTER 5. VERIFYING SYSTEMS WITH REVERSIBLE RULES

The progenitor �(q) is used to represent the set of states reachable from �(q) via

the reversible rules. The resulting state graph is de�ned as follows:

De�nition 5.4 (reduced state graph by progenitors) If a rule set T generates

a state graph A = hQ;Q0;�; errori, and U � T is a commutative reversible rule set,

the reduced state graph is AU = h�(Q); �(Q0); �(�); errori, such that:

� �(Q) = f�(q)jq 2 Qg;

� �(Q0) = f�(q)jq 2 Q0g; and

� (q1; q2) 2 �(�) if and only if there exist q 2 Q and t 2 T nU such that �(q) = q1
and �(t(q)) = q2.

The correctness of a veri�cation performed on this reduced state graph is guaran-

teed, because every path in the original state graph has a corresponding path in the

reduced state graph, as shown below as Lemma 5.1 and Theorem 5.2.

In order to simplify the subsequent lemmas and theorems in this chapter, we

adapt the following conventions: we use (subscripted) q to represent a state in Q,

(subscripted) r to represent a rule in U , (subscripted) t to represent a rule in T n U ,

and (subscripted) k to represent a non-negative integer. Furthermore, we denote a

transition in the reduced state graph as q1
t

=) q2 if there exists q 2 Q such that

�(q) = q1 and �(t(q)) = q2.

Lemma 5.1 If a rule set T generates a state graph hQ;Q0;�; errori, and U � T is a

commutative reversible rule set, whenever q0
r1;:::;rk;t
�! q is in A, we have �(q0)

t
=) �(q)

in AU .

Proof. This follows directly from the de�nition of �(�). 2

Theorem 5.2 (soundness) If a rule set T generates a state graph A =

hQ;Q0;�; errori, and U � T is a commutative reversible rule set, whenever q is

reachable from the initial states in A, �(q) is also reachable from the initial states

in AU .

5.3. IMPROVEMENTS 69

Proof. Consider the following path from the initial state q0 in the original state

graph:

q0
r1;:::;rk1 ;t1
�! q1

rk1+1;:::;rk2;t2
�! :::

rkm�1+1;:::;rkm;tm
�! qm

rkm+1;:::;rkm+1
�! q

for some integers ki � 0. By Lemma 5.1, �(q0)
t1
=) �(q1)

t2
=) :::

tm
=) �(qm) is a path

from the initial state �(q0) in AU that reaches �(q). 2

Corollary 5.1 If error is reachable from the initial states in A, error is also reach-

able from the initial states in AU .

The on-the-
y reduction algorithm for error and invariant checking is shown in

Figure 5.3. Every transient state represented by a progenitor is generated using a

local search in the procedure Local Search(). The successors of the progenitor and

the transient states are generated using the rules in T n U . The progenitors of these

successors are then compared to the progenitors in the hash table to check whether

or not they have been examined before.

This reduced state graph is a conservative approximation of the original state

graph. If the reversible rules preserve all atomic prepositions in a stuttering-invariant

LTL and 8CTL* formula f , the original state graph satis�es f if the reduced state

graph satis�es f . For the notion of stuttering-invariant, see [Lam83]. The proof for

stuttering-invariant LTL model checking follows directly from Lemma 5.1, and the

proof for stuttering-invariant 8CTL* model checking is similar to the one presented

in [BBG
+
93].

For deadlock detection, every state in a subgraph generated from a progenitor can

be checked explicitly during the local search to see if it is a deadlock state in the

original state graph.

5.3 Improvements

Although the algorithm described in the previous section signi�cantly reduces memory

usage, it still has two problems. First of all, a reachable error state in the reduced

state graph may not correspond to a reachable error state in the original state graph,

resulting in a false error report. As shown in Figure 5.4, although a transient state is

70 CHAPTER 5. VERIFYING SYSTEMS WITH REVERSIBLE RULES

Algorithm 1()

begin

Reached = Unexpanded = f �(q) j q 2 Q0g;

while Unexpanded 6= ; do
Remove a state s from Unexpanded;

Local Search(s);

endwhile;

end

j Local Search(state s)

j begin

j Local Reached = Local Unexpanded = fsg;
j while Local Unexpanded 6= ; do
j Remove a state s from Local Unexpanded;

j Generate Original Next States(s);

j for each transition rule r 2 U do

j let s0 = r(s) in

j if s0 is not in Local Reached then

j Put s0 in Local Reached and Local Unexpanded;

j endif;

j endlet;

j endfor;

j endwhile;

j end

Generate Original Next States(state s)

begin

for each transition rule t 2 T n U do

let s0 = t(s) in

if s0 = error then stop and report error; endif;

if �(s0) is not in Reached then

Put �(s0) in Reached and Unexpanded;

endif;

endlet;

endfor;

end

Figure 5.3: An on-the-
y reduction algorithm for reversible rules: The part highlighted by

an underline or a left vertical line represents the main di�erence of this algorithm from the

basic algorithm shown in Figure 2.2.

5.3. IMPROVEMENTS 71

progenitor
an unreachable

a reachable statefalse negative result

a reachable state

error

Figure 5.4: Potential false error report from reduction using reversible rules: Although a

transient state is reachable from an initial state, its progenitor may not be reachable, and

it may lead to a false error report.

reachable from an initial state, its progenitor may not be reachable, and it may lead

to a false error report. Secondly, the time required to construct the reduced state

graph is longer than the time required to generate the original state graph, since

every reachable state in the original state graph is generated and examined explicitly

during the local search.

This section describes two improvements to solve these problems.

5.3.1 Removing False Error Reports

Under an extra condition, called the essential property, the reduction algorithm is

guaranteed not to report false errors. The essential property enforces that for every

state pair q; q0 and every essential rule r such that r(q) = q0, if q0 is reachable from

the initial states, q is also reachable from the initial states:

De�nition 5.5 (essential rule) If a rule set T generates a state graph

hQ;Q0;�; errori, a communtative reversible rule set U � T is an essential rule

set if and only if

� for all q 2 Q0, we have �(q) 2 Q0.

� for all r 2 U , t 2 T n U , if there exist distinct q0; q1; q
0
1 6= error such that

q0
t
�! q1 and q01

r
�! q1, then there exists q00 2 Q such that q00

r
�! q0 and

q00
t
�! q01.

72 CHAPTER 5. VERIFYING SYSTEMS WITH REVERSIBLE RULES

Pictorally, the essential property can be summarized as:

-

�)

-

�

�

-

q1 q1

q01q00q01

q0q0 t

r

t

t

rr

Lemma 5.2 If a rule set T generates a state graph hQ;Q0;�; errori, and U � T is

a commutative reversible and essential rule set, whenever q0
t

=) q1 is in AU , there

exist r1; :::; rk 2 U such that q0
r1;:::;rk;t
�! q1 is in A.

Proof. Since q0
t

=) q1 is in the reduced graph, there exist states q00; q
0
1 such that

�(q00) = q0, �(q
0
1) = q1, and q00

t
�! q01.

If q1
r01;:::;r

0

z
�! q01, by recursively applying the essential property on r01; :::; r

0
z, there

exists a state q000 such that q000
r01;:::;r

0

z
�! q00 and q000

t
�! q1. Consider the progenitor �(q

00
0)

of q000 , there exists r1; :::; rk such that �(q000)
r1;:::;rk
�! q000 . Therefore, �(q

00
0)

r1;:::;rk;r
0

1;:::;r
0

z
�! q00

and �(q000) = �(q00) = q0. Hence, q0
rr;:::;rk;t
�! q1.

Pictorially, it can be illustrated as:

q0

:::

�

q00
t - q01

r01; :::; r
0
z

�

q1

)

q0

r1; :::; rk

�

q000

r01; :::; r
0
z

�

q00

r01; :::; r
0
z

- q1t

- q01
t

�

2

Therefore, every state in the reduced state graph represents a reachable subgraph

in the original state graph:

Theorem 5.3 (completeness) If a rule set T generates a state graph A =

hQ;Q0;�; errori, and U � T is a commutative reversible and essential rule set,

whenever q is reachable from the initial states in AU , q is also reachable from the

initial states in A.

5.3. IMPROVEMENTS 73

Proof. If q0
t1
=) q1

t2
=) :::

tm
=) q is a path from the initial state q0 in the reduced state

graph, then by lemma 5.2, we can �nd rules in U such that q0
r1;:::;rk1 ;t1
�! q1

rk1+1;:::;rk2;t2
�!

:::
rkm�1+1;:::;rkm ;tm

�! q is a path from the initial state q0 in the original state graph.

2

Corollary 5.2 If error is reachable from the initial states in AU , error is also reach-

able from the initial states in A.

Therefore, the same reduced state graph and the same algorithm shown in Fig-

ure 5.3 can be used for veri�cation using a commutative, reversible, and essential rule

set, with no false error reports. The correctness of the algorithm is given below:

Theorem 5.4 (soundness and completeness) If a rule set T generates a state

graph A = hQ;Q0;�; errori, and U � T is a commutative reversible and essential

rule set, the reduced state graph AU is sound and complete for error and invariant

checking.

Because of Lemma 5.1 and Lemma 5.2, the reduced state graph is sound and

complete for stuttering-invariant LTL model checking. However, because of the lost

of branching information within the subgraphs, the reduced state graph is still limited

to 8CTL* model checking. Fortunately, because the reduced state graph contains no

unreachable state, it is a good approximation of the original state graph. Furthermore,

a deadlock state is not reachable in the original state graph if and only if none of the

states examined in the local search phase is a deadlock state.

5.3.2 Speeding Up the Reduction Algorithm

In the algorithm shown in Figure 5.3, every reachable transient state in the original

state graph is generated during the local search phase of the algorithm, so the time

required to generate the reduced state graph is longer than the time required to

generate the original state graph. In this section, we present a condition, called

singular property, which allows most of the transient states in the subgraph to be

completely ignored during the construction of the reduced state graph. This reduces

the execution time of the algorithm by more than 70% in some cases.

74 CHAPTER 5. VERIFYING SYSTEMS WITH REVERSIBLE RULES

 (I, I)

(w, I)(I, w)(I, r)(r, I)

(r, r) (r, w) (w, r) (w, w)

I : a processor with Invalid
 cache line
r : a processor with read
 request pending
w : a processor with write
 request pending

 states

 a state with two processors,

a : a processor in some other

(a, I), etc :

 one in state a, and one in state I

(a, I)

(a, w) (a, r)

t

t

Subgraph A

Subgraph B

Figure 5.5: Singular property in a cache coherence protocol: The second transition on rule

t is redundant in the reduced state graph.

To illustrate the approach, consider once more the state graph of a cache coherence

protocol in Figure 5.5. There are redundant transitions between subgraph A and

subgraph B: the transition t can be taken both from (w; I) and from (w;w). In this

case, it is not necessary to consider (w;w) to generate the reduced state graph: every

transition from (w;w) is redundant.

The intuition is that the result of a transition often depends only on the immediate

execution of at most one reversible rule. For example, consider a message-passing

protocol in which each transition checks and removes at most one message from a

network, and every reversible rule generates at least one message. If a transition t

depends only on the message generated by a reversible rule r1, another reversible

rule r2 can be executed or reverse-executed without a�ecting the execution of t.

Therefore, we only need to consider the transient states that are generated by exactly

one reversible rule, and we can ignore the transient states that are generated by

applying more than one reversible rule in sequence. The precise de�nition of this

property is as follows:

De�nition 5.6 (singular property) If a rule set T generates a state graph A =

hQ;Q0;�; errori, a commutative reversible rule set U � T is singular w.r.t. T if and

only if whenever q1
r1;r2;t
�! q2, we have either q1

r1;t;r2
�! q2 or q1

r2;t;r1
�! q2 .

5.3. IMPROVEMENTS 75

Therefore, if there exists a transition between two subgraphs represented by two

progenitors, there also exists a transition from the �rst progenitor or its immediate

successor to the second subgraph:

Lemma 5.3 If a rule set T generates a state graph A = hQ;Q0;�; errori, and a

commutative reversible rule set U � T is singular w.r.t. T , whenever q
r1;:::;rk;t
�! q0,

there exists q00 and rj such that q
rj ;t
�! q00 and �(q00) = �(q0).

Proof. We prove the lemma by induction on k. In the base case, we have q
r1;t
�! q0

implies q
r1;t
�! q0, which is trivially true.

Assume the lemma is true for k, i.e., q
r1;:::;rk;t
�! q0 implies q

rj ;t
�! q00 for some integer

j such that 1 � j � k and �(q00) = �(q0).

Consider q
r1;:::;rk+1;t
�! q0. There exists p1 such that q

r1
�! p1

r2;:::;rk+1;t
�! q0 . By the

induction hypothesis, there exists p2 and some integer j such that 2 � j � k+1, and

q
r1
�! p1

rj ;t
�! p2; and �(p2) = �(q0).

Because of the singular property, there exists p3 such that �(p3) = �(p2) = �(q0),

and either q
r1;t
�! p3; or q

rj ;t
�! p3:

2

Lemma 5.3 implies that it is su�cient to apply the transition rules T n U only to

the progenitors and their immediate successors:

Theorem 5.5 (fast reduced state graph generation) If a rule set T generates a

state graph hQ;Q0;�; errori, and a commutative reversible rule set U � T is singular

w.r.t. T , (q1; q2) 2 �(�) if and only if there exists t 2 T n U such that �(t(q1)) = q2
or there exists r 2 U such that �(t(r(q1))) = q2.

Hence, the algorithm can be speeded up to the one shown in Figure 5.6. As shown

in Table 5.1, the practical results for ICCP con�rmed that fewer states were examined

and the veri�cation �nished in a much shorter time.

While this reduced state graph can be used for stuttering-invariant LTL model

checking, a slight modi�cation is needed for deadlock detection. In order to detect

deadlock, all transient states must be generated and checked if it is a deadlock state

in the original state graph. However, once it is determined that a transient state has a

76 CHAPTER 5. VERIFYING SYSTEMS WITH REVERSIBLE RULES

Algorithm 2()

begin

Reached = Unexpanded = f �(q) j q 2 Q0g;
while Unexpanded 6= ; do

Remove a state s from Unexpanded;

Local Search(s);

endwhile;

end

j Local Search(state s)

j begin

j Local Reached = fsg
j for each transition rule r 2 U do

j let s0 = r(s) in

j if s0 is not in Local Reached then

j Put s0 in Local Reached

j Generate Original Next States(s)

j endif;

j endlet;

j endfor;

j end

Generate Original Next States(state s)

begin

for each transition rule t 2 T n U do

let s0 = t(s) in

if s0 = error then stop and report error; endif;

if �(s0) is not in Reached then

Put �(s0) in Reached and Unexpanded;

endif;

endlet;

endfor;

end

Figure 5.6: An on-the-
y reduction algorithm for singular reversible rules: The part high-

lighted by a left vertical line represents the main di�erence of this algorithm from the

algorithm in Figure 5.3.

5.4. COMBINING REVERSIBLE RULES AND SYMMETRY 77

ICCP: 4 processors states stored states examined time

Original

(unordered network) 247,565 247,565 205s

Alg. 1 34,005 247,565 338s

Alg. 2 34,005 123,197 128s

ICCP: 5 processors states stored states examined time

Original > 6,500,000 states

unordered network)

Alg. 1 492,075 6,568,279 4 hours

Alg. 2 492,075 2,206,135 66 mins

Table 5.1: Comparison of the two reduction algorithms using reversible rules: Although the

same reduced state graphs are obtained by both algorithms, the second algorithm examined

fewer states and �nished in less than 30% of the time required by the �rst algorithm.

successor other than itself, the algorithm does not need to execute the non-reversible

rules (and apply �) to �nd their next state.

5.4 Combining Reversible Rules and Symmetry

Reductions using reversible rules and symmetry can be combined to obtain even

greater reduction. In order to combine the two techniques, a symmetric reversible

rule set must be used:

De�nition 5.7 (symmetric rule set) If a rule set T generates a state graph A =

hQ;Q0;�; errori, and H is a set of automorphisms on A, a rule set U � T is

symmetric if and only if for all q1; q2 2 Q, r 2 U and h 2 H, whenever q1
r
�! q2,

there exists r0 2 U such that h(q1)
r0

�! h(q2).

Theorem 5.6 A set of automorphisms H on the state graph A is also a set of auto-

morphisms on AU if U is a commutative, reversible, and symmetric rule set.

Proof. If q is a progenitor, for all r 2 U , r�(q) = q. Because U is a symmetric rule

set, for all r 2 U , r�(h(q)) = q and h(q) is in fact a progenitor.

On the other hand, for all h 2 H and t 2 T nU , if q0
t

=) q1 is in the reduced state

graph, there exists r1; :::; rk 2 U such that q0
r1;:::;rk;t
=) q1 is in the original state graph.

By the de�nition of automorphism, there exists r01; :::; r
0
k 2 U and t0 2 T nU such that

78 CHAPTER 5. VERIFYING SYSTEMS WITH REVERSIBLE RULES

h(q0)
r0
1
;:::;r0

k
;t0

=) h(q1) is in the original state graph. Therefore, h(q0)
t0

=) h(q1) is in the

reduced state graph. 2

Therefore, we can apply symmetry reduction on the reduced state graph obtained

by reversible rules:

De�nition 5.8 (combined reduced state graph) If a rule set T generates a

state graph A = hQ;Q0;�; errori, H is a set of automorphisms on A, and U � T is

a commutative, reversible, and symmetric rule set, the combined reduced state graph

is [AU]H = h�0(Q); �0(Q0); �
0
(�); error0i, de�ned as:

� �0(Q) = f[�(q)]jq 2 Qg

� �0(Q0)
0
= f[�(q)]jq 2 Q0g

� (q1; q2) 2 �0(�) if and only if there exist q 2 Q and t 2 T nU such that [�(q)] = q1
and [�(t(q))] = q2.

5.5 Implementation and Results

Implementation

In the current implementation, the reversible rules are identi�ed manually, and the

user provides special reversed rules to re-construct the original state before executing

the rule. The properties of these reversible rules are also checked manually. Section 5.6

describes how these properties could be determined by the veri�er.

In the new algorithm, there is no change to the global hash table structure, which

is only used for storing the progenitors. The extra memory used in the �rst algorithm

consists of the temporary variables during execution of �, and a temporary hash

table during the local search, which can be as small as required to store the largest

subgraph in the original state graph. The extra memory for the second algorithm is

even smaller; only up to n + 1 states are stored temporarily during the local search,

where n is the size of the reversible rule set. Because of the local search phase and

the execution of � to �nd the progenitor, the time required per state generated in the

reduction algorithm is longer than that in the original algorithm.

5.6. CHECKING THE PROPERTIES OF REVERSIBLE RULES 79

ICCP LIST1 LIST2 DASH-C DASH-L

(p4) (P4) (p4) w/o DMA (p3)

(unordered network) (p3)

Original size 247,565 301,029 329,601 26,925 55,366

Reduced size 34,005 112,784 162,736 15,751 36,728

Original time 205s 87s 250s 114s 188s

Reduced time 128s 72s 239s 85s 213s

phni : n-processor system

Table 5.2: Improvement on performance with singular reversible rules: Depending on the

number of reversible rules, reductions in memory of up to 86% are obtained.

Veri�cation Results

The reduction obtained by reversible rules depends on the number of reversible rules

in the system, and how many of them can be enabled at the same time. For ICCP, a

processor with an invalid cache line has two reversible choices to request for a shared

or exclusive copy; a processor with a shared cache line has two reversible choices to

request for promoting the shared copy to a exclusive copy or for removing the shared

copy; a processor with an exclusive copy has one reversible choice to write back the

data. Because of these �ve reversible rules, a large reduction in size and time is

obtained, as shown in Table 5.2 and Table 5.3.

For LIST1 and LIST2, there are two situations, each with one reversible choice;

the space reductions obtained are still quite large. DASH-C has only one situation

with two reversible choices and DASH-L has only one situation with one reversible

choice; therefore, the reductions are not as large as the other applications.

5.6 Checking the Properties of Reversible Rules

In the current implementation, the reversible rules are identi�ed and checked man-

ually, and the reversed rules are provided by the user. This section discusses how

this process could be performed automatically by a veri�er. Because of the absent

of channel primitives and implicit program locations (discussed below) in Mur', and

the many possibilities of detecting reversible rules, this process is not automated in

Mur' yet.

80 CHAPTER 5. VERIFYING SYSTEMS WITH REVERSIBLE RULES

ICCP (p4) LIST1 (p4) LIST2 (p4) DASH-C DASH-L (p3)

(unordered network) w/o DMA (p3)

Reduced size (s) 11,814 13,044 13,959 4,575 9,313

Reduced size (s & r) 1,760 4,926 6,894 2,672 6,170

Reduced time (s) 28s 13s 24s 63s 96s

Reduced time (s & r) 13s 11s 22s 50s 96s

ICCP p4 p5 p6 p7 p8

Original size (unordered network) 247,565 > 6,500,000 states

Reduced size (s) 11,814 68,879 358,078 > 1,500,000 states

Reduced size (s & r) 1,760 6,021 18,118 49,045 121,302

Original time 205s { { { {

Reduced time (s) 28s 349s 3,762s { {

Reduced time (s & r) 13s 98s 615s 3,283s 12,801s

s : Symmetry Reduction

r : Reversible Rules Reduction

phni : n-processor system

Table 5.3: Improvement on performance with both symmetry and reversible rules: Even

greater reductions are obtained.

First of all, assume that the reversed rules are provided by the user, and that the

reversed rules do indeed construct the original state before executing the reversible

rules, we still need to check whether or not the set of reversible rules are commutative,

essential and singular.

The determination of the commutative and singular properties can be facilitated

by the notion of channels. A channel serves as an internal bu�er where values can

be stored. The two operations allowed are send and receive. Although channels are

not implemented in Mur', this concept can be implemented easily with an array.

Similar to the way that channels are important in the detection of the indepen-

dence property for partial order reduction in SPIN [HGP92], they are also important

in reduction using reversible rules. In partial order reduction, a send and a receive

on the same channel are regarded as independent. In reduction using reversible rules,

channels are used as serialization points, that is, a receive depends only on the pre-

vious execution of exactly one send. This is captured as the singular property. The

commutative property makes use of symmetry in a unordered channel, which could

probably be used in partial order reduction as well.

5.6. CHECKING THE PROPERTIES OF REVERSIBLE RULES 81

A su�cient but not necessary condition for each of the commutative, essential,

and singular properties is summarized as follows:

commutative: Two reversible rules r1 and r2 are commutative if one of the following

is true:

� the variables accessed by r1 and r2 are disjoint;

� the only common variables accessed by both r1 and r2 are channels in

which the messages can be received out of order, and each rule only send

messages to these channels; or

� the execution of each rule disables the other rule.

essential: A rule r is essential if both of the following are true:

� only r assigns a certain value to a particular variable; and

� all other rules that check the variables written by r also change the value

of at least one of these variables.

singular: A reversible rule set U is singular if for all rules r1; r2 2 U , and for all rules

t 2 T n U , one of the following is true:

� the variables accessed by t and one of the rules in fr1; r2g are disjoint; or

� the only common variables accessed by r1; r2; and t are channels, t only

receives from the channels once, and both r1 and r2 only send to the

channels.

In the �rst case, because the rule t only receives from the channels once, the

channels serialize the messages from the two reversible rules, and only one mes-

sage is visible to t.

On the other hand, reversible rules and the corresponding reversed rules can be

detected automatically in many situations. The main di�culty in reconstructing the

original state is that the original value of a variable before an assignment is lost. In

some situations, the original value is implicitly speci�ed in the program:

82 CHAPTER 5. VERIFYING SYSTEMS WITH REVERSIBLE RULES

� In the case of concurrent program veri�cation, each program has a program

counter. In many cases, there is only one way to reach a certain location in

a program. For example, consider an if statement \l1 : if (x = 2) then l2 :

x := 3; end l3 :;" where l1; l2; l3 are labels for the corresponding locations. The

only way to get to a state with l2 active is to go through l1. Therefore, given a

state with x = 2 and l2 active, we can replace l2 with l1 to reconstruct the state

before executing the guard of the program.

� Consider the guarded command \rule x = 2) x := 3; end", the original

value of x before the execution of this rule must be 2. Therefore, given a state

with x = 3, we can reconstruct the state before executing the rule by changing

the value of x back to 2. Other similar cases include adding a new message into

a network array, replacing an array element with the special unde�ned value ?.

� Consider the assignment \x := x + 1;", the original value of x can be obtained

by subtracting 1 from the �nal value of x.

5.7 Comparison with Other Work

Partial Order Techniques

The commutative property and the singular property may look similar to the inde-

pendent properties for partial order reduction methods [Val90, Val91, Val93, God90,

GW93, GW94, God95, HP94, Pel94, Pel96]. However, the reduction proposed in this

chapter depends only on the �nite behavior of the reversible rule set and the �nite

behavior of the other rules w.r.t. to the reversible rule set. Therefore, the detection of

the commutative property and singular property is much simpler than the calculation

of a persistent or stubborn set.

In order to understand the di�erences better, two contrived examples are presented

in this section. The �rst example is a system of n fully-independent processes with a

single reversible transition:

Pi : pi
ai
�! qi

5.7. COMPARISON WITH OTHER WORK 83

states states

examined stored

original state graph 2n 2n

partial order reduction n+ 1 n+ 1

reversible rule reduction 2n 1

without singularity property

reversible rule reduction n+ 1 1

with singularity property

hp1; p2; :::; pni

a1

hq1; p2; :::; pni

a2

:::

an

hq1; q2; :::; qni

Partial Order Reduction

hp1; p2; :::; pni -a1
Q
Q
Q
QQs
a2

:::

A
A
A
A
A
A
A
A
AU

an

hq1; p2; :::; pni

hp1; q2; :::; pni

:::

hp1; p2; :::; qni

Reversible Rules Reduction

Table 5.4: Comparison of partial order and reversible rules, I: The partial order method

collapses redundant paths into a single path, whereas the singularity property shortens

every path to length of one execution only.

The performance on this system is summarized in Table 5.4. While only 1 state is

stored in the algorithm using reversible rules, the actual number of states examined

is the same as the partial order algorithm. The actual transitions that are executed

illustrate the main di�erence between the two approaches: The partial order method

collapses redundant paths into a single path, whereas the singularity property shortens

every path to a length of one execution only.

The second example has n fully-independent processes with two reversible transi-

tions:

Pi : qi
ai
 � pi

bi
�! ri

The performance on this system is summarized in Table 5.5. In this case, the

algorithm using singular reversible rules performs much better than the partial order

84 CHAPTER 5. VERIFYING SYSTEMS WITH REVERSIBLE RULES

states states

examined stored

original state graph 3n 3n

partial order reduction 2(n+1) � 1 2(n+1) � 1

reversible rule reduction 3n 1

without singularity property

reversible rule reduction 2n+ 1 1

with singularity property

hp1; p2; :::; pni

@
@@R

�
��	
a1 b1

hq1; p2; :::; pnihr1; p2; :::; pni

@
@@R

�
��	
a2 b2 @

@@R
�

��	
a2 b2

::::::::::::

Partial Order Reduction

hp1; p2; :::; pni -a1
Q
Q
Q
QQs
b1

:::

A
A
A
A
A
A
A
A
AU

bn

hq1; p2; :::; pni

hr1; p2; :::; pni

:::

hp0; p1; :::; rni

Reversible Rules Reduction

Table 5.5: Comparison of partial order and reversible rules, II: The number of states

examined by the partial order algorithm is exponential in the number of processes, whereas

the number of states examined by the algorithm using singular reversible rules is linear in

the number of processes.

method, reducing the number of states examined to linear in the number of processes.

However, if the transitions are not reversible, no reduction can be obtained from our

algorithm. Therefore, methods using partial order and methods using reversible rules

have their own domains of applications where one can perform better than the other.

An interesting question for future investigation is how to combine these two methods.

Abstraction

The properties of the reversible rules make sure that every transient state in a sub-

graph can be generated from the progenitor via the reversible rules, and each state

can be mapped back to the progenitor by reverse-execution of the reversible rules.

5.7. COMPARISON WITH OTHER WORK 85

Compared to conventional abstraction [GL93b], the method presented here does not

require the user to provide a suitable abstract domain, and does not produce false

negative results as one often �nds with badly chosen abstract domains. It can be used

for the veri�cation of deadlock-freedom, error and invariant checking, and stuttering-

invariant LTL model checking.

State space caching

The basic idea of discarding the transient states is similar to a state space caching

algorithm [JJ91]: In the basic algorithm presented in this chapter, all reachable states

are examined in the original state graph, but only a small portion of them are stored.

However, we discard the states only when it can be determined from the existing

states in the hash table that those discarded states have already been examined.

Therefore, our method never examines a state more than once, whereas state space

caching may examine the same state many times.

Invisible transitions

Independent to this work, Hillel Miller and Shmuel Katz [MK96] have investigated

how to generate a reduced state graph by exploiting \invisible transitions". Although

the motivation is di�erent, the transitions in the abstract state graph are similar:

an abstract transition
t

=) can be regarded as a series of original transitions
r1;:::;rn;t
�! .

However, their method takes at least as much time to generate the original state graph,

with a potential of very large time overhead due to the re-visitation problem: a state

that is removed from the state graph may be generated and examined many times.

They rely on a complicated heuristic to solve this re-visitation problem. Instead

of relying on heuristics, the method described in this chapter takes advantage of

the reversible properties, which guaranteed only a predictable overhead (the cost of

the function reduce()) to check whether or not a discarded state has been examined

previously.

86 CHAPTER 5. VERIFYING SYSTEMS WITH REVERSIBLE RULES

Chapter 6

Verifying Scalable Systems

Chapter Overview 1

The techniques described until now have focused on veri�cation of systems with a

�nite and known number of components. In contrast, this chapter describes an ab-

straction for verifying scalable systems with an arbitrary number of replicated com-

ponents. The abstraction presented uses a set of repetition constructors to simplify

the state space by ignoring the exact number of components in a system.

Although similar abstractions have previously been proposed to solve this problem

(see Section 1.2.3 on previous work), they usually require a lot of e�ort and expertise

from the user. The techniques presented in this chapter overcome these problems:

through a static analysis of a description language, a veri�cation tool can detect when

to use such an abstraction, and a fully automatic algorithm is provided to construct

an abstract state graph from a conventional description e�ciently.

6.1 Abstraction Using Repetition Constructors

A lot of scalable systems can be veri�ed using a set of repetition constructors to

simplify the state space. This section illustrates what a repetition constructor is, and

how the abstraction can be done.

1This chapter is based on materials published in [ID96c].

87

88 CHAPTER 6. VERIFYING SCALABLE SYSTEMS

A scalable system typically consists of a collection of components, including com-

ponents that may be replicated from 1 to n times. At any time, each component has

a state (we say \the component is in the state"); the global state of the system at

any time is the product of its component states.

In the state graph of a scalable system, we can often �nd many similar states that

di�er only in the number of components in certain states. For example, the states A

and B shown in Figure 6.1 are two similar states: state A has two processors with an

invalid cache line and one processor with a shared copy of a memory location, whereas

state B has only one processor with an invalid cache line and two processors with a

shared copy of a memory location. Otherwise the two states are exactly the same.

As the number of components in the system increases, the number of such similar

states increases exponentially: for a system with n components and each component

with k possible component states, there can be up to kn similar states in the state

graph. Because of this explosion, a veri�cation algorithm which relies on an explicit

search of the state graph can only verify systems with a small number of replicated

components.

Fortunately, in many scalable systems, two similar states have similar successors

as well. This property is de�ned later as the repetitive property. The intuition behind

this property can be illustrated by the two transitions shown in Figure 6.1. In the

�rst transition where the memory receives the read-request (depicted as RR) from

processor 1, the successors generated from A and B are similar, di�ering only in the

number of processors with an invalid cache line and in the number of processors with

a shared copy of the memory location. In the second transition where the memory

receives the write-request (depicted as WR) from processor 2, the successors are also

similar: the successor of A has one processor with a shared copy of the memory

location and a pending invalidation, whereas the successor of B has two processors

with a shared copy of the memory location and a pending invalidation for each of

these two processors.

One consequence of the repetitive property is that these systems can often be

proved correct without modeling the precise number of replicated components. For

example, suppose a multiprocessor has identical caches numbered 1 to 8, and that

6.1. ABSTRACTION USING REPETITION CONSTRUCTORS 89

RP WP I I S
P1 P2 P3 P5P4

WR

Memory

Data

Shared by P1, P5

RP WP I SS
P1 P2 P3 P5P4

WR

Memory

Data

Shared by P1,P4, P5

RP WP I I S
P1 P2 P3 P5P4

RR

Memory

Data Inv

Owned by P2

RP WP I SS
P1 P2 P3 P5P4

RR

Memory

Data Inv
Inv

Owned by P2

Data : Reply with the right data

RR : Read request message
WR : Write request message

Inv : Invalidation message

Owned by P2 : the memory location is owned by P2
Shared by P1, etc : the memory location is shared by P1, etc

I : Invalid cache line
S : Shared cache line
RP : Read pending message
WP : Write pending message

RP WP I I S
P1 P2 P3 P5P4

Shared by P5

WR
RR

Memory

Network

RP WP I SS

read request
process

read request
process

process
write request

process
write request

State BState A

NetworkNetwork

Network Network

Network

P1 P2 P3 P5P4

WR
RR

MemoryShared by P4, P5

Figure 6.1: Repetitive property in a cache coherence protocol: Consider states A and B

(in a cache coherence protocol), which di�er only in the number of components with state I

and state S. The transitions show that their successors also di�er only in the number of

components with state I, state S, or state S with a pending invalidation.

90 CHAPTER 6. VERIFYING SCALABLE SYSTEMS

a particular memory value is invalid in caches 1,2,3,5,6,7 and writable in cache 4.

An abstract state may be used to record that more than zero caches are invalid ,

and exactly one is writable, \forgetting" not only the number of processors in each

state but also the ordering of the processors. Formally, the abstract state described

in this chapter includes a mapping from component states to repetition constructors

0; 1; and +:

� Null (0) : indicates zero instance.

� Singleton (1) : indicates one and only one instance.

� Plus (+) : indicates one or multiple instances.

This abstraction may convert an in�nite state graph of a system with an arbitrary

number of components into a �nite abstract state graph. This abstract state graph

is an approximation of the original state graph. This approximation is conservative

for veri�cation of invariants and 8CTL* model checking: it never fails to report an

error, but may report an error when none exists.

Similar abstractions have been proposed previously [Lub84, Dij85, CG87, PD95b,

PNAD95, Pon95]. However, these methods require the user to write an executable

description of the abstract behavior: For example, as summarized in Figure 6.2,

in the symbolic state model proposed by Pong and Dubois, the system to be veri-

�ed is manually modelled in a special format of the form (s; [r1; r2; : : : ; rn]), where

s contains all information that does not belong to any component, and each ri con-

tains all relevant information about the component i. The next step is to rear-

range the components so that components with the same state are clustered together:

(s; [q1; : : : ; q1| {z }
a1

; : : : ; qk; : : : ; qk| {z }
ak

]), where ai denotes the number of qi's. This format al-

low the exact number of components ai to be replaced with an abstracted number,

such as +. Following this abstraction the transitions in the system are then rewrit-

ten manually in term of the abstract states, so that an abstract state graph can be

constructed.

This executable description is di�erent from the concrete description used for

speci�cation or synthesis, so their methods require more work, and raises the question

of whether the concrete and abstract descriptions are consistent.

6.2. DETECTING REPETITIVE PROPERTY 91

...r1 r2 rn
-

modelled as

(s; [r1; r2; : : : ; rn])

-
rearranged to

(s; [q1; : : : ; q1| {z }
a1

; : : : ; qk; : : : ; qk| {z }
ak

])

-
abstracted into

(s; fq+1 ; : : : ; q
+
k g)

-

automatic veri�cation using

manually translated

abstract transitions

an abstract state graph

Figure 6.2: Manual translation to use repetition constructors: In previous work, in order

to generate an abstract state graph, the user has to explicitly model the system in a special

format, and to rewrite the transitions in term of the abstract states.

In the remainder of this chapter, a fully automatic abstraction algorithm is de-

scribed, which does not require an abstract executable description.

6.2 Detecting Repetitive Property

Instead of requiring an executable abstract description from the user, we provide a

high-level programming language in which a user can easily describe a protocol in

its concrete form. The language extends the Mur' description language with a new

datatype, called repetitiveID, to represent the indices of the replicated components.

The Mur' compiler can then detect whether this datatype is used in a way that

admits veri�cation in an abstract state space.

To describe a scalable system in its concrete form, the replicated components are

usually modeled in Mur' by de�ning a constant for the number of components (say

CompCount), and de�ning a subrange CompID: 1 .. CompCount for the indices of the

components. The local states of the components are stored in an array indexed by

CompID. The rules describing the components are enclosed in a ruleset with a CompID

92 CHAPTER 6. VERIFYING SCALABLE SYSTEMS

parameter which represents the component to which the rule belongs. One of the

components \takes a step" when its rule is chosen and executed. Using this conven-

tion, a Mur' description becomes scalable, meaning that the number of replicated

components can be changed simply by modifying CompCount.

A new datatype, called repetitiveID, is used to determine whether a system can

be veri�ed with the abstraction using repetition constructors, and to provide enough

information for Mur' to construct an abstract state graph. RepetitiveID is a sub-

type of conventional integer subrange (in fact, it is a subtype of scalarset), which

should be used for the indices of replicated identical components, such as processors

in a multiprocessor. For example, we can change the subrange 1..numProcessor

to RepetitiveID(numProcessor), so that the veri�er will verify the system in the

smaller abstract state space. Mur' automatically checks that certain restrictions are

satis�ed so that the veri�cation is sound. Since a member i of the repetitiveID type

is used as the name of a component in the description, it is natural to identify i and

the component, and refer to \component i" below.

A value of repetitiveID type can be assigned to variables, tested for equality with

other values, used as an array index, or bound in a RuleSet or a for loop, etc.

As presented below, there are six restrictions on the use of RepetitiveID. In spite of

these restrictions, the repetitiveID type can be used to model many systems, such

as bus-based multiprocessor cache coherence protocols [PD95b] and network-based

cache coherence protocols with a central or distributed directory [PNAD95, DDHY92,

LLG
+
90].

6.2.1 Restrictions for Abstract State Generation

Intuitively, the �rst goal of the restrictions on repetitiveID is to make sure that Mur'

can construct the abstract states by isolating the parts of the state corresponding to

the replicated components into a single array indexed by the repetitiveID type. The

�rst two restrictions make it possible to do this automatically:

1. The Mur' program has at most one RepetitiveID type. This restriction simpli�es

the analysis; otherwise, two repetitiveID types may interact with each other, and

6.2. DETECTING REPETITIVE PROPERTY 93

in such cases, we may not be able to isolate two sets of replicated components

into two arrays indexed by the two repetitiveID types.

2. The elements of a symmetric array cannot contain another array indexed by the

RepetitiveID. A symmetric array is a multiset, or an array indexed by a scalarset

or a repetitiveID. If this restriction is not satis�ed, the data structure may be

di�cult to break down into a single linear array indexed by the repetitiveID.

The next two de�nitions describe when a component can be abstracted by the

repetition constructors. A central-directory-based cache coherence protocol, similar

to the one in Figure 6.1, is used to illustrate these de�nitions: consider a cache

coherence protocol whose state includes an array of local processor control states, a

multiset of messages representing a communication network, and a memory where

each memory line has an owner �eld pointing to a processor that has a writable copy

of the line, along with the data in the memory line. The messages in the network

have to and from �elds, which can be processor indices or a value representing the

memory itself.

De�nition 6.1 The component state of the component i includes the following state

variables:

� for every array A indexed by the components, the element A[i]. In the example,

the local control state of processor i becomes part of the component state for i.

� for every multiset M that is not assigned to a component state by the previous

case, the elements of M containing i and no other components. In the example,

the messages between the memory and processor i become part of the component

state for i.

In our example, the memory value (which does not contain a component index), the

owner �eld (which is not in a multiset), and messages from one processor to another

(which contain two component indices) are not included in any component states.

De�nition 6.2 A component i is abstractable if and only if its component state con-

tains all instances of i occurring in the global state, and contains no other component

indices.

94 CHAPTER 6. VERIFYING SCALABLE SYSTEMS

In our example, a processor i would not be abstractable if the owner �eld had the

value i, or if there were a message between i and another processor j.

The component states for two abstractable components i and j are considered

to be the same if and only if the only di�erence between corresponding variables is

that variables in component i have the value i and variables in component j have the

value j.

This notion of abstractable components enables Mur' to construct an abstract

state automatically. As shown in Figure 6.3, without actually rearranging the state

to the special form (s; [q1; : : : ; qk]) described in the previous section, the component

states of two abstractable components can be compared, and, if the component states

are the same, combined using the constructor +. Components that do not have the

same state with other processors, and those that are not abstractable, can be described

by the repetition constructor 1.

In the rest of this chapter, we regard an original state conceptually as being a

pair (s; [q1; : : : ; qk]), where [q1; : : : ; qk] is an array of component states indexed by the

indices of the abstractable components, and s is an assignment to the rest of the state

variables.

6.2.2 Restrictions for Abstract Successor Generation

The remaining restrictions on the repetitiveID type ensure that the abstract suc-

cessors (and therefore, the abstract state graph) can be constructed automatically.

Intuitively, there are two goals to the remaining restrictions. The �rst one is to make

sure that the components are symmetric, so that they can be reordered arbitrarily

without changing the behavior of the system. The second goal is that, if compo-

nents c1; :::; cn have an identical component state r, these components also have an

identical component state r0 in an immediate successor, and the value of r0 does not

depend on the exact value of n. There is one exception: there can be a special active

component associated with each transition rule, corresponding to the active thread

of control in a interleaving model. The component state of this active component is

treated di�erently from other component states, even if they are otherwise identical.

An example of where this is useful is mutual exclusion: many components may be in

6.2. DETECTING REPETITIVE PROPERTY 95

P4P3P2P1

?

RReq
WReq

WReq

InvalidSharedShared

Shared: P1, P2
Value: 0

+ 0 11

P4P3P2P1

?

RReqWReq

InvalidShared

Value: 0
Shared: P1,

Figure 6.3: Automatic generation of abstract states: Without rearranging the state to the

form (s; [q1; : : : ; qk]), the component states of two abstractable components can be com-

pared. Since processors 1 and 2 have the same component state, one of them is removed

from the state (by using the constructor 0, and assigning the special unde�ned value to the

variables in the component states), and the repetition constructor of other one is changed

to +. Processor 3 does not have the same state with any other processor, and processor 4

is in some state that is not abstractable (represented by `?'); therefore, both of them are

described by the repetition constructor 1.

96 CHAPTER 6. VERIFYING SCALABLE SYSTEMS

identical states, waiting for a resource, but only the one that becomes active �rst will

obtain it.

There are four restrictions on the use of RepetitiveID to ensure that these prop-

erties are true.

3. No \symmetry-breaking" operations (see Chapter 3). There are no literal con-

stants in the repetitiveID type; arithmetic operations are not allowed; com-

parisons such as < are not allowed. This restriction allows us to rearrange

and cluster components with the same component states, without a�ecting the

behaviors of the state.

4. Bindings of the RepetitiveID type in RuleSets may not be nested. Because the

component index of the active component is bound to the parameter in a rule

set, this restriction associates at most one active component to each transition

rule.

5. Bindings of the RepetitiveID type in for statements, exists expressions, and

forall expressions may not be nested. The variables written by each iteration of

a for statement on the RepetitiveID must be disjoint. This restriction forbids

the counting of components, and also forbids abstractable components with the

same component state to behave di�erently.

6. If a variable in the state has the RepetitiveID type, and its value corresponds to

some abstractable components, the variable may not be used to index an array

with RepetitiveID index type. This restriction forbids abstractable components

with the same component state to behave di�erently.

The properties enforced by these restrictions can be summarized by two properties:

the symmetry and the repetitive property.

Restriction 3 implies that repetitiveID is a subtype of scalarset, and every per-

mutation of the indices generates an equivalent state, as described in Chapter 3.

The equivalent class [q] of any state q can be denoted compactly in an exponent

representation:

6.2. DETECTING REPETITIVE PROPERTY 97

De�nition 6.3 (exponent representation) An exponent representation of an

equivalence class is of the form: (s; fqa11 ; : : : ; qakk g), where integers a1; :::; ak � 1,

and q1; :::; qk are distinct. It represents the set of states that are equivalent to

(s; [q1; : : : ; q1| {z }
a1

; : : : ; qk; : : : ; qk| {z }
ak

]) where ai denotes the number of qi's.

Restrictions 4, 5, and 6 enforce the repetitive property on the symmetry equiv-

alence class, de�ned later in this section. However, before we de�ne the repetitive

property, we need to de�ne the active component associated with a transition, and

the representation that isolates the active component.

De�nition 6.4 (active component) Given a Mur' rule generated by a ruleset

over a repetitiveID type, the active component is the component referred by the value

bound to the ruleset. If a Mur' rule is not generated by a ruleset over a repetitiveID

type, there is no active component associated with this rule.

If the active component is abstractable, we can isolate the active component and

the environment, using the following representation:

De�nition 6.5 (active representation) Given an equivalence class in the expo-

nent representation p = (s; fqa11 ; : : : ; qakk g), and a transition rule t such that the active

component in p has an abstractable component state qi, the active representation of

p, w.r.t. the rule t, is de�ned as:

(s; qi; fq
a1
1 ; : : : ; q

(ai)�1
i ; : : : ; qakk g) if ai > 1; and

(s; qi; fq
a1
1 ; : : : ; q

a(i�1)

i�1 ; q
a(i+1)

i+1 ; : : : ; qakk g) if ai = 1,

representing the same set of states as p.

Given an active representation (s; q; fqa11 ; : : : ; qakk g) for a transition rule t,

fqa11 ; : : : ; qakk g is called the abstracted environment of q, and s is the unabstracted

environment of q.

If there is no active component for t (or if the active component is not

abstractable), the active representation is of the form (s; fqa11 ; : : : ; qakk g), where

fqa11 ; : : : ; qakk g is the abstracted environment, and s represents the unabstracted envi-

ronment (and the active component).

98 CHAPTER 6. VERIFYING SCALABLE SYSTEMS

The repetitive property is de�ned using the active representation:

De�nition 6.6 (repetitive property) A system is repetitive if and only if, given

an active representation (s; q; fqa11 ; : : : ; qakk g) for a transition rule t, we have:

Similarity in error behaviors

t executes an error statement on (s; q; fqa11 ; : : : ; qakk g) if and only if it executes

an error statement on (s; q; fq1; : : : ; qkg).

Similarity in successors

t transforms (s; q; fqa11 ; : : : ; qakk g) to (s0; r; fra11 ; : : : ; rakk g) if and only if t trans-

forms (s; q; fq1; : : : ; qkg) to (s0; r; fr1; : : : ; rkg), where r; r1; : : : ; rk may not be

distinct or abstractable.

And similarly for any equivalence class p0 = (s; fqa11 ; :::; qakk g) and a transition rule

t without an abstractable active component.

Pictorially, the repetitive property may be summarized as:

(s; q; fq1; : : : ; qkg)

(s0; r; fr1; : : : ; rkg)
?
t ,

(s; q; fqa11 ; : : : ; qakk g)

(s0; r; fra11 ; : : : ; r
ak
k g)

?
t

The repetitive property makes sure that the result of executing t on the states

represented by the active representation (s; q; [qa11 ; : : : ; qakk]) does not depend on the

exact values in a1; :::; ak.

Although r; r1; : : : ; rk in the state generated by t may not be distinct or ab-

stractable, the correct equivalence class represented by (s0; r; fra11 ; : : : ; rakk g) can be

obtained by repartitioning the components into abstractable components and non-

abstractable components, rearranging the abstractable components, and combining

abstractable components with the same component state. In the rest of the paper,

this process is implicitly assumed whenever a rule is executed.

The following theorem, proved in Appendix A.4, is used in the next section to

construct the abstract state graph.

Theorem 6.1 The system described by a Mur' program with a repetitiveID is sym-

metric and repetitive w.r.t. the components named by the repetitiveID.

6.3. AUTOMATIC ABSTRACTION 99

6.3 Automatic Abstraction

Once a veri�er knows how to isolate the abstractable components in a state, and

knows that the description is symmetric and repetitive, it can generate the abstract

state graph using a fully automatic algorithm.

6.3.1 Abstract States

Conceptually, in order to generate an abstract state from an original state p, the

equivalence class [p] = (s; fqa11 ; : : : ; qakk g) is constructed �rst, and then an abstract

state is constructed by replacing every ai > 1 with the constructor +. In the rest of

the chapter, an abstract state is written in the form (s; fqe11 ; : : : ; q
ek
k g), where each ei

is 1 or + (when the constructor is 0, the component state is omitted).

An original state a = (s; [r1; : : : ; rn]) is represented by an abstract state A =

(s; fqe11 ; : : : ; q
ek
k) if the following conditions are satis�ed:

� ei = + if qi occurs in [r1; : : : ; rz] two or more times;

� ei = 1 or ei = + if qi occurs in [r1; : : : ; rz] exactly once;

� a component state does not appear in fq1; : : : ; qkg if it does not appear in

[r1; : : : ; rz].

The abstract states are partially ordered: (s; fqe11 ; :::; q
ek
k g) � (s; fq

e01
1 ; :::; q

e0
k

k g) if

and only if ei = + implies e0i = + for all 1 � i � k. In this case, (s; fq
e01
1 ; :::; q

e0
k

k g)

is said to cover (s; fqe11 ; :::; q
ek
k g) (and the two states are comparable). An example is

shown below:

�
��

@
@@

�
��

@
@@

(s; fq+1 ; q
+
2 g)

(s; fq11 ; q
+
2 g) (s; fq+1 ; q

1
2g)

(s; fq11 ; q
1
2g)

The notation a 2 A is used to indicate that abstract state A represents original

state a. The set of abstract states representing a particular concrete state has a

100 CHAPTER 6. VERIFYING SCALABLE SYSTEMS

unique minimum element in this order; the abstraction function abs maps a concrete

state to its minimum abstract representative.

In the actual implementation, Mur' does not explicitly rearrange the global vari-

able to obtain (s; [r1; : : : ; rn]). Therefore, to obtain an abstract state, a slightly more

complicated procedure is needed. First of all, an array of repetition constructors is

declared internally and attached to every state. Initially, the constructor 1 is assigned

to every element of this array. Because of symmetry (described in Chapter 3), many

states are equivalent to the current state. Therefore, the unique representative �(q) is

then constructed to represent this set of equivalent states (still with the constructor

1 for every component). Finally, an abstract state is constructed by comparing every

pair of the component states. If two component states are both abstractable and

have the same component state, the constructor of one of them is converted to +.

The constructor of the other is converted to 0, and the variables in the corresponding

component state are assigned the special unde�ned value ?.

6.3.2 Abstract Transitions

In order to perform veri�cation on the abstract state space, it is necessary to be able

to generate the successors of an abstract state. How to do this is the fundamental

problem that must be solved in any veri�cation scheme using abstraction. There are

several possible solutions:

� Write the abstract transition rules manually [PD93a].

� Write an abstract interpretation for the operations in the transition

rules [CC92].

� Translate the transition rules into Boolean formulae and convert them to

Boolean formulae for the abstract transition rules through a �nite existential

quanti�er [GL93b].

� Generate the successors from every concrete state represented by an abstract

state, and convert them back to a set of abstract successors.

6.3. AUTOMATIC ABSTRACTION 101

However, the �rst two options are labor-intensive, and it is di�cult to guarantee

that the abstract behavior is consistent with the concrete behavior. The last two

options require that the set of original states represented by an abstract state is

�nite, and it is impossible to apply them in our case where an in�nite number of

states is represented by an abstract state.

The key to our method is a variant of the fourth alternative, modi�ed so that,

instead of generating the successors from every state represented by an abstract state

A, up to two representatives are chosen (see below). The successors of these rep-

resentatives are generated by executing the original transition rules, and they are

converted to abstract successors of A. The repetitive property, described in the pre-

vious section, ensures that these abstract successors represent the successors of all

original states represented by A.

Automatic construction of the abstract successors

Given an abstract state A, the automatic construction algorithm chooses up to two

representatives from the set of states represented by A. The choice of these repre-

sentatives depends on the abstract state and on the active component in a transition

rule. Given an abstract state p = (s; fqe11 ; :::; q
ek
k g), and a transition t, there are three

possible situations:

1. There is no active component for the transition t, or the active component is

not abstractable in p, that is, it belongs to s.

2. The component i in p is active, with repetition constructor 1 and component

state qi.

3. The component i in p is active, with repetition constructor + and component

state qi.

In all three cases, the construction of the abstract successors consists of four

steps, as depicted in Figure 6.4. In the �rst case, the veri�er uses the symmetry-

equivalence class [p] = (s; fq1; : : : ; qkg) as the representative for the abstract state.

After executing t on a canonical state in [p] to obtain an original state q0, we can

102 CHAPTER 6. VERIFYING SCALABLE SYSTEMS

restore the original array of repetition constructors on the equivalence class [q0] =

(s0; fr1; : : : ; rkg) to obtain (s0; fre11 ; : : : ; r
ek
k g). Finally, the abstract successor can be

obtained after repartitioning the components into abstractable components and non-

abstractable components, rearranging the abstractable components, and combining

abstractable components with the same component state.

The second case is similar to the �rst case, except that the active representa-

tion (s; qi; fq1; : : : ; qi�1; qi+1; : : : ; qkg) is used instead of the equivalence class [p] =

(s; fq1; : : : ; qkg). After executing t on the active representation, the abstract succes-

sor can be recovered by restoring the original array of constructors.

The last case is the most di�cult case. The repetitiveID restrictions allow a

transition to have di�erent e�ects on the active component and the other components

with the same component state. Therefore, the states represented by the abstract

state are partitioned into two sets of equivalence classes (where ai 2 ei means that

ai = 1 if ei = 1; and ai > 1 if ei = +) :

n
(s; fqa11 ; : : : ; q1i ; : : : ; q

ak
k g) j ai 2 ei

o
; and

f(s; fqa11 ; : : : ; qzi ; : : : ; q
ak
k g) j ai 2 ei and z � 2g

Two representatives (s; qi; fq1; : : : ; qi�1; qi+1; : : : ; q
ak
k g) and

(s; qi; fq1; : : : ; qi; : : : ; qkg) are chosen from these two partitions. The equivalence

classes of the successors of these two representatives can be generated by execut-

ing t on the corresponding canonical states. The abstract successors can be recov-

ered by restoring the original array of constructors, repartitioning the components

into abstractable components and non-abstractable components, rearranging the ab-

stractable components, and combining abstractable components with the same com-

ponent state.

During the construction of the successors, if an error statement is executed, or if

the invariant is false in the successors before restoring the constructors, the abstract

successor is error.

6.3. AUTOMATIC ABSTRACTION 103

CASE 1

(s; fqe11 ; :::; qenn g)

?

(s; qi; fq1; :::; qng)

?t

(s0; r; fr1; :::; rng)

?
(s0; fre11 ; :::; r

ek
k g)

?
abstract successor A

CASE 2

(s; fqe11 ; :::; q1i ; :::; q
en
n g)

?

(s; qi; fq1; :::; qi�1; qi+1:::; qng)

?t

(s0; r; fr1; :::; ri�1; ri+1; :::; rng)

?
(s0; fre11 ; :::; r

ei�1

i�1 ; r
1; r

ei+1

i+1 ; :::; r
ek
k g)

?
abstract successor A

restoring constructors

re-partition
and combining

restoring constructors

re-partition
and combining

CASE 3

(s; fqe11 ; :::; q+i ; :::; q
en
n g)
Z
ZZ~

�
��=

(s; qi; fq1; :::; qi�1; qi+1; :::; qng)

?t

(s0; r; fr1; :::; ri�1; ri+1; :::; rng)

?
(s0; fre11 ; :::; r

ei�1

i�1 ; r
1; r

ei+1

i+1 ; :::; r
ek
k g)

?
abstract successor A

(s; qi; fq1; :::; qi; :::; qng)

?t

(s0; r; fr1; :::; ri; :::; rng)

?
(s0; fre11 ; :::; r1; r+i ; :::; r

ek
k g)

?
abstract successor B

restoring constructors

re-partition
and combining

Figure 6.4: Automatic generation of abstract successors: The abstract successors of an

abstract state can be generated by 1) choosing the right representative(s), 2) executing the

original transition rules, 3) restoring the repetition constructors from the abstract state, 4)

repartitioning the components into abstractable components and non-abstractable compo-

nents, rearranging the abstractable components, and combining abstractable components

with the same component state.

104 CHAPTER 6. VERIFYING SCALABLE SYSTEMS

Because of the restrictions of the RepetitiveID, the abstract state graph generated

this way has the following property:

Property 6.1 Given two concrete states a and b that are reachable in the original

state graph, such that (a; b) is a transition in the original state graph, there exists

abstract states A and B such that a 2 A, b 2 B, and (A;B) is a transition in the

abstract state graph.

Because of Property 6.1 and because the abstract start states represent all concrete

start states, it can easily be proven by induction that for every state q reachable from

an initial state in the original state graph, at least one abstract state representing q is

reachable from an abstract initial state. It follows from this result that if the abstract

state graph satis�es a 8CTL* formula f , the original state graph also satis�es f

(c.f. [BBG
+
93, DGG94]). Because the abstract state graph is an approximation,

it may result in reports of non-existent errors, and it cannot be used for deadlock

detection or 9CTL* model checking.

6.3.3 On-the-Fly Abstraction Algorithms

The automatic construction discussed so far can be used to generate an abstract state

graph for verifying systems of arbitrary sizes. However, the abstract state graph

for the family of systems of di�erent sizes may be in�nite and the �rst algorithm

may not terminate. Therefore, the algorithm used in Mur' uses a slightly di�erent

construction to generate an abstract state graph for verifying a system of a �xed size.

Both algorithms are summarized in this section.

Although the algorithm used in Mur' veri�es a system of a �xed size, the results

may be generalized to systems of arbitrary sizes, using saturated state graphs. A

saturated state graph obtained from a system of size n also represents the behavior

of a family of systems with sizes larger than n.

Algorithm for verifying systems of arbitrary sizes

An algorithm for verifying a system of an arbitrary size is shown in Figure 6.5.

Start states in a scalable system typically consists of components in the same initial

6.3. AUTOMATIC ABSTRACTION 105

Simple Abstraction Algorithm()

begin

Reached = Unexpanded = fabs(q) j q 2 StartStateg;

while Unexpanded 6= � do

Remove a state s from Unexpanded;

for each transition rule t 2 T do

Generate the set of representatives, R from s;

for each representative r 2 R do

if an error statement is executed in t on r then report error; endif;

let r0 = t(r) in

if r0 does not satisfy one of the invariants then report error; endif;

Recover the abstract successor s0 from r0, using the constructors in s;

if s0 is not in Reached then put s0 in Reached and Unexpanded; endif;

endif;

endfor;

endfor;

endwhile;

end

Figure 6.5: A simple on-the-
y abstraction algorithm: The part highlighted by an underline

represents the main di�erence of this algorithm from the basic algorithm shown in Figure 2.2.

component state. Therefore, the abstract start state of the form (s; fq+0 g) is obtained

from a start state in a �nite system, by the abstraction function abs. This abstract

start state represents the start states of a system of an arbitrary size. Using the

construction described in the previous section, an abstract state graph is generated

to verify the whole family of systems.

Algorithm for systems of �xed sizes

Although it is desirable to use a single abstract state graph to verify the whole family

of systems with arbitrary numbers of replicated components, in many states, some of

the replicated components may not have an abstractable component state. If there

are in�nitely many non-abstractable components, the abstract state graph is in�nite,

and the algorithm presented in Figure 6.5 will not terminate. Therefore, a restricted

abstract state graph is used in Mur'. A restricted abstract state graph represents

106 CHAPTER 6. VERIFYING SCALABLE SYSTEMS

a system of a �xed size only, but the result of the veri�cation may be automatically

extended to a family of systems.

In a restricted abstract state graph, an abstract state maintains the total num-

ber of replicated components provided by the size of the repetitiveID type, while

forgetting exactly how many components are in each component state.

De�nition 6.7 (Restricted Abstract State) A restricted abstract state is an ab-

stract state paired with a number representing the total number of replicated compo-

nents.

We write (s; fqe11 ; : : : ; q
ek
k g)jn to represent a restricted abstract state with n compo-

nents.

A restricted abstract state graph for a system of size n can be generated using the

previous algorithm, with three special cases added:

1. If a restricted abstract state represents only states with fewer than n components,

it is discarded. An example is (s; fq11; q
1
2g)j3.

2. If a restricted abstract state represents only states with more than n components,

it is discarded. An example is (s; fq+1 ; q
+
2 g)j1.

3. If a restricted abstract state represents only one state with n components, it is

converted to a restricted abstract state with only the constructor 1. For example,

the restricted abstract states (s; fq11; q
+
2 g)j2 and (s; fq+1 ; q

1
2g)j2 is the same as

(s; fq11; q
1
2g)j2. Mur' automatically converts both of them to (s; fq11; q

1
2g)j2.

These modi�cations guarantee that the restricted state graph is �nite, since there

are only a �nite number of states in the original state graph for a system of a �xed

size.

Saturated state graphs

Although the algorithm in Mur' uses a restricted state graph, we can still use Mur'

to verify a family of systems of di�erent sizes. Saturated models are used for this

purpose, in the same framework as the one presented in Chapter 4.

6.4. HEURISTICS 107

During the veri�cation process, if special cases 2 and 3 are not encountered, the

abstract state graph obtained is the same as that for systems of larger sizes. We

call this state graph a saturated state graph. A saturated state graph represents the

behavior of all systems with sizes n or larger. The veri�cation performed on this

saturated state graph is therefore valid for all systems of size n or larger.

With a restricted abstract state graph, the veri�er won't attempt to solve the

problem for arbitrary sizes if the abstract state graph for arbitrary system sizes is

in�nite or too large to verify. If a saturated state graph is found, we can verify the

system for arbitrary sizes by verifying systems from size 1 up to the size when the

state graph becomes saturated.

A saturated state graph is guaranteed to exist if the global state does not store

any component index explicitly. Many cache coherence protocols fall into this cate-

gory [PD93b, PD93a, PD95b].

However, there are many situations in which a saturated state graph may not

exist. A notable example is when there is a linked list structure that scales with the

number of replicated components [PNAD95]. Pong et al. refer to these states as

hybrid symbolic states. The following state is an example,

(s! q1 ! :::! qk; fq
ek+1

k+1 ; :::; q
en
n g)

The arrow from smeans that s contains the index of a processor in component state q1,

and similarly for q1 to qk�1. This part of the state corresponds to a linked list, which

is not abstractable using the repetition constructors discussed in this chapter. Since

the linked list may be arbitrarily long, the abstract state graph for arbitrary sizes is

in�nite, and there is no saturated restricted state graph.

6.4 Heuristics

The partial ordering of the abstract states introduces an e�ciency issue that does

not occur in conventional veri�cation by state enumeration: it is wasteful to have two

comparable states in the state graph | only the greater of the two states needs to

be retained (in this case, we say the greater state covers the lessor). For example,

108 CHAPTER 6. VERIFYING SCALABLE SYSTEMS

E�cient Abstraction Algorithm()

begin

Reached = Unexpanded = fabs(q) j q 2 StartStateg;
while Unexpanded 6= � do

Remove a state s from Unexpanded;

for each transition rule t 2 T do

Generate the set of representatives, R from s;

for each representative r 2 R do

if an error statement is executed in t on r then report error; endif;

let r0 = t(r) in

if r0 does not satisfy one of the invariants then report error; endif;

Recover the abstract next state s0 from r0, using the constructors in s;

if s is not in Reached and s is not covered by a state in Reached then

Remove the states in Reached and Unexpanded that are covered by s;

Put s in Reached and Unexpanded;

endif

endlet;

endfor;

endfor;

endwhile;

End

Figure 6.6: An e�cient on-the-
y abstraction algorithm: The part highlighted by an

underline removes redundant abstract states in the abstract state graph.

(s; fq11; q
+
2 g) is redundant in the set of previously examined states when (s; fq+1 ; q

+
2 g)

is also in the set.

Given a set of abstract states, an abstract state in this set is called a maximal

state if and only if none of the other states in the set covers it. Otherwise, it is a non-

maximal state. A state should be inserted into the hash table only if it is maximal;

when a state is added, some previously examined states may become non-maximal,

and they should be removed. The �nal abstract state graph should contain only the

states that are maximal in the set of reachable abstract states.

Therefore, the algorithm in Mur' was modi�ed to a more e�cient algorithm, as

shown in Figure 6.6. Two heuristics are presented in this section to reduce the time

for checking whether a state is maximal in the set of previously generated states, and

to reduce the number of non-maximal states generated.

6.4. HEURISTICS 109

6.4.1 Checking Maximal States

Checking whether an abstract state is maximal in a set of abstract states is important

in the generation of the abstract state graph. A naive (and expensive) algorithm may

exhaustively compare the state to every state in the set. This section describes a

special hash table structure in which the checking can be done in practically constant

time. The design of the special hash table is based on the following observation:

Observation 6.1 Two abstract states (with constructors 1 and +) are comparable if

and only if, except for the array of repetition constructors, the variables in the states

have the same values.

For example, (s; fq11; q
+
2 ; q

+
3 g) covers (s; fq11; q

1
2; q

+
3 g); and, if we ignore the con-

structors (1;+;+) and (1; 1;+), they have the same values as the original state

(s; [q1; q2; q3]), which is called the signature of these abstract states.

Because of this observation, the hash table shown in Figure 6.7 is used to store

the set of previously examined states. The abstract states with the same signature

are hashed into the same entry in the hash table. Instead of the redundantly storing

a list of abstract states with the same signature, we store the signature in a slot in the

hash table, and maintain a linked list of constructor arrays. With this architecture,

if a state p1 is comparable to a previously examined state p2, it will be hashed to

the same location for p2. The constructor arrays in the linked list are then compared

one-by-one to the constructor array in p1. Eventually, the constructor array of p1 is

compared with the one for p2, and the non-maximal state is discarded.

The lists of constructor arrays are always much shorter than the list of previously

examined states. In practice, the lists are very short. In ICCP, the maximum length

is always less than 20. When an abstract state is hashed into a location with a list

of constructor arrays, the average number of comparisons is smaller than 2, as shown

in Table 6.1.

6.4.2 Reducing the Number of Non-Maximal States

In practice, although an abstract state graph has very few states, a lot of states that

are non-maximal in the �nal state graph are temporarily stored and expanded. The

110 CHAPTER 6. VERIFYING SCALABLE SYSTEMS

-(+; 1)

-(+; 1)

state to be
checked

--
hashing w.r.t. the
signature state

(s; fq+
1
; q1

2
g)

hash table:

.

.

.

(s; [q1; q2])

(s; [q1; q3])

(1;+)

linked list of
constructor arrays

Figure 6.7: Hashing structure for e�cient comparison of abstract states: Comparable states

are hashed into the same location in the hash table.

ICCP system of 9 processors BFS DFS Priority BFS Priority DFS

Max length in lists 17 9 6 7

Average number of comparisons 1.28 1.06 1.05 1.03

when hashed to an occupied location

Table 6.1: Performance of the special hashing scheme: The maximum length of the lists of

constructor arrays is small, and the average number of comparison performed is also close

to one. BFS and DFS are conventional breadth-�rst-search and depth-�rst-search. Priority

BFS and DFS are priority searches described in the next section.

6.4. HEURISTICS 111

e�ciency of the abstraction algorithm depends on how fast the �nal set of maximal

states are generated. As shown in Table 6.2, during the veri�cation of ICCP using

simple depth �rst search (DFS) and breadth �rst search (BFS), more than 75% of the

time is spent in searching non-maximal states. The sizes of the intermediate models

are also much larger than the �nal model.

The intuitive reason behind this is as follows: Many of the states generated by

a transition are non-maximal in the �nal state graph, and yet the maximal states

that cover them are not generated soon enough for the veri�er to �nd out that they

are non-maximal. Therefore, a lot of non-maximal states (and their successors) are

generated, wasting both time and memory.

A best-�rst search strategy is used in Mur' to improve the performance of the ab-

straction algorithm. Every abstract state is assigned a priority according to how many

other abstract states it may cover. Such priorities can be assigned easily by counting

the number of + constructors in the state. For example, the state (s; fq11; q
+
2 ; q

+
3 g)

has a higher priority than (s0; fr11; r
1
2; r

+
3 g), because three abstract states are covered

by the �rst state and only one abstract state is covered by the second state.

The following observation leads to the design of a best-�rst search algorithm:

Observation 6.2 The larger number of + constructors in an abstract state, the more

likely that its successors have a large number of + constructors, and the more likely

that they are maximal states in the �nal state graph.

In a best-�rst search, the successors of an abstract state with the largest number

of + constructors are generated �rst, thereby decreasing the likelihood of generating

a temporarily maximal state that will be removed later. As shown in in Table 6.2,

the priority searches perform much better than the simple searches. For ICCP, the

number of non-maximal states examined is reduced from 106,528 down to 3,527 in a

9-processor system. The sizes of the intermediate models are always smaller than the

�nal abstract model of 35,515 states, and the �nal model is constructed in a much

shorter time than a simple BFS/DFS search strategy.

112 CHAPTER 6. VERIFYING SCALABLE SYSTEMS

ICCP system of 9 processors BFS DFS Priority BFS Priority DFS

Final size 35,515 35,515 35,515 35,515

Maximum intermediate size 49,259 36,968 35,515 35,515

Number of Non-maximal States Examined 106,528 93,430 3,527 3,263

Time required 51,425s 49,060s 18,400s 17,477s

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 10000 20000 30000 40000 50000 60000

N
u
m

o
f

S
t
a
t
e
s

time

Comparison of Different Search Strategies

Simple BFS

Simple DFS

Priority BFS

Priority DFS

Table 6.2: Performance of the priority search strategies: The priority search strategies

outperform the conventional search strategies by more than 65% in speed and 30% in

memory.

6.5. COMBINING THE THREE REDUCTION TECHNIQUES 113

6.5 Combining the Three Reduction Techniques

The abstraction using the repetition constructors can be combined with the reduction

methods using symmetry and reversible rules.

Consider a Mur' description with a repetitiveID, scalarsets and a symmetric re-

versible rule set. The theorems in this section show that the reductions using sym-

metry and reversible rules can be performed on the abstract state graph obtained

by using the repetition constructors. In the following de�nitions and theorems, we

denote the original state graph as A, and the abstract state graph obtained from A

as abs(A).

First of all, we de�ne how a function on the original states can be converted into

a function in the abstract state using the repetition constructors.

De�nition 6.8 (signature) Given an abstract state p = (s; fqe11 ; : : : ; q
ek
k g), the sig-

nature sig(p) is the state (s; [q1; : : : ; qk]) in the original state graph.

De�nition 6.9 Given a function f on the states in a state graph A, the corresponding

abstracted function abs(f) on the abstract states in abs(A) is de�ned so that for all

abstract states p1 and p2, abs(f)(p1) = p2 if and only if f(sig(p1)) = sig(p2) and p1
has the same list of repetition constructors as p2.

Similarly, the automorphisms induced by the scalarsets on the original state graph

can be converted to automorphisms in the abstract state graph:

Theorem 6.2 Given a Mur' description with a repetitiveID and scalarsets, and an

automorphism h induced by the scalarsets on the state graph A, abs(h) is an auto-

morphism on the abstract state graph abs(A).

Proof. Given a state (s; [q1; : : : ; qk]) in the original state graph, and a permutation

� on the scalarsets, the permuted state is of the form (�(s); [�(q1); : : : ; �(qk)]). This

is because, according to the de�nition of a permutation on a state, a permutation on

an array not indexed by a scalarset only permutes the values in the elements of the

array, but it does not rearrange the position of elements.

114 CHAPTER 6. VERIFYING SCALABLE SYSTEMS

Therefore, given an abstract state p = (s; fqe11 ; : : : ; q
ek
k g), the corresponding per-

mutation abs(�) on p generates (�(s); f�(q1)
e1 ; : : : ; �(qk)

ekg), which can be illustrated

as follows:

(s; [q1; : : : ; qk])

(�(s); [�(q1); : : : ; �(qk)])
?
� ,

(s; fqe11 ; : : : ; q
ek
k g)

(�(s); f�(q1)
e1; : : : ; �(qk)

ekg)
?

abs(�)

Consider the case for a transition rule t with an active component in the state qi

and ei = +. Two representatives p1 and p2 are used to generate the abstract next

state for p: (s; qi; fq1; : : : ; qkg) and (s; qi; fq1; : : : ; qi�1; qi+1; : : : ; qkg).

Similarly, for abs(�)(p), the same transition rule t has an active component in the

component state �(qi). The two corresponding representatives p01 and p02 are

(�(s); �(qi); f�(q1); : : : ; �(qk)g), and

(�(s); �(qi); f�(q1); : : : ; �(qi�1); �(qi+1); : : : ; �(qk)g):

These two representatives for abs(p) are equivalent to the representatives for p, and

therefore, the abstract successors for abs(�)(p) are equivalent to the abstract succes-

sors for p.

The remaining two cases, where a transition rule does not have an active compo-

nent or a transition rule has an active component with state qi and ei = 1 can be

proved in a similar way. 2

Additionally, to perform reduction using reversible rules on the abstract state

graph, the set of reversible rules must be symmetric w.r.t. the replicated components,

and the e�ect of the reversible rules must be localized to the active component:

De�nition 6.10 A rule r is localized if it accesses only the variables that belong to

the component state of the active component of r.

Therefore, given a state (s; [q1; : : : ; qn]) in the original state graph, the ex-

ecution of a localized rule with an active component i generates a successor

(s; [q1; : : : ; qi�1; ri; qi+1; : : : ; qn]) for some component state ri.

6.5. COMBINING THE THREE REDUCTION TECHNIQUES 115

To apply reduction using reversible rules in the abstract state graph, the minimum

requirement is to be able to �nd an appropriate function to generate a progenitor ab-

stract state from every abstract state p. This progenitor abstract state should abstract

the progenitors of all original states that can be abstracted into p. Furthermore, to

use the fast algorithm presented in Chapter 5, the abstracted version of the reversible

rules should be singular.

Fortunately, the following theorem shows that, when the reversible rule set is

localized, it is straightforward to adapt � (the function that maps an original state

to its progenitor) for reduction using reversible rules on the abstract state graph:

Theorem 6.3 If a rule set T generates a state graph A, and U � T is a localized

rule set, we have the following:

� Consider the case when U is a commutative reversible rule set for A, and � maps

a state in the original state graph to a unique progenitor. For every abstract

state p, if an original state c can be abstracted into p, �(c) can be abstracted

into abs(�)(p).

� If U is a singular rule set for A, abs(U) is also a singular rule set for abs(A).

Since the abstraction using repetition constructors is an approximation, the essential

property of the reversible rules is irrelevant.

Proof.

Unique Progenitors: Given an abstract state p = (s; fqe11 ; : : : ; q
ek
k g), and a re-

versible rule r 2 U such that the active component has the component

state qi in p. The successor of sig(p), after executing r is of the form

(s; [q1; : : : ; qi�1; ri; qi+1; : : : ; qn]), for some component state ri, and this successor

can be abstracted into (s; fqe11 ; : : : ; q
ei�1

i�1 ; r
ei
i ; q

ei+1

i+1 ; : : : ; q
ek
k g).

Pictorially, this can be summarized as:

(s; [q1; : : : ; qk])

?
r

(s; [q1; : : : ; qi�1; ri; qi+1; : : : ; qn])

?
abstraction

(s; fqe11 ; : : : ; q
ei�1

i�1 ; r
ei

i
; q

ei+1

i+1 ; : : : ; q
ek

k
g)

116 CHAPTER 6. VERIFYING SCALABLE SYSTEMS

Other states in the form of (s; [q1; : : : ; q1| {z }
a1

; : : : ; qk; : : : ; qk| {z }
ak

]) can also be abstracted

into p. Because the reversible rule set is symmetric w.r.t. the replicated com-

ponents, for each component j in the component state qi, there exists a corre-

sponding reversible rule rj such that rj is the same as r, except that the active

component is the component j. Because the reversible rules are localized, exe-

cuting this set of ai reversible rules generates the state

(s; [q1; : : : ; q1| {z }
a1

; : : : ; qi�1; : : : ; qi�1| {z }
ai�1

; ri; : : : ; ri| {z }
ai

; qi+1; : : : ; qi+1| {z }
ai+1

; : : : ; qk; : : : ; qk| {z }
ak

]);

which can be abstracted into (s; fqe11 ; : : : ; q
ei�1

i�1 ; r
ei
i ; q

ei+1

i+1 ; : : : ; q
ek
k g).

Pictorially, it can be summarized as:

(s; [q1; : : : ; q1| {z }
a1

; : : : ; qk; : : : ; qk| {z }
ak

])

?

r(a1+:::+ai�1+1)

:::

?

r(a1+:::+ai�1+ai)

(s; [q1; : : : ; q1| {z }
a1

; : : : ; qi�1; : : : ; qi�1| {z }
ai�1

; ri; : : : ; ri| {z }
ai

; qi+1; : : : ; qi+1| {z }
ai+1

; : : : ; qk; : : : ; qk| {z }
ak

])

?
abstraction

(s; fqe11 ; : : : ; q
ei�1

i�1 ; r
ei

i
; q

ei+1

i+1 ; : : : ; q
ek

k
g)

Similar diagrams are generated when the states before executing the reversible

rules are generated by reverse-executing the reversible rules. That is, for

every state that can be abstracted into (s; fqe11 ; : : : ; q
ei�1

i�1 ; r
ei
i ; q

ei+1

i+1 ; : : : ; q
ek
k g),

the states before executing these reversible rules can be abstracted into

(s; fqe11 ; : : : ; q
ei
i ; : : : ; q

ek
k g).

Because the progenitors are generated by reverse-executing all reversible rules,

the intermediate steps in the diagrams are irrelevant for the generation of the

progenitors. Therefore, if an original state c can be abstracted into p, �(c) can

be abstracted into abs(�)(p).

6.6. IMPLEMENTATION AND RESULTS 117

Singularity: Because U is a singular rule set, for all rules r1; r2 2 U and t 2 T n U ,

whenever q1
r1;r2;t
�! q2, we have either q1

r1;t;r2
�! q2 or q1

r2;t;r1
�! q2 .

Because of Property 6.1, the abstraction using the repetition constructors pre-

serves every path, and therefore, whenever abs(q1)
r1;r2;t
�! abs(q2), we also have

either abs(q1)
r1;t;r2
�! abs(q2) or abs(q1)

r2;t;r1
�! abs(q2) .

2

Because of these two theorems, and because of Theorem 5.6 presented in Sec-

tion 5.4, we can apply symmetry and reversible rule reductions on the abstract state

graph obtained from the repetition constructors.

Furthermore, the reduction using reversible rules actually improves the abstraction

using the repetition constructors. It removes most of the transient component states,

so that a saturated abstract state graph is obtained at a smaller system size.

6.6 Implementation and Results

Implementation

To use the abstraction with repetition constructors, an array of repetition constructors

is declared implicitly and attached to every state. Apart from this, the algorithm uses

no extra memory, except for the temporary variables used in symmetry reduction and

in storing up to two representatives for generating the successors. The special hash

structure further reduces the memory usage by compressing a list of comparable

abstract states. Instead of storing every comparable abstract state explicitly, the

part common to every comparable abstract state, called the signature, is stored only

once. The overhead in time is mostly spent on comparing two component states, and

some time is wasted on examining intermediate non-maximal states.

Veri�cation results

The veri�cation results on the industrial cache coherence protocol (ICCP) indicate

that the repetition constructors are good for veri�cation of medium to in�nite system

sizes. As shown in Table 6.3, the reductions from this abstraction are small for a

118 CHAPTER 6. VERIFYING SCALABLE SYSTEMS

system of fewer than 5 processors. However, the reduction increases signi�cantly

once the system has more than 5 processors.

In this protocol, because a processor with an exclusive copy of the cache line may

directly forward the data to a processor requesting the copy, some processors may

not be abstractable. Fortunately, the extent of forwarding is limited, and a saturated

model is obtained with 14 processors.

We can estimate how close an abstract state graph is to saturating, by checking

the number of restricted abstract states that represent only 1 original state with n

components. We call such states the full states of the restricted abstract state graph.

As shown in the Table 6.4, the percentage of the full states decreases to 0 as the state

graph approaches saturation.

6.6. IMPLEMENTATION AND RESULTS 119

of processors (ICCP) 3 4 5 6 7 8 9

size (unordered network) 10,077 247,565 { { { { {

size (sym. only) 1,781 11,814 68,879 358,078 { { {

size (rep. only) 1,770 11,206 57,790 257,692 { { {

size (sym./rev.) 434 1,760 6,021 18,118 49,045 121,302 {

size (rev./rep.) 427 1,590 4,542 10,587 19,485 28,927 35,515

time (unordered network) 5.1s 205s { { { { {

time (sym. only) 2.4s 28s 349s 3,762s { { {

time (rep. only) 4.4s 49s 497s 4,555s { { {

time (sym./rev.) 2.1s 13s 98s 615s 3,283s 12,801s {

time (rep./rev.) 3.3s 27s 167s 811s 3,265s 7,593s 17,477s

of processors (ICCP) 10 11 12 13 14 and up

size (rep./rev.) 38,146 38,485 38,329 38,269 38,269

time (rep./rev.) 29,871s 37,903s 43,352s 48,410s 49,932s

sym. : Symmetry Reduction

rev. : Reversible Rules Reduction

rep. : Repetition Constructor Reduction

Table 6.3: Improvement in performance with repetitiveID: Through the combination of

three reduction algorithms, the family of protocols with di�erent numbers of processors was

veri�ed using less memory that had been required for a 4-processor system.

of processors (ICCP) 3 4 5 6 7 8 9

size 427 1,590 4,542 10,587 19,485 28,927 35,515

of full states 359 1,135 2,756 5,298 7,830 8,589 6,800

of processors (ICCP) 10 11 12 13 14 and up

size 38,146 38,485 38,329 38,269 38,269

of full states 3,765 1,383 303 30 0

Table 6.4: Monitoring the progress towards a saturated model: As the system sizes increase,

the percentage of full states decreases until it becomes 0 in a saturated model.

120 CHAPTER 6. VERIFYING SCALABLE SYSTEMS

Chapter 7

Contributions and Future Work

7.1 Contributions

The aim of an e�ective debugging aid is to obtain an economic advantage by catching

bugs reliably and early in the design process. Although automatic formal veri�cation

is reliable in catching bugs, the state explosion problem limits its use. In order to

increase the e�ectiveness of automatic formal veri�cation, it is necessary to develop

state space reduction methods that are both easy to use and safe to apply.

This thesis provides three reduction algorithms that are easy to use and safe to

apply. The contributions are summarized as follows:

� Fully automatic reduction algorithms have been developed to verify symmet-

ric systems, data-independent systems, and scalable systems. New datatypes

(scalarset, multiset, data scalarsets, and repetitiveID) have been designed to

detect when such reduction algorithms can be used. In contrast to the existing

abstractions using similar ideas, the translation of a conventional description to

an abstract state graph is fully automatic; the user is not required to provide

the abstraction mapping, or manually translate the description to an abstract

model. Hence, the veri�cation performed on the reduced state graph is guaran-

teed to be sound.

The incorporation of graph isomorphism heuristics, special hashing data struc-

tures, and priority search strategies have further reduced the resources required

for veri�cation using these abstractions.

121

122 CHAPTER 7. CONTRIBUTIONS AND FUTURE WORK

Through the use of saturated models, a veri�cation tool using these reduction

algorithms can automatically extend the results of a �nite system to systems

with arbitrary sizes.

� A new automatic reduction method using reversible rules has been developed.

The basic method has signi�cantly reduced memory usage, and two improve-

ments have been developed to take advantage of other properties in a system, so

that no false error is reported, and reductions in time requirements are obtained.

� The reduction methods and the language extensions have been implemented in

the Mur' veri�cation system, through which the reductions are accessible to

non-experts of formal veri�cation. The three reduction methods are compatible

and they can be used simultaneously.

The extended Mur' veri�cation system has been applied to a range of practi-

cal applications, such as cache coherence protocols and distributed algorithms.

Reductions of more than three orders of magnitude, in both time and memory

requirements, have been obtained.

Two frameworks have been used consistently in this thesis. Firstly, the abstrac-

tions are performed in an explicit state enumeration setting. Instead of relying on

user-provided abstract transition rules, or existentially quanti�ed Boolean transition

relations, the framework relies on a small set of concrete representatives from each

abstract state. The abstract next states are generated by executing the concrete

transition rules on these representatives. This enables us to translate a conventional

description for an in�nite system to a �nite abstract model automatically.

Secondly, because veri�cation of unbounded systems is in general undecidable,

the algorithms have been designed to verify the system for a �xed size at the �rst

attempt, rather than to verify an unbounded system. Through simple run-time checks

for saturated models, a veri�er may extend the results for a �nite system to similar

systems of larger sizes.

7.2. FUTURE WORK 123

7.2 Future Work

The thesis presents three compatible reduction algorithms for explicit state enumer-

ation. Future research is needed to investigate how well these techniques can be

combined with other reduction methods, such as partial order reduction and sym-

bolic methods.

Furthermore, all three reduction algorithms have great potential to be improved:

Reduction using symmetry: Emerson and Sistla have recently presented an im-

provement to symmetry reduction algorithm to e�ciently handle fairness as-

sumptions [ES95]. While they have designed an annotated quotient graph for

CTL* model checking, they rely on the user to provide an appropriate auto-

morphism group to represent symmetry.

The approach in this thesis provides an e�ective mean to discover symmetry

and the appropriate automorphism group, and an e�cient procedure for con-

structing representatives from equivalence classes. Therefore, the approach in

this thesis complements their new algorithm nicely.

Reduction using reversible rules: The properties of reversible rules can probably

be relaxed. At the moment, the set of reversible rules must be commutative,

which limits the number of usable reversible rules. A more sophisticated method

to allow more interaction among the reversible rules would further reduce the

state space of a system.

Reduction using repetition constructors: It may be possible to relax the re-

strictions for the abstract state generation to handle multiple set of replicated

components. Extensions to have more than one active component should be

straightforward, with a similar but more complicated procedure to construct

the abstract successors.

Extensions to use new repetition constructors would further reduce the state

space of a system, and widen the range of practical systems in which similar

abstractions are applicable. For example, Pong proposed the * repetition con-

structor [PD95b, Pon95] to represent zero or more components, and Dijkstra

124 CHAPTER 7. CONTRIBUTIONS AND FUTURE WORK

used regular expression operators to abstract a ring or a list structure [Dij85].

Further research is needed to investigate how a veri�er can automatically trans-

late a conventional description to an abstract model in these cases.

Appendix A

Semantic Analysis and Proofs

A.1 Semantics of the Core Mur' Language

A simpli�ed version of the Mur' description language is used to facilitate the semantic

analysis of Mur'. This core language has the same expressive power as the actual

Mur' language (except for the absent of while loop), but most of the syntactic sugar

is removed.

The core language is shown in Figure A.1, using the Backus-Naur Form (BNF). In

the subsequent discussion, ? represents an unde�ned value, N represents the natural

numbers, and N? represents N [f?g. [L ! N?] represents the set of all functions

with domain L and codomain N?.

A description consists of a set of type declarations, a single global state variable

(without loss of generality, since multiple variables can be embedded in a record), an

initialization rule and a transition rule.

The initialization rule and the transition rule consists of a statement in a simple

sequential language, or a nondeterministic choice among simpler transition rules.

The ruleset in the actual Mur' language can be translated into a nondeterministic

choice over a parameter. The Boolean guard of a rule in the actual Mur' language

can be translated into a if statement.

125

126 APPENDIX A. SEMANTIC ANALYSIS AND PROOFS

hprogrami ::= type hdeclsi

var hidi `:' htypeExpri

init hrulei

begin hrulei end

hdeclsi ::= hidi `:' htypeExpri f `;' hidi `:' htypeExpri g

htypeExpri ::= hidi

j hnumi `..' hnumi

j record hdeclsi end

j array `[' htypeExpri `]' of htypeExpri

hrulei ::= hstmti

j ` ' `(' hidi `:' htypeExpri `)' hrulei

j hrulei ` ' hrulei

hstmti ::= error

j hvari `:=' htermi

j if hboolExpri then hstmti end

j for `(' hidi `:' htypeExpri `)' do hstmti end

j hstmti `;' hstmti

hboolExpri ::= htermi `=' htermi

j htermi `>' htermi

j `:' hboolExpri

j hboolExpri `^' hboolExpri

j `8' `(' hidi `:' htypeExpri `)' hboolExpri

j `(' hboolExpri `)'

htermi ::= hvari j hnumi j ? j htermi `+' htermi

hvari ::= hidi j hvari `.' hidi j hvari `[' htermi `]'

hidi ::= string

hnumi ::= number

hi denotes nonterminals;

bold face or `' denotes terminals;

fg denotes repetition zero or more times;

a j b denotes either a or b;

Figure A.1: Syntax for the Simple Description Language

A.1. SEMANTICS OF THE CORE MUR' LANGUAGE 127

A.1.1 Abstract Transition Programs

A Mur' program speci�es an abstract transition program: An abstract transition

program is a quadruple hL; T ; I;Ri. L is a set of locations and T : L ! N � N

maps each location l to the lower bound and the upper bound of the values that

can be assigned to that location. Each location can be assigned an unde�ned value

or be assigned an integer value within the range speci�ed by T . A state in the

corresponding state graph is either an error state or an assignment of legal values to

every location in L. I is a set of constant initialization functions de�ning the set of

initial states. R is a set of transition functions from states to states.

An abstract transition program provides a compact representation of a state graph.

De�nition A.1 The state graph generated by an abstract transition program

hL; T ; I;Ri is hQ;Q0;�; errori where

� Q � [L ! N?] [ferrorg and if q 2 Q and q 6= error, then for all l 2 L and

T (l) = (lb; ub), either q(l) = ? or lb � q(l) � ub;

� Q0 = fq 2 Q j 9f 2 I : f() = qg; and

� � = f(p; q) 2 Q�Q j 9f 2 R : f(p) = qg.

A.1.2 Formal Semantics

The detailed semantics of the Mur' core language is presented in this section. We

de�ne here precisely the translation from a source program to an abstract transition

program. Let the source program be

type ts

var gv : �

init ir

begin tr end.

The semantics of this program are de�ned by translating it to an abstract transition

program hL; T ; I;Ri, which, in turn, de�nes a state graph.

For simplicity in the de�nition of the semantics and subsequent proofs, we will

not formalize type-checking and other semantic issues that are well-understood. We

128 APPENDIX A. SEMANTIC ANALYSIS AND PROOFS

assume that programs are well-formed syntactically and semantically. A complete

semantics would de�ne all of the static semantic errors, which could easily be checked

in a compiler, using well-known algorithms.

In reality, there would also be run-time semantic errors, such as bounds errors

when assigning a value to a subrange variable. We omit these checks from the se-

mantics, because including them would complicate the de�nitions, without adding

any particular interest. Moreover, checking for bounds errors could be made explicit

using if, Boolean expressions, and the error statement. Hence, the only run-time

error included in the semantics is execution of the error statement.

States and Environments

Each subrange, array, and record type has a unique type name. An id which is bound

in a type declaration becomes synonymous with the name of the type expression

appearing in the declaration. A literal (e.g. 2) always has a subrange type; given our

type rules for subranges (which are similar to Pascal's), it doesn't particularly matter

what the exact subrange type for the literal is, as long as it contains the integer value

of the literal. � is used below to represent a type and also the set of its members

in N.

Variables are represented abstractly using locations. Each location corresponds

to a subrange variable. T (l) of a location l is a pair, consisting of a lower and an

upper bound on the subrange type of the variable; and the location can be assigned

an unde�ned value or be assigned an integer value within the range speci�ed by T (l).

The program has two sets of locations: state locations, L, which are the compo-

nents of the global variable, and index locations, I, which are parameter variables

used to keep track of index values in the indexed , for loop, and 8 constructs. The

set of all locations V is the union of L and I.

An environment is a function from V toN?, such that, the value in every location

is consistent with type of the location. The environment that assigns ? to every

element of V is written as hi. The environment that assigns v to l and ? to all other

elements of V is written as (l 7! v). If s and s0 are both environments, s � s0 is the

environment which assigns s0(l) to each location l unless s0(l) = ?, in which case it

A.1. SEMANTICS OF THE CORE MUR' LANGUAGE 129

assigns s(l) to the location. There is an additional error environment that results

when an error statement is executed; for all environments s, error � s = error. The

set of all possible environments is denoted by env. The set of states is a subset of

env, such that the value in every location in I is ?. tostate converts a non-error

environment to a state by assigning ? to every location in I, and also maps error to

itself.

Translating the Variables into Locations

It is convenient to represent locations as strings. Every variable has an associated

string, but only the strings corresponding to subrange variables are locations. When a

variable is neither a record �eld nor an array element, the string is simply the name of

the variable. If the string associated with a record variable is `l', the string associated

with the �eld f is `l:f '. If the string associated with an array variable is `l', the string

associated with the kth element is `l[k]'. For example, with the declaration:

type Pid : 1..2

var P : array [Pid] of record CacheState : 0..3; CacheValue : 0..1 end,

the set of locations L in the corresponding abstract transition program is:

f`P [0]:CacheState'; `P [0]:CacheValue'; `P [1]:CacheState'; `P [1]:CacheValue'g:

More precisely, if concat is a function that concatenates a list of strings and

numbers into a single string, a translation function Tv can be de�ned such that, given

a variable with name x and its type �, it produces a set of locations.

Tv(`x'; �) =

8>>><
>>>:

S
1�i�n Tv(concat(`x'; `:fi'); �i) if � = record f1 : �1; : : : ; fn : �n endS
i2� Tv(concat(`x'; `['; i; `]');
) if � = array [�] of

f`x'g if � is a subrange.

With a global variable gv of type �, the set of state locations L in the corresponding

abstract transition program is Tv(gv; �). The set of state locations is �nite because

all array index types are �nite.

130 APPENDIX A. SEMANTIC ANALYSIS AND PROOFS

Translating the Variable References

For a variable reference d, the meaning [[d]] : env ! string is de�ned as:

[[d]](s) =

8>>><
>>>:

concat([[d0]](s); `:f ') if d = d0:f

concat([[d0]](s); `['; [[t]](s); `]') if d = d0[t]

`d' otherwise,

where s is an environment and [[t]](s) is the integer value of the term t, de�ned later

in this section.

It is an error if the type of the expression indexing an array is not a subrange.

When the types of both the expression and the array index are subranges, it is

acceptable for the two types to be di�erent, so long as the index value falls within

the bounds of the array index type. Out-of-range index values result in a run-time

error. A program with a possible bounds error can always be rewritten to test for

the bounds error explicitly and execute an error statement if a bounds error occurs.

In order to simplify the formal semantics and proofs, this is assumed, so that bounds

errors cannot occur in a well-formed program. In particular, if there are no bounds

errors, the string obtained by [[d]] always represents a location in V , when d is a

variable of a subrange type.

Translating the Terms and Boolean Expressions

For a term t, the meaning [[t]] : env ! N? is de�ned as:

[[t]](s) =

8>>><
>>>:

n if t = n for some integer constant n

s([[d]](s)) if t is a subrange variable reference d

[[t1]](s) + [[t2]](s) if t = t1 + t2

Similarly, the semantics can be extended to other operators. A term is illegal if its

type is not a subrange type. (records and arrays are not terms).

A.1. SEMANTICS OF THE CORE MUR' LANGUAGE 131

Boolean expressions are handled analogously to terms. One of the cases is univer-

sal quanti�cation, which uses an index variable:

[[8(x : �)e]](s) =
^
i2�

[[e]](s � (`x' 7! i)):

In this case, � must be a subrange.

Translating the Statements

For a statement sm, the meaning [[sm]] : env ! env is de�ned as follows:

Given an environment s and an assignment d := t, the meaning [[d := t]](s) is

s � ([[d]](s) 7! [[t]](s)). It is an error to assign an out-of-bounds value to a location

of subrange type. As with array indices, it is assumed that programs explicitly tests

bounds, so that a bounds error never occurs during an assignment.

Given an environment s and an if statement, the meaning is de�ned as:

[[if b then sm end]](s) =

8<
:

[[sm]](s) if [[b]](s) is true

s otherwise.

The meaning of an compound statement is [[sm1; sm2]](s) = [[sm2]]([[sm1]](s)), and

execution of an error statement results in an error environment: [[error]](s) = error.

Given an environment s and a for statement, the meaning is de�ned as:

[[for (x : �) do sm end]](s) = [[smx(ub)]]([[smx(ub� 1)]](: : : [[smx(lb)]](s) : : :))

where lb and ub are the lower bound and upper bound of the type �, and we use

[[smx(k)]](s) to denote [[sm]](s � (`x' 7! k)).

Translating the Rules

The translation function for rules, Tr, maps a transition rule tr (or initialization rule

ir), and an environment s, to a set of transition functions. Each transition function is

a function from states to states (environments that map every index location to ?).

In the following de�nition, s is an environment which captures only the values of the

index location and s0 represents a state to which an individual transition function

132 APPENDIX A. SEMANTIC ANALYSIS AND PROOFS

can be applied; the transition function extends s0 by s to bind the index locations.

Tr(t; s) =

8>>><
>>>:

Tr(t1; s) [Tr(t2; s) if t = t1 t2S
i2� Tr(t

0; s � (`x' 7! i)) if t = (x : �)t0

f�s0:tostate([[sm]](s0 � s))g if t is a statement sm.

Therefore, for a source program with initialization rule ir and transition rule tr, the

set of transition functions in the abstract transition program, R, is Tr(tr; hi), and the

set of constant initialization functions, I, is ff 0 j 9f 2 Tr(ir; hi) : f 0() = f(hi)g.

The following lemma explains why it is possible to verify programs using explicit

state enumeration:

Lemma A.1 The abstract transition program derived from a source program has a

�nite number of transition functions in R. The state graph has a �nite number of

states in Q.

Proof. All subranges are bounded, so there are only a �nite number of locations.

Every location has a �nite range of values corresponding to its type, and so the state

graph has a �nite number of states. Since subranges have �nite sizes, the construct

generates a �nite number of transition functions. 2

A.2 Automorphism Induced by Scalarsets

Given a program with a scalarset �, a permutation �� on an environment maps

the value v of each location of type � to a new value, ��(v). It also rearranges the

locations when arrays are indexed by �. The next three de�nitions de�ne this concept

precisely.

De�nition A.2 (permutation on values) If � is a scalarset type, a permutation

�� : (� [f?g)! (� [f?g) is a bijection such that ��(?) = ?.

A permutation can be applied to a location, with the e�ect of modifying array

indices of type � and nothing else.

A.2. AUTOMORPHISM INDUCED BY SCALARSETS 133

De�nition A.3 (permutation on strings/locations) A permutation �� on �

can be extended to a permutation �� : string ! string, de�ned as:

��(l) =

8>>>>>>>>>><
>>>>>>>>>>:

l if l is not of the form concat(l0; `:f ')

or concat(l0; `['; k; `]')

concat(��(l
0); `:f ') if l = concat(l0; `:f ')

concat(��(l
0); `['; ��(k); `]') if l = concat(l0; `['; k; `]') and the array

corresponding to l0 has index type �

concat(��(l
0); `['; k; `]') if l = concat(l0; `['; k; `]') and the array

corresponding to l0 has index type other than �

For example, with an array of processors:

type Pid : scalarset (2)

var P : array [Pid] of record CacheState : 0..3; CacheValue : 0..1 end

a permutation �Pid mapping 0 to 1 will map location `P [0]:CacheState' to location

`P [1]:CacheState'.

A permutation on an environment or a state permutes its domain, permutes its

codomain, and maps the error environment to itself.

De�nition A.4 (permutation on environments/state) A permutation �� on �

can be extended to a permutation �� : env ! env, de�ned as:

��(s) =

8>>>>><
>>>>>:

hi if s = hi

(��(l) 7! ��(v)) if s = (l 7! v) and the type of location l is �

(��(l) 7! v) if s = (l 7! v) and the type of location l is not �

(��(s1)) � (��(s2)) if s = s1 � s2
error if s = error

The reader should note that by this de�nition, ��(s)(��(l)) = ��(s(l)) if the type

of l is � and ��(s)(��(l)) = s(l) otherwise.

The main result of this section is the following theorem.

Theorem A.1 (soundness theorem) Given a source program containing a

scalarset �, every permutation �� on the states of the state graph A derived from

the program is an automorphism on A.

The proof of this theorem requires �ve lemmas. The soundness theorem and the

lemmas are about the properties of a state graph derived from a source program. The

134 APPENDIX A. SEMANTIC ANALYSIS AND PROOFS

translation de�ned above is in two steps: the language semantics de�ne an abstract

transition program, and the abstract transition program de�nes a state graph. In

the lemmas and the proof of the theorem, Let hL; T ; I;Ri be the abstract transition

program. All environments bind state and index locations from the source program,

and all program constructs are assumed to appear in the original source program.

Lemma A.2 (basic lemma) For a scalarset � and an environment s, if d is a

variable reference, then [[d]](��(s)) = ��([[d]](s)). If t is a term of type �, then

[[t]](��(s)) = ��([[t]](s)); otherwise, [[t]](��(s)) = [[t]](s).

For example, in a directory-based cache coherence protocol with the state in Fig-

ure 3.3, the processor state P [Dir] corresponding to the processor id in directory Dir

should always point to the same processor, no matter how we permute the state:

[[P [Dir]]](s 0) = s0(`P [2]') = 1

��([[P [Dir]]](s)) = ��(s(`P [1]')) = ��(2) = 1

Proof. We prove both parts of the lemma in a single induction. For all variable

references d, if d does not have any record �eld reference or array indexing,

[[d]](��(s)) = `d' de�nition of [[d]]

= [[d]](s) de�nition of [[d]]

If d = d0:f ,

[[d]](��(s)) = concat([[d0]](��(s)); `:f ') de�nition of [[d0:f]]

= concat(��([[d
0]](s)); `:f ') induction hypothesis

= ��(concat([[d
0]](s); `:f ')) permutation on a string/location

= ��([[d
0:f]](s)) de�nition of [[d0:f]].

If d = d0[t],

[[d]](��(s)) = concat([[d0]](��(s)); `['; [[t]](��(s)); `]') de�nition of [[d0[t]]]

=

8>>><
>>>:

concat(��([[d
0]](s)); `['; ��([[t]](s)); `]')

if the type of t is �

concat(��([[d
0]](s)); `['; [[t]](s); `]')

if the type of t is not �

induction hypothesis

= ��(concat([[d
0]](s); `['; [[t]](s); `]')) permutation on

a string/location

= ��([[d
0[t]]](s)) de�nition of [[d0[t]]].

A.2. AUTOMORPHISM INDUCED BY SCALARSETS 135

For all terms t, if t is an integer constant, the meaning is independent of s, and the

lemma holds trivially. If t is a variable reference d of type �,

[[t]](��(s)) = ��(s)([[d]](��(s))) de�nition of [[t]]

= ��(s)(��([[d]](s))) induction hypothesis

= ��(s([[d]](s))) permutation on an environment

= ��([[t]](s)) de�nition of [[t]].

If t is a variable reference d of type other than �,

[[t]](��(s)) = ��(s)([[d]](��(s))) de�nition of [[t]]

= ��(s)(��([[d]](s))) induction hypothesis

= s([[d]](s)) permutation on an environment

= [[t]](s) de�nition of [[t]].

Finally, if t = t1+t2, t1 and t2 cannot be of type �. By induction [[t1]](��(s)) = [[t1]](s)

and [[t2]](��(s)) = [[t2]](s). So [[t1 + t2]](��(s)) = [[t1]](��(s)) + [[t2]](��(s)) = [[t1]](s) +

[[t2]](s) = [[t1 + t2]](s).

The proof would be similar for other operations on terms. 2

Lemma A.3 (Boolean lemma) If � is a scalarset, for every environment s and

every Boolean expression e, [[e]](��(s)) = [[e]](s).

The intuition behind this lemma is that since the system is symmetrical and the

two states are equivalent, they should satisfy the same set of predicates.

Proof. We prove the lemma by induction on the structure of the expression.

When e is of the form t1 > t2, the types of both t1 and t2 cannot be �. Therefore,

[[t1]](��(s)) = [[t1]](s) and [[t2]](��(s)) = [[t2]](s), which implies that [[t1 > t2]](��(s)) =

[[t1 > t2]](s).

When e is of the form t1 = t2, if the type of one of the terms is �, the type of both

t1 and t2 are �, therefore, [[t1]](��(s)) = ��([[t1]](s)) and [[t2]](��(s)) = ��([[t2]](s)).

Since �� is a bijection, the equivalence or inequivalence of t1 and t2 is preserved

by ��.

136 APPENDIX A. SEMANTIC ANALYSIS AND PROOFS

On the other hand, if neither of the terms is of type �, [[t1]](��(s)) = [[t1]](s) and

[[t2]](��(s)) = [[t2]](s), which implies that [[t1 = t2]](��(s)) = [[t1 = t2]](s).

For the induction part, the cases for : and ^ are straightforward. The case of 8

when the quanti�cation is over some type other than � follows immediately by the

induction hypothesis. The case where the quanti�cation is over � is also quite simple:

[[8(x : �)e]](��(s)) =
V
i2�[[e]](��(s) � (`x' 7! i)) de�nition of 8(x : �)

=
V
i2�[[e]](��(s) � (`x' 7! ��(i))) commutativity and

associativity of ^

=
V
i2�[[e]](��(s) � (��(`x') 7! ��(i))) ��(`x') = `x'

=
V
i2�[[e]](��(s � (`x' 7! i))) permutation on

an environment

=
V
i2�[[e]](s � (`x' 7! i)) induction hypothesis

= [[8(x : �)e]](s) de�nition of 8(x : �).

2

Lemma A.4 (statement lemma) If � is a scalarset, for every environment s and

every statement sm, [[sm]](��(s)) = ��([[sm]](s)).

Proof. The proof is by induction on the structure of statements. A statement can

be an error, assignment, if, for or a compound statement.

An error statement results in an error environment regardless of its environment,

so the theorem is trivial in this case.

For a statement sm of the form d := t,

[[d := t]](��(s)) = ��(s) � ([[d]](��(s)) 7! [[t]](��(s))) de�nition of [[d := t]]

=

8>>><
>>>:

��(s) � (��([[d]](s)) 7! ��([[t]](s)))

if the type of t is �

��(s) � (��([[d]](s)) 7! [[t]](s))

if the type of t is not �

basic lemma

= ��(s � ([[d]](s) 7! [[t]](s))) permutation on

an environment

= ��([[d := t]](s)) de�nition of [[d := t]].

A.2. AUTOMORPHISM INDUCED BY SCALARSETS 137

For a statement sm of the form if b then sm0 end, if [[b]](s) is true, then [[b]](��(s))

is also true, by the Boolean lemma, so [[sm]](��(s)) = [[sm0
]](��(s)). By the induc-

tion hypothesis, [[sm0
]](��(s)) = ��([[sm

0
]](s)) = ��([[sm]](s)). If [[b]](s) is false then

[[b]](��(s)) is also false, so [[sm]](��(s)) = ��(s) = ��([[sm]](s)).

For a statement sm of the form sm1; sm2, by the induction hypothesis,

[[sm]](��(s)) = [[sm2]]([[sm1]](��(s)))

= [[sm2]](��([[sm1]](s)))

= ��([[sm2]]([[sm1]](s)))

= ��([[sm]](s)):

For a statement sm of the form for (v : �) do sm0 end,

[[sm]](��(s)) = [[sm0
v(ub)]]([[sm

0
v(ub� 1)]](: : : [[sm0

v(lb)]](��(s)) : : :))

de�nition of [[sm]]

= [[sm0
v(��(ub))]]([[sm

0
v(��(ub� 1))]](: : : [[sm0

v(��(lb))]](��(s)) : : :))

property of for statements indexed by a scalarset

= [[sm0
v(��(ub))]]([[sm

0
v(��(ub� 1))]](: : : ��([[sm

0
v(lb)]](s) : : :))

induction hypothesis

= : : :

= ��([[sm
0
v(ub)]]([[sm

0
v(ub� 1)]](: : : [[sm0

v(lb)]](s) : : :)))

repeated application of the induction hypothesis

= ��([[sm]](s))

de�nition of [[sm]]

2

When f = �s0:tostate([[sm]](s0 �s)), we de�ne ��(f) to be �s0:tostate([[sm]](s0 �

��(s))). In other words, �� is applied to the index locations that are bound in f .

From the de�nition of Tr, f is a member of R exactly when ��(f) is a member of R.

Lemma A.5 (transition lemma) If � is a scalarset type, s is a state, and f is a

transition function in R, then ��(f)(��(s)) = ��(f(s)).

Proof. Let f = �s0:tostate([[sm]](s0 � s)) be a transition function in R and s0 be a

state.

��(f)(��(s0)) = tostate([[sm]](��(s0) � ��(s))) de�nition of ��(f)

= tostate([[sm]](��(s0 � s))) permutation on an environment

= tostate(��([[sm]](s0 � s))) statement lemma

= ��(f(s0)) tostate and �� commute.

2

138 APPENDIX A. SEMANTIC ANALYSIS AND PROOFS

Lemma A.6 (initialization lemma) f 2 I always implies ��(f) 2 I.

Proof. It follows from the de�nition of Tr. 2

Now we can complete the proof of the soundness theorem:

Proof. (of the soundness theorem)

It is now quite simple to show that �� meets the conditions for an automorphism.

First, �� on environments is a bijection.

The de�nition of an automorphism has three additional \if and only if" conditions.

We prove implications, but since ��1
� is also a permutation, the converse of each

implication holds, as well.

The translation of a well-formed source program to an abstract transition program

guarantees that, for every (s; s0) 2 �, there is a transition function f such that

s0 = f(s). Because ��(f) is a transition function whenever f is, and by the transition

lemma, ��(f)(��(s)) = ��(f(s)) = ��(s
0
), therefore, (��(s); ��(s

0
)) is in �.

Similarly, for every q 2 Q0, there exists f 2 I such that f() = q. By the

initialization lemma, there exists ��(f) 2 I, and ��(q) = ��(f)() 2 Q0.

Finally, ��(error) = error, by de�nition. 2

Every permutation of every scalarset is an automorphism on the state graph. If

a source program has more than one scalarset, the union of all the permutations

represents a larger set of automorphisms, enabling a larger reduction of the state

graph. The veri�cation using multiple symmetries at the same time is also sound, as

the consequence of the theorems in Section 3.2:

Corollary A.1 If a program P has scalarsets �1; : : : ; �n, there are symmetries in

the state graph A and we can use the symmetry-reduced state graph A=�H to verify

the properties, where H is the set of all permutations on the states w.r.t. �1; : : : ; �n.

A.3. DATA SATURATION INDUCED BY DATA SCALARSETS 139

A.3 Data Saturation Induced by Data Scalarsets

In this section, we prove that the data saturation phenomenon occurs with data

scalarset:

Theorem A.2 (data saturation) If P is a Mur' description, � is the name of a

data scalarset in P , � is declared to be of size N1 in P1 and N2 in P2, then there exists

a size N� such that the symmetry-reduced state graphs of P1 and P2 are isomorphic

whenever N1 � N� and N2 � N�.

To prove the data saturation theorem, we need to prove several lemmas. Let us

�rst establish some assumptions and notation to be used throughout the rest of the

section.

The Source Programs

The proof involves two source programs P1 and P2 containing a declaration of a data

scalarset type named �. In general, symbols with subscript 1 pertain to P1 and

symbols with subscript 2 pertain to P2. P1 and P2 are identical in every way except

for the declaration of �. In P1, � is declared to be of size N1, and the set of its

elements is referred as �1. Similarly, in P2, � is declared to be of size N2, and the set

of its elements is referred as �2.

Since the data scalarset � cannot be used as an array index, the set of locations

in P1 is exactly the same as the set of locations of P2 (the only di�erence is that the

locations with type � have di�erent possible values in the environments in P1 and

P2.). We call this set of locations V . Let N� be the number of locations of type �.

We assume that N1 � N� and N2 � N�.

When we refer to an environment below, it means a member of [V ! N?], unless

otherwise speci�ed. For j = 1; 2, sj refers to an environment of Pj, and �j � �j is

the set of values actually appearing in the environment, that is,

fs(l) j l is a location of type � and s(l) 6= ?.g:

The meaning of the program text may be di�erent in P1 and P2 because of the

di�erence in the size of �. For a program construct c, let [[c]]1 and [[c]]2 denote the

140 APPENDIX A. SEMANTIC ANALYSIS AND PROOFS

meaning of c in P1 and P2. For a rule t, let Tr1 and Tr2 denote the translation function

for t in P1 and P2. The di�erence in meaning only occurs when � appears literally

in the text, that is, in constructs of the form (x : �) t and in quanti�ed Boolean

expressions. Speci�cally, for j = 1; 2,

Trj((x : �)t; s) =
[
i2�j

Trj(t; s � (`x' 7! i))

[[8(x : �)b]]j(s) =
^
i2�j

[[b]]j(s � (`x' 7! i)):

A statement may contain a Boolean expression, so [[sm]]1 may di�er from [[sm]]2,

also. These functions can be de�ned recursively by adding the appropriate subscript

to [[]] uniformly in the original de�nitions.

When � does not appear in a program construct c, [[c]]1 = [[c]]2. In particular,

[[d]]1 = [[d]]2 for all variables and [[t]]1 = [[t]]2 for all terms, since variables and terms

never contain a literal �.

In this section, the same permutation must be applied to several di�erent types, so

a permutation is rede�ned to be a bijection onN? which maps? to itself. Throughout

the section, only locations of type � are permuted.

The General Canonicalizing Permutation

Given an environment s, we construct a canonicalizing permutation �s on N?. First

of all, we �x a total order on the locations of type � in V : l1; : : : ; lN� (any total

order will su�ce). Therefore, the environments are lexicographically ordered by the

values in the locations of type �. We de�ne �s to map each environment s to the

lexicographically minimum equivalent environment �s(s):

� �s(?) = ?,

� for i > 0, if s(li) 6= ? and s(li) 6= s(lk) for every k < i, �s(s(li)) is assigned

the least nonnegative integer that has not been assigned to some �s(s(lk)),

where k < i.

A.3. DATA SATURATION INDUCED BY DATA SCALARSETS 141

� �nally, for other value x such that x 6= s(l), for all locations l of type �, �s(x)

can be assigned in any way that makes �s a permutation.

A canonicalization function � can be de�ned such that �(s) = �s(s). The symbol �

will refer to this function for the remainder of the section.

Lemma A.7 � is a canonicalization function.

Proof. We must demonstrate, for every equivalence class [s], �(s) 2 [s] and that

s0 2 [s] implies �(s0) = �(s). The �rst part is obvious, since by de�nition �(s) = �s(s).

Now, suppose �(s0) 6= �(s). If there is a location of type other than � such that

�(s0)(l) 6= �(s)(l), then s0 cannot be equivalent to s because a permutation on � cannot

modify s(l) or s0(l). If �(s0) and �(s) agree on all non-� locations, let l be the least �

location at which they disagree, according to the total order on �-locations used in the

de�nition of �. Without loss of generality, suppose that �(s)(l) < �(s0)(l). Then, by

de�nition, there exists some l0 < l such that �(s)(l) = �(s)(l0) and �(s0)(l) 6= �(s0)(l0).

But then every permutation � will have �(s)(l) 6= �(s0)(l) or �(s)(l0) 6= �(s0)(l0), so s

and s0 cannot be equivalent. 2

De�nition A.5 (�1-�2-permutation) For �1; �2 � N, a �1-�2-permutation �

on N? is a permutation such that �(?) = ? and for all v 2 �1, �(v) 2 �2, and

vice versa.

The reader should note that a �1-�2-permutation exists only if j�1j = j�2j. The

following lemma clari�es the relation between two states (which may be from di�erent

state graphs) that map to the same state under �.

Lemma A.8 (zeta equivalence lemma) Suppose that s1 and s2 are two environ-

ments. Then, �(s1) = �(s2) if and only if there exists a �1-�2-permutation � such

that �(s1) = s2.

Proof.

(Suppose there exists a �1-�2-permutation � such that �(s1) = s2. Let �s1 be the

canonicalizing permutation for s1, as de�ned above. Since �(s1) = �s1(s1) =

142 APPENDIX A. SEMANTIC ANALYSIS AND PROOFS

�s1(�
�1
(s2)), �(s1) is equivalent to s2. Because �(s1) is the lexicographical

minimum, which is unique, the canonicalizing permutation �s2 for s2 is �s1 ��
�1
.

Therefore,
�(s2) = �s2(s2)

= �s1(�
�1(s2))

= �s1(�
�1(�(s1)))

= �s1(s1) = �(s1):

) By de�nition, there exist permutations �s1 and �s2 such that �(s1) = �s1(s1)

and �(s2) = �s2(s2). �s1(s1) = �s2(s2), so for all v1 2 �1, there exists v2 2 �2

such that �s1(v1) = �s2(v2), and vice versa. Hence � = ��1
s2
� �s1 is a �1-�2-

permutation.

2

The next lemma asserts that for su�ciently large �1 and �2, if we have equivalent

environments s1 and s2, and s1 is extended to s01 by assigning a value to a previously

unde�ned �-location, we can extend s2 to an environment s02 which is equivalent to s
0
1.

Lemma A.9 (permutation extension lemma) Suppose s1 and s2 are two envi-

ronments, � is a �1-�2-permutation such that s2 = �(s1), and s1(l) = s2(l) = ? for

some location l of type �.

For every i1 in �1, there exists an i2 2 �2 and a (�1 [fi1g)-(�2 [fi2g)-

permutation �0 such that s2 � (l 7! i2) = �0(s1 � (l 7! i1)).

Proof. If i1 2 �1, set i2 = �(i1), and �0 = �. Otherwise, since s2(l) = ?, j�2j < N�,

and since j�2j � N�, there exists at least one value i2 2 �2 � �2. Therefore, we can

choose an arbitrary value of i2 from �2 � �2, and de�ne a (�1 [fi1g)-(�2 [fi2g)-

permutation �0 such that �0(i1) = i2, and for i 2 �1, �
0
(i) = �(i) (for i 62 �1 [fi1g,

there are no constraints on �0(i) so long as it remains a permutation). 2

The Saturation Lemmas

After the de�nition of the canonicalization function, we can proceed to prove the

lemmas to support the data saturation theorem. The following asserts that a Boolean

expression cannot distinguish between two scalarset values that could be assigned to a

location, if those values do not appear in some other location in the same environment.

A.3. DATA SATURATION INDUCED BY DATA SCALARSETS 143

Lemma A.10 (interchangeability lemma) Suppose s1 and s2 are environments,

b is a Boolean expression, l is a location of type �, and i and i0 are values of type �.

If i 6= sj(l) and i
0
6= sj(l) for every location l of type �, then [[b]]j(sj � (`x' 7! i)) =

[[b]]j(sj � (`x' 7! i0)).

Proof. Let � be the permutation that swaps i and i0 and leaves all other values �xed.

Clearly �j(sj) = sj, since the range of sj does not contain i or i0. By the Boolean

lemma, [[b]]j(sj � (`x' 7! i)) = [[b]]j(�(sj � (`x' 7! i))) = [[b]]j(sj � (`x' 7! i0))). 2

Lemma A.11 (Boolean saturation lemma) Suppose s1 and s2 are environ-

ments, and � is a �1-�2-permutation such that s2 = �(s1). Then, for every Boolean

expression b, [[b]]1(s1) = [[b]]2(s2).

Proof. The proof is by induction on the structure of Boolean expressions.

For Boolean expressions of the form t1 = t2 and t1 > t2, [[b]]1 = [[b]]2, because �

does not appear literally in the expressions. So the lemma follows from the Boolean

lemma, where � is the permutation. For Boolean expressions of the form :b0 or b1^b2,

the lemma is immediate by the induction hypothesis. The case where b is 8(x : �0)b0,

with �0 6= � is also straightforward.

Finally, suppose b is of the form 8(x : �)b0. By de�nition, for j = 1; 2,

[[b]]j(sj) =
V
i2�j

[[b0]]j(sj � (`x' 7! i)). This can be rewritten as

V
i2�j

[[b0]]j(sj � (`x' 7!

i)) ^
V
i2
j

[[b0]]j(sj � (`x' 7! i)), where
j = �j � �j, the members of �j not in sj. We

consider the cases where i 2 �j and i 2
j separately.

Case 1: i 2 �j

We show that
V
i2�1 [[b

0
]]1(s1 � (`x' 7! i)) =

V
i2�2 [[b

0
]]2(s2 � (`x' 7! i)).

If i 2 �1, the set of non-? values assigned to locations of type � in s1 � (`x' 7! i)

remains �1, Since � is a �1-�2-permutation, the set non-? values assigned to

locations of type � in s2 � (`x' 7! �(i)) remains �2. By the induction hypothesis,

for all i1 2 �1, [[b
0
]]1(s1 � (`x' 7! i1)) = [[b0]]2(s2 � (`x' 7! �(i1)):

144 APPENDIX A. SEMANTIC ANALYSIS AND PROOFS

Hence, we have

^
i2�1

[[b0]]1(s1 � (`x' 7! i)) =
^
i2�1

[[b0]]1(s1 � (`x' 7! �(i)))

Since the image of �1 under � is �2, this is equal to
V
i2�2[[b

0
]]2(s2 � (`x' 7! i)).

Case 2: i 2
j

We show that
V
i2
1 [[b

0
]]1(s1 � (`x' 7! i)) =

V
i2
2 [[b

0
]]2(s2 � (`x' 7! i)).

Because the value of location `x' in s1 and s2 is ?, �1 and �2 are smaller than

N�. Since �1 � N� and �2 � N�, neither
1 nor
2 is empty.

By the interchangeability lemma, [[b0]]1(s1 � (`x' 7! i)) yields the same value for

every i 2
1, so if
1 is nonempty, we may choose a particular value i1 2
1,

knowing that

^
i2
1

[[b0]]1(s1 � (`x' 7! i)) = [[b0]]1(s1 � (`x' 7! i1)):

By the permutation extension lemma, there exists i2 2 �2��2 and a (�1[fi1g)-

(�2 [fi2g)-permutation �0 such that

s2 � (`x' 7! i2) = �0(s1 � (`x' 7! i1)):

Now, by the induction hypothesis,

[[b0]]1(s1 � (`x' 7! i1)) = [[b0]]2(�
0(s1 � (`x' 7! i1))) = [[b0]]2(s2 � (`x' 7! i2)):

By the interchangeability lemma, again,

[[b0]]2(s2 � (`x' 7! i2)) =
^
i2
2

[[b0]]2(s2 � (`x' 7! i)):

Therefore,

^
i2
1

[[b0]]1(s1 � (`x' 7! i)) =
^
i2
2

[[b0]]2(s2 � (`x' 7! i)):

Combining the � and
 cases gives [[8(x : �)b0]]1(s1) = [[8(x : �)b0]]2(s2). 2

A.3. DATA SATURATION INDUCED BY DATA SCALARSETS 145

Lemma A.12 (statement saturation lemma) Suppose s1 and s2 are environ-

ments and � is a �1-�2-permutation such that s2 = �(s1). Then, for every statement

sm, �([[sm]]1(s1)) = [[sm]]2(s2).

Proof. The proof is by induction on the structure of statements. sm can be of several

forms:

If sm is error, the result is obvious (independent of �i).

Suppose sm is an assignment, d := t. [[]]1 = [[]]2 for both de�nitions and terms,

so in this case, by the statement lemma, �([[d := t]]1(s1)) = [[d := t]]2(�(s1)) =

[[d := t]]2(s2).

If sm is a conditional if b then sm0 end, the Boolean saturation lemma asserts

that [[b]]1(s1) = [[b]]2(s2). If [[b]]1(s1) is false, s1 and s2 are not changed by sm, so the

lemma holds. If [[b]]1(s1) is true, then for j = 1; 2, [[sm]]j(sj) = [[sm0
]]j(sj), and by the

induction hypothesis, the lemma holds.

The lemma holds when sm is sm1; sm2 or a for loop, by repeated application of

the induction hypothesis (recall that for statement may not be indexed by a data

scalarset such as �). 2

The following lemma asserts that for every transition and initialization rule in P1,

there is a corresponding rule in P2.

Lemma A.13 (rule saturation lemma) Suppose s1 and s2 are environments, and

let hL; Tj; Ij;Rji be the abstract transition program for Pj.

For every transition rule f1 2 R1, if �(s1) = �(s2), there exists f2 2 R2 such that

�(f1(s1)) = �(f2(s2)). For every initialization rule f1 2 I1, there exists f2 2 I2 such

that �(f1()) = �(f2()).

Proof.

Let f1 be any rule in R1. The main issue in the proof is to show that index

locations bound in f1 can be permuted to give a transition rule f2 in R2.

By de�nition, f1(s1) = tostate([[sm]]1(s1 � s)), for some statement sm. The

locations in s1 and s with de�ned values are disjoint, since s is an environment that

assigns values only to index locations, and s1 is a state (an environment that

assigns ? to index locations),

146 APPENDIX A. SEMANTIC ANALYSIS AND PROOFS

By the zeta equivalence lemma, there exists a �1-�2-permutation � such that

s2 = �(s1), since �(s1) = �(s2). Let � 01 be the set of non-? �2 values assigned

to s. By repeated application of the permutation extension lemma, there exists a set

� 02 � �2 and a (�1 [�
0
1)-(�2 [�

0
2)-permutation �0 such that s2 � �

0
(s) = �0(s1 � s).

Since �0(s) maps the index locations to the values in �2, by the de�nition of Tr2,

there exists f2 = �s0:tostate([[sm]]2(s0 � �
0
(s))) in R2. By the statement saturation

lemma,

[[sm]]2(s2 � �
0(s)) = [[sm]]2(�

0(s1 � s)) = �0([[sm]]1(s1 � s)):

Because � = tostate � �0, we have f2(s2) = �(f1(s1)).

Similarly, if f1 2 I1, there exists f2 2 I2 such that �(f1()) = �(f2()). 2

Now we can complete the proof for the data saturation theorem.

Proof. (of the data saturation theorem)

For i = 1; 2, suppose hL; Ti; Ii;Rii and Ai = hQi; Q0i;�i; errorii are the abstract

transition program and the state graph for Pi.

Step 1: First we show that �(Q1) = �(Q2).

We show that, for every s1 2 Q1, there exists an s2 2 Q2 such that �(s1) = �(s2).

The converse follows by symmetry. For every s1 2 Q1 and s1 6= error, let

�1 � �1 be the set of non-? values assigned to locations of type � in s1. Since

the number of locations of type � is N�, j�1j � N�. Since j�2j � N�, there

exists �2 � �2 of the same size as �1 and a �1-�2-permutation �. The set of

non-? values assigned to locations of type � in s2 = �(s1) is �2, therefore, s2 is

a member of Q2, and �(s1) = �(s2) by the zeta equivalence lemma.

Step 2: We show in this step that every transition (q1; q
0
1) in �(A1), is also transition

(q1; q
0
2) in �(A2). The converse follows by symmetry.

For every transition (�(q1); �(q
0
1)) in �(A1), there exists s1; s

0
1 2 Q1 such that

(s1; s
0
1) 2 �1. Therefore there exists f1 2 R1 such that f1(s1) = s01.

From the proof in step 1, we know that there exists a state s2 2 Q2 such that

�(s1) = �(s2). By the rule saturation lemma, there exists f2 2 R2 such that

A.4. REPETITIVE PROPERTY ENFORCED BY REPETITIVEIDS 147

�(f1(s1)) = �(f2(s2)). Since (s2; f2(s2)) 2 �2, (�(s2); �(f2(s2)) = (�(s1); �(s
0
1))

is a transition in �(A2).

The proof that the initial states are the same in �(A1) and �(A2) is similar.

Finally, the error states �(A1) and �(A2) are isomorphic, since they are con-

nected by the isomorphic transitions.

Since the two canonicalized graphs are isomorphic, the symmetry-reduced state

graphs of P1 and P2 are isomorphic. 2

This proof applies equally well when the size of � is in�nite. A system with

a scalarset of in�nite size cannot be veri�ed using conventional search algorithms,

because there can be an in�nite number of reachable states. Even worse, use of an

in�nite scalarset as an index in the construct yields an in�nite set of transition

functions. However, since the symmetry-reduced state graph is �nite in all respects,

veri�cation using symmetry reduction is straightforward.

A.4 Repetitive Property Enforced by

RepetitiveIDs

This section presents the proof of the following theorem:

Theorem A.3 The system described by a Mur' program with a repetitiveID is sym-

metric and repetitive w.r.t. the components named by the repetitiveID.

Since repetitiveID is a subtype of scalarset, Theorem A.1 has already shown that

a system with a repetitiveID is symmetric w.r.t. the components named by the

repetitiveID. The remainder of this section concentrates on showing that the system

is repetitive, which is stated here again for convenience:

De�nition A.6 (repetitive property) A system is repetitive if and only if, given

an active representation (s; q; fqa11 ; : : : ; qakk g) for a transition rule t, we have:

Similarity in error behaviors:

t executes an error statement on (s; q; fqa11 ; : : : ; qakk g) if and only if it executes

an error statement on (s; q; fq1; : : : ; qkg).

148 APPENDIX A. SEMANTIC ANALYSIS AND PROOFS

Similarity in successors:

t transforms (s; q; fqa11 ; : : : ; qakk g) to (s0; r; fra11 ; : : : ; rakk g) if and only if t trans-

forms (s; q; fq1; : : : ; qkg) to (s0; r; fr1; : : : ; rkg), where r; r1; : : : ; rk may not be

distinct or abstractable.

And similarly for any equivalence class p0 = (s; fqa11 ; :::; qakk g) and a transition rule

t without an abstractable active component.

First of all, the restriction 4 in page 96 on repetitiveIDs ensures that there

is at most one active component for each transition rule, and this active compo-

nent can be abstractable or non-abstractable. Therefore, given an equivalence class

(s; fqa11 ; :::; qakk g) and a transition rule t, there are three cases to consider.

In the �rst two cases, if there is no active component associated with t, or if the

active component is not abstractable, the state (s; [q1; : : : ; q1| {z }
a1

; : : : ; qk; : : : ; qk| {z }
ak

]) can be used

as the canonical state to generate the successor after executing t. In the third case,

if the active component is abstractable, the active representation (s; q; fqa11 ; :::; qakk g)

is generated, and the state (s; [q; q1; : : : ; q1| {z }
a1

; : : : ; qk; : : : ; qk| {z }
ak

]) can be used as the canonical

state to generate the successor after executing t.

To simplify the discussion and proof, the remainder of this section only consider

the third case, in which the transition rule t has an abstractable active component.

We also denote the active representation (s; q; fqa11 ; :::; qakk g) as p
0
, (s; q; fq1; :::; qkg) as

p, the state (s; [q; q1; : : : ; q1| {z }
a1

; : : : ; qk; : : : ; qk| {z }
ak

]) as c0, and (s; [q; q1; : : : ; qk]) as c.

To carry out the proof of Theorem 6.1, the relationship between the abstractable

component indices in the states c0 and c is de�ned in terms of a pair of mappings:

De�nition A.7 The mapping exp maps the abstractable active component in

the state c = (s; [q; q1; : : : ; qk]) to the active component in the state c0 =

(s; [q; q1; : : : ; q1| {z }
a1

; : : : ; qk; : : : ; qk| {z }
ak

]). It maps the abstractable component index j + 1 in

the state c to the abstractable component index 1 + a1 + a2 + ::: + aj�1 + 1 in the

state c0.

The mapping exp�1 maps the abstractable active component in the state c0 to the

active component in the state c. It maps the abstractable component index 1 + a1 +

a2 + ::: + aj�1 + b in the state c0, where 1 � b � aj, to the abstractable component

index j + 1 in the state c.

A.4. REPETITIVE PROPERTY ENFORCED BY REPETITIVEIDS 149

Pictorially, the mapping exp and exp�1
can be summarized as:

...

(s; [q; q1; : : : ; q1| {z }
a1

; q2; : : : ; q2| {z }
a2

; : : : ; qk; : : : ; qk| {z }
ak

])

exp

(s; [q; q1; q2; : : : ; qk])

(s; [q; q1; : : : ; q1| {z }
a1

; q2; : : : ; q2| {z }
a2

; : : : ; qk; : : : ; qk| {z }
ak

])

exp�1

(s; [q; q1; q2; : : : ; qk])

For example, given states c01 = (s; [q; q1; q1; q1; q2; q2]) and c1 = (s; [q; q1; q2]), exp
�1

maps the 5th and 6th abstractable components in c01 to the 3rd abstractable compo-

nent in c1, and exp maps the 3rd abstractable component in c1 to the 5th abstractable

component in c01.

The restriction 4 and 5 in page 96 on repetitiveIDs guarantees that at most one

parameter variable of the repetitiveID type is declared in a ruleset and at most one

parameter variable of the repetitiveID type is declared in a for loop or a univer-

sal quanti�er. To simplify the discussion, we consider only the cases in which there

is exactly one ruleset parameter with the repetitiveID type, and the value of this

parameter refers to an abstractable active component. In these cases, an active repre-

sentation p0 = (s; q; fqa11 ; :::; qakk g) is used, and the state c
0 = (s; [q; q1; : : : ; q1| {z }

a1

; : : : ; qk; : : : ; qk| {z }
ak

])

is used as the canonical state to generate the successor after executing t. An environ-

ment may extend the state c0 in two di�erent ways:

1. (c0 � (`x' 7! 1) � c0), and

2. (c0 � (`x' 7! 1) � (`y' 7! j) � c0);

where c0 corresponds to the mappings of other parameter variables not of the repet-

itiveID type, x is the name of the repetitiveID variable declared in a ruleset, y is

the name of the variable declared in a for loop or a universal quanti�er, and j is a

repetitiveID index. Note that the canonical state c0 is chosen from the equivalence

150 APPENDIX A. SEMANTIC ANALYSIS AND PROOFS

class p0 so that the active abstractable component is the �rst abstractable component

in c0. To simplify the notation, the part (`x' 7! 1) is combined into c0; and the two

environments are denoted as (c0 � c0) and (c0 � (`y' 7! j) � c0).

The proof of the Theorem 6.1 is organized in a similar list of lemmas as the

corresponding proof for scalarset, with the permutation �� replaced by exp and

exp�1
. Similar to the cases with permutations, exp and exp�1

on the abstractable

component indices are extended to those on string/locations, and environments/state:

De�nition A.8 exp (and similarly for exp�1) on the abstractable component indices

can be extended to exp on the string/locations, de�ned as:

exp(l) =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

l if l is not of the form concat(l0; `:f ')

or concat(l0; `['; k; `]')

concat(exp(l0); `:f ') if l = concat(l0; `:f ')

concat(exp(l0); `['; exp(k); `]') if l = concat(l0; `['; k; `]') and the array

corresponding to l0 is indexed

by the repetitiveID

concat(exp(l0); `['; k; `]') if l = concat(l0; `['; k; `]') and the array

corresponding to l0 is not indexed

by the repetitiveID

De�nition A.9 exp and exp�1 on the abstractable component indices can be ex-

tended to exp and exp�1 on the environments, de�ned as:

� exp(c � c0) = (c0 � c0), and exp(c � (`y' 7! j) � c0) = (c0 � (`y' 7! exp(j)) � c0),

� exp�1(c0 � c0) = (c � c0), and exp�1(c0 � (`y' 7! j) � c0) = (c � (`y' 7! exp�1(j)) � c0).

Lemma A.14 (basic lemma) Given a program with a repetitiveID, a variable ref-
erence d, a term t in a program, and two environments e2 and e1 obtained by extending
states c0 and c, we have

[[d]](exp(e1)) = exp([[d]](e1)); and exp�1([[d]](e2)) = [[d]](exp�1(e2)):

If the type of t is the repetitiveID,

[[t]](exp(e1)) = exp([[t]](e1)); and exp�1([[t]](e2)) = [[t]](exp�1(e2)):

Otherwise
[[t]](exp(e1)) = [[t]](e1); and [[t]](e2) = [[t]](exp�1(e2)):

A.4. REPETITIVE PROPERTY ENFORCED BY REPETITIVEIDS 151

Proof. We prove the �rst part of the lemma for both variable references and terms

in a single induction. The proof for the second part with exp�1
is similar to the �rst

part with exp.

For all variable references d, if d does not have any record �eld reference or array

indexing,

[[d]](exp(e1)) = `d' de�nition of [[d]]

= exp(`d') de�nition of exp

= exp([[d]](e1)) de�nition of [[d]]

If d = d0:f ,

[[d]](exp(e1)) = concat([[d0]](exp(e1)); `:f ') de�nition of [[d0:f]]

= concat(exp([[d0]](e1)); `:f ') induction hypothesis

= exp(concat([[d0]](e1); `:f ')) de�nition of exp

= exp([[d]](e1)) de�nition of [[d0:f]].

If d = d0[t],

[[d]](exp(e1)) = concat([[d0]](exp(e1)); `['; [[t]](exp(e1)); `]') de�nition of [[d0[t]]]

=

8>>><
>>>:

concat(exp([[d0]](e1)); `['; exp([[t]](e1)); `]'))

if the type of t is the repetitiveID

concat(exp([[d0]](e1)); `['; [[t]](e1); `]'))

if the type of t is not the repetitiveID

induction hypothesis

= exp(concat([[d0]](e1); `['; [[t]](e1); `]')) de�nition of exp

= exp([[d]](e1)) de�nition of [[d0[t]]]

For all terms t, if t is an integer constant, the meaning is independent of s, and the

lemma holds trivially. If t is a variable reference d of the repetitiveID type,

[[t]](exp(e1)) = exp(e1)([[d]](exp(e1))) de�nition of [[t]]

= exp(e1)(exp([[d]](e1))) induction hypothesis

= exp((e1)([[d]](e1))) de�nition of exp

= exp([[t]](e1)) de�nition of [[t]].

152 APPENDIX A. SEMANTIC ANALYSIS AND PROOFS

If t is a variable reference d of type other than �,

[[t]](exp(e1)) = exp(e1)([[d]](exp(e1))) de�nition of [[t]]

= exp(e1)(exp([[d]](e1))) induction hypothesis

= (e1)([[d]](e1)) de�nition of exp

= [[t]](e1) de�nition of [[t]].

Finally, if t = t1 + t2, the type of t1 and t2 cannot be the repetitiveID. By induc-

tion [[t1]](exp(e1)) = [[t1]](e1) and [[t2]](exp(e1)) = [[t2]](e1). So [[t1 + t2]](exp(e1)) =

[[t1]](exp(e1)) + [[t2]](exp(e1)) = [[t1]](e1) + [[t2]](e1) = [[t1 + t2]](e1).

The proof would be similar for other operations on terms. 2

Lemma A.15 (Boolean lemma) Given a program with a repetitiveID, a Boolean

expression e, and two environments e2 and e1 obtained by extending states c0 and c,

we have [[e]](exp(e1)) = [[e]](e1), and [[e]](e2) = [[e]](exp�1
(e2)).

Proof. We prove the lemma by induction on the structure of the expression.

When e is over the form t1 > t2, the types of both t1 and t2 cannot be the

repetitiveID. Therefore, [[t1]](exp(e1)) = [[t1]](e1) and [[t2]](exp(e1)) = [[t2]](e1), which

implies that [[t1 > t2]](exp(e1)) = [[t1 > t2]](e1).

When e is of the form t1 = t2, and neither of the terms is of the repetitiveID

type, we have [[t1]](exp(e1)) = [[t1]](e1) and [[t2]](exp(e1)) = [[t2]](e1), which implies

that [[t1 = t2]](exp(e1)) = [[t1 = t2]](e1).

The situation becomes more complicated if the type of one of the terms is the

repetitiveID. In this case, both t1 and t2 must be variables of the repetitiveID type.

If e1 = (c � c0), the only possible variables are global variables in a state. Because

of the restriction 6 on the repetitiveID, the non-active abstractable component states

cannot be accessed. Therefore, t1 and t2 can only be variables in the non-abstractable

part (and the active component state) in c, which have the same values in c0. Since

exp(e1) = (c0 � c0), we have [[t1 = t2]](exp(e1)) = [[t1 = t2]](e1). On the other

hand, if e1 = (c � (`y' 7! j) � c0), t1 and t2 may be variables in the abstractable

component j in c. However the variables in the abstractable component j in c have

the same values as the variables in the abstractable component exp(j) in c0. Since

exp(e1) = (c0 � (`y' 7! exp(j)) � c0), we have [[t1 = t2]](exp(e1)) = [[t1 = t2]](e1).

A.4. REPETITIVE PROPERTY ENFORCED BY REPETITIVEIDS 153

Similarly, the base cases for exp�1
are also true.

For the induction part, the cases for : and ^ are straightforward. For the uni-

versal quanti�er, the case when the quanti�cation is over some type other than the

repetitiveID follows immediately by the induction hypothesis.

For the case where the quanti�cation is over the repetitiveID, because of the

restriction 5 on the repetitiveID, e1 must be of the form (c � c0). Therefore, if the

repetitiveID type is �, we have

[[8(y : �)e]](exp(e1)) =
V
j2�[[e]](c

0 � (`y' 7! j) � c0)

de�nition of 8(y : �)

= [[e]](c0 � (`y' 7! 1) � c0)

^
V
2�j�1+a1

[[e]](c0 � (`y' 7! j) � c0)

^::: ^
V
2+a1+:::ak�1�j�1+a1+:::+ak

[[e]](c0 � (`y' 7! j) � c0)

expand

= [[e]](c � (`y' 7! 1) � c0)

^
V
2�j�1+a1

[[e]](c � (`y' 7! 2) � c0)

^::: ^
V
2+a1+:::ak�1�j�1+a1+:::+ak

[[e]](c � (`y' 7! k + 1) � c0)

induction hypothesis: [[e]](e2) = [[e]](exp�1(e2))

=
V
1�j�k+1[[e]](c � (`y' 7! j) � c0)

simplify

= [[8(y : �)e]](e1)

de�nition of 8(y : �).

And similarly for [[8(y : �)e]](e2)) = [[8(y : �)e]](exp�1
(e2)). 2

Lemma A.16 (statement lemma) Given a program with a repetitiveID, a state-

ment sm and two environments e2 and e1 obtained by extending states c0 and c,

if e2 = (c0 � c0) and e1 = (c � c0), we have [[sm]](exp(e1)) = exp([[sm]](e1)), and

exp�1
([[sm]](e2)) = [[sm]](exp�1

(e2)),

Proof. The proof is by induction on the structure of statements, with the help of

the following auxiliary property for a statement enclosed inside a for loop:

if e2 = (c0�(`y' 7! j)�c0), and e1 = (c�(`y' 7! exp�1
(j))�c0), the statement

sm changes only the component state of the component k in e2 and the

component state of the component exp�1
(j) in e1. Both components are

changed to the same �nal component states.

154 APPENDIX A. SEMANTIC ANALYSIS AND PROOFS

This property is enforced by the restriction 5 on the repetitiveID. When environ-

ments e2 = (c0 � (`y' 7! j) � c0), and e1 = (c � (`y' 7! exp�1
(j)) � c0) are encountered

before the execution of a statement, the statement must be within a for loop. Since

the variables written by each iteration are disjoint, the only possible changes made

by the statement is the component state of the component referred by the variable y.

Furthermore, because of the variables being disjoint, the control
ow within the state-

ment depends only on the component state, which is the same in e1 and e2. Therefore,

the �nal component states are the same after executing the statement in e1 and e2.

Base on this property, we can prove the lemma by induction on the structure of

the statements. An error statement results in an error environment regardless of its

environment, so the theorem is trivial in this case.

For a statement sm of the form d := t, if sm is executed on e2 = (c0 � c0) or

e1 = (c � c0), sm must not be enclosed within a for loop. Therefore, d and t can only

reference the non-abstractable part (or the component state of the active component)

of c0 in e2, which is the same as the corresponding part in c in e1. This implies that

[[sm]](exp(e1)) = exp([[sm]](e1)), and exp
�1
([[sm]](e2)) = [[sm]](exp�1

(e2)),

For a statement sm of the form if b then sm0 end, if [[b]](e1) is true, then

[[b]](exp(e1)) is also true, by the Boolean lemma, so [[sm]](exp(e1)) = [[sm0
]](exp(e1)).

By the induction hypothesis, [[sm0
]](exp(e1)) = exp([[sm0

]](e1)) = exp([[sm]](e1)).

If [[b]](e1) is false then [[b]](exp(e1)) is also false, so [[sm]](exp(e1)) = exp(e1) =

exp([[sm]](e1)).

For a statement sm of the form sm1; sm2, by the induction hypothesis,

[[sm]](exp(e1)) = [[sm2]]([[sm1]](exp(e1)))

= [[sm2]](exp([[sm1]](e1)))

= exp([[sm2]]([[sm1]](e1)))

= exp([[sm]](e1)):

For a statement sm of the form for (y : �) do sm0 end, where � is the repetitiveID

type, we have

[[sm]](exp(e1)) = [[sm0
y(1 + a1 + :::+ ak)]]([[sm

0
y(1 + a1 + :::+ (ak � 1))]](: : :

: : : [[sm0
y(1)]](exp(e1)) : : :))

de�nition of [[sm]]

A.4. REPETITIVE PROPERTY ENFORCED BY REPETITIVEIDS 155

On the other hand, because of the auxiliary property, we also have:

[[sm0
y(1)]](exp(e1)) = exp([[sm0

y(1)]](e1) (A.1)

[[sm0
y(1 + a1 + :::+ aj)]](: : : [[sm

0
y(1 + a1 + :::+ aj�1 + 1)]](exp(e1))

= exp([[sm0
j(1 + j)]](e1) (A.2)

Therefore,

[[sm]](exp(e1)) = [[sm0
y(1 + a1 + :::+ ak)]]([[sm

0
y(1 + a1 + :::+ (ak � 1))]](: : :

: : : [[sm0
y(1)]](exp(e1)) : : :))

de�nition of [[sm]]

= exp([[sm0
y(k + 1)]](: : : [[sm0

y(1)]](e1) : : :)))

Eqn. (A.1) and (A.2)

= exp([[sm]](e1))

de�nition of [[sm]].

The same analysis can be repeated for exp�1
([[sm]](e2)) = [[sm]](exp�1

(e2)).

2

Lemma A.17 (transition lemma) Given a program with a repetitiveID, a transi-

tion rule t, and two environments e2 and e1 obtained by extending states c0 and c, we

have [[t]](exp(e1)) = exp([[t]](e1)), and exp
�1
([[t]](e2)) = [[t]](exp�1

(e2)).

Proof. It follows trivially from the statement lemma. 2

Theorem 6.1 can be obtained by combining the Boolean lemma and the transition

lemma.

156 APPENDIX A. SEMANTIC ANALYSIS AND PROOFS

Appendix B

Mur' Descriptions

This appendix contains the Mur' description of the DASH cache coherence protocol.

157

158 APPENDIX B. MUR' DESCRIPTIONS

-- Copyright (C) 1996 by the Board of Trustees of

-- Leland Stanford Junior University.

--

-- This description is provided to serve as an example of the

-- use of the Murphi description language and verifier, and as a

-- benchmark example for other verification efforts.

--

-- License to use, copy, modify, sell and/or distribute this

-- description and its documentation for any purpose is hereby

-- granted without royalty, subject to the following terms and

-- conditions:

--

-- 1. The above copyright notice and this permission notice

-- must appear in all copies of this description.

--

-- 2. The Murphi group at Stanford University must be

-- acknowledged in any publication describing work that

-- makes use of this example.

--

-- Nobody vouches for the accuracy or usefulness of this

-- description for any purpose.

-- Author: C. Norris Ip

--

-- File: adash.m

--

-- Content: abstract Dash protocol with elementary

-- operations and extended DMA operations

--

-- Specification decision:

-- 1) Each cluster is modeled by a cache and a RAC

-- to store outstanding operations.

-- 2) Simplification:

-- RAC is not used to store data; the cluster

-- acts as a single processor/global shared cache

-- 3) Separate network channels are used.

-- (request and reply)

-- 4) Aliases are used extensively.

--

-- Summary of result:

-- 1) A "non-obvious" bug is rediscovered.

-- 2) No bug is discovered for the final version

-- of the protocol.

--

-- Options:

-- The code for the bug is retained in the description.

-- To see the result of using a erroneous protocol,

-- use option flag 'bug1'.

--

-- An option flag 'nohome' is used to switch

-- on/off the local memory action. This

-- enables us to simplify the protocol to

-- examine the behavior when the number of

-- processors increases.

--

-- References:

-- 1) Daniel Lenoski, James Laudon, Kourosh

-- Gharachorloo, Wlof-Dietrich Weber, Anoop Gupta,

-- John Hennessy, Mark Horowitz and Monica Lam.

-- The Stanford DASH Multiprocessor.

-- Computer, Vol 25 No 3, p.63-79, March 1992.

-- (available online)

--

-- 2) Daniel Lenoski,

-- DASH Prototype System,

-- PhD thesis, Stanford University,

-- Chapter 3, 1992.

-- (available online)

--

-- Last Modified: November 96

/*

Declarations

The number of clusters is defined by 'ProcCount'. To simplify

the description, only some of the clusters have memory

('HomeCount'). The number of clusters without memory is given

by 'RemoteCount'.

The directory used by the protocol is a full mapped directory.

Instead of using bit map as in the real implementation, array

of cluster ID is used to simply the rules used to manipulate

the directory.

Array is used to model every individual cluster-to-cluster

network channel. The size of the array is estimated to be

larger than the maximum possible number of messages

in the network.

All the addresses are in the cache-able address space.

*/

--

-- Constant Declarations

--

Const

HomeCount: 1; -- number of homes.

RemoteCount: 2; -- number of remote nodes.

ProcCount: HomeCount+RemoteCount;

-- number of processors with cache.

AddressCount: 1; -- number of address at

-- each home cluster.

ValueCount: 2; -- number of data values.

DirMax: ProcCount-1; -- number of directory entries

-- that can be kept (full map)

ChanMax: 2*ProcCount*AddressCount*HomeCount;

-- buffer size in a single channel

-- options

bug1: false; -- options to introduce the

-- bug described or not

nohome: true; -- options to switch off processors

-- at Home to simplify the protocol.

--

-- Type Declarations

--

Type

Home: 1..HomeCount;

-- can be changed to Scalarset(HomeCount);

Remote: (HomeCount+1)..(HomeCount+RemoteCount);

-- can be changed to Scalarset(RemoteCount);

Proc: 1..HomeCount+RemoteCount;

-- can be changed to Union{Home, Remote};

Address: 1..AddressCount;

-- can be changed to Scalarset(AddressCount);

Value: 1..ValueCount;

-- can be changed to Scalarset(ValueCount);

DirIndex: 0..DirMax-1;

NodeCount: 0..ProcCount-1;

-- the type of requests that go into the request network

-- Cache-able and DMA operations

RequestType:

enum{

RD_H, -- basic op. -- read request to Home (RD)

RD_RAC, -- basic op. -- read request to Remote (RD)

RDX_H, -- basic op. -- read excl. req. to Home (RDX)

RDX_RAC, -- basic op. -- read excl. req. to Remote (RDX)

INV, -- basic op. -- invalidate request

WB, -- basic op. -- Explicit Write-back

SHWB, -- basic op. -- sharing writeback request

DXFER, -- basic op. -- dirty transfer request

DRD_H, -- DMA op. -- read request to Home (DRD)

DRD_RAC, -- DMA op. -- read request to Remote (DRD)

DWR_H, -- DMA op. -- write request to Home (DWR)

DWR_RAC, -- DMA op. -- write request to Remote (DWR)

DUP -- DMA op. -- update request

};

159

-- the type of reply that go into the reply network

-- Cache-able and DMA operations

ReplyType:

enum{

ACK, -- basic op. -- read reply

-- basic op. -- read excl. reply

-- (inv count = 0)

-- DMA op. -- read reply

-- DMA op. -- write acknowledge

NAK, -- ANY kind of op. -- negative acknowledge

IACK, -- basic op. -- read exclusive reply

-- (inv count !=0)

-- DMA op. -- acknowledge with update count

SACK -- basic op. -- invalidate acknowledge

-- basic op. -- dirty transfer acknowledge

-- DMA op. -- update acknowledge

};

-- record for the requests in the network

Request:

Record

Mtype: RequestType;

Aux: Proc;

Addr: Address;

Value: Value;

End;

-- record for the reply in the network

Reply:

Record

Mtype: ReplyType;

Aux: Proc;

Addr: Address;

InvCount: NodeCount;

Value: Value;

End;

-- States in the Remote Access Cache (RAC) :

-- a) maintaining the state of currently outstanding requests,

-- b) buffering replies from the network

-- c) supplementing the functionality of caches

RAC_State:

enum{

INVAL, -- Invalid

WRD, -- basic op. -- waiting for a read reply

WRDO, -- basic op. -- waiting for a read reply

-- with ownership transfer

WRDX, -- basic op. -- waiting for a read excl. reply

WINV, -- basic op. -- waiting for invalidate ack.

RRD, -- basic op. -- invalidated read/read

-- with ownership request

WDMAR, -- DMA op. -- waiting for a DMA read reply

WUP, -- DMA op. -- waiting for update acknowledges

WDMAW -- DMA op. -- waiting for a DMA write ack.

};

-- State of data in the cache

CacheState:

enum{

Non_Locally_Cached,

Locally_Shared,

Locally_Exmod

};

Type

-- Directory Controller and the Memory

-- a) Contains directory DRAM

-- b) Forwards local requests to remotes,

-- and replies to remote requests

-- c) Responds to MPBUS with directory information

-- d) Stores locks and lock queues

HomeState:

Record

Mem: Array[Address] of Value;

Dir: Array[Address] of

Record

State: enum{ Uncached, Shared_Remote,

Dirty_Remote};

SharedCount: 0..DirMax;

Entries: Array[DirIndex] of Proc;

End;

End;

-- 1. Snoopy Caches

-- 2. Pseudo-CPU (PCPU)

-- a) Forwards remote CPU requests to local MPBUS

-- b) Issues cache line invalidations and lock grants

-- 3. Reply Controller (RC)

-- a) Remote Access Cache (RAC) stores state of

-- on-going memory requests and remote replies.

-- b) Per processor invalidation counters (not implemented)

-- c) RAC snoops on bus

ProcState:

Record

Cache: Array[Home] of Array[Address] of

Record

State: CacheState;

Value: Value;

End;

RAC: Array[Home] of Array[Address] of

Record

State: RAC_State;

Value: Value;

InvCount: NodeCount;

End;

End;

--

-- Variable Declarations

--

-- Clusters 0..HomeCount-1 : Clusters with distributed memory

-- Clusters HomeCount..ProcCount-1 :

-- Simplified Clusters without memory.

-- ReqNet : Virtual network with cluster-to-cluster channels

-- ReplyNet : Virtual network with cluster-to-cluster channels

--

Var

ReqNet: Array[Proc] of Array[Proc] of

Record

Count: 0..ChanMax;

Messages: Array[0..ChanMax-1] of Request;

End;

ReplyNet: Array[Proc] of Array[Proc] of

Record

Count: 0..ChanMax;

Messages: Array[0..ChanMax-1] of Reply;

End;

Procs: Array[Proc] of ProcState;

Homes: Array[Home] of HomeState;

/*

Procedures

-- Directory handling functions

-- Request Network handling functions

-- Reply Network handling functions

-- Sending request

-- Sending Reply

-- Sending DMA Request

-- Sending DMA Reply

*/

--

-- Directory handling functions

-- a) set first entry in directory and clear other entries

-- b) add node to directory if it does not already exist

--

Procedure Set_Dir_1st_Entry(h : Home;

a : Address;

n : Proc);

Begin

Undefine Homes[h].Dir[a].Entries;

Homes[h].Dir[a].Entries[0] := n;

End;

160 APPENDIX B. MUR' DESCRIPTIONS

Procedure Add_to_Dir_Entries(h : Home;

a : Address;

n : Proc);

Begin

Alias SharedCount: Homes[h].Dir[a].SharedCount

Do

If (Forall i:0..DirMax-1 Do

(i < SharedCount)

-> (Homes[h].Dir[a].Entries[i] != n)

End)

Then

Homes[h].Dir[a].Entries[SharedCount] := n;

SharedCount := SharedCount + 1;

End;

End;

End;

--

-- Request Network handling functions

-- a) A request is put into the end of a specific

-- channel connecting the source Src and the

-- destination Dst.

-- b) Request is only consumed at the head of the

-- queue, forming a FIFO ordered network channel.

--

Procedure Send_Req(t : RequestType;

Dst, Src, Aux : Proc;

Addr : Address;

Val : Value);

Begin

Alias Count : ReqNet[Src][Dst].Count

Do

Assert (Count != ChanMax) "Request Channel is full";

ReqNet[Src][Dst].Messages[Count].Mtype := t;

ReqNet[Src][Dst].Messages[Count].Aux := Aux;

ReqNet[Src][Dst].Messages[Count].Addr := Addr;

ReqNet[Src][Dst].Messages[Count].Value := Val;

Count := Count + 1;

End;

End;

Procedure Consume_Request(Src, Dst: Proc);

Begin

Alias Count : ReqNet[Src][Dst].Count

Do

For i: 0..ChanMax -2 Do

ReqNet[Src][Dst].Messages[i]

:= ReqNet[Src][Dst].Messages[i+1];

End;

Undefine ReqNet[Src][Dst].Messages[Count-1];

Count := Count - 1;

End;

End;

--

-- Reply Network handling functions

-- a) A Reply is put into the end of a specific

-- channel connecting the source Src and the

-- destination Dst.

-- b) Reply is only consumed at the head of the queue,

-- forming a FIFO ordered network channel.

--

Procedure Send_Reply(t : ReplyType;

Dst, Src, Aux : Proc;

Addr : Address;

Val : Value;

InvCount : NodeCount);

Begin

Alias Count : ReplyNet[Src][Dst].Count

Do

Assert (Count != ChanMax) "Reply Channel is full";

ReplyNet[Src][Dst].Messages[Count].Mtype := t;

ReplyNet[Src][Dst].Messages[Count].Aux := Aux;

ReplyNet[Src][Dst].Messages[Count].Addr := Addr;

ReplyNet[Src][Dst].Messages[Count].Value := Val;

ReplyNet[Src][Dst].Messages[Count].InvCount := InvCount;

Count := Count + 1;

End;

End;

Procedure Consume_Reply(Src, Dst : Proc);

Begin

Alias Count : ReplyNet[Src][Dst].Count

Do

For i: 0..ChanMax -2 Do

ReplyNet[Src][Dst].Messages[i]

:= ReplyNet[Src][Dst].Messages[i+1];

End;

Undefine ReplyNet[Src][Dst].Messages[Count-1];

Count := Count - 1;

End;

End;

--

-- Sending request

--

-- send read request to home cluster

Procedure Send_R_Req_H(Dst, Src : Proc;

Addr : Address);

Begin

Send_Req(RD_H, Dst, Src, Undefined, Addr, Undefined);

End;

-- send read request to dirty remote block

-- Aux = where the request originally is from

Procedure Send_R_Req_RAC(Dst, Src, Aux : Proc;

Addr : Address);

Begin

Send_Req(RD_RAC, Dst, Src, Aux, Addr, Undefined);

End;

-- send sharing writeback to home cluster

-- Aux = new sharing cluster

Procedure Send_SH_WB_Req(Dst, Src, Aux : Proc;

Addr : Address;

Val : Value);

Begin

Send_Req(SHWB, Dst, Src, Aux, Addr, Val);

End;

-- send invalidate request to shared remote clusters

-- Aux = where the request originally is from

Procedure Send_Inv_Req(Dst, Src, Aux : Proc;

Addr : Address);

Begin

Send_Req(INV, Dst, Src, Aux, Addr, Undefined);

End;

-- send read exclusive request

Procedure Send_R_Ex_Req_RAC(Dst, Src, Aux : Proc;

Addr : Address);

Begin

Send_Req(RDX_RAC, Dst, Src, Aux, Addr, Undefined);

End;

-- send read exclusive local request

Procedure Send_R_Ex_Req_H(Dst, Src : Proc;

Addr : Address);

Begin

Send_Req(RDX_H, Dst, Src, Undefined, Addr, Undefined);

End;

-- send dirty transfer request to home cluster

Procedure Send_Dirty_Transfer_Req(Dst, Src, Aux : Proc;

Addr : Address);

Begin

Send_Req(DXFER, Dst, Src, Aux, Addr, Undefined);

End;

-- Explicit writeback request

Procedure Send_WB_Req(Dst, Src : Proc;

Addr : Address;

Val : Value);

Begin

Send_Req(WB, Dst, Src, Undefined, Addr, Val);

End;

161

--

-- Sending Reply

--

-- send read reply

-- Aux = home cluster

Procedure Send_R_Reply(Dst, Src, Home : Proc;

Addr : Address;

Val : Value);

Begin

Send_Reply(ACK, Dst, Src, Home, Addr, Val, 0);

End;

-- send negative ack to requesting cluster

Procedure Send_NAK(Dst, Src, Aux : Proc;

Addr : Address);

Begin

Send_Reply(NAK, Dst, Src, Aux, Addr, Undefined, 0);

End;

-- send invalidate acknowledge from shared remote clusters

-- Aux = where the request originally is from

Procedure Send_Inv_Ack(Dst, Src, Aux : Proc;

Addr : Address);

Begin

Send_Reply(SACK, Dst, Src, Aux, Addr, Undefined, 0);

End;

-- send read exclusive remote reply to requesting cluster

-- Aux = where the request originally is from

Procedure Send_R_Ex_Reply(Dst, Src, Aux : Proc;

Addr : Address;

Val : Value;

InvCount : NodeCount);

Begin

Alias Count : ReplyNet[Src][Dst].Count

Do

Assert (Count != ChanMax) "Reply Channel is full";

If (InvCount = 0) Then

Send_Reply(ACK, Dst, Src, Aux, Addr, Val, 0);

Else

Send_Reply(IACK, Dst, Src, Aux, Addr, Val, InvCount);

End; --if;

End;

End;

-- send dirty transfer ack to new master

Procedure Send_Dirty_Transfer_Ack(Dst, Src : Proc;

Addr : Address);

Begin

Send_Reply(SACK, Dst, Src, Src, Addr, Undefined, 0);

End;

--

-- Sending DMA Request

--

-- DMA Read request to home

Procedure Send_DMA_R_Req_H(Dst, Src : Proc;

Addr : Address);

Begin

Send_Req(DRD_H, Dst, Src, Undefined, Addr, Undefined);

End;

-- DMA Read request to remote

Procedure Send_DMA_R_Req_RAC(Dst, Src, Aux : Proc;

Addr : Address);

Begin

Send_Req(DRD_RAC, Dst, Src, Aux, Addr, Undefined);

End;

-- send DMA write request from Local

Procedure Send_DMA_W_Req_H(Dst, Src : Proc;

Addr : Address;

Val : Value);

Begin

Send_Req(DWR_H, Dst, Src, Undefined, Addr, Val);

End;

-- send DMA update count to local

Procedure Send_DMA_Update_Count(Dst, Src : Proc;

Addr : Address;

SharedCount : NodeCount);

Begin

Send_Reply(IACK, Dst, Src, Src, Addr, Undefined, SharedCount);

End;

-- send DMA update request from Local

Procedure Send_DMA_Update_Req(Dst, Src, Aux : Proc;

Addr : Address;

Val : Value);

Begin

Send_Req(DUP, Dst, Src, Aux, Addr, Val);

End;

-- send DMA update request from home

-- forward DMA update request from home

Procedure Send_DMA_W_Req_RAC(Dst, Src, Aux : Proc;

Addr : Address;

Val : Value);

Begin

Send_Req(DWR_RAC, Dst, Src, Aux, Addr, Val);

End;

--

-- Sending DMA Reply

--

-- DMA read reply

Procedure Send_DMA_R_Reply(Dst, Src, Aux : Proc;

Addr : Address;

Val : Value);

Begin

Send_Reply(ACK, Dst, Src, Aux, Addr, Val, 0);

End;

-- send DMA write Acknowledge

Procedure Send_DMA_W_Ack(Dst, Src, Aux : Proc;

Addr : Address);

Begin

Send_Reply(ACK, Dst, Src, Aux, Addr, Undefined, 0);

End;

-- DMA update acknowledge to local

Procedure Send_DMA_Update_Ack(Dst, Src, Aux : Proc;

Addr : Address);

Begin

Send_Reply(SACK, Dst, Src, Aux, Addr, Undefined, 0);

End;

/*

Rule Sets for fundamental memory access and DMA access

1) CPU Ia : basic home memory requests from CPU

CPU Ib : DMA home memory requests from CPU

2) CPU IIa : basic remote memory requests from CPU

CPU IIb : DMA remote memory requests from CPU

3) PCPU Ia : handling basic requests to PCPU at memory cluster

PCPU Ib : handling DMA requests to PCPU at memory cluster

4) PCPU IIa : handling basic requests to PCPU in remote cluster

PCPU IIb : handling DMA requests to PCPU in remote cluster

5) RCPU Iab : handling basic and DMA replies to RCPU in

any cluster.

*/

162 APPENDIX B. MUR' DESCRIPTIONS

/*

CPU Ia

The rule sets non-deterministically issue requests for local

cache-able memory. The requests include read, exclusive read.

Two sets of Rules;

Rule "Local Memory Read Request"

Rule "Local Memory Read Exclusive Request"

Issue messages:

RD_RAC

RDX_RAC

INV

*/

Ruleset n : Proc Do

Ruleset h : Home Do

Ruleset a : Address Do

Alias

RAC : Procs[n].RAC[h][a];

Cache : Procs[n].Cache[h][a];

Dir : Homes[h].Dir[a];

Mem : Homes[h].Mem[a]

Do

--

-- Home CPU issue read request

-- confirmed with tables net.tbl, rc_1.tbl, rc_3.tbl,

-- up_mp.tbl

--

Rule "Local Memory Read Request"

(h = n) & !nohome

==>

Begin

Switch RAC.State

Case INVAL:

-- no pending event

Switch Dir.State

Case Dirty_Remote:

-- send request to master cluster

RAC.State := WRDO;

Send_R_Req_RAC(Dir.Entries[0],h,h,a);

Else

-- get from memory

Switch Cache.State

Case Locally_Exmod:

-- write back local master through snoopy protocol

Cache.State := Locally_Shared;

Mem := Cache.Value;

Case Locally_Shared:

-- other cache supply data

Case Non_Locally_Cached:

-- update cache

Cache.State := Locally_Shared;

Cache.Value := Mem;

End; --switch;

End; --switch;

Case WRDO:

-- merge

Else

-- WRD, RRD, WINV, WRDX, WDMAR, WUP, WDMAW.

Assert (RAC.State != WRD & RAC.State != RRD)

"Funny RAC state at home cluster";

-- conflict

End;

End; -- rule -- Local Memory Read Request

--

-- Home CPU issue read exclusive request

-- confirmed with tables net.tbl, rc_1.tbl, rc_3.tbl,

-- up_mp.tbl

--

Rule "Local Memory Read Exclusive Request"

(h = n) & !nohome

==>

Begin

Switch RAC.State

Case INVAL:

-- no pending event

Switch Dir.State

Case Uncached:

-- get from memory

-- invalidate local copy through snoopy protocol

Cache.State := Locally_Exmod;

Cache.Value := Mem;

Case Shared_Remote:

-- get from memory

Cache.State := Locally_Exmod;

Cache.Value := Mem;

-- invalidate all remote shared read copies

RAC.State := WINV;

RAC.InvCount := Dir.SharedCount;

For i : NodeCount Do

If (i < RAC.InvCount) Then

Send_Inv_Req(Dir.Entries[i],h,h,a);

End;

End;

Dir.State := Uncached;

Dir.SharedCount := 0;

Undefine Dir.Entries;

Case Dirty_Remote:

-- send request to master cluster

-- (switch requesting processor to do other jobs)

RAC.State := WRDX;

Send_R_Ex_Req_RAC(Dir.Entries[0],h,h,a);

End; --switch;

Case WINV:

-- other local processor already get the dirty copy

-- other Cache supply data

Assert (Dir.State = Uncached) "Inconsistent Directory";

Case WRDX: -- merge

Switch Dir.State

Case Uncached:

-- only arise in case of:

-- remote cluster WB

Case Shared_Remote:

-- only arise in case of:

-- remote cluster WB and RD

Case Dirty_Remote:

-- merge

End; --switch;

Case WRDO:

-- conflict

Else

-- WRD, RRD, WDMAR, WUP, WDMAW.

Assert (RAC.State != WRD & RAC.State != RRD)

"Funny RAC state at home cluster";

-- conflict

End; --switch;

End; -- rule -- local memory read exclusive request

End; --alias; -- RAC, Cache, Dir, Mem

End; --ruleset; -- a

End; --ruleset; -- h

End; --ruleset; -- n

163

/*

CPU Ib

The rule sets non-deterministically issue requests for local

cache-able memory. The requests include DMA read and DMA write.

Two sets of rules:

Rule "DMA Local Memory Read Request"

Rule "DMA Local Memory Write Request"

Issue messages:

DRD_RAC

DWR_RAC

DUP

*/

Ruleset n : Proc Do

Ruleset h : Home Do

Ruleset a : Address Do

Alias

RAC : Procs[n].RAC[h][a];

Cache : Procs[n].Cache[h][a];

Dir : Homes[h].Dir[a];

Mem : Homes[h].Mem[a]

Do

--

-- Home CPU issue DMA read request

-- confirmed with tables net.tbl, rc_1.tbl, rc_3.tbl up_mp.tbl

--

Rule "DMA Local Memory Read Request"

(h = n) & !nohome

==>

Begin

Switch Dir.State

Case Uncached:

-- if RAC = INVAL => other cache supply data

-- else => conflict

Case Shared_Remote:

-- if RAC = INVAL => other cache supply data

-- else => conflict

Case Dirty_Remote:

Switch RAC.State

Case INVAL:

-- send DMA read request

RAC.State := WDMAR;

Send_DMA_R_Req_RAC(h,n,n,a);

Case WINV:

Error "inconsistent directory";

Case WDMAR:

-- merge

Else

-- WRD, WRDO, WRDX, RRD, WUP, WDMAW.

Assert (RAC.State != WRD & RAC.State != RRD)

"Funny RAC state at home cluster";

-- conflict

End;

End;

End; -- rule -- DMA Local Memory Read Request

--

-- Home CPU issue DMA write request

-- confirmed with tables net.tbl, rc_1.tbl, rc_3.tbl,

-- up_mp.tbl

--

Ruleset v:Value Do

Rule "DMA Local Memory Write Request"

(h = n) & !nohome

==>

Begin

Switch RAC.State

Case INVAL:

-- no pending event

Switch Dir.State

Case Uncached:

Switch Cache.State

Case Non_Locally_Cached:

-- write to memory

Mem := v;

Case Locally_Shared:

-- write to memory and cache

Cache.Value := v;

Mem := v;

Case Locally_Exmod:

-- write to cache

Cache.Value := v;

End; --switch;

Case Shared_Remote:

-- shared by remote cache

-- a) update local cache

-- b) update memory

-- c) update remote cache

Switch Cache.State

Case Non_Locally_Cached:

-- no in local cache

Case Locally_Shared:

-- update local cache

Cache.Value := v;

Case Locally_Exmod:

Error "Shared_remote with Exmod asserted";

End; --switch;

Mem := v;

RAC.State := WUP;

RAC.InvCount := Dir.SharedCount;

For i:NodeCount Do

If (i < Dir.SharedCount) Then

Send_DMA_Update_Req(Dir.Entries[i], n,n,a,v);

End; --if;

End; --for;

Case Dirty_Remote:

-- update remote master copy

RAC.State := WDMAW;

RAC.Value := v;

Send_DMA_W_Req_RAC(Dir.Entries[0], n,n,a,v);

End; --switch;

Case WINV:

-- local master copy

-- write local cache

If (Cache.State = Locally_Exmod) Then

Procs[n].Cache[h][a].Value := v;

Elsif (Cache.State = Locally_Shared) Then

Cache.Value := v;

Mem := v;

End; --if;

Else

-- WRD, WRDO, WRDX, RRD, WDMAR, WUP, WDMAW

Assert (RAC.State != WRD) "WRD at home cluster";

End; --switch;

End; -- rule -- DMA write

End; --ruleset; -- v

End; --alias; -- RAC, Cache, Dir, Mem

End; --ruleset; -- a

End; --ruleset; -- h

End; --ruleset; -- n

164 APPENDIX B. MUR' DESCRIPTIONS

/*

CPU IIa

The rule sets non-deterministically issue requests for remote

cache-able memory. The requests include read, exclusive read,

Explicit write back.

Three sets of rules:

Rule "Remote Memory Read Request"

Rule "Remote Memory Read Exclusive Request"

Rule "Explicit Writeback request"

Issue messages:

RD_H

RDX_H

WB

*/

Ruleset n : Proc Do

Ruleset h : Home Do

Ruleset a : Address Do

Alias

RAC : Procs[n].RAC[h][a];

Cache : Procs[n].Cache[h][a]

Do

--

-- remote CPU issues read request

-- confirmed with tables net.tbl, rc_1.tbl, rc_3.tbl,

-- up_mp.tbl

--

Rule "Remote Memory Read Request"

(h != n)

==>

Begin

Switch RAC.State

Case INVAL:

-- no pending event

Switch Cache.State

Case Non_Locally_Cached:

-- send request to home cluster

RAC.State := WRD;

Send_R_Req_H(h,n,a);

Else

-- other cache supply data using snoopy protocol

End;

Case WINV:

-- RAC take dirty ownership (simplified)

Assert (Cache.State = Locally_Exmod)

"WINV with Exmod not asserted";

Case WRD:

-- merge

Assert (Cache.State = Non_Locally_Cached)

"WRD with data Locally_Cached";

Case WRDX:

-- conflict

Assert (Cache.State != Locally_Exmod)

"WRDX with data Locally_Exmod";

Case RRD:

-- conflict

Assert (Cache.State = Non_Locally_Cached)

"WRDX with funny cache state";

Case WRDO:

Error "remote Cluster with WRDO";

Case WDMAR:

-- conflict

Assert (Cache.State = Non_Locally_Cached)

"WRD with data Locally_Cached";

Case WUP:

-- conflict

Case WDMAW:

-- conflict

Assert (Cache.State != Locally_Exmod)

"WRDX with data Locally_Exmod";

End; --switch;

End; -- rule -- Remote Memory Read Request

--

-- remote CPU issues read exclusive request

-- confirmed with tables net.tbl, rc_1.tbl, rc_3.tbl,

-- up_mp.tbl

--

Rule "Remote Memory Read Exclusive Request"

(h != n)

==>

Begin

Switch RAC.State

Case INVAL:

-- no pending event

Switch Cache.State

Case Locally_Exmod:

-- other cache supply data

Else

-- send request to home cluster

RAC.State := WRDX;

Send_R_Ex_Req_H(h,n,a);

End;

Case WINV:

-- other cache supply data

Assert (Cache.State = Locally_Exmod)

"WINV with Exmod not asserted";

Case WRDX:

-- merge

Assert (Cache.State != Locally_Exmod)

"WRDX with Exmod asserted";

Case WRD:

-- conflict

Assert (Cache.State != Locally_Exmod)

"WRD with Exmod asserted";

Case RRD:

-- conflict

Assert (Cache.State != Locally_Exmod)

"RRD with Exmod asserted";

Case WRDO:

Error "remote cluster with WRDO";

Case WDMAR:

-- conflict

Assert (Cache.State != Locally_Exmod)

"WRD with Exmod asserted";

Case WUP:

-- conflict

Case WDMAW:

-- conflict

End; --switch;

End; -- rule -- Remote Memory Read Exclusive Request

--

-- remote CPU issues explicit writeback request

--

Rule "Explicit Writeback request"

(h != n)

& (Cache.State = Locally_Exmod)

==>

Begin

If (RAC.State = WINV) Then

-- retry later

Else

-- send request to home cluster

Assert (RAC.State = INVAL

| RAC.State = WUP) "Inconsistent Directory";

Send_WB_Req(h,n,a,Cache.Value);

Cache.State := Non_Locally_Cached;

Undefine Cache.Value;

End;

End; -- rule -- Explicit Writeback request

End; --alias; -- RAC, Cache

End; --ruleset; -- a

End; --ruleset; -- h

End; --ruleset; -- n

165

/*

CPU IIb

The rule sets non-deterministically issue requests for remote

cache-able memory. The requests include DMA read, DMA write.

Two sets of rules:

Rule "DMA Remote Memory Read Request"

Rule "DMA Remote Memory Write Request"

Issue messages:

DRD_H

DWR_H

*/

Ruleset n : Proc Do

Ruleset h : Home Do

Ruleset a : Address Do

Alias

RAC : Procs[n].RAC[h][a];

Cache : Procs[n].Cache[h][a]

Do

--

-- remote CPU issues DMA read request

-- confirmed with tables net.tbl, rc_1.tbl, rc_3.tbl,

-- up_mp.tbl

--

Rule "DMA Remote Memory Read Request"

(h != n)

==>

Begin

Switch Cache.State

Case Non_Locally_Cached:

Switch RAC.State

Case INVAL:

RAC.State := WDMAR;

Send_DMA_R_Req_H(h,n,a);

Case WINV:

Error "Inconsistent RAC and Cache";

Else -- WRD, WRDX, RRD, WRDO, WDMAR, WUP, WDMAW

Assert (RAC.State != WRDO) "WRDO at remote cluster";

-- conflict or merge

End;

Case Locally_Shared:

Assert (RAC.State != WINV

& RAC.State != WRDO

& RAC.State != WRD

& RAC.State != RRD

& RAC.State != WDMAR) "Inconsistent directory";

Case Locally_Exmod:

Assert (RAC.State != WDMAW

& RAC.State != WRDO

& RAC.State != WRD

& RAC.State != WRDX

& RAC.State != RRD

& RAC.State != WDMAR) "Inconsistent directory";

End;

End; -- rule -- DMA Remote Memory Read Request

--

-- remote CPU issues DMA write request

-- confirmed with tables net.tbl, rc_1.tbl, rc_3.tbl,

-- up_mp.tbl

--

Ruleset v : Value Do

Rule "DMA Remote Memory Write Request"

(h != n)

==>

Begin

Switch RAC.State

Case INVAL:

Switch Cache.State

Case Locally_Exmod:

-- update cache

Cache.Value := v;

Case Locally_Shared:

-- no update to local cache

-- update will be requested by home cluster later.

-- send update request

RAC.State := WDMAW;

RAC.Value := v;

Send_DMA_W_Req_H(h,n,a,v);

Case Non_Locally_Cached:

-- send update request

RAC.State := WDMAW;

RAC.Value := v;

Send_DMA_W_Req_H(h,n,a,v);

End; --switch;

Case WINV:

-- write local cache

Assert (Cache.State = Locally_Exmod)

"WINV with Exmod not asserted";

Cache.Value := v;

Else

-- WRD, WRDO, WRDX, RRD, WDMAR, WUP, WDMAW

Assert (RAC.State != WRDO) "WRDO at remote cluster";

-- conflict or merge

End;

End; -- rule -- DMA Remote Memory Write Request

End; --ruleset; -- v

End; --alias; -- RAC, Cache

End; --ruleset; -- a

End; --ruleset; -- h

End; --ruleset; -- n

166 APPENDIX B. MUR' DESCRIPTIONS

/*

PCPU Ia

PCPU handles basic requests to Home for cache-able memory.

Five sets of rules:

Rule "handle read request to home"

Rule "handle read exclusive request to home"

Rule "handle Sharing writeback request to home"

Rule "handle dirty transfer request to home"

Rule "handle writeback request to home"

Handle messages:

RD_H

RDX_H

SHWB

DXFER

WB

*/

Ruleset Dst : Proc Do

Ruleset Src : Proc Do

Alias

ReqChan : ReqNet[Src][Dst];

Request : ReqNet[Src][Dst].Messages[0].Mtype;

Addr : ReqNet[Src][Dst].Messages[0].Addr;

Aux : ReqNet[Src][Dst].Messages[0].Aux

Do

--

-- PCPU handles Read request to home cluster

-- confirmed with tables net.tbl, rc_1.tbl, rc_3.tbl,

-- up_mp.tbl

--

Rule "handle read request to home"

ReqChan.Count > 0

& Request = RD_H

==>

Begin

Alias

RAC : Procs[Dst].RAC[Dst][Addr];

Cache : Procs[Dst].Cache[Dst][Addr];

Dir : Homes[Dst].Dir[Addr];

Mem : Homes[Dst].Mem[Addr]

Do

Switch RAC.State

Case WINV:

-- cannot release copy

Send_NAK(Src, Dst, Dst, Addr);

Consume_Request(Src, Dst);

Else

-- INVAL, WRDO, WRDX, RRD, WDMAR, WUP, WDMAW.

Assert (RAC.State != WRD) "WRD at home cluster";

Switch Dir.State

Case Uncached:

-- no one has a copy. send copy to remote cluster

If (Cache.State = Locally_Exmod) Then

Cache.State := Locally_Shared;

Mem := Cache.Value;

End;

Dir.State := Shared_Remote;

Dir.SharedCount := 1;

Set_Dir_1st_Entry(Dst, Addr, Src);

Send_R_Reply(Src, Dst, Dst, Addr, Mem);

Consume_Request(Src, Dst);

Case Shared_Remote:

-- some one has a shared copy.

-- send copy to remote cluster

Add_to_Dir_Entries(Dst, Addr, Src);

Send_R_Reply(Src, Dst, Dst, Addr, Mem);

Consume_Request(Src, Dst);

Case Dirty_Remote:

-- some one has a master copy.

-- forward request to master cluster

Send_R_Req_RAC(Dir.Entries[0], Dst, Src, Addr);

Consume_Request(Src, Dst);

End; --switch;

End; --switch;

End; -- alias : RAC, Cache, Dir, Mem

End; -- rule -- handle read request to home

--

-- PCPU handles Read exclusive request to home cluster

-- confirmed with tables net.tbl, rc_1.tbl, rc_3.tbl,

-- up_mp.tbl

--

Rule "handle read exclusive request to home"

ReqChan.Count > 0

& Request = RDX_H

==>

Begin

Alias

RAC : Procs[Dst].RAC[Dst][Addr];

Cache : Procs[Dst].Cache[Dst][Addr];

Dir : Homes[Dst].Dir[Addr];

Mem : Homes[Dst].Mem[Addr]

Do

Switch RAC.State

Case WINV:

-- cannot release copy

Assert (Cache.State = Locally_Exmod)

"WINV with Exmod not asserted";

Send_NAK(Src, Dst, Dst, Addr);

Consume_Request(Src, Dst);

Else

-- INVAL, WRD, WRDO, WRDX, RRD, WDMAR, WUP, WDMAW.

Assert (RAC.State != WRD) "WRD at home cluster";

Switch Dir.State

Case Uncached:

-- no one has a copy. send copy to remote cluster

If (Cache.State = Locally_Exmod) Then

-- write back dirty copy

Mem := Cache.Value;

End;

Cache.State := Non_Locally_Cached;

Undefine Cache.Value;

Dir.State := Dirty_Remote;

Dir.SharedCount := 1;

Set_Dir_1st_Entry(Dst, Addr, Src);

Send_R_Ex_Reply(Src, Dst, Dst, Addr, Mem, 0);

Consume_Request(Src, Dst);

Case Shared_Remote:

-- some one has a shared copy.

-- send copy to remote cluster

Cache.State := Non_Locally_Cached;

Undefine Cache.Value;

-- invalidate every shared copy

if (!bug1) then

-- ############# no bug

-- if you want protocol with no bug,

-- use the following:

-- send invalidation anyway to

-- master-copy-requesting cluster, which has

-- already invalidated the cache

For i : NodeCount Do

If (i < Dir.SharedCount) Then

Send_Inv_Req(Dir.Entries[i], Dst, Src, Addr);

End;

End;

Send_R_Ex_Reply(Src, Dst, Dst, Addr, Mem,

Dir.SharedCount);

else

-- ############# bug I

-- if you want protocol with bug

-- rediscovered by Murphi which is a subtle bug

-- that the designer once overlook and only

-- discovered it by substantial simulation, use

-- the following:

-- no invalidation to master-copy-requesting

-- cluster, which has already invalidated the cache

For i : DirIndex Do

If (i < Dir.SharedCount

& Dir.Entries[i] != Src)

Then

Send_Inv_Req(Dir.Entries[i], Dst, Src, Addr);

End;

End;

If (Exists i : DirIndex Do

(i<Dir.SharedCount

& Dir.Entries[i] = Src)

End)

167

Then

Send_R_Ex_Reply(Src, Dst, Dst, Addr, Mem,

Dir.SharedCount -1);

Else

Send_R_Ex_Reply(Src, Dst, Dst, Addr, Mem,

Dir.SharedCount);

End;

End; -- bug or no bug

Dir.State := Dirty_Remote;

Dir.SharedCount := 1;

Set_Dir_1st_Entry(Dst, Addr, Src);

Consume_Request(Src, Dst);

Case Dirty_Remote:

-- some one has a master copy.

-- forward request to master cluster

Send_R_Ex_Req_RAC(Dir.Entries[0], Dst, Src, Addr);

Consume_Request(Src, Dst);

End; --switch;

End; --switch; -- RDX_H

End; -- alias : RAC, Cache, Dir, Mem

End; -- rule -- handle read exclusive request to home

--

-- PCPU handles sharing writeback request to home cluster

--

Rule "handle Sharing writeback request to home"

ReqChan.Count > 0

& Request = SHWB

==>

Begin

Alias

v : ReqNet[Src][Dst].Messages[0].Value;

Dir : Homes[Dst].Dir[Addr];

Mem : Homes[Dst].Mem[Addr]

Do

Assert (Dir.State = Dirty_Remote)

"Writeback to non dirty remote memory";

Assert (Dir.Entries[0] = Src) "Writeback by non owner";

Mem := v;

Dir.State := Shared_Remote;

Add_to_Dir_Entries(Dst, Addr, Aux);

Consume_Request(Src, Dst);

End; -- alias : v, Dir, Mem

End; -- rule -- handle sharing writeback to home

--

-- PCPU handles dirty transfer request to home cluster

--

Rule "handle dirty transfer request to home"

ReqChan.Count > 0

& Request = DXFER

==>

Begin

Alias

Dir : Homes[Dst].Dir[Addr]

Do

Assert (Dir.State = Dirty_Remote)

"Dirty transfer for non dirty remote memory";

Assert (Dir.Entries[0] = Src)

"Dirty transfer by non owner";

Set_Dir_1st_Entry(Dst, Addr, Aux);

Send_Dirty_Transfer_Ack(Aux, Dst, Addr);

Consume_Request(Src, Dst);

End; -- alias : Dir

End; -- rule -- handle dirty transfer to home

--

-- PCPU handles writeback request to home cluster

--

Rule "handle writeback request to home"

ReqChan.Count > 0

& Request = WB

==>

Begin

Alias

v : ReqNet[Src][Dst].Messages[0].Value;

Dir : Homes[Dst].Dir[Addr];

Mem : Homes[Dst].Mem[Addr]

Do

Assert (Dir.State = Dirty_Remote)

"Explicit writeback for non dirty remote";

Assert (Dir.Entries[0] = Src)

"Explicit writeback by non owner";

Mem := v;

Dir.State := Uncached;

Dir.SharedCount := 0;

Undefine Dir.Entries;

Consume_Request(Src, Dst);

End; -- alias : v, Dir, Mem

End; -- rule -- handle writeback

End; --alias; -- ReqChan, Request, Addr, Aux

End; --ruleset; -- Src

End; --ruleset; -- Dst

168 APPENDIX B. MUR' DESCRIPTIONS

/*

PCPU Ib

PCPU handles DMA requests to Home for cache-able memory.

Two sets of rules:

Rule "handle DMA read request to home"

Rule "handle DMA write request to home"

Handle messages:

DRD_H

DWR_H

*/

Ruleset Dst : Proc Do

Ruleset Src : Proc Do

Alias

ReqChan : ReqNet[Src][Dst];

Request : ReqNet[Src][Dst].Messages[0].Mtype;

Addr : ReqNet[Src][Dst].Messages[0].Addr;

Aux : ReqNet[Src][Dst].Messages[0].Aux

Do

--

-- PCPU handles DMA read request to home cluster

-- confirmed with tables net.tbl, rc_1.tbl, rc_3.tbl,

-- up_mp.tbl

--

Rule "handle DMA read request to home"

ReqChan.Count > 0

& Request = DRD_H

==>

Begin

Alias

RAC : Procs[Dst].RAC[Dst][Addr];

Cache : Procs[Dst].Cache[Dst][Addr];

Dir : Homes[Dst].Dir[Addr];

Mem : Homes[Dst].Mem[Addr]

Do

Switch RAC.State

Case WINV:

-- cannot release copy

Assert (Cache.State = Locally_Exmod)

"WINV with Exmod not asserted";

Send_NAK(Src, Dst, Dst, Addr);

Consume_Request(Src, Dst);

Else -- INVAL, WRD, WRDO WRDX, RRD WDMAR, WUP, WDMAW.

Switch Dir.State

Case Uncached:

If (Cache.State = Locally_Exmod) Then

Send_DMA_R_Reply(Src, Dst, Dst, Addr, Cache.Value);

Else

Send_DMA_R_Reply(Src, Dst, Dst, Addr, Mem);

End;

Consume_Request(Src, Dst);

Case Shared_Remote:

Send_DMA_R_Reply(Src, Dst, Dst, Addr, Mem);

Consume_Request(Src, Dst);

Case Dirty_Remote:

Send_DMA_R_Req_RAC(Dir.Entries[0], Dst, Src, Addr);

Consume_Request(Src, Dst);

End;

End;

End; -- alias : RAC, Cache, Dir, Mem

End; -- rule -- handle DMA read request to home

--

-- PCPU handles DMA write request to home cluster

-- confirmed with tables net.tbl, rc_1.tbl, rc_3.tbl,

-- up_mp.tbl

--

Rule "handle DMA write request to home"

ReqChan.Count > 0

& Request = DWR_H

==>

Begin

Alias

v : ReqNet[Src][Dst].Messages[0].Value;

RAC : Procs[Dst].RAC[Dst][Addr];

Cache : Procs[Dst].Cache[Dst][Addr];

Dir : Homes[Dst].Dir[Addr];

Mem : Homes[Dst].Mem[Addr]

Do

Switch RAC.State

Case WINV:

-- cannot release copy

Assert (Cache.State = Locally_Exmod)

"WINV with Exmod not asserted";

Send_NAK(Src, Dst, Dst, Addr);

Consume_Request(Src, Dst);

Else -- INVAL, WRD, WRDO WRDX, RRD WDMAR, WUP, WDMAW.

Switch Dir.State

Case Uncached:

-- update local data

Switch Cache.State

Case Locally_Exmod:

Cache.Value := v;

Case Locally_Shared:

Cache.Value := v;

Mem := v;

Case Non_Locally_Cached:

Mem := v;

End;

Send_DMA_W_Ack(Src, Dst, Dst, Addr);

Consume_Request(Src, Dst);

Case Shared_Remote:

-- update local data and remote shared caches

If (Cache.State = Locally_Shared) Then

Cache.Value := v;

End;

Mem := v;

For i:NodeCount Do

If (i < Dir.SharedCount) Then

Send_DMA_Update_Req(Dir.Entries[i], Dst, Src,

Addr, v);

End;

End;

Send_DMA_Update_Count(Src, Dst, Addr, Dir.SharedCount);

Consume_Request(Src, Dst);

Case Dirty_Remote:

-- update remote master copy

Send_DMA_W_Req_RAC(Dir.Entries[0], Dst, Src, Addr, v);

Consume_Request(Src, Dst);

End;

End; --switch

End; -- alias : v, RAC, Cache, Dir, Mem

End; -- rule -- handle DMA write request to home

End; --alias; -- ReqChan, Request, Addr, Aux

End; --ruleset; -- Src

End; --ruleset; -- Dst

169

/*

PCPU IIa

PCPU handles basic requests to non-home for cache-able memory.

Three sets of rules:

Rule "handle read request to remote cluster"

Rule "handle Invalidate request to remote cluster"

Rule "handle read exclusive request to remote cluster"

Handle Messages:

RD_RAC

INV

RDX_RAC

*/

Ruleset Dst: Proc Do

Ruleset Src: Proc Do

Alias

ReqChan: ReqNet[Src][Dst];

Request: ReqNet[Src][Dst].Messages[0].Mtype;

Addr: ReqNet[Src][Dst].Messages[0].Addr;

Aux: ReqNet[Src][Dst].Messages[0].Aux

Do

--

-- PCPU handles read request to remote cluster

-- confirmed with tables net.tbl, rc_1.tbl, rc_3.tbl,

-- up_mp.tbl

-- Case DRDX: -- ambiguous in their table

--

Rule "handle read request to remote cluster"

ReqChan.Count > 0

& Request = RD_RAC

==>

Begin

Alias

RAC: Procs[Dst].RAC[Src][Addr];

Cache: Procs[Dst].Cache[Src][Addr]

Do

Switch RAC.State

Case WINV:

-- cannot release copy

Assert (Cache.State = Locally_Exmod)

"WINV with Exmod not asserted.";

Send_NAK(Aux, Dst, Src, Addr);

Consume_Request(Src, Dst);

Else

-- INVAL, WRDO, WRD, WRDX, RRD, WDMAR, WUP, WDMAW

Assert (RAC.State != WRDO) "WRDO at remote cluster";

Switch Cache.State

Case Locally_Exmod:

-- has master copy; sharing write back data

Cache.State := Locally_Shared;

If (Src = Aux) Then

-- read req from home cluster

Send_R_Reply(Aux, Dst, Src, Addr, Cache.Value);

Else

-- read req from local cluster

Send_R_Reply(Aux, Dst, Src, Addr, Cache.Value);

Send_SH_WB_Req(Src, Dst, Aux, Addr, Cache.Value);

End;

Consume_Request(Src, Dst);

Else

-- cannot release

-- possible situation is :

-- WRDX => still waiting for reply

-- i.e. request message received before reply

Send_NAK(Aux, Dst, Src, Addr);

Consume_Request(Src, Dst);

End; --switch;

End; --switch;

End; -- alias : RAC, Cache

End; -- rule -- handle read request to remote cluster

--

-- PCPU handles invalidate request

--

Rule "handle Invalidate request to remote cluster"

ReqChan.Count > 0

& Request = INV

==>

Begin

Alias

RAC: Procs[Dst].RAC[Src][Addr];

Cache: Procs[Dst].Cache[Src][Addr]

Do

Assert (Dst != Src) "Invalidation to Local Memory";

If (Dst = Aux)

Then

--

-- PCPU handles invalidate request to initiating cluster

--

If (Cache.State = Locally_Shared) Then

Cache.State := Non_Locally_Cached;

Undefine Cache.Value;

End;

If (RAC.State = WINV)Then

-- have to wait for 1 less invalidation

RAC.InvCount := RAC.InvCount -1;

Else

-- invalidation acknowledge come back before reply

-- keep a count of how many acks so far

RAC.InvCount := RAC.InvCount +1;

End;

If (RAC.InvCount = 0

& RAC.State = WINV)

Then

-- finished collecting all acknowledgments

Undefine RAC;

RAC.State := INVAL;

RAC.InvCount := 0;

End;

Consume_Request(Src, Dst);

Else

--

-- PCPU handles invalidate request

-- confirmed with tables net.tbl, rc_1.tbl, rc_3.tbl,

-- up_mp.tbl

--

Switch RAC.State

Case WINV:

Error "invalidation cannot be for this copy!";

Case WRD:

RAC.State := RRD;

Case RRD:

-- nochange

Else

-- INVAL, WRDX, WRDO, RRD, WDMAR, WUP, WDMAW.

Assert (RAC.State != WRDO)

"Inconsistent RAC with invalidation";

Switch Cache.State

Case Non_Locally_Cached:

-- already flushed out of the cache

-- DMA update causes an RRD, therefore

-- not up-to-date copy in cache

-- while home cluster still thinks there

-- is a shared copy. If you want to

-- introduce some errors, add next line

--

-- Error "checking if we model flushing";

Case Locally_Shared:

-- invalidate cache

Cache.State := Non_Locally_Cached;

Undefine Cache.Value;

Case Locally_Exmod:

Error "Invalidate request to master remote block.";

End;

End;

Send_Inv_Ack(Aux, Dst, Src, Addr);

Consume_Request(Src, Dst);

End; -- if

End; -- alias : RAC, Cache

End; -- rule -- handle invalidate request

170 APPENDIX B. MUR' DESCRIPTIONS

--

-- PCPU handles Read exclusive request to remote cluster

-- confirmed with tables net.tbl, rc_1.tbl, rc_3.tbl,

-- up_mp.tbl

--

Rule "handle read exclusive request to remote cluster"

ReqChan.Count > 0

& Request = RDX_RAC

==>

Begin

Alias

RAC: Procs[Dst].RAC[Src][Addr];

Cache: Procs[Dst].Cache[Src][Addr]

Do

Switch RAC.State

Case WINV:

-- cannot release copy

Assert (Cache.State = Locally_Exmod)

"WINV with Exmod not asserted.";

Send_NAK(Aux, Dst, Src, Addr);

Consume_Request(Src, Dst);

Else

-- INVAL, WRDO, WRD, WRDX, RRD, WDMAR, WUP, WDMAW.

Assert (RAC.State != WRDO) "WRDO in remote cluster";

Switch Cache.State

Case Locally_Exmod:

-- has master copy; dirty transfer data

If (Src = Aux) Then

-- request from home cluster

Send_R_Ex_Reply(Aux, Dst, Src, Addr, Cache.Value, 0);

Else

-- request from remote cluster

Send_R_Ex_Reply(Aux, Dst, Src, Addr, Cache.Value, 1);

Send_Dirty_Transfer_Req(Src, Dst, Aux, Addr);

End;

Cache.State := Non_Locally_Cached;

Undefine Cache.Value;

Consume_Request(Src, Dst);

Else

-- cannot release

-- possible situation is :

-- WRDX => still waiting for reply

-- i.e. request message received before reply

Send_NAK(Aux, Dst, Src, Addr);

Consume_Request(Src, Dst);

End; --switch;

End; --switch;

End; -- alias : RAC, Cache

End; -- rule -- handle read excl. req. to remote cluster

End; --alias; -- ReqChan, Request, Addr, Aux

End; --ruleset; -- Src

End; --ruleset; -- Dst

/*

PCPU IIb

PCPU handles DMA requests to non-home for cache-able memory.

Three sets of rules:

Rule "handle DMA read request to remote cluster"

Rule "handle DMA update request to remote cluster"

Rule "handle DMA write request to remote cluster"

Handle Messages:

DUP

DWR_RAC

DRD_RAC

*/

Ruleset Dst: Proc Do

Ruleset Src: Proc Do

Alias

ReqChan: ReqNet[Src][Dst];

Request: ReqNet[Src][Dst].Messages[0].Mtype;

Addr: ReqNet[Src][Dst].Messages[0].Addr;

Aux: ReqNet[Src][Dst].Messages[0].Aux

Do

--

-- PCPU handles DMA Read request to remote cluster

-- confirmed with tables net.tbl, rc_1.tbl, rc_3.tbl,

-- up_mp.tbl

--

Rule "handle DMA read request to remote cluster"

ReqChan.Count > 0

& Request = DRD_RAC

==>

Begin

Alias

RAC: Procs[Dst].RAC[Src][Addr];

Cache: Procs[Dst].Cache[Src][Addr]

Do

Switch RAC.State

Case WINV:

Send_NAK(Aux, Dst, Src, Addr);

Consume_Request(Src, Dst);

Else -- INVAL, WRD, WRDO, RRD, WRDX, WDMAR, WUP WDMAW.

Assert (RAC.State != WRDO) "WRDO in remote cluster";

Switch Cache.State

Case Locally_Exmod:

-- reply with new data

Send_DMA_R_Reply(Aux, Dst, Src, Addr, Cache.Value);

Consume_Request(Src, Dst);

Else

-- cannot release

-- possible situation is :

-- WRDX => still waiting for reply

-- i.e. request message received before reply

Send_NAK(Aux, Dst, Src, Addr);

Consume_Request(Src, Dst);

End;

End;

End; -- alias : RAC, Cache

End; -- rule -- handle DMA read request to remote cluster

--

-- PCPU handles DMA update request

--

Rule "handle DMA update request to remote cluster"

ReqChan.Count > 0

& Request = DUP

==>

Begin

Alias

v: ReqNet[Src][Dst].Messages[0].Value;

RAC: Procs[Dst].RAC[Src][Addr];

Cache: Procs[Dst].Cache[Src][Addr]

Do

Switch RAC.State

Case WINV:

Assert (Cache.State = Locally_Exmod)

"WINV with Exmod not asserted.";

Cache.Value := v;

Case WRD:

RAC.State := RRD;

171

Case RRD:

-- no change

Else -- INVAL, WRDO, WRDX, WDMAR, WUP WDMAW.

Assert (RAC.State != WRDO) "WRDO in remote cluster";

Switch Cache.State

Case Locally_Shared:

Cache.Value := v;

Case Non_Locally_Cached:

-- cache already given up data

-- possible situation :

-- DMA update causes an RRD,

-- therefore not up-to-date copy in cache

-- while home cluster still thinks there

-- is a shared copy. If you want to

-- introduce some errors, add next line

--

-- Error "checking if we model flushing";

Case Locally_Exmod:

-- possible situation is :

-- arise if the bug I is used...otherwise not.

-- 1) cluster 1 get shared copy

-- 2) home try DMA update

-- 3) cluster 1 has given up data and get a master copy

-- Error "add possible situation IV";

Cache.Value := v;

-- requested updated Exclusive copy ?

End;

End;

Send_DMA_Update_Ack(Aux, Dst, Src, Addr);

Consume_Request(Src, Dst);

End; -- alias : v, RAC, Cache

End; -- rule -- handle DMA update request to remote cluster

--

-- PCPU handles DMA write request to remote cluster

-- confirmed with tables net.tbl, rc_1.tbl, rc_3.tbl,

-- up_mp.tbl

--

Rule "handle DMA write request to remote cluster"

ReqChan.Count > 0

& Request = DWR_RAC

==>

Begin

Alias

v: ReqNet[Src][Dst].Messages[0].Value;

RAC: Procs[Dst].RAC[Src][Addr];

Cache: Procs[Dst].Cache[Src][Addr]

Do

Switch RAC.State

Case WINV:

-- cannot update copy

Assert (Cache.State = Locally_Exmod)

"WINV with Exmod not asserted.";

Send_NAK(Aux, Dst, Src, Addr);

Consume_Request(Src, Dst);

Else -- INVAL, WRD, WRDO, RRD, WRDX, WDMAR, WUP WDMAW.

Switch Cache.State

Case Locally_Exmod:

Cache.Value := v;

Send_DMA_W_Ack(Aux, Dst, Src, Addr);

Consume_Request(Src, Dst);

Else

-- cannot update copy

-- possible situation is :

-- WRDX => still waiting for reply

-- i.e. request message received before reply

Send_NAK(Aux, Dst, Src, Addr);

Consume_Request(Src, Dst);

End;

End;

End; -- alias : v, RAC, Cache

End; -- rule -- handle DMA update request to remote cluster

End; --alias; -- ReqChan, Request, Addr, Aux

End; --ruleset; -- Src

End; --ruleset; -- Dst

/*

RCPU Iab

RCPU handles cache-able and DMA acknowledgments and replies.

Four sets of rules:

Rule "handle Acknowledgment"

Rule "handle negative Acknowledgment"

Rule "handle Indirect Acknowledgment"

Rule "handle Supplementary Acknowledgment"

Handle messages:

ACK

NAK

IACK

SACK

-- confirmed with table net_up.tbl

-- except simplified in handling NAK on WDMAW

*/

Ruleset Dst : Proc Do

Ruleset Src : Proc Do

Alias

ReplyChan : ReplyNet[Src][Dst];

Reply : ReplyNet[Src][Dst].Messages[0].Mtype;

Addr : ReplyNet[Src][Dst].Messages[0].Addr;

Aux : ReplyNet[Src][Dst].Messages[0].Aux;

v : ReplyNet[Src][Dst].Messages[0].Value;

ICount : ReplyNet[Src][Dst].Messages[0].InvCount

Do

--

Rule "handle Acknowledgment"

ReplyChan.Count > 0

& Reply = ACK

-- basic operation -- read reply

-- basic operation -- read exclusive reply

-- (inv count = 0)

-- DMA operation -- read reply

-- DMA operation -- write acknowledge

==>

Begin

Alias

RAC : Procs[Dst].RAC[Aux][Addr];

Cache : Procs[Dst].Cache[Aux][Addr]

Do

Switch RAC.State

Case INVAL:

-- no pending event

Error "ACK in INVAL RAC state";

Case WRD:

-- pending read , i.e. read reply

Cache.State := Locally_Shared;

Cache.Value := v;

Undefine RAC;

RAC.State := INVAL;

RAC.InvCount := 0;

Consume_Reply(Src, Dst);

Case WRDO:

-- pending read , i.e. read reply

Cache.State := Locally_Shared;

Cache.Value := v;

Homes[Dst].Mem[Addr] := v;

Undefine RAC;

RAC.State := INVAL;

RAC.InvCount := 0;

Consume_Reply(Src, Dst);

172 APPENDIX B. MUR' DESCRIPTIONS

Case WRDX:

-- pending exclusive read, i.e. exclusive read reply

-- no invalidation is required

Cache.State := Locally_Exmod;

Cache.Value := v;

If (Dst = Aux)

Then

Alias

Dir : Homes[Dst].Dir[Addr]

Do

-- getting master copy back in home cluster

-- no shared copy in the network

Dir.State := Uncached;

Dir.SharedCount := 0;

Undefine Dir.Entries;

End; -- alias : Dir

End;

Undefine RAC;

RAC.State := INVAL;

RAC.InvCount := 0;

Consume_Reply(Src, Dst);

Case RRD:

-- invalidated pending event, ignore reply

Undefine RAC;

RAC.State := INVAL;

RAC.InvCount := 0;

Consume_Reply(Src, Dst);

Case WDMAR:

-- pending DMA read , i.e. read reply

-- return data to cpu

Undefine RAC;

RAC.State := INVAL;

RAC.InvCount := 0;

Consume_Reply(Src, Dst);

Case WDMAW:

-- pending DMA write , i.e. write acknowledge

Undefine RAC;

RAC.State := INVAL;

RAC.InvCount := 0;

Consume_Reply(Src, Dst);

Else

-- WINV, WUP

Error "ACK in funny RAC state";

End; --switch;

End; -- alias : RAC, Cache, Dir, Mem

End; -- rule -- handle ACK

--

Rule "handle negative Acknowledgment"

ReplyChan.Count > 0

& Reply = NAK

-- ANY kind of operation -- negative acknowledge

==>

Begin

Alias

RAC : Procs[Dst].RAC[Aux][Addr];

Cache : Procs[Dst].Cache[Aux][Addr];

Do

Switch RAC.State

Case INVAL:

Error "NAK in INVAL RAC state";

Case WRD:

Undefine RAC;

RAC.State := INVAL;

RAC.InvCount := 0;

Consume_Reply(Src, Dst);

Case WRDO:

Undefine RAC;

RAC.State := INVAL;

RAC.InvCount := 0;

Consume_Reply(Src, Dst);

Case WRDX:

Undefine RAC;

RAC.State := INVAL;

RAC.InvCount := 0;

Consume_Reply(Src, Dst);

Case RRD:

Undefine RAC;

RAC.State := INVAL;

RAC.InvCount := 0;

Consume_Reply(Src, Dst);

Case WDMAR:

-- invalidated request, no data returned

-- DMA read retry later

Undefine RAC;

RAC.State := INVAL;

RAC.InvCount := 0;

Consume_Reply(Src, Dst);

Case WDMAW:

-- issues DMA write on bus again

If (Dst = Aux) Then

-- home cluster issuing DMA write

Alias

Dir : Homes[Dst].Dir[Addr];

Mem : Homes[Dst].Mem[Addr]

Do

If (Cache.State != Non_Locally_Cached) Then

Cache.Value := RAC.Value;

Undefine RAC;

RAC.State := INVAL;

RAC.InvCount := 0;

End;

Switch Dir.State

Case Uncached:

Mem := RAC.Value;

Undefine RAC;

RAC.State := INVAL;

RAC.InvCount := 0;

Case Shared_Remote:

Mem := RAC.Value;

For i:NodeCount Do

If (i < Dir.SharedCount) Then

Send_DMA_Update_Req(Dir.Entries[i], Dst,

Dst, Addr, RAC.Value);

End;

End;

RAC.State := WUP;

RAC.InvCount := Dir.SharedCount;

Undefine RAC.Value;

RAC.State := INVAL;

RAC.InvCount := 0;

Case Dirty_Remote:

RAC.State := WDMAW;

Send_DMA_W_Req_RAC(Dir.Entries[0], Dst,

Dst, Addr, RAC.Value);

End;

End; -- alias : Dir, Mem

Else -- if

-- remote cluster issuing DMA write

Switch Cache.State

Case Locally_Exmod:

Error "Cache is Exmod while WDMAW outstanding";

Cache.Value := RAC.Value;

Undefine RAC;

RAC.State := INVAL;

RAC.InvCount := 0;

Else

RAC.State := WDMAW;

Send_DMA_W_Req_H(Aux, Dst, Addr, RAC.Value);

End;

End;

Consume_Reply(Src, Dst);

Else --switch

-- WINV, WUP

Error "NAK in funny RAC state";

End; --switch;

End; -- alias : RAC

End; -- rule -- handle NAK

173

--

Rule "handle Indirect Acknowledgment"

ReplyChan.Count > 0

& Reply = IACK

-- basic operation -- read exclusive reply

-- (inv count !=0)

-- DMA operation -- acknowledge with update count

==>

Begin

Alias

RAC : Procs[Dst].RAC[Aux][Addr];

Cache : Procs[Dst].Cache[Aux][Addr]

Do

Switch RAC.State

Case INVAL:

-- no pending event

Error "Read exclusive Reply in INVAL RAC state";

Case WRDX:

-- pending exclusive read, i.e. exclusive read reply

-- require invalidation

Cache.State := Locally_Exmod;

Cache.Value := v;

If (Dst = Aux)

Then

-- getting master copy back in home cluster

Alias

Dir : Homes[Dst].Dir[Addr]

Do

Error "already sent invalidations to copy ??";

Dir.State := Uncached;

Dir.SharedCount := 0;

Undefine Dir.Entries;

End; -- alias : Dir

End;

RAC.InvCount := ICount - RAC.InvCount;

RAC.State := WINV;

If (RAC.InvCount = 0) Then

-- all invalidation acks received

Undefine RAC;

RAC.State := INVAL;

RAC.InvCount := 0;

End;

Consume_Reply(Src, Dst);

Case WDMAW:

RAC.State := WUP;

RAC.InvCount := ICount - RAC.InvCount;

If (RAC.InvCount = 0) Then

Undefine RAC;

RAC.State := INVAL;

RAC.InvCount := 0;

End;

Consume_Reply(Src, Dst);

Else

-- WRD, WRDO, RRD, WINV, WDMAR, WUP.

Error "Read exclusive reply in funny RAC state.";

End;

End; -- alias : RAC, Cache, Dir

End; -- rule -- IACK

--

Rule "handle Supplementary Acknowledgment"

ReplyChan.Count > 0

& Reply = SACK

-- basic operation -- invalidate acknowledge

-- basic operation -- dirty transfer acknowledge

-- DMA operation -- update acknowledge

==>

Begin

Alias

RAC : Procs[Dst].RAC[Aux][Addr]

Do

-- Inv_Ack, Dirty_Transfer_Ack.

Switch RAC.State

Case INVAL:

-- no pending event

Error "Invalidate acknowledge in INVAL RAC state";

Case WINV:

-- get invalidation acknowledgments

RAC.InvCount := RAC.InvCount -1;

If (RAC.InvCount = 0) Then

-- get all invalidation acks

Undefine RAC;

RAC.State := INVAL;

RAC.InvCount := 0;

End;

Consume_Reply(Src, Dst);

Case WRDX:

-- get invalidation acknowledgment before reply

RAC.InvCount := RAC.InvCount +1;

Consume_Reply(Src, Dst);

Case WUP:

RAC.InvCount := RAC.InvCount -1 ;

If (RAC.InvCount = 0) Then

Undefine RAC;

RAC.State := INVAL;

RAC.InvCount := 0;

End;

Consume_Reply(Src, Dst);

Case WDMAW:

-- why is it a plus? !!

RAC.InvCount := RAC.InvCount +1;

Consume_Reply(Src, Dst);

Else

-- WRD, WRDO, RRD, WDMAR.

Error "Invalidate acknowledge in funny RAC state.";

End;

End; -- alias : RAC

End; -- rule -- SACK

End; --alias; -- ReplyChan, Reply, Addr, Aux, v, ICount

End; --ruleset; -- Src

End; --ruleset; -- Dst

174 APPENDIX B. MUR' DESCRIPTIONS

/*

-- rule for non-deterministically change the master copy

*/

Ruleset v : Value Do

Ruleset h : Home Do

Ruleset n : Proc Do

Ruleset a : Address Do

Rule "modifying value at cache"

Procs[n].Cache[h][a].State = Locally_Exmod

==>

Begin

Procs[n].Cache[h][a].Value := v;

End;

End; --ruleset; -- a

End; --ruleset; -- n

End; --ruleset; -- h

End; --ruleset; -- v

/*

Start state

the memory can have arbitrary value

*/

Ruleset v: Value Do

Startstate

Begin

For h : Home Do

For a : Address Do

Homes[h].Dir[a].State := Uncached;

Homes[h].Dir[a].SharedCount := 0;

Homes[h].Mem[a] := v;

Undefine Homes[h].Dir[a].Entries;

End;

End;

For n : Proc Do

For h : Home do

For a : Address Do

Procs[n].Cache[h][a].State := Non_Locally_Cached;

Procs[n].RAC[h][a].State := INVAL;

Undefine Procs[n].Cache[h][a].Value;

Undefine Procs[n].RAC[h][a].Value;

Procs[n].RAC[h][a].InvCount := 0;

End;

End;

End;

For Src : Proc Do

For Dst : Proc Do

ReqNet[Src][Dst].Count := 0;

Undefine ReqNet[Src][Dst].Messages;

ReplyNet[Src][Dst].Count := 0;

Undefine ReplyNet[Src][Dst].Messages;

End;

End;

End; -- startstate

End; -- ruleset -- v

/*

Invariant "Globally invalid RAC state at Home Cluster"

Invariant "Globally invalid RAC state at Local Cluster"

Invariant "Only a single master copy exist"

Invariant "Irrelevant data is set to zero"

Invariant "Consistency within Directory"

Invariant "Condition for existence of master copy of data"

Invariant "Consistency of data"

Invariant "Adequate invalidations with Read Exclusive request"

*/

Invariant "Globally invalid RAC state at Home Cluster"

Forall n : Proc Do

Forall h : Home Do

Forall a : Address Do

(h != n)

|

((Procs[n].RAC[h][a].State != WRD

& Procs[n].RAC[h][a].State != RRD))

End

End

End; -- globally invalid RAC state at Home Cluster

Invariant "Globally invalid RAC state at Local Cluster"

Forall n : Proc Do

Forall h : Home Do

Forall a : Address Do

(h = n)

|

(Procs[n].RAC[h][a].State != WRDO)

End

End

End; -- globally invalid RAC state at Local Cluster

Invariant "Only a single master copy exist"

Forall n1 : Proc Do

Forall n2 : Proc Do

Forall h : Home Do

Forall a : Address Do

! (n1 != n2

& Procs[n1].Cache[h][a].State = Locally_Exmod

& Procs[n2].Cache[h][a].State = Locally_Exmod)

End

End

End

End; -- only a single master copy exist

Invariant "Irrelevant data is set to zero"

Forall n : Proc Do

Forall h : Home Do

Forall a : Address Do

(Homes[h].Dir[a].State != Uncached

| Homes[h].Dir[a].SharedCount = 0)

&

(Forall i:0..DirMax-1 Do

i >= Homes[h].Dir[a].SharedCount

->

Isundefined(Homes[h].Dir[a].Entries[i])

End)

&

(Procs[n].Cache[h][a].State = Non_Locally_Cached

->

Isundefined(Procs[n].Cache[h][a].Value)

)

&

(Procs[n].RAC[h][a].State = INVAL

->

(Isundefined(Procs[n].RAC[h][a].Value)

& Procs[n].RAC[h][a].InvCount = 0))

End

End

End; -- Irrelevant data is set to zero

175

Invariant "Consistency within Directory"

Forall h : Home Do

Forall a : Address Do

(Homes[h].Dir[a].State = Uncached

& Homes[h].Dir[a].SharedCount = 0)

|

(Homes[h].Dir[a].State = Dirty_Remote

& Homes[h].Dir[a].SharedCount = 1)

|

(Homes[h].Dir[a].State = Shared_Remote

& Homes[h].Dir[a].SharedCount != 0

& Forall i : DirIndex Do

Forall j : DirIndex Do

(i != j

& i < Homes[h].Dir[a].SharedCount

& j < Homes[h].Dir[a].SharedCount)

->

(Homes[h].Dir[a].Entries[i]

!= Homes[h].Dir[a].Entries[j])

End

End)

End

End; -- Consistency within Directory

Invariant "Condition for existence of master copy of data"

Forall n : Proc Do

Forall h : Home Do

Forall a : Address Do

(Procs[n].Cache[h][a].State != Locally_Exmod

| Procs[n].RAC[h][a].State = INVAL

| Procs[n].RAC[h][a].State = WINV)

End

End

End; -- Condition for existence of master copy of data

Invariant "Consistency of data"

Forall n : Proc Do

Forall h : Home Do

Forall a : Address Do

! (Procs[n].Cache[h][a].State = Locally_Shared

& Procs[n].Cache[h][a].Value != Homes[h].Mem[a]

& Homes[h].Dir[a].State != Dirty_Remote

& ! (Exists i : 0..ChanMax-1 Do

(i < ReqNet[h][n].Count

& ReqNet[h][n].Messages[i].Mtype = INV)

End)

& ! (Exists i:0..ChanMax-1 Do

(i < ReqNet[n][h].Count

& ReqNet[n][h].Messages[i].Mtype = SHWB)

End

|

Exists m : Proc Do

Exists i : 0..ChanMax-1 Do

(i < ReqNet[m][h].Count

& ReqNet[m][h].Messages[i].Mtype = SHWB

& ReqNet[m][h].Messages[i].Aux = n)

End

End)

& ! (Exists i:0..ChanMax-1 Do

(i < ReplyNet[n][h].Count

& ReplyNet[n][h].Messages[i].Mtype = ACK)

End

|

Exists m:Proc Do

Exists i:0..ChanMax-1 Do

(i < ReplyNet[n][h].Count

& ReplyNet[m][h].Messages[i].Mtype = ACK

& ReplyNet[m][h].Messages[i].Aux = n)

End

End)

& Procs[n].RAC[h][a].State != WDMAW

& ! (Exists i:0..ChanMax-1 Do

(i<ReqNet[h][n].Count

& ReqNet[h][n].Messages[i].Mtype = DUP)

End))

End

End

End; -- Consistency of data

Invariant "Adequate invalidations with Read Exclusive request"

Forall n1 : Proc Do

Forall n2 : Proc Do

Forall h : Home Do

Forall a : Address Do

(n1 = n2)

|

!((Procs[n1].RAC[h][a].State = WINV)

&

(Procs[n2].Cache[h][a].State = Locally_Shared)

&

(! Exists i : 0..ChanMax-1 Do

(i < ReqNet[h][n2].Count

& ReqNet[h][n2].Messages[i].Mtype = INV)

End))

End

End

End

End; -- Adequate invalidations with Read Exclusive request

176 APPENDIX B. MUR' DESCRIPTIONS

Bibliography

[ACH+92] R. Alur, C. Couroubetis, N. Halbwachs, D. Dill, and H. Wong-Toi. Minimiza-

tion of timed transition systems. 3rd International Conference on Concur-

rency Theory, pages 340{354, 1992.

[AFdR80] K.R. Apt, N. Francez, and W.P. de Roever. A proof system for communicat-

ing sequential processes. ACM Transactions on Programming Languages and

Systems, 2(3):359{385, 1980.

[AK86] Krzysztof R. Apt and Dexter C. Kozen. Limits for automatic veri�cation of

�nite-state concurrent systems. Information Processing Letters, 22:307{309,

1986.

[AKS83] S. Aggarwal, R.P. Kurshan, and K. Sabnani. A calculus for protocol speci-

�cation and validation. Protocol Speci�cation, Testing, and Veri�cation, III,

pages 19{34, 1983.

[BBG+93] A. Bouajjani, S. Bensalem, S. Graf, C. Loiseaux, and J. Sifakis. Property

preserving abstractions for the veri�cation of concurrent systems. Formal

Methods in System Design, 6(1):11{44, 1993.

[BBLS92] A. Bouajjani, S. Bensalem, C. Loiseaux, and J. Sifakis. Property preserving

simulations. 4th Workshop on Computer-Aided Veri�cation, June 1992.

[BCM+90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic

model checking: 1020 states and beyond. 5th IEEE Symposium on Logic in

Computer Science, 1990.

[BD87] S. Budkowski and P. Dembinski. An introduction to Estelle: a speci�cation

language for distributed systems. Computer Networks and ISDN Systems,

14(1):3{24, 1987.

[BFH90] A. Bouajjani, J.C. Fernandez, and N. Halbwachs. Minimal model generation.

2nd Workshop on Computer-Aided Veri�cation, 1990.

[BFH+92] A. Bouajjani, J.C. Fernandez, N. Halbwachs, P. Raymond, and C. Ratel.

Minimal state graph generation. Science of Computer Programming, 18:247{

269, 1992.

177

178 BIBLIOGRAPHY

[BM79] Robert S. Boyer and J. Strother Moore. A Computational Logic. Academic

Press, 1979.

[Bri86] Ed Brinksma. A tutorial on Lotos. Protocol Speci�cation, Testing, and Veri-

�cation V, pages 171{194, 1986.

[Bry86] R.E. Bryant. Graph-based algorithms for Boolean function manipulation.

IEEE Transactions on Computers, C-35(8), 1986.

[BSV94] F. Balarin and A.L. Sangiovanni-Vincentelli. On the automatic computation

of network invariants. 6th International Conference on Computer-Aided Ver-

i�cation, June 1994.

[BWHM86] J. Billing, M.C. Wilbur-Ham, and M.Y.Bearman. Automated protocol veri�-

cation. Protocol Speci�cation, Testing, and Veri�cation, V, 1986.

[CBM89] Olivier Coudert, Christian Berthet, and Jean Christophe Madre. Veri�cation

of synchronous sequential machines based on symbolic execution. Automatic

Veri�cation Methods for Finite State Systems, 1989.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a uni�ed lattice model for

static analysis of programs by construction or approximation of �xpoints. 4th

ACM Symposium on Principles of Programming Languages, pages 269{282,

1977.

[CC92] Patrick Cousot and Radhia Cousot. Abstract interpretation and applica-

tion to logic programs. Technical report, Ecole Polytechnique, Laboratoire

d'Informatique, 1992.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchro-

nization skeletons using branching time temporal logic. Workshop on Logics

of Programs, pages 52{71, 1981.

[CEFJ96] E.M. Clarke, R. Enders, T. Filkorn, and S. Jha. Exploiting symmetry in

temporal logic model checking. Formal Methods in System Design, 9(1/2):77{

104, August 1996.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic veri�cation of �nite-

state concurrent systems using temporal logic speci�cations. ACM Transac-

tions on Programming Languages and Systems, 8(2), April 1986.

[CFJ93] E.M. Clarke, T. Filkorn, and S. Jha. Exploiting symmetry in temporal logic

model checking. 5th International Conference on Computer-Aided Veri�ca-

tion, June 1993.

[CG70] D.G. Corneil and C.C. Gotlieb. An e�cient algorithm for graph isomorphism.

Journal of the Association for Computing Machinery, 17(1), January 1970.

BIBLIOGRAPHY 179

[CG87] E.M. Clarke and O. Grumberg. Avoiding the state explosion problem in

temporal logic model checking algorithms. 6th Annual ACM Symposium on

Principle of Distributed Computing, pages 294{303, 1987.

[CGJ95] E.M. Clarke, O. Grumberg, and S. Jha. Verifying parameterized networks

using abstraction and regular languages. 6th International Conference on

Concurrency Theory, 1995.

[CGL91] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction.

ACM Symposium on Principles of Programming Languages, 1991.

[CK80] D.G. Corneil and D.G. Kirkpatrick. A theoretical analysis of various heuristics

for the graph isomorphism problem. SIAM Journal of Computing, 9, May

1980.

[CM88] K. Mani Chandy and Jayadev Misra. Parallel Program Design | a Founda-

tion. Addison-Wesley, 1988.

[CMCHG96] E.M. Clarke, K.L. McMillan, S. Campos, and V. Hartonas-Garmhausen. Sym-

bolic model checking. 8th International Conference on Computer Aided Ver-

i�cation, pages 419{422, July/August 1996.

[Cou81] P. Cousot. Semantic foundations of program analysis. Program Flow Analysis:

Theory and Applications, pages 303{342, 1981.

[Cou90] P. Cousot. Methods and logics for proving programs. Form Models and

Semantics, B:843{993, 1990.

[CRL96] Satish Chandra, Brad Richards, and James R. Larus. Teapot: Language

support for writing memory coherence protocols. ACM SIGPLAN '96: Pro-

gramming Language Design and Implementation, May 1996.

[DDHY92] David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang. Proto-

col veri�cation as a hardware design aid. IEEE International Conference on

Computer Design: VLSI in Computers and Processors, pages 522{525, 1992.

[DGG94] Dennis Dams, Orna Grumberg, and Rob Gerth. Abstract interpretation of re-

active systems: abstractions preserving 8CTL*, 9CTL* and CTL*. Program-

ming Concepts, Methods and Calculi (PROCOMET), pages 561{581, 1994.

[Dij76] E.W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[Dij85] E.J. Dijkstra. Invariance and nondeterminacy. In Mathematical Logic and

Programming Languages. Prentice-Hall, 1985.

[Dil95] David L. Dill. Protocols used in class CS355. Stanford University, Spring

1994-1995.

180 BIBLIOGRAPHY

[Dil96] D.L. Dill. The Mur' veri�cation system. 8th International Conference on

Computer Aided Veri�cation, pages 390{393, July/August 1996.

[DPN93] David L. Dill, Seungjoon Park, and Andreas Nowatzyk. Formal speci�cation

of abstract memory models. Research on Integrated Systems: Proceedings of

the 1993 Symposium, pages 38{52, March 1993.

[Ebe88] Carl Ebeling. GeminiII: A second generation layout validation program.

IEEE/ACM International Conference on Computer-Aided Design, 1988.

[EH83] E. Allen Emerson and Joseph Y. Halpern. `sometime' and `not never' revis-

ited: on branching versus linear time. 10th ACM Symposium on Principles of

programming languages, 1983.

[Eme96] E. Allen Emerson, editor. Formal Methods in System Design, Special Issue

on Symmetry in Automatic Veri�cation, volume 9(1/2). Kluwer Academic

Publishers, August 1996.

[ES93] E. Allen Emerson and A. Prasad Sistla. Symmetry and model checking. 5th

International Conference on Computer-Aided Veri�cation, June 1993.

[ES95] E.A. Emerson and A.P. Sistla. Utilizing symmetry when model checking un-

der fairness assumptions: An automata-theoretic approach. 7th International

Conference on Computer-Aided Veri�cation, 1995.

[ES96] E. Allen Emerson and A. Prasad Sistla. Symmetry and model checking. For-

mal Methods in System Design, 9(1/2):105{131, August 1996.

[Fer93] J.C. Fernandez. Abstract interpretation and veri�cation of reactive systems.

3rd International Workshop Proceedings on Static Analysis, pages 60{71,

1993.

[Flo67] R. Floyd. Assigning meaning to programs. Symposium on Applied Mathemat-

ics 19, Mathematical Aspects of Computer Science, pages 19{32, 1967.

[GL93a] S. Graf and C. Loiseaux. Program veri�cation using compositional abstrac-

tion. TAPSOFT 93 joint conference CAAP/FASE, 1993.

[GL93b] S. Graf and C. Loiseaux. A tool for symbolic program veri�cation and ab-

straction. 5th International Conference on Computer-Aided Veri�cation, April

1993.

[GM93] M.J.C. Gordon and T.F. Melham, editors. Introduction to HOL: A Theorem

Proving Environment for Higher Order Logic. Cambridge University Press,

1993.

[God90] P. Godefroid. Using partial orders to improve automatic veri�cation methods.

2nd Workshop on Computer Aided Veri�cation, pages 176{185, June 1990.

BIBLIOGRAPHY 181

[God95] P. Godefroid. Partial-Order Methods for the Veri�cation of Concurrent Sys-

tems: An Approach to the State-explosion Problem. PhD thesis, Universite de

Liege, Facult�e des Sciences Appliqu�ees, 1995.

[Gor85] Mike Gordon. HOL: A machine oriented formulation of higher order logic.

Technical report, University of Cambridge Computer Laboratory, 1985.

[Gou88] Ronald Gould. Graph Theory, section 9.2, pages 257{267. The Ben-

jamin/Cummings Publishing Company, Inc., 1988.

[Gra94] Susanne Graf. Veri�cation of a distributed cache memory by using abstrac-

tions. 6th International Conference on Computer-Aided Veri�cation, pages

207{219, 1994.

[GS92] S.M. German and A.P. Sistla. Reasoning about systems with many processes.

Journal of Association for Computing Machinery, 39(3):675{735, 1992.

[GW93] P. Godefroid and P. Wolper. Using partial orders for the e�cient veri�cation

of deadlock freedom and safety properties. Formal Methods in System Design,

2(2):149{164, April 1993.

[GW94] P. Godefroid and P. Wolper. A partial approach to model checking. Informa-

tion and Computation, 110(2):305{326, May 1994.

[HB95] Ramin Hojati and Robert K. Brayton. Automatic datapath abstraction in

hardware systems. 7th International Conference on Computer-Aided Veri�-

cation, 1995.

[HD93a] Alan J. Hu and David L. Dill. E�cient veri�cation with BDDs using implic-

itly conjoined invariants. 5th International Conference on Computer-Aided

Veri�cation, June 1993.

[HD93b] Alan J. Hu and David L. Dill. Reducing BDD size by exploiting functional

dependencies. 30th Design Automation Conference, pages 266{271, 1993.

[HGP92] G.J. Holzmann, P. Godefroid, and D. Pirottin. Coverage preserving reduc-

tion strategies for reachability analysis. International Symposium on Protocol

Speci�cation, Testing, and Veri�cation, pages 349{363, June 1992.

[HHK96] R.H. Hardin, Z. Har'El, and R.P. Kurshan. COSPAN. 8th International Con-

ference on Computer Aided Veri�cation, pages 423{427, July/August 1996.

[HJJJ84] Peter Huber, Ame M. Jensen, Leif O. Jepsen, and Kurt Jensen. Towards

reachability trees for high-level petri nets. Advances on Petri Nets, pages

215{233, 1984.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming. Communica-

tions of the ACM, 12:576{580, 1969.

182 BIBLIOGRAPHY

[Hof95] Robert D. Hof. Intel takes a bullet | and barely breaks stride. Business

Week, pages 38{39, January 1995.

[Hol85] G.J. Holzmann. Tracing protocols. AT&T Technical Journal, 64(12):2413{

2434, 1985.

[Hol87] Gerard J. Holzmann. Automated Protocol Validation in Argos, Assertion

Proving and Scatter Searching. Computer Science Press, 1987.

[Hol91a] Gerard J. Holzmann. Design and Validation of Computer Protocols, chap-

ter 13. Prentice-Hall, 1991.

[Hol91b] Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice-

Hall, 1991.

[HP94] G.J. Holzmann and D. Peled. An improvement in formal veri�cation. 7th

International Conference on Formal Description Techniques, pages 177{194,

1994.

[HP96] G.J. Holzmann and D. Peled. The state of SPIN. 8th International Conference

on Computer Aided Veri�cation, pages 385{389, July/August 1996.

[Hu95] Alan John Hu. Techniques for E�cient Formal Veri�cation Using Binary

Decision Diagrams, chapter 4 on `BDD Blow-Up Representing Sets of States',

pages 41{49. Stanford University, December 1995. Ph.D. Thesis.

[ID93a] C. Norris Ip and David L. Dill. Better veri�cation through symmetry. 11th

International Symposium on Computer Hardware Description Languages and

Their Applications, pages 87{100, April 1993.

[ID93b] C. Norris Ip and David L. Dill. E�cient veri�cation of symmetric concur-

rent systems. IEEE International Conference on Computer Design: VLSI in

Computers and Processors, pages 230{234, October 1993.

[ID96a] C. Norris Ip and David L. Dill. Better veri�cation through symmetry. Formal

Methods in System Design, 9(1/2):41{75, August 1996.

[ID96b] C. Norris Ip and David L. Dill. State reduction using reversible rules. 33rd

Design Automation Conference, pages 564{567, June 1996.

[ID96c] C. Norris Ip and David L. Dill. Verifying systems with replicated components

in Mur'. 8th International Conference on Computer-Aided Veri�cation, pages

147{158, 1996.

[Jen96] Kurt Jensen. Condensed state spaces for symmetrical coloured petri nets.

Formal Methods in System Design, 9(1/2):7{40, August 1996.

BIBLIOGRAPHY 183

[JJ91] C. Jard and Th. Jeron. Bounded-memory algorithms for veri�cation on-the-

y. 3rd Workshop on Computer-Aided Veri�cation, July 1991.

[JJD96] Daniel Jackson, Somesh Jha, and Craig A. Damon. Faster checking of software

speci�cations by eliminating isomorphs. ACM Conference on Principles of

Programming Languages, January 1996.

[KMOS94] Robert P. Kurshan, Michael Merritt, Ariel Orda, and Sonia R. Sachs. A

structural linearization principle for processes. Formal Methods in System

Design, 5:227{244, 1994.

[Lam77] L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans-

actions on Software Engineering, SE-3:2:125{143, 1977.

[Lam80] Leslie Lamport. `sometime' is sometimes `not never', on the temporal logic

of programs. 7th ACM Symposium on Principles of programming languages,

1980.

[Lam83] L. Lamport. What good is temporal logic. Information Processing 83, pages

657{668, 1983.

[LG81] G. Levin and D. Gries. A proof technique for communicating sequential pro-

cesses. Acta Informatica, 15:281{302, 1981.

[LLG+90] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and

John Hennessy. The directory-based cache coherence protocol for the dash

multiprocessor. 17th International Symposium on Computer Architecture,

1990.

[LLG+92] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich We-

ber, Anoop Gupta, John Hennessy, Mark Horowitz, and Monica Lam. The

Stanford DASH multiprocessor. Computer, 25(3), 1992.

[Lon93] D.E. Long. Model Checking, Abstraction and Compositional Veri�cation. PhD

thesis, Carnegie Mellon University, July 1993.

[LSU89] Roger Lipsett, Carl F. Schaefer, and Cary Ussery. VHDL: Hardware Descrip-

tion and Design. Kluwer Academic Publishers, 1989.

[Lub84] Boris D. Lubachevsky. An approach to automating the veri�cation of compact

parallel coordination programs I. Acta Informatica, 21:125{169, 1984.

[LY92] D. Lee and M. Yannakakis. Online minimization of transition systems. 24th

Annual ACM Symposium on the Theory of Computing, pages 264{274, 1992.

[MCS91] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable

synchronization on shared-memory multiprocessors. ACM Transactions on

Computer Systems, 9(1), 1991.

184 BIBLIOGRAPHY

[Mit88] Hari Ballabh Mittal. A fast backtrack algorithm for graph isomorphism. In-

formation Processing Letters 29, pages 105{110, 1988.

[MK96] Hillel Miller and Shmuel Katz. Saving space by fully exploiting invisible

transitions. 8th International Conference on Computer-Aided Veri�cation,

pages 336{347, 1996.

[MP81] Z. Manna and A. Pnueli. Veri�cation of concurrent programs: the temporal

framework. The Correctness Problem in Computer Science, International

Lecture Series in Computer Science, 1981.

[MP83] Z. Manna and A. Pnueli. How to cook a temporal proof system for your

pet language. 10th Annual ACM Symposium on Principles of Programming

Languages, pages 141{154, 1983.

[MP84] Z. Manna and A. Pnueli. Adequate proof principles for invariance and liveness

properties of concurrent programs. Science of Computer Programming, 4:257{

289, 1984.

[OG76a] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs.

Acta Informatica, 6:319{340, 1976.

[OG76b] S. Owicki and D. Gries. Verifying properties of parallel programs: an ax-

iomatic approach. Communications of the ACM, 19:279{285, 1976.

[OL82] S. Owicki and L. Lamport. Proving liveness properties of concurrent programs.

ACM Transactions on Programming Languages and Systems, 4:199{223, 1982.

[Ora88] F. Orava. Formal semantics of SDL speci�cations. Protocol Speci�cation,

Testing, and Veri�cation VIII, 1988.

[ORS92] S. Owre, J.M. Rushby, and N. Shankar. PVS: A prototype veri�cation system.

International Conference on Automated Deduction, pages 748{752, 1992.

[ORSvH95] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. For-

mal veri�cation for fault-tolerant architectures: Prolegomena to the design of

PVS. Transactions on Software Engineering, 21(2):107{125, February 1995.

[Par94] Seungjoon Park. Computer assisted analysis of multiprocessor memory sys-

tems, section 4.3 on `Veri�cation Using A Finite State Method'. PhD thesis,

Stanford University, June 1994.

[PD93a] F. Pong and M. Dubois. Correctness of a directory-based cache coherence

protocol: Early experience. 5th Symposium on Parallel Distributed Processing,

pages 37{44, 1993.

[PD93b] F. Pong and M. Dubois. The veri�cation of cache coherence protocols. 5th

Symposium on Parallel Algorithm and Architecture, pages 11{20, 1993.

BIBLIOGRAPHY 185

[PD95a] Seungjoon Park and David L. Dill. An executable speci�cation, analyzer and

veri�er for RMO (relaxed memory order). 7th ACM Symposium on Parallel

Algorithms and Architectures, pages 34{41, 1995.

[PD95b] F. Pong and M. Dubois. A new approach for the veri�cation of cache coherence

protocols. IEEE Transactions on Parallel and Distributed Systems, 6(2):773{

87, 1995.

[Pel94] D. Peled. Combining partial order reductions with on-the-
y model checking.

6th International Conference on Computer Aided Veri�cation, pages 377{390,

1994.

[Pel96] D. Peled. Partial order reduction: Model-checking using representatives. 21st

International Symposium on Mathematical Foundations of Computer Science,

1996.

[Pet81] G.L. Peterson. Myths about the mutual exclusion problem. Information

Processing Letters, 12(3), 1981.

[PNAD95] F. Pong, A. Nowatzyk, G. Aybay, and M. Dubois. Verifying distributed

directory-based cache coherence protocols: S3.mp, a case study. First In-

ternational EURO-PAR Conference on Parallel Processing, 1995.

[Pnu77] A. Pnueli. The temporal logic of programs. 18th IEEE Symposium on Foun-

dations of Computer Science, pages 46{57, 1977.

[Pon95] Fong Pong. Symbolic State Model: A New Approach for the Veri�cation of

Cache Coherence Protocols. PhD thesis, University of Southern California,

1995.

[QS81] J.P. Queille and J. Sifakis. Speci�cation and veri�cation of concurrent systems

in CESAR. 5th International Symposium on Programming, 1981.

[RS93] June-Kyung Rho and Fabio Somenzi. Automatic generation of network in-

variants for the veri�cation of iterative sequential systems. 5th International

Conference on Computer-Aided Veri�cation, June 1993.

[SD95a] U. Stern and D.L. Dill. Improved probabilistic veri�cation by hash com-

paction. IFIP WG 10.5 Advanced Research Working Conference on Correct

Hardware Design and Veri�cation Methods, pages 206{224, 1995.

[SD95b] Ulrich Stern and David L. Dill. Automatic veri�cation of the SCI cache co-

herence protocol. Correct Hardware Design and Veri�cation Methods: IFIP

WG10.5 Advanced Research Working Conference Proceedings, 1995.

[SG87] A.P. Sistla and S.M. German. Reasoning with many processes. Symposium

on Logic in Computer Science, pages 138{152, 1987.

186 BIBLIOGRAPHY

[SHTO93] Kenji Shibata, Yutaka Hirakawa, Akira Takura, and Tadashi Ohta. Reacha-

bility analysis for speci�ed processes in a behavior description. IEICE Trans-

action on Communication, E76-B(11), November 1993.

[Sta91] P.H. Starke. Reachability analysis of petri nets using symmetries. Systems

Analysis - Modeling - Simulation, 8(4/5):293{303, 1991.

[Tan76] C.K. Tang. Cache design in the tightly coupled multiprocessor system. AFIPS

Conference Proceedings, National Computer Conference, pages 749{753, June

1976.

[TM91] Donald E. Thomas and Philip R. Moorby. The Verilog Hardware Description

Language. Kluwer Academic Publishers, 1991.

[TSL+90] Herve J. Touati, Hamid Savoj, Bill Lin, Robert K. Brayton, and Alberto

Sangiovanni-Vincentelli. Implicit state enumeration of �nite state machines

using BDDs. IEEE International Conference on Computer-Aided Design,

1990.

[Tur49] A.M. Turing. On checking a large routine. Report of a Conference on High

Speed Automatic Calculating Machines, pages 67{69, 1949. See also: F.L.

Morris and C.B. Jones, An early program proof by Alan Turing, Annals of the

History of Computing 6, pages 139-143, 1984.

[Val90] A. Valmari. A stubborn attack on state explosion. 2th Workshop on Computer

Aided Veri�cation, pages 156{165, June 1990.

[Val91] A. Valmari. Stubborn sets for reduced state space generation. Advances in

Petri Nets 1990, pages 491{515, 1991.

[Val93] A. Valmari. On-the-
y veri�cation with stubborn sets. 5th International

Conference on Computer Aided Veri�cation, pages 397{408, June 1993.

[WG94] David Weaver and Tom Germond, editors. The SPARC Architecture Man-

ual Version 9, appendix D on `Formal Speci�cation of the Memory Models'.

Prentice Hall, 1994.

[WL89] Pierre Wolper and Vinciane Lovinfosse. Verifying properties of large sets

of processes with network invariants. In Automatic Veri�cation Methods for

Finite State Systems, volume 407 of LNCS, pages 68{80. Springer-Verlag,

1989.

[WL93] P. Wolper and D. Leroy. Reliable hashing without collision detection. 5th

International Conference on Computer Aided Veri�cation, 1993.

[Wol86] P. Wolper. Expressing interesting properties of programs. 13th ACM Sympo-

sium on Principles of Programming Languages, pages 184{193, 1986.

BIBLIOGRAPHY 187

[Wol87] Pierre Wolper. On the relation of programs and computations to models of

temporal logic. Colloquium on Temporal Logic in Speci�cation, 1987.

[WOLB84] Larry Wos, Ross Overbeek, Ewing Lusk, and Jim Boyle. Automated Reason-

ing: Introduction and Applications. Prentice-Hall, 1984.

[YGM+95] Lawrence Yang, David Gao, Jamshid Mostou�, Raju Joshi, and Paul Loewen-

stein. System design methodology of UltraSPARC-I. 32nd Design Automation

Conference, pages 7{12, 1995.

[ZWR+80] Pitro Za�ropulo, Colin H. West, Harry Rudin, D.D. Cowan, and Daniel Brand.

Towards analyzing and synthesizing protocols. IEEE Transactions on Com-

munications, 28(4), April 1980.

